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Chapter 10 Solutions

10.1 (a ) α  = 
ω – ωi

t
  = 

12.0 rad/s
3.00 s   = 4.00 rad/s2  

(b) θ = ωit + 
1
2  αt2 = 

1
2 (4.00 rad/s2)(3.00 s) 2 = 18.0 rad  

10.2 (a ) ω = 
2π rad

365 days 
1 day
24 h  

1 h
3600 s   = 1.99 × 10–7 rad/s   

(b) ω = 
2π rad

27.3 days 
1 day
24 h  

1 h
3600 s   = 2.65 × 10–6 rad/s   

*10.3 ω i = 2000 rad/s

α = – 80.0 rad/s2

(a ) ω = ω i + αt = [2000 – (80.0)(10.0)] = 1200 rad/s   

(b) 0 = ω i + αt

t = 
ω i
–α    = 

2000
80.0   = 25.0 s   

10.4 (a ) Let ωh and ωm be the angular speeds of the hour hand and minute hand, so that

ωh = 
2π rad
12 h   = π6  rad/h     and     ωm = 2π rad/h

Then if θh and θm are the angular positions of the hour hand and minute hand with respect
to the 12 o'clock position, we have

θh = ωht     and     θm = ωmt

For the two hands to coincide, we need θm = θh + 2π n, where n is a positive integer.
Therefore, we may write ωmt – ωht = 2π n, or

tn = 
2πn

ωm – ωh
  = 

2πn

2π – π
6

  = 
12n
11  h  
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Construct the following table:

n    t    n    (h)    time (h:min:s)
0 0.00 12:00:00
1 1.09 1:05:27
2 2.18 2:10:55
3 3.27 3:16:22
4 4.36 4:21:49
5 5.45 5:27:16
6 6.55 6:32:44
7 7.64 7:38:11
8 8.73 8:43:38
9 9.82 9:49:05
10 10.91 10:54:33

(b) Let θs and ωs be the angular position and angular speed of the second hand, then

ωs = 2π rad/min = 120π rad/h     and     θs = ωst

For all three hands to coincide, we need θs = θm + 2πk (k is any positive integer) at any of
the times given above.  That is, we need

ωstn – ωmtn = 2πk, or

k = 
ωs – ωm

2π   tn = 
118
2π  

12
11  n = 

(3)(4)(59)n
11  

to be an integer.  This is possible only for n = 0 or 11.  Therefore, all three hands coincide

only when straight up at 12 o'clock  .

10.5 ωi = 



100 rev

1.00 min  



1.00 min

60.0 s  



2π rad

1.00 rev   = 
10π
3   rad/s, ωf = 0

(a ) t = 
ωf – ωi

α   = 
0 – 10π/3

–2.00   s = 5.24 s  

(b) θ = ω–  t = 



ωf + ωi

2   t = 



10π

6  rad/s  



10π

6  s   = 27.4 rad  

*10.6 ω i = 3600 rev/min = 3.77 × 102 rad/s

θ = 50.0 rev = 3.14 × 102 rad     and     ω f = 0

ω 2f   = ω 2i    + 2αθ

0 = (3.77 × 102 rad/s)2 + 2α(3.14 × 102 rad)

α = –2.26 × 102 rad/s2   
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10.7 (a ) θ  t = 0 = 5.00 rad  

ω t = 0 = 
dθ
d t

 
t = 0

 = 10.0 + 4.00t t = 0 = 10.0 rad/s  

αt = 0 = 
dω
d t

 
t = 0

 = 4.00 rad/s2  

(b) θ t = 3.00 s = 5.00 + 30.0 + 18.0 = 53.0 rad  

ω t = 3.00 s = 
dθ
d t

 
t = 3.00s

 = 10.0 + 4.00t t = 3.00 s = 22.0 rad/s  

α t = 3.00 s = 
dω
d t

 
t = 3.00s

 = 4.00 rad/s2  

*10.8 ω = 5.00 rev/s = 10.0π rad/s

We will break the motion into two stages:  (1) an acceleration period and (2) a deceleration
period.

While speeding up,

θ1 = ω–  t = 
0 + 10.0π rad/s

2  (8.00 s)   = 40.0π rad

While slowing down,

θ2 = ω–  t = 
10.0π rad/s + 0

2  (12.0 s)   = 60.0π rad

So, θτotal = θ1 + θ2 = 100π rad = 50.0 rev   

10.9 θ – θi = ωit + 
1
2  α t 2      and      ω = ω i + α t

are two equations in two unknowns ωi and α.

ωi = ω – α  t

θ – θi = (ω – α t)t + 
1
2  α t 2 = ωt – 

1
2  α t2

37.0 rev 



2π rad

1 rev    = (98.0 rad/s)(3.00 s) – 
1
2  α (3.00 s)2

232 rad = 294 rad – (4.50 s2)α
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α = 
61.5 rad
4.50 s2    = 13.7 rad/s2   
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*10.10 (a ) ω = ∆θ
∆ t

  = 
1 rev
1 day  = 

2π rad
86400 s  = 7.27 × 10–5 rad/s  

(b) ∆t = ∆θ
ω   = 

107°
7.27 × 10–5 rad/s 



2π rad

360°   = 2.57 × 104 s      (428 min) 

*10.11 Estimate the tire’s radius at 0.250 m and miles driven as 10,000 per year.

θ = 
s
r
  = 

1.00 × 104 mi
0.250 m  



1609 m

1 mi   = 6.44 × 107 
rad
yr  

θ = 6.44 × 107 
rad
yr  



1 rev

2π rad   = 1.02 × 107 
rev
yr  

or ~107 
rev
yr  

*10.12 Main Rotor:

v = rω = (3.80 m) 





450 
rev
min  



2π rad

1 rev  



1 min

60 s   = 179 m/s  

v = 





179 
m
s  



vsound

343 m/s   = 0.522vsound  

Tail Rotor:

v = rω = (0.510 m) 





4138 
rev
min  



2π rad

1 rev  



1 min

60 s   = 221 m/s  

v = 





221 
m
s  



vsound

343 m/s   = 0.644vsound  

10.13 (a ) v = rω;   ω = 
v
r
  = 

45.0 m/s
250 m   = 0.180 rad/s  

(b) ar = 
v2

r
  = 

(45.0 m/s)2

250 m   = 8.10 m/s2 toward the center of track  

10.14 v = 36.0 
km
h  



1 h

3600 s  



103 m

1 km   = 10.0 m/s

ω = 
v
r

  = 
10.0 m/s
0.250 m   = 40.0 rad/s  
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10.15 Given r = 1.00 m, α = 4.00 rad/s2, ω i = 0, and θi = 57.3° = 1.00 rad

(a) ω = ω i + α t = 0 + α t

At t = 2.00 s, ω = (4.00 rad /s2)(2.00 s) = 8.00 rad/s  

(b) v = rω = (1.00 m)(8.00 rad/s) = 8.00 m/s  

ar = rω 2 = (1.00 m)(8.00 rad/s)2 = 64.0 m/s2   

at = rα = (1.00 m)(4.00 rad/s2) = 4.00 m/s2  

The magnitude of the total acceleration is:

a = a
2
r  + a2

t   = (64.0 m/s2)2 + (4.00 m/s2) 2   = 64.1 m/s2

The direction of the total acceleration vector makes an angle φ with respect to the radius
to point P:

φ = tan–1 



at

a r
  = tan–1 



4.00

64.0   = 3.58°

(c) θ = θi + ωit + 
1
2  α t2 = (1.00 rad) + 

1
2 (4.00 rad/s2)(2.00 s) 2 = 9.00 rad  

10.16 (a ) ω = 
v
r

  = 
25.0 m/s
1.00 m   = 25.0 rad/s  

(b) ω2
f   = ω2

i   + 2α(∆θ)

α  = 
ω2

f  – ω2
i

2(∆θ)   = 
(25.0 rad/s)2 – 0

2[(1.25 rev)(2π rad/rev)]  = 39.8 rad/s2  

(c) ∆t = ∆ω
α   = 

25.0 rad/s
39.8 rad/s2  = 0.628 s  

10.17 (a ) s = v– t = (11.0 m/s)(9.00 s) = 99.0 m

θ = 
s
r
   = 

99.0 m
0.290 m   = 341 rad = 54.3 rev   

(b) ω = 
v
r

   = 
22.0 m/s
0.290 m    = 75.9 rad/s = 12.1 rev/s   
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10.18 KA + UA  = Kp + Up

 6.00 × 9.80 × 5.00 = 
1
2 (6.00) v2

p   + 6.00 × 9.80 × 2.00

v
2
p   = 58.8 m2/s2

Radial acceleration at P,

ar = 
v

2
p

R
   = 29.4 m/s2   

Tangential acceleration at P,

at = g = 9.80 m/s2   

10.19 (a ) ω = 2πf = 
2π rad

rev  
1200
60.0   rev/s = 126 rad/s   

(b) v = ωr = (126 rad/s)(3.00 × 10–2 m) = 3.77 m/s   

(c) ar = ω2r = (126)2(8.00 × 10–2) = 1260 m/s2    = 1.26 km/s2  

(d) s = θr = ω t r  = (126 rad/s)(2.00 s)(8.00 × 10–2 m) = 20.1 m   

10.20 Just before it starts to skid,

∑Fr = mar

f = 
mv2

r
   = µsn = µsmg

µs = 
v2

rg
   = 

ω 2r
g

   = 
(ω 2 – ω 2i )r

g
   = 

2αθr
g

   = 
2atθ
g

  

µs = 
2(1.70 m/s2)(π/2)

9.80 m/s2    = 0.545   

*10.21 (a ) x = r cos θ = (3.00 m) cos (9.00 rad) = (3.00 m) cos 516° = –2.73 m

y = r sin θ = (3.00 m) sin (9.00 rad) = (3.00 m) sin 516° = 1.24 m

r = xi + yj = (–2.73i + 1.24j) m  

(b) 516˚ – 360˚ = 156˚.  This is between 90.0˚ and 180˚, so the object is in the second quadrant  .

The vector r makes an angle of 156°   with the positive x-axis or 24.3° with the negative

x-axis.

g

ar

P
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(d) The direction of motion (i.e., the direction of the

velocity vector is at 156° + 90.0° = 246°   from the

positive x axis.  The direction of the acceleration
vector is at 156° + 180° = 336° from the positive x axis.

(c) v = [(4.50 m/s) cos 246°]i + [(4.50 m/s) sin 246°]j

= (–1.85i – 4.10j) m/s  

(e) a = 
v2

r
  = 

(4.50 m/s)2

3.00 m   = 6.75 m/s2 directed toward the center or at 336°

a = (6.75 m/s2)(i cos 336° + j sin 336°) = (6.15i – 2.78j) m/s2  

( f ) ∑F = ma = (4.00 kg)[(6.15i – 2.78j) m/s2] = (24.6i – 11.1j) N  

*10.22 When completely rewound, the tape is a hollow cylinder with a difference between the inner
and outer radii of ~1 cm.  Let N represent the number of revolutions through which the driving
spindle turns in 30 minutes (and hence the number of layers of tape on the spool).  We can
determine N from:

N = ∆θ
2π  = 

ω(∆t)
2π   = 

(1 rad/s)(30 min)(60 s/min)
2π rad/rev   = 286 rev

Then, thickness ~ 
1 cm

N
 ~10–2 cm  

10.23 m1 = 4.00 kg,   r1 = y1 = 3.00 m;    m2 = 2.00 kg,  r2 =  y2   = 2.00 m;

m3 = 3.00 kg,  r3 = y3   = 4.00 m;    ω = 2.00 rad/s about the x-axis

(a ) Ix = m1r 
2
1   + m2r 

2
2   + m1r 

2
2   = (4.00)(3.00)2 + (2.00)(2.00)2 + (3.00)(4.00)2

Ix = 92.0 kg · m2   

KR = 
1
2  Ixω2 = 

1
2 (92.0)(2.00) 2 = 184 J   

(b) v1 = r1ω = (3.00)(2.00) = 6.00 m/s   

v2 = r2ω = (2.00)(2.00) = 4.00 m/s   

v3 = r3ω = (4.00)(2.00) = 8.00 m/s   

156°156°
m

x

v

a

x
O

y  =  3.00 m4.00 kg

3.00 kg

2.00 kg

y

y  =  -2.00 m

y  = -4.00 m



Chapter 10 Solutions 9

© 2000 by Harcourt College Publishers.  All rights reserved.

K1 =  
1
2  m1v

2
1   =  

1
2 (4.00)(6.00) 2  = 72.0 J

K2 =  
1
2  m2v

2
2   =  

1
2 (2.00)(4.00) 2  = 16.0 J

K3 =  
1
2  m3v

2
3   =  

1
2 (3.00)(8.00) 2  = 96.0 J

K = K1 + K2 + K3 = 72.0 + 16.0 + 96.0 = 184 J    =  
1
2  Ixω2

10.24 v = 38.0 m/s ω = 125 rad/s

RATIO = 

1
2
 Iω2

1
2
 mv2

  = 

1
2
  2

5
 mr2  ω2

1
2
 mv2

 

RATIO = 

2
5
 (3.80 × 10–2)2 (125)2

(38.0)2   = 
1

160  

10.25 (a ) I = ∑j mj r
2
j   

In this case,

r1 = r2 = r3 = r4

r = (3.00 m)2 + (2.00 m)  2  = 13.0   m

I = [ 13.0   m]2 [3.00 + 2.00 + 2.00 + 4.00]kg

= 143 kg · m2   

(b) KR =  
1
2  Iω2 = 

1
2 (143 kg · m2)(6.00 rad/s) 2

= 2.57 × 103 J   

10.26 The moment of inertia of a thin rod about an axis through one end is I = 
1
3  ML2.   The total

rotational kinetic energy is given as

KR =  
1
2  Ihω 2h

 +  12  Imω 2m
 , with

Ih = 
mhL

2
h

3   = 
(60.0 kg)(2.70 m)2

3    = 146 kg m2, and

Im = 
mmL

2
m

3   = 
(100 kg)(4.50 m)2

3   = 675 kg m2

x (m)

y (m)

1

2

4

3

0 1 2 3

1

2

4

1 3

2.00 kg2.00 kg2.00 kg3.00 kg3.00 kg3.00 kg

2.00 kg2.00 kg2.00 kg 4.00 kg4.00 kg4.00 kg
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In addition,    ωh = 
(2π rad)
(12 h)  

1 h
3600 s   = 1.45 × 10–4 rad/s,     while

ωm = 
(2π rad)

(1 h)  
1 h

3600 s   = 1.75 × 10–3 rad/s.  Therefore,

KR = 
1
2 (146)(1.45 × 10–4) 2 + 

1
2 (675)(1.75 × 10–3) 2  = 1.04 × 10–3 J  

10.27 I = Mx2 + m(L – x)2

d I
dx

  = 2Mx – 2m(L – x) = 0 (for an extremum)

∴ x = 
mL

M + m 

d2I
dx2  = 2m + 2M; therefore I is minimum when

the axis of rotation passes through x= 
mL

M + m 

which is also the center of mass of the system.  The moment of inertia about an axis passing
through x is

ICM = M 



mL

M + m  
2
 + m 





1 – 
m

M + m  
2
 L2

= 
Mm

M + m  L2 = µL2

where  µ = 
Mm

M + m 

10.28 We assume the rods are thin, with radius much less
than L.  Call the junction of the rods the origin of
coordinates, and the axis of rotation the z-axis.

For the rod along the y-axis, I = 
1
3  mL2  from the table.

For the rod parallel to the z-axis, the parallel-axis
theorem gives

I = 
1
2  mr2 + m 



L

2  
2
 ≅  

1
4  mL2

x

MMM mmm

L

L−xx

L

L−xx

axis of ro
tation
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In the rod along the x-axis, the bit of material between x and x + dx has mass (m/L)dx and is at

distance r = x2 + (L/2)2  from the axis of rotation.  The total rotational inertia is:

Itotal = 
1
3  mL2 + 

1
4  mL2 + ⌡⌠

–L/2

L/2 (x2 + L2/4)(m/L)dx 

= 
7
12  mL2 + 



m

L
 

x3

3

L/2

–L/2

  + 
mL
4  x

L/2

–L/2

 

= 
7
12  mL2 + 

mL2

12   + 
mL2

4   = 
11 mL2

12  

*10.29 Treat the tire as consisting of three parts.  The two sidewalls are each treated as a hollow
cylinder of inner radius 16.5 cm, outer radius 30.5 cm, and height 0.635 cm.  The tread region is
treated as a hollow cylinder of inner radius 30.5 cm, outer radius 33.0 cm, and height 20.0 cm.

Use I = 
1
2  m(R2

1  + R2
2 ) for the moment of inertia of a hollow cylinder.

Sidewall:

m = π [(0.305 m)2 – (0.165 m)2] (6.35 × 10–3 m)(1.10 × 103 kg/m3) = 1.44 kg

Iside = 
1
2 (1.44 kg)  [(0.165 m)2 + (0.305 m)2] = 8.68 × 10–2 kg ⋅ m2

Tread:

m = π [(0.330 m)2 – (0.305 m)2] (0.200 m)(1.10 × 103 kg/m3) = 11.0 kg

Itread = 
1
2 (11.0 kg)  [(0.330 m)2 + (0.305 m)2] = 1.11 kg ⋅ m2

Entire Tire:

Itotal = 2Iside + Itread = 2(8.68 × 10–2 kg ⋅ m2) + 1.11 kg ⋅ m2 = 1.28 kg ⋅ m2  

10.30 (a ) I = ICM + MD2 = 
1
2   MR2 + MR2 = 

3
2 MR2  

(b) I = ICM + MD2 = 
2
5  MR2 + MR2 = 

7
5 MR2  
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*10.31 Model your body as a cylinder of mass 60.0 kg and circumference 75.0 cm. Then its radius is

0.750 m
2π    = 0.120 m

and its moment of inertia is

1
2  MR2 = 

1
2 (60.0 kg)(0.120 m) 2 = 0.432 kg m2 ~ 100 kg · m2 = 1 kg · m2  

10.32 ∑τ = 0 = mg(3r) – Tr

2T – Mg sin 45.0° = 0

T = 
Mg sin 45.0°

2   = 
1500 kg(g) sin 45.0°

2   = (530)(9.80) N

m = 
T
3g

  = 
530g
3g

  = 177 kg  

r

3r

θ

1500 kg
m

θ = 45°
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10.33 ∑τ  = (0.100 m)(12.0 N) – (0.250 m)(9.00 N) – (0.250 m)(10.0
N )

= –3.55 N · m   

The thirty-degree angle is unnecessary information.

Goal Solution    
G: By simply examining the magnitudes of the forces and their respective lever arms, it appears

that the wheel will rotate clockwise, and the net torque appears to be about 5 Nm.

O: To find the net torque, we simply add the individual torques, remembering to apply the
convention that a torque producing clockwise rotation is negative and a counterclockwise
torque is positive.

A: ∑τ = ∑Fd

∑τ = (12.0 N)(0.100 m) – (10.0 N)(0.250 m) – (9.00 N)(0.250 m)

∑τ = –3.55 N ⋅ m

The minus sign means perpendicularly into the plane of the paper, or it means clockwise.

L: The resulting torque has a reasonable magnitude and produces clockwise rotation as expected.
Note that the 30° angle was not required for the solution since each force acted perpendicular
to its lever arm.  The 10-N force is to the right, but its torque is negative – that is, clockwise,
just like the torque of the downward 9-N force.

10.34 Resolve the 100 N force into components
perpendicular to and parallel to the rod, as

Fpar = (100 N) cos 57.0° = 54.5 N

and

Fperp = (100 N) sin 57.0° = 83.9 N

Torque of Fpar = 0 since its line of action passes
through the pivot point.

Torque of Fperp is

τ = (83.9 N)(2.00 m) = 168 N · m  (clockwise)  

10.0 N

30.0° a

O

b
12.0 N

9.00 N

100 N

2.00 m

20.0°

20.0°
37.0°
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*10.35 The normal force exerted by the ground on each wheel is

n = 
mg
4   = 

(1500 kg)(9.80 m/s2)
4   = 3680 N

The torque of friction can be as large as

τmax = fmaxr = (µsn)r = (0.800)(3680 N)(0.300 m) = 882 N ⋅ m  

The torque of the axle on the wheel can be equally as large as the light wheel starts to turn
without slipping.

*10.36 We calculated the maximum torque that can be applied without skidding in Problem 35 to be
882 N · m.  This same torque is to be applied by the frictional force, f, between the brake pad
and the rotor for this wheel.  Since the wheel is slipping against the brake pad, we use the
coefficient of kinetic friction to calculate the normal force.

τ = fr = (µkn)r, so n = τ
µkr

  = 
882 N ⋅ m

(0.500)(0.220 m)  = 8.02 × 103 N = 8.02 kN  

10.37 m = 0.750 kg        F = 0.800 N

(a) τ = rF = (30.0 m)(0.800 N) = 24.0 N · m   

(b) α = τ
I
   = 

rF
mr2   = 

24.0
(0.750)(30.0)2   = 0.0356 rad/s2   

(c) aT = α r = (0.0356)(30.0) = 1.07 m/s2   

*10.38 τ = 36.0 N · m = Iα ωf = ωi + α t

10.0 rad/s = 0 + α(6.00 s)

α = 
10.00
6.00    rad/s2 = 1.67 rad/s2

(a ) I = τα    = 
36.0 N · m
1.67 rad/s2   = 21.6 kg · m2   

(b) ωf = ωi + α t

0 = 10.0 + α(60.0)

α = – 0.167 rad/s2

τ = Iα = (21.6 kg · m)(0.167 rad/s2) = 3.60 N · m   
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(c) Number of revolutions

θ = θi + ωit + 
1
2  α t2

During first 6.00 s

θ = 
1
2 (1.67)(6.00) 2 = 30.1 rad

During next 60.0 s

θ = 10.0(60.0) – 
1
2 (0.167)(60.0) 2 = 299 rad

θtotal = (329 rad) 
rev

2π rad   = 52.4 rev   

10.39 For m1:  ∑Fy = may       +n – m1g = 0

n = m1g = 19.6 N

fk = µkn = 7.06 N

∑Fx = max          –7.06 N + T1 = (2.00 kg)a    (1)

For the pulley

∑τ = Iα

–T1 R + T2 R = 
1
2  MR2 



a

R
  

–T1 + T2 =  
1
2 (10.0 kg) a          –T1 + T2 = (5 .00 kg)a     (2)

T1 T1

T2

n2

fk

fk

T2 n

m2g
Mg

n

m1g

m2m2m2

m1m1m1

T2

T1 I, R

tt
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For m2:  +n – m2g cos θ = 0

n = 6.00 kg(9.80 m/s2) cos 30.0° = 50.9 N

fk = µkn = 18.3 N

–18.3 N – T2 + m2 g sin θ = m2a

–18.3 N – T2 + 29.4 N = (6.00 kg)a     (3)

(a ) Add equations (1) (2) and (3):

–7.06 N – 18.3 N + 29.4 N = (13.0 kg)a

a = 
4.01 N
13.0 kg   = 0.309 m/s2   

(b) T1 = 2.00 kg (0.309 m/s2) + 7.06 N = 7.67 N   

T2 = 7.67 N + 5.00 kg(0.309 m/s2) = 9.22 N   

10.40 I = 
1
2  mR2 = 

1
2 (100 kg)(0.500 m) 2 = 12.5 kg ⋅ m2

ωi = 50.0 rev/min = 5.24 rad/s

α  = 
ωf – ωi

t
  = 

0 – 5.24 rad/s
6.00 s   = –0.873 rad/s2

τ = Iα = (12.5 kg ⋅ m2)(–0.873 rad/s2) = –10.9 N ⋅ m

The magnitude of the torque is given by fR = 10.9 N ⋅ m, where f is the force of friction.

Therefore, f = 
10.9 N ⋅ m

0.500 m   , and

f = µkn     yields     µk = 
f
n
  = 

21.8 N
70.0 N  = 0.312  

10.41 I = MR2 = 1.80 kg(0.320 m)2 = 0.184 kg · m2

∑τ = Iα

(a ) Fa(4.50 × 10–2 m) – 120 N(0.320 m) = 0.184 kg · m2(4.50 rad/s2)

Fa = 
(0.829 N · m + 38.4 N · m)

4.50 × 10–2 m    = 872 N   

(b) Fb(2.80 × 10–2 m) – 38.4 N · m = 0.829 N · m

Fb = 1.40 kN   

0.500 m0.500 m0.500 m

f = µn

n = 70.0 N
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10.42 We assume the rod is thin. For the compound object

I = 
1
3  MrodL2 + 



2

5 MballR2 + MballD2  

I = 
1
3  1.20 kg (0.240 m)2 + 

2
5  20.0 kg(4.00 × 10–2 m)2 + 20.0 kg(0.280 m)2

I = 1.60 kg ⋅ m2

(a ) Kf + Uf = Ki + Ui + ∆E

1
2  Iω2 + 0 = 0 + Mrodg(L/2) + Mballg(L + R) + 0

1
2 (1.60 kg ⋅ m2) ω2 = 1.20 kg(9.80 m/s2)(0.120 m) + 20.0 kg(9.80 m/s2)(0.280 m)

1
2 (1.60 kg ⋅ m2) ω2 = 56.3 J  

    (b) ω = 8.38 rad/s  

    (c) v = rω = (0.280 m)8.38 rad/s = 2.35 m/s  

(d) v2 = v2
i   + 2a(y – yi)

v = 0 + 2(9.80 m/s2)(0.280 m)  = 2.34 m/s

The speed it attains in swinging is greater by 2.35/2.34 = 1.00140 times  

10.43 Choose the zero gravitational potential energy at the level where the masses pass.

Kf + Ugf = Ki + Ugi + ∆E

1
2  m1v2 + 

1
2  m2v2 + 

1
2  Iω2 = 0 + m1gh1i + m2gh2i + 0

1
2 (15.0 + 10.0) v2 + 

1
2 



1

2 (3.00)R2  



v

R
 
2
 = 15.0(9.80)(1.50) + 10.0(9.80)(–1.50)

1
2 (26.5 kg) v2 = 73.5 J ⇒  v = 2.36 m/s  
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10.44 Choose the zero gravitational potential energy at the level where the masses pass.

Kf + Ugf = Ki + Ugi + ∆E

1
2 m1v2 + 

1
2  m2v2 + 

1
2  Iω2 = 0 + m1gh1i + m2gh2i + 0

1
2 (m1 + m2) v2 + 

1
2 



1

2 MR2  



v

R
 
2
 = m1g 



d

2   + m2g 





– 
d
2  

1
2 





m1 + m2 + 
1
2 M   v2 = (m1 – m2)g 



d

2  

v = 
(m1 – m2)gd

m1 + m2 + 1
2
 M

    

10.45 (a ) 50.0 – T = 
50.0
9.80  a

TR = Iα = I 
a
R

 

I = 
1
2  MR2 = 0.0938 kg ⋅ m2

50.0 – T = 5.10 



TR2

I
 

T = 11.4 N  

a = 
50.0 – 11.4

5.10   = 7.57 m/s2  

v = 2a(yi – 0)   = 9.53 m/s  

3 kg3 kg3 kg

ωωω

Fg

n T

0.250 m
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(b) Use conservation of energy:

(K + U)i = (K + U)f

mgh = 
1
2  mv2 + 

1
2  Iω2

2mgh = mv2 +  I 



v2

R2  

= v2 





m + 
I

R2  

v = 
2mgh

m + I

R2

  = 
2(50.0 N)(6.00 m)

5.10 kg + 0.0938
(0.250)2

  = 9.53 m/s  

Goal Solution    
G: Since the rotational inertia of the reel will slow the fall of the weight, we should expect the

downward acceleration to be less than g.  If the reel did not rotate, the tension in the string
would be equal to the weight of the object; and if the reel disappeared, the tension would be
zero.  Therefore, T < mg for the given problem.  With similar reasoning, the final speed must

be less than if the weight were to fall freely:  vf < 2gy  ≈ 11 m/s

O: We can find the acceleration and tension using the rotational form of Newton’s second law.
The final speed can be found from the kinematics equation stated above and from conservation
of energy.  Free-body diagrams will greatly assist in analyzing the forces.

A: (a ) Use ∑τ = Iα  to find T and a.

First find I for the reel, which we assume to be a uniform disk:

I = 
1
2  MR2 = 

1
2  3.00 kg (0.250 m)2 = 0.0938 kg ⋅ m2

The forces on the reel are shown, including a normal force exerted by its axle.  From the
diagram, we can see that the tension is the only unbalanced force causing the reel to
rotate.

T

50.0 N

6.00 m6.00 m
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∑τ = Iα becomes

n(0) + Fg(0) + T(0.250 m) = (0.0938 kg ⋅ m2)(a/0.250 m) (1)

where we have applied at = rα to the point of contact between string and reel.

The falling weight has mass

m = 
Fg

g
  = 

50.0 N
9.80 m/s2  = 5.10 kg

For this mass, ∑Fy = may becomes

+T – 50.0 N = (5.10 kg)(–a) (2)

Note that since we have defined upwards to be positive, the minus sign shows that its
acceleration is downward.  We now have our two equations in the unknowns T and a for
the two linked objects.  Substituting T from equation (2) into equation (1), we have:

[50.0 N – (5.10 kg)a](0.250 m) = 0.0938 kg ⋅ m2 
a

0.250 m 

12.5 N ⋅ m – (1.28 kg ⋅ m)a = (0.375 kg ⋅ m)a

12.5 N ⋅ m = a(1.65 kg ⋅ m)     or     a = 7.57 m/s2

and T = 50.0 N – 5.10 kg(7.57 m/s2) = 11.4 N

For the motion of the weight,

v
2
f   = v2

i   + 2a(yf – yi) = 02 + 2(7.57 m/s2)(6.00 m)

vf = 9.53 m/s

(b) The work-energy theorem can take account of multiple objects more easily than Newton's
second law.  Like your bratty cousins, the work-energy theorem keeps growing between
visits.  Now it reads:

(K1 + K2,rot + Ug1 + Ug2)i = (K1 + K2,rot + Ug1 + Ug2)f

0 + 0 + m1gy1i + 0 = 
1
2  m1v

2
1f  + 

1
2  I2ω

2
2f  + 0 + 0

Now note that ω = 
v
r

  as the string unwinds from the reel.  Making substitutions:

50.0 N(6.00 m) = 
1
2 (5.10 kg) v2

f   + 
1
2 (0.0938 kg ⋅ m2) 



vf

0.250 m  
2

300 N ⋅ m = 
1
2 (5.10 kg) v2

f   + 
1
2 (1.50 kg) v2

f  

vf = 
2(300 N ⋅ m)

6.60 kg   = 9.53 m/s

L: As we should expect, both methods give the same final speed for the falling object. The
acceleration is less than g, and the tension is less than the object’s weight as we predicted.
Now that we understand the effect of the reel’s moment of inertia, this problem solution could
be applied to solve other real-world pulley systems with masses that should not be ignored.
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10.46 τ · θ = 
1
2  Iω 2

(25.0 N · m)(15.0 · 2π) = 
1
2 (0.130 kg · m2) ω 2

ω = 190 rad/s = 30.3 rev/s  

10.47 From conservation of energy,

1
2  I 



v

r
 
2
 +  

1
2  mv2 = mgh

I 
v2

r 2
  = 2mgh – mv2

I = mr2



2g h

v2  – 1  

10.48 E = 
1
2  Iω2 = 

1
2 



1

2 MR2  



3000 × 2π

60.0  
2
 = 6.17 × 106 J

P = 
∆E
∆ t

  = 1.00 × 104 J/s

∆t = 
∆E
P   = 

6.17 × 106 J
1.00 × 104 J/s  = 617 s = 10.3 min  

10.49 (a ) Find the velocity of the CM

(K + U)i = (K + U)f

0 + mgR = 
1
2  Iω2

ω = 
2mgR

I
    = 

2mgR
3
2 mR2

  

vCM = R 
4g
3R

   = 2 
Rg
3   

(b) vL = 2vCM = 4 
Rg
3   

(c) vCM = 
2mgR

2m
    = Rg   

Pivot R

g
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*10.50 The moment of inertia of the cylinder is

I = 
1
2  mr2 =  

1
2 (81.6 kg)(1.50 m) 2 = 91.8 kg · m2

and the angular acceleration of the merry-go-round is found as

α = τ
I

   = 
(Fr)

I
   =  

(50.0 N)(1.50 m)
(91.8 kg · m2)    = 0.817 rad/s2

At t = 3.00 s, we find the angular velocity

ω = ω i + α t

ω = 0 + (0.817 rad/s2)(3.00 s) = 2.45 rad/s

and K = 
1
2  Iω 2 =  

1
2 (91.8 kg · m2)(2.45 rad/s) 2 = 276 J   

10.51 mg 
l
2   sin θ = 

1
3  ml2α

α = 
3
2 

g

  l
  sin θ

at = 



3

2 
g

  l
 sin θ   r

Then 



3

2 
g

  l
  r > g sin θ

for r > 
2
3   l

∴  About 1/3 the length of the chimney   will have a tangential acceleration greater than

g sin θ.

*10.52 The resistive force on each ball is R = DρAv2.   Here v = rω,  where r is the radius of each ball’s
path.  The resistive torque on each ball is τ = rR, so the total resistive torque on the three ball
system is τtotal = 3rR.  The power required to maintain a constant rotation rate is
P = τtotalω = 3rRω.  This required power may be written as

P = τtotalω = 3r [DρA(rω)2]ω = (3r3DAω3)ρ

With ω = 



2π rad

1 rev  





103 
rev
min  



1 min

60.0 s   = 



1000π

30.0   rad/s,

P = 3(0.100 m)3(0.600)(4.00 × 10–4 m2)(1000π/30.0 s)3ρ

or P = (0.827 m5/s3)ρ where ρ is the density of the resisting medium.

a tt

g

g sintθ θ θ
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(a ) In air, ρ = 1.20 kg/m3, and

P = (0.827 m5/s3)(1.20 kg/m3) = 0.992 N ⋅ m/s = 0.992 W  

(b) In water, ρ = 1000 kg/m3 and P = 827 W  

10.53 (a ) I = 
1
2  MR2 = 

1
2 (2.00 kg)(7.00 × 10–2 m) 2 = 4.90 × 10–3 kg ⋅ m2

α = τ
I
  = 

0.600
4.90 × 10–3  = 122 rad/s2

α  = ∆ω
∆ t

 

∆t = ∆ω
α   = 

1200  2π
60

122   = 1.03 s  

(b) θ = 
1
2  αt2 = 

1
2 (122 rad/s)(1.03 s) 2 = 64.7 rad = 10.3 rev  

10.54 For a spherical shell 
2
3  dm r2 = 

2
3  [(4πr2dr)ρ]r2

I ∫ dI = ∫ 
2
3 (4πr2) r2ρ(r)dr

I = ⌡⌠
0

R 
2
3 (4πr4) 





14.2 – 11.6 
r
R

 





103 
kg
m3   dr

= 



2

3   4π(14.2 × 103) 
R5

5   – 



2

3   4π(11.6 × 103) 
R5

6  

I = 
8π
3  (103) R5 



14.2

5  – 
11.6

6  

M = ∫ dm= ⌡⌠
0

R4πr2 





14.2 – 11.6 
r
R

  103 dr

= 4π × 103 



14.2

3  – 
11.6

4   R3

I
MR2  = 

8π
3

 (103) R5  14.2
5

 – 11.6
6

4π × 103R3R2  14.2
3

 – 11.6
4

  = 
2
3 



.907

1.83   = 0.330
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∴ I = 0.330MR2  
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10.55 (a ) W = ∆K = 
1
2  Iω2 – 

1
2  Iω2

i  

= 
1
2  I(ω2 – ω2

i  )     where     I = 
1
2  mR2

= 



1

2  



1

2  (1.00 kg)(0.500 m) 2 











8.00 
rad

s

2
 – 0   = 4.00 J  

(b) t = 
ω – 0

α   = 
ωr
a

  = 
(8.00 rad/s)(0.500 m)

2.50 m/s2   = 1.60 s  

(c) θ = θi + ωit + 
1
2  αt2; θi = 0; ωi = 0

θ = 
1
2  αt2 = 

1
2 



2.50 m/s2

0.500 m  (1.60 s) 2 = 6.40 rad

s = rθ = (0.500 m)(6.40 rad) = 3.20 m < 4.00 m Yes  

10.56 (a ) I = 
1
2  mr2 = 

1
2 (200 kg)(0.300 m) 2 = 9.00 kg ⋅ m2  

(b) ω = (1000 rev/min)(1 min/60 s)(2π rad)/1 rev = 105 rad/s

W = K = 
1
2  Iω2 = 

1
2 (9.00)(104.7) 2 = 49.3 kJ  

(c) ωf = 500 rev/min × 1 min/60 s(2π rad/1 rev) = 52.4 rad/s

Kf = 
1
2  Iω2 = 12.3 kJ

W = ∆K = 12.3 kJ – 49.3 kJ = –37.0 kJ  

*10.57 α = –10.0 rad/s2 – (5.00 rad/s3)t = dω/dt

⌡⌠
65.0

ω
dω  = ⌡⌠

0

t [–10.0 – 5.00t]dt  = –10.0t – 2.50t2 = ω – 65.0 rad/s

ω = 
dθ
d t

  = 65.0 rad/s – (10.0 rad/s2)t – (2.50 rad/s3)t2

(a ) At t = 3.00 s,

ω = 65.0 rad/s – (10.0 rad/s2)(3.00 s) – (2.50 rad/s3)(9.00 s2) = 12.5 rad/s  
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(b) ⌡⌠
0

θ
dθ  = ⌡⌠

0

t ω dt  = ⌡⌠
o

t [65.0 rad/s – (10.0 rad/s2)t – (2.50 rad/s3)t2]dt 

θ = (65.0 rad/s)t – (5.00 rad/s2)t2 – (0.833 rad/s3)t3

At t = 3.00 s,

θ = (65.0 rad/s)(3.00 s) – (5.00 rad/s2)9.00 s2 – (0.833 rad/s3)27.0 s3

θ = 128 rad  

10.58 (a ) MK2= 
MR2

2   , K = 
R

2
 

(b) MK2 = 
ML2

12   , K = 
L 3

6  

(c) MK2 = 
2
5  MR2, K = R 

2
5 

10.59 (a ) Since only conservative forces act, ∆E = 0, so

Kf + Uf = Ki + Ui

1
2  Iω2 + 0 = 0 + mg 



L

2   , where I = 
1
3  mL2

ω = 3g/L  

(b) τ = Iα  so that in the horizontal, mg 



L

2   = 
mL2

3   α α  = 
3g
2L

 

(c) ax = ar = rω2 = 



L

2   ω2 = – 
3g
2  ay = –at = –rα = –α 



L

2   = – 
3g
4  

(d) Using Newton's second law , we have Rx = max = – 
3
2 mg  

Ry – mg = –may     or     Ry = 
1
4 mg  

x

y

L

pivot
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10.60 The first drop has a velocity leaving the wheel given by  
1
2  mv

2
i   = mgh1, so

v1 = 2gh1  = 2(9.80 m/s2)(0.540 m)  = 3.25 m/s

The second drop has a velocity given by

v2 = 2gh2  = 2(9.80 m/s2)(0.510 m)  = 3.16 m/s

From  ω = 
v
r

  ,  we find

ω 1 = 
v1

r
  =  

3.25 m/s
0.381 m    = 8.53 rad/s     and     ω 2 = 

v2

r
  = 

3.16 m/s
0.381 m   = 8.29 rad/s

or α  = 
ω2

2 – ω2
1

2θ   = 
(8.29 rad/s)2 – (8.53 rad/s)2

4π   = – 0.322 rad/s2  

10.61 At the instant it comes off the wheel, the first drop has a velocity v1, directed upward.  The
magnitude of this velocity is found from

Ki + Ugi = Kf + Ugf

1
2  mv

2
1  + 0 = 0 + mgh1     or     v1 = 2gh1 

and the angular velocity of the wheel at the instant the first drop leaves is

ω1 = 
v1

R
  = 

2gh1

R2  

Similarly for the second drop:  v2 = 2gh2  and ω2 = 
v2

R
  = 

2gh2

R2  

The angular acceleration of the wheel is then

α  = 
ω2

2 – ω2
1

2θ   = 
2gh2/R2 – 2gh1/R2

2(2π)   = 
g(h2 – h1)

2πR2  

 10.62 Work done = Fs = (5.57 N)(0.800 m) = 4.46 J

and   Work = ∆K = 
1
2  Iω2

f   – 
1
2  Iω2

i  

(The last term is zero because the top starts from rest.)

Thus, 4.46 J = 
1
2 (4.00 × 10–4 kg ⋅ m2) ω2

f  

F

A′

A
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and from this, ωf = 149 rad/s  
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10.63 Kf = 
1
2  Mv

2
f   + 

1
2  Iω2

f  :  Uf = Mghf = 0; Ki = 
1
2  Mv

2
i   + 

1
2  Iω2

i   = 0

Ui = (Mgh)i:  f = µN = µMg cos θ; ω = 
v
r
  ; h = d sin θ and I = 

1
2  mr2

 (a ) ∆E = Ef – Ei     or     –fd = Kf + Uf –Ki – Ui

–fd = 
1
2  Mv

2
f   + 

1
2  Iω2

f   – Mgh

–(µMg cos θ)d = 
1
2  Mv2 + (mr2/2)(v2/r2)/2 – Mgd sin θ

1
2 





M + 
m
2   v2 = Mgd sin θ – (µMg cos θ)d  or

v2 = 2Mgd 
(sin θ – µ cos θ)

(m/2) + M  

vd = 





4gd 
M

(m + 2M) (sin θ – µ cos θ)  
1/2

(b) v2 = v2
i   – 2as, v2

d  = 2ad

a = 
v

2
d

2d
  = 2g 



M

m + 2M
 (sin θ – µ cos θ)  

10.64 (a ) E = 
1
2 



2

5 MR2  (ω2) 

E = 
1
2  ⋅ 

2
5 (5.98 × 1024)(6.37 × 106) 2 



2π

86400  
2
 = 2.57 × 1029 J  

(b)
dE
d t

  = 
d
d t

 



1

2 



2

5 MR2  



2π

T

2
 

= 
1
5  MR2(2π)2(–2T–3) 

dT
d t

 

= 
1
5  MR2 



2π

T
 
2
 



–2

T
 
dT
d t

 

= (2.57 × 1029 J) 



–2

86400 s  



10 × 10–6 s

3.16 × 107 s  (86400 s/day) 

dE
d t

  = –1.63 × 1017 J/day  
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  10.65 ∆θ = ωt

t = ∆θ
ω   = 

(31.0°/360°) rev
900 rev/60 s   = 0.00574 s

v = 
0.800 m

0.00574 s  = 139 m/s  

= 31°
v

d

ω

θ∆

10.66 (a ) Each spoke counts as a thin rod pivoted at one end.

I = MR2 + n 
mR2

3  

(b) By the parallel-axis theorem,

I = MR2 + 
nmR2

3   + (M + nm)R2

 = 2MR2 + 
4 nmR2

3  

*10.67 Every particle in the door could be slid straight down into a high-density rod across its bottom,
without changing the particle’s distance from the rotation axis of the door.  Thus, a rod
0.870 m long with mass 23.0 kg, pivoted about one end, has the same rotational inertia as the
door:

I = 
1
3  ML2 = 

1
3 (23.0 kg)(0.870 m) 2 = 5.80 kg · m2  

The height of the door is unnecessary   data.
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10.68 τf will oppose the torque causing the motion:

∑τ = Iα = TR – τf ⇒  τf = TR – Iα (1)

Now find T, I and α in given or known terms and substitute into
equation (1)

∑Fy = T – mg = –ma then T = m(g – a) (2)

also  ∆y = vit + 
at2

2   ⇒  a = 
2y
t2  (3)

and α  = 
a
R

  = 
2y
Rt2 (4)

I = 
1
2  M 





R2 + 



R

2

2
  = 

5
8  MR2 (5)

Substituting (2), (3), (4) and (5) into (1) we find

τf = m 





g – 
2y
t2   R – 

5
8 

MR22y
(Rt2)   = R 





m 





g – 
2y
t2  – 

5
4 

My
t2  

10.69 (a ) While decelerating,

τf = Iα' = (20 000 kg ⋅ m2) 



2.00 rev/min (2π rad/rev)(1 min/60 s)

10.0 s  

τf = 419 N ⋅ m

While accelerating,

∑τ = Iα     or     τ – τf = I(∆ω/∆t)

τ = 419 N ⋅ m + (20 000 kg ⋅ m2) 



10.00 rev/min (2π rad/rev)(1 min/60 s)

12.0 s  

τ = 2.16 × 103 N ⋅ m  

(b) P = τf ⋅ ω = (419 N ⋅ m) 





10.0 
rev
min 



2π rad

1 rev  



1 min

60 s   = 439 W      (≈ 0.6 hp) 

M

m
R/2

R/2 y
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10.70 (a ) W = ∆K + ∆U

W = Kf – Ki + Uf – Ui

0 = 
1
2  mv2 +  

1
2  Iω2 – mgd sin θ –  

1
2  kd 2 

1
2  ω 2 (I + mR2) = mgd sin θ + 

1
2  kd 2 

ω = 
2mgd sin θ + kd2

I + mR2     

(b) ω = 
2(0.500 kg)(9.80 m/s2)(0.200 m)(sin 37.0°) + (50.0 N/m)(0.200 m)2

1.00 kg · m2 + (0.500 kg)(0.300 m)2     

ω = 
1.18 + 2.00

1.05    = 3.04   = 1.74 rad/s   

10.71 (a ) m2g – T2 = m2a

T2 = m2(g – a) = (20.0 kg)(9.80 – 2.00)m/s2 = 156 N   

T1 = m1g sin 37.0° + m1a

T1 = (15.0 kg)(9.80 sin 37.0° + 2.00)m/s2 = 118 N   

(b) (T2 – T1)R = Iα = I 



a

R
  

I = 
(T2 – T1)R2

a
   =  

(156 – 118)N(0.250 m)2

2.00 m/s2    = 1.17 kg · m2   

Goal Solution    
G: In earlier problems, we assumed that the tension in a string was the same on either side of a

pulley.  Here we see that the moment of inertia changes that assumption, but we should still
expect the tensions to be similar in magnitude (about the weight of each mass ~150 N), and
T2 > T1 for the pulley to rotate clockwise as shown.

If we knew the mass of the pulley, we could calculate its moment of inertia, but since we only
know the acceleration, it is difficult to estimate I.  We at least know that I must have units
of kgm2, and a 50-cm disk probably has a mass less than 10 kg, so I is probably less than
0.3 kgm2.

O: For each block, we know its mass and acceleration, so we can use Newton’s second law to find
the net force, and from it the tension.  The difference in the two tensions causes the pulley to
rotate, so this net torque and the resulting angular acceleration can be used to find the
pulley’s moment of inertia.

m

R

k

θ

37.0°

15.0 kg

T1

m1 20.0 kg

T2

2.00 m/s2

m2
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A: (a ) Apply ∑F = ma  to each block to find each string tension.

The forces acting on the 15-kg block are its weight, the normal support force from the
incline, and T1.  Taking the positive x axis as directed up the incline, ∑Fx = max yields:

–(m1g)x + T1 = m1(+a)

–(15.0 kg)(9.80 m/s2) sin 37° + T1 = (15.0 kg)(2.00 m/s2)

T1 = 118 N

Similarly for the counterweight, we have ∑Fy = may, or T2 – m2g = m2(–a)

T2 – (20.0 kg)(9.80 m/s2) = (20.0 kg)(–2.00 m/s2)

So, T2 = 156 N

(b) Now for the pulley, ∑τ = r(T2 – T1) = Iα.  We may choose to call clockwise positive.  The
angular acceleration is

α  = 
a
r

  = 
2.00 m/s2

0.250 m   = 8.00 rad/s2

∑τ = Iα     or     (0.250 m)(156 N – 118 N) = I(8.00 rad/s2)

I = 
9.38 N ⋅ m
8.00 rad/s2  = 1.17 kg ⋅ m2

L: The tensions are close to the weight of each mass and T2 > T1 as expected.  However, the
moment of inertia for the pulley is about 4 times greater than expected.  Unless we made a
mistake in solving this problem, our result means that the pulley has a mass of 37.4 kg (about
80 lb), which means that the pulley is probably made of  a dense material, like steel.  This is
certainly not a problem where the mass of the pulley can be ignored since the pulley has
more mass than the combination of the two blocks!

10.72 For the board just starting to move,

∑τ = Iα

mg 
l

2  cos θ = 



1

3 ml2   α

α = 
3
2 



g
l   cos θ

R
mg
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The tangential acceleration of the end is

at = lα = 
3
2  g cos θ

Its vertical component is ay = at cos θ = 
3
2  g cos2 θ

If this is greater than g, the board will pull ahead of the ball in falling:

(a )
3
2  g cos2 θ ≥ g ⇒  cos2 θ ≥ 

2
3 

so cos θ ≥ 
2
3      and     θ ≤ 35.3°  

(b) When θ = 35.3° (⇒  cos2 θ = 2/3), the cup will land underneath the release-point of the
ball if

rc = l cos θ = 
l cos2 θ
cos θ   = 

2l
3 cos θ  

(c) When l = 1.00 m, and θ = 35.3°

rc = 
2(1.00 m)

3 2/3
  = 0.816 m

which is (1.00 m – 0.816 m) = 0.184 m from the moving end  

10.73 At t = 0, ω = 3.50 rad/s = ω0e0.  Thus, ω0 = 3.50 rad/s

At t = 9.30 s, ω = 2.00 rad/s = ω0e–σ(9.30 s), yielding σ = 6.02 × 10–2 s–1

(a ) α  = 
dω
d t

  = 
d(ω0e–σt)

d t
  = ω0(–σ)e–σt

At t = 3.00 s,

α  = (3.50 rad/s)(–6.02 × 10–2 s–1)e–3.00(6.02 × 10–2) = –0.176 rad/s2  

(b) θ = ⌡⌠
0

t ω0e–σt dt  = 
ω0

–σ   [e–σt – 1] = 
ω0

σ   [1 – e–σt]

At t = 2.50 s,

θ = 
3.50 rad/s

(6.02 × 10–2)1/s  [1 – e–(6.02 × 10–2)(2.50)] = 8.12 rad = 1.29 rev  
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(c) As t → ∞, θ → 
ω0

σ  (1 – e–∞)  = 
3.50 rad/s

6.02 × 10–2 s–1  = 58.2 rad = 9.26 rev  
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10.74 Consider the total weight of each hand to act at the center of gravity (mid-point) of that
hand.  Then the total torque (taking CCW as positive) of these hands about the center of the
clock is given by

τ = –mhg 



Lh

2   sin θh – mmg 



Lm

2   sin θm = 
–g
2  (mhLh sin θh + mmLm sin θm) 

If we take t = 0 at 12 o'clock, then the angular positions of the hands at time t are

θh = ωht, where ωh = π6  rad/h and θm = ωmt, where ωm = 2π rad/h

Therefore,

τ = – 





4.90 
m
s2   [(60.0 kg)(2.70 m) sin (πt/6) + (100 kg)(4.50 m) sin 2πt]

or τ = –794 N ⋅ m[sin(πt/6) + 2.78 sin 2πt], where t is in hours.

(a ) ( i ) At 3:00,   t = 3.00 h,   so

τ = –794 N ⋅ m [sin(π/2) + 2.78 sin 6π] = –794 N ⋅ m  

( i i ) At 5:15,   t = 5 h + 
15
60  h = 5.25 h,   and substitution gives:

τ = –2510 N ⋅ m  

( i i i ) At 6:00, τ = 0 N ⋅ m  

(iv) At 8:20, τ = –1160 N ⋅ m  

(v) At 9:45, τ = –2940 N ⋅ m  

(b) The total torque is zero at those times when

sin(πt/6) + 2.78 sin 2πt = 0

We proceed numerically, to find 0, 0.5152955, ..., corresponding to the times

12:00:00 12:30:55 12:58:19 1:32:31 1:57:01
2:33:25 2:56:29 3:33:22 3:56:55  4:32:24
4:58:14 5:30:52 6:00:00 6:29:08 7:01:46
7:27:36 8:03:05 8:26:38 9:03:31 9:26:35

10:02:59  10:27:29 11:01:41 11:29:05


