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12.51 Choosing torques about R,  with ∑τ = 0,

– 
L
2 (350 N)  + (T sin 12.0°)





2L

3   – (200 N)L = 0

From which, T =  2.71 kN  

Let Rx = compression force along spine, and from ∑Fx = 0,

 Rx = Tx = T cos 12.0° =  2.65 kN  

12.52 (a ) Using the first diagram, ∑Fx = 0 gives

–T1 cos θ1 + T2 cos θ2 = 0

or T2 = 




cos θ1

cos θ2
  T1

If θ1 = θ2,

then T2 = T1  

(b) Since θ1 = θ2,    T2 = T1

Using the second diagram and ∑Fy gives:

T1 sin 8.00° – mg = 0     so

T1 = 
200 N

sin 8.00°  = 1.44 kN

Then, T2 = T1 = 1.44 kN  

Also, ∑Fx = 0 gives –T1 cos 8.00° + T3 = 0, or

T3 = (1.44 kN) cos 8.00° = 1.42 kN  

12.53 (a ) Locate the origin at the bottom left corner of the
cabinet and let x = distance between the resultant
normal force and the front of the cabinet.  Then we
have

(1) ∑Fx = 200 cos(37.0°) – µn = 0

(2) ∑Fy = 200 sin(37.0°) + n – 400 = 0,   and

(3) ∑τ = n(0.600 – x) – 400(0.300) + 200 sin 37.0°(0.600) – 200 cos 37.0°(0.400) = 0
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From (2), n = 400 – 200 sin 37.0° = 280 N

From (3), x =  
[72.2 – 120 + 260(0.600) – 64.0]

280    = 20.1 cm    to the left of the front edge.

Then from (1), µk = 
200 cos 37.0°

280   = 0.571  

(b) In this case, locate the origin x = 0 at the bottom right corner of the cabinet.   Since the
cabinet is about to tip, we can use Στ = 0 to find h:

Στ = 400(0.300) – 300 cos 37.0°(h) = 0

h = 
120

300 cos 37.0°   =  0.501 m  

12.54 (a) & (b) Use the first diagram and sum the torques about the lower front corner of the
cabinet.

400 N

n

f

F

0.300 m

1.00 m

n
f

1.00 m

0.600 m

400 N

θ

θ

φF’

∑τ = 0 ⇒ – F(1.00 m) + (400 N)(0.300 m) = 0

yielding   F = 
(400 N)(0.300 m)

1.00 m   = 120 N  

∑Fx = 0 ⇒ – f + 120 N = 0,      or   f = 120 N

∑Fy  = 0 ⇒ – 400 N + n = 0,    so   n = 400 N

Thus, µs =  
f
n
  =  

120 N
400 N   =  0.300  

(c) Apply F' at the upper rear corner and directed so θ + φ = 90.0° to obtain the largest
possible lever arm.

θ = tan–1 




1.00 m

0.600 m    = 59.0°

Thus, φ = 90.0° – 59.0° = 31.0°
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Sum the torques about the lower front corner of the cabinet:

–F' (1.00 m)2 + (0.600 m)2  + (400 N)(0.300 m) = 0

so F' =  
120 N · m

1.17 m    = 103 N

Therefore, the minimum force required to tip the cabinet is

103 N applied at 31.0° above the horizontal at the upper left corner  .

12.55 (a ) Just three forces act on the rod:  forces perpendicular to the sides of the trough at A and B,
and its weight. The lines of action of A and B will intersect at
a point above the rod. They will have no torque about this
point.  The rod’s weight will cause a torque about the point of
intersection as in Figure 1, and the rod will not be in
equilibrium unless the center of the rod lies vertically below
the intersection point, as in Figure 2.  All three forces must be
concurrent. Then the line of action of the weight is a diagonal
of the rectangle formed by the trough and the normal forces,
and the rod's center of gravity is vertically above the bottom
of the trough.

(b) In Figure 2, AO
—

  cos 30.0° = BO
—

  cos 60.0° and

L2 = AO
—

 2 + BO
—

 2 = AO
—

 2 + AO
—

 2 




cos2 30.0°

cos2 60.0°  

AO
—

  = L/ 1 + cos2 30.0°/cos2 60.0°  = L/2

  So cos θ = AO
—

 /L = 1/2 and θ = 60.0°  

12.56 (1) ph = Iω

(2) p = MvCM

If the ball rolls without slipping,   Rω = vCM

So, h =  
Iω
p

   =  
Iω

MvCM
   =  

I
MR

   =  
2
5 R  

A

B

Fg

O

A

B

Fg

O

θ
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12.57 (a ) We can use ∑Fx = ∑Fy = 0 and ∑τ = 0  with pivot point at
the contact on the floor.

Then ∑Fx = T – µsn = 0,

∑Fy = n – Mg – mg = 0,   and

∑τ = Mg(L cos θ) + mg 




L

2 cos θ   – T(L sin θ) = 0

Solving the above equations gives

M = 
m
2  





2µs sin θ – cos θ

cos θ – µs sin θ  

(b) At the floor, we have the normal force in the y-direction and frictional force in the
x-direction.  The reaction force then is

R = n + (µsn)2  = (M + m)g 1 + µ2
s  

    At point P, the force of the beam on the rope is

F = T2 + (Mg)2  = g M2 + µ2
s  (M + m)2  

Goal Solution    
G: The solution to this problem is not as obvious as some other problems because there are three

independent variables that affect the maximum mass M.  We could at least expect that more
mass can be supported for higher coefficients of friction (µs), larger angles (θ), and a more
massive beam (m).

O: Draw a free-body diagram, apply Newton’s second law, and sum torques to find the unknown
forces for this statics problem.

A: (a ) Use ∑Fx = ∑Fy = ∑τ = 0 and choose the origin at the point of contact on the floor to
simplify the torque analysis.

On the verge of slipping, the friction f = µsn, and

∑Fx = 0:  T – µsn = 0

∑Fy = 0:  n – Mg – mg = 0

Solving these two equations, T = µsg(M + m)

n

f

P

θ

mg

T

Mg
L/2

L/2
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From ∑τ = 0, Mg (cos θ)L + mg (cos θ) 
L
2  – T (sin θ)L = 0

where we have used L for the length of the beam.

Substituting for T , we get M = 
m
2  





2µs sin θ – cos θ

cos θ – µs sin θ  

Notice that this result does not depend on L, which is reasonable since the center of mass
of the beam is proportional to the length of the beam.

(b) At the floor, we see that the normal force is in the y direction and frictional force is in
the x direction.  The reaction force of the floor on the beam opposes these two forces and
is

R = n2 + (µsn)2  = g(M + m) 1 + µ2
s  

At point P, the force of the beam on the rope is

F = T2 + (Mg)2  = g M2 + µ2
s  (M + m)2 

L: The answer to this problem is certainly more complex than most problems.  We can see that
the maximum mass M that can be supported is proportional to m, but it is not clear from the
solution that M increases proportional to µs and θ  as predicted.  To further examine the
solution to part (a), we could graph or calculate the ratio M/m as a function of  for several
reasonable values of µs ranging from 0.5 to 1.0.  Since the mass values must be positive, we
find that only angles from about 40 to 60 are possible for this scenario (which explains why
we don’t encounter this precarious configuration very often!).

*12.58 (a ) The height of pin B is

(10.0 m) sin 30.0° = 5.00 m

The length of bar BC is then

BC
—

  = 5.00 m/sin 45.0° = 7.07 m

Consider the entire truss:

∑Fy = nA – 1000 N + nC = 0

∑τA = –(1000 N)10.0 cos 30.0° + nC[10.0 cos 30.0° + 7.07 cos 45.0°] = 0

Which gives nC = 634 N  

Then, nA = 1000 N – nC = 366 N  

1000 N

B

A C

10.0 m
nA nC

30.0° 45.0°
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(b) Suppose that a bar exerts on a pin a force not along the length of
the bar.  Then, the pin exerts on the bar a force with a component
perpendicular to the bar.  The only other force on the bar is the
pin force on the other end.  For ∑F = 0, this force must also have a
component perpendicular to the bar.  Then, the total torque on the
bar is not zero.  The contradiction proves that the bar can only
exert forces along its length.

(c) Joint A:

∑Fy = 0:  –CAB sin 30.0° + 366 N = 0,

so CAB = 732 N  

∑Fx = 0:  –CAB cos 30.0° + TAC = 0

TAC = (732 N) cos 30.0° = 634 N  

Joint B:

∑Fx = 0:  (732 N) cos 30.0° – CBC cos 45.0° = 0

CBC = 
(732 N) cos 30.0°

cos 45.0°   = 897 N  

12.59 From geometry, observe that

cos θ = 
1
4      and     θ = 75.5°

nB

B

θ

T
2.00 m

2.00 mRx

Ry

nA

A

θ

T

Rx

Ry

3.00 m

1.00 m

2.00 m

686 N

For the left half of the ladder, we have

(1) ∑Fx = T – Rx = 0

(2) ∑Fy = Ry + nA – 686 N = 0

(3) ∑τtop = (686 N)(1.00 cos 75.5°) + T(2.00 sin 75.5°) – nA(4.00 cos 75.5°) = 0

CAB

A
TAC

nA = 366 N 

CBC

B

CAB = 732 N 

1000 N

30.0° 45.0°
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For the right half of the ladder we have

∑Fx = Rx – T = 0

(4) ∑Fy = nB – Ry = 0

(5) ∑τtop = nB (4.00 cos 75.5°) – T(2.00 sin 75.5°) = 0

Solving Equations 1 through 5 simultaneously yields:

(a ) T = 133 N  

(b) nA = 429 N     and   nB = 257 N  

(c) Rx = 133 N     and   Ry = 257 N  

12.60 (a ) xCG = 
∑mixi

∑mi
 

= 
(1000 kg)10.0 m + (125 kg)0 + (125 kg)0 + (125 kg)20.0 m

1375 kg   = 9.09 m  

yCG = 
(1000 kg)10.0 m + (125 kg)20.0 m + (125 kg)20.0 m + (125 kg)0

1375 kg  

  =  10.9 m  

  (b) By symmetry, xCG = 10.0 m        

There is no change in yCG = 10.9 m  

  (c) vCG = 




10.0 m – 9.09 m

8.00 s   = 0.114 m/s  

12.61 Considering the torques about the point at the bottom of the bracket yields:

 (0.0500 m)(80.0 N) – F(0.0600 m) = 0     so     F = 66.7 N  



8 Chapter 12 Solutions

© 2000 by Harcourt College Publishers.  All rights reserved.

12.62 f1 = n2 = µsn1     and     f2 = µsn2

F + n1 + f2 = Fg     and     F = f1 + f2

As F grows so do f1 and f2

Therefore, since µs = 
1
2  ,

f1 = 
n1

2       and     f2 = 
n2

2   = 
n1

4  

F + n1 + 
n1

4   = Fg  (1)     and     F = 
n1

2   + 
n1

4   = 
3
4  n1  (2)

F + 
5
4  n1 = Fg     becomes     F + 

5
4 





4

3 F   = Fg     or     
8
3  F = Fg

Therefore,  F = 
3
8 Fg  

12.63 (a ) F   = k(∆L), Young's modulus is Y = 




F

A
 /





∆L

Li
  = 

FLi

A(∆L) 

      Thus, Y = 
kLi

A
  and k = 

YA
Li

 

    (b) W = – ⌡⌠
0

∆L
Fdx  = – ⌡⌠

0

∆L
(–kx)dx  = 

YA
Li

 ⌡⌠
0

∆L
x dx  =

YA  
(∆L)2

2Li
 

12.64 (a ) Take both balls together. Their weight is 3.33 N
and their CG is at their contact point.

∑Fx = 0:  +P3 – P1 = 0

∑Fy = 0:  +P2 – 3.33 N = 0     P2 = 3.33 N  

∑τA = 0:  –P3R + P2R – 3.33 N(R + R cos 45.0°)

+ P1(R + 2R cos 45.0°) = 0

         Substituting,

–P1R + (3.33 N)R – (3.33 N)R(1 + cos 45.0°)

 + P1R(1 + 2 cos 45.0°) = 0

(3.33 N) cos 45.0° = 2P1 cos 45.0°

n1

F

n2

Fg

f2

f1

Fg

P1

P2

P3

3.33 N
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P1 = 1.67 N    so  P3 = 1.67 N  
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  (b) Take the upper ball. The lines of action of its weight, of
P1, and of the normal force n exerted by the lower ball all
go through its center,  so for rotational equilibrium there
can be no frictional force.

∑Fx = 0:  n cos 45.0° – P1 = 0

n = 1.67 N/cos 45.0° = 2.36 N  

∑Fy = 0:  n sin 45.0° – 1.67 N = 0 gives the same result

12.65 ∑Fy = 0:     + 380 N – Fg + 320 N = 0

Fg = 700 N

Take torques about her feet:

∑τ = 0:    –380 N (2.00 m) + 700 N (x) + 320 N (0) = 0

x = 1.09 m  

12.66 The tension in this cable is not uniform, so this becomes a fairly difficult problem.

d L
L

  = 
F

ϒA
 

At any point in the cable, F is the weight of cable below that point.  Thus, F = µgy where µ is
the mass per unit length of the cable.

Then, ∆y = ⌡⌠
0

Li
 




d L

L
  dy = 

µg
ϒA

 ⌡⌠
0

Li
ydy  = 

1
2 

µgL
2
i

ϒA
 

∆y = 
1
2 

(2.40)(9.80)(500)2

(2.00 × 1011)(3.00 × 10–4)  = 0.0490 m = 4.90 cm  

12.67 (a ) F = m 




∆v

∆ t
  = (1.00 kg) 

(10.0 – 1.00) m/s
0.002 s   = 4500 N  

    (b) stress = 
F
A

  = 
4500 N

(0.010 m)(0.100 m)  = 4.50 × 106 N/m2  

(c) Yes    This is more than sufficient to break the board.

1.67 N

n cos 45.0°

n sin 45.0°

P1

Fy1 Fy2

2.00 m2.00 m



Chapter 12 Solutions 11

© 2000 by Harcourt College Publishers.  All rights reserved.

12.68 The CG lies above the center of the bottom.  Consider a disk of water at height y above the
bottom.  Its radius is

25.0 cm + (35.0 – 25.0 cm) 




y

30.0 cm   = 25.0 cm + 
y
3 

    Its area is π(25.0 cm + y/3)2.     Its volume is π(25.0 cm + y/3)2dy and its mass is
πρ(25.0 cm + y/3)2dy.    The whole mass of the water is

M = ⌡⌠
y = 0

30.0 cm
dm  = ⌡⌠

0

30.0 cm
πρ (625 + 50.0y/3 + y2/9) dy

M = πρ [625y + 50.0y2/6 + y3/27]30.0
0  

M = πρ [625(30.0) + 50.0(30.0)2/6 + (30.0)3/27]

M = π(10–3 kg/cm3)(27250 cm3) = 85.6 kg

    The height of the center of gravity is

yCG = ⌡⌠
y = 0

30.0 cm
y dm/M 

= πρ ⌡⌠
0

30.0 cm
(625y + 50.0y2/3 + y3/9)dy/M 

= πρ
M

  [625y2/2 + 50.0y3/9 + y4/36]30.0 cm
0  

= πρ
M

  [625(30.0)2/2 + 50.0(30.0)3/9 + (30.0)4/36]

= 
π(10–3 kg/cm3)

M
  [453750 cm4]

yCG = 
1.43 × 103 kg ⋅ cm

85.6 kg   = 16.7 cm  

12.69 (a ) If the acceleration is a, we have Px = ma
and Py + n – Fg = 0.  Taking the origin at the
center of gravity, the torque equation gives

Py(L – d) + Pxh – nd = 0

Solving these equations, we find

Py = 
Fg

L
 




d  – 

a h
g

 

hh
P

CGCGCG

dd
HL

Fyn Fgn
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(b) If Py = 0, then d = 
ah
g

  = 
(2.00 m/s2)(1.50 m)

9.80 m/s2   = 0.306 m  

(c) Using the given data, Px = –306 N and Py = 553 N

Thus, P = (–306i + 553j) N  

*12.70 Let θ represent the angle of the wire with the vertical.  The radius of the circle of motion is
r = (0.850 m) sin θ.

For the mass:

∑Fr = mar = m 
v2

r
  = mrω2

T sin θ = m [(0.850 m) sin θ]ω2

Further, 
T
A

  = ϒ ⋅ (strain) or T = Aϒ ⋅ (strain)

Thus, Aϒ ⋅ (strain) = m(0.850 m)ω2, giving

ω = 
Aϒ ⋅ (strain)
m(0.850 m)   = 

π(3.90 × 10–4 m)2(7.00 × 1010 N/m2)(1.00 × 10–3)
(1.20 kg)(0.850 m)  

or ω = 5.73 rad/s  

*12.71 For the bridge as a whole:

∑τA = nA(0) – (13.3 kN)(100 m) + nE(200 m) = 0

so nE = 
(13.3 kN)(100 m)

200 m   = 6.66 kN  

∑Fy = nA – 13.3 kN + nE = 0 gives

nA = 13.3 kN – nE = 6.66 kN  

At Pin A:

∑Fy = –FAB sin 40.0° + 6.66 kN = 0  or

FAB = 
6.66 kN
sin 40.0°  = 10.4 kN (compression)  

∑Fx = FAC – (10.4 kN) cos 40.0° = 0  so

FAC = (10.4 kN) cos 40.0° = 7.94 kN (tension)  

θ
θ

T

r
mg

nA nE

A

B

C
E

D

100 m 100 m
13.3 kN

FAB

FAC

nA = 6.66 kN 

40.0°
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At Pin B:

∑Fy = (10.4 kN) sin 40.0° – FBC sin 40.0° = 0

Thus, FBC = 10.4 kN (tension)  

∑Fx = FAB cos 40.0° + FBC cos 40.0° – FBD = 0

FBD = 2(10.4 kN) cos 40.0° = 15.9 kN (compression)  

By symmetry: FDE = FAB = 10.4 kN (compression)  

FDC = FBC = 10.4 kN (tension)  

and FEC = FAC = 7.94 kN (tension)  

We can check by analyzing Pin C:

∑Fx = +7.94 kN – 7.94 kN = 0   or   0 = 0

∑Fy = 2(10.4 kN) sin 40.0° – 13.3 kN = 0

which yields 0 = 0

*12.72 Member AC is not in pure compression or
tension.  It also has shear forces present.
It exerts a downward force SAC and a
tension force FAC on Pin A and on Pin C.
Still, this member is in equilibrium.

∑Fx = FAC – F'AC  = 0 ⇒ FAC = F'AC 

∑τA = 0:

–(14.7 kN)(25.0 m) + S'AC (50.0 m)  = 0

or S 'AC  = 7.35 kN

∑Fy = SAC – 14.7 kN + 7.35 kN = 0 ⇒ SAC = 7.35
kN

Then SAC = S'AC  and we have proved that the loading
by the car is equivalent to one-half the weight of the
car pulling down on each of pins A and C, so far as the
rest of the truss is concerned.

FBD

FBC

FAB = 10.4 kN 

40.0°40.0°

10.4 kN 

40.0°40.0°

10.4 kN 

7.94 kN 7.94 kN 

13.3 kN 

25.0 m

A

25.0 m

14.7 kN

C

FAC FAC

SAC SAC

nA nE

A

B

C
E

D

25.0 m 14.7 kN
75.0 m
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For the Bridge as a whole:  ∑τA = 0:

–(14.7 kN)(25.0 m) + nE(100 m) = 0

nE = 3.67 kN  

∑Fy = nA – 14.7 kN + 3.67 kN = 0

nA = 11.0 kN  

At Pin A:

∑Fy = –7.35 kN + 11.0 kN – FAB sin 30.0° = 0

FAB = 7.35 kN (compression)  

∑Fx = FAC – (7.35 kN) cos 30.0° = 0

FAC = 6.37 kN (tension)  

At Pin B:

∑Fy = –(7.35 kN)sin 30.0° – FBC sin 60.0° = 0

FBC = 4.24 kN (tension)  

∑Fx = (7.35 kN) cos 30.0° + (4.24 kN) cos 60.0° – FBD = 0

FBD = 8.49 kN (compression)  

At Pin C:

∑Fy = (4.24 kN) sin 60.0° + FCD sin 60.0° – 7.35 kN = 0

FCD = 4.24 kN (tension)  

∑Fx = –6.37 kN – (4.24 kN) cos 60.0° + (4.24 kN) cos 60.0° + FCE = 0

FCE = 6.37 kN (tension)  

At Pin E:

∑Fy = –FDE sin 30.0° + 3.67 kN = 0

FDE = 7.35 kN (compression)  

or ∑Fx = –6.37 kN – FDE cos 30.0° = 0

which gives FDE = 7.35 kN as before.


