Chapter 13 Solutions

13.1 X =(4.00 m) cos (3.007¢ + 7))
Compare this with x = A cos (at + ¢) to find

(a) w=2mrf=3.00T

or [f= 1,50 H7] T=1 =[06673]

(b) A=[4.00m
© o= [rrad]

(d) x(t=0.250's) = (4.00 m) cos (1.757) =

13.2 (a) Since the collision is perfectly elastic, the ball will rebound to the height of 4.00 m and

then repeat the motion over and over again. Thus, the [motion is periodic| .

1
(b) To determine the period, we use: x = 5 gt?
The time for the ball to hit the ground is
__[2x __ [2(4.00 m)
t= \/; =\/sg0mzsz = 09098
This equals one-half the period, so T = 2(0.909 s) =

(c) The net force acting on the mass is a constant given by F = —-mg (except when it is in
contact with the ground), which is not in the form of Hooke's law.

133 (a)
(D) Vinax = WA = 277fA = [94.2cm/s]

This occurs as the particle passes through equilibrium.

(c) amax = WPA = (2mf)2 A = |17.8 m/s2

This occurs at maximum excursion from equilibrium.
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2 Chapter 13 Solutions

*13.4  (a) x=(5.00cm) cos %t + é—TE

At t=0, x=(5.00cm)cos%E=

_dx . T,
(b) v=g¢ =-(10.0cm/s)sin @Hgg

At t=0, v=[-5.00cm/s
Y 200cmss? t+ 2
(c) a=gy =-(200cm s)cos% EE
At t=0, =[-17.3 cm/s?
2 21
@ A-[Eooen] e T-2 2[5

13.5 (a) At t=0, x=0 andyv is positive (to the right). Therefore, this situation corresponds to
x=Asinwt and v=vicoswt

Since f=150Hz, w=2nrf=3.00m

Also, A=2.00cm, so that |x =(2.00 cm) sin 3.007tt

(b) Vmax = Vi = Aw= (2.00)(3.007) =

T |1
The particle has this speed at t=0 and nextat t= 7 =38

(¢) amax = Ac? = 2(3.007)2 = |18.07m2 cm/s2

The acceleration has this positive value for the first time at
3T
t= 7 ° 0.500 s

. 2 . . . ..
(d) SinceT=7 sand A =2.00 cm, the particle will travel 8.00 cm in this time.

3
370
020"

8.00 cm + 4.00 cm =

Hence, in 1.00 s the particle will travel
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Chapter 13 Solutions 3

13.6 The proposed solution  x(t) = x; cos wt + %B sin at

. . . dx .
implies velocity v =3¢ = Xiwsin wt + v; cos at

. dv .
and acceleration a =Tt =-X;? cos wt — Vviw sin wt

LYill. 0
oM @t

=-w? %i cos wt + =—w2x

(a) The acceleration being a negative constant times position means we do have SHM, and its
angular frequency is w. At t =0 the equations reduce to

Xx=% and Vv=v;
so they satisfy all the requirements.

(b) vZ-ax = (-x;esin wt + v; cos wt)?

—(—Xxjw? cos wt — vjwsin wt) %i cos wt + %Bsin wtg

= Xi2 w? sin? at — 2X; viwsin wtcos wt + Vi2 cos? wt
+ xi2 w? cos2wt + X;v;wcos wt sin wt + xv;wsin wt cos wt
+ Vi2 sin? wt = xi2 w? + Vi2
So this expression is constant in time. On one hand, it must keep its original value
2
Vi — ajXj
On the other hand, if we evaluate it at a turning point where v=0and x = A, it is
A2a? + 02 = A2¢#
Thus it is proved.

F _ (10.0 x 103 kg)(9.80 m/s?)
X 3.90 x 102 m

_ m _ 25.0x 103 kg _

13.7 k= =251N/m and
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4 Chapter 13 Solutions

_120s

138 (a) T=-% = [2.40 5]
© 1=} = ok - [T
(¢) w=2mf=2m(0.417) = [2.62 rad/s]

k 8.00 N/m
— — — 1
13.9 (a) w= \/; 0.500 kg 4.00s

Therefore, position is given by x =10.0 sin (4.00t) cm

From this we find that

v =40.0 cos (4.00t) cm/s Vmax = |40.0cm/s

a=-160 sin (4.00t) cm/s?  amax = [160 cm/s?

_0! O0..a0x 0
(b) t_El-OOD SmlD,O.OD

and when x = 6.00 cm, t=0.161 s, and we find

v =40.0 cos [4.00(0.161)] = [32.0cm/s
a =-160 sin [4.00(0.161)] = |-96.0 cm/s2

. 0l oL L 0x [
(c) Using t= (3.000] sin! £10.00

whenx=0, t=0 and whenx=8.00cm, t=0.232s

Therefore, At=

13.10 m=1.00kg, k=250N/m, and A=3.00cm

At t=0, x=-3.00cm

k ,25.0
(a) w—\/% =\Too =5.00 rad/s

2 2m
so that, T_E —m =
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Chapter 13 Solutions

(b)  Vmax = Aw=(3.00 x 102 m)(5.00 rad/s) = |0.150 m/s
amax = Aw?2 = (3.00 x 1072 m)(5.00 rad/s)% = |0.750 m/s?

(c) Becausex=-3.00cmandv=0at t=0, the required solution is

X = —A CcoS at

or  [x=-3.00 cos (5.00t) cm|

dx -
v =gt =|15.05sin (5.00t) cm/s|

d
a :ﬁ ={75.0 cos (5.00t) cm/s?|

_w 1 [k _1_ m
13.11 f= 2n—2n\/; or T—f —2n‘\/;

. _ 4®m _ (4X(7.00 kg) _
Solving for k, k= T2 TT 26082 40.9 N/m

13.12 (a) Energy is conserved between the maximum-displacement and the half-maximum points:

(K+U)i=(K+U)

1 1 1
0+3 kA? == mv2+§ mx?

1 1 1
5 (6:50 N/m)(0.100 m) 2= 2 m (0.300 m/s)” + 5 (6.50 N/m)(5.00 x 102 m)

1
325m] =3 m(0.300 m/s)? + 8.12 m]

O 44my)
M =500 x 102m27sz ~ 19-242Kg

k 6.50 N/m
(b) w= ‘\/% =1\ ’m =3.46rad/s
21 21
HT=0 3465 T
(c)  amax = WPA = (3.46/5)%(0.100 m) = |1.20 m/s?
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6 Chapter 13 Solutions
13.13 (@) Vpax = WA
_Vmax _ 1.50m/s
A= w ~ 2.00rad/s =10750m

(b) x=[~(0.750 m) sin 2.00t|

13.14 (&) Vmax = WA

A= Vimax _ v
w w

(b) x=-Asinwt= —%Esin wt

13.15 The 0.500 s must elapse between one turning point and the other. Thus the period is 1.00 s.

21T
w= T = 6.28/s

and Vs = WA = (6.28/5)(0.100 m) = 10.628 m/s

om 2
*13.16 m=200g, T=0250s, E=200J; w:?":% =251 rad/s

(a) k=ma? = (0.200 kg)(25.1 rad/s)? =

(b) E—— 0 A= \/_ '2(2 00) m

1
13.17 By conservation of energy, 5 mv2 = E kx2

k ’5.00 x 106
V= ‘\/% X= T (316)(10_2 m) =(2.23 m/S
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Chapter 13 Solutions

Goal Solution
G: If the bumper is only compressed 3 cm, the car is probably not permanently damaged, so v is
most likely less than 10 mph (< 5 m/s).
O: Assuming no energy is lost during impact with the wall, the initial energy (kinetic) equals
the final energy (elastic potential):
1 1
A Ki=U; or 5 va:E kx2
k ,5.00 x 106 N/m
= —_= —2 —_
V=X ‘\/; (3.16 x 102 m) 1000 kg
v=223m/s
L: The speed is less than 5 m/s as predicted, so the answer seems reasonable. If the speed of the
car were sufficient to compress the bumper beyond its elastic limit, then some of the initial
kinetic energy would be lost to deforming the front of the car. In this case, some other
procedure would have to be used to estimate the car’s initial speed.
kA?2 250 N/m)(3.50 x 102 m)?
13.18 (a) E= > :( )(2 ) =10.153 )
(b) Vmax = Aw
k , 250
= _ = —_— = —1
where w \/; 0500 224s
Vmax = |0.784 m/s
(c)  amax = Aw? =(3.50 x 102 m)(22.4 s1)2=117.5m/s?
1 1
13.19 (a) E =5 kA2 = 5(35.0 N/m)(4.00 x 102 m) 2=128.0 mJ

®) |v] =ovAr-x =\/E—\/m

35.0
- —_— -2)2 _ -2)2 =
|v| =1 ’50.0 X 103 ‘\/(4.00 x 1072)%2 — (1.00 x 1072) |l.02 III/Sl

1 1 1
S m2== kA2 =
(©) 5 mve=3 kA >

1 1
k2 =—F _= 2 —
(d) > kx? =E > mv 15.8 mJ

1
kx2=2(35.0) [(4.00 x 102)2— (3.0 x 109)7] =
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13.20

13.21

Chapter 13 Solutions

(2)

(b)

(c)

(d)

(e)

(f)

(9)

(a)

(b)

F 200N
k== =5200m = [L00N/m
w= \/E :‘\/50.0 rad/s
_w
Vinax = WA = \/50.0 (0.200) =)141m/s| at x=0
8max = WPA = 50.0(0.200) = atx=A
E=s kA2 = l(100)(0 200) 2 =(2.00J
2 2 ' :
/8
— 2 2 — —_ 2 =
v=w\A2-x2 =4/50.0 5(0.2002 =[133m/s
o [9.200[7] _ >
a = w?x = (50.0) 03 0 3.33m/s

In the presence of non-conservative forces, we use
1 2 1 1 2 1
AE:E MVy =5 MV +mgys—mgy; + > kxs -3 kX

1 1
(20.0 N)(0.300 m) = > (150 kg) Vi —0+0-0 +5(19.6 N/m)(0.300 m) -0

fic = Jn = 0.200(14.7 N) = 2.94 N

(K+U); + AE = (K + U);

1 1
0+ 0+ Fdcos 0° + fd cos 180° = > mvf +> kx2

1
6.00J + (2.94 N)(0.300 m)cos 180° = 5 (1.50 kg) Vi +0.882)

vi=V/2(6.001-0.8821-0.8821)/1.50 kg = [2.38 m/s]
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13.22  (a) E:% KAZ, soif A'=2A, E' :% K(A")? :% K(2A)2 = 4E

Therefore |E increases by factor of 4| .

(D) Vypax = \/% A, soif Aisdoubled, [Vmay is doubled|.

k
(©) amax= = A soif Aisdoubled, [amax also doubles| .

(d) T= 2/7‘\/% is independent of A, so |the period is unchanged| .

13.23  From energy considerations, vZ + w?x2 = w?2A?2

wA A
Vimax = WA and v = - S0 [DEVZ_BZ + w2x2 = w2A2

3A2 A3
: : 2 _ — — —
From this we find x?= 7 and x= > +2.60 cm| where A=3.00cm

Goal Solution

G: If we consider the speed of the particle along its path as shown in the sketch, we can see that
the particle is at rest momentarily at one endpoint while being accelerated toward the
middle by an elastic force that decreases as the particle approaches the equilibrium position.
When it reaches the midpoint, the direction of acceleration changes so that the particle
slows down until it stops momentarily at the opposite endpoint. From this analysis, we can
estimate that v = v,,,5,,/2 somewhere in the outer half of the travel: 1.5 < x<3.

—3cm 0cm 3cm
v=0 V = Vmax v=0
- _—) =
— — - <
a a=0 a

O: We can analyze this problem in more detail by examining the energy of the system, which
should be constant since we are told that the motion is SHM (no damping).
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10 Chapter 13 Solutions
A: From energy considerations (Eq. 13.23), v2 + w?Xx? = «?A2. The speed v will be maximum when
X is zero. Thus, Vo = @A and
_ Vmax _ WA
Vis2 - T
1
Substituting v/, in for v, n WPAZ + (PX2 = wPA?
. . 3A?
Solving for x we find that x2 =
AV3 3.00 3
Giventhat A=3.00cm,x =+ ;/— :i( ;:m)‘\/_ =+260cm ¢
L: The calculated position is in the outer half of the travel as predicted, and is in fact very
close to the endpoints. This means that the speed of the particle is mostly constant until it
reaches the ends of its travel, where it experiences the maximum restoring force of the
spring, which is proportional to x.
*13.24 The potential energy is

1 1
U, = 5 kx2 = 5 kA2 cos? (wt)

The rate of change of potential energy is

dU,

1 1
=t =7 kA2 2 cos (wt)[-wsin (at)] = -5 kA? wsin 2wt

(a) This rate of change is maximal and negative at

200t :;_T 20k = 2n+g , or in general, 2at = 2nrr+2E for integer n.
- _man+ 1)
Then, t=750n+1 =72E60 5

For n =0, this gives t = [0.218 s| while n=1 givest= .

All other values of n yield times outside the specified range.

dU,

®) |3t

1 1
- = 20— — —2 2 —2\ —
=5 kAW = 7(3.24 N/m)(5.00 x 102 m) %(3.60 52) = [14.6 mW

max
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Chapter 13 Solutions 11

*13.25 (a) T= 2n‘\/§

_gT2 _(9.80 m/s?)(12.0 )2 _
R

L 35.7m
) T =2m\[5 = =2\ |76 77 =

L
*13.26 The period in Tokyo is T; = 271'\/;
t

L
and the period in Cambridge is T, = 271'\/9:c
c

We know T;=T,=2.00s

. Lk L
For which, we see — =—
Ot O¢

9c Lo 09942
or o =T, T0.9927 ~ 1.0015

, I
*13.27 The swinging box is a physical pendulum with period T = 2T m_gd
The moment of inertia is given approximately by

1
= 3 mL2 (treating the box as a rod suspended from one end).

Then,withL=10mandd=L/2,

_ (1/3)mL2 n\/i_ 21.0m) =
T=2m\[ 72 =2™\3g =2™\[308mssy ~16s of T
1328 w=2= 1= -2 Mgy
ce W= Tw 443 L2228
w=A L =9 - 980
L W2 (4432 "L

13.29 (a) mgh :% my?2
h=L(1-cos 6)
0 Vinax = V29L (1 - cos 6)

© 2000 by Harcourt College Publishers. All rights reserved.



12 Chapter 13 Solutions

(b) la=mgLsin 6
_mgLsin8 g .
Omax = _mL2 = E sin Q =|2.54 rad/s?
(€)  Frmax = Mg sin 6 = (0.250)(9.80)(sin 15.0°) =

13.30 (a) The string tension must support the weight of the bob, accelerate it upward, and also
provide the restoring force, just as if the elevator were at rest in a gravity field (9.80 +
5.00) m/s?

L 5.00 m
T= 2"\/; =2\ | T4 m/e?
5.00 m
(b) T=2m\|Gsomss2_500m7s) -

(©)  Ger=V(9.80 m/s2)2 + (5.00 m/s2)2 = 11.0 m/s?

500 m
T=2m= \/ 11.0m/s2

13.31 Referring to the sketch we have

F=-mgsin @
X
and tan 9~E

For small displacements,

tan 6=sin 6

-_mg  _
and F——R X = —kx

Ak _. ]9
and w—\/;—'\/;

,// mgsing
/

/

/
)’ Mg
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13.32

13.33

13.34

total measured time

(@) T= 50

The measured periods are:

Length, L (m) [ 1.000 | 0.750 | 0.500
Period, T (s) |[1.996 |1.732 |1.422
L 478L
(b) T= 2n\/% 9=
The calculated values for g are:
Period, T (s) |1.996 |1.732 |1.422
g (m/s?) 9.91 9.87 9.76

Chapter 13 Solutions 13

0.25 0.5 0.75 1.0
L,m

Thus, g, = [9.85 m/s?| this agrees with the accepted value of g = 9.80 m/s? within 0.5%.

(c) Slope of T2 versus L graph = 472/g = 4.01 s2/m

ATR
Thus, g = slope ~

f=10.450 Hz, d = 0.350 m, and m = 2.20 kg

,I
2 mgd ’

,mgd _ [P mgd _ (2.20)(9.80)(0.350)
A2~ [M[] 4m® ~ (0.450 s71)2 (4112)

1 =10.944 kg - m2

(a) The parallel-axis theorem:

|
Teeae @0
™ gdn)

: T

=T

1
1= Iy + Md2 = T ML2 + Mc?
L 33 20
= — 2 2 = 2
B M(1.00 m)? + M(1.00 m)> =M 2 m 0
) T M(13 m9)
T=2m\|gd = 2"\/2Mg(L.00 m)

13m
12(9.80 m/s?)

T=2m

© 2000 by Harcourt College Publishers.
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14 Chapter 13 Solutions

(b) For the simple pendulum

, 1.00 m
T=2m 980 m/s2 =201s

2.09s-2.01s
i —_—— = 0,
difference 20ls 4.08%

13.35 (a) The parallel axis theorem says directly | = Iy + md2

ey + md?
0] T=2m —I =|2m —(CM md")
mgd \/ mgd

(b) When d is very large T 271‘\/: gets large.

/I
When d is very small T 2m % gets large.

So there must be a minimum, found by

(o} foX

d
33 =0=gq 27(lem + md?)/2(mgd)-1/2

1
=21 (Igm + md?2)1/2 %Eg(mgd) -3/2 mg

+ 2n(mgd)-12 %B('CM + md?) 172 2md

=Error! mg,(Icy + md?)1/2 (mgd)3/2) + Error! =0
(b) This requires

—lcp —md? + 2md2 =0

or lcm = md?

13.36  We suppose the stick moves in a horizontal plane. Then,

1 1
= —_— 2 = 2 = . 2
| B mL B (2.00 kg)(1.00 m) 2 =0.167 kg - m
T=2m\I/k

_4m®l _ 4m%0.167 kg-m?) _
K=—=7 = (180 5)2 = (203 uN - m
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Chapter 13 Solutions 15

13.37 T=0.250s; I=mr2=(20.0 x 10-3 kg)(5.00 x 103 m)?

(a) 1=]5.00x 107 kg - m?| -

d20 _ K _ _2m
©) gz ==«8 \/T‘ SOTT

0 2 DZ N-m
= 2 = —7 — _4
K=lw (5.00 x 1077) [0.250(] 3.16 x 10 rad

13.38 (a) The motion is simple harmonic because the tire is rotating with constant velocity and you
are looking at the motion of the boss projected in a plane perpendicular to the tire.

(b) Since the car is moving with speed v = 3.00 m/s, and its radius is 0.300 m, we have:

_3.00m/s

= 0300m = 10.0 rad/s

Therefore, the period of the motion is:

21T 2
=% ~@00radss) ~ 26285

13.39 The angle of the crank pin is 8= at. Its x-coordinate is [x = A cos 8= A cos wt

where A is the distance from the center of the wheel to the crank pin. This is of the
form x = A cos(at + @), so the yoke and piston rod move with simple harmonic motion.

o N

A‘. b =
z‘ VI x=_A x(‘t)

1 1
== 24 2
13.40 E > mv +2 kx

d_E— d_2X+k
dt_mvdtz XV

Use Equation 13.32:

2
_n:jtizx =—kx —bv
i—f = v(-kx — bv) + kvx
((jj_E: -bv2 <0

© 2000 by Harcourt College Publishers. All rights reserved.



16 Chapter 13 Solutions

13.41 6=150°  6(t=1000) = 5.50°
X = Ae—bt/Zm

X1000 _ Ae®PY2m 550
X - A 150

02~ =[100x103s2
2m

*13.42 Show that x = AeP2m cos (wt + ¢) is a solution of

= -b(1000)/2m ~ -1

dx d2x
—kx —b FraallrTyy (D

k b
and w= o E‘Zﬁg (2)
X =Aed2mcos (ak + @)  (3)

g_>t( = Agt/2m % %B coS (at + @) — Ae™™/2M w (sin(at + ¢)) @

d2x b O 0 b . O
—_—  — e—bt/2m = ——co0sS (wt + _ Ae—bt/Zm wsin (wt +
az " am 2 0 2mpes (@t + @) (wt+au

_ gAe—bt/zm uj LDw sin (wt + @) + Ae2m (92 cos (wt + (p)% )
O

0 |:| ZmD

Substitute (3), (4) into the left side of (1) and (5) into the right side of (1);
b2
—kAeb2m cos (et + @) + o Ae™d2M cos (et + @)
+ bowAe?2m sin (wt + ¢)

bO 0 b . O
= - [Ae P2 = —=cos (wt + ¢) - AePV2M @ sin (wt +

b .
+3 Ae™P2m gy sin (et + @) — mar? AeP2M cos (ak + @)

© 2000 by Harcourt College Publishers. All rights reserved.



Chapter 13 Solutions 17

Compare the coefficients of Ae”2m cos (et + @) and AePY2msin (wt + ¢):

. _ b2 b b _ b kb2
cosine-term: —k+2m _—ZD—ZmD—maﬁ—4m —(m) ~ im0
b2
=ktom

b b
sine-term: bw:+§(w) +§ w=hw

Since the coefficients are equal,

*13.43  (a)

(b)

X = Aed2m cos (it + ¢) is a solution of the equation.

For resonance, her frequency must match

_wy 1 [k 1 _ [430x103N/m _
fo_271_271 m -~ 2m 12.5 kg _

From x = A cos &, v = dx/dt = —-Awsin at, and a = dv/dt = -Aa? cos at, the maximum
acceleration is Aw?. When this becomes equal to the acceleration of gravity, the normal
force exerted on her by the mattress will drop to zero at one point in the cycle:

- -9
Awr=g or A—w2 = Tm K

~(9.80 m/s?)(12.5 kg) _
= T430x10°N/m  [285¢cm

13.44 F=3.00cos (2rt) N and k=20.0 N/m

2
(a) a):?n:ZTrrad/s S0 T:

. |k /20.0 B
(b) In this case, wo—\/; =\/700 =3.16 rad/s

Taking b = 0 in Equation 13.37 gives

Az gn_og(wz_wé) . g [4m? - (3.16)7L

A=0.0509m =

© 2000 by Harcourt College Publishers. All rights reserved.



18 Chapter 13 Solutions

d?x k
*13.45 Fqcos (at) —kx = Mz @=\|r (1)
X =Acos (wt + ¢ (2)
g_)t( =-Awsin (wt + ¢) (3)
d?x
JZ - —-Adr cos (wt + @) (4)

Substitute (2) and (4) into (1):
Fo cos (at) — kA cos (at + @) = m(-Aa?) cos (wt + @)
Solve for the amplitude: (kA - mAw?) cos (wt + @) = F; cos wt
These will be equal, provided only that g must be zero and (kA - mAw?) = F

Fo/m
-’

Thus, A=

3|=

13.46  From Equation 13.37 with no damping,

Folm
A= -
(@? — wp)?
k 200
= = -1 2 = —_—— —2
w=27f = (20.0mrs7?) wo =+ (0.079.80) 49.0s
Fo = MA(e? - 3 )
_ 4000 2 _
Fo = 3.a0 (200 X 10°9)(3950 - 49.0) =
Feye/M
*13.47 A= :Xt
V(@ - wh)? + (bew/my?
Fext/mM Fext/M Fext/M
Withb=0, A = ext: - ext: — =t ext: 5
n\,(wz_wg)z +(w? - wy) W? — wy
2 Fee/m _k  Foq  630N/m 1.70 N
Thus, @ = &b + =3 =10 #70 = 0150 kg (0.150 kg)(0.440 m)

This yields w=8.23 rad/s or ww=4.03 rad/s

Then, f:%_[ gives either f = orf=

© 2000 by Harcourt College Publishers. All rights reserved.
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*13.48 The beeper must resonate at the frequency of a simple pendulum of length 8.21 cm:

1 _fg 1 ,9.80 m/s? _
f_271 L 2m \0.0821m ~

. . . om
13.49  Assume that each spring supports an equal portion of the car's mass, i.e. — .

m 4m?m _ 41?1500
Then T—2rr‘\/% and k= 4T T @)(1502 - 6580 N/m

Ty 2w,  2i/q\[k/m,y
TO _2770)0 _271 k/mo

Too_ Mo [1850 _ 75
To _\/”To = \1500 = V110
T.= V110 x150=[157 5|

13.50

4

13.51 Let F represent the tension in the rod.

(a) Atthe pivot, F=Mg+ Mg =

A fraction of the rod’s weight Mg %—B as well as the

weight of the ball pulls down on point P. Thus, the
tension in the rod at point P is

. . 1 4
(b) Relative to the pivot, | = l,oq + lpa = 3 ML2 + ML2:§ ML2

19

|
For the physical pendulum, T = 27\ ’m_gd where m = 2M and d is the distance from the

pivot to the center of mass of the rod and ball combination. Therefore,

_ML/2)+ML 3L B @3AMLZ_ _|4n
d==N+m 2 9 T=2"\|omeai7a) ~|3

9

_ _4n [2.00m) _
ForL=200m,T=2"\[ge0m/< =
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Goal Solution
G

The tension in the rod at the pivot = weight of rod + weight of M =2 Mg. The tension at point
P should be slightly less since the portion of the rod between P and the pivot does not
contribute to the tension.

The period should be slightly less than for a simple pendulum since the mass of the rod
effectively shortens the length of the simple pendulum (massless rod) by moving the center

. L
of mass closer to the pivot, so that T < 271‘\/%

The tension can be found from applying Newton’s Second Law to the static case. The period
of oscillation can be found by analyzing the components of this physical pendulum and using
Equation 13.28.

(a) Atthe pivot, the net downward forceis: T=Mg+Mg=2Mg ¢

At P, a fraction of the rod's mass (y/L) pulls down along with the ball.

Therefore, T = Mg %{_—E+ Mg = Mg% + % 0

. . 1 4
(b) Relative to the pivot, ligta = lyog + lpan = 3 ML2 + ML? =3 ML2

. B , I
For a physical pendulum, T =27 mod

In this case, m = 2M and d is the distance from the pivot to the center of mass.

ML
(ML) g5

I="M+m 4
_ , l (4ML»4  4m [2L
sowe have, T =2 mod =2 32MY9(3L) 3 \/; O
4 (2(2.00 m) _

ForL=200m,T :? 9.80 m/s?

=268s ¢

In part (a), the tensions agree with the initial predictions. In part (b) we found that the
period is indeed slightly less (by about 6%) than a simple pendulum of length L. It is
interesting to note that we were able to calculate a value for the period despite not knowing
the mass value. This is because the period of any pendulum depends on the location of the
center of mass and not on the size of the mass.
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1 1
13.52 (a) Total energy = 5 kAZ = 5(100 N/m)(0.200 m) 2=2.00J
At equilibrium, the total energy is:
1 1
E(ml +m,) vZ= 5(16.0 kg) v2 = (8.00 kg)v?

Therefore, (8.00 kg)v2=2.00J, and v =|0.500 m/s

This is the speed of m; and m, at the equilibrium point. Beyond this point, the mass m,
moves with the constant speed of 0.500 m/s while mass m; starts to slow down due to the
restoring force of the spring.

(b) The energy of the m;-spring at equilibrium is:

1
Myv2 = 2(9.00 kg)(0.500 m/s) = 1125 ]

N| -

1
This is also equal to > k(A")2, where A" is the amplitude of the

m4-spring system.
1
Therefore, E(lOO)(A') 2=1125 or A'=0150m

The period of the m;-spring system is:

my
T=2m e =1.885s

and it takes il 0.471 s after it passes the equilibrium point for the spring to become fully

stretched the first time. The distance separating m; and m, at this time is:

D=v EI—B ~ A" = (0.500 m/5s)(0.471 s) - 0.150 m = 0.0856 =
13.53 02 [ = Ac? fmax = Hs N =Yg Mg = MAG?
max f

_ K9
A=t - [Gozam ..
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13.54

13.55

13.56

Chapter 13 Solutions

The maximum acceleration of the oscillating system is a,,, = Aw? = 478Af2. The friction force
exerted between the two blocks must be capable of accelerating block B at this rate. Thus, if
Block B is about to slip,

f=fhax = UN = Usmg = m(478AF2)  or A=

Mp, = 2My,
@ VMo /M_\/i
W kM Mp 2

f

— =[0.919 x 101 Hz|

fu
Dy — VE

1 1
The kinetic energy of the ball is K = 5 mv2 + >

1Q2, where Q is the rotation rate of the ball about
its center of mass. Since the center of the ball
moves along a circle of radius 4R, its displacement
from equilibrium iss = (4R)Oand its speed is

_ds _ [N
V= dt =4R CTiak Also, since the ball rolls
without slipping, \
ds _ 40
V= FTi =RQ so Q= _R =4 At

The kinetic energy is then

1 daer? 1@_ [, 967 _ 112mR2 (g6 7
- m%RdtD 205 RZD%O'ID_ 10 [ty

When the ball has an angular displacement 6, its center is distance h = 4R(1 — cos 6) higher
than when at the equilibrium position. Thus, the potential energy is

Uy = mgh = 4mgR(1 - cos €). For small angles, (1 - cos 6) z%(see Appendix B) . Hence,

U, = 2mgR€?, and the total energy is

2
E =K+ U, =12R (9O | omgre?

10 [@tg
dE _112mR2 (g 6?6 e
Since E = constant in time,dt =0= 5 [tde +4ng6mItD
R d26 _ 90
This reducesto 5 iz +096=0, Ordt = QSRDG
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, 5
This is in the classical form of a simple harmonic motion equation with w= =

. . . L 21
The period of the simple harmonic motion is then T =0 -

a ]

dT w1 dL

ERRNE

(1)

Chapter 13 Solutions

28R

28R

dL
We need to find L(t) andﬁ . From the diagram in (a),

L=t of, & O

But =

dh

dt

Also, JtidL

Todt T [2[dt
dv dh
pﬁ =- pAﬁ. Therefore,
LM, do 1M,
T pAdt ' dt T 2pA[dt (@)
0l mmMo._
“@eAmegtthH G

Substituting Equation (2) and Equation (3) into Equation (1):

dT _
dt ~

LDlzﬂﬂjMD 1
Rpa’0dt 0
\/a \/Li+ 12HMD"
2pa’ [dt ]

© 2000 by Harcourt College Publishers. All rights reserved.
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24
(c) Substitute Equation (3) into the equation for the period
s L Mp,
\/a 2pa bt g

Or one can obtain T by integrating (b)

T'dT ]l D@MDI dt
T _V'BpaZDEﬂt 1
_1_[Mpo,
\/L 2pa2[j1t
ror= QLM 2 f o, LoEMn \/f%
\g BpaZDEﬂtDD_ ' 2pa [(dt [ '0
[Qpa2

1|:M[|t

L;
But Ti:2rr’\/7 \/_ * 5 I
k
13.58 ab:'\/% ==
47112m

(a) k=af m= =

KT? _| T
as

() m ==

13.59 For the pendulum (see sketch) we have

|Q_
N
D
[
|
Q
)

=la and rreie
2

T=MgL sin 9+kxhcos@——l§tf 1

|

I

H . |

For small amplitude vibrations, use the approximations
L

cosf=1

sinf=06

and x=s=hf
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Therefore,
2 2
Hz_ gL+th9=—w26
dt2 0| 0

_ ,MgL + kh?
w= IE =2rf
fo| Lo [MoL +kh?

| 2m ML2

Goal Solution
G: The frequency of vibration should be greater than that of a simple pendulum since the spring

1
adds an additional restoring force: f> ET\/%

O: We can find the frequency of oscillation from the angular frequency, which is found in the
. d?6 . .
equation for angular SHM: Freae —-a#6. The angular acceleration can be found from analyzing

the torques acting on the pendulum.
A:. For the pendulum (see sketch), we have

2
St=la and :TZG =-a

The negative sign appears because positive 6 is measured clockwise in the picture. We take
torque around the point of suspension:

> 17=MgL sin 6+ kxh cos 8= la
For small amplitude vibrations, use the approximations:
sin =6 ,cos 8=1,andx=s=ho

Therefore, with | = mL2,

d’6 _ MgL + khZDQ_ MgL + kh?2[]

a2 - g | o 0O M2 O
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. d?26 .
This is of the form ez = -8B required for SHM,
,M L + kh?
with angular frequency, w= gMT =27t
) o_w 1 ,MgL+kh2
The ordinary frequency is f = T VL2
L: The frequency is greater than for a simple pendulum as we expected. In fact, the additional
portion resembles the frequency of a mass on a spring scaled by h/L since the spring is
connected to the rod and not directly to the mass. So we can think of the solution as:
2 2 2
fzzi MgL +kh? _ 1 g +Lik_ =2, ul +L f2
478 ML2 ATE L L2417 M pendulum 7 27 spring

*13.60 (a) Atequilibrium, we have

L
zr:O:—mgg + kxoL

where X, is the equilibrium compression.

After displacement by a small angle,

L
ZT:—mgg + kxL

= —mgzL + K(Xg — LO)L

1 d26
=] 2 = == 2
koL = la 3 mL qt2

426 3k

S0 G TTm

6

The angular acceleration is opposite in direction and proportional to the displacement, so

. . . . 3k
we have simple harmonic motion with |w? = ol

_w _ 1 [Bk_1_[3100N/m) _
(b) f_2n_2n\/;_2n \ " 500kg k23 HZ
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13.62

One can write the following equations of motion:

2

d
mg-T=ma= mﬁ (for the mass)

T -kx=0 (describes the spring)

d26 | d%x

ROT-T =19 “Rae

(for the pulley)

1
with | = > MR2,

Combining these equations gives the equation of motion

1[0 _
%1+2MD“2 +kx =mg

The solution is x(t) = A sin at +
Error!, with frequency

w _1 k 1 100 N/m

=T\ maim 27
2

(a) ForM=0, f=
(b) For M =10.250 kg, f=12.79 Hz
(c) For M =0.750 kg, f=12.10 Hz

@ wo=\[& ~[E8107]

(b) Fs—mg:ma:m%gg

4
F5=§ mg=26.1 N

F

(c) When the acceleration of the car is zero, the new equilibrium position can be found as

follows:

Fy =mg=19.6 N = kx}

Thus, A= |x§ —xsl =
The phase constant is

Xs =3.92cm

Chapter 13 Solutions

0.200 kg + %M

© 2000 by Harcourt College Publishers. All rights reserved.
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13.63

*13.64

*13.65

Chapter 13 Solutions

21T L
(a) T=7- :271‘\/% =[3.00s
1 1
== 22— 2 —
(b) E=3 mv?=3(6.74)(2.06) 2 = [14.3]

(c) At maximum angular displacement,
1
= 2
mgh > mv

2
h=e =0217m
29

h=L-Lcos 8=L(1-cos 6)

h
cos 6= 1_f

Suppose a 100-kg biker compresses the suspension 2.00 cm. Then,

F N
_F ___980

=— 4
 T500xI0Z T = 490x10'N/m

If total mass of motorcycle and biker is 500 kg, the frequency of free vibration is

1 k 1 4.90 x 10* N/m
f= ANm “oa\N So0ka kg =158Hz

If he encounters washboard bumps at the same frequency, resonance will make the motorcycle
bounce a lot. Assuming a speed of 20.0 m/s, these ridges are separated by

(20.0m/s) 1
158/5  _1&/m

In addition to this vibration mode of bouncing up and down as one unit, the motorcycle can also
vibrate at higher frequencies by rocking back and forth between front and rear wheels, by
having just the front wheel bounce inside its fork, or by doing other things. Other spacings of
bumps will excite all of these other resonances.

y =(20.0 cm) [1 - cos (0.160 m~1 x)] y
= (20.0 cm) % _1+ %(0.160 m-L x)ZB

or y=(10.0cm)(0.160 m1x)2
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Chapter 13 Solutions 29

The geometric slope of the wire is
d
d—i’ = (0.100 M)(0.160 M1)2(2x) = (5.12 x 10-3 m-1)x

If m is the mass of the bead, the component of the bead’s weight that acts as a restoring force is

SF= —mg;j—i/ =-m(9.80 m/s?)(5.12 x 103 m)x = ma

Thus, a = —(0.0502 s2)x = —«? X. Since the acceleration of the bead is opposite the
displacement from equilibrium and is proportional to the displacement, the motion is simple

harmonic with «? = 0.0502 s2, or ww=(0.224 rad/s| .

(a) For each segment of the spring

1
dK = (dm) V2 ix —_—

e
Also, v= F v - [l

and dm :$ dx

Therefore, the total kinetic energy is

k
0 0=A\[a

1 1 m
and > MefrV2 =§%/I + ?S V2
m
21 M +?
Therefore, T=— = |21
w k
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30 Chapter 13 Solutions

13.67 (a) >F=-2Tsingj

{ \)\
where 8= tan™! pin T TNy T~
a0 Sl G
L L
Therefore, for a small displacement
sin @=tan G:X
L
-2T
and |>F= =,
L
. 2T
(b) Foraspring system, YF =-kx becomes YF = T
k ,2T
Therefore, |w = ‘\/: =4\ [—
m mL
1368 (a) Assuming aHooke's Law type spring, Static stretching of a spring
F = Mg = kx y = 1.7386x — 0.1128
and empirically Mg = 1.74x — 0.113 ~ 08
z
o |k=1.74N/m*6% § 0.6
2
M, kg X, m Mg, N 204
0.0200 0.17 0.196 g
0.0400 0.293 0.392 » 02
0.0500 0.353 0.49
0.0600 0.413 0.588 02 04 06
0.0700 0.471 0.686 .
Extension, m
0.0800 0.493 0.784
(b) We may write the equation as Squared period as a function of the mass
theoretically of an object bouncing on a spring
42 4m?
2:— — TTTTTTTTTTTTATTTTTTTTTIT [ P '
TEqe Mege ms : | | | |

and empirically T2=21.7 M + 0.0589

N

_An?
217

SO k =1.82 N/m = 3%

[y

Period squared
seconds squares

Time, s T,s M, kg T2 s2
7.03 0.703 0.0200 0.494

9.62 0.962  0.0400 0.925 0.02 0.04 0.06 0.08
10.67 1.067  0.0500 1.138 Mass, kg
11.67 1.167  0.0600 1.362
12.52 1.252 0.0700 1.568
13.41 1.341 0.0800 1.798

The k values 1.74 N/m % 6% and 1.82 N/m + 3% differ by 4%, so they agree.
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(c) Utilizing the axis-crossing point,

_ ,[0.05897 S
mg =3 0217 Dkg~|8 grams = 12%

in agreement with 7.4 grams.
1369 (a) AK+AU=0

Thus,  Kip + Urep = Kpot + Upot

M
where Kipp = Upot =0 //R/
L //\\)\\ _
1 /7 N 0 } 0 v ™\
Therefore, mgh == lw?, but [ » ( \
2 \ ) \ //
h=R-Rcos 6=R(1-cos 6 v : \/\m
-V
)
MR2  mr?
- —_ 2
and | > + > + mR

Substituting we find

1MR? mr? 2
mgR(1 - cos 6) :EEDJM2_+ T+ mRZ%

2
mgR(1 - cos 6) = %ﬂ+ %+ %sz

(1-cos 6)

M. r2 .0
m TRZY 20

and vZ=4gR

(b)

_mR + M(0)
T m+M

%MR2 +%mr2 + mR?2
T=| 2m
mgR
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13.70 (a) We require

A
-bt2m — —
Ae >
e+bt/2m =2
bt (0.100kg/s) |,
or om - In2 or —2(0_375 ko) t=0.693

Ot= The spring constant is irrelevant.

(b) We can evaluate the energy at successive turning points, where
1 1 -
cos (wt + @ = = | and the energy is 7 kx2 = 7 kA2gbt/m

-1 - 1|j’_ D
= 2p7bt/m =2 2
We reqwrez kAZ2e 2mkA D

or etbtim=72

min2  0.375kg(0.693)

= " 0100kgss - L280S

1
(c) From EZE kAZ,

the fractional rate of change of energy over time is

dE d1 1 dA dA
—_— —_— 2 —_ —_ —_—
A R T
E YA

1 T

= 2 = 2

> kA > kA
two times faster than the fractional rate of change in amplitude.

13.71 (a) When the mass is displaced a distance x from equilibrium, spring 1 is stretched a distance

X; and spring 2 is stretched a distance x,. By Newton's third law, we expect kix; = kyX.
When this is combined with the requirement that x = x; + x, , we find

=k 0O
17 Mk, + ko)

The force on either spring is given by

_kike oo
P dGr ko™

. ] (@
where a is the acceleration of the mass m.

Thisisinthe form F =kgfXx =ma K K
1 2

-
m . /m(kl + kp)

andT=2 — = |27 _
Keff kiks
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(b) In this case each spring is stretched by the distance x which the mass is displaced.
Therefore, the restoring force is

F=—(ky + kp)x and Kerr = (Kq + ko)

m
sothat T =21\ [——
\/(kl + ky)

13.72  For 6, = 5.00°, the motion calculated by the Euler method agrees quite precisely with the
prediction of 6,,, cos at. The period is T =2.20s.

Time, Ang.speed | Ang. Accel.

t (s) Angle, 8 () (/s) (°/s?) Binax COS Gt
0.000 5.0000 0.0000 —-40.7815 5.0000
0.004 4.9993 -0.1631 -40.7762 4.9997
0.008 4.9980 -0.3262 -40.7656 4.9987
0.544 0.0560 -14.2823 -0.4576 0.0810
0.548 -0.0011 -14.2842 0.0090 0.0239
0.552 —-0.0582 -14.2841 0.4756 —-0.0333
1.092 —-4.9994 -0.3199 40.7765 —-4.9989
1.096 -5.0000 -0.1568 40.7816 -4.9998
1.100 -5.0000 0.0063 40.7814 -5.0000
1.104 —4.9993 0.1694 40.7759 —4.9996
1.644 —-0.0638 14.2824 0.4397 -0.0716
1.648 0.0033 14.2842 -0.0270 -0.0145
1.652 0.0604 14.2841 —0.4936 0.0427
2.192 49994 0.3137 —40.7768 49991
2.196 5.0000 0.1506 -40.7817 4.9999
2.200 5.0000 -0.0126 -40.7813 5.0000
2.204 4.9993 -0.1757 —40.7756 4.9994
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Simple Pendulum, small amplitude

Angle (°)

0 / . Time (s)
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For 6. = 100°, the simple harmonic motion approximation 6,,,, cos at diverges greatly from
the Euler calculation. The period is T = 2.71 s, larger than the small-angle period by 23%.

Time, Angle, Ang. speed Ang. Accel.

t (s) 6 () (/s) (°/s?) Brmax COS @t
0.000 100.0000 0.0000 —460.6066 100.0000
0.004 99.9926 -1.8432 -460.8173 99.9935
0.008 99.9776 -3.6865 -460.8382 99.9739
1.096 —-84.7449 -120.1910 465.9488 —99.9954
1.100 —-85.2182 -118.3272 466.2869 —99.9998
1.104 —-85.6840 -116.4620 466.5886 —99.9911
1.348 -99.9960 -3.0533 460.8125 —75.7979
1.352 —-100.0008 -1.2100 460.8057 —75.0474
1.356 —99.9983 0.6332 460.8093 —74.2870
2.196 40.1509 224.8677 -301.7132 99.9971
2.200 41.0455 223.6609 -307.2607 99.9993
2204 41.9353 222.4318 -312.7035 99.9885
2.704 99.9985 2.4200 —-460.8090 12.6422
2.708 100.0008 0.5768 —-460.8057 11.5075
2.712 99.9957 -1.2664 —-460.8129 10.3712

Angle (°), A Cos wt

100

50

—100

Simple Pendulum, large amplitude

/ Time (s)
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