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Chapter 13 Solutions

13.1 x  = (4.00 m) cos (3.00πt + π)

Compare this with x = A cos (ωt + φ) to find

(a) ω = 2πf = 3.00π

or f = 1.50 Hz   T = 
1
f

   = 0.667 s   

(b) A = 4.00 m   

(c) φ = π rad   

(d) x(t = 0.250 s) = (4.00 m) cos (1.75π) = 2.83 m  

13.2 (a ) Since the collision is perfectly elastic, the ball will rebound to the height of 4.00 m and

then repeat the motion over and over again.  Thus, the motion is periodic  .

(b) To determine the period, we use:  x = 
1
2  gt2

The time for the ball to hit the ground is

t = 
2x
g

  = 
2(4.00 m)
9.80 m/s2  = 0.909 s

This equals one-half the period, so T = 2(0.909 s) = 1.82 s  

(c) No    The net force acting on the mass is a constant given by F = –mg (except when it is in

contact with the ground), which is not in the form of Hooke's law.

13.3 (a ) 20.0 cm   

(b) vmax = ωA = 2π fA = 94.2 cm/s   

This occurs as the particle passes through equilibrium.

(c) amax = ω2A = (2π f)2 A = 17.8 m/s2   

This occurs at maximum excursion from equilibrium.
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*13.4 (a ) x = (5.00 cm) cos  2t + π6  

At  t = 0, x = (5.00 cm) cos  
π
6    = 4.33 cm   

(b) v = 
dx
d t

   = – (10.0 cm/s) sin  2t + π6   

At  t = 0, v = – 5.00 cm/s   

(c) a = 
dv
d t

   = – (20.0 cm/s2) cos  2t + π6   

At  t = 0, a = –17.3 cm/s2   

(d) A = 5.00 cm       and     T = 
2π
ω    = 

2π
2    = 3.14 s  

13.5 (a ) At  t = 0,  x = 0  and v is positive (to the right).  Therefore, this situation corresponds to

x = A sin ω t       and        v = vi cos ω  t

Since   f = 1.50 Hz,    ω = 2π f = 3.00π

Also,   A = 2.00 cm,    so that     x = (2.00 cm) sin 3.00πt   

(b) vmax = vi = Aω = (2.00)(3.00π) = 6.00π cm/s   

The particle has this speed at  t = 0  and next at   t = 
T
2   = 

1
3  s   

(c) amax = Aω2 = 2(3.00π)2 = 18.0π 2 cm/s2   

The acceleration has this positive value for the first time at

t = 
3T
4    = 0.500 s   

(d) Since T = 
2
3   s and A = 2.00 cm, the particle will travel 8.00 cm in this time.

Hence, in  1.00 s 




= 

3T
2   ,  the particle will travel

8.00 cm + 4.00 cm = 12.0 cm   
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13.6 The proposed solution     x(t) = xi cos ω t + 



vi

ω    sin ωt

implies velocity     v = 
dx
d t

   = –xiω sin ωt + vi cos ωt

and acceleration     a = 
dv
d t

   = –xiω 2 cos ωt – viω sin ωt

= – ω 2 



xi cos ωt + 



vi

ω  sin ωt    = –ω 2x

(a ) The acceleration being a negative constant times position means we do have SHM, and its
angular frequency is ω.  At  t = 0  the equations reduce to

x = xi     and     v = vi

so they satisfy all the requirements.

(b) v2 – ax = (–xiω sin ωt + vi cos ωt)2

–(–xiω 2 cos ωt – viω sin ωt) 



xi cos ωt + 



vi

ω  sin ωt   

= x2
i   ω 2 sin2 ωt – 2xi viω sin ω t cos ω t + v 

2
i   cos2 ω t

+ x2
i   ω 2 cos2ω t + xiviω cos ω t sin ω t + xiviω sin ω t cos ω t

+ v2
i     sin2 ω t  = x 

2
i   ω 2 + v2

i    

So this expression is constant in time.  On one hand, it must keep its original value

v
2
i    – aixi

On the other hand, if we evaluate it at a turning point where v = 0 and x = A, it is

A2ω2 + 02 = A2ω2

Thus it is proved.

13.7 k =  
F
x

   =  
(10.0 × 10–3 kg)(9.80 m/s2)

3.90 × 10–2 m    = 2.51 N/m     and

T = 2π  
m
k

   = 2π  
25.0 × 10–3 kg

2.51 N/m    = 0.627 s  
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13.8 (a ) T =  
12.0 s

5    = 2.40 s  

(b) f =  
1
T

   =  
1

2.40   = 0.417 Hz  

(c) ω = 2π f = 2π (0.417) = 2.62 rad/s  

13.9 (a ) ω = 
k
m

    = 
8.00 N/m
0.500 kg    = 4.00 s–1

Therefore, position is given by   x = 10.0 sin (4.00t) cm

From this we find that

v = 40.0 cos (4.00t) cm/s vmax = 40.0 cm/s   

a = –160 sin (4.00t) cm/s2 amax = 160 cm/s2   

(b) t = 




1

4.00    sin–1 




x

10.0    

and when x = 6.00 cm, t = 0.161 s, and we find

v = 40.0 cos [4.00(0.161)] = 32.0 cm/s   

a = –160 sin [4.00(0.161)] = –96.0 cm/s2   

(c) Using      t = 




1

4.00    sin–1 




x

10.0    

when x = 0,  t = 0   and when x = 8.00 cm,  t = 0.232 s

Therefore,     ∆t = 0.232 s   

13.10 m = 1.00 kg,   k = 25.0 N/m,   and   A = 3.00 cm

At  t = 0,   x = –3.00 cm

(a) ω = 
k
m

    = 
25.0
1.00    = 5.00 rad/s

so that,            T = 
2π
ω    = 

2π
5.00   = 1.26 s   
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(b) vmax = Aω = (3.00 × 10–2 m)(5.00 rad/s) = 0.150 m/s   

amax = Aω 2 = (3.00 × 10–2 m)(5.00 rad/s)2 = 0.750 m/s2   

(c) Because x = –3.00 cm and v = 0 at  t = 0,  the required solution is

x = –A cos ωt

or x = –3.00 cos (5.00t) cm   

v = 
dx
d t

   = 15.0 sin (5.00t) cm/s   

a = 
dv
d t

   = 75.0 cos (5.00t) cm/s2   

13.11 f =  ω2π   =  
1

2π  
k
m

         or     T =  
1
f
   = 2π 

m
k

 

Solving for k,         k =  
4π2m
T 2

   =  
(4π)2(7.00 kg)

(2.60 s)2    = 40.9 N/m  

13.12 (a ) Energy is conserved between the maximum-displacement and the half-maximum points:

(K + U)i = (K + U)f

0 + 
1
2  kA2 = 

1
2  mv2 + 

1
2  mx2

1
2 (6.50 N/m)(0.100 m) 2 = 

1
2  m (0.300 m/s)2 + 

1
2 (6.50 N/m)(5.00 × 10–2 m) 2

32.5 mJ = 
1
2  m(0.300 m/s)2 + 8.12 mJ

m = 
2(24.4 mJ)

9.00 × 10–2 m2/s 2   = 0.542 kg   

(b) ω = 
k
m

    = 
6.50 N/m
0.542 kg    = 3.46 rad/s

∴ T = 
2π
ω    = 

2π
3.46/s   = 1.81 s   

(c) amax = ω2A = (3.46/s)2(0.100 m) = 1.20 m/s2   
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13.13 (a ) vmax = ωA

A = 
vmax

ω    =  
1.50 m/s

2.00 rad/s   = 0.750 m   

(b) x = –(0.750 m) sin 2.00t   

13.14 (a ) vmax = ωA

A =  
vmax

ω    =  
v
ω  

(b) x = –A sin ω t = – 
v
ω  sin ω t  

13.15 The 0.500 s must elapse between one turning point and the other.  Thus the period is 1.00 s.

ω = 
2π
T

   = 6.28/s

and vmax = ωA = (6.28/s)(0.100 m) = 0.628 m/s   

*13.16 m = 200 g,   T = 0.250 s,   E = 2.00 J;    ω = 
2π
T

   = 
2π

0.250   = 25.1 rad/s

(a) k = mω2 = (0.200 kg)(25.1 rad/s)2 = 126 N/m   

(b) E = 
kA2

2    ⇒  A = 
2E
k

   = 
2(2.00)

126      = 0.178 m   

13.17 By conservation of energy,     
1
2  mv2 =  

1
2  kx2

v =  
k
m

   x =  
5.00 × 106

103   (3.16 × 10–2 m)  = 2.23 m/s  
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Goal Solution    
G: If the bumper is only compressed 3 cm, the car is probably not permanently damaged, so  v is

most likely less than 10 mph (< 5 m/s).

O: Assuming no energy is lost during impact with the wall, the initial energy (kinetic) equals
the final energy (elastic potential):

A: Ki = Uf     or     
1
2  mv2 = 

1
2  kx2

v = x 
k
m

  = (3.16 × 10–2 m) 
5.00 × 106 N/m

1000 kg  

v = 2.23 m/s

L: The speed is less than 5 m/s as predicted, so the answer seems reasonable.  If the speed of the
car were sufficient to compress the bumper beyond its elastic limit, then some of the initial
kinetic energy would be lost to deforming the front of the car.  In this case, some other
procedure would have to be used to estimate the car’s initial speed.

13.18 (a ) E =  
kA2

2    = 
(250 N/m)(3.50 × 10–2 m)2

2    = 0.153 J   

(b) vmax = Aω

where ω = 
k
m

     = 
250

0.500    =  22.4 s–1

vmax = 0.784 m/s   

(c) amax = Aω2 = (3.50 × 10–2 m)(22.4 s–1)2 = 17.5 m/s2   

13.19 (a ) E = 
1
2  kA2 = 

1
2 (35.0 N/m)(4.00 × 10–2 m) 2 = 28.0 mJ   

(b) v    = ω A2 – x2   = 
k
m

   A2 – x2  

v    = 
35.0

50.0 × 10–3   (4.00 × 10–2)2 – (1.00 × 10–2)2   = 1.02 m/s   

(c)
1
2  mv2 = 

1
2  kA2 – 

1
2  kx2 = 

1
2 (35.0)  [(4.00 × 10–2)2 – (3.00 × 10–2)2] =  12.2 mJ   

(d)
1
2  kx2 = E – 

1
2  mv2 = 15.8 mJ   
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13.20 (a ) k = 
F
x

   = 
20.0 N
0.200 m   = 100 N/m   

(b) ω = 
k
m

     = 50.0   rad/s

f = ω2π   = 1.13 Hz   

(c) vmax = ωA = 50.0 (0.200)   = 1.41 m/s     at  x = 0

(d) amax = ω2A = 50.0(0.200) = 10.0 m/s2      at x = ± A

(e) E = 
1
2  kA2 = 

1
2 (100)(0.200) 2 = 2.00 J   

( f ) v = ω A2 – x2     = 50.0 
8
9 (0.200)2   = 1.33 m/s   

(g) a = ω2x = (50.0) 




0.200

3    = 3.33 m/s2   

13.21 (a ) In the presence of non-conservative forces, we use

∆E = 
1
2  mv

2
f   – 

1
2  mv

2
i   + mgyf – mgyi + 

1
2  kx

2
f   – 

1
2  kx

2
i  

(20.0 N)(0.300 m) = 
1
2 (1.50 kg) v2

f   – 0 + 0 – 0 + 
1
2 (19.6 N/m)(0.300 m) 2 – 0

vf = 2.61 m/s  

(b) fk = µkn = 0.200(14.7 N) = 2.94 N

(K + U)i + ∆E = (K + U)f

0 + 0 + Fd cos 0° + fd cos 180° =  
1
2  mv

2
f   + 

1
2  kx2

6.00 J + (2.94 N)(0.300 m)cos 180° =  
1
2 (1.50 kg) v2

f   + 0.882 J

vf = 2(6.00 J – 0.882 J – 0.882 J)/1.50 kg   = 2.38 m/s  
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13.22 (a ) E = 
1
2  kA2,   so if A' = 2A,   E' = 

1
2  k(A')2 = 

1
2  k(2A)2 = 4E

Therefore E increases by factor of 4  .

(b) vmax =  
k
m

   A,   so if A is doubled,   vmax is doubled  .

(c) amax =  
k
m

  A,   so if A is doubled,   amax also doubles  .

(d) T = 2π 
m
k

   is independent of A,  so the period is unchanged  .

13.23 From energy considerations,  v2 + ω 2x2 = ω 2A2

vmax = ωA   and   v =  
ωA
2    so  





w A

2  
2
 + ω 2x2 = ω 2A2

From this we find   x2 =  
3A2

4     and   x = 
A 3

2   = ± 2.60 cm   where A = 3.00 cm

Goal Solution    
G: If we consider the speed of the particle along its path as shown in the sketch, we can see that

the particle is at rest momentarily at one endpoint while being accelerated toward the
middle by an elastic force that decreases as the particle approaches the equilibrium position.
When it reaches the midpoint, the direction of acceleration changes so that the particle
slows down until it stops momentarily at the opposite endpoint.  From this analysis, we can
estimate that v = vmax/2 somewhere in the outer half of the travel:  1.5 <  x < 3.

— 3 cm 0 cm 3 cm

v = 0 v = vmax v = 0

a a = 0 a

O: We can analyze this problem in more detail by examining the energy of the system, which
should be constant  since we are told that the motion is SHM (no damping).
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A: From energy considerations (Eq. 13.23), v2 + ω2x2 = ω2A2.  The speed v will be maximum when
x is zero.  Thus, vmax = ωA  and

v1/2 = 
vmax

2   = 
ωA
2  

Substituting v1/2 in for v, 
1
4  ω2A2 + ω2x2 = ω2A2

Solving for x we find that x2 = 
3A2

4  

Given that A = 3.00 cm, x = ± 
A 3

2   = ± 
(3.00 cm) 3

2   = ±2.60 cm     ◊

L: The calculated position is in the outer half of the travel as predicted, and is in fact very
close to the endpoints.  This means that the speed of the particle is mostly constant until it
reaches the ends of its travel, where it experiences the maximum restoring force of the
spring, which is proportional to x.

*13.24 The potential energy is

Us = 
1
2  kx2 = 

1
2  kA2 cos2 (ωt)

The rate of change of potential energy is

dUs

d t
  = 

1
2  kA2 2 cos (ωt)[–ω sin (ωt)] = – 

1
2  kA2 ω sin 2ωt

(a ) This rate of change is maximal and negative at

2ωt = π2  , 2ωt = 2π + π2  , or in general, 2ωt = 2nπ + π2  for integer n.

Then, t = π
4ω (4n + 1)  = 

π(4n + 1)
4(3.60 s–1) 

For n = 0, this gives t = 0.218 s   while n = 1 gives t = 1.09 s  .

All other values of n yield times outside the specified range.

(b)
dUs

d t
 
max

 = 
1
2  kA2ω = 

1
2 (3.24 N/m)(5.00 × 10–2 m) 2(3.60 s–2) = 14.6 mW  
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*13.25 (a ) T = 2π 
L
g

 

L = 
gT2

4π2  = 
(9.80 m/s2)(12.0 s)2

4π2   = 35.7 m  

(b) Tmoon = 2π 
L

gmoon
  = 2π 

35.7 m
1.67 m/s2  = 29.1 s  

*13.26 The period in Tokyo is Tt = 2π 
Lt

gt
  

and the period in Cambridge is  Tc = 2π 
Lc

gc
  

We know  Tt = Tc = 2.00 s

For which, we see  
Lt

gt
   = 

Lc

gc
  

or
gc
gt

   = 
Lc

Lt
   = 

0.9942
0.9927   =  1.0015  

*13.27 The swinging box is a physical pendulum with period T = 2π 
I

mgd
     .

The moment of inertia is given approximately by

I = 
1
3  mL2  (treating the box as a rod suspended from one end).

Then, with L ≈ 1.0 m and d ≈ L/2,

T ≈ 2π 
(1/3)mL2

mg(L/2)   = 2π 
2L
3g

  = 2π 
2(1.0 m)

3(9.8 m/s2)  = 1.6 s     or     T ~ 100 s  

13.28 ω = 
2π
T

 T = 
2π
ω    = 

2π
4.43   = 1.42 s   

ω = 
g
L

 L = 
g

ω2   = 
9.80

(4.43)2   = 0.499 m   

13.29 (a ) mgh = 
1
2  mv2

 h = L(1 – cos θ)

∴  vmax = 2gL (1 – cos θ)  

vmax = 0.817 m/s   

L cos
θ

L

mg

h

L = 1.00 m
  = 15.0°

m
s

θ
θ
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(b) Iα = mgL sin θ

αmax = 
mgL sin θ

mL2    =  
g
L

   sin θi = 2.54 rad/s2   

(c) Fmax = mg sin θi = (0.250)(9.80)(sin 15.0°) = 0.634 N   

13.30 (a ) The string tension must support the weight of the bob, accelerate it upward, and also
provide the restoring force, just as if the elevator were at rest in a gravity field (9.80 +
5.00) m/s2

T = 2π 
L
g

     = 2π 
5.00 m

14.8 m/s2  

T = 3.65 s   

(b) T = 2π 
5.00 m

(9.80 m/s2 – 5.00 m/s2)   = 6.41 s   

(c) geff = (9.80 m/s2)2 + (5.00 m/s2)2     = 11.0 m/s2

T = 2π = 
5.00 m

11.0 m/s2     = 4.24 s   

13.31 Referring to the sketch we have

F = –mg sin θ

and tan θ ≈ 
x
R

  

For small displacements,

tan θ ≈ sin θ

and F = – 
mg
R

   x = –kx

and ω = 
k
m

  = 
g
R

    

θ R

mg

mg sin

x

θ
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13.32 (a ) T = 
total measured time

50  

The measured periods are:

Length, L (m) 1.000 0.750 0.500
Period, T (s) 1.996 1.732 1.422

(b) T = 2π
L
g

      so     g = 
4π2L
T2  

The calculated values for g are:

Period, T (s) 1.996 1.732 1.422
g (m/s2) 9.91 9.87 9.76

Thus, gave = 9.85 m/s2   this agrees with the accepted value of g = 9.80 m/s2 within 0.5%.

(c) Slope of T2 versus L graph = 4π2/g = 4.01 s2/m

Thus, g = 
4π2

slope  = 9.85 m/s2.  You should find that % difference ≈ 0.5%  .

13.33 f = 0.450 Hz, d = 0.350 m, and m = 2.20 kg

T =  
1
f
  ;       T = 2π 

I
mgd

    ;     T 2 = 4π 2 




I

mgd
 

I = T 2 
mgd
4π 2

   =  




1

f
 
2
 
 mgd
4π 2

   =  
(2.20)(9.80)(0.350)
(0.450 s–1)2 (4π 2)  

I = 0.944 kg · m2  

13.34 (a ) The parallel-axis theorem:

I = ICM + Md2 =  
1
12  ML2 + Md2

   = 
1
12  M(1.00 m)2 + M(1.00 m)2 = M 





13

12 m2  

T = 2π 
I

Mgd
     = 2π 

M(13 m2)
12Mg(1.00 m) 

T = 2π 
13 m

12(9.80 m/s2)   = 2.09 s   

4

3

2

1

0
0.25 0.5 0.75 1.0

L, m

T2, s2

Pivot

CM

0.500 m

1.00 m
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(b) For the simple pendulum

T = 2π 
1.00 m

9.80 m/s2   = 2.01 s

difference = 
2.09 s – 2.01 s

2.01 s    = 4.08%   

13.35 (a ) The parallel axis theorem says directly I = ICM + md2

so T = 2π 
I

mgd
     =   2π 

(ICM + md2)
mgd

      

(b) When d is very large T → 2π 
d
g

      gets large.

When d is very small T → 2π 
ICM

mgd
      gets large.

So there must be a minimum, found by

dT
d d

   = 0 = 
d

d d
   2π (ICM + md2)1/2(mgd)–1/2

= 2π (ICM + md2)1/2 




– 

1
2  (mgd)  –3/2 mg

+ 2π(mgd)–1/2 




1

2  (ICM + md2)  –1/2 2md

= Error! mg,(ICM + md2)1/2 (mgd)3/2)  + Error! = 0

(b) This requires

–ICM – md2 + 2md2 = 0

or ICM = md2  

13.36 We suppose the stick moves in a horizontal plane.  Then,

I =  
1
12  mL2 = 

1
12 (2.00 kg)(1.00 m) 2 = 0.167 kg · m2

T = 2π I/κ 

κ =  
4π 2I
T 2

   =  
4π 2(0.167 kg · m2)

(180 s)2    =  203  µN · m  
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13.37 T = 0.250 s;  I = mr 2 = (20.0 × 10–3 kg)(5.00 × 10–3 m)2

(a ) I = 5.00 × 10–7 kg · m2  

(b) I 
d 2θ
dt2    = – κ θ;   κ

I
   = ω =  

2π
T

 

κ = Iω 2 = (5.00 × 10–7) 




2π

0.250  
2
 =  3.16 × 10–4  

N · m
rad  

13.38 (a ) The motion is simple harmonic because the tire is rotating with constant velocity and you
are looking at the motion of the boss projected in a plane perpendicular to the tire.

(b) Since the car is moving with speed v = 3.00 m/s, and its radius is 0.300 m, we have:

ω =  
3.00 m/s
0.300 m    =  10.0 rad/s

Therefore, the period of the motion is:

T =  
2π
ω    =  

2π
(10.0 rad/s)   =  0.628 s  

13.39 The angle of the crank pin is θ = ωt.  Its x-coordinate is x = A cos θ = A cos ωt   

where A is the distance from the center of the wheel to the crank pin.  This is of the
form x = A cos(ωt + φ), so the yoke and piston rod move with simple harmonic motion.

Piston

A

x = —A x( t )

ω

13.40 E = 
1
2  mv2 + 

1
2  kx2

dE
d t

  = mv 
d2x
dt2   + kxv

Use Equation 13.32:

md2x
dt2   = –kx – bv

dE
d t

  = v(–kx – bv) + kvx

dE
d t

 = –bv2 < 0  

θ
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13.41 θi = 15.0°         θ (t = 1000) = 5.50°

x = Ae–bt/2m

x1000

xi
   =  

Ae–bt/2m

A
   = 

5.50
15.0   = e–b(1000)/2m ≈ e–1

∴  
b

2m
   = 1.00 × 10–3 s–1   

*13.42 Show that x = Ae–bt/2m cos (ωt + φ) is a solution of

–kx – b 
dx
d t

   = m 
d2x
dt2   (1)

and ω = 
k
m

 – 




b

2m

2
  (2)

x = Ae–bt/2m cos (ωt + φ) (3)

dx
d t

   = Ae–bt/2m 





– 

b
2m

   cos (ωt + φ) – Ae–bt/2m ω (sin(ωt + φ)) (4)

d2x
dt2    = – 

b
2m

 








Ae–bt/2m 




– 

b
2m

 cos (ωt + φ) – Ae–bt/2m ω sin (ωt + φ)   

– 








Ae–bt/2m 




– 

b
2m

 ω sin (ωt + φ) + Ae–bt/2m ω 2 cos (ωt + φ)  (5) 

Substitute (3), (4) into the left side of (1) and (5) into the right side of (1);

–kAe–bt/2m cos (ωt + φ) + 
b2

2m
   Ae–bt/2m cos (ωt + φ)

+ bωAe–bt/2m sin (ωt + φ)

= – 
b
2 









Ae–bt/2m 




– 

b
2m

 cos (ωt + φ) – Ae–bt/2m ω sin (ωt + φ)    

+ 
b
2   Ae–bt/2m ω sin (ωt + φ) – mω2 Ae–bt/2m cos (ωt + φ)
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Compare the coefficients of  Ae–bt/2m cos (ωt + φ)  and  Ae–bt/2m sin (ωt + φ):

 cosine-term:  –k + 
b2

2m
   = – 

b
2 





– 

b
2m

   – mω2 = 
b2

4m
   – (m) 





k

m
 – 

b2

4m2    

= – k + 
b2

2m
  

sine-term: bω = + 
b
2 (ω)   + 

b
2  ω = bω

Since the coefficients are equal,

x = Ae–bt/2m cos (ωt + φ)  is a solution of the equation.

*13.43 (a ) For resonance, her frequency must match

f0 = 
ω0

2π  = 
1

2π 
k
m

  = 
1

2π 
4.30 × 103 N/m

12.5 kg   = 2.95 Hz  

(b) From x = A cos ωt, v = dx/dt = –Aω sin ωt, and a = dv/dt = –Aω2 cos ωt, the maximum
acceleration is Aω2.  When this becomes equal to the acceleration of gravity, the normal
force exerted on her by the mattress will drop to zero at one point in the cycle:

Aω2 = g     or     A = 
g

ω2  = 
g

k/m
  = 

gm
k

 

A = 
(9.80 m/s2)(12.5 kg)

4.30 × 103 N/m   = 2.85 cm  

13.44 F = 3.00 cos (2π t) N   and   k = 20.0 N/m

(a) ω = 
2π
T

   = 2π rad/s        so        T = 1.00 s   

(b) In this case, ω 0 = 
k
m

   = 
20.0
2.00   = 3.16 rad/s

Taking b = 0 in Equation 13.37 gives

A = 



F0

m
 (ω 2 – ω 20)  –1 =  

3
2   [4π 2  – (3.16)2]–1

A = 0.0509 m = 5.09 cm   
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*13.45 F0 cos (ωt) – kx = m 
d2x
dt2                 ω0 = 

k
m

 (1)

x = A cos (ωt + φ) (2)

dx
d t

   = –Aω sin (ωt + φ) (3)

d2x
dt2    = –Aω2 cos (ωt + φ) (4)

Substitute (2) and (4) into (1):

F0 cos (ωt) – kA cos (ωt + φ) = m(–Aω2) cos (ωt + φ)

Solve for the amplitude:  (kA – mAω2) cos (ωt + φ) = F0 cos ωt

These will be equal, provided only that φ must be zero and (kA – mAω2) = F0

Thus,         A = 
F0 /m
k
m

 – ω2
  

13.46 From Equation 13.37 with no damping,

A = 
F0/m

(ω2 – ω2
0)2

 

ω = 2πf = (20.0π s–1) ω2
0  = 

k
m

  = 
200

(40.0/9.80)  = 49.0 s–2

F0 = mA(ω2 – ω2
0 )

F0 = 




40.0

9.80  (2.00 × 10–2)(3950 – 49.0)  = 318 N  

*13.47 A = 
Fext/m

(ω2 – ω2
0)2 + (bω/m)2

 

With b = 0, A = 
Fext/m

(ω2 – ω2
0)2

  = 
Fext/m

±(ω2 – ω2
0)

  = ± 
Fext/m

ω2 – ω2
0

 

Thus, ω2 = ω2
0  ± 

Fext/m
A

  = 
k
m

  ± 
Fext

mA
  = 

6.30 N/m
0.150 kg   ± 

1.70 N
(0.150 kg)(0.440 m) 

This yields ω = 8.23 rad/s or ω = 4.03 rad/s

Then, f = ω2π  gives either f = 1.31 Hz   or f = 0.641 Hz  
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*13.48 The beeper must resonate at the frequency of a simple pendulum of length 8.21 cm:

f = 
1

2π 
g
L

  = 
1

2π 
9.80 m/s2

0.0821 m   = 1.74 Hz  

13.49 Assume that each spring supports an equal portion of the car's mass, i.e.  
m
4   .

Then   T = 2π 
m
4k

       and   k =  
4π 2m
4T 2

   =  
4π 21500

(4)(1.50)2   = 6580 N/m  

13.50
T1

T0
   =  

2π/ω 1
2π/ω 0

   =  
2π/ k/m1

2π/ k/m0

 

T1

T0
    =  

m1

m0
   =  

1650
1500   =  1.10 

T1 =  1.10   × 1.50 = 1.57 s  

13.51 Let F represent the tension in the rod.

(a ) At the pivot, F = Mg + Mg = 2Mg  

A fraction of the rod’s weight Mg 




y

L
  as well as the

weight of the ball pulls down on point P.  Thus, the
tension in the rod at point P is

F = Mg 




y

L
  + Mg = Mg 





1 + 

y
L

 

(b) Relative to the pivot, I = Irod + Iball = 
1
3  ML2 + ML2 = 

4
3  ML2

For the physical pendulum, T = 2π 
I

mgd
   where m = 2M  and d is the distance from the

pivot to the center of mass of the rod and ball combination.  Therefore,

d = 
M(L/2) + ML

M + M   = 
3L
4       and     T = 2π 

(4/3)ML2

(2M)g(3L/4)  = 
4π
3  

2L
g

 

For L = 2.00 m, T = 
4π
3  

2(2.00 m)
9.80 m/s2  = 2.68 s  

MMM

yy

P

pivot

LL
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Goal Solution    
G: The tension in the rod at the pivot = weight of rod + weight of M = 2 Mg.  The tension at point

P should be slightly less since the portion of the rod between P and the pivot does not
contribute to the tension.

The period should be slightly less than for a simple pendulum since the mass of the rod
effectively shortens the length of the simple pendulum (massless rod) by moving the center

of mass closer to the pivot, so that T < 2π 
L
g

 

O: The tension can be found from applying Newton’s Second Law to the static case.  The period
of oscillation can be found by analyzing the components of this physical pendulum and using
Equation 13.28.

A: (a ) At the pivot,  the net downward force is:  T = Mg + Mg = 2Mg      ◊

At P, a fraction of the rod's mass (y/L) pulls down along with the ball.

Therefore, T = Mg 




y

L
  + Mg = Mg 





1 + 

y
L

       ◊

(b) Relative to the pivot, Itotal = Irod + Iball = 
1
3  ML2 + ML2 = 

4
3  ML2

For a physical pendulum, T = 2π 
I

mgd
 

In this case, m = 2M and d is the distance from the pivot to the center of mass.

d = 
( )

ML
2  + ML

(M + M)   = 
3L
4  

so we have, T = 2π 
I

mgd
  = 2π 

(4ML2)4
3(2M)g(3L)  = 

4π
3  

2L
g

       ◊

For L = 2.00 m, T = 
4π
3  

2(2.00 m)
9.80 m/s2  = 2.68 s      ◊

L: In part (a), the tensions agree with the initial predictions.  In part (b) we found that the
period is indeed slightly less (by about 6%) than a simple pendulum of length L.  It is
interesting to note that we were able to calculate a value for the period despite not knowing
the mass value.  This is because the period of any pendulum depends on the location of the
center of mass and not on the size of the mass.
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13.52 (a ) Total energy =  
1
2  kA2 =  

1
2 (100 N/m)(0.200 m) 2 = 2.00 J

At equilibrium, the total energy is:

1
2 (m1 + m2) v2 =  

1
2 (16.0 kg) v2 = (8.00 kg)v2

Therefore, (8.00 kg)v2 = 2.00 J,  and  v = 0.500 m/s  

This is the speed of m1 and m2 at the equilibrium point.  Beyond this point, the mass m2

moves with the constant speed of 0.500 m/s while mass m1 starts to slow down due to the
restoring force of the spring.

(b) The energy of the m1-spring at equilibrium is:

1
2  m1v2 =  

1
2 (9.00 kg)(0.500 m/s) 2 = 1.125 J

  This is also equal to  
1
2  k(A')2, where A' is the amplitude of the

m1-spring system.

Therefore, 
1
2 (100)(A') 2 = 1.125     or     A' = 0.150 m

The period of the m1-spring system is:

T = 2π 
m1

k
   = 1.885 s

and it takes  
T
4   = 0.471 s after it passes the equilibrium point for the spring to become fully

stretched the first time.  The distance separating m1 and m2 at this time is:

D = v 




T

4    – A' = (0.500 m/s)(0.471 s) – 0.150 m = 0.0856  = 8.56 cm  

13.53




d  2x

dt2  
max

 = Aω2 fmax = µs n = µs mg = mAω2

A = 
µs g
ω 2    = 6.62 cm   

n

f

mg
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13.54 The maximum acceleration of the oscillating system is amax = Aω2 = 4π2Af2.  The friction force
exerted between the two blocks must be capable of accelerating block B at this rate.  Thus, if
Block B is about to slip,

f = fmax = µsn = µsmg = m(4π2Af2)     or     A = 
µsg

4π2f2  

13.55 MD2 = 2MH2

ωD

ωH
   =  

k/MD

k/MH

   =  
MH

MD
   = 

1
2 

fD2 =  
fH2

2
   = 0.919 × 1014 Hz  

13.56 The kinetic energy of the ball is K = 
1
2  mv2 + 

1
2  

IΩ2, where Ω is the rotation rate of the ball about
its center of mass.  Since the center of the ball
moves along a circle of radius 4R,  its displacement
from equilibrium is s = (4R)θ and its speed is

v = 
ds
d t

  = 4R 




dθ

d t
  .   Also, since the ball rolls

without slipping,

v = 
ds
d t

  = RΩ     so     Ω = 
v
R

  = 4 




dθ

d t
 

The kinetic energy is then

K = 
1
2  m 





4R 

dθ
d t

 
2
 + 

1
2 





2

5 mR2  




4 

dθ
d t

 
2
 = 

112mR2

10  




dθ

d t
 
2

When the ball has an angular displacement θ, its center is distance h = 4R(1 – cos θ) higher
than when at the equilibrium position.  Thus, the potential energy is

Ug = mgh = 4mgR(1 – cos θ).  For small angles, (1 – cos θ) ≈ θ
2

2  (see Appendix B) .  Hence,

Ug ≈ 2mgRθ2, and the total energy is

E = K + Ug = 
112mR2

10  




dθ

d t
 
2
 + 2mgRθ2

Since E = constant in time, 
dE
d t

  = 0 = 
112mR2

5  




dθ

d t
 
d2θ
dt2   + 4mgRθ 





dθ

d t
 

This reduces to 
28R

5  
d2θ
dt2   + gθ = 0, or 

d2θ
d t

  = – 




5g

28R
  θ

RR

h

s

5R

t

h

s

5R

θ



Chapter 13 Solutions 23

© 2000 by Harcourt College Publishers.  All rights reserved.

This is in the classical form of a simple harmonic motion equation with ω = 
5g

28R
 .

The period of the simple harmonic motion is then T = 
2π
ω   = 2π

28R
5g

 

13.57 (a )

Li

a

a

L

h

(b) T = 2π 
L
g

 
dT
d t

   =  
π

g
 

1

L
 
dL
d t

 (1)

We need to find L(t) and 
dL
d t

  .   From the diagram in (a),

L = Li +  
a
2   –  

h
2  ;     

dL
d t

   = – 




1

2  
d h
d t

 

But     
dM
d t

  = ρ 
dV
d t

   = – ρA 
dh
d t

  .           Therefore,

d h
d t

   = –  
1

ρA
 
dM
d t

  ;     
dL
d t

   = 




1

2ρA
 
dM
d t

 (2)

Also, ⌡⌠
Li

L
dL  = 





1

2ρA
 




dM

d t
  t = L – Li (3)

Substituting Equation (2) and Equation (3) into Equation (1):

dT
d t

  = π
g
 




1

2ρa2  




dM

d t
 

1

Li + 
1

2ρa2 




dM

d t
 t
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(c) Substitute Equation (3) into the equation for the period.

T = 
2π

g
 Li + 

1
2ρa2 





dM

d t
 t  

Or one can obtain T by integrating (b):

⌡⌠
T

Ti
dT  = π

g
 




1

2ρa2  




dM

d t
 ⌡⌠

0

t
 

d t

Li + 
1

2ρa2 




dM

d t
 t

 

T – Ti = π
g
 




1

2ρa2  




dM

d t
 







2

1
2ρa2  

dM
dt

 








Li + 
1

2ρa2 




dM

d t
 t – Li  

But     Ti = 2π 
Li

g
  , so T = 

2π

g
 Li + 

1
2ρa2 





dM

d t
 t 

13.58 ω0 = 
k
m

    = 
2π
T

  

(a ) k = ω2
0  m =  

4π 2m
T 2

  

(b) m ' = 
k(T')2

4π 2
   =  m 





T' 

T 

2
 

13.59 For the pendulum (see sketch) we have

τ = Iα     and     
d 2θ
dt2    = –α

τ = MgL sin θ + kxh cos θ = –I 
d2θ
dt2   

For small amplitude vibrations, use the approximations:

sin θ ≈ θ cosθ ≈ 1

and x ≈ s = hθ

h
θ

L

k

M



Chapter 13 Solutions 25

© 2000 by Harcourt College Publishers.  All rights reserved.

Therefore,

d2θ
dt2    = – 





MgL  + kh2

I
   θ = –ω2θ

ω = 
MgL  + kh2

ML2      = 2π f

f =  
1

2π 
MgL  + kh2

ML2         

Goal Solution    
G: The frequency of vibration should be greater than that of a simple pendulum since the spring

adds an additional restoring force:  f > 
1

2π 
g
L

 

O:   We can find the frequency of oscillation from the angular frequency, which is found in the

equation for angular SHM:  
d2θ
dt2   = –ω2θ.   The angular acceleration can be found from analyzing

the torques acting on the pendulum.

A: For the pendulum (see sketch), we have

∑τ = Iα     and     
d2θ
dt2   = –α

The negative sign appears because positive θ is measured clockwise in the picture.  We take
torque around the point of suspension:

∑τ = MgL sin θ + kxh cos θ = Iα

For small amplitude vibrations, use the approximations:

sin θ ≈ θ, cos θ ≈ 1, and x ≈ s = hθ

Therefore, with I = mL2,

d2θ
dt2   = – 





MgL  + kh2

I
  θ = – 





MgL  + kh2

ML2   θ
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This is of the form 
d2θ
dt2   = –ω2θ required for SHM,

with angular frequency, ω = 
MgL  + kh2

ML2   = 2πf

The ordinary frequency is f = ω2π  = 
1

2π 
MgL  + kh2

ML2  

L: The frequency is greater than for a simple pendulum as we expected.  In fact, the additional
portion resembles the frequency of a mass on a spring scaled by h/L since the spring is
connected to the rod and not directly to the mass.  So we can think of the solution as:

f2 = 
1

4π2  
MgL + kh2

ML2   = 
1

4π2  
g
L

   + 
h2

L2   
1

4π2  
k
M

   = f 2pendulum  + 
h2

L2   f 2spring 

*13.60 (a ) At equilibrium, we have

∑τ = 0 = –mg 
L
2  + kx0L

where x0 is the equilibrium compression.

After displacement by a small angle,

∑τ = –mg 
L
2   + kxL

= –mg 
L
2   + k(x0 – Lθ)L

= –kθL2 = Iα = 
1
3  mL2 

d2θ
dt2   

So
d2θ
dt2    = – 

3k
m

  θ

The angular acceleration is opposite in direction and proportional to the displacement, so

we have simple harmonic motion with ω 2 = 
3k
m

 .

(b) f = ω2π  = 
1

2π 
3k
m

  = 
1

2π 
3(100 N/m)

5.00 kg   = 1.23 Hz  

Pivot

θ

k
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*13.61 One can write the following equations of motion:

mg – T = ma = m 
d2x
dt2      (for the mass) 

T' – kx = 0     (describes the spring)

R(T – T') = I 
d2θ
dt2   = 

I
R

 
d2x
dt2      (for the pulley) 

with I = 
1
2  MR2.

Combining these equations gives the equation of motion





m + 

1
2 M  

d2x
dt2   + kx = mg

The solution is x(t) = A sin ωt +
Error! , with frequency

f = ω2π  = 
1

2π 
k

m + 1
2
 M

  = 
1

2π 
100 N/m

0.200 kg + 1
2
 M

 

(a ) For M = 0, f = 3.56 Hz  

(b) For M = 0.250 kg, f = 2.79 Hz  

(c) For M = 0.750 kg, f = 2.10 Hz  

13.62 (a ) ω 0 = 
k
m

    = 15.8 rad/s   

(b) Fs – mg = ma = m 




1

3 g   

Fs = 
4
3  mg = 26.1 N

xs =  
Fs
k

    = 5.23 cm   

(c) When the acceleration of the car is zero, the new equilibrium position can be found as
follows:

F 's  = mg = 19.6 N = kx 's            x 's   = 3.92 cm

Thus,      A = x 's – xs    = 1.31 cm   

The phase constant is π rad   

MMM

k

m

R

mm

RR

T’

T
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13.63 (a ) T = 
2π
ω    = 2π 

L
g

     = 3.00 s   

(b) E = 
1
2  mv2 = 

1
2 (6.74)(2.06) 2 = 14.3 J   

(c) At maximum angular displacement,

mgh = 
1
2  mv2

h = 
v2

2g
   = 0.217 m

h = L – L cos θ = L(1 – cos θ)

cos θ = 1 – 
h
L

  

θ = 25.5°  

*13.64 Suppose a 100-kg biker compresses the suspension 2.00 cm.  Then,

k = 
F
x

   = 
980 N

2.00 × 10–2 m   = 4.90 × 104 N/m

If total mass of motorcycle and biker is 500 kg, the frequency of free vibration is

f = 
1

2π 
k
m

     = 
1

2π 
4.90 × 104 N/m

500 kg    = 1.58 Hz

If he encounters washboard bumps at the same frequency, resonance will make the motorcycle
bounce a lot.  Assuming a speed of 20.0 m/s, these ridges are separated by

(20.0 m/s)
1.58/s    = 12.7 m ~ 101 m   

In addition to this vibration mode of bouncing up and down as one unit, the motorcycle can also
vibrate at higher frequencies by rocking back and forth between front and rear wheels, by
having just the front wheel bounce inside its fork, or by doing other things.  Other spacings of
bumps will excite all of these other resonances.

*13.65 y = (20.0 cm) [1 – cos (0.160 m–1 x)]

≈ (20.0 cm) 




1 – 1 + 

1
2 (0.160 m–1 x)2  

or y ≈ (10.0 cm)(0.160 m–1 x)2

y

x
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The geometric slope of the wire is

d y
dx

  = (0.100 m)(0.160 m–1)2(2x) = (5.12 × 10–3 m–1)x

If m is the mass of the bead, the component of the bead’s weight that acts as a restoring force is

∑F = –mg 
dy
dx

  = –m(9.80 m/s2)(5.12 × 10–3 m–1)x = ma

Thus, a = –(0.0502 s–2)x = –ω2 x.  Since the acceleration of the bead is opposite the
displacement from equilibrium and is proportional to the displacement, the motion is simple

harmonic with ω2 = 0.0502 s–2, or ω = 0.224 rad/s  .

*13.66 (a ) For each segment of the spring

dK = 
1
2 (dm) v2

x  

Also, vx =  
x
l  v

and dm = 
m
l   dx

Therefore, the total kinetic energy is

K = 
1
2  Mv2 + 

1
2 ⌡⌠

0

l  




x2v2

l2  
m
l   dx = 

1
2 





M + 

m
3  v2  

(b) ω = 
k

meff
 

and   
1
2  meffv2 = 

1
2 





M + 

m
3   v2

Therefore, T = 
2π
ω    = 2π 

M + 
m
3

k  
          

x

dx

M

v
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13.67 (a ) ∑F = –2T sin θ j

where θ = tan–1 




y

L
 

Therefore, for a small displacement

sin θ ≈ tan θ = 
y
L

  

and  ∑F = 
–2Ty

L
 j   

(b) For a spring system, ∑F = –kx    becomes ∑F = – 
2T
L

  y

Therefore, ω = 
k
m

  = 
2T
mL

    

13.68 (a ) Assuming a Hooke's Law type spring,

F = Mg = kx

and empirically Mg = 1.74x – 0.113

so k ≈ 1.74 N/m ± 6%   

M, kg x, m Mg, N
0.0200 0.17 0.196
0.0400 0.293 0.392
0.0500 0.353 0.49
0.0600 0.413 0.588
0.0700 0.471 0.686
0.0800 0.493 0.784

(b) We may write the equation as
theoretically

T 2 = 
4π 2 

k
   M + 

4π 2 

3k
   ms

and empirically T 2 = 21.7 M + 0.0589

so k = 
4π 2
21.7 ≈ 1.82 N/m ± 3%   

Time, s T, s M, kg T 2, s2

7.03 0.703 0.0200 0.494
9.62 0.962 0.0400 0.925

10.67 1.067 0.0500 1.138
11.67 1.167 0.0600 1.362
12.52 1.252 0.0700 1.568
13.41 1.341 0.0800 1.798

The k values 1.74 N/m ± 6% and 1.82 N/m ± 3% differ by 4%, so they agree.

L L
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(c) Utilizing the axis-crossing point,

ms  = 3 




0.0589

21.7   kg ≈ 8 grams ± 12%   

in agreement with 7.4 grams.

13.69 (a ) ∆K + ∆U = 0

Thus,     Ktop + Utop = Kbot + Ubot

where   Ktop = Ubot = 0

Therefore, mgh = 
1
2  Iω 2,   but

h = R – R cos θ = R(1 – cos θ)

ω = 
v
R

  

and I = 
MR2

2    + 
mr2

2    + mR2

Substituting we find

mgR(1 – cos θ) = 
1
2 





MR2

2  + 
mr2

2  + mR2  
v2

R2  

mgR(1 – cos θ) = 




M

4  + 
mr2

4R2 + 
m
2   v2

and v2 = 4gR 
(1 – cos θ)





M

m
 + 

r 2

R2 + 2
  

so v = 2 
Rg(1 – cos θ)
M
m

 + 
r 2

R2 + 2
        

(b) T = 2π  
I

mTgdCM
  

mT = m + M dCM = 
mR + M(0)

m + M   

T =   2π 

1
2 MR2 + 12 mr2 + mR2

mgR 
            

R

M

θθ

mv
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13.70 (a ) We require

Ae–b t/2m  =  
A
2   

e+b t/2m  = 2

or
bt
2m

   = ln 2        or        
(0.100 kg/s)

2(0.375 kg)   t = 0.693

∴  t =  5.20 s       The spring constant is irrelevant.

(b) We can evaluate the energy at successive turning points, where

cos (ω t + φ) = ± l and the energy is  
1
2  kx2 =  

1
2  kA2e–b t /m

We require 
1
2  kA2e–b t /m = 

1
2 





1

2 kA 2   

or e+b t /m = 2

∴  t  =  
m ln 2

b
   = 

0.375 kg(0.693)
0.100 kg/s    = 2.60 s   

(c) From   E = 
1
2  kA2 ,

the fractional rate of change of energy over time is

 
 
dE
dt  

E
   = 

d
dt 

1
2 kA 2

1
2 kA 2

   = 

1
2 k2A  d A

dt

1
2 kA 2

   = 2 
 
dA
d t

 

A
  

two times faster than the fractional rate of change in amplitude.

13.71 (a ) When the mass is displaced a distance x from equilibrium, spring 1 is stretched a distance
x1 and spring 2 is stretched a distance x2.  By Newton's third law, we expect k1x1 = k2x2.
When this is combined with the requirement that x = x1 + x2 , we find

x1 = 




k 2

(k1 + k2)   x

The force on either spring is given by

F1 =  




k 1k 2

(k1 + k2)   x = ma

where a is the acceleration of the mass m.

This is in the form     F = keffx = ma

and T = 2π 
m

keff
   =  2π 

m (k1 + k2)
k 1k 2

  

m

(a)

k1 k2

(b)

k1 k2

m
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(b) In this case each spring is stretched by the distance x which the mass is displaced.
Therefore, the restoring force is

F = – (k1 + k2)x        and        keff = (k1 + k2)

so that T = 2π 
m

(k1 + k2)     

13.72 For θmax = 5.00°, the motion calculated by the Euler method agrees quite precisely with the
prediction of θmax cos ωt.  The period is T = 2.20 s.

Time,
t (s) Angle, θ (˚)

Ang. speed
(˚/s)

Ang. Accel.
(°/s2) θmax cos ωt

0.000 5.0000 0.0000 –40.7815 5.0000
0.004 4.9993 –0.1631 –40.7762 4.9997
0.008 4.9980 –0.3262 –40.7656 4.9987
…
0.544 0.0560 –14.2823 –0.4576 0.0810
0.548 –0.0011 –14.2842 0.0090 0.0239
0.552 –0.0582 –14.2841 0.4756 –0.0333
…
1.092 –4.9994 –0.3199 40.7765 –4.9989
1.096 –5.0000 –0.1568 40.7816 –4.9998
1.100 –5.0000 0.0063 40.7814 –5.0000
1.104 –4.9993 0.1694 40.7759 –4.9996
…
1.644 –0.0638 14.2824 0.4397 –0.0716
1.648 0.0033 14.2842 –0.0270 –0.0145
1.652 0.0604 14.2841 –0.4936 0.0427
…
2.192 4.9994 0.3137 –40.7768 4.9991
2.196 5.0000 0.1506 –40.7817 4.9999
2.200 5.0000 –0.0126 –40.7813 5.0000
2.204 4.9993 –0.1757 –40.7756 4.9994
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For θmax = 100°, the simple harmonic motion approximation θmax cos ωt diverges greatly from
the Euler calculation.  The period is T = 2.71 s, larger than the small–angle period by 23%.

Time,
t (s)

Angle,
θ (˚)

Ang. speed
(˚/s)

Ang. Accel.
(°/s2) θmax cos ωt

0.000 100.0000 0.0000 –460.6066 100.0000
0.004 99.9926 –1.8432 –460.8173 99.9935
0.008 99.9776 –3.6865 –460.8382 99.9739
…
1.096 –84.7449 –120.1910 465.9488 –99.9954
1.100 –85.2182 –118.3272 466.2869 –99.9998
1.104 –85.6840 –116.4620 466.5886 –99.9911
…
1.348 –99.9960 –3.0533 460.8125 –75.7979
1.352 –100.0008 –1.2100 460.8057 –75.0474
1.356 –99.9983 0.6332 460.8093 –74.2870
…
2.196 40.1509 224.8677 –301.7132 99.9971
2.200 41.0455 223.6609 –307.2607 99.9993
2204 41.9353 222.4318 –312.7035 99.9885
…
2.704 99.9985 2.4200 –460.8090 12.6422
2.708 100.0008 0.5768 –460.8057 11.5075
2.712 99.9957 –1.2664 –460.8129 10.3712

100

50

0

—50

—100

Time (s)

Simple Pendulum, large amplitude
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