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Chapter 14 Solutions

*14.1 For two 70.0-kg persons, modeled as spheres,

Fg = 
Gm1m2

r2   = 
(6.67 × 10–11 N ⋅ m2/kg2)(70.0 kg)(70.0 kg)

(2.00 m)2   = ~ 10–7 N  

14.2 (a ) At the midpoint between the two masses, the forces exerted by the 200-kg and 500-kg

masses are oppositely directed, and from Fg = 
Gm1m2

r2   we have

∑F = 
G(50.0 kg)(500 kg – 200 kg)

(0.200 m)2   = 2.50 × 10–5 N   toward the 500-kg mass

(b) At a point between the two masses at a distance d from the 500-kg mass, the net force
will be zero when

G(50.0 kg)(200 kg)
(0.400 m – d)2   = 

G(50.0 kg)(500 kg)
d2       or     d = 0.245 m  

14.3 g = 
Gm
l2   i + 

Gm
l2   j + 

Gm
2l2  (cos 45.0° i + sin 45.0° j) 

so g = 
GM
l2  





1 + 

1

2 2
 (i + j)      or

g = 
Gm
l2  





2 + 

1
2  toward the opposite corner  

14.4 m1 + m2 = 5.00 kg m2 = 5.00 kg – m1

F = G 
m1m2

r2   ⇒ 1.00 × 10–8 N = 




6.67 × 10–11 

N ⋅ m2

kg2  
m1(5.00 kg – m1)

(0.200 m)2  

(5.00 kg)m1 – m2
1  = 

(1.00 × 10–8 N)(0.0400 m2)
6.67 × 10–11 N ⋅ m2/kg2   = 6.00 kg2

Thus, m2
1  – (5.00 kg)m1 + 6.00 kg = 0

or (m1 – 3.00 kg)(m1 – 2.00 kg) = 0

giving m1 = 3.00 kg, so m2 = 2.00 kg  .  The answer m1 = 2.00  kg and m2 = 3.00 kg is physically

equivalent.

y

m

O

m

xm

l

l
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14.5 The force exerted on the 4.00-kg mass by the 2.00-kg mass is
directed upward and given by

F42 = G 
m4m2

r
2
4 2

  j

= 




6.67 × 10–11 

N ⋅ m2

kg2  
(4.00 kg)(2.00 kg)

(3.00 m)2   j

= 5.93 × 10–11 j N

The force exerted on the 4.00-kg mass by the 6.00-kg mass is directed to the left:

F46 = G 
m4m6

r
2
4 6

 (–i) 

= 




–6.67 × 10–11 

N ⋅ m2

kg2  
(4.00 kg)(6.00 kg)

(4.00 m)2   i = –10.0 × 10–11 i N

Therefore, the resultant force on the 4.00-kg mass is

F4 = F42 + F46 = (–10.0i + 5.93j) × 10–11 N  

14.6 g = 
GM
R2   = 

Gρ(4πR3/3)
R2   = 

4
3  πGρR

If 
gM

gE
  = 

1
6  = 

4πGρMRM/3
4πGρERE/3       then     

ρM

ρE
  = 





gM

gE
 




RE

RM
  = 





1

6  (4)  = 
2
3  

14.7 (a ) The Sun-Earth distance is 1.496 × 1011 m, and the Earth-Moon distance is 3.84 × 108  m, so
the distance from the Sun to the Moon during a solar eclipse is 1.496 × 1011 m – 3.84 × 108

m = 1.492 × 1011 m.

The mass of the Sun, Earth , and Moon are Ms = 1.99 × 1030 kg, ME = 5.98 × 1024 kg, and
MM = 7.36 × 1022 kg.  We have

FSM = 
Gm1m2

r2   = 
(6.67 × 10–11)(1.99 × 1030)(7.36 × 1022)

(1.492 × 1011)2   = 4.39 × 1020 N  

(b) FEM = 
(6.67 × 10–11 Nm2/kg2)(5.98 × 1024)(7.36 × 1022)

(3.84 × 108)2   = 1.99 × 1020 N  

(c) FSE = 
(6.67 × 10–11 N ⋅ m2/kg2)(1.99 × 1030)(5.98 × 1024)

(1.496 × 1011)2   = 3.55 × 1022 N  

y

x

(0,3.00) m

(—4.00,0) m

6.00 kg

2.00 kg

4.00 kgO

F42

F46
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14.8 (a ) v = 
2πr
T

  = 
2π(384 400) × 103 m

27.3 × (86 400 s)   = 1.02 × 103 m/s  

 (b) In one second, the Moon falls a distance

x = 
1
2  at2 = 

1
2 

v2

r
  t2 = 

1
2 

(1.02 × 103)2

(3.844 × 108)  × (1.00)2 = 1.35 × 10–3 m = 1.35 mm  

The Moon only moves inward 1.35 mm for every 1020 meters it moves along a straight-
line path.

14.9 a = 
MG

(4RE)2  = 
9.80 m/s2

16.0   = 0.613 m/s2   toward the Earth

*14.10 F = m1g = 
Gm1m2

r2  

g = 
Gm2

r2   = 
(6.67 × 10–11 N ⋅ m2/kg2)(4.00 × 104 × 103 kg)

(100 m)2   = 2.67 × 10–7 m/s2  

14.11 The separation is nearly 1.000 m, so one ball attracts the other with force

Fg =  
Gm1m2

r 2
   = 

6.67 × 10–11 N · m2(100 kg)2

kg 2(1.000 m)2    = 6.67 × 10–7 N

Call θ the angle of each cable from the vertical and T its tension.

Each ball is in equilibrium, with

T cos θ = mg = 980 N

T sin θ = 6.67 × 10–7 N

tan θ = 
6.67 × 10–7 N

980 N    = 6.81 × 10–10

Each ball scrunches in by

(45.0 m) sin θ = 45.0 m(6.81 × 10–10) = 3.06 × 10–8 m

so their separation is 1.000 m – 61.3 nm  

980 N

T

Fg

θ
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14.12 (a ) At the zero-total field point, 
GmME

r
2
E

  = 
GmMM

r
2
M

  so

rM = rE 
MM

ME
  = rE 

7.36 × 1022

5.98 × 1024  = 
rE

9.01 

rE + rM = 3.84 × 108 m = rE + 
rE

9.01 

rE = 
3.84 × 108 m

1.11   = 3.46 × 108 m  

(b) At this distance the acceleration due to the Earth’s gravity is

gE = 
GME

r
2
E

  = 
(6.67 × 10–11 N ⋅ m2/kg2)(5.98 × 1024 kg)

(3.46 × 108 m)2  

gE = 3.34 × 10–3 m/s2 directed toward the Earth  

14.13 Since speed is constant, the distance traveled between t1 and t2 is equal to
the distance traveled between t3 and t4.  The area of a triangle is equal to one-half its (base)
width across one side times its (height) dimension perpendicular to that side.

So
1
2  bv(t2 – t1) = 

1
2  bv(t4 – t3)

states that the particle's radius vector sweeps out equal areas in equal times.

*14.14 (a ) For the geosynchronous satellite, ∑Fr = 
GmME

r2   = mar = 
mv2

r
  becomes

GME

r
  = 





2πr

T
 
2
     or     r3 = 

GMET2

4π2  

Thus, the radius of the satellite orbit is

r = 




(6.67 × 10–11 N ⋅ m2/kg2)(5.98 × 1024 kg)(86 400 s)2

4π2  
1/3

 = 4.23 × 107 m  

(b) The satellite is so far out that its distance from the north pole,

d = (6.37 × 106 m)2 + (4.23 × 107 m)2  = 4.27 × 107 m

is nearly the same as its orbital radius.  The travel time for the radio signal is

t = 
2d
c

  = 
2(4.27 × 107 m)
3.00 × 108 m/s   = 0.285 s  
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14.15 Centripetal force = Gravitational force between stars' centers

Mv2

r
  = 

GMM
(2r)2  

For a circular orbit, v = 
2πr
T

  for each star.

Solving,

M = 12.6 × 1031 kg = 63.3 solar masses  

for each star.

The two blue giant stars comprising Plaskett's binary system are among the most massive
known.

Goal Solution    
G: From the given data, it is difficult to estimate a reasonable answer to this problem without

actually working through the details to actually solve it. A reasonable guess might be that
each star has a mass equal to or larger than our Sun since our Sun happens to be less massive
than many stars in the universe.

O: The only force acting on the two stars is the central gravitational force of attraction which
results in a centripetal acceleration.  When we solve Newton’s 2nd law, we can find the
unknown mass in terms of the variables given in the problem.

A: Applying Newton’s 2nd Law, ∑F = ma yields Fg = mac for each star:

GMM
(2r)2   = 

Mv2

r
      or     M =  

4v2r
G

 

We can write r in terms of the period, T, by considering the time and distance of one complete
cycle.  The distance traveled in one orbit is the circumference of the stars' common orbit , so
2πr = vT.  Therefore

M = 
4v2r
G

  = 
4v2

G
 




vT

2π  

so, M = 
2v3T
πG

  = 
2(220 × 103 m/s)3(14.4 d)(86 400 s/d)

π(6.67 × 10–11 N ⋅ m2/kg2)   = 1.26 × 1032 kg

L: The mass of each star is about 63 solar masses, much more than our initial guess!  A quick
check in an astronomy book reveals that stars over 8 solar masses are considered to be
heavyweight stars, and astronomers estimate that the maximum theoretical limit is about
100 solar masses before a star becomes unstable.  So these 2 stars are exceptionally massive!

CM

M

M

220 km/s

220 km/s
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14.16 Centripetal force = Gravitational force between stars' centers

Mv2

r
  = 

GMM
(2r)2       which reduces to     M = 

4rv2

G
 

For a circular orbit, v = 
2πr
T

  for each star.  Hence, the radius of the orbit is given by r = 
vT
2π  , and

the mass of each star is then M = 
2v3T
πG

 

14.17 By conservation of angular momentum,

rpvp = rava

vp

va
   = 

ra

rp
   = 

2289 km + 6.37 × 103 km
459 km + 6.37 × 103 km    = 

8659 km
6829 km   = 1.27    

We do not need to know the period.

14.18 By Kepler's Third Law,

T2 = ka3     (a = semi-major axis)

For any object orbiting the Sun, with T in years and a
in A.U., k = 1.00

Therefore, for Comet Halley

(75.6)2 = (1.00) 




0.570 + x

2  
3

The farthest distance the comet gets from the Sun is

x = 2(75.6)2/3 – 0.570 = 35.2 A.U.      (out around the orbit of Pluto)  

14.19 T 2 = 
4π 2d 2 

GM
   (Kepler's Third Law with m << M)  

M = 
4π 2d3

GT 2    = 1.90 × 1027 kg    (approximately 316 Earth masses)  

0.570 x

2a

Sun
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14.20 ∑F = ma

Gmplanet Mstar

r 2
   = 

mplanet v2

r
  

GMstar

r
   = v2 = r 2 ω 2

GMstar = r 3ω 2 = r3
x   ω2

x   = r3
y   ω2

y  

ω y = ω x 




rx

ry
 
3/2

ω y = 




90.0°

5.00 yr    33/2 =  
468°

5.00 yr  

So planet Y has turned through 1.30 revolutions   

14.21
GMJ

(RJ + d)2   =  
4π 2(RJ+ d)

T 2
 

GMJT 2  = 4π 2(RJ + d)3

(6.67 × 10–11) 
N · m2

kg2  (1.90 × 1027 kg)(9.84 × 3600) 2 = 4π 2(6.99 × 107 + d)3

d = 8.92 × 107 m    = 89 200 km    above the planet

*14.22 The gravitational force on a small parcel of material at the star's equator supplies the
necessary centripetal force:

GMsm

R
2
s

  = 
mv2

Rs
  = mRsω2

so ω = 
GMs

R
3
s

  = 
(6.67 × 10–11 N ⋅ m2/kg2)[2(1.99 × 1030 kg)]

(10.0 × 103 m)3  

ω = 1.63 × 104 rad/s  

(a)

Y X

Y

X

(b)
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*14.23 Let m represent the mass of the spacecraft, rE the radius of the Earth’s orbit, and x the distance
from Earth to the spacecraft.

The Sun exerts a radial inward force of FS = 
GMSm

(rE – x)2  on the spacecraft while the Earth exerts a

radial outward force of FE = 
GMEm

x2   on it.  The net force on the spacecraft must produce the

correct centripetal acceleration for it to have an orbital period of 1.000 year.  Thus,

FS – FE = 
GMSm

(rE – x)2  – 
GMEm

x2   = 
mv2

(rE – x)  = 
m

(rE – x) 



2π(rE – x)

T
 
2

 which reduces to

GMS

(rE – x)2  – 
GME

x2   = 
4π2(rE – x)

T2  (1)

This equation is fifth degree in x, so we do not solve it algebraically.  We may test the
assertion that x is between 1.47 × 109 m and 1.48 × 109 m by substituting both of these as trial
solutions, along with the following data: MS = 1.991 × 1030 kg, ME = 5.983 × 1024 kg,
rE = 1.496 × 1011 m, and T = 1.000 yr = 3.156 × 107 s.

With x = 1.47 × 109 m substituted into Equation (1), we obtain

6.052 × 10–3 m/s2 – 1.85 × 10–3 m/s2 ≈ 5.871 × 10–3 m/s2

or 5.868 × 10–3 m/s2 ≈ 5.871 × 10–3 m/s2

With x = 1.48 × 109 m substituted into the same equation, the result is

6.053 × 10–3 m/s2 – 1.82 × 10–3 m/s2 ≈ 5.8708 × 10–3 m/s2

or 5.8709 × 10–3 m/s2 ≈ 5.808 × 10–3 m/s2

Since the first trial solution makes the left-hand side of Equation (1) slightly less than the
right-hand side, and the second trial solution does the opposite, the true solution is
determined as between the trial values.  To three-digit precision, it is 1.48 × 109 m.

14.24 (a ) F = 
GMm

r2   = 
(6.67 × 10–11 N ⋅ m2/kg2)[100(1.99 × 1030 kg)(103 kg)]

(1.00 × 104 m + 50.0 m)2  

F = 1.31 × 1017 N  
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(b) ∆F = 
GMm

r
2
front

  – 
GMm

r
2
back

 

∆g = 
∆F
m

  = 
GM(r2

back – r 2
front)

r
2
frontr

2
back

 

= 
(6.67 × 10–11)[100(1.99 × 1030)][(1.01 × 104 m)2 – (1.00 × 104 m)2]

(1.00 × 104 m)2(1.01 × 104 m)2  

∆g = 2.62 × 1012 N/kg  

100 m100 m 10 km10 km

black hole

14.25 g1 = g2 = 
MG

r2 + a2 

g1y = –g2y

gy = g1y + g2y = 0

g1x = g2x = g2 cos θ

cos θ = 
r

(a2 + r2)1/2 

g = 2g2x(–i)     or

g = 
2MGr

(r2 + a2)3/2 toward the center of mass  

14.26 cos θ = 
r

(a2 + r2)1/2 

dgx = dg cos θ gy = 0

⌡⌠ 

 
dgx  = ⌡⌠

 

 
 

GdM
a2 + r2  cos θ

gx = ⌡⌠ 

 
 

GdM
(a2 + r2)  

r
(a2 + r2)1/2 

gx = 
GMr

(a2 + r2)3/2 inward along r  

M

M

a

r
P

g2

g1

x

y

M

r
θ

dga
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14.27 (a ) U = – 
GMEm

r
 

U = – 
(6.67 × 10–11 N ⋅ m2/kg2)(5.98 × 1024 g)(100 kg)

(6.37 + 2.00) × 106 m   = –4.77 × 109 J  

(b) and (c)  Planet and satellite exert forces of equal magnitude on each other, directed
downward on the satellite and upward on the planet.

F = 
GMEm

r2  

F = 
(6.67 × 10–11 N ⋅ m2/kg2)(5.98 × 1024 kg)(100 kg)

(8.37 × 106 m)2   = 569 N  

14.28 U = –G 
Mm

r
      and     g = 

GME

R
2
E

 

so that ∆U = –GMm 




1

3RE
 – 

1
RE

  = 
2
3  mgRE

∆U = 
2
3 (1000 kg)(9.80 m/s2)(6.37 × 106 m)  = 4.17 × 1010 J  

14.29 (a ) ρ = 
MS

4
3
 πr

3
E

  = 
3(1.99 × 1030 kg)
4π(6.37 × 106 m)3  = 1.84 × 109 kg/m3  

(b) g = 
GMS

r
2
E

  = 
(6.67 × 10–11 N ⋅ m2/kg2)(1.99 × 1030 kg)

(6.37 × 106 m)2   = 3.27 × 106 m/s2  

(c) Ug = – 
GMSm

rE
  = – 

(6.67 × 10–11 N ⋅ m2/kg2)(1.99 × 1030 kg)(1.00 kg)
6.37 × 106 m  

Ug = –2.08 × 1013 J  

Goal Solution    

(a ) ρ = 
Ms

V
  = 

Ms

 
4
3

 πR
3
E

  = 
1.99 × 1030 kg

 
4
3

 π (6.37 × 106 m)3
  = 1.84 × 109 kg/m3

(This white dwarf is on the order of 1 million times more dense than concrete!)

(b) For an object of mass m on its surface, mg = GMsm/R
2
E .  Thus,

G = 
GMS

R
2
E

  = 
(6.67 × 10–11 N ⋅ m2/kg2)(1.99 × 1030 kg)

(6.37 × 106 m)2   = 3.27 × 106 m/s2

(This acceleration is about 1 million times more than g earth!)
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(c) Ug = 
–GMsm

RE
  = 

(–6.67 × 10–11 N ⋅ m2/kg2)(1.99 × 1030 kg)(1 kg)
(6.37 × 106 m)   = –2.08 × 1013 J

(Such a large loss of potential energy could yield a big gain in kinetic energy.  For example,
dropping the 1.00-kg object from a height of 1.00 m would result in a final velocity of
2 560 m/s!).

*14.30 The height attained is not small compared to the radius of the Earth, so U = mgy does not

apply; U = – 
GM1M2

r
  does.  From launch to apogee at height h,

Ki + Ui + ∆E = Kf + Uf

1
2  Mpv

2
i   – 

GMEMp

RE
  + 0 = 0 – 

GMEMp

RE + h  

1
2 (10.0 × 103 m/s) 2 – (6.67 × 10–11 N ⋅ m2/kg2) 





5.98 × 1024 kg

6.37 × 106 m  

= –(6.67 × 10–11 N ⋅ m2/kg2) 




5.98 × 1024 kg

6.37 × 106 m + h  

(5.00 × 107 m2/s2) – (6.26 × 107 m2/s2) = 
–3.99 × 1014 m3/s2

6.37 × 106 m + h  

6.37 × 106 m + h = 
3.99 × 1014 m3/s2

1.26 × 107 m2/s2   = 3.16 × 107 m

h = 2.52 × 107 m  

*14.31 (a ) UTot = U12 + U13 + U23 = 3U12 = 3 




– 

Gm1m2

r12
 

UTot = – 
3(6.67 × 10–11 N ⋅ m2/kg2)(5.00 × 10–3 kg)2

0.300 m   = –1.67 × 10–14 J  

(b) At the center   of the equilateral triangle

14.32 W = –∆U = – 



–Gm1m2

r
  – 0  

W =  
+ 6.67 × 10-11 N · m2(7.36 × 1022 kg)(1.00 × 103 kg)

kg2 (1.74 × 106 m)   = 2.82 × 109 J  
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14.33
v

2
i

RE + h  = 
GME

(RE + h)2 

Ki = 
1
2  mv

2
i   = 

1
2  

GMEm
RE + h 

= 
1
2 

(6.67 × 10–11 N ⋅ m2/kg2)(5.98 × 1024 kg)(500 kg)
(6.37 × 106 m) + (0.500 × 106 m)   = 1.45 × 1010 J

   The change in gravitational potential energy is

∆U = 
GMEm

Ri
  – 

GMEm
Rf

  = GMEm 




1

Ri
 – 

1
Rf

 

= (6.67 × 10–11 N ⋅ m2/kg2)(5.98 × 1024 kg)(500 kg)(–1.14 × 10–8 m–1)

= –2.27 × 109 J

Also, Kf = 
1
2  mv

2
f   = 

1
2 (500 kg)(2.00 × 103 m/s) 2 = 1.00 × 109 J

The energy lost to friction is

Ef = Ki – Kf – ∆U = (14.5 – 1.00 + 2.27) × 109 J = 1.58 × 1010 J  

14.34 (a ) vsolar escape =  
2MSunG
RE · Sun

   = 42.1 km/s  

(b) v =  
2MSunG
RE ⋅ Sx

  = 
42.1

x
 

If v =  
125 000 km

3 600 s   , then  x = 1.47 A.U. = 2.20 × 1011 m  

(at or beyond the orbit of Mars, 125 000 km/h is sufficient for escape)

14.35 Fc = FG gives 
mv2

r
  = 

GmME

r2  

which reduces to v = 
GME

r
      

and period =  
2π r
v

   = 2π r 
r

GME
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(a ) r = RE + 200 km = 6370 km + 200 km = 6570 km

Thus,

period = 2π(6.57 × 106 m) 
(6.57 × 106 m)

(6.67 × 10–11 N ⋅ m2/kg2)(5.98 × 1024 kg) 

T = 5.30 × 103 s = 88.3 min = 1.47 h  

(b) v =  
GME

r
  = 

(6.67 × 10–11 N ⋅ m2/kg2)(5.98 × 1024 kg)
(6.57 × 106 m)   = 7.79 km/s  

(c) Kf + Uf = Ki + Ui + energy input, gives

input = 
1
2  mv

2
f    – 

1
2  mv

2
i   + 





–GMEm

rf
  – 





–GMEm

ri
     (1)  

ri  = RE = 6.37 × 106 m

vi = 
2πRE

86 400 s   = 4.63 × 102 m/s

Substituting the appropriate values into (1) yields the

minimum energy input = 6.43 × 109 J   

14.36 The gravitational force supplies the needed centripetal acceleration.  Thus,

GMEm
(RE + h)2  = 

mv2

(RE + h)      or     v2 = 
GME

RE + h 

(a ) T = 
2πr
v

  = 
2π(RE + h)

GME/(RE + h)
  = 2π 

(RE + h)3

GME
 

(b) v = 
GME

RE + h  

(c) minimum energy input = ∆Emin = (Kf + Ugf) – (Ki + Ugi)

where Ki = 
1
2  mv

2
i        with     vi = 

2πRE

1.00 day  = 
2πRE

86 400 s 

and Ugi = – 
GMEm

RE
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Thus,

∆Emin = 
1
2  m 





GME

RE + h   – 
GMEm
RE + h  – 

1
2  m 



4π2R

2
E

(86 400 s)2   + 
GMEm

RE
 

or ∆Emin = GMEm 




RE + 2h

2RE(RE + h)  – 
2π2R

2
Em

(86 400 s)2  

14.37
mv

2
1

2    – 
GMEm

RE
   = – 

GMEm
rmax

   + 
mv

2
f

2   

or v
2
f    = v2

1   – 
2GME

RE
  

and vf =  




v

2
1 – 

2GME

RE
  

1/2

vf = [(2.00 × 104)2 – 1.25 × 108]1/2 =  1.66 × 104 m/s   

Goal Solution    
Energy is conserved between surface and the distant point:

(K + Ug)i + ∆E = (K + Ug)f

1
2  mv

2
i   – 

GMEm
RE

  + 0 = 
1
2  mv

2
f   – 

GMEm
∞  

v
2
f   = v2

i   – 
2GME

RE
 (Note:  

2GME

RE
  is simply v2

esc )

v
2
f   = (2.00 × 104 m/s)2 –   

2(6.67 × 10–11 N ⋅ m2/kg2)(5.98 × 1024 kg)
(6.37 × 106 m)  

v
2
f   = 4.00 × 108 m2/s2 – 1.25 × 108 m2/s2 = 2.75 × 108 m2/s2

vf = 1.66 × 104 m/s
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14.38 Etot = – 
GMm

2r
  

∆E =  
GMm

2  




1

ri
 – 

1
rf

  

=  
(6.67 × 10–11)(5.98 × 1024)

2  
103 kg
103 m  





1

6370 + 100 – 
1

6370 + 200   

∆E = 4.69 × 108 J = 469 MJ   

14.39 To obtain the orbital velocity, we use

∑F = 
mMG

R2    = 
mv2

R
 

or v = 
MG
R

   

We can obtain the escape velocity from

1
2  mv

2
esc   = 

mMG
R

  

or vesc = 
2MG

R
    =  2  v  

*14.40 gE = 
GmE

r
2
E

 gU = 
GmU

r
2
U

 

(a )
gU

gE
  = 

mUr
2
E

mEr
2
U

  = 14.0 




1

3.70  
2
 = 1.02

gU = (1.02)(9.80 m/s2) = 10.0 m/s2  

(b) vesc,E = 
2GmE

rE
 vesc,U = 

2GmU

rU
 

vesc,U

vesc,E
  = 

mUrE

mErU
  = 

14.0
3.70  = 1.95

For the Earth,

vesc, E  = 11.2 km/s (from Table 14.3)

∴ vesc, U  = (1.95)(11.2 km/s) = 21.8 km/s   
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14.41 The rocket is in a potential well at Ganymede's surface with energy

U1 = – 
Gm1m2

r
   = – 

6.67 × 10–11 N · m2 m2 (1.495 × 1023 kg)
kg2 (2.64 × 106 m)   

U1 = –3.78 × 106 m2 m2/s2

The potential well from Jupiter at the distance of Ganymede is

U2 = – 
Gm1m2

r
   = –  

6.67 × 10–11 N · m2 m2 (1.90 × 1027 kg)
kg2 (1.071 × 109 m)   

U2 = –1.18 × 108 m2 m2/s2

To escape from both requires

1
2  m2 v

2
esc   = + (3.78 × 106 + 1.18 × 108)m2 m2/s2

vesc = 2 × 1.22 × 108 m2/s  2  = 15.6 km/s   

14.42 We interpret "lunar escape speed" to be the escape speed from the surface of a stationary moon
alone in the Universe:

1
2  mv

2
esc  = 

GMmm
Rm

 

vesc = 
2GMm

Rm
 

vlaunch = 2 
2GMm

Rm
 

Now for the flight from moon to Earth

(K + U)i = (K + U)f

1
2  mv

2
launch  – 

GmMm

Rm
  – 

GmME

rel
  = 

1
2  mv

2
impact  – 

GmMm

rm2
  – 

GmME

RE
 

4GMm

Rm
  – 

GMm

Rm
  – 

GME

rel
  = 

1
2  v2

impact  – 
GMm

rm2
  – 

GME

RE
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vimpact = 




2G 





3Mm

Rm
 + 

Mm

rm2
 + 

ME

RE
 – 

ME

rel
 
1/2

= 

2G 


3 × 7.36 × 1022 kg

1.74 × 106 m  + 
7.36 × 1022 kg
3.84 × 108 m  

+ 




5.98 × 1024 kg

6.37 × 106 m  – 
5.98 × 1024 kg
3.84 × 108 m  

1/2

= [2G(1.27 × 1017 + 1.92 × 1014 + 9.39 × 1017 – 1.56 × 1016) kg/m]1/2

= 




2 × 6.67 × 10–11 

N ⋅ m2

kg2  10.5 × 1017 kg/m  
1/2

 = 11.8 km/s  

14.43 In a circular orbit of radius r , the total energy of an Earth satellite is E = – 
GME

2r
  .  Thus, in

changing from a circular orbit of radius r = 2RE to one of radius r = 3RE, the required work is

W = ∆E = – 
GMEm

2rf
  + 

GMEm
2ri

  = GMEm 




1

4RE
 – 

1
6RE

  = 
GMEm
12RE

 

14.44 First find the acceleration of gravity created by the left-hand rod at a point distant x from its
center.

L d L

m m

u x

du

A bit of the left-hand rod of width du has mass (m/L)du and creates field

dg = 
Gdm

r2   = 
Gmdu

L(x + u)2 

Then, g = ⌡⌠
–L/2

L/2
 

Gmdu
L(x + u)2  = 

Gm
L

 
(x + u)–1

–1

L/2

–L/2

 

g = 
Gm
L

 




–1

x + L/2 – 
–1

x – L/2   = 
Gm
L

 
L

x2 – L2/4 

g = 
Gm

x2 – L2/4 
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    Now the force on the right-hand rod is the summation of bits dF = gdm = gmdx/L .

Thus: F = ⌡⌠
x=d+L/2

d+3L/2
 

Gm mdx
(x2 – L2/4)L  = 

Gm2

L
 ⌡⌠

x=d+L/2

d+3L/2
 

dx
x2 – L2/4  .  Use the table of integrals in the

Appendix of the textbook.

F = 
Gm2

L
 
1
L

  ln 




x – L/2

x + L/2

d + 3L/2

d + L/2

 

= 
Gm2

L2  




ln 





d + L

d + 2L
 – ln 





d

d + L  

= 
Gm2

L2  




ln 





d + L

d + 2L
 
d + L

d
  = 

Gm2

L2  ln 




(d + L)2

d(d + 2L)  

14.45 By symmetry, F is in the y direction.

dM = 




M

πR
  Rdθ =  

M
π   dθ     and     dF = 

GmdM
R2  

dFy = 
GmdM cos θ

R2   = 
[Gm( )M

π  dθ cos θ]

R2  

Fy = ⌡⌠
–π/2

π/2

  
GmM
πR2   cos θ dθ = 

GMm
πR2   sin θ  π/2

–π/2  = 
GMm
πR2   [1 – (–1)] = 

2GmM
πR2  

Goal Solution    
G: If the rod completely encircled the point mass, the net force on m would be zero (by symmetry),

and if all the mass M would be concentrated at the middle of the rod, the force would be

F = 
GmM

R2   directed upwards.  Since the given configuration is somewhere between these two

extreme cases, we can expect the net force on m to be upwards and F < 
GmM

R2  

O: The net force on the point mass can be found by integrating the contributions from each small
piece of the semicircular rod.

A: If we consider a segment of the curved rod, dM, to act like a point mass, we can apply Eq. 14.1
to find the force exerted on m due to dM as:

dF = 
Gm(dM)

R2  (directed toward dM) .

m

M

R
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If we could integrate this differential force, we could find the total force on the point mass,m,
but the differential mass element must first be written in terms of a variable that we can
integrate easily, like the angle, θ, which ranges from 0 to 180° for this semicircular rod.
One segment of the arc, dM, subtends an angle dθ and has length Rd θ.  Since the whole rod
has length πR and mass M, this incremental element has mass

dM = 




M

πR
  Rd θ = 

Mdθ
π  

m

dM

y

x

dF

θ

This mass element exerts a force dF on the point mass at the center.

dF = 
GmdM

R2  ̂r   = 
Gm
R2   

M
π  dθ  ̂r  

where r̂   is directed at an angle θ above the x-axis

or dF = 
GmM
πR2   dθ (cos θi + sin θj)

To find the net force on the point mass, we integrate the contributions for all mass elements
from θ = 0° to 180°:

F = ⌡⌠
all m

 

dF  = ⌡⌠
θ = 0

180°





GmMdθ

πR2  (cos θi + sin θj) 

F = 




GmM i

πR2  ⌡⌠
0

180°
cos θdθ  + 





GmMj

πR2  ⌡⌠
0

180°
sin θdθ 

F = 




GmM i

πR2   [sin θ]180°
0   + 





GmMj

πR2   [–cos θ]180°
0  

F = 




GmM i

πR2  (0 – 0 )  + 




GmMj

πR2   [–(–1) + 1]

F = 0i + 




2GmM

πR2   j

L: As predicted, the direction of the force on the point mass at the center is vertically upward.
Also, the net force has the same algebraic form as for two point masses, reduced by a factor of
2/π, so this answer agrees with our prediction.



20 Chapter 14 Solutions

© 2000 by Harcourt College Publishers.  All rights reserved.

14.46 (a ) From Example 14.10, T = 2π 
R

3
E

GME
 

At the surface g = GME/R
2
E  so indeed T = 2π( RE/g)  

(b) T = 2π 
R

3
M

GMM
 

T = 2π 
(1.74 × 106 m)3

(6.67 × 10–11 N ⋅ m2/kg2)(7.36 × 1022 kg) 

T = 6.51 × 103 s = 1.81 h  

(c) The Moon may be hot down deep inside, but it is not molten  .

14.47 (a ) F = 
GmM

r2   = 
(6.67 × 10–11 N ⋅ m2/kg2)(0.0500 kg)(500 kg)

(1.500 m)2   = 7.41 × 10–10 N  

 (b) F = 
(6.67 × 10–11 N ⋅ m2/kg2)(0.0500 kg)(500 kg)

(0.400 m)2   = 1.04 × 10-8 N  

(c) In this case the mass m is a distance r from a sphere of mass,

M = (500 kg) 




0.200 m

0.400 m  
3
 = 62.5 kg     and

F = 
(6.67 × 10–11 N ⋅ m2/kg2)(0.0500 kg)(62.5 kg)

(0.200 m)2   = 5.21 × 10-9 N  

14.48 (a ) F = 
Gmm1a

R
3
1

  toward the center of the sphere

(b) F = 
Gmm1

b2    toward the center of the sphere

(c) F = 
Gm(m1 + m2)

c2    toward the center of the sphere

14.49 The acceleration of an object at the center of the Earth due to

the gravitational force of the Moon is given by a = G 
MMoon

d2  

At the point nearest the Moon, a+ = G 
MM

(d – r)2 

a
b

c

m1

m2

R1

R2

d

Earth

MoonRE
B A
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At the point farthest from the Moon, a– = G 
MM

(d + r)2 

∆a = a+ – a = GMM 




1

(d – r)2 – 
1
d2  

For d > > r, ∆a = 
2GMMr

d3   = 1.11 × 10–6 m/s2

Across the planet, 
∆g
g

  = 
2∆a
g

  = 
2.22 × 10–6 m/s2

9.80 m/s2   = 2.26 × 10-7  

14.50 Momentum is conserved:

m1v1i + m2v2i = m1v1f + m2v2f

0 = Mv1f + 2Mv2f

v2f = – 
1
2  v1f

Energy is conserved:

(K + U)i + ∆E = (K + U)f

0 – 
Gm1m2

ri
  + 0 = 

1
2  m1v

2
2f  – 

Gm1m2

rf
 

– 
GM(2M)

12R
  = 

1
2  Mv

2
1f  + 

1
2 (2M) 





1

2 v1f  
2
 – 

GM(2M)
4R

 

v1f = 
2
3 

GM
R

 v2f = 
1
2  v1f = 

1
3 

GM
R

 

14.51 (a ) ar = 
v2

r
 

ar = 
(1.25 × 106 m/s)2

1.53 × 1011 m   = 10.2 m/s2  

(b) diff = 10.2 – 9.90 = 0.312 m/s2 = 
GM
r2  

M = 
(0.312 m/s2)(1.53 × 1011 m)2

6.67 × 10–11 N ⋅ m/kg2   = 1.10 × 1032 kg  n
Fg

Star
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*14.52 (a ) The free-fall acceleration produced by the Earth is

g = 
GME

r2   = GMEr–2     (directed downward)

Its rate of change is 
dg
dr

  = GME(–2)r–3 = –2GMEr–3.   The minus sign indicates that g

decreases with increasing height.

At the Earth’s surface, 
dg
dr

 = – 
2GME

R
3
E

 

(b) For small differences,

∆g

∆r
  = 

∆g

h
  = 

2GME

R
3
E

 Thus, ∆g  = 
2GMEh

R
3
E

 

(c) ∆g   = 
2(6.67 × 10–11 N ⋅ m2/kg2)(5.98 × 1024 kg)(6.00 m)

(6.37 × 106 m)3   = 1.85 × 10–5 m/s2  

14.53 (a ) Initially take the particle from infinity and move it to the sphere's surface. Then,

U = ⌡⌠
∞

R
 
GmM

r2   dr = – 
GmM

R
 

Now move it to a position r from the center of the sphere. The force in this case is a
function of the mass enclosed by r at any point.

Since ρ = 
M

4
3
 πR3

  we have

U = ⌡⌠
R

r
 
Gm(4πr3)ρ

3r2   dr = 
GmM

R3  




r2 – R2

2  

   and the total gravitational potential energy is

U = 




GmM

2R3  r2 – 
3GmM

2R
 

(b) U(R) = – 
GMm

R
      and     U(0) = – 

3GmM
2R

 

so Wg = –[U(0) – U(R)] = 
GMm

2R
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14.54 To approximate the height of the sulfur, set

mv2

2    = mgh        h = 70 000 m        gIo = 
GM
r 2

   = 1.79 m/s2

v = 2gh  

v = 2(1.79)(70 000)   ≈ 500 m/s (over 1000 mph)

A more precise answer is given by

1
2  mv2 –  

GMm
r1

   = –  
GMm

r2
  

1
2  v2 = (6.67 × 10–11)(8.90 × 1022) 





1

1.82 × 106 – 
1

1.89 × 106   

v = 492 m/s   

*14.55 From the walk, 2πr = 25 000 m.  Thus, the radius of the planet is

r = 
25 000 m

2π   = 3.98 × 103 m

From the drop:  ∆y = 
1
2  gt2 = 

1
2  g(29.2 s)2 = 1.40 m

so, g = 
2(1.40 m)
(29.2 s)2   = 3.28 × 10–3 m/s2 = 

MG
r2  

∴ M = 7.79 × 1014 kg   

14.56 For a 6.00 km diameter cylinder, r = 3000 m and to simulate 1 g = 9.80 m/s2

g = 
v2

r
   = ω 2r

ω = 
g
r
     =  0.0572 rad/s  

The required rotation rate of the cylinder is 1 rev/110 s   

(For a description of proposed cities in space, see Gerard K. O'Neill in Physics Today, Sept.
1974.)

14.57 F = 
GMm

r2   = 




6.67 × 10–11 

N ⋅ m2

kg2  
(1.50 kg)(15.0 × 103 kg)

(4.50 × 10–2 m)2   = 7.41 × 10–10 N  



24 Chapter 14 Solutions

© 2000 by Harcourt College Publishers.  All rights reserved.

*14.58 (a ) G has units 
N ⋅ m2

kg2   = 
kg ⋅ m ⋅ m2

s2 ⋅ kg2   = 
m3

s2 ⋅ kg 

and dimensions [G] = 
L3

T2 ⋅ M 

The speed of light has dimensions of [c] = 
L
T  , and Planck’s constant has the same

dimensions as angular momentum or [h] = 
M ⋅ L2

T   .

We require [Gpcqhr] = L, or L3pT–2pM–pLqT–qMrL2rT–r = L1M0T0.

Thus, 3p + q + 2r = 1

–2p – q – r = 0

–p + r = 0

which reduces (using r = p) to 3p + q + 2p = 1

–2p – q – p = 0

These equations simplify to 5p + q = 1 and q = –3p

Then, 5p – 3p = 1, yielding p = 
1
2  , q = – 

3
2  , and r = 

1
2 

Therefore,  Planck length = G1/2c–3/2h1/2  

(b) (6.67 × 10–11)1/2(3 × 108)–3/2(6.63 × 10–34)1/2 = (1.64 × 10–69)1/2 = 4.05 × 10–35 m ~10–34 m  

*14.59 
1
2  m0 v

2
esc   = 

Gmpm0

R
  

vesc = 
2Gmp

R
  

With mp = ρ 
4
3   π R3 ,  we have

vesc = 
2Gρ 43 π R3

R
  

 = 
8πGρ

3   R  

So, vesc ∝ R
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*14.60 (a ) To see this, let M(r) be the mass up to radius r, ρ(r) be the density at radius r, and ρav(r)
be the average density up to radius r.

Then, 
dM(r)

dr
  = 4πr2ρ(r)     and     M(r) = 

4
3  πr3ρav(r)

The gravitational acceleration at radius r is g(r) = 
GM(r)

r2   ; its

derivative with respect to r is

dg
dr

  = 
–2GM(r)

r3   + 
G
r2 

dM(r)
dr

  = 
–2GM(r)

r3   + 4πGρ(r)

or
dg
dr

 = 4πG 




ρ(r) – 

2
3 ρav(r)  

This is positive only if ρ(r) > 
2
3  ρav(r); if ρ(r) < 

2
3  ρav(r), g will actually

decrease with increasing r.

(b) From the numbers given, it is clear that at the surface, the average density is less than
2/3 of the average density of the whole Earth.  Clearly, then,

the value of g increases as one descends into the Earth  .  Geophysical evidence shows

that the maximum value of g inside the Earth is greater than 10.0 N/kg, and occurs about
halfway between the center and the surface.

14.61 (a ) At infinite separation U = 0 and at rest K = 0.  Since energy is conserved we have,

0 = 
1
2  m1v

2
1  + 

1
2  m2v

2
2  – 

Gm1m2

d
  (1)

The initial momentum is zero and momentum is conserved.

Therefore, 0 = m1v1 – m2v2 (2)

Combine Equations (1) and (2) to find

v1 = m2 
2G

d(m1 + m2)           and     v2 = m1 
2G

d(m1 + m2)     

Relative velocity vr = v1 – (–v2) =  
2G(m1 + m2)

d
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(b) Substitute given numerical values into the equation found for v1 and v2 in part (a) to find

v1 = 1.03 × 104 m/s     and     v2 = 2.58 × 103 m/s

Therefore, K1 = 
1
2  m1v

2
1   = 1.07 × 1032 J   

and K2 = 
1
2  m2v

2
2   = 2.67 × 1031 J   

14.62 (a ) The net torque exerted on the Earth is zero.  Therefore, the angular momentum is
conserved;

mrava = mrpvp

and va = vp 




rp

ra
   = (3.027 × 104 m/s) 





1.471

1.521    = 2.93 × 104 m/s   

(b) Kp = 
1
2  mv

2
p  = 

1
2 (5.98 × 1024)(3.027 × 104) 2 = 2.74 × 1033 J   

Up = – 
GmM

rp
   = –  

(6.673 × 10–11)(5.98 × 1024)(1.99 × 1030)
1.471 × 1011    = – 5.40 × 1033 J   

(c) Using the same form as in part (b), we find

Ka = 2.57 × 1033 J       and     Ua = –5.22 × 1033 J   

Compare Kp + Up = –2.66 × 1033 J   

and Ka + Ua = –2.65 × 1033 J                They agree.

14.63 (a ) If we consider a hollow shell in the sphere with radius r and thickness dr, then
dM = ρdV = ρ(4πr2dr).   The total mass is then

M = ⌡⌠
0

R
ρdV ⌡⌠

0

R
(Ar)(4πr2dr)  = πAR4

and A = 
M

πR4  

(b) The total mass of the sphere acts as if it were at the center of the sphere and

F = 
GmM

r2   directed toward the center of the sphere.
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(c) Inside the sphere at the distance r from the center, dF = 




Gm

r2   dM where dM is just the

mass of a shell enclosed within the radius r.

          Therefore, F = 
Gm
r2  ⌡⌠

0

r
dM  = 

Gm
r2  ⌡⌠

0

r
Ar 4πr2dr 

F = 
Gm
r2  

M 4π
πR4  

r4

4   = 
GmMr2

R4  

*14.64 (a ) The work must provide the increase in gravitational energy

W = ∆Ug = Ugf – Ugi

 = – 
GMEMp

rf
   + 

GMEMp

ri
  

  = – 
GME Mp

RE+ y    + 
GMEMp

RE  

 = GME Mp 



1

RE
 – 

1
RE + y   

 = 




6.67 × 10–11 N · m2

kg 2  (5.98 × 1024 kg)(100 kg) 




1

6.37 × 106 m  –  
1

7.37 × 106 m   

W = 850 MJ   

(b) In a circular orbit, gravity supplies the centripetal force:

GMEMp

(RE + y)2   = 
Mpv2

(RE + y)  

Then, 
1
2  Mpv2 = 

1
2 

GMEMp

(RE + y)  

So, additional work = kinetic energy required

=  
1
2 

(6.67 × 10–11 N · m2)(5.98 × 1024 kg)(100 kg)
(kg2)(7.37 × 106 m)   

∆W = 2.71 × 109 J   
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14.65 Centripetal acceleration comes from gravitational acceleration.

v2

r
   = 

McG
r 2

   = 
4π 2r 2

T 2 r
  

GMcT 2  = 4π 2r 3

(6.67 × 10–11)(20)(1.99 × 1030)(5.00 × 10–3)2 = 4π 2 r 3

rorbit = 119 km   

14.66 (a ) T = 
2π r
v

   = 
2π (30 000 × 9.46 × 1015 m)

2.50 × 105 m/s    = 7.13 × 1015 s = 2.26 × 108 yr  

(b) M = 
4π 2a3

GT 2
   = 

4π 2 (30 000 × 9.46 × 1015 m)3

(6.67 × 10–11 N · m2/kg2)(7.13 × 1015 s)2   = 2.66 × 1041 kg

M = 1.34 × 1011 solar masses ~1011 solar masses   

The number of stars is on the order of 1011  

*14.67 (a ) From the data about perigee, the energy is

E = 
1
2  mv

2
p  – 

GMEm
rp

  = 
1
2 (1.60)(8.23 × 103) 2 –  

(6.67 × 10–11)(5.98 × 1024)(1.60)
7.02 × 106  

or E = –3.67 × 107 J  

(b) L = mvr sin θ = mvprp sin 90.0°

= (1.60 kg)(8.23 × 103 m/s)(7.02 × 106 m) = 9.24 × 1010 kg ⋅ m2/s  

(c) At apogee, we must have 
1
2  mv

2
a   – 

GMm
ra

  = E, and mvara sin 90.0° = L since both energy and

angular momentum are conserved.  Thus,

1
2 (1.60) v2

a   – 
(6.67 × 10–11)(5.98 × 1024)(1.60)

ra
  = –3.67 × 107 J

and (1.60 kg)vara = 9.24 × 1010 kg ⋅ m2/s

Solving simultaneously,

1
2 (1.60) v2

a   – 
(6.67 × 10–11)(5.98 × 1024)(1.60)(1.60)va

9.24 × 1010   = –3.67 × 107

which reduces to 0.800v
2
a   – 11046va + 3.6723 × 107 = 0
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so va = 
11046 ± (11046)2 – 4(0.800)(3.6723 × 107)

2(0.800)  
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This gives va = 8230 m/s or 5580 m/s  .  The smaller answer refers to the velocity at the

apogee while the larger refers to perigee.

Thus, ra = 
L

mva
  = 

9.24 × 1010 kg ⋅ m2/s
(1.60 kg)(5.58 × 103 m/s)  = 1.04 × 107 m  

(d) The major axis is 2a = rp + ra,   so the semi-major axis is

a = 
1
2 (7.02 × 106 m + 1.04 × 107 m)  = 8.69 × 106 m  

(e) T = 
4π2a3

GME
  = 

4π2(8.69 × 106 m)3

(6.67 × 10–11 N ⋅ m2/kg2)(5.98 × 1024 kg) 

T = 8060 s = 134 min  

*14.68 vi = 2 Rg  g = 
MG
R2   

Utilizing conservation of energy,

mv2

2    –  
mGM

r
   =  

mv
2
i

2    –  
mGM

R
  

mv2

2    =  
mv

2
i

2    –  
mGM

R
   + 

mGM
r

  

v2 = v2
i    – 2MG 





1

R
 – 

1
r

  

v = v
2
i  + 2MG 





1

r
 – 

1
R

  

v = 4Rg + 2MG 




1

r
 – 

1
R

  

v = 
4MG

R
 – 

2MG
R

 + 
2MG

r
  

v =   2MG 




1

R
 + 

1
r

  = 2R2g 




1

R + 
1
r    
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14.69 If we choose the coordinate of the center of mass at the origin, then

0 = 
(Mr2 – mr1)

M + m          and        Mr2 = mr1

(Note:  this is equivalent to saying that the net torque must be zero and the two experience no
angular acceleration.)  For each mass F = ma and

mr1ω 21   =  
MGm

d 2   

and Mr2ω 22   =  
MGm

d 2   

Combining these two equations and using d = r1 + r2 gives

(r1 + r2)ω 2 =  
(M + m)G

d 2
  

with     ω 1 = ω 2 = ω     and     T = 
2π
ω   ,     we find      T 2  =  

4π 2d 3 

G(M + m)  

Goal Solution    
For the star of mass M and orbital radius r2,

ΣF = ma  gives

GMm
d2   = 

Mv
2
2

r2
  = 

M
r2

 



2πr2

T
 
2

For the star of mass m,  ΣF = ma gives

GMm
d2   = 

mv
2
1

r1
  = 

m
r1

 



2πr1

T
 
2

Cross-multiplying, we then obtain simultaneous equations:

GmT2 = 4π2d2r2

GMT2 = 4π2d2r1

Adding, we find

G(M + m)T2 = 4π2d2(r1 + r2) = 4π2d3

T2 = 
4π2d3

G(M + m) 

In a visual binary star system T, d, r1, and r2 can be measured, so the mass of each component can be
computed.

CM v2

M

v1

r1

r2
d

m
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*14.70 (a ) The gravitational force exerted on m2 by the Earth (mass m1) accelerates m2 according to:

m2g2 = 
Gm1m2

r2   .  The equal magnitude force exerted on the Earth by m2 produces

negligible acceleration of the Earth.  The acceleration of relative approach is then

g2 = 
Gm1

r2   = 
(6.67 × 10–11 N ⋅ m2/kg2)(5.98 × 1024 kg)

(1.20 × 107 m)2   = 2.77 m/s2  

(b) Again, m2 accelerates toward the center of mass with g2 = 2.77 m/s2.  Now the Earth
accelerates toward m2 with an acceleration given as

m1g1 = 
Gm1m2

r2  

g1 = 
Gm2

r2   = 
(6.67 × 10–11 N ⋅ m2/kg2)(2.00 × 1024 kg)

(1.20 × 107 m)2   = 0.926 m/s2

The distance between the masses closes with relative acceleration of

grel = g1 + g2 = 0.926 m/s2 + 2.77 m/s2 = 3.70 m/s2  

14.71     Initial Conditions and Constants   :
Mass of planet: 5.98 × 1024 kg
Radius of planet: 6.37 × 106 m
Initial x: 0.0 planet radii
Initial y : 2.0 planet radii
Initial vx: +5000 m/s
Initial vy: 0.0 m/s
Time interval: 10.9 s

t (s) x (m) y (m) r (m) vx

(m/s)
vy

(m/s)
a x

(m/s)
a y

(m/s2)
0.0 0.0 12,740,000.0 12,740,000.0 5,000.0 0.0 0.0000 –2.4575

10.9 54,315.3 12,740,000.0 12,740,115.8 4,999.9 –26.7 –0.0100 –2.4574
21.7 108,629.4 12,739,710.0 12,740,173.1 4,999.7 –53.4 –0.0210 –2.4573
32.6 162,941.1 12,739,130.0 12,740,172.1 4,999.3 –80.1 –0.0310 –2.4572

…
5,431.6 112,843.8 –8,466,816.0 8,467,567.9 –7,523.0 –39.9 –0.0740 5.5625
5,442.4 31,121.4 –8,467,249.7 8,467,306.9 –7,523.2 20.5 –0.0200 5.5633
5,453.3 –50,603.4 –8,467,026.9 8,467,178.2 –7,522.8 80.9 0.0330 5.5634
5,464.1 –132,324.3 –8,466,147.7 8,467,181.7 –7,521.9 141.4 0.0870 5.5628

…
10,841.3 –108,629.0 12,739,134.4 12,739,597.5 4,999.9 53.3 0.0210 –2.4575
10,852.2 –54,314.9 12,739,713.4 12,739,829.2 5,000.0 26.6 0.0100 –2.4575
10,863.1 0.4 12,740,002.4 12,740,002.4 5,000.0 –0.1 0.0000 –2.4575
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x (m)

y (m)

0 5.0 × 106 1.0 × 107 1.5 × 107—5.0 × 106—1.0 × 107

—1.5 × 107

—1.0 × 107

—5.0 × 106

5.0 × 106

1.0 × 107

1.5 × 107

The object does not hit the Earth  ; its minimum radius is 1.33RE  .

Its period is 1.09 × 104 s  .  A circular orbit would require a speed of 5.60 km/s  .


