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Chapter 16 Solutions

16.1 Replace x by x – vt = x – 4.5t

to get y =  
6
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16.3 5.00e–(x + 5t)2 is of the form f(x + vt)

so it describes a wave moving to the left   at v = 5.00 m/s  
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16.5 (a ) The longitudinal   wave travels a shorter distance and is moving faster, so it will

arrive at point B first.

(b) The wave that travels through the Earth must travel a distance of
2R sin 30.0° = 2(6.37 × 106 m) sin 30.0° = 6.37 × 106 m at a speed of 7800 m/s.

Therefore, it takes 
6.37 × 106 m

7800 m/s   = 817 s

The wave that travels along the Earth's surface must travel a distance of

S = Rθ = R  
π
3 rad    = 6.67 × 106 m at a speed of 4500 m/s

Therefore, it takes 
6.67 × 106

4500   = 1482 s

  The time difference is 665 s   = 11.1 min.

*16.6 The distance the waves have traveled is

d = (7.80 km/s)t = (4.50 km/s)(t + 17.3 s)

where t is the travel time for the faster wave.

Then, (7.80 – 4.50)(km/s)t = (4.50 km/s)(17.3 s)

or t = 
(4.50 km/s)(17.3 s)
(7.80 – 4.50)(km/s)  = 23.6 s,  and

the distance is d = (7.80 km/s)(23.6 s) = 184 km  

16.7 (a ) φ1 = (20.0 rad/cm)(5.00 cm) – (32.0 rad/s)(2.00 s) = 36.0 rad

φ1 = (25.0 rad/cm)(5.00 cm) – (40.0 rad/s)(2.00 s) = 45.0 rad

∆φ = 9.00 radians = 516° = 156°  

(b) ∆φ = 20.0x – 32.0t – [25.0x – 40.0t]   = –5.00x + 8.00t  

At t = 2.00 s, the requirement is

∆φ = –5.00x + 8.00 (2.00)   = (2n + 1)π  for any integer n.

For x < 3.20, –5.00x + 16.0 is positive, so we have

–5.00x + 16.0 = (2n + 1)π,  or

x = 3.20 – 
(2n + 1)π

5.00  

The smallest positive value of x occurs for n = 2 and is

x = 3.20 – 
(4 + 1)π

5.00   = 3.20 – π = 0.0584 cm  
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16.8 y = y1 + y2 = 3.00 cos (4.00x – 1.60t) + 4.00 sin (5.00x – 2.00t) evaluated at the given x values.

(a ) x = 1.00, t = 1.00

y = 3.00 cos (2.40 rad) + 4.00 sin (+3.00 rad) = –1.65  

(b) x = 1.00, t = 0.500

y = 3.00 cos (+3.20 rad) + 4.00 sin (+4.00 rad) = –6.02  

(c) x = 0.500, t = 0

y = 3.00 cos (+2.00 rad) + 4.00 sin (+2.50 rad) = 1.15  

16.9 (a ) y1 = f(x – vt), so wave 1 travels in the +x direction  .

y2 = f(x + vt), so wave 2 travels in the –x direction  .

(b) To cancel,  y1 + y2 = 0:

5
(3x – 4t)2 + 2   = 

+5
(3x + 4t – 6)2 + 2  

(3x – 4t)2 = (3x + 4t – 6)2

3x – 4t = ±(3x + 4t – 6)

+root → 8t = 6 →  t = 0.750 s     

(at t = 0.750 s, the waves cancel everywhere)

(c) –root → 6x = 6 →  x = 1.00 m    (at x = 1.00 m, the waves cancel always) 

*16.10 The down and back distance is 4.00 m + 4.00 m = 8.00 m.

The speed is then v = 
dtotal

t   = 
4(8.00 m)
0.800 s   = 40.0 m/s = T/µ 

Now, µ = 
0.200 kg
4.00 m   = 5.00 × 10–2 kg/m, so

T = µv2 = (5.00 × 10–2 kg/m)(40.0 m/s)2 = 80.0 N  

16.11 The mass per unit length is:    µ = 
0.0600 kg

5.00 m   = 1.20 × 10–2 kg/m

The required tension is:  T = µv2 = (0.0120 kg/m)(50.0 m/s)2 = 30.0 N  
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16.12 v = 
T
µ

  = 
1350 kg · m/s2

5.00 × 10–3  kg/m     = 520 m/s   

16.13 T = Mg is the tension

v = 
T
µ

  = 
Mg

(m/L)  = 
MgL

m
  = 

L
t
       is the wave speed

Then, 
MgL

m
   =  

L2

t 2
  

and g =  
Lm
Mt2   = 

1.60 m (4.00 × 10–3 kg)
3.00 kg (3.61 × 10–3 s)2   = 1.64 m/s2   

*16.14 v = 
T
µ

  

T = µv2 = ρAv2 = ρπ r 2v2

T = (8920 kg/m3)(π)(7.50 × 10–4 m)2(200 m/s)2

T = 631 N   

16.15 Since µ
 
is constant, µ = 

T2

v
2
2

  = 
T1

v
2
1

  and

T2 = 




v2

v1
 
2
T1 = 





30.0 m/s

20.0 m/s  
2
(6.00 N) = 13.5 N  

Goal Solution    

G: Since v ∝ F , the new tension must be about twice as much as the original to achieve a 50%
increase in the wave speed.

O: The equation for the speed of a transverse wave on a string under tension can be used if we
assume that the linear density of the string is constant. Then the ratio of the two wave speeds
can be used to find the new tension.

A: The 2 wave speeds can be written as:  v1 = 
F1

µ
      and     v2 = 

F2

µ
 

Dividing, 
v2

v1
  = 

F2

F1
 

so F2 = 




v2

v1
 
2
 F1 = 





30.0 m/s

20.0 m/s  
2
(6.00 N) = 13.5 N

L: The new tension is slightly more than twice the original, so the result agrees with our initial
prediction and is therefore reasonable.
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16.16 The period of the pendulum is T = 2π
L
g

 

Let F represent the tension in the string (to avoid confusion with the period) when the
pendulum is vertical and stationary.  The speed of waves in the string is then:

v = 
F
µ  = 

Mg
(m/L)  = 

MgL
m

 

    Since it might be difficult to measure L precisely, we eliminate L  = 
T g
2π  

so v = 
Mg
m

 
T g
2π   = 

Tg
2π 

M
m

  

16.17 If the tension in the wire is T, the tensile stress is

Stress = T/A     so     T = A(stress)

The speed of transverse waves in the wire is

v = 
T
µ

  = 
A(Stress)

m/L
  = 

Stress
m/AL

  = 
Stress

m/(Volume)  = 
Stress

ρ  

where ρ is the density.  The maximum velocity occurs when the stress is a maximum:

vmax = 
2.70 × 109 Pa
7860 kg/m3    = 586 m/s  

16.18 From the free-body diagram,

mg = 2T sin θ

T = 
mg

2 sin θ  

The angle θ is found from

cos θ = 
3L/8
L/2    = 

3
4  

∴ θ = 41.4°

(a ) v = 
T
µ

  = 
mg

2µ sin 41.4°  = 



9.80 m/s2

2(8.00 × 10–3 kg/m) sin 41.4°  m 

or v = 




30.4 

m/s

kg
 m  

(b) v = 60.0 = 30.4 m      and     m = 3.89 kg   

T T

mg

θ θ



6 Chapter 16 Solutions

© 2000 by Harcourt College Publishers.  All rights reserved.

16.19 First, observe from the geometry shown in the figure that   2d + 
L
2  = D, or

d = 
D
2   – 

L
4  = 1.00 m – 0.750 m = 0.250 m

Thus, cos θ = 
0.250 m
0.750 m  = 

1
3  , and θ = 70.5°

Now, consider a free body diagram of point A:

∑Fx = 0 becomes T = T1 cos θ,  and

                ∑Fy = 0 becomes Mg = T1 sin θ

Dividing the second of these equations by the first gives:

Mg
T

  = tan θ     or     T = 
19.6 N

tan 70.5°  = 6.94 N

The linear density of the string is:  µ = 
m
L

  = 
0.0100 kg
3.00 m   = 3.33 × 10–3 kg/m

              so the speed of transverse waves in the string between points A and B is:

v = 
T
µ

  = 
6.94 N

3.33 × 10–3 kg/m   = 45.6 m/s

The time for the pulse to travel 1.50 m from A to B is:

t = 
1.50 m

45.6 m/s  = 0.0329 s = 32.9 ms  

16.20 Refer to the diagrams given in the solution for Problem 19 above.  From the free-body diagram
of point A:

∑Fy = 0 ⇒ T1 sin θ = Mg     and     ∑Fx = 0 ⇒ T1 cos θ = T

Combining these equations to eliminate T1 gives the tension in the string connecting points A

and B as:     T =  
Mg

t an θ 

The speed of transverse waves in this segment of string is then

v = 
T
µ

  = 
Mg/tan θ

m/L
  = 

MgL
m tan θ 

and the time for a pulse to travel from A to B is

t = 
L/2

v
  = 

mL tan θ
4Mg

 

M M

D

L/4 L/4
A Bθ

L/2d d

θ

T

Mg

θ A

T1



Chapter 16 Solutions 7

© 2000 by Harcourt College Publishers.  All rights reserved.

To evaluate tan θ, refer to the geometry shown in the first diagram:

tan θ = 
(L/4)2 – d2

d
  = 





L

4d

2
 – 1 

Also, 2d = D – L/2,  which gives 4d = 2D – L

Thus, tan θ = 




L

2D – L

2
 – 1 

The travel time for the pulse going from A to B is then

t = 
mL tan θ

4Mg
 where tan θ = 





L

2D – L

2
 – 1   

16.21 The total time is the sum of the two times.

In each wire t = 
L
v

   = L 
µ
T

  

where µ = ρA = 
πρd2

4   

Thus, t = L 




πρd2

4T
 
1/2

For copper, t = (20.0) 




(π)(8920)(1.00 × 10–3)2

(4)(150)  
1/2

 

= 0.137 s

For steel, t = (30.0) 




(π)(7860)(1.00 × 10–3)2

(4)(150)  
1/2

 = 0.192 s

The total time is  0.137 + 0.192 = 0.329 s   

*16.22 (a ) If the end is fixed, there is inversion of the pulse upon reflection.  Thus, when they meet,

they cancel and the amplitude is zero  .

(b) If the end is free, there is no inversion on reflection.  When they meet, the amplitude is

2A = 2(0.150 m) = 0.300 m  .

16.23 (a ) See figure at right.

(b) T = 
2π
ω   = 

2π
50.3  = 0.125 s  

y (cm)

t (s)

10

0
0.1 0.2

—10
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16.24 Using data from the observations, we have λ = 1.20 m and f = 
8.00

12.0 s  .  Therefore,

v = λf = (1.20 m) 




8.00

12.0 s   = 0.800 m/s  

16.25 f = 
40.0 vibrations

30.0 s    = 
4
3  Hz

v = 
425 cm
10.0 s    = 42.5 cm/s

λ = 
v
f
   = 

42.5 cm/s

 
4
3 Hz

   = 31.9 cm = 0.319 m   

*16.26 At time t, the phase of y = (15.0 cm) cos(0.157x – 50.3t) at coordinate x is

φ = (0.157 rad/cm)x – (50.3 rad/s)t.  Since 60.0° = π3  rad, the requirement for point B is that

φB = φA ± π3  rad, or (since xA = 0),

(0.157 rad/cm)xB – (50.3 rad/s)t = 0 – (50.3 rad/s)t ± π3  rad

This reduces to xB = 
±π rad

3(0.157 rad/cm)  = ±6.67 cm  

16.27 v = fλ = (4.00 Hz)(60.0 cm) = 240 cm/s = 2.40 m/s  

16.28 (a )
y (m)

0.1

x (m)

0.2

0.1

0.2

0.0

t = 0

0.2

0.4

(b) k = 
2π
λ    = 

2π
0.350 m   = 18.0 rad/m   

T = 
1
f

   =  
1

12.0/s   = 0.0833 s   

ω = 2π f = 2π 12.0/s = 75.4 rad/s   

v    = f λ = (12.0/s)(0.350 m) = 4.20 m/s   
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(c) y = A sin (kx + ωt + φ) specializes to

y = 0.200 m sin (18.0 x/m + 75.4 t/s + φ)

at x = 0, t = 0 we require

–3.00 × 10–2 m = 0.200 m sin (+φ)

φ = –8.63° = –0.151 rad

so y(x, t) = (0.200 m) sin (18.0 x/m + 75.4 t/s – 0.151 rad)   

16.29 y = 0.250 sin(0.300x – 40.0t) m

Compare this with the general expression y = A sin (kx – ωt)

(a ) A = 0.250 m  (b)     ω = 40.0 rad/s  (c)     k = 0.300 rad/m  

(d) λ = 
2π
k

  = 
2π

0.300 rad/m  = 20.9 m  

(e) v = fλ =  
ω
2π   λ = 





40.0 rad/s

2π  (20.9 m)  = 133 m/s  

(f) The wave moves to the right, in +x direction  .

16.30 y = (0.120 m) sin 




π

8 x + 4π t   

(a ) v = 
dy
d t

   = (0.120)(4π) cos  
π
8 x + 4π t   

v(0.200 s, 1.60 m) = –1.51 m/s   

a =  
dv
d t

   = (– 0.120 m)(4π)2 sin  
π
8 x + 4π t   

a = (0.200 s, 1.60 m) = 0   

(b) k = π8   =  
2π
λ   λ = 16.0 m   

ω = 4π =  
2π
T

  T = 0.500 s   

v = λ
T

    =  
16.0 m
0.500 s   = 32.0 m/s   



10 Chapter 16 Solutions

© 2000 by Harcourt College Publishers.  All rights reserved.

16.31  (a) A = ymax = 8.00 cm = 0.0800 m:  k = 
2π
λ    = 

2π
(0.0800 m)   = 7.85 m–1

ω = 2π f = 2π (3.00) = 6.00π rad/s

Therefore,

y = A sin (kx + ω t)

or y = (0.0800) sin (7.85x + 6π t)m       [where y(0, t) = 0]

(b) In general,

y = 0.0800 sin (7.85x + 6π t + φ)

Assuming y(x, 0) = 0 at x = 0.100 m, then we require that

0 = 0.0800 sin (0.785 + φ)

or φ = – 0.785

Therefore,

y = 0.0800 sin (7.85x + 6π t – 0.785) m  

16.32 (a ) Let us write the wave function as y(x, t) = A sin (kx + ω t + φ)

y(0, 0) = A sin φ = 0.0200 m

d y
d t

  
0, 0

 = Aω cos φ = –2.00 m/s

Also, ω = 
2π
T

   =  
2π

0.0250 s   = 80.0 π/s

A2 = x 
2
i    + (vi/ω)2 = (0.0200 m)2 + 





2.00 m/s

80.0π/s   
2

A = 0.0215 m  

(b)
A  sin φ
A cos φ    = 

0.0200
–2/80.0π   = –2.51 = tan φ

Your calculator's answer tan–1(–2.51) = –1.19 rad has a negative sine and positive cosine,
just the reverse of what is required.  You must look beyond your calculator to find

φ = π – 1.19 rad = 1.95 rad  
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(c) vy,max = Aω = 0.0215 m (80.0π /s) = 5.41 m/s   

(d) λ = vxT = (30.0 m/s)(0.0250 s) = 0.750 m

k = 
2π
λ    = 

2π
0.750 m   = 8.38/m

ω = 80.0π /s

y(x, t) = (0.0215 m) sin (8.38x rad/m + 80.0π t rad/s + 1.95 rad)   

16.33 (a ) f = 
v
λ   = 

(1.00 m/s)
2.00 m    = 0.500 Hz   

ω = 2π f = 2π (0.500/s) = 3.14 rad/s   

(b) k = 
2π
λ    = 

2π
2.00 m   = 3.14 rad/m   

(c) y = A sin (kx – ω t + φ) becomes

y = (0.100 m) sin (3.14 x/m – 3.14 t/s + 0)   

(d) For x = 0 the wave function requires

y = (0.100 m) sin (–3.14 t/s)   

(e) y = (0.100 m) sin (4.71 rad – 3.14 t/s)   

( f ) vy = 
∂y
∂t

   = 0.100 m (–3.14/s) cos (3.14 x/m – 3.14 t/s)

The cosine varies between +1 and –1, so

vy ≤  0.314 m/s   

16.34 y = (0.150 m) sin(3.10x – 9.30t) SI units

v = ω
k

  = 
9.30
3.10   = 3.00 m/s

s = vt = 30.0 m in positive x-direction  
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16.35 y = (0.0200 m) sin (2.11x – 3.62t) SI units

A = 2.00 cm  k = 2.11 rad/m

λ = 
2π
k

   = 2.98 m   

ω = 3.62 rad/s

f = ω2π   = 0.576 Hz   

v = f λ = ω2π 
2π
k

   = ω
k

   = 
3.62
2.11   = 1.72 m/s  

16.36 (a ) ω = 2πf = 2π(500) = 3140 rad/s, k = ω/v = (3140)/(196) = 16.0 rad/m

y = (2.00 × 10–4 m) sin (16.0x – 3140t)  

(b) v = 196 m/s = 
T

4.10 × 10–3 kg/m 

T = 158 N  

16.37 (a ) at x = 2.00 m, y = (0.100 m) sin(1.00 rad – 20.0t)  

(b) y = (0.100 m) sin(0.500x – 20.0t) = A sin(kx – ωt)

so ω = 20.0 rad/s      and     f = ω2π  = 3.18 Hz  

16.38 f = 
v
λ   = 

30.0
0.500   = 60.0 Hz      ω = 2π f = 120π rad/s

℘ = 
1
2  µω 2 A2v = 

1
2 





0.180

3.60  (120 π) 2(0.100)2(30.0) = 1.07 kW   

16.39 Suppose that no energy is absorbed or carried down into the water.  Then a fixed amount of
power is spread thinner farther away from the source, spread over the circumference 2π r of an
expanding circle.  The power-per-width across the wave front

℘
2π r

  

is proportional to amplitude squared so amplitude is proportional to

℘
2π r
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16.40 T = constant; v = 
T
µ

  ; ℘ = 
1
2  µω2A2

(a ) If L is doubled, v remains constant and ℘ is constant  .

(b) If A is doubled and ω is halved, ℘ ∝ ω2A2 remains constant  .

(c) If λ and A are doubled, the product ω2A2 ∝ A2/λ2  remains constant, so

℘ remains constant  .

(d) If L and λ are halved, then ω2 ∝ 1/λ2 is quadrupled, so ℘ is quadrupled  .  (Changing L

doesn't affect ℘).

16.41 A = 5.00 × 10–2 m     µ = 4.00 × 10–2 kg/m     ℘ = 300 W     T = 100 N

Therefore,

v = 
T
µ

     = 50.0 m/s

℘ = 
1
2  µω 2A2v

ω 2 = 
2℘

µA2v
   = 

2(300)
(4.00 × 10–2)(5.00 × 10–2)2(50.0)  

ω = 346 rad/s

f = ω2π   = 55.1 Hz   

*16.42 µ = 30.0 g/m = 30.0 × 10–3 kg/m        λ = 1.50 m

f = 50.0 Hz        ω = 2π f = 314 s–1

2A = 0.150 m        A = 7.50 × 10–2 m

(a) y = A sin  
2π
λ  x – ω  t   

y = (7.50 × 10–2 m) sin (4.19x – 314t)  

(b) ℘ = 
1
2  µω 2A2v = 

1
2 (30.0 × 10–3)(314) 2(7.50 × 10–2 )2 





314

4.19   W

℘ = 625 W   
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16.43 (a ) v = fλ = ω2π 
2π
k

  = ω
k

  = 
50.0
0.800  m/s = 62.5 m/s  

(b) λ = 
2π
k

  = 
2π

0.800  m = 7.85 m  

(c) f = 
50.0
2π   = 7.96 Hz  

(d) ℘ = 
1
2  µω2A2v = 

1
2 (12.0 × 10–3)(50.0) 2(0.150)2(62.5) W = 21.1 W  

16.44 Originally,

℘o = 
1
2  µω 2A2v

℘o = 
1
2  µω 2A2 

T
µ

  

℘o = 
1
2  ω 2A2 Tµ  

The doubled string will have doubled mass-per-length.  Presuming that we hold tension

constant, it can carry power larger by 2   times.

2 ℘o   = 
1
2  ω 2 A2 T 2µ  

*16.45 (a ) A = (7.00 + 3.00)4.00 yields A = 40.0  

(b) In order for two vectors to be equal, they must have the same magnitude and the same
direction in three-dimensional space.  All of their components must be equal.  Thus,

7.00i + 0j + 3.00k = Ai + Bj + Ck requires A = 7.00, B = 0, and C = 3.00  .

(c) In order for two functions to be identically equal, they must be equal for every value of
every variable.  They must have the same graphs.  In
A + B cos(Cx + Dt + E) = 0 + 7.00 mm cos(3.00x + 4.00t + 2.00), the equality of average

values requires that A = 0  .  The equality of maximum values requires B = 7.00 mm  .

The equality for the wavelength or periodicity as a function of x requires C = 3.00 rad/m

.  The equality of period requires D = 4.00 rad/s  , and the equality of zero-crossings

requires E = 2.00 rad  .
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16.46 Equation 16.26, with v = T/µ   is

∂2y
∂x2   = 

1
v2 

∂2y
∂t2  

If y = eb(x – vt),

then
∂y
∂t

  = –bveb(x – vt)     and     
∂y
∂x

  = beb(x – vt)

∂2y
∂t2   = b2v2eb(x – vt)     and     

∂2y
∂x2   = b2eb(x – vt)

Therefore, 
∂2y
∂t2   = v2 

∂2y
∂x2   , and eb(x – vt) is a solution.

16.47 From Equation 16.25, 




µ

T
 
∂2y
∂t2   = 

∂2y
∂x2  

To verify that y = ln[b(x – vt)] is a solution, find the first and second derivatives of y with
respect to x and t and substitute into Equation 16.25:

∂y
∂t

  = [b(x – vt)]–1(–bv); 
∂2y
∂t2   = – 

v2

(x – vt)2 

∂y
∂x

  = [b(x – vt)]–1(b); 
∂2y
∂t2   = – 

1
(x – vt)2 

Substituting into Equation 16.25 we have 
µ
T

 




– 

v2

(x – vt)2   = – 
1

(x – vt)2 

But v2 = 
T
µ

  , therefore the given function is a solution.

16.48 (a ) From y = x2 + v2t2,

          evaluate
∂y
∂x

  = 2x
∂2y
∂x2   = 2

∂y
∂t

  = v22t
∂2y
∂t2   = 2v2

          Does 
∂2y
∂t

  = 
1
v2 

∂2y
∂t2       ?

          By substitution:     2 = 
1
v2  2v2 and this is true, so the wave function does satisfy the wave

equation.
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(b) Note 
1
2 (x + vt) 2 + 

1
2 (x – vt) 2

= 
1
2  x2 + xvt + 

1
2  v2t2 + 

1
2  x2 – xvt + 

1
2  v2t2

= x2 + v2t2 as required

So f(x + vt) = 
1
2 (x + vt)2   and g(x – vt) = 

1
2 (x – vt)2  

(c) y = sin x cos vt makes

∂y
∂x

  = cos x cos vt
∂2y
∂x2   = –sin x cos vt

∂y
∂t

  = –v sin x sin vt
∂2y
∂t2   = –v2 sin x cos vt

Then 
∂2y
∂x2   = 

1
v2 

∂2y
∂t2  

becomes –sin x cos vt = 
–1
v2  v2 sin x cos vt which is true as required.

Note sin (x + vt) = sin x cos vt + cos x sin vt

sin (x – vt) = sin x cos vt – cos x sin vt

          So sin x cos vt = f(x + vt) + g(x – vt) with

f(x + vt) = 
1
2 sin (x + vt)       and     g(x – vt) = 

1
2 sin (x – vt)  

*16.49 Assume a typical distance between adjacent people ~1 m.  Then the wave speed is

v = 
x
t
  ~ 

1 m
0.1 s  ~ 10 m/s

Model the stadium as a circle with a radius of order 100 m.  Then, the time for one circuit
around the stadium is

T = 
2πr
v

  ~ 
2π(102 m)

10 m/s   = 63 s ~ 1 min  



Chapter 16 Solutions 17

© 2000 by Harcourt College Publishers.  All rights reserved.

16.50 Compare the given wave function y = 4.00 sin (2.00x – 3.00t) cm to the general form
y = A sin (kx – ωt) to find

(a) amplitude A = 4.00 cm = 0.0400 m  

(b) k = 
2π
λ   = 2.00 cm–1     and     λ = π cm = 0.0314 m  

(c) ω = 2πf = 3.00 s–1     and     f = 0.477 Hz  

(d) T = 
1
f

  = 2.09 s  

(e) The minus sign indicates that the wave is traveling in the positive x-direction  .

16.51 (a ) Let u = 10π t – 3π x + 
π
4  

du
d t

   = 10π – 3π 
dx
d t

   = 0

dx
d t

   = 
10
3    = 3.33 m/s   

The velocity is in the positive x-direction  .

(b) y(0.100, 0) = (0.350 m) sin 




– 0.300π + 

π
4    = – 0.0548 m = – 5.48 cm   

(c) k = 
2π
λ    = 3π

λ = 0.667 m   

ω = 2π f = 10π

f = 5.00 Hz   

(d) vy = 
∂ y
∂ t    = (0.350)(10π) cos 





10π t – 3π x + 

π
4   

vy, max = (10π)(0.350) = 11.0 m/s   
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*16.52 The equation v = λf is a special case of

speed = (cycle length)(repetition rate)

Thus, v = 




19.0 × 10–3 

m
frame  





24.0 

frames
s   = 0.456 m/s  

16.53 Assuming the incline to be frictionless and taking the positive x-direction to be up the incline:

∑Fx = T – Mg sin θ = 0

or the tension in the string is T = Mg sin θ

The speed of transverse waves in the string is then

v = 
T
µ

  = 
Mg sin θ

m/L
  = 

MgL sin θ
m

 

and the time for a pulse to travel the length of the string is

t = 
L
v

  = L 
m

MgL sin θ  = 
mL

Mg sin θ  

16.54 (a ) v = 
T
µ

  = 
80.0 N

(5.00 × 10–3 kg/2.00 m)  = 179 m/s  

    (b) From Equation 16.21, ℘ = 
1
2  µvω2A2 and ω = 2π  

v
λ  

℘ = 
1
2  µvA2  

2πv
λ  

2
 = 

2π2µA2v3

λ2  

℘ = 
2π2(5.00 × 10–3 kg/2.00 m)(0.0400 m)2(179 m/s)3

(0.160 m)2  

℘ = 1.77 × 104 W = 17.7 kW  

16.55 Energy is conserved as the block moves down distance x:

(K + Ug + Us)top + ∆E = (K + Ug + Us)bottom

0 + Mgx + 0 + 0 = 0 + 0 + 
1
2  kx2

x = 
2Mg

k
  

(a ) T = kx = 2Mg  = 2(2.00 kg)(9.80 m/s2) = 39.2 N   
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(b) L = L0 + x = L0 + 
2Mg

k
  

L = 0.500 m + 
39.2 N

100 N/m   = 0.892 m   

(c) v = 
T
µ

     = 
TL
m

  

v = 
39.2 N × 0.892 m

5.00 × 10–3 kg   

v = 83.6 m/s   

16.56 Mgx = 
1
2  kx2

(a ) T = kx =  2Mg  

(b) L = L0 + x =  L0 + 
2Mg

k
 

(c) v = 
T
µ

     = 
TL
m

    =  
2Mg
m

 




L0 + 

2Mg
k

     

16.57 v = 
T
µ

   and in this case T = mg ;  therefore, m = 
µv2

g
 

From Equation 16.13,   v = ω/k   so that

m = 
µ
g

  
ω
k

 
2
 = 

0.250 kg/m
9.80 m/s2  





18π s–1

0.750π m–1  
2
 = 14.7 kg  

16.58 (a ) µ = 
dm
d L

  = ρA 
dx
dx

  = ρA

v = T/µ  = T/ρA  = T/[ρ(ax + b)] 

= T/[ρ(10–3x + 10–2)cm2] 

With all SI units, v = T/[ρ(10–3x + 10–2)10–4] m/s  

    (b) vx = 0 = 24.0/[(2700)(0 + 10–2)(10–4)]  = 94.3 m/s  

vx = 10.0 = 24.0/[(2700)(10–2 + 10–2)(10–4)]  = 66.7 m/s  
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16.59 v = 
T
µ

     where T = µxg, the weight of a length x, of rope.

Therefore,     v = gx    

But v = 
dx
d t

     so that

dt = 
dx

gx 
  

and t = 
⌡
⌠

0

L

 
dx

gx
    = 2 

L
g

     

16.60 At distance x from the bottom, the tension is T = (mxg/L) + Mg, so the  wave speed is:

v = T/µ  = TL/m  = xg + (MgL/m)  = 
dx
d t

 

     Then

    (a ) t = ⌡⌠
0

t
dt  = ⌡⌠

0

L
[xg  + (MgL/m)]–1/2 dx

t = 
1
g

 
[xg + (MgL/m)]1/2

1
2

x = L

x = 0

 

t = 
2
g
  [(Lg + MgL/m)1/2 – (MgL/m)1/2]

t = 2 
L
g

 






m + M – M

m
 

   (b) When M = 0, t = 2 
L
g

 






m – 0

m
  = 2

L
g

    as in Problem 59.
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    (c) As m → 0 we expand

m + M  = M (1 + m/M) 1/2 = M 




1 + 

1
2 m/M – 

1
8 m2/M2 + . . .  

to obtain

t = 2 
L
g

 






M + 1

2
 m/ M – 1

8
 m2/M3/2 + . . . – M

m
 

t ≈ 2 
L
g

 



1

2 
m
M

   = 
mL
Mg

 

16.61 (a ) The speed in the lower half of a rope of length L is the same function of distance (from
the bottom end) as the speed along the entire length of a rope of length (L/2).

Thus, the time required =  2 
L'
g

      with     L' =  
L
2 

and the time required =  2 
L
2g

   =   0.707 



2

L
g 

   

It takes the pulse more that 70% of the total time to cover 50% of the distance.

(b) By the same reasoning applied in part (a), the distance climbed in τ is given by

d =  
gτ 2
4  

For τ =  
t
2   = 

L
g

  ,  we find the distance climbed = 
L 
4  

In half the total trip time, the pulse has climbed  
1
4   of the total length.

Goal Solution    
G: The wave pulse travels faster as it goes up the rope because the tension higher in the rope is

greater (to support the weight of the rope below it).  Therefore it should take more than half
the total time t for the wave to travel halfway up the rope.  Likewise, the pulse should
travel less than halfway up the rope in time t/2.

O: By using the time relationship given in the problem and making suitable substitutions, we can
find the required time and distance.
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A: (a ) From the equation given, the time for a pulse to travel any distance, d, up from the

bottom of a rope is td = 2 
d
g

  .

So the time for a pulse to travel a distance L/2 from the bottom is

tL/2 = 2 
L
2g

  = 0.707 



2 

L
g

    

(b) Likewise, the distance a pulse travels from the bottom of a rope in a time td is d = 
gt

2
d

4   .

So  the distance traveled by a pulse after a time td = L/g  is

d = 
g(L/g)

4   = 
L
4 

L: As expected, it takes the pulse more than 70% of the total time to cover 50% of the distance.
In half the total trip time, the pulse has climbed only 1/4 of the total length.

16.62 (a ) v = ω
k

  = 
15.0
3.00  = 5.00 m/s in positive x-direction  

     (b) v = 
15.0
3.00  = 5.00 m/s in negative x-direction  

     (c) v = 
15.0
2.00  = 7.50 m/s in negative x-direction  

     (d) v = 
12.0
1/2   = 24.0 m/s in positive x-direction  

16.63 Young’s modulus for the wire may be written as Y = 
T/A
∆L/L

  , where T is the tension maintained in

the wire and ∆L is the elongation produced by this tension. Also, the mass density of the wire

may be expressed as ρ = 
µ
A

  .

The speed of transverse waves in the wire is then

v = 
T
µ

  = 
T/A
µ/A

  = 
Y(∆L/L)

ρ  

and the strain in the wire is 
∆L
L

  = 
ρv2

Y
 

If the wire is aluminum and v = 100 m/s, the strain is

∆L
L

  = 
(2.70 × 103 kg/m3)(100 m/s)2

7.00 × 1010 N/m2   = 3.86 × 10–4  
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16.64 (a ) For an increment of spring length dx and mass dm, F = ma becomes

k dx = a dm,     or     
k

(dm/dx)   = a

But     
dm
dx

   = µ     so     a =  
k
µ

   

Also, a =  
dv
d t

   = 
v
t

      when   vi = 0.   But  L = vt ,    so   a =  
v2

L
  .

Equating the two expressions for a, we have 
k
µ

   = 
v2

L
    or

v = 
k L
µ

   

(b) Using the expression from part (a)

v = 
k L
µ

  = 
kL2

m
  = 

(100 N/m)(2.00 m)2

0.400 kg   = 31.6 m/s  

16.65 (a ) v = (T/µ)1/2 = (2T0/µo)1/2 = v0 2    where v0 ≡ (T0/µ0)1/2

v' = (T/µ')1/2 = (2T0/3µ0)1/2 = v0 2/3  

     (b) tleft = 
L/2
v

  = 
L

2v0 2
  = 

t0

2 2
  = 0.354t0  where t0 ≡ 

L
v0

 

tright = 
L/2
v '   = 

L

2v0 2/3
  = 

t0

2 2/3
  = 0.612t0

tleft + tright = 0.966t0  

16.66 (a ) ℘(x) = 
1
2  µω2A2v = 

1
2  µω2A

2
0 e–2bx  

ω
k

  = 
µω2

2k
 A2

0 e–2b x  

(b) ℘(0) = 
µω2

2k
 A2

0  

(c)
℘(x)
℘(0)  = e–2b x  

16.67 v =  
4450 km
9.50 h    = 468 km/h =  130 m/s  
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–
d   =  

v2

g
   =  

(130 m/s)2

(9.80 m/s2)   =  1730 m  
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