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Chapter 17 Solutions

17.1 Since vlight >> vsound,  d ≈ (343 m/s)(16.2 s) = 5.56 km  

Goal Solution    
G: There is a common rule of thumb that lightning is about a mile away for every 5 seconds of

delay between the flash and thunder  (or ~3 s/km).  Therefore, this lightning strike is about
3 miles (~5 km) away.

O: The distance can be found from the speed of sound and the elapsed time.  The time for the
light to travel to the observer will be much less than the sound delay, so the speed of light
can be ignored.

A: Assuming that the speed of sound is constant through the air between the lightning strike and
the observer,

vs = 
d
∆ t

      or     d = vs ∆t = (343 m/s)(16.2 s) = 5.56 km

L: Our calculated answer is consistent with our initial estimate, but we should check the
validity of our assumption that the speed of light could be ignored.   The time delay for the
light is

tlight = 
d
c

  = 
5560 m

3.00 × 108 m/s  = 1.85 × 10–5 s

and ∆t = tsound – tlight = 16.2 s – 1.85 × 10–5 s ≈ 16.2 s (when properly rounded)

Since the travel time for the light is much smaller than the uncertainty in the time of 16.2 s,
tlight can be ignored without affecting the distance calculation.  However, our assumption of a
constant speed of sound in air is probably not valid due to local variations in air temperature
during a storm.  We must assume that the given speed of sound in air is an accurate average
value for the conditions described.

17.2 v = 
B
ρ  = 

2.80 × 1010

13.6 × 103   = 1.43 km/s  

17.3 Sound takes this time to reach the man:

(20.0 m – 1.75 m)
343 m/s    = 5.32 × 10–2 s

so the warning should be shouted no later than

0.300 s + 5.32 × 10–2 s = 0.353 s     before the pot strikes.
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Since the whole time of fall is given by

y = 12   gt2          18.25 m = 
1
2 (9.80 m/s2) t2

t = 1.93 s

the warning needs to come 1.93 s – 0.353 s = 1.58 s

into the fall, when the pot has fallen 
1
2 (9.80 m/s2)(1.58 s) 2 = 12.2 m

to be above the ground by   20.0 m – 12.2 m = 7.82 m   

17.4 v(air) = 343 m/s   and   v(salt water) = 1533 m/s

Let d = width of inlet  t =  
d
vw

  ; t + 4.50 =  
d
va

  , so 
d
vw

   + 4.50 =  
d
va

 

d = 
4.50vwva

vw – va
  = 

(4.50)(1533)(343)
1533 – 343   = 1.99 km  

17.5 (a ) At 9000 m, ∆T = 




9000

150  (–1.00°C)  = –60.0°C so T = –30.0°C

Using the chain rule:

d v
d t

  = 
dv
dT

 
dT
dx

 
dx
d t

  = v 
dv
dT

 
dT
dx

  = v(0.607) 




1

150   = 
v

247  , so dt = (247 s) 
dv
v

 

⌡⌠
0

t
dt  = (247 s) ⌡⌠

vi

vf
 
d v
v

 

t = (247 s) ln 




vf

vi
  = (247 s) ln 





331.5 + 0.607(30.0)

331.5 + 0.607(–30.0)  

t = 27.2 s   for sound to reach ground

  (b) t = 
h
v

  = 
9000

[331.5 + 0.607(30.0)]  = 25.7 s  

   It takes longer when the air cools off than if it were at a uniform temperature.

17.6 From λ = 
v
f
  , we get:  λ = 

340 m/s
60.0 × 103 s–1  = 5.67 mm  
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17.7 It is easiest to solve part (b) first:

(b) The distance the sound travels to the plane is ds = h2 + (h/2)2  = h 5 /2

The sound travels this distance in 2.00 s, so

ds = 
h 5

2   = (343 m/s)(2.00 s) = 686 m

giving the altitude of the plane as h = 
2(686 m)

5
  = 614 m  

(a ) The distance the plane has traveled in 2.00 s is v(2.00 s) = h/2 = 307 m

Thus, the speed of the plane is:  v = 
307 m
2.00 s   = 153 m/s  

17.8 ∆Pmax = ρvωsmax

smax = 
∆Pmax

ρvω   = 
(4.00 × 10–3 N/m2)

(1.20 kg/m3)(343 m/s)(2π)(10.0 × 103 s–1)  = 1.55 × 10–10 m  

17.9 (a ) A = 2.00 µm  λ = 
2π

15.7  = 0.400 m = 40.0 cm  

v = ω
k

  = 
858
157  = 54.6 m/s  

(b) s = 2.00 cos [(15.7)(0.0500) – (858)(3.00 × 10–3)] = –0.433µm  

(c) vmax = Aω = (2.00 µm)(858 s–1) = 1.72 mm/s  

17.10 (a ) ∆P = (1.27 Pa)sin(πx/m – 340πt/s)   (SI units)

The pressure amplitude is:  ∆Pmax = 1.27 Pa  

(b) ω = 2πf = 340π/s, so f = 170 Hz  

(c) k = 
2π
λ   = π/m, giving λ = 2.00 m  

(d) v = λf = (2.00 m)(170 Hz) = 340 m/s  
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17.11 k = 
2π
λ   = 

2π
(0.100 m)  = 62.8 m–1

ω = 
2πv
λ   = 

2π(343 m/s)
(0.100 m)   = 2.16 × 104 s–1

Therefore, ∆P = (0.200 Pa) sin[62.8x/m – 2.16 × 104t/s]  

17.12 ω = 2πf = 
2πv
λ   = 

2π(343 m/s)
(0.100 m)   = 2.16 × 104 rad/s

smax = 
∆Pmax

ρvω   = 
(0.200 Pa)

(1.20 kg/m3)(343 m/s)(2.16 × 104 s–1)  = 2.25 × 10–8 m

k = 
2π
λ   = 

2π
(0.100 m)  = 62.8 m–1

Therefore, s = smax cos(kx – ωt) = (2.25 × 10–8 m) cos(62.8x/m – 2.16 × 104t/s)  

17.13 (a ) The sound "pressure" is extra tensile stress for one-half of each cycle.  When it becomes
(0.500%)(13.0 × 1010 Pa) = 6.50 × 108 Pa, the rod will break.

Then, ∆Pmax = ρvωsmax

smax = 
∆Pmax

ρvω   = 
6.50 × 108 N/m2

(8.92 × 103 kg/m3)(3560 m/s)(2π500/s)  = 6.52 mm  

(b) From s = smax cos(kx – ωt)

v = 
∂s
∂t

  = –ωsmax sin(kx – ωt)

vmax = ωsmax = (2π 500/s)(6.52 mm) = 20.5 m/s  

17.14 ∆Pmax = ρωvsmax = (1.20 kg/m3)[2π(2000 s–1)](343 m/s)(2.00 × 10–8 m)

∆Pmax = 0.103 Pa  

17.15 ∆Pmax = ρvω smax = ρv  
2π v

λ   smax

λ = 
2π ρv2smax

∆Pmax
  

λ = 
2π (1.20)(343)2(5.50 × 10–6)

0.840    = 5.81 m   
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17.16 (a ) ∆P = ∆Pmax sin [kx – ωt + φ] with ∆Pmax = 4.00 Pa

∆P(0, 0) = ∆Pmax sin φ = 0 ⇒ φ = 0

ω = 2πf = 2π(5000 s–1) = π × 104 s–1

Therefore, ∆P = (4.00 Pa) sin (kx – π × 104 t/s)

At x = 0, t = 2.00 × 10–4 s, ∆P = (4.00 Pa) sin (0 – 2.00π) = 0  

(b) k = 
2π
λ   = ω

v
  = 

π × 104 s–1

343 m/s   = 91.5 m–1

At x = 0.0200 m, t = 0, ∆P = (4.00 Pa) sin [(91.5 m–1)(0.0200 m) – 0]

∆P = 3.87 Pa  

17.17 β = 10 log 




I

I0
  = 10 log 





4.00 × 10–6

1.00 × 10–12   = 66.0 dB  

17.18 (a ) 70.0 dB = 10 log 




I

1.00 × 10–12 W/m–2  

Therefore, I = (1.00 × 10–12 W/m–2)10(70.0/10) = 1.00 × 10–5 W/m2  

(b) I = ∆P
2
max /2ρv, so

∆Pmax = 2ρvI  = 2(1.20 kg/m3)(343 m/s)(1.00 × 10–5 W/m2) 

∆Pmax = 90.7 mPa  

17.19 I = 
1
2  ρω2s

2
max v

(a ) At f = 2500 Hz, the frequency is increased by a factor of 2.50, so the intensity (at constant
smax) increases by (2.50)2 = 6.25.

Therefore,     6.25(0.600) =  3.75 W/m2  

(b) 0.600 W/m2  
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17.20 The original intensity is I1 = 
1
2  ρω2s

2
max v = 2π2ρvf2s

2
max 

(a ) If the frequency is increased to f ' while a constant displacement amplitude is
maintained, the new intensity is

I2 = 2π2ρv(f ')2s
2
max      so     

I2

I1
  = 

2π2ρv(f ')s2
max

2π2ρvf2s
2
max

  = 




f  '

f
 
2
     or     I2 = 





f  '

f

2
 I1  

(b) If the frequency is reduced to f ' = f/2 while the displacement amplitude is doubled, the
new intensity is

I2 = 2π2ρv 




f

2  
2
(2smax)2 = 2π2ρvf2s

2
max  = I1

or the intensity is unchanged  .

17.21 (a ) I1 = (1.00 × 10–12 W/m2)10(β1/10) = (1.00 × 10–12 W/m2)1080.0/10

or I1 = 1.00 × 10–4 W/m2

I2 = (1.00 × 10–12 W/m2)10(β2/10) = (1.00 × 10–12 W/m2)1075.0/10

or I2 = 1.00 × 10–4.5 W/m2 = 31.6 × 10–5 W/m2

When both sounds are present, the total intensity is

I = I1 + I2 = 1.00 × 10–4 W/m2 + 31.6 × 10–5 W/m2 = 1.32 × 10–4 W/m2  

(b) The decibel level for the combined sounds is

β = 10 log 




1.32 × 10–4 W/m2

1.00 × 10–12 W/m2   = 10 log(1.32 × 108) = 81.2 db  

17.22 We begin with β2 = 10 log 




I2

I0
  , and β1 = 10 log 





I1

I0
  , so

β2 – β1 = 10 log 




I2

I1
  

Also, I2 = ℘
4πr

2
2

  , and I1 = ℘
4πr

2
1

  , giving 
I2

I1
  = 





r1

r2
 
2

Then, β2 – β1 = 10 log 




r1

r2
 
2
 = 20 log 





r1

r2
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17.23 Since intensity is inversely proportional to the square of the distance,

I4 = 
1

100  I0.4     and     I0.4 = 
∆P

2
max

2ρv
  = 

(10.0)2

2(1.20)(343)  = 0.121 W/m2

   The difference in sound intensity level is

∆β = 10 log 




I4 km

I0.4 km
  = 10(–200) = –20.0 dB

   At 0.400 km,

β0.4 = 10 log 




0.121 W/m2

10–12 W/m2   = 110.8 db

   At 4.00 km,

β4 = β0.4 + ∆β = (110.8 – 20.0) dB = 90.8 dB

  Allowing for absorption of the wave over the distance traveled,

β'4  = β4 – (7.00 dB/km)(3.60 km) = 65.6 dB  

This is equivalent to the sound intensity level of heavy traffic.

Goal Solution    
G: At a distance of 4 km, an explosion should be audible, but probably not extremely loud.  So

based on the data in Table 17.2, we might expect the sound level to be somewhere between
50 and 100 dB.

O: From the sound pressure data given in the problem, we can find the intensity, which is used to
find the sound level in dB.  The sound intensity will decrease with increased distance from
the source and from the absorption of the sound by the air.

A: At a distance of 400 m from the explosion, ∆Pmax = 10 Pa.

At this point, Imax = 
(10 N/m2)2

2(1.20 kg/m3)(343 m/s)  = 0.121 W/m2

Therefore, the maximum sound level is

βmax = 10 log 




Imax

I0
  = 10 log 





0.121 W/m2

1.00 × 10–12 W/m2   = 111 dB
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From equations 17.8 and 17.7, we can calculate the intensity and decibel level (due to distance
alone) 4 km away:

I' = 
I(400 m)2

(4000 m)2  = 1.21 × 10–3 W/m2     and     β = 10 log 




I

I0
  = 10 log 





1.21 × 10–3

1.00 × 10–12   = 90.8 dB

At a distance of 4 km from the explosion, absorption from the air will have decreased the
sound level by an additional ∆β = (7 dB/km)(3.6 km) = 25.2 dB

So at 4 km, the sound level will be βf = β – ∆β = 90.8 dB – 25.2 dB = 65.6 dB  

L: This sound level falls within our expected range.  Evidently, this explosion is rather loud
(about the same as a vacuum cleaner) even at a distance of 4 km from the source.  It is
interesting to note that the distance and absorption effects each reduce the sound level by
about the same amount (~20 dB). If the explosion were at ground level, the sound level would
be further reduced by reflection and absorption from obstacles between the source and observer,
and the calculation would be much more complicated (if not impossible).

17.24 Let r1 and r2 be the distance from the speaker to the observer that hears 60.0 dB and 80.0 dB,
respectively.  Use the result of problem 22,

β 2  – β1  = 20 log  




r1

r2
  ,   to obtain   80.0 – 60.0 = 20 log 





r1

r2
  

Thus, log 




r1

r2
   = 1,   so    r1 = 10.0r2 .    Also:  r1 + r2  = 110 m,  so

10.0r2 + r2 = 110 m giving  r2 = 10.0 m  ,  and  r1 = 100 m  

17.25 We presume the speakers broadcast equally in all directions.

(a ) rAC = 3.002 + 4.002  m = 5.00 m

I = ℘/4πr2 = 1.00 × 10–3 W/4π(5.00 m)2 = 3.18 × 10–6 W/m2

β = 10 dB log (3.18 × 10–6 W/m2/10–12 W/m2)

β = 10 dB 6.50 = 65.0 dB  

(b) rBC = 4.47 m

I = 1.50 × 10–3 W/4π(4.47 m)2 = 5.97 × 10–6 W/m2

β = 10 dB log (5.97 × 10–6/10–12)

β = 67.8 dB  
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(c) I = 3.18 µW/m2 + 5.97 µW/m2

β = 10 dB log (9.15 × 10–6/10–12) = 69.6 dB  

17.26 I = ℘
4πr2  , where I = 1.20 W/m2

℘ = 4πr2I = 4π(4.00)2(1.20) = 241 W  

17.27 40.0 dB = 10 dB log 




I

10–12 W/m2  

4.00 = log 
I

10–12 

I = 10–12 (1.00 × 104) = 1.00 × 10–8  W/m2

℘ = 4π r2I = (4π)(9.00)(1.00 × 10–8) =  1.13 µW  

*17.28 In I = ℘
4πr2  ,  intensity I is proportional to 

1
r2  ,

so between locations 1 and 2:  
I2

I1
  = 

r
2
1

r
2
2

 

In I = 
1
2  ρv(ωsmax)2,  intensity is proportional to s2

max ,  so 
I2

I1
  = 

s
2
2

s
2
1

 

Then, 




s2

s1
 
2
 = 





r1

r2
 
2
 or 





1

2  
2
 = 





r1

r2
 
2
, giving r2 = 2r1 = 2(50.0 m) = 100 m

But, r2 = (50.0 m)2 + d2  yields d = 86.6 m  

17.29 β = 10 log 




I

10–12  I = [10(β/10)](10–12)W/m2

I(120 dB) = 1.00 W/m2; I(100 dB) = 1.00 × 10–2 W/m2; I(10 dB) = 1.00 × 10–11 W/m2

(a) ℘ = 4πr2I so that r2
1 I1 = r2

2 I2

r2 = r1(I1/I2)1/2 = (3.00 m) 
1.00

1.00 × 10–2  = 30.0 m  

(b) r2 = r1(I1/I2)1/2 = (3.00 m) 
1.00

1.00 × 10–11  = 9.49 × 105 m  
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17.30 (a ) E = ℘t = 4πr2It = 4π(100 m)2(7.00 × 10–2 W/m2)(0.200 s) = 1.76 kJ  

(b) β = 10 log 




7.00 × 10–2

1.00 × 10–12   = 108 dB  

*17.31 (a ) The sound intensity inside the church is given by

β = 10 ln(I/I0)

101 dB = (10 dB) ln(I/10–12 W/m2)

I = 1010.1(10–12 W/m2) = 10–1.90 W/m2 = 0.0126 W/m2

We suppose that sound comes perpendicularly out through the windows and doors.  Then,
the radiated power is

℘ = IA = (0.0126 W/m2)(22.0 m2) = 0.277 W

Are you surprised by how small this is? The energy radiated in 20.0 minutes is

E = ℘t = (0.277 J/s)(20.0 min)(60.0 s/1.00 min) = 332 J  

(b) If the ground reflects all sound energy headed downward, the sound power, ℘ = 0.277 W,
covers the area of a hemisphere.  One kilometer away, this area is
A = 2πr2 = 2π(1000 m)2 = 2π × 106 m2.

The intensity at this distance is

I = ℘
A

  = 
0.277 W

2π × 106 m2  = 4.41 × 10–8 W/m2

and the sound intensity level is

β = (10 dB) ln 




4.41 × 10–8 W/m2

1.00 × 10–12 W/m2   = 46.4 dB  

17.32 (a ) ∆Pmax = 
25.0

r
  = 

25.0
4.00  = 6.25 Pa  

 (b) v = ω
k

  = 
1870
1.25  = 1496 m/s so the material is water  

(c) I = 
∆P

2
max

2ρv
  = 

(6.25)2

(2)(1000)(1496)  = 1.31 × 10–5 W/m2

β = 10 log 




1.31 × 10–5

1.00 × 10–12   = 71.2 dB  
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(d) ∆P = 




25.0

5.00   sin [(1.25)(5.00) – (1870)(0.0800)] = 4.59 Pa  

*17.33 (a ) f ' = f 
v

(v  ± vS)  

Approach:  f ' = 320 
(343)

(343 – 40.0)   = 362.2 Hz

Receding:  f ' = 320 
(343)

(343 + 40.0)   = 286.5 Hz

The change in frequency observed = 362 – 287 = 75.7 Hz   

(b) λ = 
v
′f    = 

343 m/s
362 Hz    = 0.948 m   

17.34 (a ) f ' = 
f(v + vO)
(v + vS)    where from observer to source is positive.

f ' = 2500 
(343 + 25.0)
(343 – 40.0)    = 3.04 kHz   

(b) f ' = 2500 
(343 – 25.0)
(343 + 40.0)   = 2.08 kHz   

(c) f ' = 2500 
(343 – 25.0)
(343 – 40.0)   = 2.62 kHz    while police car overtakes

f ' = 2500 
(343 + 25.0)
(343 + 40.0)   = 2.40 kHz    after police car passes

17.35 Approaching car

f ' = 
f 





1 – 

vS

v

    (Equation 17.14)

Departing car

f '' = 
f





1 + 

vS

v

    (Equation 17.15)
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Since f ' = 560 Hz and f '' = 480 Hz,

560 



1 – 

vS

v
   = 480 



1 + 

vS

v
  

1040 
vS

v
   = 80.0

vS = 
80.0(343)

1040    m/s = 26.4 m/s   

Goal Solution    
G: We can assume that a police car with its siren on is in a hurry to get somewhere, and is

probably traveling between 20 and 100 mph (~10 to 50 m/s), depending on the driving
conditions.

O: We can use the equation for the Doppler effect to find the speed of the car.

A: Approaching car:  f ' = 
f





vs

v

 (Eq. 17.14)

Departing car:  f '' = 
f





1 + 

vs

v

 (Eq. 17.15)

Where f ' = 560 Hz and f '' = 480 Hz.  Solving the two equations above for f and setting them
equal gives:

f ' 



1 – 

vs

v
  = f '' 



1 + 

vs

v
      or     f ' – f '' = 

vs

v
 (f ' + f '') 

so the speed of the source is vs = 
v(f ' – f '')
f '  + f ' '   = 

(343 m/s)(560 Hz – 480 Hz)
(560 Hz + 480 Hz)   = 26.4 m/s  

L: This seems like a reasonable speed (about 50 mph) for a police car, unless the street is crowded
or the car is traveling on an open highway.

*17.36 (a ) ω = 2πf = 2π 




115/min

60.0 s/min   = 12.0 rad/s

vmax = ωA = (12.0 rad/s)(1.80 × 10–3 m) = 0.0217 m/s  

(b) The heart wall is a moving observer.

f ' = f 



v + vO

v
  = (2,000,000 Hz) 





1500 + 0.0217

1500   = 2 000 028.9 Hz  
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(c) Now the heart wall is a moving source.

f '' = f ' 




v

v – vs
  = (2,000,029 Hz) 





1500

1500 – 0.0217   = 2 000 057.8 Hz  

17.37   ′f  = f 




v

v + vS
  

485 = 512 




340

340 + 9.80tfall
  

485(340) + (485)(9.80tf) = (512)(340)

tf = 




512 – 485

485  
340
9.80   = 1.93 s

d1 = 
1
2   g    tf

2   = 18.3 m

treturn = 
18.3
340    = 0.0538 s     The fork continues to fall while the sound returns.

ttotal fall = tf + treturn = 1.93 s + 0.0538 s = 1.985 s

dtotal = 
1
2  gt

2
total fall  = 19.3 m  

17.38 (a ) The maximum speed of the speaker is described by

1
2  mv

2
max  = 

1
2  kA2

vmax = k/m A = 
20.0 N/m
5.00 kg  (0.500 m)  = 1.00 m/s

           The frequencies heard by the stationary observer range from

f 'min  = f 




v

v + vmax
      to     f  'max  = f 





v

v – vmax
 

where v is the speed of sound.

f 'min  = 440 Hz 




343 m/s

343 m/s + 1.00 m/s   = 439 Hz  

f 'max  = 440 Hz 




343 m/s

343 m/s – 1.00 m/s   = 441 Hz  
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    (b) β = 10 dB log (I/I0) = 10 dB log 




℘/4πr2

I0
 

The maximum intensity level (of 60.0 dB) occurs at r = rmin = 1.00 m.  The minimum
intensity level occurs when the speaker is farthest from the listener  (i.e., when
r = rmax = rmin + 2A = 2.00 m).

Thus, βmax – βmin = 10 dB log 




℘

4πI0r
2
min

  – 10 dB log 




℘

4πI0r
2
max

 

or βmax – βmin = 10 dB log 






℘

4πI0r
2
min

 
4πI0r

2
max

℘   = 10 dB log 






r

2
max

r
2
min

 

           This gives:  60.0 dB – βmin = 10 dB log(4.00) = 6.02 dB, and βmin = 54.0 dB  

17.39 f ' = f 
(v ± vO)
(v  ± vS)  

(a ) f ' = 320 
(343 + 40.0)
(343 + 20.0)  = 338 Hz  

(b) f ' = 510 
(343 + 20.0)
(343 + 40.0)  = 483 Hz  

*17.40 (a ) v= (331 m/s) 1 + 
T

273°C  = (331 m/s) 1 + 
–10.0°C
273°C   = 325 m/s  

(b) Approaching the bell, the athlete hear a frequency of f ' = f 



v + vO

v
 

After passing the bell, she hears a lower frequency of f '' = f 



v – vO

v
 

The ratio is 
f ''
f  '   = 

v – vO

v + vO
  = 

5
6  , which gives 6v – 6vO = 5v + 5vO

or vO = 
v
11  = 

325 m/s
11   = 29.5 m/s  
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17.41 sin θ = 
vsound

vjet
  = 

vsound

1.20vsound
  = 

1
1.20 θ = 56.4°  

θ 

θ 

17.42 The half angle of the shock wave cone is given by sin θ = 
vlight

vS
 

vS = 
vlight

sin θ  = 
2.25 × 108 m/s

sin (53.0°)   = 2.82 × 108 m/s  

17.43 (b) sin θ = 
v
vS

  = 
1

3.00 θ = 19.5°

tanθ = 
h
x

 x = 
h

tan θ 

x = 
20000 m
tan 19.5°  = 5.66 × 104 m = 56.6 km  

  (a ) It takes the plane t = 
x
vS

  = 
5.66 × 104 m

3.00(335 m/s)  = 56.3 s   to travel this distance.

t = 0
h h 

x 

θ θ 

Observer Observer hears the boom

a. b.

17.44 θ = sin–1 
v
vS

  = sin–1 
1

1.38  = 46.4°  
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17.45 Let d be the distance the stone drops.

t = 
d
vS

   + 
2d
g

  

d + 



2

g
   vS   d   – vSt  = 0

d   = – 
1
2 






2

g
    vS + 

2v
2
S

g
 + 4vSt    

d   = 
1
2 (–155.0 ± 38 000)  

Choose the positive root so that d   > 0

d   = 20.0

d = 400 m   

If the speed of sound is ignored,

t = 
2  ′d

g
    

d = 
1
2   gt 2  = 510 m

The percentage error is given by

d ' – d
d

   = 0.275 = 27.5%   

*17.46 Model your loud, sharp sound impulse as a single narrow peak in a graph of air pressure versus
time.  It is a noise with no pitch, no frequency, wavelength, or period.  It radiates away from
you in all directions and some of it is incident on each one of the solid vertical risers of the
bleachers.  Suppose that, at the ambient temperature, sound moves at 340 m/s; and suppose
that the horizontal width of each row of seats is 60 cm.  Then there is a time delay of

0.6 m
(340 m/s)   ≈ 0.002 s

between your sound impulse reaching each riser and the next.  Whatever its material, each
will reflect much of the sound that reaches it.  The reflected wave sounds very different from
the sharp pop you made.  If there are twenty rows of seats, you hear from the bleachers a tone
with twenty crests, each separated from the next in time by

2(0.6 m)
(340 m/s)   ≈ 0.004 s
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This is the extra time for it to cross the width of one seat twice, once as an incident pulse and
once again after its reflection.  Thus, you hear a sound of definite pitch, with period about
0.004 s,  frequency

1
0.0035 s ~ 300 Hz   

wavelength

λ  =  
v
f

    =  
(340 m/s)
(300/s)    = 1.2 m ~ 100 m   

and duration

20(0.004 s) ~ 10–1 s   

*17.47 (a ) λ = 
v
f
  = 

343 m/s
1480 s–1  = 0.232 m  

(b) β = 81.0 dB = 10 dB log [I/(10–12 W/m2)]

I = (10–12 W/m2)108.10 = 10–3.90 W/m2 = 1.26 × 10–4 W/m2 = 
1
2  ρvω2s

2
max 

smax = 
2I

ρvω2  = 
2(1.26 × 10–4 W/m2)

(1.20 kg/m3)(343 m/s)4π2(1480 s–1)2  = 8.41 × 10–8 m  

(c) λ' = 
v
f '   = 

343 m/s
1397 s–1  = 0.246 m ∆λ = λ' – λ = 13.8 mm  

17.48 Since cos2 θ + sin2θ = 1 sin θ = ±(1 – cos2 θ)1/2

each sign applying half the time.

∆P = ∆Pmax sin (kx – ωt)

= ±ρvωsmax [1 – cos2(kx – ωt)]1/2

= ±ρvω [s2
max  – s2

max  cos2(kx – ωt)]1/2

= ±ρvω(s 2
max  – s2)1/2

*17.49 The trucks form a train analogous to a wave train of crests with speed v = 19.7 m/s and

unshifted frequency f = 
2

3.00 min  = 0.667/min.

(a ) The cyclist as observer measures a lower Doppler-shifted frequency:

f ' = f 



v – vO

v
  = (0.667/min) 





19.7 – 4.47

19.7   = 0.515/min  
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(b) f '' = f 



v – v 'O

v
  = (0.667/min) 





19.7 – 1.56

19.7   = 0.614/min  

The cyclist’s speed has decreased very significantly, but there is only a modest increase
in the frequency of trucks passing him.

*17.50 v = 
2d
t

  

d = 
vt
2    = 

1
2 (6.50 × 103 m/s)(1.85 s)   = 6.01 km   

*17.51 Call d the distance to the reflection point.  We have

2d = (6.20 km/s)t

and 2d = (3.20 km/s)(t + 2.40 s)

To solve for d we eliminate t by substitution:

t = 
2d

6.20 km/s         2d = (3.20 km/s) 




2d s

6.20 km + 2.40 s   

2d = 1.03d + 7.68 km

d = 
7.68 km

0.968    = 7.94 km   

*17.52 (a ) From the equation given in Example 17.1, the speed of a compression wave in a bar is

v = Y/ρ  = (20.0 × 1010 N/m2)/(7860 kg/m3)  = 5.04 × 103 m/s  

(b) The signal to stop passes between layers of atoms as a sound wave, reaching the back end
of the bar in time

t = L/v = (0.800 m)/(5.04 × 103 m/s) = 1.59 × 10–4 s  

(c) As described by Newton’s first law, the rearmost layer of steel has continued to move
forward with its original speed vi for this time, compressing the bar by

∆L = vit = (12.0 m/s)(1.59 × 10–4 s) = 1.90 × 10–3 m = 1.90 mm  

(d) The strain in the rod is:  ∆L/L = (1.90 × 10–3 m)/(0.800 m) = 2.38 × 10–3  

(e) The stress in the rod is:

σ = Y(∆L/L) = (20.0 × 1010 N/m2)(2.38 × 10–3) = 476 MPa  

Since σ > 400 MPa, the rod will be permanently distorted.
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(f ) We go through the same steps as in parts (a) through (e), but use algebraic expressions
rather than numbers:

The speed of sound in the rod is v = Y/ρ  .

The back end of the rod continues to move forward at speed vi for a time of

t = L/v = L ρ/Y , traveling distance ∆L = vit after the front end hits the wall.

The strain in the rod is:  ∆L/L= vit/L = vi ρ/Y 

The stress is then:  σ = Y(∆L/L) = Yvi ρ/Y  = vi ρY 

For this to be less than the yield stress, σy, it is necessary that

vi ρY  < σy     or     vi < 
σy

ρY
 

With the given numbers, this speed is 10.1 m/s.  The fact that the length of the rod
divides out means that the steel will start to bend right away at the front end of the rod.
There it will yield enough so that eventually the remainder of the rod will experience
only stress within the elastic range.  You can see this effect when sledgehammer blows
give a mushroom top to a rod used as a tent stake.

17.53 (a ) ′f  = f 
v

(v – vdiver)
  

so 1 – 
vdiver

v
   = 

f

  ′f  

⇒ vdiver = v 




1 – 

f
′f   

with v = 343 m/s, f ' = 1800 Hz and f = 2150 Hz

we find

vdiver = 343 




1 – 

1800
2150    = 55.8 m/s   

(b) If the waves are reflected, and the skydiver is moving into them, we have

f '' = f ' 
(v + vdiver)

v
  ⇒ f '' = f 





v

(v – vdiver)
 
(v + vdiver)

v
 

so f '' = 1800 
(343 + 55.8)
(343 – 55.8)    = 2500 Hz   
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Goal Solution    
G: Sky divers typically reach a terminal speed of about 150 mph (~75 m/s), so this sky diver

should also fall near this rate.  Since her friend receives a higher frequency as a result of the
Doppler shift, the sky diver should detect a frequency with twice the Doppler shift:
f ' = 1800 Hz + 2(2150 – 1800) Hz = 2500 Hz.

O: We can use the equation for the Doppler effect to answer both parts of this problem.

A: Call fe = 1800 Hz the emitted frequency; ve , the speed of the sky diver; and fg = 2150 Hz, the
frequency of the wave crests reaching the ground.

(a ) The sky diver source is moving toward the stationary ground, so we use the equation

fg = fs 



v

v – vs
 

and ve = v 




1 – 

fe

fg
  = (343 m/s) 





1 – 

1800 Hz
2150 Hz   = 55.8 m/s

(b) The ground now becomes a stationary source, reflecting crests with the 2150-Hz frequency
at which they reach the ground, and sending them to a moving observer:

fe2 = fg 



v + ve

v
  = 2150 





343 m/s + 55.8 m/s

343 m/s   = 2500 Hz

L: The answers appear to be consistent with our predictions, although the sky diver is falling
somewhat slower than expected.   The Doppler effect can be used to find the speed of many
different types of moving objects, like raindrops (Doppler radar) and cars (police radar).

17.54 (a ) f ' =  
f v

v – u f '' =  
f v

v + u  

f ' – f '' = fv 




1

v – u  –  
1

v + u   

∆ f  =  
fv(v + u – v + u)

v2 – u2    =  
2uvf

v2  1 – u
2

v2

  

∆f = 
2(u/v)

1 – (u2/v2) f  

(b) 130 km/h = 36.1 m/s

∴ ∆f = 
2(36.1)(400)

340 




1 – 

(36.1)2

3402

  = 85.9 Hz  
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17.55 Use the Doppler formula, and remember that the bat is a moving source.

If the velocity of the insect is vx ,

40.4 = 40.0 
(340 + 5.00)(340 – vx)

(340 – 5.00)(340 + vx)  

Solving,

vx = 3.31 m/s

Therefore, the bat is gaining on its prey at 1.69 m/s  

17.56 sin  β  = 
v
vS

  = 
1

NM
 

h = v(12.8 s)

x = vS(10.0 s)

tan β = 
h
x

  = 1.28 
v
vS

  = 
1.28
NM

 

cos β = 
sin β
tan β  = 

1
1.28 

β = 38.6°

NM = 
1

sin β  = 1.60  

*17.57 (a )

(b) λ = 
v
f
  = 

343 m/s
1000 s–1  = 0.343 m  

(c) λ' = 
v
f '   = 

v
f
 



v – vS

v
  = 

(343 – 40.0) m/s
1000 s–1   = 0.303 m  

(d) λ'' = 
v
f ' '  = = 

(343 + 40.0) m/s
1000 s–1   = 0.383 m  

(e) f ' = f 




v – vO

v – vS
  = (1000 Hz) 

(343 – 30.0) m/s
(343 – 40.0) m/s  = 1.03 kHz  

vs

β

shock front

shock front

x

h
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17.58 ∆t = L 




1

vair
 – 

1
vcu

  = L 
vcu – vair

vairvcu
 

L = 
vairvcu

vcu – vair
  ∆t = 

(331 m/s)(3.56 × 103 m/s)
(3560 – 331) m/s  (6.40 × 10–3 s) 

L = 2.34 m  

17.59 (a ) 120 dB = 10 dB log [I/(10–12 W/m2)]

I = 1.00 W/m2 = ℘/4πr2

r = ℘
4πI

  = 
6.00 W

4π(1.00 W/m2)  = 0.691 m  

           We have assumed the speaker is an isotropic point source.

(b) 0 dB = 10 dB log (I/10–12 W/m2)

I = 1.00 × 10–12 W/m2

r = ℘
4πI

  = 
6.00 W

4π(1.00 × 10–12 W/m2)  = 691 km  

           We have assumed a uniform medium that absorbs no energy.

17.60 The shock wavefront connects all observers first hearing the plane, including our observer O
and the plane P, so here it is vertical.  The angle φ that the shock wavefront makes with the
direction of the plane’s line of travel is given by

θ

φ

C

P

O

sin φ = 
v
vS

  = 
340 m/s
1963 m/s  = 0.173

so φ = 9.97°

Using the right triangle CPO, the angle θ is seen to be

θ = 90.0° – φ = 90.0° – 9.97° = 80.0°  
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17.61 When observer is moving in front of and in the same direction as the source, f ' = f  
v – vO

v – vS
  where

vO and vS are measured relative to the medium in which the sound is propagated.  In this case
the ocean current is opposite the direction of travel of the ships and

vO = 45.0 km/h – (– 10.0 km/h) = 55.0 km/h = 15.3 m/s,    and

vS = 64.0 km/h – (– 10.0 km/h) = 74.0 km/h = 20.55 m/s

Therefore, f ' = (1200.0 Hz) 
1520 m/s – 15.3 m/s
1520 m/s – 20.55 m/s  = 1204.2 Hz  

17.62 We suppose the sound level is uniform over the outer surface of area

2(0.400 m)(0.400 m) + 4(0.400 m)(0.500 m) = 1.12 m2

  The intensity is given by

40.0 dB = 10 dB log(I/10–12 W/m2)

I = 10–12 + 4 W/m2 = 10–8 W/m2

   The sound power is

  ℘ = IA = 1.12 × 10–8 W

   So the oven's energy efficiency as a sound source is

℘/℘input = (1.12 × 10–8 W)/(1.00 × 103 W) = 1.12 × 10–11  

17.63 (a ) θ = sin–1 




vsound

vobj
  = sin–1 





331

20.0 × 103   = 0.948°  

(b) θ ' = sin–1 




1533

20.0 × 103   = 4.40°  

17.64 ∆Pmax = ρωvsmax = ρ  
2πv
λ   vsmax

Also, ∆P and s are 90° out of phase.

Therefore, ∆P = – 



2πρv2smax

λ   cos (kx – ωt)
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17.65 For the longitudinal wave vL = (Y/ρ)1/2

For the transverse wave vT = (T/µ)1/2

If we require 
vL

vT
  = 8.00, we have T = 

µY
64.0ρ  where µ = 

m
L

  and

ρ = 
mass

volume  = 
m

πr2L
 

 This gives T = 
πr2Y
64.0   = 

π(2.00 × 10–3 m)2(6.80 × 1010 N/m2)
64.0   = 1.34 × 104 N  

17.66 ℘2 = 
1

20.0  ℘1 β1 – β2 = 10 log 
℘1

℘2
 

80.0 – β2 = 10 log 20.0 = +13.0

β2 = 67.0 dB  

17.67 t = 
0.300 × 103 J

4π(500 m)2(10–12 W/m2)(106)  = 95.5 s  

17.68 The total output sound energy is eE = ℘t, where ℘ is the power radiated.

Thus, t = 
eE
℘  = 

eE
I A

  = 
eE

(4πr2)I 

But, β = 10 log 




I

I0
  .  Therefore, I = I0(10β/10) and t = 

eE
4πr2I0(10β/10)  

17.69 (a ) If the source and the observer are moving away from each other, we have:  θS = θO = 180°,
and since cos 180° =  –1, we get Equation 17.17 with the lower signs.

(b) If  vO = 0 m/s, then f ' = 
v

v – vS cos θS
  f

Also, when the train is 40.0 m from the intersection, and the car is 30.0 m from the
intersection,

cos θS = 
4
5     so

f ' = 
343 m/s

343 m/s – 0.800(25.0 m/s) (500 Hz)      or     f ' = 531 Hz  
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Note that as the train approaches, passes, and departs from the intersection, θS varies
from 0° to 180° and the frequency heard by the observer varies from:

f 'max  = 
v

v – vS cos 0°    f = 
343 m/s

343 m/s – 25.0 m/s (500 Hz)  = 539 Hz

f 'min  = 
v

v – vS cos 180°   f = 
343 m/s

343 m/s + 25.0 m/s (500 Hz)  = 466 Hz

*17.70 Let T represent the period of the source vibration, and E be the energy put into each wavefront.
Then ℘av = E/T.  When the observer is at distance r in front of the source, he is receiving a
spherical wavefront of radius vt, where t is the time since this energy was radiated, given by
vt – vSt = r.  Then,

t = 
r

v – vS
 

The area of the sphere is 4π(vt)2 = 
4πv2r2

(v – vS)2  .    The energy per unit area over the spherical

wavefront is uniform with the value 
E
A

  = 
℘avT(v – vS)2

4πv2r2   .

The observer receives parcels of energy with the Doppler shifted frequency

f ' = f 




v

v – vS
  = 

v
T(v – vS)  ,  so the observer receives a wave with intensity

I = 




E

A
  f ' = 



℘avT(v – vS)2

4πv2r2  




v

T(v – vS)   = 
℘av

4πr2 



v – vS

v
 

17.71 (a ) The time required for a sound pulse to travel distance L at speed v is given by

t = 
L
v

  = 
L

Y/ρ
  .  Using this expression we find

t1 = 
L1

Y1/ρ1

  = 
L1

(7.00 × 1010 N/m2)/(2700 kg/m3)
  = (1.96 × 10–4 L1) s

t2 = 
1.50 m – L1

Y2/ρ2

  =

1.50 m – L1

(1.60 × 1010 N/m2)/(11.3 × 103 kg/m3)
 

or t2 = (1.26 × 10–3 – 8.40 × 10–4 L1) s

t3 = 
1.50 m

(11.0 × 1010 N/m3)/(8800 kg/m3)
 

t3 = 4.24 × 10–4 s

L1 L2

L3
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  We require t1 + t2 = t3,   or

1.96 × 10–4 L1 + 1.26 × 10–3 – 8.40 × 10–4 L1 = 4.24 × 10–4

This gives L1 = 1.30 m and L2 = 1.50 – 1.30 = 0.201 m

The ratio of lengths is then 
L1

L2
  = 6.45  

(b) The ratio of lengths L1/L2 is adjusted in part (a) so that t1 + t2 = t3.  Sound travels the

two paths in equal time and the phase difference, ∆φ = 0  .

17.72 Let θ = θ0 log R, I = kR:

β = 10 log 




I

I0
  = 10 log I – 10 log I0 = 10 log kR – 10 log I0

or β = 10 log R + 10(log k – log I0) = 10 




θ

θ0
  + 10(log k – log I0)

β = 




10

θ0
 θ + 10 log 





k

I0
  ← the equation of a straight line.  [y = mx + b]

*17.73 To find the separation of adjacent molecules, use a model where each molecule occupies a
sphere of radius r  given by

ρair = 
average mass per molecule

4
3
 πr3

 

or 1.20 kg/m3 = 
4.82 × 10–26 kg

4
3
 πr3

  , r = 




3(4.82 × 10–26 kg)

4π(1.20 kg/m3)  
1/3

 = 2.12 × 10–9 m

Intermolecular separation is 2r = 4.25 × 10–9 m, so the highest possible frequency sound wave is

fmax = 
v

λmin
  = 

v
2r

  = 
343 m/s

4.25 × 10–9 m  = 8.03 × 1010 Hz ~ 1011 Hz  


