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Chapter 18 Solutions

18.1 The resultant wave function has the form

y = 2A0 cos  
φ
2    sin  kx – ω t + φ2   

(a ) A = 2A0 cos  
φ
2    = 2(5.00) cos 





–(π /4)

2    = 9.24 m   

(b) f = ω2π   = 
1200π

2π    = 600 Hz   

*18.2 We write the second wave function as

y2 = A sin(kx – ω t + φ)

y2 = (0.0800 m) sin [2π (0.100x – 80.0t) + φ]

Then

y1 + y2 = (0.0800 m) sin [2π (0.100x – 80.0t)]

+ (0.0800 m) sin [2π (0.100x – 80.0t) + φ]

= 2(0.0800 m) cos φ2   sin  2π (0.100x – 80.0t) + φ2   

We require 2(0.0800 m) cos φ2   = 0.0800 3  

cos φ2   = 
3

2   

φ = 60.0° = 
π
3  

Then the second wave function is

y2 = (0.0800 m) sin 




2π 





0.100x – 80.0t + 

1
6  

y2 = (0.0800 m) sin [2π(0.100x – 80.0t + 0.167)]  
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18.3 Suppose the waves are sinusoidal.  The sum is

(4.00 cm) sin (kx – ω t) + (4.00 cm) sin (kx – ω t + 90.0°)

2(4.00 cm) sin (kx – ω t + 45.0°) cos 45.0°

So the amplitude is (8.00 cm) cos 45.0° = 5.66 cm   

18.4 2A0 cos  
φ
2    = A0, so φ2  = cos–1 





1

2   = 60.0° = π3 

Thus, the phase difference is φ = 120° = 
2π
3  

This phase difference results if the time delay is  
T
3   =  

1
3f

   = λ
3v

  

Time delay = 
3.00 m

3(2.00 m/s)   = 0.500 s   

18.5 Waves reflecting from the near end travel 28.0 m (14.0 m down and 14.0 m back), while waves
reflecting from the far end travel 66.0 m.  The path difference for the two waves is:

∆r = 66.0 m – 28.0 m = 38.0 m

Since λ = 
v
f

  , then 
∆r
λ   = 

(∆r)f
v

  = 
(38.0 m)(246 Hz)

343 m/s   = 27.254

or, ∆r = 27.254λ

The phase difference between the two reflected waves is then

φ = 0.254(1 cycle) = 0.254(2π rad) = 91.3°  

18.6 (a ) First we calculate the wavelength:  λ  =  
v
f

   =  
344 m/s
21.5 Hz   =  16.0 m

Then we note that the path difference equals  9.00 m – 1.00 m = 
1
2 λ   

Therefore, the receiver will record a minimum in sound intensity.
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(b) If the receiver is located at point (x, y), then we must solve:

(x + 5.00)2 + y2  – (x – 5.00)2 + y2  = 
1
2  λ

Then, (x + 5.00)2 + y2  = (x – 5.00)2 + y2  + 
1
2  λ

Square both sides and simplify to get:   20.0x – λ
2

4   = λ (x – 5.00)2 + y2 

Upon squaring again, this reduces to:

400x2 – 10.0λ2x + λ4

16.0  = λ2(x – 5.00)2 + λ2y2

Substituting  λ = 16.0 m, and reducing, we have:

9.00x2 – 16.0y2 = 144       or     
x2

16.0  – 
y2

9.00  = 1

(When plotted this yields a curve called a hyperbola.)

18.7 We suppose the man's ears are at the same level as the lower speaker.  Sound from the upper

speaker is delayed by traveling the extra distance L2 + d2  – L.

He hears a minimum when this is  (2n – 1)λ /2  with  n = 1, 2, 3, . . .

Then, L2 + d2  – L = (n – 1/2)v/f

L2 + d2  = (n – 1/2)v/f + L

L2 + d2 = (n – 1/2)2v2/f2 + L2 + 2(n – 1/2)vL/f

L = 
d2 – (n – 1/2)2v2/f2

2(n – 1/2)v/f
      n = 1, 2, 3, . . . 

This will give us the answer to (b).  The path difference starts from nearly zero when the man
is very far away and increases to d when L = 0.  The number of minima he hears is the greatest
integer solution to d ≥  (n – 1/2) v/f

n = greatest integer ≤ df/v + 1/2

(a) df/v + 
1
2  = (4.00 m)(200/s)/330 m/s + 

1
2  = 2.92

He hears two   minima.
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(b) With n = 1,

L = 
d2 – (1/2)2v2/f2

2(1/2)v/f
  = 

(4.00 m)2 – (330 m/s)2/4(200/s)2

(330 m/s)/200/s  

L = 9.28 m  

with n = 2

L = 
d2 – (3/2)2v2/f2

2(3/2)v/f
  = 1.99 m  

18.8 Suppose the man's ears are at the same level as the lower speaker.  Sound from the upper

speaker is delayed by traveling the extra distance ∆r = L2 + d2  – L.

He hears a minimum when

∆r = (2n – 1)  
λ
2   with n = 1, 2, 3, . . .

 Then, L2 + d2  – L = (n – 1/2)(v/f)

L2 + d2  = (n – 1/2)(v/f) + L

L2 + d2 = (n – 1/2)2(v/f)2 + 2(n – 1/2)(v/f)L + L2         (1)

 Equation 1 gives the distances from the lower speaker at which the man will hear a minimum.
The path difference ∆r starts from nearly zero when the man is very far away and increases to
d when L = 0.

(a ) The number of minima he hears is the greatest integer value for which L ≥ 0.  This is the
same as the greatest integer solution to d ≥ (n – 1/2)(v/f), or

number of minima heard = nmax = greatest integer ≤ d(f/v) + 1/2  

(b) From Equation 1, the distances at which minima occur are given by

Ln = 
d2 – (n – 1/2)2(v/f)2

2(n – 1/2)(v/f)  where n = 1, 2, . . ., nmax  

18.9 y = (1.50 m) sin (0.400x) cos (200t) = 2A0 sin kx cos ωt

Therefore,

k = 
2π
λ   = 0.400 

rad
m  λ = 

2π
0.400 rad/m  = 15.7 m  

and ω = 2πf, so f = ω2π  = 
200 rad/s
2π rad   = 31.8 Hz  
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The speed of waves in the medium is

v = λf = λ
2π  2πf = ω

k
  = 

200 rad/s
0.400 rad/m  = 500 m/s  

18.10 y = 0.0300 m cos 




x

2    cos (40t)

(a ) nodes occur where y = 0:

x
2   = (2n + 1) π2  

so x = (2n + 1)π = π, 3π, 5π, . . .  

(b) ymax = 0.0300 m cos 




0.400

2    = 0.0294 m   

18.11 The facing speakers produce a standing wave in the space between them, with the spacing
between nodes being

dNN = λ2  = 
v
2f

  = 
343 m/s

2(800 s–1)  = 0.214 m

If the speakers vibrate in phase, the point halfway between them is an

antinode, at 
1.25 m

2   = 0.625 m from either speaker.

Then there is a node at

0.625 m – 
0.214 m

2   = 0.518 m  , a node at

0.518 m – 0.214 m = 0.303 m  , a node at

0.303 m – 0.214 m = 0.0891 m  , a node at

0.518 m + 0.214 m = 0.732 m  , a node at

0.732 m + 0.214 m = 0.947 m  , and a node at

0.947 m + 0.214 m = 1.16 m   from either speaker
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*18.12 (a ) The resultant wave is

y = 2A sin  kx + φ2    cos  ω t – φ2   

The nodes are located at

kx + φ2   = nπ

so x = 
nπ
k

   –  φ
2k

  

which means that each node is shifted  φ
2k

   to the left.

(b) The separation of nodes is

∆x = 




(n + 1) 

π
k

 –  φ
2k

   – 




nπ

k
  –  φ

2k
  

∆x = 
π
k

   =  λ2  

The nodes are still separated by half a wavelength.

18.13 y1 = 3.00 sin [π(x + 0.600t)] cm y2 = 3.00 sin [π(x – 0.600t)] cm

y = y1 + y2 = [3.00 sin (πx) cos (0.600 πt) + 3.00 sin (πx) cos (0.600πt)] cm

= (6.00 cm) sin (πx) cos (0.600πt)

(a ) We can take cos(0.600πt) = 1 to get the maximum y.

At  x = 0.250 cm, ymax = (6.00 cm) sin (0.250π) = 4.24 cm  

(b) At  x = 0.500 cm, ymax = (6.00 cm) sin (0.500π) = 6.00 cm  

(c) Now take cos (0.600πt) = –1 to get ymax:

At  x = 1.50 cm, ymax = (6.00 cm) sin (1.50π)(–1) = 6.00 cm  

(d) The antinodes occur when  x = nλ/4    (n = 1, 3, 5, . . . ).  But

k = 2π/λ = π,   so   λ = 2.00 cm,   and

x1 =  λ/4 = 0.500 cm   as in (b)

x2 = 3λ/4 = 1.50 cm   as in (c)

x3 = 5λ/4 = 2.50 cm  
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18.14 (a ) Using the given parameters, the wave function is

y = 2π sin 




πx

2   cos (10πt)

We need to find values of x for which sin 




πx

2   = 1

This condition requires that 
πx
2   = π 





n + 

1
2   ; n = 0, 1, 2, . . .

For n = 0, x = 1.00 cm and for n = 1, x = 3.00 cm

Therefore, the distance between antinodes, ∆x = 2.00 cm  

(b) A = 2π sin 




πx

2   ; when x = 0.250 cm, A = 2.40 cm  

18.15 y = 2A0 sin kx cos ωt

∂2y
∂x2   = –2A0k2 sin kx cos ωt

∂2y
∂t2   = –2A0ω2 sin kx cos ωt

Substitution into the wave equation gives

–2A0k2 sin kx cos ωt = 




1

v2  (–2A0ω2 sin kx cos ωt) 

This is satisfied, provided that v = ω
k

 

18.16 µ = 
0.100 kg
2.00 m    = 0.0500 kg/m

v = 
T
µ

     = 
(20.0 kg · m/s2)

0.0500 kg/m      = 20.0 m/s

For the simplest vibration possibility, NAN,

dNN = 2.00 m = λ2           λ = 4.00 m

f = 
v
λ   = 

(20.0 m/s)
4.00 m    = 5.00 Hz   
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For the second state NANAN,

dNN = 1.00 m         λ = 2.00 m

f = 
(20.0 m/s)

2.00 m    = 10.0 Hz   

For the third resonance, NANANAN,

dNN = 
2.00 m

3          λ = 1.33 m        f = 15.0 Hz   

The mode mentioned in the problem has

dNN = 0.400 m        λ = 0.800 m        f = 25.0 Hz   

It is the fifth allowed state  .

18.17 L = 30.0 m        µ = 9.00 × 10–3 kg/m        T = 20.0 N

f1 = 
v
2L

  

where v = 




T

µ
 
1/2

 = 47.1 m/s

so f1 =  
47.1
60.0   = 0.786 Hz   

f2 = 2f1 = 1.57 Hz          f3 = 3f1 = 2.36 Hz         f4 = 4f1= 3.14 Hz   

Goal Solution    
G: The string described in the problem is very long, loose, and somewhat massive, so it should

have a very low fundamental frequency, maybe only a few vibrations per second.

O: The tension and linear density of the string can be used to find the wave speed, which can
then be used along with the required wavelength to find the fundamental frequency.

A: The wave speed is v = 
F
µ

  = 
20 N

9.0 × 10–3 kg/m  = 47.1 m/s

For a vibrating string of length L fixed at both ends, the wavelength of the fundamental
frequency is λ = 2L = 60.0 m; and the frequency is

f1 = 
v
λ  = 

v
2L

  = 
47.1 m/s

60 m   = 0.786 Hz  
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The next three harmonics are

f2 = 2f1 = 1.57 Hz  

f3 = 3f1 = 2.36 Hz  

f4 = 4f1 = 3.14 Hz  

L: The fundamental frequency is even lower than expected, less than 1 Hz.  In fact, all 4 of the
lowest resonant frequencies are below the normal human hearing range (20 to 17 000 Hz), so
these harmonics are not even audible.

18.18 L = 120 cm        f = 120 Hz

(a) For four segments,

L = 2λ

or λ = 60.0 cm = 0.600 m   

(b) v = λ f = 72.0 m/s

f1 = 
v
2L

   = 
72.0

2(1.20)   = 30.0 Hz   

18.19 dNN = 0.700 m

     λ = 1.40 m

     f λ = v = 308 m/s = 
T

(1.20 × 10–3)/(0.700)    

(a ) T = 163 N   

(b) f3 = 660 Hz   
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Goal Solution    
G: The tension should be less than 100 lbs. (~500 N) since excessive force on the 4 cello strings

would break the neck of the instrument.  If the string vibrates in three segments, there will be
three antinodes (instead of one for the fundamental mode), so the frequency should be three
times greater than the fundamental.

O: The length of the string can be used to find the wavelength, which can be used with the
fundamental frequency to find the wave speed.  The tension can then be found from the wave
speed and linear mass density of the string.

A: When the string vibrates in the lowest frequency mode, the length of string forms a standing
wave where L = λ/2  (see Figure 18.2b), so the fundamental harmonic wavelength is

λ = 2L = 2(0.700 m) = 1.40 m

and the velocity is v = fλ = (220 s–1)(1.40 m) = 308 m/s

From the tension equation v = 
T
µ

  = 
T

m/L
     we get

(a ) T = 
v2m
L

  = 
(308 m/s)2(1.20 × 10–3 kg)

0.700 m   = 163 N

(b) For the third harmonic, the tension, linear density, and speed are the same.  However,
the string vibrates in three segments so that the wavelength is one third as long as in
the fundamental (see Figure 18.2d).

λ3 = λ/3

From the equation   λf =v , we find that the frequency is three times as high:

f3 = 
v
λ3

  = 3 
v
λ  = 3f = 660 Hz

L: The tension seems reasonable, and the third harmonic is three times the fundamental
frequency as expected.  Related to part (b), some stringed instrument players use a technique
to double the frequency of a note by “cutting” a vibrating string in half.  When the string is
suddenly held at its midpoint to form a node, the second harmonic is formed, and the
resulting note is one octave higher (twice the original fundamental frequency).
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*18.20 f1 = 
v
2L

   ,   where v = 




T

µ
 
1/2

(a ) If L is doubled, then f1 ∝ L–1 will be reduced by a factor 
1
2   .

(b) If µ is doubled, then f1 ∝ µ–1/2  will be reduced by a factor 
1

2
   .

(c) If T is doubled, then f1 ∝  T  will increase by a factor of 2  .

18.21 L = 60.0 cm = 0.600 m        T = 50.0 N        µ = 0.100 g/cm = 0.0100 kg/m

fn = 
nv
2L

  

where

v = 




T

µ
 
1/2

 = 70.7 m/s

fn = n 




70.7

1.20    = 58.9n = 20,000 Hz

Largest n = 339 ⇒ f = 19.976 kHz   

18.22 f = 
v
λ   = 

T
µ

    
1
λ   = 

T4
ρπ d 2

    
2
L

  

since µ = 
M
L

   =  
ρV
L

   =  ρ 
AL
L

  

fnew  = 
4Told4

ρoldπ (2dold)2   
2

Lold/2  

= 
Told4

ρold π d 2
old

   
2

Lold
   × 2 = 2 fold = 800 Hz   

18.23 λ G = 2(0.350 m) = 
v
fG

  

λA = 2LA = 
v
fA

  

LG – LA = LG  – 




fG

fA
   LG = LG Error! )  = (0.350 m) Error! = 0.0382 m
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Thus, LA = LG – 0.0382 m = 0.350 m – 0.0382 m = 0.312 m, or the finger should be placed

31.2 cm from the bridge  .

LA = 
v

2fA
   = 

1
2 fA

 
T
µ

  

dLA = 
dT

4 fA  Tµ
  

dLA

LA
   = 

1
2 

dT
T

  

dT
T

   = 2 
dLA

LA
   = 2 

0.600 cm
(35.0 – 3.82) cm    =  3.84%   

18.24 In the fundamental mode, the string above the rod has
only two nodes, at A and B, with an anti-node halfway
between A and B.  Thus,

λ
2  = AB

—
  = 

L
cos θ      or     λ = 

2L
cos θ 

Since the fundamental frequency is f, the wave speed in
this segment of string is

v = λf = 
2Lf

cos θ 

Also, v = 
T
µ

  = 
T

m/AB
—   = 

TL
m cos θ 

where T is the tension in this part of the string.  Thus,

2Lf
cos θ  = 

TL
m cos θ      or     

4L2f2

cos2 θ
  = 

TL
m cos θ 

and the mass of string above the rod is:

m = 
T cos θ
4Lf2  [Equation 1]

Now, consider the tension in the string.  The light rod would rotate about point P if the string
exerted any vertical force on it.  Therefore, recalling Newton’s third law, the rod must exert
only a horizontal force on the string.  Consider a free-body diagram of the string segment in
contact with the end of the rod.

∑Fy = T sin θ – Mg = 0 ⇒ T = 
Mg

sin θ 

L

M

θ

A

B

T

F

Mg

θ
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Then, from Equation 1, the mass of string above the rod is

m = 




Mg

sin θ  
cos θ
4Lf2   = 

Mg

4Lf2 tan θ
 

18.25 (a ) Let n be the number of nodes in the standing wave resulting from the 25.0-kg mass.  Then
n + 1 is the number of nodes for the standing wave resulting from the 16.0-kg mass.  For
standing waves, λ = 2L/n, and the frequency is f = v/λ .   

Thus, f = 
n

2L
 

Tn

µ
  , and also f = 

n + 1
2L

 
Tn + 1

µ
 

Thus, 
n + 1

n
  = 

Tn

Tn + 1
  = 

(25.0 kg)g
(16.0 kg)g  = 

5
4 

Therefore, 4n + 4 = 5n, or n = 4

Then, f = 
4

2(2.00 m)  
(25.0 kg)(9.80 m/s2)

0.00200 kg/m   = 350 Hz  

(b) The largest mass will correspond to a standing wave of 1 loop

(n = 1), so 350 Hz = 
1

2(2.00 m) 
m(9.80 m/s2)
0.00200 kg/m 

yielding m = 400 kg  

*18.26 Using the frets does not change the speed of the wave.  Therefore,  if dNN is the distance
between adjacent nodes,

λ1f1 = λ2f2 = 2dNN1f1 = 2dNN2f2     or

dNN2 = dNN1 



f1

f2
  = 21.4 cm 





2349 Hz

2217 Hz   = 22.7 cm

Thus, the distance between frets is

dNN2 – dNN1 = 22.7 cm – 21.4 cm = 1.27 cm  

*18.27 The natural frequency is

f = 
1
T

  = 
1

2π 
g
L

  = 
1

2π 
9.80 m/s2

2.00 m   = 0.352 Hz

The big brother must push at this same frequency of 0.352 Hz   to produce resonance.
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*18.28 The distance between adjacent nodes is one-quarter of the circumference.

dNN = dAA = λ2  = 
20.0 cm

4   = 5.00 cm

so λ = 10.0 cm    and    f =  
v
λ   =  

900 m/s
0.100 m   =  9000 Hz = 9.00 kHz   

The singer must match this frequency quite precisely for some interval of time to feed enough
energy into the glass to crack it.

*18.29 (a ) The wave speed is v = 
9.15 m
2.50 s   = 3.66 m/s  

(b) From Figure P18.29, there are antinodes at both ends, so the distance between adjacent
antinodes is

dAA = λ2  = 9.15 m, and the wavelength is λ = 18.3 m

The frequency is then f = 
v
λ  = 

3.66 m/s
18.3 m   = 0.200 Hz  

We have assumed the wave speed is the same for all wavelengths.

*18.30 The wave speed is v = gd  = (9.80 m/s2)(36.1 m)  = 18.8 m/s

The bay has one end open and one end closed, so its simplest resonance is with a node (of
velocity, antinode of displacement) at the head of the bay and an antinode (of velocity, node
of displacement) at the mouth.  Then,

dNA = 210 × 103 m = λ4      and     λ = 840 × 103 m

Therefore, the period is

T = 
1
f

  = λ
v

  = 
840 × 103 m

18.8 m/s   = 4.47 × 104 s = 12 h 24 min  

This agrees precisely with the period of the lunar excitation  , so we identify the extra-

high tides as amplified by resonance.

18.31 (a ) For the fundamental mode in a closed pipe,  λ = 4L.  (see Figure 18.3b)

But v = fλ, therefore L = 
v
4f

 

So, L = 
343 m/s
4(240/s)  = 0.357 m  

(b) For an open pipe,   λ = 2L. (see Figure 18.3a)

So, L = 
v
2f

  = 
343 m/s
2(240/s)  = 0.715 m  
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*18.32
λ
2  = dAA = 

L
n

      or     L = 
nλ
2       for     n = 1, 2, 3, . . .

Since λ = 
v
f

  , L = n 




v

2f
  for n = 1, 2, 3, . . .

With v = 343 m/s, and f = 680 Hz,

L = n 




343 m/s

2(680 Hz)   = n(0.252 m) for n = 1, 2, 3, . . .

Possible lengths for resonance are:

L = 0.252 m, 0.504 m, 0.757 m, . . ., n(0.252) m  

18.33 dAA = 0.320 m          λ = 0.640 m

(a) f = 
v
λ   = 531 Hz   

(b) λ = 0.0850 m           dAA = 42.5 mm   

*18.34 The wavelength is

λ =  
v
f

   =  
343 m/s
261.6/s    = 1.31 m

so the length of the open pipe vibrating in its simplest (A-N-A) mode is

dA to A = 
1
2  λ = 0.656 m   

A closed pipe has (N-A) for its simplest resonance, (N-A-N-A) for the second, and (N-A-N-A-
N-A) for the third.  Here, the pipe length is

5dN to A = 
5λ
4    =  

5
4 (1.31 m)   = 1.64 m   

*18.35 The air in the auditory canal, about 3 cm long, can vibrate with a node at the closed end and
antinode at the open end, with

dN to A = 3 cm = λ4  

so λ = 0.12 m

and f = 
v
λ   = 

343 m/s
0.12 m    ≈ 3 kHz   

A small-amplitude external excitation at this frequency can, over time, feed energy into a
larger-amplitude resonance vibration of the air in the canal, making it audible.
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18.36 λ = 
v
f
   = 

343 m/s
440/s    = 0.780 m

dN to A = λ4   = 0.195 m = length of resonant air column

Water height = 0.400 m – 0.195 m = 0.205 m

m = ρV = ρAh = (1000 kg/m3)(0.100 m2)(0.205 m) = 20.5 kg   

18.37 For a closed box, the resonant frequencies will have nodes at both sides, so the permitted

wavelengths will be L = 
nλ
2   ,  (n = 1, 2, 3, . . . ).

i.e., L = 
nλ
2   = 

nv
2 f   

and f = 
nv
2L

  

Therefore, with L = 0.860 m and L' = 2.10 m, the resonant frequencies are

fn = n(206 Hz)    for L = 0.860 m for each n from 1 to 9

and f 'n   = n(84.5 Hz)    for L' = 2.10 m for each n from 2 to 23

18.38 We suppose these are the lowest resonances of the enclosed air columns.

For one,

λ =  
v
f

   = 
(343 m/s)

256/s    = 1.34 m

length = dAA =  λ2   =  0.670 m

For the other,

λ =  
v
f

   = 
343 m/s
440/s    = 0.780 m

length = 0.390 m

So,

(b) original length = 1.06 m   

λ = 2dAA = 2.12 m

(a) f =  
(343 m/s)

2.12 m    = 162 Hz   
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18.39 The fork radiates sound with   λ = 
v
f

  

The distance between successive water levels at resonance is

dNN = 
v
2 f   

So Rt =  
π r 2v

2 f   

t =  
π r 2v
2R f

  

t = 
π (4.00 × 10–2 m)2(343 m/s)
2(18.0 × 10–6 m3/s)(200/s)    = 239 s   

18.40 The wavelength of sound is    λ =  
v
f

  

The distance between water levels at resonance is

d = 
v
2 f   

∴ Rt = π r 2d = 
π r 2v

2 f   

and t = 
π r 2v
2R f

  

18.41 The length corresponding to the fundamental satisfies f = 
v
4L

  ,  giving

L1 = 
v
4f

  = 
343

4(512)  = 0.167 m

Since L > 20.0 cm, the next two modes will be observed, corresponding to

f = 
3v
4L2

      and     f = 
5v
4L3

 

or L2 = 
3v
4f

  = 0.502 m       and     L3 
5v
4f

  = 0.837 m  

18.0 cm3/s

200 Hz
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18.42 Call L the depth of the well and v  the speed of sound.  Then for some integer n

L = (2n – 1) 
λ1

4   = (2n – 1) 
v

4f1
  = 

(2n – 1)(343 m/s)
4(51.5 s–1)  

and for the next resonance

L = [2(n + 1) – 1] 
λ2

4   = (2n + 1) 
v

4f2
  = 

(2n + 1)(343 m/s)
4(60.0 s–1)  

Thus, 
(2n – 1)(343 m/s)

4(51.5 s–1)   = 
(2n + 1)(343 m/s)

4(60.0 s–1)   ,

and we require an integer solution to 
2n + 1
60.0   = 

2n – 1
51.5  

The equation gives n = 
111.5

17   = 6.56, so the best fitting integer is n = 7.

Then L = 
[2(7) – 1](343 m/s)

4(51.5 s–1)   = 21.6 m

and L = 
[2(7) + 1](343 m/s)

4(60.0 s–1)   = 21.4 m

suggest the best value for the depth of the well is 21.5 m  .

18.43 For resonance in a tube open at one end,

f = n
v
4L

 (n = 1, 3, 5, . . .) Equation 18.12

(a) Assuming n = 1 and n = 3,

384 = 
v

4(0.228)      and     384 = 
3v

4(0.683) 

In either case, v = 350 m/s    

(b) For the next resonance, n = 5,   and

L = 
5v
4f

  = 
5(350 m/s)
4(384 s–1)   = 1.14 m  

22.8 cm

68.3 cm
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18.44 (a ) f1 = 
v
λ  = 

v
4L

  = 
331.5 m/s
4(4.88 m)  = 17.0 Hz  

(b) f1 = 
v
λ  = 

v
2L

  = 34.0 Hz  

(c) For the closed pipe, f = 
v(20.0°C)
v(0°C)   f1 = 1 + 

20.0
273     f1 = 17.6 Hz  

For the open pipe, f = 1 + 
20.0
273     f1 = 35.2 Hz  

*18.45 (a ) For the fundamental mode of an open tube,

L = λ2  = 
v
2f

  = 
343 m/s

2(880 s–1)  = 0.195 m  

(b) v = 331 m/s 1 + 
(–5.00)

273   = 328 m/s

We ignore the thermal expansion of the metal.

f = 
v
λ  = 

v
2L

  = 
328 m/s

2(0.195 m)  = 841 Hz  

The flute is flat by a semitone.

18.46 When the rod is clamped at one-quarter of its length, the fundamental frequency corresponds to
a mode of vibration in which L = λ.

Therefore, L = 
v
f

  = 
5100 m/s
4400 Hz   = 1.16 m  

18.47 (a ) f = 
v
2L

  = 
5100

(2)(1.60)  = 1.59 kHz  

(b) Since it is held in the center, there must be a node in the center as well as antinodes at

the ends.  The even harmonics have an antinode at the center so only the odd harmonics   

are present.

(c) f = 
v '
2L

  = 
3560

(2)(1.60)  = 1.11 kHz  

18.48 v = 4500 m/s λ1 = 4L = 240 cm = 2.40 m

so, f1 = 
v
λ1

  = 
v
4L

  = 
4500
2.40  = 1.88 kHz  



20 Chapter 18 Solutions

© 2000 by Harcourt College Publishers.  All rights reserved.

18.49 f ∝ v ∝ T 

fnew = 110 
540
600   = 104.4 Hz

∆ f = 5.64 beats/s  

Goal Solution    
G: Beat frequencies are usually only a few Hertz, so we should not expect a frequency much

greater than this.

O: As in previous problems, the two wave speed equations can be used together to find the
frequency of vibration that corresponds to a certain tension.  The beat frequency is then just the
difference in the two resulting frequencies from the two strings with different tensions.

A: Combining the velocity equation v = f/λ  and the tension equation v = 
T
µ

   we find that

f = 
T

µλ2 

and since µ and λ are constant, we can divide to get  
f2
f1

  = 
T2

T1
 

With f1 = 110 Hz, T1 = 600 N, and T2 = 540 N:  f2 = (110 Hz) 
540 N
600 N  = 104.4 Hz

The beat frequency is:  fb = f1 – f2   = 110 Hz – 104.4 Hz = 5.64 Hz

L: As expected, the beat frequency is only a few cycles per second.  This result from the
interference of the two sound waves with slightly different frequencies has a tone that varies
in amplitude over time, similar to the sound made by saying “wa-wa-wa…”
Note:  The beat frequency above is written with three significant figures on the assumption
that the data and known precisely enough to warrant them.  This assumption implies that
the original frequency is known more precisely than to the three significant digits quoted in
"110 Hz."  For example, if the original frequency of the strings were 109.6 Hz, the beat
frequency would be 5.62 Hz.

*18.50 (a ) The string could be tuned to either 521 Hz or 525 Hz   from this evidence.

(b) Tightening the string raises the wave speed and frequency.  If the frequency were
originally 521 Hz, the beats would slow down.  Instead, the frequency must have started

at 525 Hz to become 526 Hz  .



Chapter 18 Solutions 21

© 2000 by Harcourt College Publishers.  All rights reserved.

(c) From f = 
v
λ  = 

T/µ
2L

  = 
1

2L
 

T
µ

  ,

f2

f1
  = 

T2

T1
      and     T2 = 





f2

f1
 
2
 T1 = 





523 Hz

526 Hz  
2
 T1 = 0.989T1

The fractional change that should be made in the tension is then

fractional change = 
T1 – T2

T1
  = 1 – 0.989 = 0.0114 = 1.14% lower

The tension should be reduced by 1.14%  .

18.51 For an echo f ' = f 
(v + vs)

(v  – vs)
  

the beat frequency is f b  = f ' – f  

Solving for fb gives fb = f 
(2vs)

(v  – vs)
  when approaching wall.

(a ) fb = (256) 
(2)(1.33)

(343 – 1.33)  = 1.99 Hz    beat frequency

(b) When moving away from wall, vs changes sign.  Solving for vs gives

vs = 
fbv

2f – fb
   = 

(5)(343)
(2)(256) – 5   = 3.38 m/s   
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*18.52 We evaluate

s = 100 sin θ + 157 sin 2θ + 62.9 sin 3θ + 105 sin 4θ + 51.9 sin 5θ + 29.5 sin 6θ + 25.3 sin 7θ

where s represents particle displacement in nanometers and θ represents the phase of the wave
in radians.  As θ advances by 2π, time advances by (1/523) s.  Here is the result:

400

200

0

—200

—400

s (nm)

0 2 4 6 8 10 12

Phase (rad)

Flute Waveform

*18.53 We list the frequencies of the harmonics of each note in Hz:

Harmonic
Note 1 2 3 4 5

A 440.00   880.00 1320.0 1760.0 2200.0
C# 554.37 1108.7 1663.1 2217.5 2771.9
E 659.26 1318.5 1977.8 2637.0 3296.3

The second harmonic of E is close to the third harmonic of A, and the fourth
harmonic of C# is close to the fifth harmonic of A.
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18.54 (a ) For the block:

∑Fx = T – Mg sin 30.0° = 0

so T = Mg sin 30.0° = 
1
2 Mg  

(b) The length of the section of string parallel to the
incline is h/sin 30.0° = 2h.  The total length of the

string is then 3h  .

(c) The mass per unit length of the string is µ = m/3h  .

(d) The speed of waves in the string is v = 
T
µ

  = 




Mg

2  




3h

m
  = 

3Mgh
2m

 

(e) In the fundamental mode, the segment of length h vibrates as one loop.  The distance
between adjacent nodes is then dNN = λ/2 = h, so the wavelength is λ = 2h.

The frequency is f = 
v
λ  = 

1
2h

 
3Mgh

2m
  = 

3Mg
8m h

   

(g) When the vertical segment of string vibrates with 2 loops (i.e., 3 nodes), then h = 2  
λ
2    

and the wavelength is λ = h  .

( f ) The period of the standing wave of 3 nodes (or two loops) is

T = 
1
f

  = λ
v

  = h 
2m

3Mgh
  = 

2m h
3Mg

  

( h ) fb = 1.02f – f = (2.00 × 10–2)f = (2.00 × 10–2) 
3Mg
8m h

   

18.55 (a ) ∆ x = (9.00 + 4.00)    – 3.00 = 13.0   – 3.00 = 0.606 m

The wavelength is λ =  
v
f

    =  
343 m/s
300 Hz    = 1.14 m

Thus, 
∆x
λ    =  

0.606
1.14    = 0.530

of a wave, or

 ∆ φ = 2π (0.530) = 3.33 rad  

M
θ

h
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(b) For destructive interference, we want

∆ x
λ    = 0.500 =  f 

∆ x
v

  

where ∆x is a constant in this set up.

f = 
v

2 ∆x
   = 

343
(2)(0.606)   = 283 Hz   

18.56 f = 87.0 Hz

speed of sound in air:  va = 340 m/s

(a) λ b =   l

v = f λ b = (87.0 s–1)(0.400 m)

v = 34.8 m/s   

(b)


λa = 4L

va = λa f
   L = 

va

4f
   = 

340 m/s
4(87.0 s–1)   = 0.977 m   

18.57 Moving away from station, frequency is depressed:

f ' = 180 – 2.00 = 178 Hz

178 = 180 
(343)

(343 + v)  

Solving for v gives

v = 
(2.00)(343)

178   

Therefore,

v = 3.85 m/s away from station   

Moving towards the station, the frequency is enhanced:

f ' = 180 + 2.00 = 182 Hz

182 = 180 
(343)

(343 – v)  

l = 0.400 m

L
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Solving for v gives

v = 
(2.00)(343)

182   

Therefore,

v = 3.77 m/s towards the station  

*18.58 Use the Doppler formula

f ' = f 
(v ± v0)

(v –+ vs)
  

With f '1  = frequency of the speaker in front of student and

f '2  = frequency of the speaker behind the student.

f '1  = (456 Hz) 
(343 m/s + 1.50 m/s)

(343 m/s – 0)    = 458 Hz

f '2  = (456 Hz) 
(343 m/s – 1.50 m/s)

(343 m/s + 0)    = 454 Hz

Therefore, fb = f '1  – f '1  = 3.99 Hz   

18.59 From the leading train she hears

f '1  = f  




v + 0

v + vs
   = f 





343 m/s

343 m/s + 8.00 m/s   

From the still-approaching train,

f '2  = f  




343

343 – 8.00   

Then, 4.00 Hz = f '2  – f '1  = 1.0239f – 0.9772f

f = 
4.00 Hz
0.0467    = 85.7 Hz   

18.60 v = 
(48.0)(2.00)
4.80 × 10–3    = 141 m/s

dNN = 1.00 m          λ = 2.00 m          f = 
v
λ  = 70.7 Hz

λa = 
va

f
   = 

343 m/s
70.7 Hz   = 4.85 m   
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*18.61 The second standing wave mode of the air in the pipe reads ANAN, with

dNA = λ4  = 
1.75 m

3       so     λ = 2.33 m   and

f = 
v
λ  = 

343 m/s
2.33 m   = 147 Hz

For the string, λ and v are different but f is the same.

λ
2  = dNN = 

0.400 m
2       so     λ = 0.400 m

v = λf = (0.400 m)(147 Hz) = 58.8 m/s = T/µ 

T = µv2 = (9.00 × 10–3 kg/m)(58.8 m/s)2 = 31.1 N  

18.62 (a ) L =  
v
4 f       so     

L'
L

  = 
f
f '  

Letting the longest L be 1, the ratio is 1 : 
4
5  : 

2
3  : 

1
2 

or in integers  30 : 24 : 20 : 15  

(b) L =  
343

(4)(256) = 33.5 cm  

This is the longest pipe, so using the ratios the lengths are:

33.5, 26.8, 22.3, 16.7 cm  

(c) The frequencies are using the ratio 256, 320, 384, and 512 Hz  .  These represent notes C,

E, G, and C' on the physical pitch scale.

18.63 (a ) Since the first node is at the weld, the wavelength in the thin wire is 2L or 80.0 cm.  The
frequency and tension are the same in both sections, so

f = 
1

2L
 

T
µ

    = 
1

2(0.400) 
4.60

2.00 × 10–3    = 59.9 Hz   
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(b) As the thick wire is twice the diameter, the linear density is 4 times that of the thin
wire.

µ' = 8.00 g/m

so L' = 
1
2 f  

T
′µ  

L' = 




1

(2)(59.9)  




(4.60)

(8.00 × 10-3)    

   = 20.0 cm    half the length of the thin wire

18.64 fB = fA        λB = 
1
3  λA      vB = 

1
3  vA

v
2
B  = 

1
9  v2

A  

v = 
T
µ

  

TB

TA
   =  

v
2
B

v
2
A

   = 0.111   

18.65  (a) f = 
n

2L
 

T
µ

  

so
f '
f

   = 
L
L '   = 

L
2L

   = 
1
2  

The frequency should be halved   to get the same number of antinodes for twice the

length.

(b)
n'
n

   = 
T
T'  

so
T'
T

   = 




n

n'   
2

 =  




n

(n + 1)   
2

The tension must be

T '  =  




n

(n + 1)  
2

 T  
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(c)
f  '
f

   = 
n'
n

 
L
L ' 

T'
T

  

so
T'
T

   = 




n

n'  
f 'L '
f L

  
2

T'
T

   = 




3

2 · 2   
2

T'
T

 = 
9
16    to get twice as many antinodes.

18.66 For the wire,

µ = 
0.0100 kg

2.00 m    = 5.00 × 10–3 kg/m

v = 
T
µ

    = 
(200 kg · m/s2)

5.00 × 10–3 kg/m  

v = 200 m/s

If it vibrates in its simplest state,

dNN = 2.00 m = λ2  

f = 
v
λ   = 

(200 m/s)
4.00 m    = 50.0 Hz

(a) The tuning fork can have frequencies

45.0 Hz   or   55.0 Hz   

(b) If f = 45.0 Hz,

v = f λ = (45.0/s) 4.00 m = 180 m/s

Then,

T = v2µ = (180 m/s)2(5.00 × 10–3 kg/m) = 162 N   

or    if f = 55.0 Hz

T = v2µ = f  2λ 2µ = (55.0/s)2(4 .00 m)2(5.00 × 10–3 kg/m) = 242 N   
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18.67 The odd-numbered harmonics of the organ-pipe vibration are:

650 Hz, 550 Hz, 450 Hz, 350 Hz, 250 Hz, 150 Hz, 50.0 Hz

Closed f1 = 50.0 Hz         λ = 6.80 m      L = 1.70 m   

18.68 We look for a solution of the form

5.00 sin (2.00x – 10.0t) + 10.0 cos(2.00x – 10.0t)

= A sin (2.00x – 10.0t + φ)

= A sin (2.00x – 10.0t)cos φ + A cos (2.00x – 10.0t) sin φ

 This will be true if both 5.00 = A cos φ and 10.0 = A sin φ,

requiring (5.00)2 + (10.0)2 = A2      A = 11.2     and      φ = 63.4°

The resultant wave 11.2 sin(2.00x – 10.0t + 63.4°)   is sinusoidal.

*18.69 (a ) With k = Error! and      ω = 2π f =  Error!

y(x, t) = 2A sin kx cos ω t =  2A sin  
2π x

λ  cos  
2π v t

λ  

(b) For the fundamental vibration,

λ 1 = 2L

so y1(x, t) =  2A sin 




π x

L
 cos 





π vt

L
 

(c) For the second harmonic

λ 2 = L

and

y2(x, t) =  2A sin 




2π x

L
 cos





2π vt

L
  

(d) In general,

λn = 
2L
n

          and        yn(x, t) =  2A sin 




nπ x

L
 cos 





nπ vt

L
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18.70 (a) In the diagram, observe that:

sin θ = 
1.00 m
1.50 m  = 

2
3      or     θ = 41.8°

Considering the mass,

∑Fy = 0     gives     2T cos θ = mg

or T = 
(12.0 kg)(9.80 m/s2)

2 cos 41.8°   = 78.9 N  

(b) The speed of  transverse waves in the
string is

v = 
T
µ

  = 
78.9 N

0.00100 kg/m  = 281 m/s

For the standing wave pattern shown (3 loops), d = 
3
2  λ, or

λ = 
2(2.00 m)

3   = 1.33 m

Thus, the required frequency is

f = 
v
λ  = 

281 m/s
1.33 m   = 211 Hz  

m

d

(b)

m

d

(a)

g


