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Chapter 19 Solutions

*19.1 (a ) To convert from Fahrenheit to Celsius, we use

TC =  
5
9 (TF – 32.0)   =  

5
9 (98.6 – 32.0)   = 37.0°C   

and the Kelvin temperature is found as

T = TC + 273 = 310 K   

(b) In a fashion identical to that used in (a), we find

TC = –20.6°C      and   T = 253 K   

19.2 P1V = nRT1   and   P2V = nRT2

imply that  
P2

P1
    =  

T2

T1
  

(a ) P2 =  
P1T2

T1
    =  

(0.980 atm)(273 + 45.0)K
(273 + 20.0)K     = 1.06 atm   

(b) T3 =  
T1P3

P1
    =  

(293 K)(0.500 atm)
(0.980 atm)     = 149 K = –124°C   

19.3 Since we have a linear graph, the pressure is related to the temperature as P = A + BT, where
A and B are constants.  To find A and B, we use the data

0.900 atm = A + (–80.0°C)B (1)

1.635 atm = A + (78.0°C)B (2)

Solving (1) and (2) simultaneously, we find

A = 1.272 atm

and B = 4.652 × 10–3 atm/°C

Therefore, P = 1.272 atm + (4.652 × 10–3 atm/°C)T

(a ) At absolute zero

P = 0 = 1.272 atm + (4.652 × 10–3 atm/°C)T

which gives T = –274°C   
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(b) At the freezing point of water

P = 1.272 atm + 0 = 1.27 atm   

(c) and at the boiling point

P = 1.272 atm + (4.652 × 10–3 atm/°C)(100°C) = 1.74 atm   

19.4 Let us use TC =  
5
9 (TF – 32.0)   with TF = – 40.0°C.   We find

TC =  
5
9 (– 40.0 – 32.0)   = – 40.0°C

19.5 (a ) TF = 
9
5  TC + 32.0°F = 

9
5 (–195.81)  + 32.0 = –320°F   

(b) T = TC + 273.15 = –195.81 + 273.15 = 77.3 K   

19.6 Require 0.00°C = a(–15.0°S) + b

100°C = a(60.0°S) + b

Subtracting,  100°C = a(75.0°S)

a = 1.33 C°/S°

Then   0.00°C = 1.33(–15.0°S)C° + b

b = 20.0°C

So the conversion is TC = (1.33 C°/S°)TS + 20.0°C   

19.7 (a ) ∆T = 450 C° = 450 C° 




212°F – 32.0°F

100°C – 0.00°C    = 810 F°   

(b) ∆T = 450 C° = 450 K   

19.8 (a ) T = 1064 + 273 = 1337 K   melting point

T = 2660 + 273 = 2933 K   boiling point

(b) ∆T = 1596 C°   = 1596 K   The differences are the same.
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19.9 The wire is 35.0 m long when TC = –20.0°C

∆L = Li α
– (T – Ti)  

α–   ≈ α(20.0°C) = 1.70 × 10–5 (C°)–1 for Cu.

∆L = (35.0 m)(1.70 × 10–5 (C°)–1( )35.0°C – (–20.0°C)  = +3.27 cm   

Goal Solution    
G: Based on everyday observations of telephone wires, we might expect the wire to expand by

less than a meter since the change in length of these wires is generally not noticeable.

O: The change in length can be found from the linear expansion of copper wire (we will assume
that the insulation around the copper wire can stretch more easily than the wire itself).
From Table 19.2, the coefficient of linear expansion for copper is 17 × 10–6 (°C)–1.

A: The change in length between cold and hot conditions is

∆L = αL0∆T = [17 × 10–6 (°C)–1](35.0 m)(35.0°C – (–20.0°C))

∆L = 3.27 × 10–2 m     or     ∆L = 3.27 cm

L: This expansion is well under our expected limit of a meter.  From ∆L, we can find that the wire
sags 0.757 m at its midpoint on the hot summer day, which also seems reasonable based on
everyday observations.

19.10 ∆L = Liα  ∆T = (25.0 m)(12.0 × 10–6/C°)(40.0 C°) = 1.20 cm   

19.11 (a ) ∆L = αLi ∆T = 24.0 × 10-6(C°)-1(3.0000 m)(80.0°C) = 0.00576 m

Lf = 3.0058 m  

(b) ∆L = 24.0 × 10-6(C°)-1(3.0000 m)(–20.0°C) = – 0.0014

Lf = 2.9986 m  

19.12 (a ) LAl(1 + αAl ∆T) = LBrass (1 + αBrass ∆T)

∆T =  
LAl – LBrass

LBrass αBrass – LAl αAl
  

∆T =  
(10.01 – 10.00)

(10.00)(19.0 × 10–6) – (10.01)(24.0 × 10–6)  

∆T = –199 C°  so T = –179°C   This is attainable.   
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(b) ∆T =  
(10.02 – 10.00)

(10.00)(19.0 × 10–6) – (10.02)(24.0 × 10–6)  

∆T = –396 C°  so T = –376°C which is below 0 K so it cannot be reached   

19.13 For the dimensions to increase,

∆L = αLi ∆T

1.00 × 10-2 cm = (1.30 × 10–4/°C)(2.20 cm)(T – 20.0°C)

T = 55.0°C   

19.14 α = 1.10 × 10–5 deg–1 for steel

∆L = (518 m)(1.10 × 10–5 deg–1)[ ]35.0°C – (–20.0°C)   = 0.313 m  

*19.15 (a ) ∆A = 2αAi(∆T)

∆A = 2(17.0 × 10–6/°C)(0.0800 m)2(50.0°C)

∆A = 1.09 × 10-5 m2 = 0.109 cm2   

(b) The length of each side of the hole has increased.  Thus, this represents an increase   in

the area of the hole.

19.16 ∆V = (β – 3α)Vi ∆T

= [(5.81 × 10–4 – 3(11.0 × 10–6)](50.0 gal)(20.0)

= 0.548 gal   

19.17 (a ) ∆L = αLi ∆T = 9.00 × 10–6(C°)–1(30.0 cm)(65.0°C) = 0.176 mm   

(b) ∆L = 9.00 × 10–6(C°)–1(1.50 cm)(65.0°C) = 8.78 × 10–4 cm   

(c) ∆V = 3αVi  ∆T = 3(9.00 × 10–6/°C) 
(30.0)(π)(1.50)2

4    cm3(65.0°C) = 0.0930 cm3   
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19.18 (a ) Vf = Vi (1 + β ∆T) = 100[ ]1 + 1.50 × 10–4(–15.0)   = 99.8 mL   

(b) ∆Vacetone = (βVi ∆T)acetone

∆Vflask = (βVi ∆T)Pyrex = (3αVi ∆T)Pyrex

for same Vi , ∆T,

∆Vacetone

∆Vflask
   = 

βacetone

βflask
   = 

1.50 × 10–4

3(3.20 × 10–6)   = 
1

6.40 × 10–2  

The volume change of flask is

about 6% of the change in the acetone's volume  .

19.19 (a) and (b)  The material would expand by ∆L = αLi ∆T,

∆L
Li

  = α ∆T, but instead feels stress

F
A

   =  
Y ∆L
Li

   = Yα ∆T = (7.00 × 109 N/m2) 12.0 × 10–6 (C°)–1(30.0 C°)

 =  2.52 × 106 N/m2     This will not break   concrete.

19.20 (a) and (b)  The gap width is a linear dimension, so it increases   in "thermal enlargement" by

∆L = αLi ∆T = (11.0 × 10–6/C°)(1.60 cm)(160 C°) = 2.82 × 10–3 cm

so Lf = 1.603 cm  

19.21 In 
F
A

  = 
Y ∆L

Li
   require ∆L = αLi ∆T

F
A

  = Yα ∆T

∆T = 
F

AYα  = 
500 N

(2.00 × 10–4 m2)(20.0 × 10–10 N/m2)(11.0 × 10–6/C°) 

∆T = 1.14°C  
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19.22 ∆L = αLi(∆T)     and     
F
A

  = Y 
∆L
Li

 

F = AY 
∆L
Li

  = AYα (∆T)

= π(0.0200 m)2 




20.6 × 1010 

N
m2  (11.0 × 10–6/C°)(70.0°C) 

F = 199 kN  

19.23 (a ) ∆V = Vtβt ∆T – VAlβAl∆T = (βt – 3αAl)Vi ∆T

= (9.00 × 10–4 – 0.720 × 10–4)(°C)–1(2000 cm3)(60.0°C)

∆V = 99.4 cm3   overflows

(b) The whole new volume of turpentine is

2000 cm3 + (9.00 × 10–4/°C)(2000 cm3)(60.0°C) = 2108 cm3

so the fraction lost is 
99.4 cm3

2108 cm3  = 4.71 × 10–2

and this fraction of the cylinder's  depth will be empty upon cooling:

(4.71 × 10–2)(20.0 cm) = 0.943 cm  

19.24 (a ) L = Li (1 + α∆T)

5.050 cm = (5.000 cm) [1 + 24.0 × 10–6 °C–1(T – 20.0°C)]

T = 437°C  

(b) We must get LAl = LBrass for some ∆T, or

Li,Al(1 + αAl ∆T) = Li,brass(1 + αbrass∆T)

(5.000 cm)[1 + (24.0 × 10–6 °C–1)∆T] = (5.050 cm)[1 + (19.0 × 10–6 °C–1) ∆T]

Solving for ∆T gives ∆T = 2080°C, so T = 3000°C  

This will not work because aluminum melts at 660°C  

*19.25 (a ) n = 
PV
RT

   = 
(9.00 atm)(1.013 × 105 Pa/atm)(8.00 × 10–3 m3)

(8.315 N · mol K)(293 K)    = 3.00 mol   

(b) N = nNA = (3.00 mol)(6.02 × 1023 molecules/mol) = 1.80 × 1024 molecules   
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19.26 PV = NP'V' = 
4
3  π r 3 NP'

N = 
3PV

4π r 3P'
   = 

(3)(150)(0.100)
(4π )(0.150)3(1.20)   = 884 balloons   

19.27  (1.01 × 105)(6000) = n(8.315)(293)

n = 2.49 × 105 mol

N = 1.50 × 1029 molecules  

Goal Solution    
G: The given room conditions are close to Standard Temperature and Pressure (STP is 0°C and

101.3 kPa), so we can use the estimate that one mole of an ideal gas at STP occupies a volume
of about 22 L.  The volume of the auditorium is 6000 m3 and 1 m3 = 1000 L , so we can estimate
the number of molecules to be:

N ≈ (6 × 103 m3) 




1000 L

1 m3  




1 mol

22 L  




6.02 × 1023 molecules

1 mol   ≈ 1.6 × 1029 molecules of air

O: The number of molecules can be found more precisely by applying PV = nRT.

A: The equation of state of an ideal gas is PV = nRT  so we need to solve for the number of moles to
find N.

n = 
PV
RT

  = 
(1.01 × 105 N/m2)[(10.0 m)(20.0 m)(30.0 m)]

(8.315 J/mol ⋅ K)(293 K)   = 2.49 × 105 mol

N = n(NA) = (2.49 × 105 mol) 




6.022 × 1023 

molecules
mol   = 1.50 × 1029 molecules  

L: This result agrees quite well with our initial estimate.  The numbers would match even better
if the temperature of the auditorium was 0°C.

19.28 P =  
nRT
V

   =  




9.00 g

18.0 g/mol  




8.315 J

mol K  




773 K

2.00 × 10–3 m3    = 1.61 MPa    = 15.9 atm
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19.29 ρout gV – ρin gV – (200 kg)g = 0

(ρout – ρin)(400 m3) = 200 kg





1.25  

kg
m3  





1 – 

283 K
Tin

 (400 m3)   = 200 kg

1 – 
283
Tin

   = 0.400

0.600 =  
283
Tin

  Tin = 472 K   

Goal Solution    
G: The air inside the balloon must be significantly hotter than the outside air in order for the

balloon to have a net upward force, but the temperature must also be less than the melting
point of the nylon used for the balloon’s envelope (rip-stop nylon melts around 200°C),
otherwise the results could be disastrous!

O: The density of the air inside the balloon must be sufficiently low so that the buoyant force is
greater than the weight of the balloon, its cargo, and the air inside.  The temperature of the
air required to achieve this density can be found from the equation of state of an ideal gas.

B

Fg

of 200 kg
Fg

of air

A: The buoyant force equals the weight of the air at 10.0°C displaced by the balloon:

B = mairg = ρaVg = (1.25 kg/m3)(400 m3)(9.8 m/s2) = 4900 N

The weight of the balloon and its cargo is

Fg = mbg = (200 kg)(9.80 m/s2) = 1960 N

Since B > Fg, the balloon has a chance of lifting off as long as the weight of the air inside the
balloon is less than the difference in these forces:

Fg(air) < B – Fg(balloon) = 4900 N – 1960 N = 2940 N

The mass of this air is mair = 
Fg(air)

g
  = 

2940 N
9.80 m/s2  = 300 kg



Chapter 19 Solutions 9

© 2000 by Harcourt College Publishers.  All rights reserved.

To find the required temperature of this air from PV = nRT, we must find the corresponding
number of moles of air.  Dry air is approximately 20% O2, and 80% N2.  Using data from a
periodic table, we can calculate the molar mass of the air to be approximately

M = 0.80(28 g/mol) + 0.20(32 g/mol) = 29 g/mol

so the number of moles is n = 
m
M

  = 
300 kg

29 g/mol 



103 g

1 kg   = 1.0 × 104 mol

The pressure of this air is the ambient pressure; from PV= nRT, we can now find the minimum
temperature required for lift off:

T = 
PV
nR

  = 
(1.013 × 105 N/m2)(400 m3)

(1.0 × 104 mol)(8.315 J/(mol K))  = 471 K = 198°C

L: The average temperature of the air inside the balloon required for lift off appears to be close
to the melting point of the nylon fabric, so this seems like a dangerous situation!  A larger
balloon would be better suited for the given weight of the balloon. (A quick check on the
internet reveals that this balloon is only about 1/10 the size of most sport balloons, which
have a volume of about 3000 m3).
If the buoyant force were less than the weight of the balloon and its cargo, the balloon would
not lift off no matter how hot the air inside might be!  If this were the case, then either the
weight would have to be reduced or a bigger balloon would be required.
Even though our result for T is shown with 3 significant figures, the answer should probably be
rounded to 2 significant figures to reflect the approximate value of the molar mass of the air.

*19.30 (a ) T2 = T1 
P2

P1
    = (300 K)(3) = 900 K   

(b) T2 = T1 
P2 V2

P1 V1
    = 300(2)(2) = 1200 K   

*19.31 (a ) PV = nRT

n = 
PV
RT

  = 
(1.013 × 105 Pa)(1.00 m3)
(8.315 J/mol ⋅ K)(293 K)   = 41.6 mol  

(b) m = nM = (41.6 mol)(28.9 g/mol) = 1.20 kg  , in agreement with the tabulated density of

1.20 kg/m3 at 20.0°C.

*19.32 (a ) PV = nRT n = 
PV
RT

 

m = nM = 
PVM
RT

  = 
(1.013 × 105 Pa)(0.100 m)3(28.9 × 10–3 kg/mol)

(8.315 J/mol ⋅ K)(300 K)  

m = 1.17 × 10–3 kg  

(b) Fg = mg = (1.17 × 10–3 kg)(9.80 m/s2) = 11.5 mN  
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(c) F = PA = (1.013 × 105 N/m2)(0.100 m)2 = 1.01 kN  

(d) The molecules must be moving very fast   to hit the walls hard.

19.33 (a ) Initially, PiVi = ni RTi

(1.00 atm)Vi = ni R(10.0 + 273.15)K

Finally, PfVf = nf RTf Pf (0.280Vi) = ni R(40.0 + 273.15)K

Dividing these equations,

0.280 × Pf

1.00 atm     =  
313.15 K

283.15 K    giving  Pf = 3.95 atm or

Pf = 4.00 × 105 Pa(abs.)   

(b) After being driven

Pd (1.02)(0.280Vi) = ni R(85.0 + 273.15)K

Pd = 1.121Pf = 4.49 × 105 Pa  

*19.34 Let us use V = 
4
3  π r 3  as the volume of the balloon, and the ideal gas law in

the form   
Pf Vf

Tf
    =  

Pi Vi

Ti
  

to give,   r 3i    =  
300 K
200 K  

0.0300 atm
1.00 atm  (20.0 m) 3

ri = 7.11 m   

19.35 P1V1 = n1RT1

P2V2 = n2RT2

n1 – n2 =  
PV
RT1

    –  
PV
RT2

  

n1 – n2 =  
(101 × 103 Pa)80.0 m3

8.315 J/mol K  




1

291 K  –  
1

298 K   

n1 – n2 = 78.4 mol

∆m = ∆nM = 78.4 mol(28.9 g/mol) = 2.27 kg   
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19.36 P0V = n1RT1 = (m1/M)RT1

P0V = n2RT2 = (m2/M)RT2

m1 – m2 =  
P0VM

R
 




1

T1
  –  

1
T2

  

19.37 At depth, P = P0 + ρgh

and PVi = nRTi

at the surface, P0Vf = nRTf

P0Vf

(P0 + ρgh)Vi
    =  

Tf

Ti
  

Vf = Vi 
Tf

Ti
 




P0 + ρgh

P0
  

Vf = 1.00 cm3 
293 K
278 K 





1.013 × 105 Pa + 1025 kg/m3 (9.80 m/s2)25.0 m

1.013 × 105 Pa   

Vf =  3.67 cm3   

*19.38 My bedroom is 4.00 m long, 4.00 m wide, and 2.40 m high, enclosing air at 100 kPa and 20.0°C =
293 K.  Think of the air as 80.0% N2 and 20.0% O2.

Avogadro's number of molecules has mass

  0.800 × 28.0 g/mol + 0.200 × 32.0 g/mol = 0.0288 kg/mol

Then PV = nRT = (m/M)RT gives

m = 
PVM
RT

  = 
(1.00 × 105 N/m2)(38.4 m3)(0.0288 kg/mol)

(8.315 J/mol ⋅ K)(293 K)  

m = 45.4 kg ~ 102 kg   

19.39 PV = nRT

mf

mi
  = 

nf

ni
  = 

PfVf

RTf
 
RTi

PiVi
  = 

Pf

Pi
  , so mf = mi 



Pf

Pi
 

∆m = mi – mf = mi 



Pi – Pf

Pi
  = (12.0 kg) 





41.0 atm – 26.0 atm

41.0 atm   = 4.39 kg  
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19.40 N = 
PVNA

RT
  = 

(10–9 Pa)(1.00 m3)(6.02 × 1023) 
molecule

mol





8.315 

J
K ⋅ mol  (300 K)

  = 2.41 × 1011 molecules  

19.41 PV = nRT

V = 
nRT

P
  = 

(1.00 mol)(8.315 J/mol ⋅ K)(273 K)
1.013 × 105 N/m2  





103 L

1.00 m3   = 22.4 L  

19.42 (a ) Initially the air in the bell satisfies P0Vbell = nRTi

or P0[(2.50 m)A] = nRTi (1)

When the bell is lowered, the air in the bell satisfies

Pbell(2.50 m – x)A = nRTf (2)

where x is the height the water rises in the bell.  Also, the pressure in the bell, once it is
lowered, is equal to the sea water pressure at the depth of the water level in the bell.

Pbell = P0 + ρg (82.3 m – x) ≈ P0 + ρg(82.3 m) (3)

The approximation is good, as x < 2.50 m.  Substituting (3) into (2) and substituting nR
from (1) into (2),

[P0 + ρg (82.3 m)](2.50 m – x)A = P0Vbell 
Tf

Ti
 

Using P0 = 1 atm = 1.013 × 105 Pa and ρ = 1.025 × 103 
kg
m3 

x = (2.50 m) 




1 – 

Tf

T0
 




1 + 

ρg(82.3 m)
P0

– 1
 

= (2.50 m) 




1 – 

277.15 K
293.15 K 





1 + 

(1.025 × 103 kg/m3)(9.80 m/s2)(82.3 m)
1.013 × 105 N/m2

– 1
 

x = 2.24 m  
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(b) If the water in the bell is to be expelled, the air pressure in the bell must be raised to the
water pressure at the bottom of the bell.  That is,

Pbell = P0 + ρg(82.3 m)

= 1.013 × 105 Pa + 




1.025 × 103 

kg
m3  





9.80 

m
s2  (82.3 m) 

Pbell = 9.28 × 105 Pa = 9.16 atm  

19.43 The excess expansion of the brass is

∆Lrod – ∆Ltape = (αbrass – αsteel)Li ∆T

∆(∆L) = (19.0 – 11.0)10–6 (C°)–1 0.950 m(35.0 C°)

∆(∆L) = 2.66 × 10–4 m

(a) The rod contracts more than tape to

a length reading 0.9500 m – 0.000266 m = 0.9497 m   

(b) 0.9500 m + 0.000266 m = 0.9503 m   

*19.44 At 0°C, 10.0 gallons of gasoline has mass, from ρ = m/V

m = ρV = 




730  

kg
m3  (10.0 gal) 





0.00380 m3

1.00 gal    = 27.7 kg

The gasoline will expand in volume by

∆V = βVi ∆T = (9.60 × 10–4/C°)(10.0 gal)(20.0°C – 0.0°C) = 0.192 gal

At 20.0°C, we have 10.192 gal = 27.7 kg

10.0 gal = 




10.0 gal

10.192 gal  (27.7 kg)   = 27.2 kg

The extra mass contained in 10.0 gallons at 0.0°C is

27.7 kg – 27.2 kg = 0.523 kg   

19.45 RB + αB RB (T – 20.0) = Rs + αs Rs (T – 20.0)

3.994 cm + (19.0 × 10–6/C°)(3.994 cm)(T – 20.0°C)

= 4.000 cm + (11.0 × 10–6)(C°)–1(4.000 cm)(T – 20.0°C)
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3.189 × 10–5 T = 0.006638 T = 208°C   
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*19.46 The frequency played by the cold-walled flute is fi = 
v
λi

  = 
v

2Li
  .

When the instrument warms up

ff = 
v
λf

  = 
v

2Lf
  = 

v
2Li(1 + α ∆T)  = 

f i

1 + α ∆T
 

The final frequency is lower.  The change in frequency is

∆f = fi – ff = fi 



1 – 

1
1 + α ∆T

 

∆f = 
v

2Li
 




α ∆T

1 + α ∆T
  ≈ 

v
2Li

 (α ∆T) 

∆f ≈ 
(343 m/s)(24.0 × 10–6/C°)(15.0 C°)

2(0.655 m)   = 0.0943 Hz  

This change in frequency is imperceptibly small.

19.47 Neglecting the expansion of the glass,

∆h =  
V
A

  β ∆T

∆h =  

4
3 π 





0.250 cm

2

3

π (2.00 × 10–3 cm)2
 (1.82 × 10–4/C°)(30.0°C)   = 3.55 cm   

19.48 (a ) The volume of the liquid increases as ∆Vl = Vi β ∆T.  The volume of the flask increases as
∆Vg = 3αVi ∆T.  Therefore, the overflow in the capillary is Vc = Vi ∆T(β – 3α); and in the
capillary Vc = A ∆h.

Therefore,   ∆h  =  
V i

A
 (β – 3α) ∆T   

(b) For a mercury thermometer β(Hg) = 1.82 × 10–4/°C and for glass, 3α = 3 × 3.20 × 10–6/°C.

Thus β – 3α ≈ β, or α « β   

19.49 (a ) ρ =  
m
V

       and   dρ  =  – 
m
V 2

   dV

For very small changes in V and ρ, this can be expressed as

∆ρ =  – 
m
V

 
∆V
V

   =  –ρβ ∆T

Ti + ∆T

A

Ti

∆h
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The negative sign means that any increase in temperature causes the density to decrease
and vice versa.
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(b) For water we have

β = ∆ρ
ρ ∆T

   = 
(1.0000 g/cm3 – 0.9997 g/cm3)
(1.0000 g/cm3)(10.0 – 4.00)C°    = 5 × 10–5/°C   

19.50 (a )
P0V

T
   =  

P'V'
T'

 

V' = V + Ah

P' = P0 + 
kh
A

  





P0 + 

kh
A

 (V + Ah)   = P0V 




T'

T
  





1.013 × 105 

N
m2  + 2.00 × 105 

N
m3 h  (5.00 × 10–3 m3 + (0.0100 m2)h) 

= 




1.013 × 105 

N
m2  (5.00 × 10–3 m3) 





523 K

293 K   

2000h2 + 2013h – 397 = 0

h =  
–2013 ± 2689

4000    = 0.169 m   

(b) P' = P + 
kh
A

   = 1.013 × 105 Pa + 
(2.00 × 103 N/m)(0.169)

0.0100 m2   

P' = 1.35 × 105 Pa   

19.51 (a ) We assume that air at atmospheric pressure is above the piston.

In equilibrium  Pgas =  
mg
A

   + P0.   Therefore,

nRT
hA

   =  
mg
A

   + P0   or  h  =  
nRT

(mg + P0A)    where

we have used V = hA as the volume of the gas.

(b) From the data given,

h =  
(0.200 mol)(8.315 J/K · mol)(400 K)

(20.0 kg)(9.80 m/s2) + (1.013 × 105 N/m2)(0.00800 m2)  

= 0.661 m   

h
20°C

k

250°C

Gas
h

m
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19.52 (a ) L1 = r1θ = Li (1 + α1 ∆T) L2 = r2θ = Li(1 + α2 ∆T)

∆r = r2 – r1 =  
Li(α 2 – α1)∆T

θ   

∴ r2 – r1 =  
1
θ   [Li + Liα2  ∆T – Li – Liα1 ∆T]

θ = Li (α 2 – α1) 
∆T

(r2 – r1)   

(b) θ → 0 as ∆T → 0       θ →  0 as α1 →  α2   

θ < 0 when ∆T < 0 cooling means temperature is decreasing.

(c) It bends the other way.   

19.53 From the diagram we see that the change in area is ∆A = l ∆w + w ∆l + ∆w ∆l.  Since ∆l and
∆w are each small quantities, the product ∆w ∆l will be very small.  Therefore, we assume
∆w ∆l ≈ 0.  Since ∆w = wα ∆T and ∆l = lα ∆T, we then have  ∆A = lwα ∆T + wlα ∆T  and since

A = lw, we have ∆A = 2αA ∆T   .  The approximation assumes ∆w∆l ≈ 0, or α ∆T ≈ 0.  Another

way of stating this is α ∆T « 1  .

w w  +  ∆w

l   +  ∆l

l

Ti T + ∆TTi

19.54 (a ) R = R0(1 + ATC

50.0 Ω = R0(1 + 0) ⇒ R0 = 50.0 Ω

71.5 Ω = (50.0 Ω) [1 + (231.97°C)A]

A = 1.85 × 10–3(C°)–1  R0 = 50.0Ω  

(b) T = 
1
A

 




R

R0
 – 1   = 

1
1.85 × 10–3 (C°)–1 



89.0

50.0 – 1   = 422°C  

r2
r1

θ
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19.55 (a ) Ti = 2π
Li

g
 

Li = 
T

2
i g

4π2  = 
(1.000 s)2(9.80 m/s2)

4π2   = 0.2482 m

∆L = αLi ∆T = (19.0 × 10–6/C°)(0.2483 m)(10.0°C) = 4.72 × 10–5 m

Tf = 2π 
Li + ∆L

g
  = 2π 

0.2483 m
9.80 m/s2  = 1.0000949 s

∆T = 9.49 × 10–5 s  

(b) In one week, the time lost is

time lost = (1 week)(9.49 × 10–5 s lost per second)

= 




7.00 

d
week  





86 400 s

1.00 d  




9.49 × 10–5 

s lost
s   = 57.4 s lost  

19.56 I = ⌡⌠ 

 
r2  dm and since r(T) = r(Ti)(1 + α ∆T), for α ∆T << 1 we find

I(T)
I(Ti)

  = (1 + α ∆T)2, thus 
I(T) – I(Ti)

I(Ti)
  ≈ 2α ∆T

(a ) With α = 17.0 × 10–6/°C and ∆T = 100°C, we find for Cu:

∆ I
I

  = 2(17.0 × 10–6/°C)(100°C) = 0.340%  

(b) With α = 24.0 × 10–6/°C and ∆T = 100°C, we find for Al:

∆ I
I

  = 2(24.0 × 10–6/°C)(100°C) = 0.480%  

19.57 (a ) B = ρgV' P' = P0 + ρgd P'V' = P0Vi

B = 
ρgP0Vi

P'   = 
ρgP0Vi

(P0 + ρgd)  

(b) Since d is in the denominator, B must decrease   as the depth increases.

(The volume of the balloon becomes smaller with increasing pressure.)
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(c)
1
2  = 

B(d)
B(0)   = 

ρgP0Vi/(P0 + ρgd)
ρgP0Vi/P0

  = 
P0

P0 + ρgd
 

P0 + ρgd = 2P0

d = 
P0

ρg
  = 

1.013 × 105 N/m2

(1.00 × 103 kg/m3)(9.80 m/s2)  = 10.3 m  

19.58 (a ) Let m represent the sample mass.  Then the number of moles is n = m/M and the density is
ρ = m/V.   So PV = nRT becomes

PV =  
m
M

  RT     or     PM =  
m
V

  RT

Then, ρ = 
m
V

  = 
PM
RT

 

(b) ρ = 
PM
RT

  = 
(1.013 × 105 N/m2)(0.0320 kg/mol)

(8.315 J/mol ⋅ K)(293 K)   = 1.33 kg/m3  

19.59 For each gas alone, P1 = 
N1kT

V
  and P2 = 

N2kT
V

  and P3 = 
N3kR

V
  , etc.

For all gases

P1V1 + P2V2 + P3V3 . . . = (N1 + N2 + N3 . . .)kT     and

(N1 + N2 + N3 . . .)kT = PV

Also, V1 = V2 = V3 = . . . = V, therefore P = P1 + P2 + P3. . .  

19.60 (a ) Using the Periodic Table, we find the molecular masses of the air components to be

M(N2) = 28.01 u, M(O2) = 32.00 u, M(Ar) = 39.95 u

and M(CO2) = 44.01 u

Thus, the number of moles of each gas in the sample is

n(N2) = 
75.52 g

28.01 g/mol  = 2.696 mol

n(O2) = 
23.15 g

32.00 g/mol  = 0.7234 mol

n(Ar) = 
1.28 g

39.95 g/mol  = 0.0320 mol

n(CO2) = 
0.05 g

44.01 g/mol  = 0.0011 mol
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The total number of moles is n0 = ∑ni = 3.453 mol.   Then, the partial pressure of N2 is

P(N2) = 
2.696 mol
3.453 mol  ⋅ (1.013 × 105 Pa) = 79.1 kPa  

Similarly,

P(O2) = 21.2 kPa       P(Ar) = 940 Pa       P(CO2) = 33.3 Pa  

(b) Solving the ideal gas law equation for V and using T = 273.15 + 15.00 = 288.15 K, we find

V = 
n0RT

P
  = 

(3.453 mol)(8.315 J/mol ⋅ K)(288.15 K)
1.013 × 105 Pa   = 8.167 × 10–2 m3

Then, ρ = 
m
V

  = 
100 × 10–3kg

8.167 × 10–2 m3  = 1.22 kg/m3  

(c) The 100 g sample must have an appropriate molar mass to yield n0 moles of gas:  that is

M(air) = 
100 g

3.453 mol  = 29.0 g/mol  

19.61 In any one section of concrete, length Li expands by

∆L = αLi ∆T

= (12.0 × 10–6/C°)Li (25.0 C°) = 3.00 × 10–4 Li

The unstressed length of that rail increases by

(11.0 × 10–6/C°)Li (25.0 C°) = 2.75 × 10–4 Li

(a ) So the rail is stretched elastically by the extra

3.00 × 10–4 Li – 2.75 × 10–4 Li = 2.50 ×10–5 Li

in
F
A

  = Y 
∆L
Li

  = (20.0 × 1010 N/m)(2.50 × 10–5) = 5.00 × 106 N/m2  

(b) Fraction of yield strength = 
5.00 × 106 N/m2

52.2 × 107 N/m2  = 9.58 × 10–3  
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19.62 (a ) From PV = nRT, the volume is:  V = 




nR

P
  T

Therefore, when pressure is held constant,

d V
dT

  = 
nR
P

  = 
V
T

 

Thus, β ≡ 




1

V
 
dV
dT

  = 




1

V
 
V
T

  , or β = 
1
T

 

(b) At T = 0°C = 273 K, this predicts β = 
1

273 K  = 3.66 × 10–3/K  

Experimental values are:  βHe = 3.665 × 10–3/K and βair = 3.67 × 10–3/K

19.63 After expansion, the length of one of the spans is

Lf = Li(1 + α ∆T) = (125 m)[1 + (12 × 10–6/C°)(20.0 C°)] = 125.03 m

Lf, y, and the original 125 m length of this span form a right triangle with y as the altitude.
Using the Pythagorean theorem gives:

(125.03 m)2 = y2 + (125 m)2     yielding     y = 2.74 m  

19.64 After expansion, the length of one of the spans is Lf = L(1 + α ∆T).  Lf, y, and the original length
L of this span form a right triangle with y as the altitude.  Using the Pythagorean theorem
gives L2

f   = L2 + y2,   or

y = L
2
f  – L2  = L (1 + α ∆T)2 – 1  = L 2α ∆T + (α ∆T)2 

Since α ∆T << 1, y ≈ L 2α ∆T  

19.65 For ∆L = Ls – Lc to be constant, the rods must expand by equal amounts:

αc Lc ∆T = αs Ls ∆T

Ls = 
αc Lc

αs
  

∆L = 
αc Lc

αs
   – Lc

∴ Lc = 
∆Lαs

(αc – αs)
   = 

5.00 cm(11.0 × 10–6/C°)
(17.0 × 10–6/C° – 11.0 × 10–6/C°)   = 9.17 cm   

and Ls = 
∆Lαc

(αc – αs)
   = 5.00 cm 





17.0

6.00    = 14.2 cm  
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19.66 (a ) With piston alone:

T = constant, so PV = P0Vi

or P(Ah0) = P0(Ahi)

With A = constant, P = P0 



h i

h 0
 

But, P = P0 + 
mpg
A

  ,  where mp is the mass of

the piston.

Thus, P0 + 
mpg
A

  = P0 



h i

h 0
  ,  which reduces

to

h0 = 
h i

1 + 
mpg
P0A

  = 
50.0 cm

1 + 
(20.0 kg)(9.80 m/s2)

(1.013 × 105 Pa)π(0.400 m)2

  = 49.81 cm

With the man of mass M on the piston, a very similar calculation (replacing mp by
mp + M) gives:

h' = 
h i

1 + 
(mp + M)g

P0A

  = 
50.0 cm

1 + 
(95.0 kg)(9.80 m/s2)

(1.013 × 105 Pa)π(0.400 m)2

  = 49.10 cm

Thus, when the man steps on the piston, it moves downward by

∆h = h0 – h' = 49.81 cm – 49.10 cm = 0.710 cm = 7.10 mm  

(b) P = const, so 
V
T

  = 
V'
Ti

  or 
Ah0

T
  = 

Ah'
Ti

  , giving

T = Ti 



h 0

h '   = (293 K) 




49.81

49.10   = 297 K  (or 24°C) 

50.0 cm

(a)

(b)

hi

∆h

(c)



Chapter 19 Solutions 25

© 2000 by Harcourt College Publishers.  All rights reserved.

19.67 (a )
d L
L

  = αdT

⌡⌠
Ti

Ti
αdT  = ⌡⌠

Li

Li
 
d L
L

  ⇒ ln 




Lf

Li
  = α ∆T ⇒ Lf = Lieα ∆T  

(b) Lf = (1.00 m)e[2.00 × 10–5(C°)–1](100°C) = 1.002002 m

L 'f   = (1.00 m) [1 + (2.00 × 10–5/°C)(100°C)] = 1.002000 m

Lf – L 'f
Lf

  = 2.00 × 10–6 = 2.00 × 10–4%  

Lf = (1.00 m)e[2.00 × 10–2(°C)–1](100°C) = 7.389 m

L 'f   = (1.00 m)[1 + (0.0200/°C)(100°C)] = 3.000 m

Lf – L 'f
Lf

  = 59.4%  

19.68 At 20.0˚C,  the unstretched lengths of the steel and copper wires are

Ls(20.0°C) = (2.000 m)[1 + 11.0 × 10–6)(C°)–1(–20.0°C)] = 1.99956 m

Lc(20.0°C) = (2.000 m)[1 + 17.0 × 10–6)(C°)–1(–20.0°C)] = 1.99932 m

Under a tension F, the length of the steel and copper wires are

L 's  = Ls 



1 + 

F
YA

 
s

L 'c  = Lc 



1 + 

F
YA

 
c
     where L's  + L'c  = 4.000 m

Since the tension, F, must be the same in each wire, solve for F:

F = 
(L's + L 'c) – (Ls + Lc)

Ls

YsAs
 + 

Lc

YcAc

 

When the wires are stretched, their areas become

As = π(1.000 × 10–3 m)2[1 + (11.0 × 10–6)(–20.0)]2 = 3.140 × 10–6 m2

Ac = π(1.000 × 10–3 m)2[1 + (17.0 × 10–6)(–20.0)]2 = 3.139 × 10–6 m2

Recall Ys = 20.0 × 1010 Pa and Yc = 11.0 × 1010 Pa.  Substituting into the equation for F, we obtain

F = 
4.000 m – (1.99956 m + 1.99932 m)

1.99956 m
(20.0 × 1010 Pa)(3.140 × 10–6) m2 + 

1.99932 m
(11.0 × 1010 Pa)(3.139 × 10–6) m2

 

F = 125 N  
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To find the x-coordinate of the junction,

L 's  = (1.99956 m) 




1 + 

125 N
(20.0 × 1010 N/m2)(3.140 × 10–6 m2)   = 1.999958 m

Thus the   x -coordinate is –2.000 + 1.999958 = –4.20 × 10–5 m  

19.69 (a ) µ = πr2ρ = π(5.00 × 10–4 m)2(7.86 × 103 kg/m3) = 6.17 × 10–3 kg/m  

(b) f1 = 
v
2L

      and     v = 
T
µ

      so     f1 = 
1

2L
 

T
µ

 

Therefore, T = µ(2Lf1)2 = (6.17 × 10–3)(2 × 0.800 × 200)2 = 632 N  

(c) First find the unstressed length of the string at 0°C:

L = Lnatural 



1 + 

T
AY

      so     Lnatural = 
L

1 + T/AY
 

A = π(5.00 × 10–4 m)2 = 7.854 × 10–7 m2     and     Y = 20.0 × 1010 Pa

Therefore, 
T

AY
  = 

632
(7.854 × 10–7)(20.0 × 1010)  = 4.02 × 10–3, and

Lnatural = 
(0.800 m)

(1 + 4.02 × 10–3)  = 0.7968 m

The unstressed length at 30.0˚C  is L30°C = Lnatural [1 + α(30.0°C – 0.0°C)],

or L30°C = (0.7968 m)[1 + (11.0 × 10–6)(30.0)] = 0.79706 m

Since L = L30°C 




1 + 

T'
AY

  , where T' is the tension in the string at 30.0˚C,

T' = AY 




L

L30°C
 – 1   = (7.854 × 10–7)(20.0 × 1010) 





0.800

0.79706 – 1   = 580 N

    
To find the frequency at 30.0˚C, realize that

f  '1
f1

  = 
T'
T

      so     f '1  = (200 Hz) 
580 N
632 N  = 192 Hz  
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19.70 Let   2θ  represent the angle the curved rail subtends.  We have

Li + ∆L = 2θR = Li(1 + α ∆T)     and

sin θ = 
Li/2
R

  = 
Li

2R
 

Thus, θ = 
Li

2R
 (1 + α ∆T)  = (1 + α ∆T) sin θ

and we must solve the transcendental equation

θ = (1 + α ∆T) sin θ = (1.000 0055) sin θ

Homing in on the non-zero solution gives, to four digits,

θ = 0.01816 rad = 1.0405°

Now, h = R – R cos θ = 
Li(1 – cos θ)

2 sin θ  

This yields h = 4.54 m  ,  a remarkably large value compared to ∆L = 5.50 cm.

h

R R

Li/2 Li/2

θ


