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Chapter 20 Solutions

20.1 Taking m = 1.00 kg, we have

∆Ug = mgh = (1.00 kg)(9.80 m/s2)(50.0 m) = 490 J

But ∆Ug = Q = mc∆T = (1.00 kg)(4186 J/kg ⋅ °C)∆T = 490 J     so     ∆T = 0.117 C°

Tf = Ti + ∆T = (10.0 + 0.117)°C  

Goal Solution    
G: Water has a high specific heat, so the difference in water temperature between the top and

bottom of the falls is probably less than 1°C.  (Besides, if the difference was significantly
large, we might have heard about this phenomenon at some point.)

O: The temperature change can be found from the potential energy that is converted to thermal
energy.  The final temperature is this change added to the initial temperature of the water.

A: The change in potential energy is ∆U = mgy and the change in internal energy is
∆Eint = mc∆T so mgy = mc∆T

Therefore,  ∆T = 
gy
c

  = 
(9.80 m/s2)(50.0 m)
4.186 × 103 J/kg ⋅ °C  = 0.117°C

Tf = T1 + ∆T = 10.0°C + 0.117°C = 10.1°C  

L: The water temperature rose less than 1°C as expected; however, the final temperature might
be less than we calculated since this solution does not account for cooling of the water due to
evaporation as it falls.  It is interesting to note that the change in temperature is independent
of the amount of water.

20.2 The container is thermally insulated, so no heat flows:  Q = 0
and ∆Eint = Q – Woutput =
0 – Woutput = +Winput = 2mgh.  For convenience of calculation, we
imagine setting the water on a stove and putting in this same
amount of heat.  Then we would have 2mgh = ∆Eint = Q =
mwater c ∆T.

∆T = 
2mg h

mwater c
   = 

2 × 1.50 kg(9.80 m/s2)3.00 m
(0.200 kg)(4186 J/kg · C°)    =  

88.2 J
837 J/C°   

 = 0.105 C°   

mm

Thermal
insulator
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20.3 ∆Q = mcsilver ∆T

1.23 kJ = (0.525 kg)csilver (10.0°C)

csilver = 0.234 kJ/kg · °C   

*20.4 From Q = mc ∆T, we find

∆T =  
Q
mc

    =  
1200 J

(0.0500 kg)(387 J/kg · °C)    =  62.0°C

Thus, the final temperature is 87.0°C   

20.5 Qcold = –Qhot

(mc∆T)water = –(mc∆T)iron

(20.0 kg)(4186 J/kg ⋅ °C)(Tf – 25.0°C) = –(1.50 kg)(448 J/kg ⋅ °C)(Tf – 600°C)

Tf = 29.6°C  

Goal Solution    
G: Even though the horseshoe is much hotter than the water, the mass of the water is

significantly greater, so we might expect the water temperature to rise less than 10°C.

O: The heat lost by the iron will be gained by the water, and from this heat transfer, the change
in water temperature can be found.

A: ∆Qiron = –∆Qwater     or     (mc∆T)iron = –(mc∆T)water

(1.50 kg)(448 J/kg ⋅ °C)(T – 600°C) = –(20.0 kg)(4186 J/kg ⋅ °C)(T – 25.0°C)

T = 29.6 °C  

L: The temperature only rose about 5°C, so our answer seems reasonable. The specific heat of the
water is about 10 times greater than the iron, so this effect also reduces the change in water
temperature.  In this problem, we assumed that a negligible amount of water boiled away, but
in reality, the final temperature of the water would be less than what we calculated since
some of the heat energy would be used to vaporize the water.

*20.6 Let us find the energy transferred in one minute.

Q = [mcupccup + mwatercwater]∆T

Q = 




(0.200 kg) 





900 

J
kg ⋅ °C  + (0.800 kg) 





4186 

J
kg ⋅ °C  (–1.50 C°)  = –5290 J
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If this much energy is removed from the system each minute, the rate of removal is

℘ = 
Q

∆ t
  = 

5290 J
60.0 s   = 88.2 

J
s  = 88.2 W  

*20.7 (a ) Qcold = –Qhot

(mwcw + mccc)(Tf – Tc) = –mCucCu(Tf – TCu) – munkcunk(Tf – Tunk)

where w is for water, c the calorimeter, Cu the copper sample, and unk the unknown.





(250 g) 





100 

cal
g ⋅ °C  + (100 g) 





0.215 

cal
g ⋅ °C  (20.0 – 10.0) °C

= –(50.0 g) 




0.0924 

cal
g ⋅ °C  (20.0 – 80.0) °C – (70.0 g)cunk(20.0 – 100)°C

2.44 × 103 cal = (5.60 × 103 g ⋅ °C)cunk     or     cunk = 0.435 cal/g ⋅ °C  

(b) The material of the sample is beryllium  .

20.8 m = (4.00 × 1011 m3)(1000 kg/m3)

(a ) ∆Q = mc ∆T = Pt = (4.00 × 1014 kg)(4186 J/kg · °C)(1.00°C)

∆Q = 1.68 × 1018 J   = Pt

(b) t =  
1.68 × 1018 J
1.00 × 109 J/s   = 1.68 × 109 s = 53.1 yr  

20.9 (a ) (f)(mgh) = mc ∆T

(0.600)(3.00 × 10–3 kg)(9.80 m/s)(50.0 m)
4.186 J/cal     =  (3.00 g)(0.0924 cal/g · C°)(∆T)

∆T = 0.760°C;  T = 25.8°C   

(b) No     Both the change in potential energy and the heat absorbed are proportional to

the mass; hence, the mass cancels in the energy relation.
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20.10 Qcold = –Qhot

mAlcAl(Tf – Tc) + mccw(Tf – Tc) = –mhcw(Tf – Th)

(mAlcAl + mcww)Tf – (mAlcAl + mccw)Tc = –mhcwTf + mhcwTh

(mAlcAl + mccw + mhcw)Tf = (mAlcAl + mccw)Tc + mhcwTh

Tf = 
(mAlcAl + mccw)Tc + mhcwTh

(mAlcAl + mccw + mhcw)  

20.11 The rate of collection of heat = ℘ = (550 W/m2)(6.00 m2) = 3300 W.  The amount of heat
required to raise the temperature of 1000 kg of water by 40.0°C is:

Q = mc ∆T = (1000 kg)(4186 J/kg · C°)(40.0°C) = 1.67 × 108 J

Thus, ℘ ∆t = 1.67 × 108 J

or ∆t = 
1.67 × 108 J

3300 W   = 50.7 ks   = 14.1 h

*20.12 The heat needed is the sum of the following terms:

Qneeded = (heat to reach melting point) + (heat to melt)

+ (heat to reach boiling point)

+ (heat to vaporize) + (heat to reach 110°C)

Thus, we have

Qneeded = 0.0400 kg[(2090 J/kg · °C)(10.0°C) + (3.33 × 105 J/kg)

+ (4186 J/kg · °C)(100°C) + (2.26 × 106 J/kg)

+ (2010 J/kg · °C)(10.0°C)]

Qneeded = 1.22 × 105 J   

20.13 The bullet will not melt all the ice, so its final temperature is 0°C.  Then





1

2 mv2 + mc ∆T   
bullet 

= mw Lf

where mw is the meltwater mass

mw = 
0.500(3.00 × 10–3 kg)(240 m/s)2 + (3.00 × 10–3 kg)(128 J/kg ⋅ C°)(30.0 C°)

3.33 × 105 J/kg  
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mw = 
86.4 J + 11.5 J
333 000 J/kg    = 0.294 g   
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Goal Solution    
G:   The amount of ice that melts is probably small, maybe only a few grams based on the size,

speed, and initial temperature of the bullet.

O: We will assume that all of the initial kinetic and excess internal energy of the bullet goes
into internal energy to melt the ice, the mass of which can be found from the latent heat of
fusion.

A: At thermal equilibrium, the energy lost by the bullet equals the energy gained by the ice:

∆Kbullet + ∆Qbullet = ∆Qice

1
2  mbv2 + mbclead∆T = miceLf

1
2 (3 × 10–3 kg)(240 m/s) 2 + (3 × 10–3 kg)(128 J/kg ⋅ °C)(30.0°C) = mice(3.33 × 105 J/kg)

mice = 
86.4 J + 11.5 J

3.33 × 105 J/kg  = 2.94 × 10–4 kg = 0.294 g

L: The amount of ice that melted is less than a gram, which agrees with our prediction.  It
appears that most of the energy used to melt the ice comes from the kinetic energy of the
bullet (88%), while the excess internal energy of the bullet only contributes 12% to melt the
ice.  Small chips of ice probably fly off when the bullet makes impact.  So some of the energy
is transferred to their kinetic energy, so in reality, the amount of ice that would melt should
be less than what we calculated. If the block of ice were colder than 0°C (as is often the case),
then the melted ice would refreeze.

*20.14 (a ) Q1 = heat to melt all the ice = (50.0 × 10–3 kg)(3.33 × 105 J/kg) = 1.67 × 104 J

Q2 = (heat to raise temp of ice to 100°C)

 = (50.0 × 10–3 kg)(4186 J/kg · °C)(100°C) = 2.09 × 104 J

Thus, the total heat to melt ice and raise temp to 100°C = 3.76 × 104 J

Q3 =  
heat available

as steam condenses    = (10.0 × 10–3 kg)(2.26 × 106 J/kg) = 2.26 × 104 J

Thus, we see that Q3 > Q1, but Q3 < Q1 + Q2.
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Therefore, all the ice melts but Tf < 100°C.  Let us now find Tf

Qcold = – Qhot

(50.0 × 10–3 kg)(3.33 × 105 J/kg) + (50.0 × 10–3 kg)(4186 J/kg · °C)(Tf – 0°C)

= –(10.0 × 10–3 kg)(–2.26 × 106 J/kg)

– (10.0 × 10–3 kg)(4186 J/kg · °C)(Tf – 100°C)

From which, Tf = 40.4°C   

(b) Q1 = heat to melt all ice = 1.67 × 104 J  [See part (a)]

Q2 =  
heat given up

as steam condenses    = (10–3 kg)(2.26 × 106 J/kg) = 2.26 × 103 J

Q3 =  
heat given up as condensed

steam cools to 0°C     = (10–3 kg)(4186 J/kg · °C)(100°C) = 419 J

Note that Q2 + Q3 < Q1.  Therefore, the final temperature will be 0°C with some ice
remaining.  Let us find the mass of ice which must melt to condense the steam and cool
the condensate to 0°C.

mLf = Q2 + Q3 = 2.68 × 103 J

Thus, m = 
2.68 × 103 J

3.33 × 105 J/kg    =  8.04 × 10–3 kg = 8.04 g

Therefore, there is 42.0 g of ice left over   

20.15 ∆Q = mCu cCu ∆T = mN2 (Lvap)N2

(1.00 kg) 




0.0920 

cal
g · C°  (293 – 77.3) C° = m 





48.0 

cal
g   

m = 0.414 kg   

*20.16 Qcold = –Qhot

[mwcw + mccc](Tf – Ti) = –ms[–Lv + cw(Tf – 100)]





(0.250 kg) 





4186 

J
kg ⋅ C°  + (0.0500 kg) 





387 

J
kg ⋅ C°  (50.0°C – 20.0°C) 

= –ms 



–2.26 × 106 

J
kg + 





4186 

J
kg ⋅ C°  (50.0°C – 100°C)  
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ms = 
3.20 × 104 J

2.47 × 106 J/kg  = 0.0129 kg = 12.9 g steam  
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20.17 (a ) Since the heat required to melt 250 g of ice at 0°C exceeds the heat required to cool 600 g

of water from 18°C to 0°C, the final temperature of the system (water + ice) must be 0°C

.

(b) Let m represent the mass of ice that melts before the system reaches equilibrium at 0°C.

Qcold = –Qhot

mLf = –mwcw(0°C – Ti)

m(3.33 × 105 J/kg) = –(0.600 kg)(4186 J/kg ⋅ °C)(0°C – 18.0°C)

m = 136 g, so the ice remaining = 250 g – 136 g = 114 g  

20.18 The original kinetic energy all becomes thermal energy:

1
2  mv2 +  

1
2  mv2 = 2 





1

2  (5.00 × 10–3 kg)(500 m/s) 2 = 1.25 kJ

Raising the temperature to the melting point requires

Q = mc ∆T = 10.0 × 10–3 kg(128 J/kg · C°)(327°C – 20.0°C) = 393 J

Since 1250 J > 393 J, the lead starts to melt.  Melting it all requires

Q = mL = (10.0 × 10–3 kg) (2.45 × 104 J/kg) = 245 J

Since 1250 J > 393 + 245 J, it all melts.  If we assume liquid lead    has the same specific heat as

solid lead, the final temperature is given by

1.25 × 103 J = 393 J + 245 J + 10.0 × 10–3 kg(128 J/kg · C°)(Tf  – 327°C)

Tf = 805°C   

20.19 Qcold = –Qhot

mFecFe(∆T)Fe = –mPb[–Lf + c∆T)]Pb

(0.300 kg) 




448 

J
kg ⋅ °C  (Tf – 20.0°C) 

= –0.0900 kg 




–2.45 × 104 

J
kg + 





128 

J
kg ⋅ °C  (Tf – 327.3°C)  

and T = 59.4°C  
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20.20 (a ) W = ∫ P dV = P ∆V = (1.50 atm)(4.00 m3) = 6.08 × 105 J   

(b) W = ∫ P dV = P ∆V = (1.50 atm)(1.00 – 4.00)m3 = – 4.56 × 105 J   

20.21 Wif = ∫ f
i
   P dV

The work done by the gas is just the area under the curve
P = αV 2 between Vi and Vf.

Wif = ∫ f
i
  αV 2 dV =  

1
3  α (V3

f    – V 
3
i   )

Vf = 2Vi = 2(1.00 m3) = 2.00 m3

Wif = 
1
3 





5.00 

atm
m6  × 1.013 × 105 

Pa
atm   [(2.00 m3)3 – (1.00 m3)3] = 1.18 MJ  

*20.22 (a ) W = ∫ PdV

= (6.00 × 106 Pa)(2.00 – 1.00)m3

+ (4.00 × 106 Pa)(3.00 – 2.00)m3

+ (2.00 × 106 Pa)(4.00 – 3.00)m3

Wi  →  f = +12.0 MJ   

(b) Wf  →  i = –12.0 MJ   

20.23 During the heating process P = (Pi/Vi)V.

(a ) W = ⌡⌠
i

f
PdV  = ⌡⌠

Vi

3Vi
(Pi/Vi) VdV

W = (Pi/Vi) 
V2

2

3Vi

Vi

  = 
Pi

2Vi
 (9V

2
i  – V2

i )  = 4PiVi  

(b) PV = nRT

[(Pi/Vi)V]V = nRT

T = (Pi/nRVi)V2  

Temperature must be proportional to the square of volume, rising to nine times its
original value.

P

i

f

P = αV2

V
2.00 m31.00 m3O

α

6 × 106

P(Pa)

a)4 × 106

2 × 106

i

f

V(m3)
43210
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20.24 W = ⌡⌠
i

f
P dV  = P⌡⌠

i

f
dV  = PVf – PVi

W = nRTf – nRTi

n = 
W

R(∆T)  = 
20.0 J

(8.315 J/mol ⋅ K)(100 K)  = 0.0241 mol

m = nM = (0.0241 mol) 




4.00 g

mol   = 0.0962 g  

20.25 W = P ∆V = P 




nR

P
 (Tf – Ti)   = nR ∆T = 0.200(8.315)(280) = 466 J   

20.26 W = ⌡⌠
i

f
P dV  = P⌡⌠

i

f
dV  = P(∆V) = nR(∆T) = nR(T2 – T1)  

20.27 (a ) Along IAF,  W =  (4.00 atm)(2.00 liter) = 8.00 L ⋅ atm = 810 J  

(b) Along IF,  W = 5.00 L ⋅ atm = 506 J  

(c) Along IBF,  W = 2.00 L ⋅ atm = 203 J  

I A

F
B

P(atm)

4

3

2

1

0 1 42 3
V(liters)

20.28 (a ) W = P ∆V = (0.800 atm)(–7.00 L) = –567 J   

(b) ∆Eint = Q – W = – 400 J + 567 J = 167 J   

20.29 ∆Eint = Q – W

      Q       = ∆Eint + W = – 500 J – 220 J = –720 J   

Positive heat is transferred from the system.
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20.30 (a ) Q = W = Area of triangle = 
1
2 (4.00 m3)(6.00 kPa)   = 12.0 kJ   

(b) Q = W = –12.0 kJ   

*20.31
Q W ∆Eint

BC – 0 – (Q = ∆Eint since WBC = 0)
CA – – – (∆Eint  < 0 and W < 0, so Q < 0)
A B + + + (W > 0, ∆Eint  > 0 since ∆Eint < 0 for B → C → A; so Q > 0)

20.32 WBC = PB(VC – VB) = 3.00 atm(0.400 – 0.0900) m3

= 94.2 kJ

∆Eint = Q – W

Eint,C – Eint,B = (100 – 94.2) kJ

Eint,C – Eint,B = 5.79 kJ

Since T is constant,

Eint,D – Eint,C = 0

WDA = PD(VA – VD) = 1.00 atm(0.200 – 1.20) m3 = –101 kJ

Eint,A – Eint,D = –150 kJ – (–101 kJ) = –48.7 kJ

Now, Eint,B – Eint,A = –[(Eint,C – Eint,B) + (Eint,D – Eint,C) + (Eint,A – Eint,D)]

Eint,B – Eint,A = –[5.79 kJ + 0 – 48.7 kJ] = +42.9 kJ  

20.33 (a ) ∆Eint = Q – P ∆V = 12.5 kJ – (2.50 kPa)(3.00 – 1.00)m3 = 7.50 kJ   

(b)
V1

T1
    =  

V2

T2
   ;      T2 =  

V2

V1
   T1 =  

3.00
1.00 (300 K)   = 900 K   

20.34 (a ) W = nRT ln 




Vf

Vi
    =  Pf Vf ln 

Vf

Vi
       so   Vi = Vf exp 





– 

W
Pf Vf

  

Vi = (0.0250) exp 




– 

3000
(0.0250)(1.013 × 105)    =  0.00765 m3   

4

6

2

8
P(kPa)

B

C
A

6 8 10
V(m3)

1.0

3.0

P(atm)

0.090 0.20 0.40 1.2

A

CB

D

V(m3)
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(b) Tf =  
Pf Vf

nR
    =  

(1.013 × 105 N/m2)(0.0250 m3)
(1.00 mol)(8.315 J/K · mol)    = 305 K   
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20.35 W = P ∆V = P(Vs – Vw) =  
P(nRT)

P
   – P 





(18.0 g)

(1.00 g/cm3)(106 cm3/m3)   

W = (1.00 mol)(8.315 J/K · mol)(373 K) – (1.013 × 105 N/m2) 




18.0 g

106 g/m3   

W = 3.10 kJ   

Q = mLv = (0.0180 kg)(2.26 × 106 J/kg) = 40.7 kJ

∆Eint = Q – W = 37.6 kJ   

20.36 (a ) W = P ∆V = P [3αV ∆T]

= (1.013 × 105 N · m2)(3)(24.0 × 10–6)(C°)–1 




1.00 kg

2.70 × 103 kg/m3  (18.0°C)  

W = 48.6 mJ   

(b) Q = cm ∆T = (900 J/kg · °C)(1.00 kg)(18.0°C) = 16.2 kJ   

(c) ∆Eint = Q – W = 16.2 kJ – 48.6 mJ = 16.2 kJ   

20.37 (a ) Pi Vi = Pf Vf = nRT = (2.00 mol)(8.315 J/K · mol)(300 K) = 4.99 × 103 J

Vi  = 
nRT
Pi

    =  
4.99 × 103 J
0.400 atm   

Vf  =  
nRT
Pf

    =  
4.99 × 103 J
1.20 atm     =  

1
3  Vi  =  0.0410 m3   

(b) W = ∫ P dV = nRT ln 




Vf

Vi
   =  (4.99 × 103) ln 





1

3     = – 5.48 kJ   

(c) ∆Eint = 0 = Q – W

Q = – 5.48 kJ   
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20.38 The condensing and cooling water loses heat

mLv + mc ∆T = 0.0180 kg [ ]2.26 × 106 J/kg + (4186 J/kg · C°)90.0 C°  

Q = 4.75 × 104 J

From the First Law,

Q = ∆Eint + W = 0 + nRT ln(Vf /Vi)

4.75 × 104 J = 10.0 mol (8.315 J/mol · K)(273 K) ln(20.0 L/Vi)

2.09 = ln(20.0 L/Vi)

Vi = 2.47 L   

20.39 W = WAB + WBC + WCD + WDA

W = ⌡⌠
A

B
P dV  + ⌡⌠

B

C
P dV  + ⌡⌠

C

D
P dV  + ⌡⌠

D

A
P dV 

W = nRT 1 ⌡⌠A

B
 
d V
V

  + P2 ⌡⌠B

C
dV 

+ nRT2 ⌡⌠C

D
 
dV
V

  + P1⌡⌠D

A
dV  

W = nRT1 ln 




VB

V1
  + P2(VC – VB) + nRT2 ln 





V2

VC
  + P1(VA – VD)

Now P1VA = P2VB and P2VC = P1VD, so only the logarithmic terms do not cancel out:

Also, 
VB

V1
  = 

P1

P2
  and 

V2

VC
  = 

P2

P1
 

∑W = nRT1 ln 




P1

P2
  + nRT2 ln 





P2

P1
 

= –nRT1 ln 




P2

P1
  + nRT2 ln 





P2

P1
 

= nR(T2 – T1) ln 




P2

P1
 

Moreover P1V2 = nRT2 and P1V1 = nRT1

∑W = P1(V2 – V1) ln 




P2

P1
 

V 1 V 2

P 1

P 2

P
B C

D
A

V
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20.40 ∆Eint,ABC = ∆Eint,AC (conservation of energy)

(a ) ∆Eint,ABC = QABC – WABC (First Law)

QABC = 800 J + 500 J = 1300 J  

(b) WCD = PC∆VCD, ∆VAB = ∆VCD, and PA = 5PC

Then, WCD = 
1
5  PA ∆VAB = 

1
5  WAB = –100 J  

(– means that work is done on the system)

(c) WCDA = WCD so that QCA = ∆Eint,CA + WCDA = –800 J – 100 J = –900 J  

(– means that heat must be removed from the system)

(d) ∆Eint,CD = ∆Eint,CDA – ∆Eint,DA = –800 J – 500 J = –1300 J

and QCD = ∆Eint,CD + WCD = –1300 J – 100 J = –1400 J  

20.41 ℘ =  
kA(T2 – T1)

L
  

℘ =  
(0.200 cal/s · cm · C°)(20.0 cm)(5000 cm)(180 C°)

1.50 cm    = 2.40 × 106 cal/s   

20.42 ℘ = kA 
∆T
L

 

k =  
℘L

A ∆T
    =  

(10.0 W)(0.0400 m)
(1.20 m2)(15.0°C)    = 2.22 × 10–2 W/m · C°   

20.43 ℘ = 
kA ∆T

L
  = 

(0.800 W/m ⋅ °C)(3.00 m2)(25.0°C)
6.00 × 10–3 m   = 1.00 × 104 W = 10.0 kW  

20.44 ℘  = 
A ∆T

∑
i

 

 
Li

k i

    =  
(6.00 m2)(50.0°C)

2(4.00 × 10–3 m)
0.800 W/m · °C + 

5.00 × 10–3 m
0.0234 W/m · °C

   = 1.34 kW   

P

V

A B

D C



Chapter 20 Solutions 17

© 2000 by Harcourt College Publishers.  All rights reserved.

20.45 In the steady state condition, ℘Au = ℘Ag so that

kAu AAu 




∆T

∆x
  

Au
 = kAg AAg 





∆T

∆x
  

Ag

In this case AAu = AAg,   ∆xAu = ∆xAg,   ∆TAu = (80.0 – T)

and   ∆TAg = (T – 30.0)

where T is the temperature of the junction.  Therefore,

kAu (80.0 – T) = kAg (T – 30.0)     and     T = 51.2°C   

20.46 Two rods:  ℘ = (k1A1 + k2A2) 
∆T
L

 

℘ = (k1A1 + k2A2) 
(Th – Tc)

L
 

In general:

℘ = (∑kiAi) 
∆T
L

  = (∑kiAi) 
(Th – Tc)

L
 

20.47 From Table 20.4,

(a ) R = 0.890 ft 2 · °F · h/Btu  

(b) The insulating glass in the table must have sheets of glass less than 1/8 inch thick.  So
we estimate the R-value of a 0.250-inch air space as (0.250/3.50) times that of the
thicker air space.  Then for the double glazing

Rb = 




0.890 + 





0.250

3.50  1.01 + 0.890  
ft2 ⋅ F° ⋅ h

Btu   = 1.85 
ft2 ⋅ °F ⋅ h

Btu  

(c) Since A and (T2 – T1) are constants, heat flow is reduced by a factor of

1.85
0.890   = 2.08  

20.48 ℘ = σAeT4 = (5.6696 × 10–8 W/m2 ⋅ K4) [4π(6.96 × 108 m)2](0.965)(5800 K)4

℘ = 3.77 × 1026 W  

Insulation

Au Ag 30.0°C80.0°C

L

Insulation

1
2

Tc Th
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*20.49 Suppose the pizza is 70 cm in diameter and l = 2.0 cm thick, sizzling at 100˚C.  It cannot lose
heat by conduction or convection.  It radiates according to ℘ = σAeT4.  Here, A is its surface
area,

A = 2πr2 + 2πrl = 2π(0.35 m)2 + 2π(0.35 m)(0.02 m) = 0.81 m2

Suppose it is dark in the infrared, with emissivity about 0.8.  Then

℘ = (5.67 × 10–8 W/m2 ⋅ K4)(0.81 m2)(0.80)(373 K)4 = 710 W ~ 103 W  

If the density of the pizza is half that of water, its mass is

m = ρV = ρπr2l = (500 kg/m3)π(0.35 m)2(0.02 m) ≈ 4 kg

Suppose its specific heat is c = 0.6 cal/g ⋅ C°.  The drop in temperature of the pizza is described
by:

Q = mc(Tf – Ti)

℘ = 
dQ
d t

  = mc 
dTf

d t
  – 0

dTf

d t
  = ℘

mc
  = 

710 J/s
(4 kg)(0.6 ⋅ 4186 J/kg ⋅ C°)  = 0.07 C°/s ~ 10–1 K/s  

*20.50 ℘ = σAeT4

2.00 W = (5.67 × 10–8 W/m2 ⋅ K4)(0.250 × 10–6 m2)(0.950)T4

T = [1.49 × 1014 K4]1/4 = 3.49 × 103 K  

*20.51 We suppose the earth below is an insulator.  The square meter must radiate in the infrared as
much energy as it absorbs, ℘ = σAeT4.   Assuming that e = 1.00 for blackbody blacktop:

1000 W = (5.67 × 10–8 W/m2 ⋅ K4)(1.00 m2)(1.00)T4

T = (1.76 × 1010 K4)1/4 = 364 K  (You can cook an egg on it.)

*20.52 The sphere of radius R absorbs sunlight over the area of its day hemisphere, projected as a flat
circle perpendicular to the light:  πR2.    It radiates in all directions, over area 4πR2.   Then, in
steady state,

℘in = ℘out

e(1340 W/m2)πR2 = eσ(4πR2)T4

The emissivity e, the radius R, and π all cancel.  Therefore,

T = 




1340 W/m2

4(5.67 × 10–8 W/m2 ⋅ K4)  
1/4

 = 277 K   = 4°C
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*20.53 77.3 K = –195.8°C is the boiling point of nitrogen.  It gains no heat to warm as a liquid, but gains
heat to vaporize:

Q = mLv = (0.100 kg)(2.01 × 105 J/kg) = 2.01 × 104 J

The water first loses heat by cooling.  Before it starts to freeze, it can lose

Q = mc ∆T = (0.200 kg)(4186 J/kg ⋅ C°)(5.00 C°) = 4.19 × 103 J

The remaining (2.01 × 104 – 4.19 × 103)J = 1.59 × 104 J that is removed from the water can freeze
a mass x of water:

Q = mLf

1.59 × 104 J = x(3.33 × 105 J/kg)

x = 0.0477 kg = 47.7 g   of water can be frozen

*20.54 The energy required to melt 1.00 kg of snow is

Q = (1.00 kg)(3.33 × 105 J/kg) = 3.33 × 105 J

The force of friction is

f = µn = µmg = (0.200)(75.0 kg)(9.80 m/s2) = 147 N

Therefore, the work done is

W = fs = (147 N)s = 3.33 × 105 J

and s = 2.27 × 103 m   

20.55 (a ) Before conduction has time to become important, the heat energy lost by the rod equals
the heat energy gained by the helium.  Therefore,

(mLv)He = (mc∆T)Al     or     (ρVLv)He = (ρVc ∆T)Al     so     VHe = 
(ρVc ∆T)Al

(ρLv)He
 

VHe = 
(2.70 g/cm3)(62.5 cm3)(0.210 cal/g ⋅ °C)(295.8°C)

(0.125 g/cm3)(2.09 × 104 J/kg)(1.00 cal/4.186 J)(1.00 kg/1000 g) 

  = 1.68 × 104 cm3 = 16.8 liters   

(b) The rate at which energy is supplied to the rod in order to maintain constant
temperatures is given by

℘ = kA 
dT
dx

  = (31.0 J/s ⋅ cm ⋅ K)(2.50 cm2) 




295.8 K

25.0 cm   = 917 W

This power supplied to the helium will produce a "boil-off" rate of
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℘
ρLv

  = 
917 W

(0.125 g/cm3)(2.09 × 104 J/kg)(10–3 kg/g)  = 351 
cm3

s   = 0.351 
L
s  
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Goal Solution    
G: Demonstrations with liquid nitrogen give us some indication of the phenomenon described.

Since the rod is much hotter than the liquid helium and of significant size (almost 2 cm in
diameter), a substantial volume (maybe as much as a liter) of helium will boil off before
thermal equilibrium is reached.  Likewise, since aluminum conducts rather well, a
significant amount of helium will continue to boil off as long as the upper end of the rod is
maintained at 300 K.

O: Until thermal equilibrium is reached, the excess heat energy of the rod will be used to
vaporize the liquid helium, which is already at its boiling point (so there is no change in
the temperature of the helium).

A: As you solve this problem, be careful not to confuse L (the conduction length of the rod) with
Lv (the heat of vaporization of the helium).

(a ) Before heat conduction has time to become important, we suppose the heat energy lost
by half the rod equals the heat energy gained by the helium.  Therefore,

(mLv)He = (mc∆T)Al     or     (ρVLv)He = (ρVc∆T)Al

so that vHe = 
(ρVc∆T)Al

(ρLv)He
  = 

(2.7 g/cm3)(62.5 cm3)(0.21 cal/g °C)(295.8°C)
(0.125 g/cm3)(4.99 cal/g)  

and vHe = 1.68 × 104 cm3 = 16.8 liters

(b) Heat energy will be conducted along the rod at a rate of 
dQ
d t

  = P = 
kA∆T

L
  .

During any time interval, this will boil a mass of helium according to

Q = mLv        or     
dQ
d t

  = 




dm

d t
  Lv

Combining these two equations gives us the "boil-off" rate:  
dm
d t

  = 
kA∆T
L ⋅ Lv

 

Set the conduction length L =  25 cm,  and use k = 31 J/s cm ⋅ K = 7.41 cal/s cm ⋅ K:

dm
d t

  = 
(7.41 cal/s ⋅ cm ⋅ K)(2.5 cm2)(295.8 K)

(25 cm)(4.99 cal/g)   = 43.9 g/s

or
dm
d t

  = 
43.9 g/s

0.125 g/cm3  = 351 cm3/s = 0.351 liter/s

L: The volume of helium boiled off initially is much more than expected.  If our calculations are
correct, that sure is a lot of liquid helium that is wasted!  Since liquid helium is much more
expensive than liquid nitrogen, most low-temperature equipment is designed to avoid
unnecessary loss of liquid helium by surrounding the liquid with a container of liquid
nitrogen.
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*20.56 (a ) The heat thus far gained by the copper equals the heat loss by the silver.  Your down
parka is an excellent insulator.

Qcold = –Qhot     or     mCucCu(Tf – Ti)Cu = –mAgcAg(Tf – Ti)Ag

(9.00 g)(387 J/kg ⋅ C°)(16.0°C) = –(14.0 g)(234 J/kg ⋅ C°)(Tf – 30.0°C)Ag

(Tf – 30.0°C)Ag = –17.0°C     so     Tf,Ag = 13.0°C  

(b) For heat flow:  mAgcAg 




dT

d t
 
Ag

 = –mCucCu 




dT

d t
 
Cu





dT

d t
 
Ag

 = – 
mCucCu

mAgcAg
 




dT

d t
 
Cu

 = – 
(9.00 g)(387 J/kg ⋅ C°)

(14.0 g)(234 J/kg ⋅ C°) (+0.500 C°/s) 





dT

d t
 
Ag

 = –0.532 C°/s      (negative sign ⇒ decreasing temperature) 

20.57 Q = cm ∆T;    m = ρV;    
dQ
d t

    = ρc ∆T 




dV

d t
  

c =  
dQ/dt

ρ ∆T(dV/dt)    =  
(30.0 J/s)

(0.780 g/cm2)(4.80°C)(4.00 cm3/s)    =  2.00 J/g · C°

c = 2.00 kJ/kg · C°   

20.58 Q = mc ∆T = (ρV)c ∆T

Thus, when a constant temperature difference ∆T is maintained, the rate of adding heat to the
liquid is

℘ = 
dQ
d t

  = ρ 




d V

d t
  c ∆T = ρRc ∆T

and the specific heat of the liquid is c = ℘
ρR ∆T

 

20.59 Call the initial pressure P1.   In the constant volume process 1 → 2 the work is zero.

P1V1 = nRT1

P2V2 = nRT2

so
P2V2

P1V1
    =  

T2

T1
          T2 = 300 K 





1

4  (1)   = 75 .0 K
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Now in 2 → 3

W = ⌡⌠
2

3
P dV  = P2(V3 – V2) = P3V3 – P2V2

W = nRT3 – nRT2 = (1.00 mol) (8.315 J/mol · K)(300 K – 75.0 K)

W = 1.87 kJ   

*20.60 (a ) Work done by the gas is the area under the PV curve

W = Pi 



Vi

2  – Vi    = – 
Pi Vi

2   

(b) In this case the area under the curve is W = ∫ P dV.  Since
the process is isothermal,

PV = PiVi = 4Pi 



Vi

4    = nRTi    and

W = ⌡⌠
Vi

Vi/4
 




d V

V
 (PiVi)  = PiVi ln 





Vi/4

Vi
  = –PiVi ln 4 = –1.39PiVi  

(c) The area under the curve is 0 and W  = 0   

20.61 (a ) The work done during each step of the cycle equals the area
under that segment of the PV curve

W = WDA + WAB + WBC + WCD

W = Pi(Vi – 3Vi) + 0 + 3Pi(3Vi – Vi) + 0 = 4PiVi   

(b) The initial and final values of T for the system are equal.

Therefore, ∆Eint = 0,   and   Q = W = 4Pi Vi   

(c) W = 4PiVi = 4nRTi = 4(1.00)(8.315)(273) = 9.08 kJ   

20.62 (a ) Fv = (50.0 N)(40.0 m/s) = 2000 W   

(b) Energy received by each object is (1000 W)(10 s) = 104 J = 2389 cal.  The specific heat of
iron is 0.107 cal/g · °C, so the heat capacity of each object is 5.00 × 103 × 0.107 =
535.0 cal/°C.

∆T =  
2389 cal

535.0 cal/°C   = 4.47°C  

P

V

a

b
c

B C

D
A

P

Pi

3Pi

Vi 3Vi
V
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20.63 The power incident on the solar collector is

℘i = IA = (600 W/m2)π (0.300 m)2 = 170 W

For a 40.0% reflector, the collected power is ℘c = 67.9 W

The total energy required to increase the temperature of the water
to the boiling point and to evaporate it is

Q = cm ∆T + mLV

= (0.500 kg)[(4186 J/kg · C°)(80.0 C°) + 2.26 × 106 J/kg]

Q = 1.30 × 106  J

The time required is t =  
Q
℘c

    =  
1.30 × 106 J

67.9 W    = 5.31 h   

20.64 From Q = mL v the rate of boiling is described by

℘ =  
Q
t

   =  
L vm

t
       ∴  

m
t

    =  ℘
L v

  

Model the water vapor as an ideal gas

P0V = nRT =  




m

M
  RT

P0V
t

   =  
m
t

 




RT

M
  

P0 Av = ℘
L v

 




RT

M
  

v =  
℘RT

ML vP0 A
    

=  
(1000 W)(8.315 J/mol · K)(373 K)

(0.0180 kg/mol)(2.26 × 106 J/kg)(1.013 × 105 N/m2)(2.00 × 10–4 m2)  

v = 3.76 m/s   



Chapter 20 Solutions 25

© 2000 by Harcourt College Publishers.  All rights reserved.

*20.65 To vaporize water requires an addition of 2.26 × 106 J/kg of energy, while water gives up
3.33 × 105 J/kg as it freezes.  The heat to vaporize part of the water must come from the
heat of fusion as some water freezes.  Thus, if x kilograms of water freezes while a mass of
(1.00 kg – x) is vaporized,

(3.33 × 105 J/kg)x = (2.26 × 106 J/kg)(1.00 kg – x)

or x = 6.79 kg – 6.79x

This yields, 7.79x = 6.79 kg,   and

x = 0.872 kg = 872 g   of water freezes.

20.66 Energy goes in at a constant rate ℘.   For the period from

50.0 min to 60.0 min, Q = mc ∆T

℘(10.0 min) = (10 kg + mi)(4186 J/kg ⋅ C°)(2.00 °C –
0°C)

℘(10.0 min) = 83.7 kJ + (8.37 kJ/kg)mi (1)

For the period from 0 to 50.0 min, Q = miLf

℘(50.0 min) = mi(3.33 × 105 J/kg)

 Substitute ℘ = mi(3.33 × 105 J/kg)/50.0 min into Equation (1) to find

mi(3.33 × 105 J/kg)/5.00 = 83.7 kJ + (8.37 kJ/kg)mi

mi = 
83.7 kJ

(66.6 – 8.37) kJ/kg  = 1.44 kg  

*20.67 (a ) The block starts with Ki = 
1
2  mv

2
i   = 

1
2 (1.60 kg)(2.50 m/s) 2 = 5.00 J.  All this becomes extra

internal energy in the ice, melting some according to "Q" = mice Lf.  Thus, the mass of ice
that melts is

mice = 
"Q"
Lf

  = 
Ki

Lf
  = 

5.00 J
3.33 × 105 J/kg  = 1.50 × 10–5 kg = 15.0 mg  

For the block:  Q = 0 (no heat can flow since there is no temperature difference),
W = +5.00 J, ∆Eint = 0 (no temperature change), and ∆K = –5.00 J.   For the ice, Q = 0,
W = –5.00 J, ∆Eint = +5.00 J,  and ∆K = 0.

(b) Again, Ki = 5.00 J and mice = 15.0 mg  .

For the block of ice:  Q = 0, ∆Eint = +5.00 J, ∆K = –5.00 J, so W = 0.
For the copper, nothing happens:  Q = ∆Eint= ∆K = W = 0.

0.00

1.00

2.00

3.00

20.0 40.0 60.0

T  (° C)

t (min)
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(c) Again, Ki = 5.00 J.  Both blocks must rise equally in temperature:

"Q" = mc ∆T = 
"Q"
mc

  = 
5.00 J

2(1.60 kg)(387 J/kg ⋅ C°)  = 4.04 × 10–3 C°  

At any instant, the two blocks are at the same temperature, so for both Q = 0.  For the
moving block:  ∆K = –5.00 J and ∆Eint = +2.50 J, so W = +2.50 J.  For the stationary block:
∆K = 0, ∆Eint = +2.50 J, so W = –2.50 J.

20.68 A = Aend walls + Aends of attic + Aside walls + Aroof

A = 2(8.00 m × 5.00 m) + 2 




2 ×  

1
2  × (4.00 m) × (4.00 m tan 37.0°)   

+ 2(10.0 m × 5.00 m) + 2




10.0 m × 

4.00 m
cos 37.0°  

A = 304 m2

℘  =  
kA ∆T

L
   = 

(4.80 × 10–4 kW/m ⋅ °C)(304  m2)(25.0°C)
0.210 m   = 17.4 kW = 4.15 

kcal
s  

Thus, the heat lost per day = (4.15 kcal/s)(86 400 s) = 3.59 × 105 kcal/day.

The gas needed to replace this loss = 
3.59 × 105 kcal/day

9300 kcal/m3   =  38.6 m3/day  

20.69
LρAdx

d t
  = kA 

∆T
x

 Lρ ⌡⌠
4.00

8.00
x dx  = k ∆T ⌡⌠

0

t
dt 

Lρ 
x2

2

8.00

4.00

  = k ∆T t

(3.33 × 105 J/kg)(917 kg/m3) 




(0.0800 m)2 – (0.0400 m)2

2   = 




2.00 

W
m ⋅ °C  (10.0 C°) t

t = 3.66 × 104 s = 10.2 h  

20.70 For a cylindrical shell of radius r, height L, and

thickness dr,  Equation 20.14,  
dQ
d t

   =  –kA 
dT
dx

   ,

becomes  
dQ
d t

  = –k(2πrL) 
dT
dr

   



Chapter 20 Solutions 27

© 2000 by Harcourt College Publishers.  All rights reserved.

Under equilibrium conditions,  
dQ
d t

   

is constant; therefore, dT = – 
dQ
d t

 




1

2πkL
 
dr
r

 

and Tb – Ta = – 
dQ
d t

 




1

2πkL
  ln 





b

a
      but  Ta > Tb.

Therefore, 
dQ
d t

 = 
2πkL(Ta – Tb)

ln (b/a)  

20.71 From problem 70, the rate of heat flow through the wall is

dQ
d t

  = 
2πkL(Ta – Tb)

ln (b/a)  

dQ
d t

  = 
2π(4.00 × 10–5 cal/s ⋅ cm ⋅ C°)(3500 cm)(60.0 C°)

ln(256 cm/250 cm)  

dQ
d t

  = 2.23 × 103 cal/s = 9.32 kW  

This is the rate of heat loss from the plane, and consequently the rate at which energy must be
supplied in order to maintain a constant temperature.

20.72 Qcold = –Qhot     or     QAl = –(Qwater + Qcalo)

mAlcAl(Tf – Ti)Al = –(mwcw + mccc)(Tf – Ti)w

(0.200 kg)cAl(+39.3 C°)

= – 




(0.400 kg) 





4186 

J
kg ⋅ C°  + (0.0400 kg) 





630 

J
kg ⋅ C°  (–3.70 C°) 

cAl = 
6.29 × 103 J
7.86 kg ⋅ C°  = 800 J/kg ⋅ C°  

T  b

L

b a

T  a

r
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