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Chapter 21 Solutions

*21.1 One mole of helium contains Avogadro's number of molecules and has a mass of 4.00 g.  Let us
call m the mass of one atom, and we have

NAm = 4.00 g/mol

or m = 
4.00 g/mol

6.02 × 1023 molecules/mol   = 6.64 × 10–24 g/molecule

m = 6.64 × 10–27 kg   

*21.2 We first find the pressure exerted by the gas on the wall of the container.

P =  
NkT
V

   =  
3NA kB T

V
   =  

3RT
V

   = 
3(8.315 N · m/mol · K)(293 K)

8.00 × 10–3 m3    = 9.13 × 105 Pa

Thus, the force on one of the walls of the cubical container is

F = PA = (9.13 × 105 Pa)(4.00 × 10–2 m2) = 3.65 × 104 N   

21.3 F
–

  = Nm 
∆v
∆ t

  = 500(5.00 × 10–3 kg) 
[8.00 sin 45.0° – (–8.00 sin 45.0°)]m/s

30.0 s   = 0.943 N  

P = 
F
–

A
  = 1.57 N/m2 = 1.57 Pa  

21.4 Consider the x axis to be perpendicular to the plane of the window.  Then, the average force
exerted on the window by the hail stones is

F
–

  = Nm 
∆v
∆ t

  = Nm 
[vxf – vxi]

t
  = Nm 

[v sin θ – (–v sin θ)]
t

  = Nm 
2v sin θ

t
 

Thus, the pressure on the window pane is

P = 
F
–

A
  = Nm 

2v sin θ
A t

 

*21.5 F
–

  = 
(5.00 × 1023)(2 × 4.68 × 10–26 kg × 300 m/s)

1.00 s    = 14.0 N

and     P = 
F
–

A
   = 

14.0 N
8.00 × 10–4 m2   = 17.6 kPa   
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21.6 Use Equation 21.2,    P =  
2N
3V

 




mv2

2   ,    so that

Kav =  
mv2

2    =  
3PV
2N

    where N = nNA = 2NA

Kav =  
3PV

2(2NA)   =  
3(8.00 atm)(1.013 × 105 Pa/atm)(5.00 × 10–3 m3)

2(2 mol)(6.02 × 1023 molecules/mol)
 

Kav = 5.05 × 10–21 J/molecule  

21.7 P = 
2
3 

N
V

 (KE
—

) Equation 21.2

N = 
3
2 

PV

(K E
—

)
  = 

3
2 

(1.20 × 105)(4.00 × 10–3)
(3.60 × 10–22)   = 2.00 × 1024 molecules

n = 
N
NA

  = 
2.00 × 1024 molecules

6.02 × 1023 molecules/mol  = 3.32 mol  

Goal Solution    
G: The balloon has a volume of 4.00 L and a diameter of about 20 cm, which seems like a

reasonable size for a typical helium balloon.  The pressure of the balloon is only slightly more
than 1 atm, and if the temperature is anywhere close to room temperature, we can use the
estimate of 22 L/mol for an ideal gas at STP conditions.  If this is valid, the balloon should
contain about 0.2 moles of helium.

O: The average kinetic energy can be used to find the temperature of the gas, which can be used
with PV=nRT to find the number of moles.

A: The gas temperature must be that implied by 
1
2  mv2 = 

3
2  kBT for a monatomic gas like He.

T = 
2
3 







1

2
 mv2

ka
  = 

2
3 





3.6 × 10–22 J

1.38 × 10–23 J/K   = 17.4 K

Now  PV = nRT gives

n = 
PV
RT

  = 
(1.20 × 105 N/m2)(4.00 × 10–3 m3)

(8.315 J/mol ⋅ K)(17.4 K)  

n = 3.32 mol

L: This result is more than ten times the number of moles we predicted, primarily because the
temperature of the helium is much colder than room temperature!  In fact, T is only slightly
above the temperature at which the helium would liquify (4.2 K at 1 atm).  We should hope
this balloon is not being held by a child; not only would the balloon sink in the air, it is cold
enough to cause frostbite!
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21.8 v = 
3kBT

m
  

vO

vHe
  = 

MHe

MO
     = 

4.00
32.0     = 

1
8.00 

vO = 
1350 m/s

8.00
  = 477 m/s  

21.9 (a ) PV = NkBT

N = 
PV
kBT

  = 
(1.013 × 105 Pa) 4

3
 π(0.150 m)3

(1.38 × 10–23 J/K)(293 K)   = 3.53 × 1023 atoms  

(b) K
—

  = 
3
2  kBT = 

3
2 (1.38 × 10–23)(293)  J = 6.07 × 10–21 J  

(c)
1
2  mv2

–
  = 

3
2  kBT ∴ vrms = 

3kBT
m

     = 1.35 km/s  

21.10 (a ) PV = nRT = 
Nmv2

3  K = 
Nmv2

2   = Etrans

Etrans = 
3PV

2   = 
3
2 (3.00 × 1.013 × 105)(5.00 × 10–3)  = 2.28 kJ  

(b)
mv2

2   = 
3kBT

2   = 
3RT
2NA

  = 
3
2 

(8.315)(300)
(6.02 × 1023)  = 6.22 × 10–21 J  

21.11 (a )
–
K  =  

3
2  kBT =  

3
2 (1.38 × 10–23 J/K)(423 K)   = 8.76 × 10–21 J   

(b)
–
K  =  

1
2  mv

2
rms   = 8.76 × 10–21 J

so vrms = 
1.75 × 10–20 J

m
   (1)

For helium,

m =  
4.00 g/mol

6.02 × 1023 molecules/mol   = 6.64 × 10–24 g/molecule

m = 6.64 × 10–27 kg/molecule
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Similarly for argon,

m =  
39.9 g/mol

6.02 × 1023 molecules/mol   = 6.63 × 10–23 g/molecule

m = 6.63 × 10–26 kg/molecule

Substituting in (1) above, we find

for helium, vrms = 1.62 km/s   ;  and for argon, vrms = 514 m/s   

*21.12 (a ) 1 Pa = (1 Pa) 




1 N/m2

1 Pa  




1 J

1 N ⋅ m   = 1 
J

m3  

(b) For a monatomic ideal gas, Eint = 
3
2  nRT

For any ideal gas, the energy of molecular translation is the same,

Etrans = 
3
2  nRT = 

3
2  PV

Thus, the energy per volume is 
Etrans

V
  = 

3
2 P  

21.13 Eint = 
3
2  nRT

∆Eint = 
3
2  nR ∆T = 

3
2 (3.00 mol)(8.315 J/mol ⋅ K)(2.00 K)  = 75.0 J  

21.14 The piston moves to keep pressure constant.  Since V = 
nRT

P
  , then

∆V = 
nR ∆T

P
  for a constant pressure process.

Q = nCP ∆T = n(CV + R)∆T     so      ∆T = 
Q

n(CV + R)  = 
Q

n(5R/2 + R)  = 
2Q
7nR

 

and ∆V = 
nR
P

 




2Q

7nR
  = 

2Q
7P

  = 
2
7 

QV
nRT

 

∆V = 
2
7 

(4.40 × 103 J)(5.00 L)
(1.00 mol)(8.315 J/mol ⋅ K)(300 K)  = 2.52 L

Thus, Vf = Vi + ∆V = 5.00 L + 2.52 L = 7.52 L  
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21.15 Use CP and CV from Table 21.2.

(a ) Q = nCP ∆T = (1.00 mol)(28.8 J/mol ⋅ K)(420 – 300) K = 3.46 kJ  

(b) ∆Eint = nCV ∆T = (1.00 mol)(20.4 J/mol ⋅ K)(120 K) = 2.45 kJ  

(c) W = Q – ∆Eint = 3.46 kJ – 2.45 kJ = 1.01 kJ  

21.16 n = 1.00 mol, Ti = 300 K

(b) Since V = constant, W = 0   

(a ) ∆Eint = Q – W = 209 J – 0 = 209 J  

(c) ∆Eint = nCV ∆T = n 




3

2 R   ∆T

so ∆T = 
2(∆Eint)

3nR
  = 

2(209 J)
3(1.00 mol)(8.315 J/mol ⋅ K)  = 16.8 K

T = Ti + ∆T = 300 K + 16.8 K = 317 K  

21.17 (a ) Consider heating it at constant pressure.  Oxygen and nitrogen are diatomic, so
CP = 7R/2

Q = nCP ∆T = 
7
2  nR ∆T = 

7
2 





PV

T
  ∆T

Q = 
7
2 

(1.013 × 105 N/m2)(100 m3)
300 K  (1.00 K)  = 118 kJ  

(b) Ug = mgy

m = 
Ug

gy
  = 

1.18 × 105 J
(9.80 m/s2)2.00 m  = 6.03 × 103 kg  

*21.18 (a ) CV = 
5
2  R = 

5
2 





8.315 

J
mol ⋅ K  





1.00 mol

0.0289 kg   = 719 
J

kg ⋅ K  = 0.719 
kJ

kg ⋅ K  

(b) m = nM = M 




PV

RT
 

m = 




0.0289 

kg
mol  

(200 × 103 Pa)(0.350 m3)
(8.315 J/mol ⋅ K)(300 K)  = 0.811 kg  
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(c) We consider a constant volume process where no work is done.

Q = mCv ∆T = (0.811 kg) 




0.719 

kJ
kg ⋅ K  (700 K – 300 K)  = 233 kJ  

(d) We now consider a constant pressure process where the internal energy of the gas is
increased and work is done.

Q= mCP ∆T = m(CV + R)∆T = m(7R/2)∆T = m(7CV/5)∆T

Q = (0.811 kg) 




7

5 




0.719 

kJ
kg ⋅ K  (400 K)  = 327 kJ  

*21.19 Consider 800 cm3 of (flavored) water at 90.0˚C mixing with 200 cm3 of diatomic ideal gas at
20.0˚C:

Qcold = –Qhot     or     mairCP,air(Tf – Ti,air) = –mwcw(∆T)w

(∆T)w = – 
mairCP,air(Tf – Ti,air)

mwcw
  = 

[ρV]air CP,air(90.0°C – 20.0°C)
(ρwVw)cw

 

where we have anticipated that the final temperature of the mixture will be close to 90.0˚C.

CP,air = 
7
2  R = 

7
2 





8.315 

J
mol ⋅ C°  





1.00 mol

28.9 g   = 1.01 J/g ⋅ C°

(∆T)w = – 
[(1.20 × 10–3  g/cm3)(200 cm3)](1.01 J/g ⋅ C°)(70.0 C°)

[(1.00 g/cm3)(800 cm3)](4.186 J/g ⋅ C°)  

or (∆T)w ≈ 5.05 × 10–3 C°

The change of temperature for the water is between 10–3 °C and 10–2 °C  

21.20 Q = (nCP ∆T)isobaric + (nCV ∆T)isovolmetric

In the isobaric process, V doubles so T must double, to 2Ti .
In the isovolumetric process, P triples so T changes from 2Ti to 6Ti .

Q = n 




7

2 R  (2Ti – Ti)  + n 




5

2 R  (6Ti – 2Ti) 

Q = 13.5nRTi = 13.5PV  
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21.21 In the isovolumetric process A → B, W = 0 and Q = nCV ∆T = 500 J

500 J = n(3R/2)(TB – TA)     or     TB = TA + 
2(500 J)

3nR
 

TB = 300 K + 
2(500 J)

3(1.00 mol)(8.315 J/mol ⋅ K)  = 340 K

In the isobaric process B → C,

Q = nCP ∆T = 
5nR

2  (TC – TB)  = –500 J

Thus,

(a ) TC = TB – 
2(500 J)

5nR
  = 340 K – 

1000 J
5(1.00 mol)(8.315 J/mol ⋅ K)  = 316 K  

(b) The work done by the gas during the isobaric process is

WBC = PB ∆V = nR(TC – TB) = (1.00 mol)(8.315 J/mol ⋅ K)(316 K – 340 J)

or WBC= –200 J

The total work done     on     the gas is then

Won gas = –Wby gas = –(WAB + WBC) = –(0 – 200 J)

or Won gas = +200 J  

21.22 (a ) The heat required to produce a temperature change is

Q = n1C1 ∆T + n2C2 ∆T

The number of molecules is N1 + N2,  so the number of "moles of the mixture" is n1 + n2 and
Q = (n1 + n2)C ∆T,

so C = 
n1C1 + n2C2

n1 + n2
 

(b) Q = ∑
i = 1

m

niCi ∆T  = 






∑

i = 1

m

ni  C ∆T

C = ∑
i = 1

m

niCi /∑
i = 1

m

ni  
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21.23 The rms speed of the gas molecules is v = 
3RT
M

  .  Thus, to double the rms speed, the

temperature must increase by a factor of 4:  Tf = 4Ti.

Since the pressure is proportional to volume in this process,

P
V

  = 
Pi

Vi
  = constant     or     P = 





Pi

Vi
  V

Then, PV = nRT becomes





Pi

Vi
  V2 = nRT     or     V2 = 





Vi

Pi
  nRT

Therefore, 
V

2
f

V
2
i

  = 
Tf

Ti
  = 4 or Vf = 2Vi.

The work done by the gas is then

W = ⌡⌠
Vi

Vf
P dV  = 

Pi

Vi
 ⌡⌠

Vi

2Vi
V dV  = 

3
2  PiVi

The change in the internal energy of the gas is

∆Eint = nCV ∆T = n 




5

2 R  (4Ti – Ti)  = 
15
2   nRTi = 

15
2   PiVi

and the energy transferred to the gas as heat is

Q = ∆Eint + W = 
15
2   PiVi + 

3
2  PiVi = 9PiVi  

*21.24 (a ) PiV
γ
i   = PfV

γ
f       so     

Vf

Vi
  = 





Pi

Pf
 
1/γ

 = 




1.00

20.0  
5/7

 = 0.118  

(b)
Tf

Ti
  = 

PfVf

PiVi
  = 





Pf

Pi
 




Vf

Vi
  = (20.0)(0.118) = 2.35  

(c) Since the process is adiabatic, Q = 0  

Since γ = 1.40 = 
CP

CV
  = 

R + CV

CV
  , CV = 

5
2  R, and ∆T = 2.35Ti – Ti =  1.35Ti

∆Eint = nCV ∆T = (0.0160 mol) 




5

2  




8.315 

J
mol ⋅ K   [1.35(300 K)] = 135 J  

and   W = Q – ∆Eint = 0 – 135 J = –135 J  



Chapter 21 Solutions 9

© 2000 by Harcourt College Publishers.  All rights reserved.

*21.25 (a ) PiV
γ
i   = PfV

γ
f  

Pf = 




Vi

Vf
 
γ
 Pi = (5.00 atm) 





12.0

30.0  
1.40

 = 1.39 atm  

(b) Ti = 
PiVi

nR
  = 

(5.00)(1.013 × 105 Pa)(12.0 × 10–3 m3)
(2.00 mol)(8.315 J/mol ⋅ K)   = 366 K  

Tf = 
PfVf

nR
  = 

(1.39)(1.013 × 105 Pa)(30.0 × 10–3 m3)
(2.00 mol)(8.315 J/mol ⋅ K)   = 253 K  

(c) The process is adiabatic:  Q = 0  

γ = 1.40 = 
CP

CV
  = 

R + CV

CV
 CV = 

5
2  R

∆Eint = nCV ∆T = (2.00 mol) 




5

2 (8.315 J/mol ⋅ K)  (366 – 253)  K = 4.66 kJ  

W = Q – ∆Eint = 0 – 4.66 kJ = –4.66 kJ  

21.26 Vi = π(2.50 × 10–2 m/2)2 0.500 m = 2.45 × 10–4 m3

The quantity of air we find from PiVi = nRTi

n = 
PiVi

RTi
  = 

(1.013 × 105 Pa)(2.45 × 10–4 m3)
(8.315 J/mol ⋅ K)(300 K)  

n = 9.97× 10–3 mol

Adiabatic compression:  Pf = 101.3 kPa + 800 kPa = 901.3 kPa

(a) PiV
γ
f   = PfV

γ
f  

Vf = Vi(Pi/Pf)1/γ = 2.45 × 10–4 m3(101.3/901.3)5/7

Vf = 5.15 × 10–5 m3  

(b) PfVf = nRTf

Tf = Ti 
PfVf

PiVi
  = Ti 

Pf

Pi
 




Pi

Pf
 
1/γ

 = Ti(Pi/Pf)(1/γ – 1)

Tf = 300 K(101.3/901.3)(5/7 – 1) = 560 K  
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(c) The work put into the gas in compressing it is ∆Eint = nCV ∆T

W = (9.97 × 10–3 mol) 
5
2 (8.315 J/mol ⋅ K)(560 – 300)  K

W = 53.9 J

Now imagine this energy being shared with the inner wall as the gas is held at constant
volume.  The pump wall has outer diameter 25.0 mm + 2.00 mm + 2.00 mm = 29.0 mm, and
volume

[π(14.5 × 10–3 m)2 – π(12.5 × 10–3 m)2]4.00 × 10–2 m = 6.79 × 10–6 m3

and mass ρV = (7.86 × 103 kg/m3)(6.79 × 10–6 m3) = 53.3 g

The overall warming process is described by

53.9 J = nCV ∆T + mc ∆T

53.9 J = (9.97 × 10–3 mol) 
5
2 (8.315 J/mol ⋅ K)(Tff – 300 K) 

+ (53.3 × 10–3 kg)(448 J/kg ⋅ K)(Tff – 300 K)

53.9 J = (0.207 J/K + 23.9 J/K)(Tff – 300 K)

Tff – 300 K = 2.24 K  

21.27
Tf

Ti
  = 





Vi

Vf
 
γ – 1

 = 




1

2  
0.400

If Ti = 300 K, then Tf = 227 K  

Goal Solution    
G: The air should cool as it expands, so we should expect Tf < 300 K.

O: The air expands adiabatically, losing no heat but dropping in temperature as it does work on
the air around it, so we assume that PVγ = constant (where γ = 1.40 for an ideal gas).

A:   Combine P1V
γ
1  = P2V

γ
2      and     P1 = 

nRT1

V1
      with     P2 = 

nRT2

V2
 

to find T1V
γ – 1
1   = T2V

γ – 1
2  

T2 = T1 



V1

V2
 
γ – 1

 = 300 K 




1

2

(1.40 – 1)
  = 227 K

L: The air does cool, but the rate is not linear with the change in volume (the temperature drops
only 24% while the volume doubles)
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21.28 (a ) The work done on the gas is

–Wab = – ⌡⌠
Va

Vb
P dV 

For the isothermal process,

–Wab' = –nRTa ⌡⌠Va

Vb'
 




1

V
  dV

= –nRTa ln 




Vb'

Va
  = nRTa ln 





Va

Vb'
 

Thus, –Wab' = (5.00 mol) 




8.315 

J
mol ⋅ K  (293 K)  ln (10.0)

 = 28.0 kJ  

(b) For the adiabatic process, we must first find the final temperature, Tb. Since air consists
primarily of diatomic molecules, we shall use

γair = 1.40     and     CV,air = 5R/2 = 5(8.315)/2 = 20.8 J/mol ⋅ K

Then,  from Equation 21.20,

Tb = Ta 



Va

Vb
 
γ – 1

 = (293 K)(10.0)0.400 = 736 K

Thus, the work done on the gas during the adiabatic process is

–Wab = –(Q – ∆Eint)ab = –(0 – nCV ∆T)ab = nCV(Tb – Ta)

or –Wab = (5.00 mol)(20.8 J/mol ⋅ K)(736 – 293) K = 46.1 kJ  

(c) For the isothermal process, we have Pb'Vb' = PaVa

Thus, Pb' = Pa 



Va'

Vb'
  = (1.00 atm)(10.0) = 10.0 atm  

For the adiabatic process, we have Pb'V
γ
b  = PaV

γ
a 

Thus, Pb = Pa 



Va

Vb
 
γ
 = (1.00 atm)(10.0)1.40 = 25.1 atm  

P

b

b’

Pb

Pb’

Pa

Vb = Vb’ = Va /10 aV

V

Adiabatic, Qab = 0

Isothermal,
Tb’ = Ta
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21.29 (a ) See the diagram at the right.

(b) PBV
γ
B  = PCV

γ
C 

3PiV
γ
i   = PiV

γ
C 

VC = 31/γVi = 35/7Vi = 2.19Vi

VC = 2.19(4.00 L) = 8.79 L  

(c) PBVB = nRTB = 3PiVi = 3nRTi

TB = 3Ti = 3(300 K) = 900 K  

(d) After one whole cycle, TA = Ti = 300 K  

(e) In AB, QAB = nCV ∆T = n 




5

2 R  (3Ti – Ti)  = (5.00)nRTi

QBC = 0 as this process is abiabatic

PCVC = nRTC = Pi(2.19Vi) = 2.19nRTi      so     TC = 2.19Ti

QCA = nCP ∆T = n 




7

2 R  (Ti – 2.19Ti)  = –4.17nRTi

For the whole cycle,

QABCA = QAB + QBC + QCA = (5.00 – 4.17)nRTi = 0.830nRTi

(∆Eint)ABCA = 0 = QABCA – WABCA

WBACA = QABCA = 0.830nRTi = 0.830PiVi

WABCA = 0.830(1.013 × 105 Pa)(4.00 × 10–3 m3) = 336 J  

P

B3Pi

3Pi

 Vi = 4L VC

V (L)

Adiabatic

A C
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21.30 (a ) See the diagram at the right.

(b) PBV
γ
B  = PCV

γ
C 

3PiV
γ
i   = PiV

γ
C 

VC = 31/γVi = 35/7Vi = 2.19Vi  

(c) PBVB = nRTB = 3PiVi = 3nRTi

TB = 3Ti  

(d) After one whole cycle, TA = Ti  

(e) In AB, QAB = nCV ∆T = n 




5

2 R  (3Ti – Ti)  = (5.00)nRTi

QBC = 0 as this process is abiabatic

PCVC = nRTC = Pi(2.19Vi) = 2.19nRTi     so     TC = 2.19Ti

QCA = nCP ∆T = n 




7

2 R  (Ti – 2.19Ti)  = –4.17nRTi

For the whole cycle,

QABCA= QAB + QBC + QCA = (5.00 – 4.17)nRTi = 0.830nRTi

(∆Eint)ABCA = 0 = QABCA – WABCA

WABCA = QABCA = 0.830nRTi = 0.830PiVi  

P

B

Pi

V (L)

Adiabatic

A C

Vi VC

3Pi



14 Chapter 21 Solutions

© 2000 by Harcourt College Publishers.  All rights reserved.

21.31 We suppose the air plus burnt gasoline behaves likes a
diatomic ideal gas. We find its final absolute pressure:

21.0 atm(50.0 cm3)7/5 = Pf(400 cm3)7/5

Pf = 21.0 atm (1/8)7/5 = 1.14 atm

Now Q = 0, and W = –∆Eint = –nCV(Tf – Ti)

∴ W = –n 
5
2  RTf + 

5
2  nRTi = 

5
2 (–PfVf + PiVi) 

= 
5
2  [–(1.14 atm)(400 cm3)

 + (21.0 atm)(50.0 cm3)]





1.013 × 105 N/m2

1 atm  




10–6 m3

cm3  

W = 150 J

The time for this stroke is 
1
4 

1 min
2500  





60 s

1 min   = 6.00 × 10–3 s

So ℘ = 
W
t

  = 
150 J

6.00 × 10–3 s  = 25.0 kW  

21.32 (1) Eint = Nf 
kBT
2   = f 

nRT
2  

(2) CV = 
1
n
 



dEint

dT
  = 

1
2  fR

(3) CP = CV + R = 
1
2 (f + 2) R

(4) γ = 
CP

CV
  = 

(f + 2)
f

 

21.33 (a ) C 'V  = 
5
2  nR = 9.95 cal/K  C 'P  = 

7
2  nR = 13.9 cal/K  

(b) C 'V  = 
7
2  nR = 13.9 cal/K  C 'P  = 

9
2  nR = 17.9 cal/K  

400 cm3

After

50.0 cm3

Before
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21.34 A more massive diatomic or polyatomic molecule will generally have a lower frequency of
vibration.  At room temperature, vibration has more chance of being excited than in a less
massive molecule.  Absorbing energy into vibration shows up in higher specific heats.

21.35 Rotational Kinetic Energy = 
1
2  Iω2

I = 2mr2, m = 35.0 × 1.67 × 10–27 kg, r = 10–10 m

I = 1.17 × 10–45 kg ⋅ m2 ω = 2.00 × 1012 s–1

∴Krot = 
1
2  Iω2 = 2.33 × 10–21 J  

21.36 The ratio of the number at higher energy to the number at lower energy is e–∆E/kBT where ∆E is
the energy difference.  Here,

∆E = (10.2 eV)(1.60 × 10–19 J/1 eV) = 1.63 × 10–18 J

and at 0°C,

kBT = (1.38 × 10–23 J/K)(273 K) = 3.77 × 10–21 J

 Since this is much less than the excitation energy, nearly all the atoms will be in the ground
state and the number excited is

(2.70 × 1025)exp(–1.63 × 10–18 J/3.77 × 10–21 J) = (2.70 × 1025)e–433

This number is much less than one, so almost all of the time no atom is excited  .

At 10000°C,

kBT = (1.38 × 10–23 J/K)10273 K = 1.42 × 10–19 J

The number excited is

(2.70 × 1025)exp(–1.63 × 10–18 J/1.42 × 10–19 J)

= (2.70 × 1025)e–11.5 = 2.70 × 1020  

21.37 Call n00 the sea-level number density of oxygen molecules, nN0 the sea-level number of nitrogen
per volume, and n0 and nN their respective densities at y = 10.0 km.

 Then, n0 = n00 exp (–m0gy/kBT)

nN = nNO exp (–mNgy/kBT)

and
n0

nN
  = 

n00

nN0
  exp (–m0gy/kBT + mNgy/kBT)

Cl

Cl
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So
(n0/nN)

(n00/nN0)  = exp [–(m0 – mN)gy/kBT]

= exp 




– 

(32.0 – 28.0) u (1.66 × 10–27 kg/u)(9.80 m/s2)104 m
(1.38 × 10–23 J/K)300 K  

= 0.855

The ratio of oxygen to nitrogen molecules decreases to 85.5% of its sea-level value.  

21.38 (a )
Vrms,35

Vrms,37
  = 

3RT/M35

3RT/M37

  = 




37.0 g/mol

35.0 g/mol  
1/2

 = 1.03  

(b) The lighter atom, 35Cl  , moves faster.

21.39 (a ) vav = 
∑nivi

N
  = 

1
15  [1(2) + 2(3) + 3(5) + 4(7) + 3(9) + 2(12)] = 6.80 m/s  

(b) (v2)av = 
∑niv

2
i

N
  = 54.9 m2/s2

so vrms = (v2)av  = 54.9  = 7.41 m/s  

(c) vmp = 7.00 m/s  

21.40 Following Equation 21.29,

vmp = 
2kBT

m
  = 

2(1.38 × 10–23 J/K)(4.20 K)
6.64 × 10–27 kg   = 132 m/s  

21.41 Use Equation 21.26.

Take 
dNv

d v
  = 0:  4πN 





m

2πkBT
 
3/2

 exp 




– 

mv2

2kBT
 




2v – 

2mv3

2kBT
  = 0

and solve for vmp to get Equation 21.29.  Reject the solutions v = 0 and v = ∞.

Retain only 2 – 
mv2

kBT
  = 0.

21.42 (a ) From vrms = 
3kBT

m
  , we find the temperature as

T = 
(6.64 × 10–27 kg)(1.12 × 104 m/s)2

3(1.38 × 10–23 J/mol ⋅ K)   = 2.01 × 104 K  

(b) T = 
(6.64 × 10–27 kg)(2.37 × 103 m/s)2

3(1.38 × 10–23 J/mol ⋅ K)   = 9.01 × 102 K  
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21.43 At 0°C, 
1
2  mv

2
rms0  = 

3
2  kBT0

 At the higher temperature, 
1
2  m(2vrms0)2 = 

3
2  kBT

T = 4T0 = 4(273 K) = 1092 K = 819°C  

21.44 Visualize the molecules in liquid water at 20°C jostling about randomly. One happens to get
kinetic energy corresponding to 2430 J/g, and happens to be at the surface and headed upward.
Then this molecule can break out of the liquid.

(a ) 2430 J/g = 
2430 J

g  




18.0 g

1 mol  




1 mol

6.02 × 1023 molecules  

= 7.27 × 10–20 J/molecule  

(b) 7.27 × 10–20 J = 
1
2  mv2

v = 
2(7.27 × 10–20 J)

18.0 u(1.66 × 10–27 kg/1 u)  = 2.21 km/s  

(c) If these were typical molecules in an ideal gas instead of exceptional molecules in liquid
water,

1
2  mv2 = 

3
2  kBT

T = 
2
3 

7.27 × 10–20 J
1.38 × 10–23 J/K  = 3510 K  

These molecules got to be fast-moving in collisions that made other molecules slow-
moving; the average molecular energy is unaffected.

21.45 (a ) PV = 




N

NA
  RT     and     N = 

PVNA

RT
    so that

N = 
(1.00 × 10–10)(133)(1.00)(6.02 × 1023)

(8.315)(300)   = 3.21 × 1012 molecules  

(b) l = 
1

nVπd221/2  = 
V

Nπd221/2  = 
1.00 m3

(3.21 × 1012 molecules)π(3.00 × 10–10 m)2(2)1/2 

l = 778 km  

(c) f = 
v
l  = 6.42 × 10–4 s–1  
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Goal Solution    
G: Since high vacuum means low pressure as a result of a low molecular density, we should

expect a relatively low number of molecules, a long free path, and a low collision frequency
compared with the values found in Example 21.7 for normal air. Since the ultrahigh vacuum
is 13 orders of magnitude lower than atmospheric pressure, we might expect corresponding
values of N ~ 1012 molecules/m3, l ~ 106 m, and f ~ 0.0001/s.

O: The equation of state for an ideal gas can be used with the given information to find the
number of molecules in a specific volume.  The mean free path can be found directly from
equation 21.30, and this result can be used with the average speed to find the collision
frequency.

A:  (a ) PV = 




N

NA
  RT     and     N = 

PVNA

RT
   so that

N = 
(1.00 × 10–10 torr)(133 Pa/torr)(6.02 × 1023 molecules/mol)

(8.315 J/mol ⋅ K)(300 K)   = 3.21 × 1012 molecules

(b) l = 
1

2 πd2nv

  = 
V

2 Nπd2
  = 

1.00 m3

2 (3.21 × 1012 molecules)π(3.00 × 10–10 m)2
 

l = 7.78 × 105 m = 778 km

(c) f = 
v
l  = 

500 m/s
7.78 × 105 m  = 6.42 × 10–4 s–1

L: The pressure and the calculated results differ from the results in Example 21.7 by about 13
orders of magnitude as we expected.  This ultrahigh vacuum provides conditions that are
extremely different from normal atmosphere, and these conditions provide a “clean”
environment for a variety of experiments and manufacturing processes that would otherwise
be impossible.

21.46 The average molecular speed is

v = 8kBT/πm  = 8kBNAT/πNAm 

v = 8RT/πM 

v = 8(8.315 J/mol ⋅ K)3.00 K/π(2.016 × 10–3 kg/mol) 

v = 178 m/s
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(a ) The mean free path is

l = 
1

2πd2nV

  = 
1

2π(0.200 × 10–9 m)2 1/m3
 

l = 5.63 × 1018 m  

The mean free time is

l/v = 5.63 × 1018 m/178 m/s = 3.17 × 1016 s = 1.00 × 109 yr  

(b) Now nV is 106 times larger, to make l smaller by 106 times:

l = 5.63 × 1012 m  

Thus, l/v = 3.17 × 1010 s = 1.00 × 103 yr  

21.47 From Equation 21.30, l = 
1

2 πd2nV

 

For an ideal gas, nV = 
N
V

  = 
P

kBT
 

Therefore, l = 
kBT

2πd2P
  ,   as required.

21.48 l = [ 2  πd2nV]–1 nV = 
P

kBT
 

d = 3.60 × 10–10 m nV = 
1.013 × 105

(1.38 × 10–23)(293)  = 2.51 × 1025/m3

∴l = 6.93 × 10–8 m, or about 193 molecular diameters  

21.49 Using P = nVkBT,  Equation 21.30 becomes l = 
kBT

2 π Pd2
     (1) 

(a ) l = 
(1.38 × 10–23 J/K)(293 K)

2 π(1.0113 × 105 Pa)(3.10 × 10–10 m)2
  = 9.36 × 10–8 m  

(b) Equation (1) shows that P1l1 = P2l2.    Taking P1l1 from (a) and with l2 = 1.00 m, we find

P2 = 
(1.00 atm)(9.36 × 10–8m)

1.00 m   = 9.36 × 10–8 atm  
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(c) For l3 = 3.10 × 10–10 m, we have

P3 = 
(1.00 atm)(9.36 × 10–8 m)

3.10 × 10–10 m   = 302 atm  

*21.50 (a ) n = 
PV
RT

  = 
(1.013 × 105 Pa)(4.20 m × 3.00 m × 2.50 m)

(8.315 J/mol ⋅ K)(293 K)   = 1.31 × 103 mol

N = nNA = (1.31 × 103 mol)(6.02 × 1023 molecules/mol)

N = 7.88 × 1026 molecules  

(b) m = nM = (1.31 × 103 mol)(0.0289 kg/mol) = 37.9 kg  

(c)
1
2  m0v2 = 

3
2  kBT = 

3
2 (1.38 × 10–23 J/K)(293 K)  = 6.07 × 10–21 J/molecule  

(d) For one molecule,

m0 = 
M
NA

  = 
0.0289 kg/mol

6.02 × 1023 molecules/mol  = 4.80 × 10–26 kg/molecule

vrms = 
2(6.07 × 10–21 J/molecule)
4.80 × 10–26 kg/molecule   = 503 m/s  

(e) and (f)

Eint = nCVT = n 




5

2 R  T = 
5
2  PV

Eint = 
5
2 (1.013 × 105 Pa)(31.5 m3)  = 7.98 MJ  

*21.51 (a ) Pf = 100 kPa  Tf = 400 K  

Vf = 
nRTf

Pf
  = 

(2.00 mol)(8.315 J/mol ⋅ K)(400 K)
100 × 103 Pa   = 0.0665 m3 = 66.5 L  

∆Eint = 3.50nR ∆T = 3.50(2.00 mol)(8.315 J/mol ⋅ K)(100 K) = 5.82 kJ  

W = P ∆V = nR ∆T = (2.00 mol)(8.315 J/mol ⋅ K)(100 K) = 1.66 kJ  

Q = ∆Eint + W = 5.82 kJ + 1.66 kJ = 7.48 kJ  
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(b) Tf = 400 K  

Vf = Vi = 
nRTi

Pi
  = 

(2.00 mol)(8.315 J/mol ⋅ K)(300 K)
100 × 103 Pa   = 0.0499 m3 = 49.9 L  

Pf = Pi 



Tf

Ti
  = (100 kPa) 





400 K

300 K   = 133 kPa  

W = ∫ P dV = 0   since V = constant

∆Eint = 5.82 kJ   as in (a)

Q = ∆Eint + W = 5.82 kJ + 0 = 5.82 kJ  

(c) Tf = 300 K  Pf = 120 kPa  

Vf = Vi 



Pi

Pf
  = (49.9 L) 





100 kPa

120 kPa   = 41.6 L  

∆Eint = 3.50nR ∆T = 0   since T = constant

W = ∫ P dV = nRTi ⌡⌠Vi

Vf
 
d V
V

  = nRTi ln 




Vf

Vi
  = nRTi ln 





Pi

Pf
 

W = (2.00 mol)(8.315 J/mol ⋅ K)(300 K) ln 




100 kPa

120 kPa   = –910 J  

Q = ∆Eint + W = 0 – 910 J = –910 J  

(d) Pf = 120 kPa  γ = 
CP

CV
  = 

CV + R
CV

  = 
3.50R + R

3.50R
  = 

4.50
3.50R

  = 
4.50
3.50  = 

9
7 

PfV
γ
f   = PiV

γ
i       so     Vf = Vi 



Pi

Pf
 
1/γ

 = (49.9 L) 




100 kPa

120 kPa  
7/9

 = 43.3 L  

Tf = Ti 



PfVf

PiVi
  = (300 K) 





120 kPa

100 kPa  




43.3 L

49.9 L   = 312 K  

∆Eint = 3.50nR ∆T = 3.50(2.00 mol)(8.315 J/mol ⋅ K)(12.4 K) = 722 J  

Q = 0  (abiabatic process) 

W = Q – ∆Eint = 0 – 722 J = –722 J  
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21.52 (a ) The average speed vav is just the weighted average of all the speeds.

vav = 
[2(v) + 3(2v) + 5(3v) + 4(4v) + 3(5v) + 2(6v) + 1(7v)]

(2 + 3 + 5 + 4 + 3 + 2 + 1)   = 3.65v  

(b) First find the average of the square of the speeds,

v
2
av  = 

[2(v)2 + 3(2v)2 + 5(3v)2 + 4(4v)2 + 3(5v)2 + 2(6v)2 + 1(7v)2]
2 + 3 + 5 + 4 + 3 + 2 + 1   = 15.95v2

The root-mean square speed is then vrms = v
2
av  = 3.99v  

(c) The most probable speed is the one that most of the particles have;

i.e., five particles have speed 3.00v  

(d) PV = 
1
3  Nmv

2
av  

Therefore, P = 
20
3  

[m(15.95)v2]
V

  = 106 




mv2

V
 

(e) The average kinetic energy for each particle is

K
–

  = 
1
2  mv

2
av  = 

1
2  m(15.95v2) = 7.98mv2  

21.53 (a ) PVγ = k.  So, W = ⌡⌠
i

f
P dV  = k⌡⌠

i

f
 
d V
Vγ   = 

PiVi – PfVf

γ – 1  

(b) dEint = dQ – dW   and   dQ = 0   for an adiabatic process.

Therefore, W = –∆Eint = – 
3
2  nR ∆T = nCV(Ti – Tf)

To show consistency between these 2 equations, consider that γ = CP/CV and CP – CV = R.
Therefore, 1/(γ – 1) = CV/R.

Using this, the result found in part (a) becomes

W = (PiVi – PfVf) 
CV

R
 

Also, for an ideal gas 
PV
R

  = nT so that W = nCV(Ti – Tf)
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21.54 (a ) Maxwell’s speed distribution function is

Nv = 4πN 




m

2πkBT
 
3/2

v2e–mv2/2kBT

With N = 1.00 × 104, m = 
M
NA

  = 
0.032 kg

6.02 × 1023  = 5.32 × 10–26 kg

T = 500 K, and kB = 1.38 × 10–23 J/molecule ⋅ K; this becomes

Nv = (1.71 × 10–4)v2e–(3.85 × 10–6)v2

The following is a plot of this function for the range 0 ≤ v ≤ 1400 m/s.

18

16

14

12

10

8

6

4

2

0
0 200 400 600 800 1000 1200 1400 1600

Nv (s/m)

v (m/s)

vmp
vavvrms

(b) The most probable speed occurs where Nv is a maximum.

From the graph, vmp ≈ 510 m/s  

(c) vav = 
8kBT
πm

  = 
8(1.38 × 10–23)(500)

π(5.32 × 10–26)   = 575 m/s  

Also, vrms = 
3kBT

m
  = 

3(1.38 × 10–23)(500)
5.32 × 10–26   = 624 m/s  

(d) The fraction of particles in the range 300 ≤ v ≤ 600 m/s is 
⌡⌠

300

600
N vd v

N
   where N = 104 and

the integral of Nv is read from the graph as the area under the curve.  This is

approximately 4400 and the fraction is 0.44 or 44%  .
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21.55 The pressure of the gas in the lungs of the diver will be the same as the absolute pressure of the
water at this depth of 50.0 meters.  This is:

P = P0 + ρgh = 1.00 atm + (1.00 × 103 kg/m3)(9.80 m/s2)(50.0 m)

or P = 1.00 atm + (4.90 × 105 Pa) 




1.00 atm

1.013 × 105 Pa   = 5.84 atm

If the partial pressure due to the oxygen in the gas mixture is to be 1.00 atmosphere or less (or
approximately one-sixth of the total pressure), oxygen molecules should make up only about
one-sixth of the total number of molecules.  This will be true if 1.00 mole of oxygen is used for
every 5.00 moles of helium.  The ratio by weight is therefore,

(5.00 mol He)g
(1.00 mol O2)g   = 

(20.0 g)g
(32.0 g)g  = 0.625  

*21.56 n = 
m
M

  = 
1.20 kg

0.0289 kg/mol  = 41.5 mol

(a ) Vi = 
nRTi

Pi
  = 

(41.5 mol)(8.315 J/mol ⋅ K)(298 K)
200 × 103 Pa   = 0.514 m3  

(b)
Pf

Pi
  = 

Vf

Vi

      so     Vf = Vi 



Pf

Pi
 
2
 = (0.514 m3) 





400

200  
2
 = 2.06 m3  

(c) Tf = 
PfVf

nR
  = 

(400 × 103 Pa)(2.06 m3)
(41.5 mol)(8.315 J/mol ⋅ K)  = 2.38 × 103 K  

(d) W = ⌡⌠
Vi

Vf
P dV  = C ⌡⌠

Vi

Vf
V1/2dV  = 





Pi

V
1/2
i

 
2V3/2

3  
Vf

Vi

  = 
2
3 





Pi

V
1/2
i

 (V3/2
f  – V3/2

i ) 

W = 
2
3 





200 × 103 Pa

0.514 m
  [(2.06 m3)3/2 – (0.514 m)3/2] = 4.80 × 105 J  

(e) ∆Eint = nCV ∆T = (41.5 mol) 




5

2 (8.315 J/mol ⋅ K)  (2.38 × 103 – 298) K

∆Eint = 1.80 × 106 J

Q = ∆Eint + W = 1.80 × 106 J + 4.80 × 105 J = 2.28 × 106 J = 2.28 MJ  
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21.57 (a ) Since pressure increases as volume decreases  (and vice versa) ,

d V
dP

  < 0     and     – 
1
V

 




d V

dP
  > 0

(b) For an ideal gas, V = 
nRT

P
  and κ1 = – 

1
V

 
d

dP
 




nRT

P
 

If the compression is isothermal, T is constant and

κ1 = – 
nRT
V

 




– 

1
P2   = 

1
P

 

(c) For an adiabatic compression, PVγ = C (where C is a constant) and

κ2 = – 
1
V

 
d

dP
 




C

P
 
1/γ

 = 
1
V

  
1
γ  

C1/γ

P(1/γ)+1  = 
P1/γ

γP1/γ+1  = 
1

γP
 

(d) κ1 = 
1
P

  = 
1

(2.00 atm)  = 0.500 atm–1  

γ = 
CP

CV
   and for a monatomic ideal gas, γ = 5/3, so that

κ2 = 
1

γP
  = 

1
(5/3)(2.00 atm)  = 0.300 atm–1  

*21.58 (a ) The speed of sound is v = 
B
ρ   where B = –V

dP
d V

  .

According to Problem 57, in an adiabatic process, this is B = 
1
κ2

  = γP.

Also, ρ = 
ms

V
  = 

nM
V

  = 
(nRT)M
V(RT)   = 

PM
RT

  where ms is the sample mass.  Then, the speed of

sound in the ideal gas is v = 
B
ρ  = γP  





RT

PM
  = 

γR T
M

    

(b) v = 
1.40(8.315 J/mol ⋅ K)(293 K)

0.0289 kg/mol   = 344 m/s  

This nearly agrees with the 343 m/s listed in Table 17.1.
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(c) We use kB = 
R

NA
  and M = mNA:  v = 

γR T
M

  = 
γkBNAT

mNA
  = 

γkBT
m

 

The most probable molecular speed is 
2kBT

m
  ,

the average speed is 
8kBT
πm

  ,  and the rms speed is 
3kBT

m
  .

All are somewhat larger   than the speed of sound.

21.59 Nv(v) = 4πN 




m

2πkBT
 
3/2

v2 exp(–mv2/2kBT)

Note that vmp = (2kBT/m)1/2

Thus, Nv(v) = 4πN 




m

2πkBT
 
3/2

v2e(–v2/v2
mp

 )

and
N v(v)

Nv(vmp)  = 




v

vmp
 
2
 e(1 – v2/v2

mp
 )

For v = vmp/50, 
N v(v)

Nv(vmp)  = 




1

50  
2
e[1 – (1/50)2] = 1.09 × 10–3

The other values are computed similarly, with the following results:

v
vmp

 
N v(v)

Nv(vmp)   

1/50 1.09 × 10–3

1/10 2.69 × 10–2

1/2 0.529
1 1.00
2 0.199

10 1.01 × 10–41

50 1.25 × 10–1082

To find the last value, note:

(50)2e1 – 2500 = 2500e–2499

= 10log2500e(ln10)(–2499/ln10) = 10log250010–2499/ln10

= 10log2500 – 2499/ln10 = 10–1081.904
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*21.60 The ball loses energy

1
2  mv

2
i   – 

1
2  mv

2
f   = 

1
2 (0.142 kg) [(47.2)2 – (42.5)2]m2/s2 = 29.9 J

The air volume is V = π(0.0370 m)2(19.4 m) = 0.0834 m3,

 and its quantity is n = 
PV
RT

  = 
(1.013 × 105 Pa)(0.0834 m3)
(8.315 J/mol ⋅ K)(293 K)   = 3.47 mol

The air absorbs energy according to Q = nCP ∆T,  so

∆T = 
Q

nCP
  = 

29.9 J
(3.47 mol)(7/2)(8.315 J/mol ⋅ K)  = 0.296 C°  

21.61 (a ) The effect of high angular speed is like the effect of a very high gravitational field on
an atmosphere.  The result is:

The larger-mass molecules settle to the outside   while the region at smaller r has a

higher concentration of low-mass molecules.

(b) Consider a single kind of molecules, all of mass m.  To supply the centripetal force on the
molecules between r and r + dr,  the pressure must increase outward according to
∑Fr = mar.  Thus,

PA – (P + dP)A = –(nmA dr)(rω2)

where n is the number of molecules per unit volume and A is the area of any cylindrical
surface.  This reduces to dP = nmω2rdr.

But also P = nkBT, so dP = kBT dn.  Therefore, the equation becomes

dn
n

  = 
mω2

kBT
  r dr     giving     ⌡⌠

n0

n
 
dn
n

  = 
mω2

kBT
 ⌡⌠

0

r
r dr      or

ln(n)
n
n0  = 

mω2

kBT
 




r2

2

r

0

 

ln 




n

n0
  = 

mω2

2kBT
  r2  and solving for n:  n = n0emr2ω2/2kBT  
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21.62 First find v2
av  as v2

av  = 
1
N

 ⌡⌠
0

∞
v2Nvdv .  Let a = 

m
2kBT 

  .

 Then, v2
av  = 

[4Nπ –1/2a3/2]
N

 ⌡⌠
0

∞
v4e–av2dv  = [4a3/2π –1/2] 

3
8a2 π

a
  = 

3kBT
m

 

The root-mean square speed is then vrms = v
2
av    = 

3kBT
m

 

To find the average speed, we have

vav = 
1
N

 ⌡⌠
0

∞
vNvdv  =

(4Na3/2π –1/2)
N

 ⌡⌠
0

∞
v3e–av2dv  = 

4a3/2π –1/2

2a2   =

8kBT
π m

  

*21.63 (a ) n = 
PV
RT

  = 
(1.013 × 105 Pa)(5.00 × 10–3 m3)

(8.315 J/mol ⋅ K)(300 K)   

n = 0.203 mol  

(b) TB = TA



PB

PA
  = (300 K) 





3.00

1.00   = 900 K  

TC = TB = 900 K  

VC = VA 




TC

TA
  = (5.00 L) 





900

300   = 15.0 L  

(c) Eint,A = 
3
2  nRTA = 

3
2 (0.203 mol)(8.315 J/mol ⋅ K)(300 K)  = 760 J  

Eint,C = Eint,B = 
3
2  nRTB = 

3
2 (0.203 mol)(8.315 J/mol ⋅ K)(900 K)  = 2.28 kJ  

(d)
P(atm) V(L) T(K) Eint (kJ)

A 1.00 5.00 300 0.760
B 3.00 5.00 900 2.28
C 1.00 15.00 900 2.28

(e) For the process AB, lock the piston in place and put the cylinder into an oven at 900 K.
For BC, keep the sample in the oven while gradually letting the gas expand to lift a

P(atm)

3.00

0 5.0 10.0 V(L)

B

A C

2.00

1.00

15.0
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load on the piston as far as it can.  For CA, carry the cylinder back into the room at 300 K
and let the gas cool without touching the piston.
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(f ) For AB: W = 0  , ∆Eint = Eint,B – Eint,A = (2.28 – 0.769) kJ = 1.52 kJ  

Q = ∆Eint + W = 1.52 kJ  

For BC: ∆Eint = 0  , W = nRTB ln(VC/VB)

W = (0.203 mol)(8.315 J/mol ⋅ K)(900 K) ln(3.00) = 1.67 kJ  

Q = ∆Eint + W = 1.67 kJ  

For CA: ∆Eint = Eint,A – Eint,C = (0.760 – 2.28) kJ = –1.52 kJ  

W = P ∆V = nR ∆T

W = (0.203 mol)(8.315 J/mol ⋅ K)(–600 K) = –1.01 kJ  

Q = ∆Eint + W = –1.52 kJ – 1.01 kJ = –2.53 kJ  

(g) We add the amounts of energy for each process to find them for the whole cycle.

QABCA = +1.52 kJ + 1.67 kJ – 2.53 kJ = 0.656 kJ  

WABCA = 0 + 1.67 kJ – 1.01 kJ = 0.656 kJ  

(∆Eint)ABCA = +1.52 kJ + 0 – 1.52 kJ = 0  
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21.64 With number-per-volume n0e(–mgy/kBT), the number of molecules above unit ground area is

⌡⌠
0

∞
n(y)dy ,  and the number below altitude h is ⌡⌠

0

h
n(y)dy .   So,

(a ) f = 
⌡⌠

0

h
n(y)d y

⌡⌠
0

∞
n(y)dy

  = 
n0⌡⌠o

h
e(–mgy/kBT)dy

n0⌡⌠0

∞
e(–mgy/kBT)dy

  = 
–kBT/mg ⌡⌠

0

h
e(–mgy/kBT)(–mg dy/kBT)

–kBT/mg ⌡⌠
0

∞
e(–mgy/kBT)(–mg dy/kBT)

 

= 
e(–mgy/kBT)h

0

e(–mgy/kBT)∞
0

  = 
e(–mgh/kBT) – 1

0 – 1   = 1 – e(–mgh/kBT)  

(b)
1
2  = 1 – e(–mgh'/kBT)

e(–mgh'/kBT) = 
1
2      or     e(+mgh'/kBT) = 2

mgh'/kBT = ln 2   so

h' = 
kBT ln 2

mg
  = 

(1.38 × 10–23 J/K)(270 K)(ln 2)
(28.9 u)(1.66 × 10–27 kg/u)(9.80 m/s2)  = 5.47 km  

*21.65 (a ) (10 000 g) 




1.00 mol

18.0 g  




6.02 × 1023 molecules

1.00 mol   = 3.34 × 1026 molecules  

(b) After one day, 10–1 of the original molecules would remain.  After two days, the fraction
would be 10–2, and so on.  After 26 days, only 3 of the original molecules would likely

remain, and after 27 days  , likely none.

(c) The soup is this fraction of the hydrosphere:  




10.0 kg

1.32 × 1021 kg  

Therefore, today’s soup likely contains this fraction of the original molecules.  The
number of original molecules likely in the pot again today is:





10.0 kg

1.32 × 1021 kg  (3.34 × 1026 molecules)  = 2.53 × 106 molecules  

21.66 (a ) For escape, 
1
2  mv2 = 

GmM
R

  .   Since the free-fall acceleration at the surface is g = 
GM
R2   ,

this can also be written as:  
1
2  mv2 = 

GmM
R

  = mgR  

(b) For O2, the mass of one molecule is

m = 
0.0320 kg/mol

6.02 × 1023 molecules/mol  = 5.32 × 10–26 kg/molecule
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Then, if mgR = 10(3kBT/2), the temperature is

T = 
mgR
15kB

  = 
(5.32 × 10–26 kg)(9.80 m/s2)(6.37 × 106 m)

15(1.38 × 10–23 J/mol ⋅ K)   = 1.60 × 104 K  

21.67 (a ) For sodium atoms (with a molar mass M = 32.0 g/mol)

1
2  mv2 = 

3
2  kBT

1
2 





M

NA
  v2 = 

3
2  kBT

(a ) vrms = 
3RT
M

  = 
3(8.315 J/mol ⋅ K)(2.40 × 10–4 K)

23.0 × 10–3 kg   = 0.510 m/s  

(b) t = 
d

vrms
  = 

0.010 m
0.510 m/s  ≈ 20 ms  
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