Chapter 24 Even Answers

2.
$$355 \text{ kN} \cdot \text{m}^2/\text{C}$$

4. zero

6. (a) aA

(b) *bA*

(c) 0

8. $1.87 \text{ kN} \cdot \text{m}^2/\text{C}$

10. (a) -55.6 nC

(b) negative, with a spherically symmetric distribution

12. $-\frac{Q}{e_0}$ for S_1 ; 0 for S_2 ; $-\frac{2Q}{e_0}$ for S_3 ; 0 for S_4

14. $E_0 \pi r^2$

16. (a) $1.36 \text{ MN} \cdot \text{m}^2 / \text{C}$

(b) $678 \text{ kN} \cdot \text{m}^2 / \text{C}$

(c) No

18. 0 if $R \le d$; $\frac{2\lambda}{e_0} \sqrt{R^2 - d^2}$ if R > d

 $20. \qquad \frac{Q-6|q|}{6e_0}$

22. $28.2 \text{ N} \cdot \text{m}^2 / \text{C}$

24. (a) 761 nC

(b) Net charge is positive

(c) Net charge negative, with same magnitude.

26. $2.33 \times 10^{21} \text{ N/C}$ away from the nucleus.

28. (a) 913 nC

(b) 0

30. $4.86 \times 10^9 \text{ N/C}$

32. 3.50 kN

34. (a) 713 nC

(b) 5.70 μ C

36. (a) 16.2 MN/C

(b) 8.09 MN/C

(c) 1.62 MN/C radially inward

38. $1.15 \text{ nC} / \text{m}^2$

40. $E = \frac{Q}{2e_0 A}$ vertically upward in each case (assuming Q > 0)

42. E = 0 inside sphere and inside shell;

 $E = k_e Q / r^2$ radially inward between sphere and shell.

 $E = 2k_eQ/r^2$ radially outward outside the shell;

-Q resides on outer surface of the sphere.

+Q on the inner surface of the shell;

+2Q on the outer surface of the shell.

(a) $248 \text{ nC} / \text{m}^2$

(b) $496 \text{ nC} / \text{m}^2$

(a) 2.56 MN/C, radially inward (b) 0**46**.

(a) $-\frac{q}{4\pi a^2}$ 48.

(b) $\frac{Q+q}{4\pi h^2}$

 $chw^2/2$ **52**.

54. The strong field created by the large charge polarizes the second sphere.

56. (a) -4.00 nC (b) 9.56 nC

4.00 nC, 5.56 nC

58. (a) 0 (b) σ/e_0 to the right

(c)

 $0.269 \text{ N} \cdot \text{m}^2/\text{C}$; 2.38 pC **62**.

(a) $\frac{\rho_0 r}{2e_0} \left(a - \frac{2r}{3b} \right)$ radially outward (b) $\frac{\rho_0 R^2}{2e_0 r} \left(a - \frac{2R}{3b} \right)$ radially outward 66.

(a) $\frac{Cd^3}{24e_0}$ **i** for $x > \frac{d}{2}$; $-\frac{Cd^3}{24e_0}$ **i** for $x < -\frac{d}{2}$; 68.

(b) $\frac{Cx^3}{3e_0}$ **i** for x > 0;

 $-\frac{Cx^3}{3e_0}$ i for x < 0;