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Chapter 24 Solutions

24.1 (a) ΦE = EA cos θ = (3.50 × 103)(0.350 × 0.700) cos 0° = 858 N · m2/C   

(b) θ = 90.0° ΦE = 0   

(c) ΦE = (3.50 × 103)(0.350 × 0.700) cos 40.0° = 657 N · m2/C   

24.2 ΦE = EA cos θ = (2.00 × 104 N/C)(18.0 m2)cos 10.0° = 355 kN · m2/C   

24.3 ΦE = EA cos θ

A = π r 2 = π (0.200)2 = 0.126 m2

5.20 × 105 = E (0.126) cos 0°

E = 4.14 × 106 N/C =  4.14 MN/C   

24.4 The uniform field enters the shell on one side and exits on the other so the total flux is zero  .

24.5 (a)     ′ = ( )( )A 10 0 30 0. . cm  cm

    ′A = 300 cm2 = 0.0300 m2

    ΦE,  ′A = E ′A cosθ

    
ΦE,  ′A = 7.80 × 104( ) 0.0300( )cos 180°

    ΦE,  ′A =     −2.34 kN ⋅ m2 C  

0.0 cm

3 0.0 cm

0.0˚

(b)
    
ΦE,  A = EA cosθ = 7.80 × 104( ) A( )cos 60.0°

    
A = 30.0 cm( ) w( ) = 30.0 cm( ) 10.0 cm

cos 60.0°






= 600 cm2 = 0.0600 m2

    
ΦE,  A = 7.80 × 104( ) 0.0600( )cos 60°=     + 2.34 kN ⋅ m2 C  

(c) The bottom and the two triangular sides all lie parallel to E, so     ΦE = 0 for each of these.  Thus,
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    ΦE,  total = − 2.34 kN ⋅ m2 C + 2.34 kN ⋅ m2 C + 0 + 0 + 0 =   0  
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24.6 (a)       ΦE = E ⋅ A = (ai + b j) ⋅ A i = aA  

(b)       ΦE = (ai + bj) ⋅ Aj =  bA  

(c)       ΦE = (ai + bj) ⋅ Ak = 0  

24.7 Only the charge inside radius R contributes to the total flux.

  ΦE =        q /e0  

24.8     ΦE = EA cosθ  through the base

    ΦE = 52.0( ) 36.0( )cos 180°=  –1.87 kN · m2/C

Note the same number of electric field lines go through the base
as go through the pyramid's surface (not counting the base).

For the slanting surfaces,     ΦE = +1.87 kN ⋅ m2 / C  

24.9 The flux entering the closed surface equals the flux exiting the surface.  The flux entering the
left side of the cone is 

    
ΦE = E ⋅ dA =∫   ERh  .  This is the same as the flux that exits the right

side of the cone.  Note that for a uniform field only the cross sectional area matters, not shape.

*24.10 (a) E = 
keQ
r 2

  

8.90 × 102 =  
(8.99 × 109)Q

(0.750)2   , But Q is negative since E points inward.

Q = – 5.56 × 10–8 C = – 55.6 nC  

(b) The negative   charge has a spherically symmetric   charge distribution.

24.11 (a)
      
ΦE = qin

e0
=

+5.00 µC − 9.00 µC + 27.0 µC − 84.0 µC( )
8.85 × 10−12  C2 / N ⋅ m2 = – 6.89 × 106 N · m2/C = – 6.89 MN · m2/C  

(b) Since the net electric flux is negative, more lines enter than leave the surface.
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24.12
      
ΦE = qin

e0

Through     S1
      
ΦE = −2Q + Q

e0
=   

      
− Q
e0

  

Through     S2 
      
ΦE = + Q − Q

e0
=  0  

Through     S3
      
ΦE = −2Q + Q − Q

e0
= 

      
− 2Q

e0
 

Through     S4   ΦE =   0  

24.13 (a) One-half of the total flux created by the charge   q goes through the plane.  Thus,

      
ΦE,  plane = 1

2
ΦE,  total = 1

2
q
e0







=  
      

q
2e0

 

(b) The square looks like an infinite plane to a charge very close to the surface.  Hence,  

    ΦE,  square ≈ ΦE,  plane =
       

q
2e0  

(c) The plane and the square look the same to the charge.  

24.14 The flux through the curved surface is equal to the flux through the flat circle,     E0 πr 2  .

24.15 (a)
+Q
2    e0

    Simply consider half of a closed sphere.

(b)
–Q
2    e0

  (from ΦΕ, total = ΦΕ, dome + ΦΕ, flat = 0)  
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Goal Solution    
A point charge Q is located just above the center of the flat face of a hemisphere of radius R, as shown i n
Figure P24.15.  What is the electric flux (a) through the curved surface and (b) through the flat face?  

G : From Gauss’s law, the flux through a sphere with a point charge in it should be       Q e0 , so we should
expect the electric flux through a hemisphere to be half this value:       Φcurved = Q 2e0 .  Since the flat
section appears like an infinite plane to a point just above its surface so that half of all the field lines
from the point charge are intercepted by the flat surface, the flux through this section should also
equal       Q 2e0 .

O : We can apply the definition of electric flux directly for part (a) and then use Gauss’s law to find the
flux for part (b).

A : (a)  With δ  very small, all points on the hemisphere are nearly at distance   R  from the charge, so the
field everywhere on the curved surface is     keQ / R2  radially outward (normal to the surface).
Therefore, the flux is this field strength times the area of half a sphere:

      
Φcurved = E ⋅ dA∫ = ElocalAhemisphere

      
= ke

Q
R2







1
2( ) 4πR2( ) = 1

4πe0
Q 2π( ) = Q

2e0

(b) The closed surface encloses zero charge so Gauss's law gives

  Φcurved + Φflat = 0 or
      
Φflat = −Φcurved = −Q

2e0

L : The direct calculations of the electric flux agree with our predictions, except for the negative sign i n
part (b), which comes from the fact that the area unit vector is defined as pointing outward from an
enclosed surface, and in this case, the electric field has a component in the opposite direction (down).

24.16 (a)
      
ΦE, shell = qin

e0
= 12.0 × 10−6  

8.85 × 10−12 =   1.36 × 106  N ⋅ m2 / C = 1.36 MN · m2/C  

(b)     ΦE,  half shell = 1
2 (1.36 × 106  N ⋅ m2 / C) =    6.78 × 105  N ⋅ m2 / C = 678 kN · m2/C  

(c) No,    the same number of field lines will pass through each surface, no matter how the
radius changes.

24.17 From Gauss's Law, 
        
ΦE = E ⋅ dA∫ = qin

e0
.

Thus,   
      
ΦE = Q

e0
= 0.0462 × 10−6  C

8.85 × 10-12  C2 N ⋅ m2 =     5.22 kN ⋅ m2 C  
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24.18 If R ≤ d, the sphere encloses no charge and        ΦE = qin /e0 = 0  

If R > d, the length of line falling within the sphere is      2 R 2 − d2

so ΦΕ =        2λ R2 − d2 e0  

24.19 The total charge is     Q − 6 q .  The total outward flux from the cube is       Q − 6 q( )/e0 , of which
one-sixth goes through each face:  

    ΦE( )one face =
      

Q − 6 q
6e0

 

    ΦE( )one face =
      

Q − 6 q
6e0

= (5.00 − 6.00) × 10−6  C ⋅ N ⋅ m2

6 × 8.85 × 10−12  C2 =   − ⋅18.8 kN m /C2

 

24.20 The total charge is     Q − 6 q .   The total outward flux from the cube is       Q − 6 q( )/e0 , of which
one-sixth goes through each face:

    ΦE( )one face =  
      

Q − 6 q
6e0

 

24.21 When R < d, the cylinder contains no charge and ΦΕ = 0  .   

When R > d,       
      
ΦE = qin

e0
=

      

λL
e0

 

24.22
      
ΦE,  hole = E ⋅ Ahole = keQ

R2




 πr2( ) 

  

=
8.99 × 109  N ⋅ m2 C2( ) 10.0 × 10−6  C( )

0.100 m( )2











π 1.00 × 10−3  m( )2

    ΦE,  hole =    28.2 N ⋅ m2 C   
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24.23
      
ΦE = qin

e0
= 170 × 10−6  C

8.85 × 10-12  C2 N ⋅ m2 = 1.92 × 107  N ⋅ m2 C

(a)     ΦE( )one face     
= 1

6 ΦE = 1.92 × 107  N ⋅ m2 C
6

    ΦE( )one face  =    3 20.  MN m C2⋅   

(b)   ΦE =    19.2 MN ⋅ m2 C   

(c) The answer to (a) would change because the flux through each face of the cube would not be
equal with an unsymmetrical charge distribution.  The sides of the cube nearer the charge
would have more flux and the ones farther away would have less.  The answer to (b) would
remain the same, since the overall flux would remain the same.

24.24 (a)
      
ΦE = qin

e0

    
8.60 × 104 = qin

8.85 × 10−12

    qin = 7.61× 10−7 C = 761 nC  

(b) Since the net flux is positive, the net charge must be positive  .  It can have any distribution.

(c) The net charge would have the same magnitude but be negative.  

24.25 No charge is inside the cube.  The net flux through the cube is zero.  Positive flux comes out
through the three faces meeting at g.  These three faces together fill solid angle equal to one-
eighth of a sphere as seen from q, and together pass flux  

      
1
8

q e0( ) .  Each face containing a

intercepts equal flux going into the cube:   

      0 = ΦE,  net = 3ΦE,  abcd + q / 8e0

    ΦE,  abcd =       −q / 24e0  
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24.26 The charge distributed through the nucleus creates a field at the surface equal to that of a point
charge at its center:      E = keq r2

E =  
(8.99 × 109 Nm2/C 2)(82 × 1.60 × 10–19 C)

[(208)1/3  1.20 × 10–15 m] 2
 

E = 2.33 × 1021 N/C    away from the nucleus

24.27 (a) E =  
ke Qr

a3     = 0   

(b) E =  
ke Qr

a3     =  
(8.99 × 109)(26.0 × 10–6)(0.100)

(0.400)3     = 365 kN/C   

(c) E =  
ke Q
r 2    =  

(8.99 × 109)(26.0 × 10–6)
(0.400)2     = 1.46  MN/C   

(d) E =  
ke Q
r 2

   =  
(8.99 × 109)(26.0 × 10–6)

(0.600)2     = 649  kN/C   

The direction for each electric field is radially outward.

*24.28 (a) E =  
2ke λ

r   

3.60 × 104  =  
2(8.99 × 109)(Q/2.40)

(0.190)   

Q = + 9.13 × 10–7 C = +913 nC   

(b) E = 0   

24.29 ∫ο   E · dA = 
qin

    e0
    =  

∫ ρ dV

    e0
    =  

ρ

    e0
   l π r 2 

E2π rl   =  
ρ

    e0
   l π r 2 
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E =  
ρ

2    e0
 r  away from the axis   

Goal Solution    
Consider a long cylindrical charge distribution of radius   R  with a uniform charge density ρ .   Find the
electric field at distance   r  from the axis where   r < R.

G : According to Gauss’s law, only the charge enclosed within the gaussian surface of radius   r  needs to be
considered.  The amount of charge within the gaussian surface will certainly increase as ρ  and   r
increase, but the area of this gaussian surface will also increase, so it is difficult to predict which of
these two competing factors will more strongly affect the electric field strength.  

O : We can find the general equation for   E  from Gauss’s law.

A : If ρ  is positive, the field must be radially outward.  Choose as the gaussian surface a cylinder of length

  L  and radius   r , contained inside the charged rod.  Its volume is     πr2L  and it encloses charge     ρπr2L.
The circular end caps have no electric flux through them; there       E ⋅ dA = EdAcos90.0°= 0.  The curved
surface has       E ⋅ dA = EdAcos0° , and   E  must be the same strength everywhere over the curved surface.

Gauss’s law,     
        

E ⋅ dA∫ = q
e0

, becomes     

      

E dA∫
Curved
Surface

= ρπr2L
e0

Now the lateral surface area of the cylinder is     2πrL :
      
E 2πr( )L = ρπr2L

e0

Thus,
        
E = ρ r

2e0
  radially away from the cylinder axis

L : As we expected, the electric field will increase as ρ  increases, and we can now see that   E  is also
proportional to   r .  For the region outside the cylinder (  r > R), we should expect the electric field to
decrease as   r  increases, just like for a line of charge.

24.30
  
σ = 8.60 × 10−6 C / cm2( ) 100 cm

m






2

= 8.60 × 10−2 C / m2

      

E = σ
2e0

= 8.60 × 10−2

2 8.85 × 10−12( ) =    4.86 × 109 N / C  

The field is essentially uniform as long as the distance from the center of the wall to the field
point is much less than the dimensions of the wall.

24.31 (a) E = 0  
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(b)
    
E = keQ

r2 = (8.99 × 109)(32.0 × 10−6 )
(0.200)2 =  7.19 MN/C  
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24.32 The distance between centers is 2 × 5.90 × 10–15 m.   Each produces a field as if it were a point
charge at its center, and each feels a force as if all its charge were a point at its center.

F =  
keq1q2

r 2
    =  









8.99 × 109  
N · m2

C 2
 
(46)2 (1.60 × 10–19 C)2

(2 × 5.90 × 10–15 m)2    = 3.50 × 103 N = 3.50 kN  

*24.33 Consider two balloons of diameter   0.2 m, each with mass   1 g , hanging
apart with a   0.05 m  separation on the ends of strings making angles of
10˚ with the vertical.

(a)
    
ΣFy = T cos 10° − mg = 0  ⇒   T = mg

cos 10°

    ΣFx = T sin 10° − Fe = 0  ⇒   Fe = T sin 10° ,   so

    
Fe = mg

cos 10°






sin 10° = mg tan 10°= 0.001 kg( ) 9.8 m s2( )tan 10°

    Fe ≈ 2 × 10−3  N    ~10-3  N  or  1 mN   

(b)
    
Fe = keq

2

r2   

    
2 × 10−3  N ≈

8.99 × 109  N ⋅ m2 C2( )q2

0.25 m( )2

    q ≈ 1.2 × 10−7  C     ~10−7  C or 100 nC   

(c)
    
E = keq

r2 ≈
8.99 × 109  N ⋅ m2 C2( ) 1.2 × 10−7  C( )

0.25 m( )2 ≈ 1.7 × 104  N C     ~10 kN C  

(d)
      
ΦE = q

e0
≈ 1.2 × 10−7  C

8.85 × 10−12  C2 N ⋅ m2 = 1.4 × 104  N ⋅ m2 C      ~ 10 kN ⋅ m2 C  

24.34 (a)

    

ρ = Q
4
3

πa3
= 5.70 × 10−6

4
3 π(0.0400)3 = 2.13 × 10−2  C / m3

    
qin = ρ 4

3 πr3( ) = 2.13 × 10−2( ) 4
3 π( ) 0.0200( )3 = 7.13 × 10−7  C = 713 nC  

(b)
    
qin = ρ 4

3 πr3( ) = 2.13 × 10−2( ) 4
3 π( ) 0.0400( )3 =  5.70 µC  



44 Chapter 24 Solutions

24.35 (a)
    
E = 2ke λ

r
=

2 8.99 × 109  N ⋅ m2 C2( ) 2.00 × 10−6  C( ) 7.00 m[ ]
0.100 m

E = 51.4 kN/C, radially outward  

(b)     ΦE = EAcosθ = E(2πr   )cos 0˚

    
ΦE = 5.14 × 104  N C( )2π 0.100 m( ) 0.0200 m( ) 1.00( ) =   646 N ⋅ m2 C   

24.36 Note that the electric field in each case is directed radially inward, toward the filament.

(a)
    
E = 2keλ

r
=

2 8.99 × 109  N ⋅ m2 C2( ) 90.0 × 10−6  C( )
0.100 m

=    16.2 MN C  

(b)
    
E = 2keλ

r
=

2 8.99 × 109  N ⋅ m2 C2( ) 90.0 × 10−6  C( )
0.200 m

=    8.09 MN C  

(c)
    
E = 2keλ

r
=

2 8.99 × 109  N ⋅ m2 C2( ) 90.0 × 10−6  C( )
1.00 m

=    1.62 MN C  

24.37
      
E =

σ
2e0

=
9.00 × 10−6 C / m2

2(8.85 × 10−12 C2 / N ⋅ m2)
=  508 kN/C, upward  

24.38 From Gauss's Law,  
      
EA = Q

e0

σ =  
Q
A    =     e0 E = (8.85 × 10-12)(130)= 1.15 × 10-9 C/m2 =  1.15 nC/m2  

24.39 ∫ο   E dA = E(2π rl ) =  
qin

    e0
  E =  

qin/l

2π     e0 r
    =  

λ
2π     e0 r

  

(a) r = 3.00 cm E = 0    inside the conductor

(b) r = 10.0 cm E =  
30.0 × 10–9

2π (8.85 × 10–12)(0.100)
    = 5400 N/C, outward   

(c) r = 100 cm E =  
30.0 × 10–9

2π (8.85 × 10–12)(1.00)
   = 540 N/C, outward   
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*24.40 Just above the aluminum plate (a conductor), the electric field is       E = ′σ e0  where the charge   Q
is divided equally between the upper and lower surfaces of the plate:

Thus
    

′ = ( ) =σ
Q

A
Q
A

2
2

   and
      
E = Q

2e0A

For the glass plate (an insulator),       E = σ / 2e0   where     σ = Q / A  since the entire charge   Q  is on
the upper surface.   

Therefore,  
      
E = Q

2e0A

The electric field at a point just above the center of the upper surface is the same for each of
the plates.

 
      
E = Q

2e0A
,  vertically upward in each case (assuming Q > 0)   

*24.41 (a)       E = σ e0 σ = (8.00 × 104)(8.85 × 10–12) = 7.08 × 10-7 C/m2

σ = 708 nC/m2  , positive on one face and negative on the other.

(b) σ =  
Q
A   Q = σA = (7.08 × 10–7) (0.500)2  C

Q = 1.77 × 10–7 C =  177 nC  , positive on one face and negative on the other.

24.42 Use Gauss's Law to evaluate the electric field in each region, recalling that the electric field is
zero everywhere within conducting materials.  The results are:

E = 0 inside the sphere and inside the shell  

    
E = ke

Q
r2   between sphere and shell, directed radially inward  

    
E = ke

2Q
r2  outside the shell, directed radially inward  

Charge –Q is on the outer surface of the sphere  .

Charge +Q is on the inner surface of the shell  ,  
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and +2Q is on the outer surface of the shell.  
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24.43  The charge divides equally between the identical spheres, with charge Q/2 on each.  Then they
repel like point charges at their centers:

F =  
ke(Q/2)(Q/2)

(L + R + R)2     =  
ke  Q 2

4(L + 2R)2   =  
8.99 × 109 N · m2(60.0 × 10-6 C)2

4 C 2(2.01 m)2     = 2.00 N   

*24.44 The electric field on the surface of a conductor varies inversely with the radius of curvature of
the surface.  Thus, the field is most intense where the radius of curvature is smallest and vise-
versa.  The local charge density and the electric field intensity are related by

      
E = σ

e0
     or           σ = e0E

(a) Where the radius of curvature is the greatest,

      
σ =e0Emin = 8.85 × 10−12  C2 N ⋅ m2( ) 2.80 × 104  N C( ) =   248 nC m2    

(b) Where the radius of curvature is the smallest,

      
σ =e0Emax = 8.85 × 10−12  C2 N ⋅ m2( ) 5.60 × 104  N C( ) =   496 nC m2     

24.45 (a) Inside surface:  consider a cylindrical surface within the metal.  Since E inside the conducting
shell is zero, the total charge inside the gaussian surface must be zero, so the inside
charge/length = – λ.  

0 = λ  + qin ⇒  
qin     = –λ   

Outside surface:  The total charge on the metal cylinder is       2λl = qin + qout .

      qout = 2λl+ λl

so the outside charge/length = 3λ   

(b) E =  
2ke (3λ)

r     =  
6ke λ

r    = 
      

3λ
2πe0r
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24.46 (a)
    
E = keQ

r2 =
8.99 × 109( ) 6.40 × 10−6( )

0.150( )2 =  2.56 MN/C, radially inward  

(b) E = 0  
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24.47 (a) The charge density on each of the surfaces (upper and lower) of the plate is:

    
σ = 1

2
q
A





 = 1

2
(4.00 × 10−8  C)

(0.500 m)2 = 8.00 × 10−8 C / m2 =   80.0 nC / m2    

(b)
      
E =

σ
e0







k =
8.00 × 10−8 C / m2

8.85 × 10−12 C2 / N ⋅ m2







k =     9.04 kN / C( )k    

(c)     E =      −9.04 kN / C( )k   

24. 48 (a) The charge   +q  at the center induces charge   −q  on the inner surface of the conductor, where its
surface density is:

  σa =  
    

−q
4πa2    

(b) The outer surface carries charge   Q + q  with density   

  σb =  
    

Q + q
4πb2    

24.49 (a) E = 0  

(b)
    
E = keQ

r2 =
8.99 × 109( ) 8.00 × 10−6( )

0.0300( )2 = 7.99 × 107  N / C = 79.9 MN/C  

(c) E = 0  

(d)
    
E = keQ

r2 =
8.99 × 109( ) 4.00 × 10−6( )

0.0700( )2 = 7.34 × 106  N / C = 7.34 MN/C  

24.50 An approximate sketch is given at the right.  Note
that the electric field lines should be perpendicular
to the conductor both inside and outside.
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24.51 (a) Uniform E, pointing radially outward, so ΦE = EA.   The arc length is  
ds = Rd θ , and the circumference is   2π r = 2π R sin θ

    
A = 2πrds = (2πRsinθ)Rdθ = 2πR2 sinθdθ

0

θ

∫
0

θ

∫∫ = 2πR2(−cosθ)
0
θ = 2πR2(1 − cosθ)

      
ΦE = 1

4πe0

Q
R2 ⋅ 2πR2(1 − cosθ) =  

      

Q
2e0

(1 − cosθ)    [independent of R!]

(b) For θ = 90.0° (hemisphere):   
      
ΦE = Q

2e0
(1 − cos 90°) =  

      

Q
2e0

 

(c) For θ = 180° (entire sphere):   
      
ΦE = Q

2e0
(1 − cos 180°) =   

      

Q
e0

   [Gauss's Law]

*24.52 In general,       E = ay i + bz j + cxk

In the xy plane, z = 0 and     E = ay i + cxk

    
ΦE = E ⋅ dA = ay i + cxk( )∫∫ ⋅ k dA

    

ΦE = ch x dx
x=0

w
∫ = ch

x2

2
x=0

w

=  
    

c hw2

2
   

x

y

z

x = 0

x = w

y = 0 y = h

dA = hdx

*24.53 (a)     qin = +3Q − Q =      +2Q    

(b) The charge distribution is spherically symmetric and     qin > 0 .  Thus, the field is directed

  radially outward   .

(c)
    
E = keqin

r2 =
    

2keQ
r2          for  r ≥ c

(d) Since all points within this region are located inside conducting material,     E = 0     for   b < r < c .

(e)
        
ΦE = E ⋅ dA∫ = 0  ⇒   qin =e0ΦE =  0  

(f)     qin =     +3Q    

(g)
    
E = keqin

r2 =  
    

3keQ
r2    (radially outward)  for   a ≤ r < b
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(h)
    
  qin = ρV = +3Q

4
3 πa3











4
3

πr3



 =  

    
+3Q

r3

a3    

(i)
    
E = keqin

r2 = ke

r2 +3Q
r3

a3







= 

    
3keQ

r
a3    (radially outward)  for     0 ≤ r ≤ a

(j) From part (d),      E = 0 for   b < r < c .  Thus, for a spherical gaussian surface with   b < r < c ,

    qin = +3Q + qinner = 0 where     qinner is the charge on the inner surface of the conducting shell.

This yields     qinner =     −3Q    

(k) Since the total charge on the conducting shell is

    qnet = qouter + qinner = −Q , we have

    qouter = −Q − qinner = −Q − −3Q( ) =      +2Q   

(l) This is shown in the figure to the right.

E

ra b c

24.54 The sphere with large charge creates a strong field to polarize the other sphere. That means it
pushes the excess charge over to the far side, leaving charge of the opposite sign on the near
side. This patch of opposite charge is smaller in amount but located in a stronger external
field, so it can feel a force of attraction that is larger than the repelling force felt by the larger
charge in the weaker field on the other side.

24.55 (a)
        

E ⋅ dA = E 4πr2( )∫ = qin e0

For r < a,    
    
qin = ρ 4

3
πr3( )  so   

      
E = pr

3e0
  

For a < r < b and c < r,    qin = Q    so that 
      
E = Q

4πr2e0
  

For b ≤ r ≤ c,    E = 0, since E = 0    inside a conductor.

(b) Let q1 = induced charge on the inner surface of the hollow sphere.  Since E = 0 inside the
conductor, the total charge enclosed by a spherical surface of radius b ≤ r ≤ c must be zero.

 Therefore,  q1 + Q = 0 and σ1 = 
q1

4π b 2
   =  

– Q
4π b 2

  

Let q2 = induced charge on the outside surface of the hollow sphere.  Since the hollow sphere
is uncharged, we require q1 + q2 = 0

and
    
σ2 = q1

4πc2 =   
    

Q
4πc2   
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24.56
        

E ⋅ dA∫ = E 4πr2( ) = qin

e0

(a)
    
−3.60 × 103  N C( )4π 0.100 m( )2 = Q

8.85 × 10−12  C2 N ⋅ m2 (  a < r < b)

    Q = −4.00 × 10−9  C =    −4.00 nC    

(b) We take   ′Q  to be the net charge on the hollow sphere.  Outside c,

 
    
+2.00 × 102  N C( )4π 0.500 m( )2 = Q + ′Q

8.85 × 10−12  C2 N ⋅ m2 (  r > c)

    Q + ′Q = +5.56 × 10−9  C,   so       ′Q = +9.56 × 10−9  C =    +9.56 nC    

(c) For   b < r < c :      E = 0  and     qin = Q + Q1 = 0  where     Q1 is the total charge on the inner surface of the

hollow sphere.  Thus,     Q1 = −Q =    +4.00 nC    

Then, if     Q2 is the total charge on the outer surface of the hollow sphere,  

    Q2 = ′Q − Q1 = 9.56 nC − 4.00 nC =    +5.56 nC    

24.57 The field direction is radially outward perpendicular to the axis.  The field strength depends
on r but not on the other cylindrical coordinates θ or z.  Choose a Gaussian cylinder of radius r
and length L.  If   r < a ,

      
ΦE = qin

e0
and

      
E 2πrL( ) = λL

e0

      
E = λ

2πre0
or

        
E = λ

2πre0
    (r < a)   

If   a < r < b,
      
E 2πrL( ) =

λL + ρπ r2 − a2( )L
e0

        
E =

λ + ρπ r2 − a2( )
2πre0

      a < r < b( )   

If   r > b ,
      
E 2πrL( ) =

λL + ρπ b2 − a2( )L
e0
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E =

λ + ρπ b2 − a2( )
2πre0

     (  r > b )  
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24.58 Consider the field due to a single sheet and let E+
and E– represent the fields due to the positive and
negative sheets.  The field at any distance from each
sheet has a magnitude given by Equation 24.8:

E+    = E–    =
    

σ
2e0

(a) To the left of the positive sheet, E+ is directed
toward the left and E– toward the right and the net
field over this region is E = 0  .

   

(b) In the region between the sheets, E+ and E– are both directed toward the right and the net field
is

E =
    

σ
e 0

toward the right  

(c) To the right of the negative sheet, E+ and E– are again oppositely directed and E = 0  .

24.59 The magnitude of the field due to each sheet given by Equation 24.8
is

      
E = σ

2e0
  directed perpendicular to the sheet.

(a) In the region to the left of the pair of sheets, both fields are directed
toward the left and the net field is

E =  
    

σ
e0

 to the left   

(b) In the region between the sheets, the fields due to the individual sheets are oppositely directed
and the net field is

E =   0   

(c) In the region to the right of the pair of sheets, both fields are directed toward the right and the
net field is

E =  
    

σ
e0

 to the right   
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Goal Solution    
Repeat the calculations for Problem 58 when both sheets have positive uniform charge densities of value
σ.   Note:  The new problem statement would be as follows:  Two infinite, nonconducting sheets of charge
are parallel to each other, as shown in Figure P24.58.   Both sheets have positive uniform charge densities
σ.  Calculate the value of the electric field at points (a) to the left of, (b) in between, and (c) to the right of
the two sheets.  

G : When both sheets have the same charge density, a positive test charge at a point midway between
them will experience the same force in opposite directions from each sheet.  Therefore, the electric
field here will be zero.  (We should ask:  can we also conclude that the electron will experience equal
and oppositely directed forces everywhere in the region between the plates?)

Outside the sheets the electric field will point away and should be twice the strength due to one sheet
of charge, so       E = σ /e0 in these regions.

O : The principle of superposition can be applied to add the electric field vectors due to each sheet of
charge.

A : For each sheet, the electric field at any point is       E = σ (2e0 )
 
directed away from the sheet.

(a) At a point to the left of the two parallel sheets       E i i i= − + − = −E E E1 2 2( ) ( ) ( )
      
= − σ

e0
i

(b) At a point between the two sheets       E i i= + − =E E1 2 0( )

(c) At a point to the right of the two parallel sheets       E i i i= + =E E E1 2 2
      
= σ
e0

i

L : We essentially solved this problem in the Gather information step, so it is no surprise that these
results are what we expected.  A better check is to confirm that the results are complementary to the
case where the plates are oppositely charged (Problem 58).

24.60 The resultant field within the cavity is the superposition of
two fields, one   E+  due to a uniform sphere of positive charge
of radius     2a , and the other   E−  due to a sphere of negative
charge of radius   a centered within the cavity.

      

4
3

πr3ρ
e0

= 4πr2E+ so
        
E+ = ρ r

3e0       
= ρr

3e0

–
      

4
3

πr1
3ρ

e0
= 4πr1

2E− so
        
E− = ρ r1

3e0
(− 1

      
) = −ρ

3e0
r1

Since     r = a + r1 ,
      
E− = −ρ(r − a)

3e0

        
E = E+ + E− = ρr

3e0
− ρr

3e0
+ ρa

3e0
= ρa

3e0
= 0i + ρa

3e0
j

Thus,       Ex = 0       and    
      
Ey = ρa

3e0
       at all points within the cavity.
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24.61 First, consider the field at distance   r < R from the center of a uniform sphere of positive
charge   Q = +e( )  with radius   R .

      
4πr2( )E = qin

e0
= ρV
e0

= +e
4
3 πR3











4
3 πr3

e0
so

      
E = e

4πe0R3







r   directed outward

(a) The force exerted on a point charge   q = −e  located at distance r from the center is then

      
F = qE = −e

e
4πe0R3







r = − e2

4πe0R3







r =   −Kr     

(b)
      
K = e2

4πe0R3 = 
    

kee
2

R3    

(c)
    
Fr = mear = − kee

2

R3







r ,   so   

    
ar = − kee

2

meR
3







r = −ω2r

Thus, the motion is simple harmonic with frequency  
    
f = ω

2π
= 

    

1
2π

kee
2

meR
3    

(d)

    

f = 2.47 × 1015  Hz = 1
2π

8.99 × 109  N ⋅ m2 C2( ) 1.60 × 10−19  C( )2

9.11× 10−31 kg( )R3

which yields     R
3 = 1.05 × 10−30  m3, or      R = 1.02 × 10−10  m =    102 pm    

24.62 The electric field throughout the region is directed along x;
therefore, E will be perpendicular to dA  over the four faces of
the surface which are perpendicular to the yz plane, and E will
be parallel to dA over the two faces which are parallel to the yz
plane.  Therefore,

  
ΦE = − Ex x=a( )A + Ex x=a+c( )A  

    
= − 3 + 2a2( )ab + 3 + 2(a + c)2( )ab = 2abc(2a + c)

Substituting the given values for a, b, and c,  we find  ΦE = 0.269 N · m2/C  

Q =   ∈ 0ΦE = 2.38 × 10-12 C = 2.38 pC  

24.63
        

E ⋅ dA∫ = E(4πr2 ) = qin

e0

(a) For r > R,
    
qin = Ar2

0

R

∫ (4πr2 )dr = 4π AR5

5
     and     E = 

      

AR5

5e0r2  

(b) For r < R,
    
qin = Ar2

0

r

∫ (4πr2 )dr = 4πAr5

5
     and     E = 

      

Ar3

5e0
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24.64 The total flux through a surface enclosing the charge Q is Q/    e0 .  The flux through the disk is

      
Φdisk = E ⋅ dA∫
where the integration covers the area of the disk.  We must evaluate this integral and set it
equal to   

1
4  Q/    e0  to find how b and R are related.  In the figure, take dA to be the area of an

annular ring of radius s and width ds.  The flux through dA is

E · dA = E dA cos θ = E (2π sds) cos θ

The magnitude of the electric field has the same value at all points within
the annular ring,

      
E = 1

4πe0

Q
r2 = 1

4πe0

Q
s2 + b2 and

    
cosθ = b

r
= b

(s2 + b2 )1/2

Integrate from s = 0 to s = R to get the flux through the entire disk.

      
ΦE,  disk = Qb

2e0

s ds
(s2 + b2 )3/20

R
∫ = Qb

2e0
−(s2 + b2 )1/2[ ]

0

R
= Q

2e0
1 − b

(R2 + b2 )1/2






The flux through the disk equals Q/4    e0  provided that
    

b
(R2 + b2 )1/2 = 1

2
.

This is satisfied if R = 3 b  .

24.65
        

E ⋅ dA∫ = qin

e0
= 1
e0

a
r

4πr2dr
0

r

∫

      
E4πr2 = 4πa

e0
r dr

0

r

∫ = 4πa
e0

r2

2

      
E = a

2e0
  = constant magnitude

(The direction is radially outward from center for positive a; radially inward for negative a.)
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24.66 In this case the charge density is not uniform, and Gauss's law is written as 
        

E ⋅ dA = 1
e0

ρ dV∫∫ .   

We use a gaussian surface which is a cylinder of radius r, length , and is coaxial with the
charge distribution.

(a) When r < R, this becomes E(      2πrl) = 
      

ρ0

e0
a − r

b






0

r

∫ dV .    The element of volume is a cylindrical

shell of radius r, length   l, and thickness dr so that dV =       2πrl dr.

`
      
E 2πrl( ) = 2πr2lρ0

e0







a
2

− r
3b





 so inside the cylinder, E = 

      

ρ0r
2e0

a − 2r
3b





  

(b) When r > R, Gauss's law becomes

      
E 2πrl( ) = ρ0

e0
a − r

b






0

R

∫ 2πrldr( ) or outside the cylinder, E = 
      

ρ0R2

2e0r
a − 2R

3b




    

24.67 (a) Consider a cylindrical shaped gaussian surface perpendicular to
the yz plane with one end in the yz plane and the other end
containing the point x :

Use Gauss's law:     
        

E ⋅ dA∫ = qin

e0

By symmetry, the electric field is zero in the yz plane and is
perpendicular to     dA over the wall of the gaussian cylinder.
Therefore, the only contribution to the integral is over the end cap
containing the point x :

        
E ⋅ dA∫ = qin

e0
   or   

      
EA = ρ Ax( )

e0

so that at distance x from the mid-line of the slab,  
      
E = ρx

e0
     

x

y

z x

gaussian
surface

(b)
      
a = F

me
= −e( )E

me
= − ρe

mee0







x

The acceleration of the electron is of the form     a = −ω2x       with      
      
ω = ρe

mee0

Thus, the motion is simple harmonic with frequency
    
f = ω

2π
= 

      

1
2π

ρe
mee0
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24.68 Consider the gaussian surface described in the solution to problem 67.

(a) For  
    
x > d

2
,     dq = ρ dV = ρA dx = C Ax2 dx

        
E ⋅ dA = 1

e0
dq∫∫

      
EA = CA

e0
 x2 dx

0

d/2

∫
      
= 1

3
CA
e0







d3

8








      
E = Cd3

24e0
or

        
E = Cd3

24e0
i   for  

    
x

d>
2

;
        
E = − Cd3

24e0
i   for  

    
x

d< −
2

 

(b) For 
    
− < <d

x
d

2 2
        

E ⋅ dA = 1
e0

dq∫∫ = C A
e0

x2 dx = C Ax3

3e00

x

∫

        
E = C x3

3e0
i   for  x > 0;

        
E = − Cx3

3e0
i   for  x < 0  

24.69 (a) A point mass m creates a gravitational acceleration 
      
g = − Gm

r2    at a distance r.

The flux of this field through a sphere is
      

g∫ ⋅ dA = − Gm
r2 4πr2( ) = − 4πGm

Since the r has divided out, we can visualize the field as unbroken field lines.  The same flux
would go through any other closed surface around the mass.  If there are several or no masses
inside a closed surface, each creates field to make its own contribution to the net flux
according to

      
g ⋅ dA = − 4πGmin∫  

(b) Take a spherical gaussian surface of radius r.  The field is inward so

      
g∫ ⋅ dA = g 4πr2 cos 180° = − g 4πr 2

and     − 4πGmin = −4G 4
3 πr3ρ

Then,     − g 4πr2 = − 4πG 4
3 πr3ρ and     g = 4

3 πrρG

Or, since     ρ = ME / 4
3 πRE

3,        g = 
    

MEGr

RE
3    or   

      
g = MEGr

RE
3    inward  


