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Chapter 25 Solutions

25.1 ∆V = –14.0 V and

Q = –NA e = – (6.02 × 1023)(1.60 × 10–19 C) = – 9.63 × 104 C

∆V =  
W
Q    ,   so  W = Q(∆V) = (– 9.63 × 104 C)(–14.0 J/C) = 1.35 ΜJ   

25.2   ∆K = q∆ V 7.37 × 10-17 = q(115)

q = 6.41 × 10-19 C  

25.3   W = ∆K = q∆ V

1
2  mv2 = e(120 V) = 1.92 × 10–17 J

Thus, 
    
v = 3.84 × 10−17  J

m

(a) For a proton, this becomes
    
v = 3.84 × 10−17  J

1.67 × 10−27  kg
 = 1.52 × 105 m/s = 152 km/s   

(b) If an electron,
    
v = 3.84 × 10−17  J

9.11× 10−31 kg
 = 6.49 × 106 m/s = 6.49 Mm/s  

Goal Solution    
(a) Calculate the speed of a proton that is accelerated from rest through a potential difference of 120 V.
(b) Calculate the speed of an electron that is accelerated through the same potential difference.

G : Since 120 V is only a modest potential difference, we might expect that the final speed of the particles
will be substantially less than the speed of light.   We should also expect the speed of the electron to be
significantly greater than the proton because, with    me << mp , an equal force on both particles will
result in a much greater acceleration for the electron.  

O : Conservation of energy can be applied to this problem to find the final speed from the kinetic energy
of the particles. (Review this work-energy theory of motion from Chapter 8 if necessary.)
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A : (a) Energy is conserved as the proton moves from high to low potential, which can be defined for
this problem as  moving from 120 V down to 0 V:

  Ki +Ui + ∆Enc = Kf +U f

    0 + qV + 0 = 1
2 mvp

2 + 0

    
(1.60 × 10−19  C)(120 V)

1 J
1 V ⋅ C





 = 1

2 (1.67 × 10−27  kg)vp
2

    vp = 1.52 × 105  m / s

(b) The electron will gain speed in moving the other way, from      Vi = 0    to        Vf = 120 V:

  Ki +Ui + ∆Enc = Kf +U f

    0 + 0 + 0 = 1
2 mve

2 + qV

    0 = 1
2 (9.11× 10−31 kg)ve

2 + (−1.60 × 10−19  C)(120 J / C)

    ve = 6.49 × 106  m / s

L : Both of these speeds are significantly less than the speed of light as expected, which also means that
we were justified in not using the relativistic kinetic energy formula.  (For precision to three
significant digits, the relativistic formula is only needed if v is greater than about 0.1 c.)

25.4 For speeds larger than one-tenth the speed of light,  
1
2  mv2 gives noticeably wrong answers for

kinetic energy, so we use

    
K = mc2 1

1 − v2 / c2
− 1









 = 9.11× 10−31 kg( ) 3.00 × 108  m / s( )2 1

1 − 0.4002
− 1







 = 7.47 × 10–15 J

Energy is conserved during acceleration:  Ki + Ui + ∆E =  Kf + Uf

0 + qVi + 0 = 7.47 × 10–15 J + qVf

The change in potential is Vf – Vi : Vf – Vi =  
–7.47 × 10–15 J

q     =  
– 7.47 × 10–15 J
–1.60 × 10–19 C

   = + 46.7 kV   

The positive answer means that the electron speeds up in moving toward higher potential.

25.5   W = ∆K = − q∆V

  
0 − 1

2 9.11× 10−31 kg( ) 4.20 × 105 m / s( )2
 = 

    
− − 1.60 × 10−19 C( )∆V

From which,  ∆V = – 0.502 V  



58 Chapter 25 Solutions

*25.6 (a) We follow the path from (0, 0) to (20.0 cm, 0) to (20.0 cm, 50.0 cm).

∆U = –  (work done)

∆U  =   − work from origin to (20.0 cm,0) ( ) − work from (20.0 cm,0) to (20.0 cm,50.0 cm) ( )

Note that the last term is equal to 0 because the force is perpendicular to the displacement.

 ∆U = – (qEx)(∆x) = – (12.0 × 10–6 C)(250 V/m)(0.200 m) = – 6.00 × 10–4 J   

(b) ∆V =  
∆U
q    =  – 

6.00 × 10–4 J
12.0 × 10–6 C

   =  – 50.0 J/C = – 50.0 V   

*25.7 E =  
  

∆ V
d

  =  
25.0 × 103 J/C
1.50 × 10–2 m

   = 1.67 × 106 N/C = 1.67 MN/C  

*25.8 (a) ∆ V  = Ed = (5.90 × 103 V/m)(0.0100 m) = 59.0 V   

(b)
1
2     mvf

2 =  q(∆V) ;           
1
2 (9.11 × 10–31)  vf

2 = (1.60 × 10–19)(59.0)

vf = 4.55 × 106 m/s   

25.9
    
∆U = − 1

2
m vf

2 − vi
2( ) = − 1

2
9.11× 10−31 kg



 1.40 × 105  m / s( )2

− 3.70 × 106  m / s( )2





= 6.23 × 10−18  J

∆U = q ∆V:            + 6.23 × 10–18 =  (–1.60 × 10–19)∆V

∆V = – 38.9 V     The origin is at higher potential.
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*25.10
    
VB − VA = −

A

B

∫ E ⋅ ds = −
A

C

∫ E ⋅ ds −
C

B

∫ E ⋅ ds

    
VB − VA = (−Ecos180°)

−0.300

0.500

∫ dy − (Ecos90.0°)
−0.200

0.400

∫ dx

VB – VA = (325)(0.800) = + 260 V   

25.11 (a) Arbitrarily choose     V = 0 at     x = 0.   Then at other points,

    V = − Ex  and   Ue = QV = −QEx .   Between the endpoints of the
motion,

    (K + Us + Ue )i = (K + Us + Ue ) f

    0 + 0 + 0 = 0 + 1
2 kxmax

2 − QExmax

so the block comes to rest when the spring is stretched by an amount

    
xmax = 2QE

k
=

2 50.0 × 10−6  C( ) 5.00 × 105  V m( )
100 N m

=    0.500 m     

(b) At equilibrium,       ΣFx = − Fs + Fe = 0  or    kx = QE.  Thus, the equilibrium position is at  

    
x = QE

k
=

50.0 × 10−6  C( ) 5.00 × 105  N C( )
100 N m

=    0.250 m    

(c) The equation of motion for the block is 
    
ΣFx = −kx + QE = m

d2x
dt2 .  Let 

    
′x = x − QE

k
,  or  x = ′x + QE

k
so the equation of motion becomes:

    
−k ′x + QE

k




 + QE = m

d2 ′x + QE k( )
dt2 ,  or   

    

d2 ′x
dt2 = − k

m




 ′x

This is the equation for simple harmonic motion 
    
a ′x = −ω2 ′x( ), with   ω = k m .  The period of

the motion is then

    
T = 2π

ω
= 2π m

k
= 2π 4.00 kg

100 N m
=    1.26 s     

(d)     (K + Us + Ue )i + ∆E = (K + Us + Ue ) f

    0 + 0 + 0 − µkmgxmax = 0 + 1
2 kxmax

2 − QExmax



60 Chapter 25 Solutions

    
xmax = 2(QE − µkmg)

k
=

2 50.0 × 10−6  C( ) 5.00 × 105  N C( ) − 0.200 4.00 kg( ) 9.80 m s2( )[ ]
100 N m

 =   0.343 m    

25.12 (a) Arbitrarily choose     V = 0 at 0.   Then at other points     V = − Ex  and

  Ue = QV = −QEx .   Between the endpoints of the motion,

    (K + Us + Ue )i = (K + Us + Ue ) f

    0 + 0 + 0 = 0 + 1
2 kxmax

2 − QExmax so     xmax = 
    

2QE
k

   

(b) At equilibrium,       ΣFx = − Fs + Fe = 0  or    kx = QE.   So the equilibrium position is at    x =  
  

QE
k

   

(c) The block's equation of motion is 
    
ΣFx = − kx + QE = m

d2x
dt2 .  Let 

  
′x = x − QE

k
, or 

  
x = ′x + QE

k
, so

the equation of motion becomes:

    
−k ′x + QE

k




 + QE = m

d2 ′x + QE k( )
dt2 ,  or   

    

d2 ′x
dt2 = − k

m




 ′x

This is the equation for simple harmonic motion 
    
a ′x = −ω2 ′x( ), with   ω = k m

 The period of the motion is then   
    
T = 2π

ω
= 

    
2π m

k
   

(d)     (K + Us + Ue )i + ∆E = (K + Us + Ue ) f

    0 + 0 + 0 − µkmgxmax = 0 + 1
2 kxmax

2 − QExmax

    xmax = 
    

2(QE − µkmg)
k

   

25.13 For the entire motion,     y − yi = vyit + 1
2 ayt2

    0 − 0 = vit + 1
2 ayt2 so

    
ay = − 2vi

t

  ∑ Fy = may :
    
−mg − qE = − 2mvi

t

    
E = m

q
2vi

t
− g



  and 

      
E = − m

q
2vi

t
− g



 j

For the upward flight:     vyf
2 = vyi

2 + 2ay(y − yi )

    
0 = vi

2 + 2 − 2vi

t




 (ymax − 0) and     ymax = 1

4 vit
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∆V = E ⋅ dy = + m
q

2vi

t
− g



 y

0

ymax∫
0

ymax

= m
q

2vi

t
− g





1
4 vit( )

    
∆V = 2.00 kg

5.00 × 10−6  C
2(20.1 m s)

4.10 s
− 9.80 m s2





1
4 (20.1 m s) 4.10 s( )[ ]  =   40.2 kV     
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25.14 Arbitrarily take V  = 0 at the initial point.  Then at distance d downfield,  where L is the rod
length,       V = − Ed and Ue = − λLEd

 (a)     (K + U)i = (K + U) f

    0 + 0 = 1
2 µLv 2 − λLEd

    
v =

2λEd
µ

  =  
  

2(40.0 × 10−6 C / m)(100 N / C)(2.00 m)
(0.100 kg / m)

 =  0.400 m/s  

(b) The same.  

25.15 Arbitrarily take V  = 0 at point P.  Then (from Equation 25.8) the potential at the original
position of the charge is – E · s = –EL cos θ.   At the final point a, V = –EL.   Suppose the table is
frictionless:       (K + U)i = (K + U) f

    0 − qEL cosθ = 1
2 mv 2 − qEL

v = 
    
= 2qEL(1 − cosθ)

m
= 2(2.00 × 10−6 C)(300 N / C)(1.50 m)(1 − cos 60.0°)

0.0100 kg
  =  0.300 m/s  

*25.16 (a) The potential at 1.00 cm is

V1 = ke 
q
r    = 

(8.99 × 109 N · m2/C 2)(1.60 × 10–19 C)
1.00 × 10–2 m

   = 1.44 × 10–7 V  

(b) The potential at 2.00 cm is

V2 = ke 
q
r    = 

(8.99 × 109 N · m2/C 2)(1.60 × 10–19 C)
2.00 × 10–2 m

   = 0.719 × 10–7 V

Thus, the difference in potential between the two points is

∆V = V2 – V1 = –7.19 × 10–8 V   

(c) The approach is the same as above except the charge is – 1.60 × 10–19 C.  This changes the sign
of all the answers, with the magnitudes remaining the same.

That is, the potential at 1.00 cm is –1.44 × 10–7 V    

The potential at 2.00 cm is – 0.719 × 10–7 V, so ∆V = V2 – V1 = 7.19 × 10–8 V  .
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25.17 (a) Since the charges are equal and placed symmetrically, F = 0  

(b) Since F = qE = 0, E = 0   

(c) V = 2ke 
q
r    = 2 









8.99 × 109  
N · m2

C 2
 






2.00 × 10–6 C

0.800 m   

V = 4.50 × 104 V = 45.0 kV   

25.18 (a) Ex = 
ke q1

x2    + 
ke q2

(x – 2.00)2 
   = 0 becomes Ex = ke 







+q

x2  + 
–2q

(x – 2.00)2    = 0

Dividing by ke, 2qx2 = q(x – 2.00)2

x2 + 4.00x – 4.00 = 0

Therefore E = 0 when 
    
x = −4.00 ± 16.0 + 16.0

2
= – 4.83 m   

(Note that the positive root does not correspond to a physically valid situation.)

(b) V = 
ke q1

x    + 
ke q2

(2.00 – x)   = 0 or V = ke 



+q

x  – 
2q

(2.00 – x)    = 0

Again solving for x, 2qx = q(2.00 – x)

For 0 ≤ x ≤ 2.00 V = 0 when x = 0.667 m   

and
q

x
   = 

–2q

2 – x
  

For x < 0 x = –2.00 m    

25.19 (a)
    
U = keq1q2

r
= −(8.99 × 109)(1.60 × 10−19)2

0.0529 × 10−9    =  – 4.35 × 10–18 J = –27.2 eV   

(b) U =  
ke q1q2

r     =  
– (8.99 × 109)(1.60 × 10–19)2

22(0.0529 × 10–9)
   =  – 6.80 eV   
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(c) U =  
ke q1q2

r     =  
– ke e 2

∞     = 0   

Goal Solution    
The Bohr model of the hydrogen atom states that the single electron can exist only in certain allowed
orbits around the proton.  The radius of each Bohr orbit is     r = n2(0.0529 nm) where n  = 1, 2,  3, . . . .
Calculate the electric potential energy of a hydrogen atom when the electron is in the (a) first allowed
orbit,     n = 1;  (b) second allowed orbit,     n = 2; and (c) when the electron has escaped from the atom (  r = ∞).
Express your answers in electron volts.  

G : We may remember from chemistry that the lowest energy level for hydrogen is      E1 = −13.6 eV, and
higher energy levels can be found from      En = E1 / n2 , so that     E2 = −3.40 eV  and     E∞ = 0 eV.  (see section
42.2)  Since these are the total energies (potential plus kinetic), the electric potential energy alone
should be lower (more negative) because the kinetic energy of the electron must be positive.

O : The electric potential energy is given by     
    
U = ke

q1q2

r

A : (a) For the first allowed Bohr orbit,

    
U = 8.99 × 109  

N ⋅ m2

C2







(−1.60 × 10−19  C)(1.60 × 10−19  C)

(0.0529 × 10−9  m)   
= −4.35 × 10−18  J = −4.35 × 10−18  J

1.60 × 10−19  J / eV
= −27.2 eV

(b) For the second allowed orbit,

    
U = (8.99 × 109  N ⋅ m2 / C2 )

(−1.60 × 10−19  C)(1.60 × 10−19  C)
22(0.0529 × 10−9  m)   = −1.088 × 10−18  J = −6.80 eV

(c) When the electron is at  r = ∞,

    
U = 8.99 × 109  N ⋅ m2/ C2( ) −1.60 × 10−19  C( ) 1.60 × 10−19  C( )

∞ 
= 0 J

L : The potential energies appear to be twice the magnitude of the total energy values, so apparently the
kinetic energy of the electron has the same absolute magnitude as the total energy.

*25.20 (a)
      
U = qQ

4πe0r
 =  

(5.00 × 10–9 C)(– 3.00 × 10–9 C)(8.99 × 109 V · m/C)
(0.350 m)    = – 3.86 × 10–7 J   

The minus sign means it takes 3.86 × 10–7 J to pull the two charges apart from 35 cm to a much
larger separation.

(b)
      
V = Q1

4πe0r1
+ Q2

4πe0r2   
= (5.00 × 10−9  C)(8.99 × 109  V ⋅ m / C)

0.175 m
+ (−3.00 × 10−9  C)(8.99 × 109  V ⋅ m / C)

0.175 m

V =  103 V   
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25.21 V = ∑
i
   k 

qi
ri

   

V = (8.99 × 109)(7.00 × 10–6) 



–1

0.0100  –  
1

0.0100  +  
1

0.0387   

V =  –1.10 × 107 C =  –11.0 MV   
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*25.22 Ue  = q4V1 + q4V2 + q4V3 = q4 
1

4π  ∈ 0
 



q1

r1
 + 

q2
r2

 + 
q3
r3

  

Ue

  

= 10.0 × 10−6  C( )2
8.99 × 109  N ⋅ m2/ C2( ) 1

0.600 m
+ 1

0.150 m
+ 1

0.600 m( )2 + 0.150 m( )2













Ue= 8.95 J   

25.23 U = U1 + U2 + U3 + U4

U = 0 + U12 + (U13 + U23) + (U14 + U24 + U34)

U 
    
= 0 + keQ

2

s
+ keQ

2

s
1
2

+ 1





+ keQ
2

s
1 + 1

2
+ 1





    
U = keQ

2

s
4 + 2

2






=  5.41 
ke Q2

s   

An alternate way to get the term   4 + 2 2( ) is to recognize that there are 4 side pairs and 2 face
diagonal pairs.

*25.24 (a)
    
V = keq1

r1
+ keq2

r2
= 2

keq
r







  

= 2
8.99 × 109  N ⋅ m2 C2( ) 2.00 × 10−6  C( )

1.00 m( )2 + 0.500 m( )2













    V = 3.22 × 104  V =    32.2 kV    

(b)
    
U = qV = −3.00 × 10−6  C( ) 3.22 × 104  

J
C





 =   −9.65 × 10−2  J    

2.00 µC 2.00 µC

P (0, 0.500 m)

(1.00 m, 0)(-1.00 m, 0)

y

x

*25.25 Each charge creates equal potential at the center.  The total potential is:

    
V = 5

ke −q( )
R









 = 

    
− 5keq

R
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*25.26 (a) Each charge separately creates positive potential everywhere.  The total potential produced by
the three charges together is then the sum of three positive terms.  There is   no point   located

at a finite distance from the charges, where this total potential is zero.

(b)
    
V = ke q

a
+ ke q

a
= 

    

2keq
a

   

25.27 (a) Conservation of momentum: 0 = m1v1 i + m2v2 (–i)   or   v2 =  
m1v1
m 2

  

By conservation of energy, 0 + 
ke (–q1)q2

d     =  
1
2  m 1v2

1   +   
1
2  m 2v2

2    +  
ke(–q1)q2
(r1 + r2)   

and  
ke q1q2
r1 + r2

    –  
ke q1q2

d     =  
1
2  m 1v2

1    +  12 
m 2

1v2
1

m 2
  

    
v1 = 2m2keq1q2

m1 m1 + m2( )
1

r1 + r2
− 1

d






    
v1 =

2 0.700 kg( ) 8.99 × 109  N ⋅ m2/ C2( ) 2 × 10−6  C( ) 3 × 10−6  C( )
0.100 kg( ) 0.800 kg( )

1
8 × 10−3  m

− 1
1.00 m





  =  10.8 m/s  

v2 =  
m 1v1
m 2

   =  
(0.100 kg)(10.8 m/s)

0.700 kg    = 1.55 m/s   

(b) If the spheres are metal, electrons will move around on them with negligible energy loss to
place the centers of excess charge on the insides of the spheres.  Then just before they touch,
the effective distance between charges will be less than r1 + r2 and the spheres will really be
moving   faster than calculated in (a)  .

25.28 (a) Conservation of momentum:       0 = m1v1 i + m2v2 (− i)    or        v2 = m1v1 / m2

By conservation of energy,
    
0 +

ke(− q1)q2

d
= 1

2 m1v 1
2 + 1

2 m2v 2
2 +

ke(− q1)q2

(r1 + r2 )

and
    

keq1q2

r1 + r2
− keq1q2

d
=

1
2

m1v 1
2 +

1
2

m1
2v1

2

m2

    v1 =  
    

2m2keq1q2

m1(m1 + m2 )
1

r1 + r2
− 1

d






  
    
v2 = m1

m2







v1 = 
    

2m1keq1q2

m2(m1 + m2 )
1

r1 + r2
− 1

d






  

(b) If the spheres are metal, electrons will move around on them with negligible energy loss to
place the centers of excess charge on the insides of the spheres.  Then just before they touch,
the effective distance between charges will be less than     r1 + r2 and the spheres will really be

moving   faster than calculated in (a)  .
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25.29
  
V = keQ

r
so

    
r = keQ

V
=

8.99 × 109  N ⋅ m2 C2( ) 8.00 × 10−9  C( )
V

= 72.0 V ⋅ m
V

For     V = 100 V,  50.0 V,  and 25.0 V,       r = 0.720 m,  1.44 m,  and 2.88 m   

The radii are   inversely proportional   to the potential.

25.30 (a)

    

V x( ) = keQ1

r1
+ keQ2

r2
=

ke +Q( )
x2 + a2

+
ke +Q( )

x2 + −a( )2

    

V x( ) = 2keQ

x2 + a2
= keQ

a
2

x a( )2 + 1













  

V x( )
keQ a( ) = 

    

2

x a( )2 + 1
 

(b)
    
V y( ) = keQ1

r1
+ keQ2

r2
=

ke +Q( )
y − a

+ ke −Q( )
y + a

    
V y( ) = keQ

a
1

y a − 1
− 1

y a + 1








  

V y( )
keQ a( ) = 

    

1
y a − 1

− 1
y a + 1







 

25.31 Using conservation of energy, we have   Kf +U f = Ki +Ui .

But
    
Ui =

keqα qgold

ri
 ,  and   ri ≈ ∞ .   Thus,     Ui = 0.

Also      Kf = 0  (    vf = 0 at turning point),   so    U f = Ki ,     or   
    

keqα qgold

rmin
= 1

2 mα vα
2

    
rmin =

2keqα qgold

mα vα
2 =

2(8.99 × 109 N ⋅ m2 / C2 )(2)(79) 1.60 × 10-19  C( )2

(6.64 × 10−27 kg)(2.00 × 107 m / s)2   = 2.74 × 10−14  m =   27.4 fm  
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25.32 Using conservation of energy

we have:
    

keeQ
r1

 = 
    

keeQ
r2

  +      
1
2 mv2

which gives: v = 
    

2keeQ
m

1
r1

 −  
1
r2







or v =  
  

(2)(8.99 × 109 N ⋅ m2 / C2)(−1.60 × 10−19 C)(10−9 C)
9.11× 10-31 kg

1
0.0300 m

−  
1

0.0200 m






Thus, v =    7.26 × 106  m / s  

25.33
  
U =

keqiqj

ri j
∑ ,  summed over all pairs of     i, j( )  where   i ≠ j

    
U = ke

q −2q( )
b

+
−2q( ) 3q( )

a
+

2q( ) 3q( )
b

+
q 2q( )

a
+

q 3q( )
a2 + b2

+
2q −2q( )

a2 + b2













    
U = keq

2 −2
0.400

− 6
0.200

+ 6
0.400

+ 2
0.200

+ 3
0.447

− 4
0.447







    
U = 8.99 × 109( ) 6.00 × 10−6( )2 4

0.400
− 4

0.200
− 1

0.447






= – 3.96 J  

25.34 Each charge moves off on its diagonal line.  All charges have equal speeds.

    (K + U)i∑ = (K + U) f∑

    
0 +

4 keq
2

L
+

2 keq
2

2 L
= 4 1

2 mv 2( ) +
4 keq

2

2L
+

2keq
2

2 2 L

    
2 +

1
2







ke q2

L
= 2mv 2

    
v = 1 +

1
8







keq
2

mL
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25.35 A cube has 12 edges and 6 faces.  Consequently, there are 12 edge pairs separated by s, 2 × 6 = 12

face diagonal pairs separated by 2 s, and 4 interior diagonal pairs separated 3 s.

    
U = ke q2

s
12 + 12

2
+ 4

3






=  
    
22.8

ke q2

s
 

25.36     V = a + bx = 10.0 V + −7.00 V m( )x

(a) At     x = 0,   V =    10.0 V   

At     x = 3.00 m,   V =    − 11.0 V    

At     x = 6.00 m,   V =    − 32.0 V     

(b)
    
E = − dV

dx
= −b = − −7.00 V m( ) =      7.00 N C  in + x direction     

25.37 V = 5x – 3x2y + 2yz2 Evaluate E at (1, 0 – 2)

Ex = – 
∂V

∂x
   =  – 5 + 6xy   =  – 5 + 6(1)(0) =  – 5

Ey = – 
∂V

∂y
   =  +3x2 – 2z2   = 3(1)2 – 2(–2)2 =  – 5

Ez = – 
∂V

∂ z
   =  – 4yz   =  – 4(0)(–2) = 0

    
E = Ex

2 + Ey
2 + Ez

2 = −5( )2 + −5( )2 + 02 = 7.07 N/C   

25.38 (a) For 
  
r < R V = keQ

R

  
Er = − dV

dr
=  0  

(b) For 
  
r ≥ R V = keQ

r

    
Er = − dV

dr
= − − keQ

r2




 =  

    

keQ
r2  
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25.39

      

Ey = − ∂V
∂y

= − ∂
∂y

keQ
l

ln
l+ l2 + y2

y

























      

Ey = keQ
ly

1 − y2

l2 + y2 +l l2 + y2













=
      

keQ

y l2 + y2
 

25.40 Inside the sphere,       Ex = Ey = Ez = 0 .  

Outside,
    
Ex = − ∂V

∂x
= − ∂

∂x
V0 − E0z + E0 a3z(x 2 + y2 + z 2 )− 3/2( )

So   Ex    
= − 0 + 0 + E0 a3z(− 3 / 2)(x 2 + y2 + z2 )− 5/2 (2x)[ ]    =      3E0 a3xz(x 2 + y2 + z2 )− 5/2  

    
Ey = − ∂V

∂y
= − ∂

∂y
V0 − E0 z + E0a3z(x 2 + y2 + z2 )− 3/2( )

Ey=      − E0a3z(− 3 / 2)(x 2 + y2 + z2 )− 5/2 2y  =      3E0a3yz(x 2 + y2 + z2 )− 5/2  

    
Ez = − ∂V

∂ z
  =     E0 − E0a3z(−3 / 2)(x 2 +y 2 +z 2 )− 5/2 (2z)    −E0a3(x 2 +y2 +z 2 )− 3/2

Ez =      E0 + E0a3(2z 2 −x 2 −y 2 )(x 2 +y 2 +z 2 )− 5/2  

*25.41

    

∆V = V2R − V0 = keQ

R2 + 2R( )2
− keQ

R
= keQ

R
1
5

− 1





=  – 0.553 
keQ
R   

*25.42
      
V = dV∫ = 1

4πe0

dq
r∫

All bits of charge are at the same distance from O, so

      
V = 1

4πe0

Q
R

= 8.99 × 109 N ⋅ m2

C2







−7.50 × 10−6  C( )

0.140 m / π( ) =   –1.51 MV   
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25.43 (a) [α] = 






λ

x    = 
C
m   ⋅ 



1

m    =  
C

m 2   

(b) V = ke ⌡
⌠

 

 
dq
r    = ke ⌡


⌠

 

 

λ dx
r    

    
= keα

x dx
(d + x)

0

L

∫ = 
    
keα L − d ln 1 + L

d












 

25.44

    

V = ke dq
r∫ = ke

α x dx

b2 + L 2 − x( )2∫

Let 
    
z = L

2
− x .     Then    

    
x = L

2
− z ,       and       dx = −dz

    
V = keα

L 2 − z( )(−dz)

b2 + z2∫ = − keα L
2

dz

b2 + z2∫ + keα
zdz

b2 + z2∫     
= − keαL

2
ln(z + z2 + b2 ) + keα z2 + b2

    
V = − keα L

2
ln L 2 − x( ) + L 2 − x( )2 + b2



 0

L

+ keα L 2 − x( )2 + b2

0

L

    

V = − keα L
2

ln
L 2 − L + L 2( )2 + b2

L 2 + L 2( )2 + b2

















+ keα L 2 − L( )2 + b2 − L 2( )2 + b2





V = 

    

− keα L
2

ln
b2 + (L2 4) − L 2

b2 + (L2 4) + L 2













   

25.45

    
dV = ke dq

r2 + x2
where dq = σ dA = σ2πr dr

    
V = 2πσke

r dr

r2 + x2
a

b

∫ =   
    
2πkeσ x2 + b2 − x2 + a2





 

25.46
    
V = ke

dq
rall charge∫  

    
= ke

λ dx
−x

+ ke
λ ds

R
+ ke

λ dx
xR

3R
∫semicircle∫−3R

−R
∫

V 
    
= − ke λ ln(− x)

− 3R

− R
+

ke λ
R

πR + ke λ ln x
R

3R

    
V = ke λ ln

3R
R

+ ke λπ + ke λ ln 3 =     ke λ (π + 2 ln 3)  
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25.47 Substituting given values into   V =  
ke q
r  , 7.50 × 103 V =   

(8.99 ×  109 N·m2/C2) q
(0.300 m)  

Substituting       q = 2.50 × 10−7  C,   N  =  
2.50 × 10-7 C

1.60 × 10-19 C/e−
   = 1.56 × 1012 electrons  

25.48 q1 + q2 = 20.0 µC so q1 = 20.0 µC – q2

q1
q2

   = 
r1
r2

  so
20.0 µC – q2

q2
   = 

4.00 cm
6.00 cm  

Therefore 6.00(20.0 µC – q2) = 4.00q2 ; 

Solving, q2 = 12.0 µC and q1 = 20.0 µC – 12.0 µC = 8.00 µC

(a)
    
E1 = keq1

r1
2 =

8.99 × 109( ) 8.00 × 10−6( )
0.0400( )2 = 4.50 × 107  V / m = 45.0 MV/m   

    
E2 = keq2

r2
2 =

8.99 × 109( ) 12.0 × 10−6( )
0.0600( )2 = 3.00 × 107  V / m =  30.0 MV/m   

(b)
    
V1 = V2 = keq2

r2
= 1.80 MV   

25.49 (a) E = 0  ;     
    
V = keq

R
= (8.99 × 109)(26.0 × 10−6 )

0.140
= 1.67 MV  

(b)
    
E = keq

r2 = (8.99 × 109)(26.0 × 10−6 )
(0.200)2 = 5.84 MN/C    away

    
V = keq

r
= (8.99 × 109)(26.0 × 10−6 )

(0.200)
= 1.17 MV  

(c)
    
E = keq

R2 = (8.99 × 109)(26.0 × 10−6 )
(0.140)2 = 11.9 MN/C   away

  
V = keq

R
= 1.67 MV  

25.50 No charge stays on the inner sphere in equilibrium.  If there were any, it would create an
electric field in the wire to push more charge to the outer sphere. Charge Q is on the outer

sphere.    Therefore,  zero charge is on the inner sphere   and 10.0 µC is on the outer sphere  .
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25.51 (a)
    
Emax = 3.00 × 106 V / m = keQ

r2 = keQ
r

1
r

= Vmax
1
r

    Vmax = Emaxr = 3.00 × 106(0.150) =  450 kV  

(b)
    

keQmax

r2 = Emax          or   
keQmax

r
= Vmax









    
Qmax = Emaxr2

ke
= 3.00 × 106(0.150)2

8.99 × 109 = 7.51 µC  

Goal Solution    
Consider a Van de Graaff generator with a 30.0-cm-diameter dome operating in dry air.  (a) What is the
maximum potential of the dome?  (b) What is the maximum charge on the dome?

G : Van de Graaff generators produce voltages that can make your hair stand on end, somewhere on the
order of about 100 kV (see the Puzzler at beginning of Chapter 25).  With these high voltages, the
maximum charge on the dome is probably more than typical point charge values of about   1 µC.

The maximum potential and charge will be limited by the electric field strength at which the air
surrounding the dome will ionize.  This critical value is determined by the dielectric strength of air
which, from page 789 or from Table 26.1, is     Ecritical = 3 × 106  V / m.  An electric field stronger than this
will cause the air to act like a conductor instead of an insulator.  This process is called dielectric
breakdown and may be seen as a spark.  

O : From the maximum allowed electric field, we can find the charge and potential that would create this
situation.  Since we are only given the diameter of the dome, we will assume that the conductor is
spherical, which allows us to use the electric field and potential equations for a spherical conductor.
With these equations, it will be easier to do part (b) first and use the result for part (a).

A : (b) For a spherical conductor with total charge   Q , 
      
E = keQ

r2

    
Q = Er2

ke
=

3.00 × 106  V / m( ) 0.150 m( )2

 8.99 × 109  N ⋅ m2 / C2 1 N ⋅ m / V ⋅ C( ) = 7.51 µC

(a)
    
V = keQ

r
= (8.99 × 109  N ⋅ m2 / C2 )(7.51× 10−6  C)

 0.150 m
= 450 kV

L : These calculated results seem reasonable based on our predictions.  The voltage is about 4000 times
larger than the 120 V found from common electrical outlets, but the charge is similar in magnitude to
many of the static charge problems we have solved earlier.  This implies that most of these charge
configurations would have to be in a vacuum because the electric field near these point charges
would be strong enough to cause sparking in air.  (Example: A charged ball with     Q = 1 µC and
    r = 1 mm would have an electric field near its surface of

    
E = keQ

r2 =
9 × 109  N ⋅ m2/ C2( ) 1× 10−6  C( )

0.001 m( )2 = 9 × 109  V / m

which is well beyond the dielectric breakdown of air!)
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25.52 V =  
ke q

r      and   E =  
ke q
r2        Since E = 

V
r    ,

(b) r = 
V
E    = 

6.00 × 105 V
3.00 × 106 V/m

   = 0.200 m      and   

(a)   q =  
Vr
ke

   = 13.3 µC   

25.53 U = qV = ke 
q1q2
r12

    = (8.99 × 109) 
(38)(54)(1.60 × 10–19)2

(5.50 + 6.20) × 10–15     = 4.04 × 10–11 J = 253 MeV   

*25.54 (a) To make a spark 5 mm long in dry air between flat metal plates requires potential difference

    
V = Ed = 3.0 × 106  V m( ) 5.0 × 10−3  m( ) = 1.5 × 104  V   ~104  V  

(b) Suppose your surface area is like that of a 70-kg cylinder with the density of water and radius
12 cm.  Its length would be given by

    70 × 103  cm3 = π 12 cm( )2l            l  = 1.6 m

The lateral surface area is     A = 2πr   l  = 2π 0.12 m( ) 1.6 m( ) = 1.2 m2

The electric field close to your skin is described by    
      
E = σ

e0
= Q

Ae0
, so

    
Q = EA ∈ 0 = 3.0 × 106  

N
C





 1.2 m2( ) 8.85 × 10−12  

C2

N ⋅ m2






   ~10−5  C  

25.55 (a) V = ke Q 



1

x + a  –  
2
x  + 

1
x – a  

V  = ke Q 



x(x – a) – 2(x + a)(x – a) + x(x + a)

x(x + a)(x – a)    =  
2ke Qa2

x3 – xa2   

(b) V =  
2ke Qa2

x3       for  
a
x  << 1
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25.56 (a)
    
Ex = − dV

dx
= − d

dx
2keQa2

x3 − xa2







= 

    

(2keQa2 )(3x2 − a2 )
(x3 − xa2 )2  and        Ey = Ez = 0  

(b) Ex = 

  

2(8.99 × 109  N ⋅ m2/ C2 )(3 × 10−6 C)(2 × 10−3 m)2 3(6 × 10−3 m)2 − (2 × 10−3 m)2[ ]
(6 × 10−3 m)3 − (6 × 10−3 m)(2 × 10−3 m)2[ ]2

Ex = 609 × 106 N/C = 609 MN/C  

25.57 (a)
    
E = Q

4π∈ 0 r2     

    
V = Q

4π∈ 0 r

    
r =

V
E

= 3000 V
500 V / m

=  6.00 m  

(b)
    
V = −3000 V = Q

4π∈ 0 (6.00 m)

    
Q = −3000 V

(8.99 × 109 V ⋅ m / C)
(6.00 m) =  – 2.00 µC  

25.58 From Example 25.5, the potential created by the ring at the electron's starting point is

    
Vi = keQ

xi
2 + a2

=
ke 2π λ a( )

xi
2 + a2

while at the center, it is     Vf = 2πkeλ .  From conservation of energy,

    
0 + −eVi( ) = 1

2 mevf
2 + −eVf( )

    

vf
2 = 2e

me
Vf − Vi( ) = 4πekeλ

me
1 − a

xi
2 + a2











    

vf
2 =

4π 1.60 × 10−19( ) 8.99 × 109( ) 1.00 × 10−7( )
9.11× 10−31 1 − 0.200

0.100( )2 + 0.200( )2













  vf = 1.45 × 107 m/s   
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25.59 (a) Take the origin at the point where we will find the potential.  One ring, of width dx, has
charge Q dx/h and, according to Example 25.5, creates potential

    
dV =

keQ dx

h x 2 + R 2

The whole stack of rings creates potential

    
V = dV

all charge∫ =
keQ dx

h x 2 + R 2d

d + h
∫  

    
=

ke Q
h

ln x + x 2 + R2



 d

d + h
 =  

    

ke Q
h

ln
d + h + (d + h)2 + R2

d + d2 + R2









  

(b) A disk of thickness dx has charge Q dx/h and charge-per-area Q dx/π R 2h.   According to
Example 25.6, it creates potential

    
dV = 2πke

Q dx
πR2h

x 2 + R2 − x





Integrating,

    
V =

2keQ
R 2hd

d+h
∫ x 2 + R 2 dx − x dx



 =

2ke Q
R2 h

1
2

x x 2 + R2 +
R2

2
ln x + x 2 + R2



 − x 2

2











d

d + h

V =  

    

keQ
R 2h

(d + h) (d + h)2 + R2 − d d2 + R2 − 2dh − h2


+ R2 ln
d + h + (d + h)2 + R2

d + d2 + R2

















  

25.60 The positive plate by itself creates a field E = 
σ

2  ∈ 0
   = 

36.0 × 10–9 C/m2

2(8.85 × 10–12  C2/N · m2)
   = 2.03 

kN
C   

away from the + plate.  The negative plate by itself creates the same size field and between the
plates it is in the same direction.  Together the plates create a uniform field 4.07 kN/C in the
space between.

(a) Take V = 0 at the negative plate.  The potential at the positive plate is then

    
V − 0 = − −4.07 kN / C( )dx

0

12.0 cm
∫

The potential difference between the plates is   V = (4.07 × 103 N/C)(0.120 m) = 488 V   

(b) 



1

2 mv2 + q V   
i
 =  



1

2 mv2 + q V   
f

qV = (1.60 × 10–19 C)(488 V) =  
1
2  m v 2

f    =  7.81 × 10–17 J   

(c) vf  = 306 km/s   
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(d) vf 
2 = v 2i    + 2a(x – xi)

(3.06 × 105 m/s)2 = 0 + 2a(0.120 m)

a = 3.90 × 1011 m/s2   

(e) ∑F = ma = (1.67 × 10–27 kg)(3.90 × 1011 m/s2) = 6.51 × 10–16 N   

(f) E = 
F
q    = 

6.51 × 10–16 N
1.60 × 10–19 C

   = 4.07 kN/C   

25.61
    
W = V dq

0

Q

∫   where  V = 
ke q
R   ; Therefore,  W  =  

keQ 2

2R  

25.62 (a)
    
VB − VA = − E ⋅ ds

A

B
∫  and the field at distance   r  from a uniformly

charged rod (where     r > radius of charged rod) is

      
E = λ

2πe0r
= 2keλ

r

In this case, the field between the central wire and the coaxial
cylinder is directed perpendicular to the line of charge so that

    
VB − VA = − 2keλ

r
dr

ra

rb∫ = 2keλ ln
ra

rb







,    or    
    
∆V = 2keλ ln

ra

rb







   

rb

ra

 λ

− λ

(b) From part (a), when the outer cylinder is considered to be at zero potential, the potential at a
distance   r  from the axis is

    
V = 2keλ ln

ra

r






The field at   r  is given by
    
E = − ∂V

∂r
= −2keλ

r
ra







− ra

r2




 = 2keλ

r

But, from part (a), 
    
2keλ = ∆V

ln ra rb( ) .            Therefore,    
    
E = ∆V

ln ra rb( )
1
r





      
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25.63
      
V2 − V1 = − E ⋅ dr

r1

r2∫ = − λ
2πε0rr1

r2∫ dr

V2 – V1 =  
    

−λ
2π∈ 0

ln
r2

r1







 

25.64 For the given charge distribution,
    
V x, y, z( ) =

ke q( )
r1

+
ke −2q( )

r2

where     r1 = x + R( )2 + y2 + z2   and      r2 = x2 + y2 + z2

The surface on which     V x, y, z( ) = 0

is given by
    
keq

1
r1

− 2
r2







= 0, or     2r1 = r2

This gives:     4 x + R( )2 + 4y2 + 4z2 = x2 + y2 + z2

which may be written in the form:
    
x2 + y2 + z2 + 8

3
R



 x + 0( )y + 0( )z + 4

3
R2



 = 0 [1]

The general equation for a sphere of radius a centered at     x0 , y0 , z0( ) is:

    x − x0( )2 + y − y0( )2 + z − z0( )2 − a2 = 0

or
    
x2 + y2 + z2 + −2x0( )x + −2y0( )y + −2z0( )z + x0

2 + y0
2 + z0

2 − a2( ) = 0 [2]

Comparing equations [1] and [2], it is seen that the equipotential surface for which     V = 0 is
indeed a sphere and that:

    
−2x0 = 8

3
R ;         −2y0 = 0;         −2z0 = 0;    

    
x0

2 + y0
2 + z0

2 − a2 = 4
3

R2

Thus, 
    
x0 = − 4

3
R,         y0 = z0 = 0,    and    

    
a2 = 16

9
− 4

3




 R2 = 4

9
R2.

The equipotential surface is therefore a sphere centered at 
    

− 4
3

R,0,0



   , having a radius  

    

2
3

R   
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25.65 (a) From Gauss's law, EA = 0    (no charge within) 

    
EB = ke

qA

r 2 = (8.99 × 109)
(1.00 × 10−8 )

r 2 =  
    

89.9
r 2





 V / m  

    
EC = ke

(qA + qB)
r2 = (8.99 × 109)

(− 5.00 × 10−9)
r2 =  

    
− 45.0

r2




 V / m  

(b)
    
VC = ke

(qA + qB)
r

= (8.99 × 109)
(− 5.00 × 10−9)

r
=  

    
− 45.0

r




 V  

    
∴ At r2 , V = − 45.0

0.300
= − 150V

Inside  
    
r2 , VB = − 150 V +

89.9
r2 dr

r2

r
∫

    
= − 150 + 89.9

1
r

− 1
0.300





 = 

    
− 450 +

89.9
r





 V  

    
∴ At r1, V = − 450 +

89.9
0.150

= + 150V so VA = + 150 V  

25.66 From Example 25.5, the potential at the center of the ring is

  Vi = keQ R  and the potential at an infinite distance from the ring
is     Vf = 0.  Thus, the initial and final potential energies of the
point charge are:

    
Ui = QVi = keQ

2

R
    and         U f = QVf = 0

From conservation of energy,    Kf +U f = Ki +Ui

or
    
1
2 Mvf

2 + 0 = 0 + keQ
2

R
giving   vf =  

    

2keQ
2

MR
   

25.67 The sheet creates a field 
      
E1 =

σ
2 ∈ 0

i for x > 0.  Along the     x − axis, the line of charge  creates a

field

 
      
E2 =

λ
2πr ∈ 0

away =
λ

2π ∈ 0 (3.00 m − x)
(− i) for     x < 3.00 m

The total field along the     x − axis in the region     0 < x < 3.00 m  is then

      
E = E1 + E2 = σ

2 ∈ 0
− λ

2π ∈ 0 3.00 − x( )








 i
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(a) The potential at point   x  follows from

      
V − V0 = − E ⋅ idx =

0

x
∫ − σ

2 ∈ 0
− λ

2π ∈ 0 3.00 − x( )








 dx

0

x
∫

    
V = V0 − σ x

2 ∈ 0
− λ

2π ∈ 0
ln 1 − x

3.00






    
V = 1.00 kV − (25.0 × 10−9 C / m2)x

2(8.85 × 10−12 C2 / N ⋅ m2 )
− 80.0 × 10−9 C / m

2π(8.85 × 10−12 C2 / N ⋅ m2 )
ln 1 − x

3.00






  V = 
    
1.00 kV − 1.41 

kV
m





 x − (1.44 kV) ln 1.00 − x

3.00 m






     

(b) At     x = 0.800 m, V = 316 V

and
    
U = QV = 2.00 × 10−9  C( ) 316 J C( ) = 6.33 × 10−7  J =   633 nJ    

25.68
    
V = ke

λ dx

x2 + b2
= keλ ln

a

a+L

∫ x + (x2 + b2 )



 a

a+L
 = 

    

keλ ln
a + L + a + L( )2 + b2

a + a2 + b2















 

25.69 (a)
  
Er = − ∂V

∂r
=  

    

2kepcosθ
r3  

In spherical coordinates, the θ component of the gradient is  
    

1
r

∂
∂θ





 .

Therefore,   
    
Eθ = −1

r
∂V
∂θ





 = 

    

kepsinθ
r3  

For r >> a,   
    
Er (0°) = 2kep

r3     and        Er (90°) = 0 ,     Eθ (0°) = 0    and    
    
Eθ (90°) = kep

r3

These results are reasonable for r >> a  .

However, for r → 0,  E(0) → ∞  .

(b) V = 
    

kepy
(x2 + y2 )3/2      and    

    
Ex = − ∂V

∂x
= 3kepxy

(x2 + y2 )5/2  

  
Ey = − ∂V

∂y
= 

    

kep(2y2 − x2 )
(x2 + y2 )5/2  
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25.70 (a) EA > EB  since  E =  
  

∆
∆
V
s

 

(b) EB =  – 
∆V

∆s
   = –  

(6 – 2) V
2 cm    =  200 N/C    down

(c) The figure is shown to the right, with sample field lines sketched in.

25.71 For an element of area which is a ring of radius r and width dr,
    
dV = ke dq

r2 + x2

dq = σ dA = Cr (2π r dr)   and

    
V = C(2πke )

r2 dr

r2 + x2
0

R

∫  = 
    
C(πke ) R R2 + x2 + x2 ln

x

R + R2 + x2



















 

25.72 dU = V dq  where the potential V =  
ke q
r  .  

The element of charge in a shell is dq = ρ  (volume element)  or  dq = ρ (4π r 2 dr)  and the
charge q in a sphere of radius r is

    
q = 4πρ r2 dr = ρ 4πr3

3






0

r

∫

Substituting this into the expression for dU, we have

    
dU = keq

r




 dq = keρ

4πr3

3







1
r





 ρ(4πr2 dr) = ke

16π2

3







ρ2r4 dr

    
U = dU∫ = ke

16π2

3







ρ2 r4 dr

0

R

∫ = ke
16π2

15







ρ2R5

But the total charge,      Q = ρ 4
3 πR3.    Therefore,   

    
U = 3

5
keQ

2

R
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*25.73 (a) From Problem 62, 
    
E = ∆V

ln ra rb( )
1
r

We require just outside the central wire

    

5.50 × 106  
V
m

= 50.0 × 103  V

ln
0.850 m

rb







1
rb







or
    
110 m-1( )rbln

0.850 m
rb







= 1

We solve by homing in on the required value

  rb    (m) 0.0100 0.00100 0.00150 0.00145 0.00143 0.00142

    
110 m-1( )rb ln

0.850 m
rb







 4.89 0.740 1.05 1.017 1.005 0.999

Thus, to three significant figures,      rb = 1.42 mm    

(b) At   ra ,
    
E = 50.0 kV

ln 0.850 m 0.00142 m( )
1

0.850 m




 =   9.20 kV m    


