Chapter 25 Solutions
25.1 AV =-14.0 V and

Q =-Nae=-(6.02x10%)(1.60 x 107°C) =-9.63 x 10* C

— W — — 4 —
AV = . S0 W=Q(AV) = (-9.63x 10° C)(-14.0 1/C) = |1.35 MJ

25.2 AK =dA VO 7.37 x 107 = gq(115)

q=6.41x101°C

25.3 W =AK =i VO
1
5 mvZ=¢(120 V) = 1.92 x 10717 ]

| -17
Thus, v= 573'84x10 )
\ m

-17
(a) For a proton, this becomes V= /w =152 x 10° m/s = [152 km/s

| 167x107" kg

[ 3.84x107Y7
b) If an electron, v=_ 227" ° =649 x10%° m/s = [6.49 Mm/s
®) \‘ 9.11x1073 kg

Goal Solution
(a) Calculate the speed of a proton that is accelerated from rest through a potential difference of 120 V.
(b) Calculate the speed of an electron that is accelerated through the same potential difference.

G: Since 120 V is only a modest potential difference, we might expect that the final speed of the particles
will be substantially less than the speed of light. We should also expect the speed of the electron to be
significantly greater than the proton because, with m, <<m,, an equal force on both particles will

result in a much greater acceleration for the electron.

p’

O: Conservation of energy can be applied to this problem to find the final speed from the kinetic energy
of the particles. (Review this work-energy theory of motion from Chapter 8 if necessary.)
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A: (a) Energy is conserved as the proton moves from high to low potential, which can be defined for
this problem as moving from 120 V down to 0 V:
Ki +U; + AE,,. = K; +U;
0+qV+0=21my,* +0
~19 Oo1lJ Oo_, -27 2
(1L60x107 C)(120 V)En v 5(167x10" kg)v,
Vp =152x10° m/s
(b) The electron will gain speed in moving the other way, from V;=0 to V;=120V:
Ki +U; + AE,. = K; +U;
0+0+0=23my2+qV
=1(9.11x107%" kg)v,? +(-1.60x107"° C)(120 1/ C)
Ve =6.49x10° m/s
L: Both of these speeds are significantly less than the speed of light as expected, which also means that
we were justified in not using the relativistic kinetic energy formula. (For precision to three
significant digits, the relativistic formula is only needed if v is greater than about 0.1 c.)
. 1 . .
254 For speeds larger than one-tenth the speed of light, > mv? gives noticeably wrong answers for
kinetic energy, so we use
0 1 O 20 1 0
K =me?————-1=(9.11x 107 kg)(3.00 x10® m/'s) -15=7.47x 1071
hi-vi/c¢? O ( )( ) Hi1-0.4002 H
Energy is conserved during acceleration: K;+ U; + AE = Ks + Us
0+qV;+0=747 x107° ] + qV;
_ o —747Tx10)  -7.47x 1071
The change in potential is Vi- V;: Vi-V;= q =l eox10-C - +46.7 kV
The positive answer means that the electron speeds up in moving toward higher potential.
25.5 W = AK = - qAV

0- $(9.11x10% kg)(4.20x10° m /)’ = - (-160x107° CJav

From which, AV =
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58 Chapter 25 Solutions

*25.6 (@) We follow the path from (0, 0) to (20.0 cm, 0) to (20.0 cm, 50.0 cm).

(b)

*25.7

*258  (a)
(b)

25.9

AU = - (work done)

AU = —(work from origin to (20.0 cm,0) ) - (work from (20.0 ¢cm,0) to (20.0 cm,50.0 cm) )

Note that the last term is equal to 0 because the force is perpendicular to the displacement.

AU = - (qE,)(AX) = — (12.0 x 107 C)(250 V/m)(0.200 m) = |-6.00 x 1074 ]

AU 6.00 x 1074

AV=— =_-———— = _500J)/C=[-500V
q 12.0x10°%C

_@vO_ 25.0x10°)/C

—_— = 6 —
4 1s0x102m L6710 N/C =[1.67 MN/C

E

@ VO=Ed = (5.90 x 10° V/m)(0.0100 m) = [59.0 V

TM=@AV)G (911 x 100 v@ = (160 x 10729)(59.0)

|vf = 4.55 x 108 m/s|

2 2
AU = -Im(ve -vi?) = 20 11x 107 kgS@lAO x10° m/s|" -(3.70x10° m/s) Ez 6.23x1078

AU = qAV: +6.23 x 1078 = (-1.60 x 107%)AV

AV =-38.9V| The origin is at higher potential.
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B c B y
*25.10 Vg-Va=-[ Els=-[ Els- [ Eds C > B
A A C
A

0.500 0.400 X
Vg -V =(-Ec0s180°) I dy - (Ec0s90.0°) I dx

—-0.300 —-0.200 ‘ \ ‘
Vg - Va = (325)(0.800) = [+260 V A E

25.11 (a) Arbitrarily choose V=0 at x=0. Then at other points, |, r Q
V =-Ex and U, =QV = -QEx. Between the endpoints of the %AM/\/\- m E

motion,

(K+Ug+Ug) =(K+Ug+Ug)¢ x=0

0+0+0=0+3Kfax = QEXpmax

so the block comes to rest when the spring is stretched by an amount

_20e _ 2[50.0x10° C)(5.00x10° V;m)
maxT ko 100 N/m

- [G50m]

(b) At equilibrium, XF, = -F,+F,=0 or kx=QE. Thus, the equilibrium position is at

- [cz50m]

Qe _(50.0x10 c}(5.00x10° NyC)
Tk T 100 N/m

2
(c) The equation of motion for the block is XF, = —kx +QE = sz;(. Let X' =x —%, or x=x"+

QE

so the equation of motion becomes:

2( 1 2
.. QEO d*(x' +QE k) d>x _ 0kQ,
kX' +=——"+QE=m , or =-
Ef (o dt? dt>  Om

This is the equation for simple harmonic motion (ax, = —wzx'), with w:\/k/m. The period of
the motion is then

T:ZLT:ZT[ 9:2,1374-00"9 :

W k ~“7\100 N/m

(d) (K+Ug+Ug) +AE=(K+Ug+Ug)y

0+0+0 = UyMgXmay =0 + FkxGay ~ QEXmax
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25.12

25.13

Chapter 25 Solutions

_2(QE - pymg) _ 2 [(50.0 x107® C)(5.00x10° N, C)-0.200(4.00 kg)(.80 m, sz)l

Xmax = =/ 0.343 m
max k 100 N/m
(a) Arbitrarily choose V =0 at 0. Then at other points V =-Ex and k 0
U, =QV = -QEx. Between the endpoints of the motion, %WM_ m
(K+Ug +Ug)i = (K +Uq +U,); I
x=0
0+0+0=0+ 3G ~ Q) 50 Xax = | 20
(b) At equilibrium, XF, = -F,+F, =0 or kx=QE. So the equilibrium position is at x = %
d?x QE QE

(©

the equation of motion becomes:

2( 1 2
. QEO, . _ d*(x +QEk) dx _ ko,
-k x'+=—_"+QE=m or =
Ef (o dt? dt>  Om

This is the equation for simple harmonic motion (axy = —wzx'), with w:\/’k/m

The period of the motion is then T :2—”: 277\/%
w
(d) (K+Ug+Ug) +AE=(K+Ug+Ug)g
0+0+0 = 4MGXax = 0+ 3Kiax = QEXpax
w = |2(QE - pmg)
max — k
For the entire motion,  y-y; =vyt+1a,t’
-0= 1,42 _ 2y
0-0=vjt+5ast so ay = T‘
SF, =ma,: -mg - qE = _2mv;
y y: t
_mRy; 0 M2y _
E—th 0 and E= g0t 95
For the upward flight:  vi; =vJ; +2a,(y - y;)
_ 0_2v _
0= Vi2 + ZD—T'%ymaX -0) and Ymax = %Vit

The block's equation of motion is ZF, = —kx+QE:md?. Let x' :X_T’ or x=x' +T' o]
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AVngImaxEmy:+% ;_95,

2.00kg [R(201 M) g g, m/s2H3(20.1 mys)(4.10 )] =

" 5.00x10°cO 4.10s
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25.14 Arbitrarily take V =0 at the initial point. Then at distance d downfield, where L is the rod
length, V=-Ed and U, =- ALEd

(@ (K+U); =(K+U);

0+0=2plv? - ALEd

[2)Ed 2(40.0 x1078 C/ m)(100 N / C)(2.00 m)
= | = = 10.400 m/s
o \/ (0.100 kg/m)

o

25.15 Arbitrarily take V = 0 at point P. Then (from Equation 25.8) the potential at the original

position of the charge is —E - s =—EL cos 6. At the final pointa, V =-EL. Suppose the table is
frictionless: (K +U); = (K +U);

0-gEL cosf=1mv? -qgEL

[2¢EL(1—cosB) _ |2(2.00x10~° C)(300 N / C)(1.50 m)(1 - cos 60.0°)
v==. = = 10.300 m/s
\ m \ 0.0100 kg

*25.16 (a) The potential at 1.00 cm is

q (8.99x10° N - m?/C?)(1.60 x 107'° C) —
Vi=kew = = =(1.44 x 107 V
r 1.00 x 10™“ m

(b) The potential at 2.00 cm is

g _(8.99x10°N-m?/C?(1.60 x 10 C)
- =

- =0.719x 107" V
2.00x 1072 m

V2=ke

Thus, the difference in potential between the two points is

AV =V,-V;=|-7.19x 108V

(c) The approach is the same as above except the charge is —1.60 x 107® C. This changes the sign
of all the answers, with the magnitudes remaining the same.

That is, the potential at 1.00 cm is |-1.44 x 107" V
The potential at 2.00 cm is — 0.719 x 107" V, s0 AV =V, - V; = |7.19 x 10 V| .
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25.17 (a) Since the charges are equal and placed symmetrically, 2.00 uC y{q 2.00 uC

_@ @__x
(b) Since F=qE =0, |E=0] x=-0800m 0 x=0.800m
N - m?2.00 x 10 CD
9
(c) —2ke —Z%QQXN = %§OSOOm i

v:4.50x104v:

_keas Kedz _, @9 29
2518 (@) Ex= 2 + x— 2_00)2 =0 becomes Ex = ke 8(— Wﬂ =0
Dividing by ke, 2gx? = q(x — 2.00)?

x% + 4.00x - 4.00 =0

B -4.00++/16.0+16.0 _
Therefore E =0when x= > =

(Note that the positive root does not correspond to a physically valid situation.)

_keqy Kedz  _ _, 14 29 _
®) V==~ *Zoo-x 0 or V=ke g3~ @oo—xg =0
Again solving for x, 2gx = ((2.00 — x)
For 0 <x<2.00 V =0when x =]0.667 m
-2

and 4 d

X2
For x <0 X=

koG4, _ —(8.99 x 10°)(1.60 x 10719)? _
2519 (@) U=-¢112 - = -435x1018)=[-272eVv
( ) r 0.0529 x 10‘9

b) U-= Kedada _ —(8.99 x 10%)(1.60 x 1019)2

= [-6.80 eV
r 22(0.0529 x 107°)
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© U= el _ —kee? [

r o0

Goal Solution

The Bohr model of the hydrogen atom states that the single electron can exist only in certain allowed
orbits around the proton. The radius of each Bohr orbit is r=n?(0.0529 nm) where n = 1,2, 3,....
Calculate the electric potential energy of a hydrogen atom when the electron is in the (a) first allowed
orbit, n=1; (b) second allowed orbit, n=2; and (c) when the electron has escaped from the atom (r = o).
Express your answers in electron volts.

G: We may remember from chemistry that the lowest energy level for hydrogen is E; =-13.6 eV, and

higher energy levels can be found from E, = E1/n2, so that E, =-3.40 eV and E, =0eV. (see section
42.2) Since these are the total energies (potential plus kinetic), the electric potential energy alone
should be lower (more negative) because the kinetic energy of the electron must be positive.

O: The electric potential energy is given by U = ke@

A: (@ For the first allowed Bohr orbit,
0 o NIM20(-1.60x107*° C)(1.60x107%° C) 18 -4.35x10718 )
U= B3.99 x 10 . - =-4.35x10718 ) = T =-27.2eV
cZ H (0.0529x 10 m) 160x107° J/ev

(b) For the second allowed orbit,
(-160x107* C)(1.60x107"° C) _

5 ~ -1.088x107* ) = -6.80 eV
2%(0.0529 x 107 m)

U =(8.99 x10° N [in? / C?)

() When the electron is at r = oo,

~1.60x107%° C)(l. 60 x 1072 c) o)

U= (8.99 x10° N H‘nZ/CZ)(

o0

L. The potential energies appear to be twice the magnitude of the total energy values, so apparently the
kinetic energy of the electron has the same absolute magnitude as the total energy.

9 —9 9
. _ gQ _ (5.00x107 C)(-3.00 x 10 C)(8.99 x 10°V - m/C)
2520 (@) U= drtegr = (0.350 m) =(-3.86x107"J

The minus sign means it takes 3.86 x 10~/ J to pull the two charges apart from 35 cm to a much
larger separation.

0 v & 4 2 (5.00x10™° C)(8.99x10° VI /C) _ (-3.00x10° C)(8.99 x 10° V [/ C)
4megr,  4megr, 0.175m 0.175m

V=103V



2521

V = (8.99 x 10%)(7.00 x 10~

1
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6) [l -1 _
[0.0100

v=|[-1.10x10"C= -11.0 MV

1 4.00 3.87
+ [ cm cm
0.0100 0.038701 /
~ - —q l

«—2.00 cmm —>1
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1 1 02 03
%2522 Us = 0aV1 +QiV2 + Vs = Ga - a2,

1

0
= (10.0 x 107 C)2(8.99 x10° N 2/ c2) + +
D600m " 0.150 m /(0.600 m) +(0.150 m)? .

Ve
25.23 U=U;+Uy+Uz+ U, @O—0)

U=0+Ugp+ (Uz+Uz)+ (Us + Uz + Usg)

U=0+-—t= EQ kQ Qfﬂg keQ Ql+—+1 @5_@

_ k,Q? 20 ke Q?
u=" QHTZQ_ 5.41 =

An alternate way to get the term (4 + 2/\52) is to recognize that there are 4 side pairs and 2 face
diagonal pairs.

9 2,2 -6
%95 24 el |, kep _ Ckeq_ , 899107 NI, C )(2.00x107 c)O y
. @ V=—_=+ D o= 3 a : @
h 1/(1.00 m)? +(0.500 m) P & (0.0500m)
V =3.22x10% V = [32.2 kV] 200 uC 2004C
(-1.00 m, 0) (1.00 m, 0)

(b) U:qV:(—3.OOX1O_6CET% 22 x 10% JD —9.65x1072 J

*25.25 Each charge creates equal potential at the center. The total potential is:

V = SD(DL(';q) E: —%Req
O O




*25.26 (a)
(b)
2527 (a)
(b)
2528 (a)
(b)
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Each charge separately creates positive potential everywhere. The total potential produced by
the three charges together is then the sum of three positive terms. There is located
at a finite distance from the charges, where this total potential is zero.

V :M-{-M = Zkeq
a a a
. . . myva
Conservation of momentum: 0=mqvyi+myvy (i) or vy= m,
ke (- K.(—
By conservation of energy, 0 +% = % movi + % mavs  + %
ke 010 Ke 010 1 1m2v2
e 0102 efaf2 _ 1 2 1Mmivi
and ntr, —d =72 Mvy 2 my
Comka, O 1 10
V=, 2KeU102 % _7@
\my(my +my) By +r, d
12(0.700 kg)(8.99x10° N %/ C?)(2x107° C)(3x10° C) g 4 1 o

"y (0.100 kg)(0.800 kg) Bx107 m " Toomn 08 m/g

myvy;  (0.100 kg)(10.8 m/s)

m, 0.700 kg -

If the spheres are metal, electrons will move around on them with negligible energy loss to
place the centers of excess charge on the insides of the spheres. Then just before they touch,
the effective distance between charges will be less than r; + rp, and the spheres will really be

moving [faster than calculated in (a)| .

Vo =

Conservation of momentum: 0=mvpi+ myv,(—i) or v,=myv;/m,
By conservation of energy, 0+ KO W% Imyi+imyvi+ ke(= G)ay
d (rp+r7)
and ety _ ket - 1, 2, 1mivi
rp+r, d 2 2 my
Comkag, O 1 10 Om, O omkag, O 1 10
v, = ! 20142 % _75 VZZ%la/lz 1MeH142 % _75
\‘ml(ml+m2) 1+r, d 2 \sz(ml+m2) 1*+r; d

If the spheres are metal, electrons will move around on them with negligible energy loss to
place the centers of excess charge on the insides of the spheres. Then just before they touch,
the effective distance between charges will be less than r; +r, and the spheres will really be

moving | faster than calculated in (a) | .
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8.99x10° N[m?/C?)(8.00x107° C
25.29 V:keQ so r:keQ:( / )( ):72'0VDm
r Vv Vv Vv
For V =100V, 50.0 V, and 25.0 V, |r =0.720 m, 144 m, and 2.88 m |

The radii are | inversely proportional| to the potential.

2530 (a) V(x)= keQr , ke Qp _ k. (+Q) + ke (+Q) 2,50,
. N o V2 + 22 \/‘x2 +(—a)2
V(x)
Vo= 2KQ _k@n 2 R
2,2 a [ 2 0.50
x? +a Hy (x/a)” +1H -

|
~
|
W
|
N
|
—_
o
—_
N
w
~

x/a

(k-Q/a) \;‘s(x/a)2 +1

0 Viy)=%Q k0 k() k(-0) I
r rpoly-d  fy+q 6t
V(Z) 4l
k,Qla
viy)=kQD 1 1 0 . il .
y a Hy/a—l\ y a+1\H -5 L1 2 3 4 5
-4
r—6
V(y):D1 1 0 _:180
(k.Q/a) Hy a-1 \y/a+1\E yla
25.31 Using conservation of energy, we have K; +U; =K; +U;.
k
But U :M, and r; =c. Thus, U; =0.
i
_ _ . . _ ke%rqgold _1 2
Also K; =0 (v¢ =0 at turning point), so U; =K;, or r%—imava
min

2(8.99 x 10° N [in? 7/ C2)(2)(79)(1.60 x 102 )’
_ lalgoig _ 2(8.99 % 9L )
min — 2 -

m, V2 (6.64 x 10~%" kg)(2.00 x 10’ m/s)?

=2.74x10% m=




25.32

25.33

25.34
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Using conservation of energy

kEEQ - kGEQ + 1

2
2mv

we have:

which gives: v =

or _ /(2)(8.99 x10° Nm?/C?)(-160x10°® c)a0°c)gp 1 1 O
| 9.11x10™ kg [0.0300 m  0.0200 mO
Thus, v={7.26x10° m/s|
Ko -2
u=y erq'q‘, summed over all pairs of (i, j) where i # j é ;@q
ij A
A
U =k A(-20) , (-20)(30) , (20)(3a) , a(20), _a(30) , 20(-20)0 S0
=k, 3 + + + + +— 0 ) 43
g b a b 2 a2+b? aZ+b’ I I
U= keqzD ~2 6 , 6 , 2 , 3 4 0

FD.400 0.200 0.400 0.200 0.447 0.447H

_ 9 20 4 _ 4 1 0O 1o
U_(&ggxlo )(6'00x10 )53.400 0.200 0.447H

Each charge moves off on its diagonal line. All charges have equal speeds.

S (K+U), = 3 (K+U)

2 2 2 2
O+Lkeq + Zkeq :4(lmv2)+L(eq ¥ 2k0”
L V2L 2 2L 242L

2
@_'_i@keq :vaz
A2 L

I 2
v= @H i@ikeq
\9 V80 mL
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25.35 A cube has 12 edges and 6 faces. Consequently, there are 12 edge pairs separated by s, 2 x 6 = 12
face diagonal pairs separated by \/E s, and 4 interior diagonal pairs separated \/5 S.

2 2
U= ked §2+£+imz 22.8'%;1
s V2 \3H s

25.36 V =a+bx=10.0 V+(~7.00 V/m)x
(@ Atx=0, V=
At x=3.00 m, v:
At X =6.00 m, v=

(b) E:—(:j—\;:—b:—(—Y.OO V/m)=[7.00 N/C in +xdirection
25.37 V = 5x - 3x%y + 2yz? Evaluate E at (1, 0 - 2)
—_— W —_— —_— —_—
Be=-> = = -5+6(1)(0) = -5
v
Ey=-—— = |+3x? - 27| =3(1)*-2(-2)*= -5
-2
—_— W —_— —_— —_—
E,=-— = = —4(0)(-2) =0

E= BB BT = (5 #()+ 0

2538 (a) For r<R v:ke?Q
dv
E =—-— =
' dr @
(b) Forr=z=R V:keTQ
' d 0O 20 |2
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25.39 E :_ﬂ:_iaﬁlnq +\“f‘|2+y2m
TR TaTag g

0 u
E :keiﬂ— y2 = keQ
Y IyE 12 +y2 +] I2+yZH y\;“‘I2+y2
25.40 Inside the sphere, E, =E, =E, =0.
Outside, E,=- % =- %(VO - Eyz +Egaz(x? +y? +22)” 3/2)
So E, = —[o +0+Eya’z(- 3/72)(x?% +y? + 22)75/2 (2x)] = [3Eya’xz(x? +y? + 2%)” %2
v J 3,092 4 y2 4 52\~ 372
=-—=-—|Vo-Ez+Eaz(x°+y° +z)
y EY dy( 0~ ko 0 )

5/2

E~= - Epa’z(- 372)(x? +y? +22)7 %22y = |3E,alyz(x? + y? + 22)”

;ﬂ = Ey- Ega’z(-3/2)(x2+y2+22) %2 (22) ~Epad(x 2 +y? +22)7 %2

E,= EO + E0a3(222—x2 _yZ)(X2+y2+22)—5/2

k
*2541 AV =V2R _VO = kej#_kej = keiQQ\/i— _1@: —0553;_Q
yRZ+(2R)> R RINS
*25.42 V:IdV: ! %
4megd r

All bits of charge are at the same distance from O, so

tm?0(-7.50 %10 C|

= 1 Q:D gN = |-
V ane, R B T B oo msng
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C 1 C
— 0 - 1=
m mQO m

N

O
2543 (a) [a]=§—|a=

d }\d <d>
(b) V =k J_q =ke X I xdx ked@‘d'ﬂ%"‘km \ —————x
r d+x) dH A R —
25.44 kedd _ Iax—$2
2+(L/2-x)
Letzzg—x. Then ng—z, and dx=-dz
V =k, IL/Z 2)(-dz) _ kaLI dz +kaI zdz :—kem‘In(z+\s"‘22+b2)+kea\s““‘22+b2
b2 + 22 2 ) p2+22 +72 2
keaL ‘ 2 - / 2 L
VERL gL/Z—x)+\§(L/2—x) +b25 +koa(L/2 - %) +1?
0 0
| O
2-L++(L/2)" +b?
v:—ke""lna'/ (L2 Ch a5 (L/Z—L)2+b2—\/(L/2)2+b2D
2 O 2,2 0 ° B B
g L/2++/(L/2)" +b
vo| _kat 8 O/b? +(12/2) - 1/20
2 %b2+(L2/4)+L/ZH
25.45 dV=Jke& where dq = ogdA = g2mrdr
2+ x?
V = 2mok J’ridr2= 2711<ea%;"x2+b2 —\/x2+a25 1 P
\r + X x\—>|
-R /\dx Ads 3R A dx
2546 v =k .[allcharge r ISR - eJ—semicircle R IR
-R 3R
V ==k, A In(=x) ki;‘

V =k, ARk eATT+K, AN 3= [k A(+21n 3)]
R
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bstituting ai Ues | _ keq s, (8.99 x 109 N-m2/C2) g
25.47 Substituting given values into V = T 750 % 10°V = (0.300 m)
- 7 250x107C 5
Substituting q=2.50x10"" C, = = |l.56 x 10 electrons|
1.60 x 10° C/e~
25.48 g1 + 2 =20.0 uC SO g1 =200 uC-qo
Qi _nn 200pC-g; 4.00cm
42 I S0 0 =6.00 cm
Therefore 6.00(20.0 uC - qp) = 4.00qy ;
Solving, g2 =12.0 uC and gy =20.0 uC -12.0 uC =8.00 uC

(8. 99 x 109)(8.00 x 10‘6)

(@ E-= krelgl = (0.0400)2 =4.50x10" V/m=

ke _ (8.9 x10%)(12.0x10™¢)

— 7 —
E, =& (0.0600) =3.00x10" V/m=

ra

ke
b) V,=V,=—2=(180 MV

9 -6
2549 (a) E=[0]: V:k%::(s.ggxloo)iig.omo ) - [167 MV

r

koq _ (8.99x10°)(26.0x107°)
by E=-t'= =[5.84 MN/C| awa
®) 2 (0_200)2 y

koq _ (8.99x10°)(26.0 x107%)
VvV =—"_1= = -117 MV
r (0.200) -

k.q _ (8.99x10°)(26.0 x107%)
c) E==F'= = -_11.9 MN/C| awa
© R? (0.140)? Y

v =Xl mermv
R
25.50 No charge stays on the inner sphere in equilibrium. If there were any, it would create an

electric field in the wire to push more charge to the outer sphere. Charge Q is on the outer

sphere. Therefore, |zero charge is on the inner sphere| and |10.0 UC is on the outer sphere| .
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2551 (8) Emax =3.00x10°V/m :ke—zQ :keTQ% :vmax%
r

Vmax = Emaxt = 3.00 x 10%(0.150) =

0 Cpmg, [ oy,

E,oxr? _ 3.00 x10°(0.150)
= = =17.51 uC
Qmax ke 8.99 x 109

Goal Solution
Consider a Van de Graaff generator with a 30.0-cm-diameter dome operating in dry air. (a) What is the
maximum potential of the dome? (b) What is the maximum charge on the dome?

G:

Van de Graaff generators produce voltages that can make your hair stand on end, somewhere on the
order of about 100 kV (see the Puzzler at beginning of Chapter 25). With these high voltages, the
maximum charge on the dome is probably more than typical point charge values of about 1 uC.

The maximum potential and charge will be limited by the electric field strength at which the air
surrounding the dome will ionize. This critical value is determined by the dielectric strength of air

which, from page 789 or from Table 26.1, is Egiicay =3 X10° V/m. An electric field stronger than this
will cause the air to act like a conductor instead of an insulator. This process is called dielectric
breakdown and may be seen as a spark.

From the maximum allowed electric field, we can find the charge and potential that would create this
situation. Since we are only given the diameter of the dome, we will assume that the conductor is
spherical, which allows us to use the electric field and potential equations for a spherical conductor.
With these equations, it will be easier to do part (b) first and use the result for part (a).

A: (b) For a spherical conductor with total charge Q, |E| :ke—ZQ
.
g2 (3.00x10° V/m) (0.150 m)’
Q=—-= 5 >——5—(1NIOn/VIT)=7.51uC
Ke 8.99x10° NOm“/C
9 2 y~2 -6
@ v=kQ_(8.99x10° NIN®/CHT 1107 C) o,

r 0.150 m

These calculated results seem reasonable based on our predictions. The voltage is about 4000 times
larger than the 120 V found from common electrical outlets, but the charge is similar in magnitude to
many of the static charge problems we have solved earlier. This implies that most of these charge
configurations would have to be in a vacuum because the electric field near these point charges
would be strong enough to cause sparking in air. (Example: A charged ball with Q=1 uC and
r =1 mm would have an electric field near its surface of

=9x10°V/m

1 (9x10° NaZ/c?)(1x107 )
ST T (0.001 m)?

which is well beyond the dielectric breakdown of air!)
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k Y
25.52 V=—"— and E:re—zq Since E=—,

Vv 6.00 x 10° V
b) r== =———— =[0.200m| and
(b) E  3.00x10°V/m -

\Y

@ o=, =[B3uc]

38)(54)(1.60 x 10792

*25.54 (a) To make a spark 5 mm long in dry air between flat metal plates requires potential difference

V =Ed=(3.0x10° V/m)(5.0x107* m) =15 x10* v |-10* v

(b) Suppose your surface area is like that of a 70-kg cylinder with the density of water and radius
12 cm. Its length would be given by

70x10% cm® = n(12 cm)’| | =16 m

The lateral surface area is A=2mr| =27(0.12 m)(16 m)=12 m?

The electric field close to your skin is described by E = 9= i SO
ey Aeg

N g _ c? O -
—EA}= E&.omo‘5 —31.2 m?2)8.85 x 10712 ~10° C
Q L C )EB Nm2H

1 2 1 Y
2655 () V=kQpi57 - x *x—an +Q |

2(x +a)(x—a) + x(x + )] | 2ke Qa’
X(X + a)(X — a) 0 7| x3 - xa?

% =kng((X_a)_

| 2ke Qa® a
by Vv= 3 for 3 << 1
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_dv _ d 02k,Qa* O_ | (2k.Qa%)(3x* —a%) —
2556 (@) E=-g = E&Se— oty e(x3—xa2)2 and [E,=E,=0

2(8.99 x 10° N 2/ C2)(3x 107 C)(2 x 1073 m)2[3(6 x102 m)? - (2x1073 m)z]

(b) Ex=
(610 m)® - (6 x10 m)(2x 1073 m)2]2

Ex = 609 x 10® N/C = [609 MN/C

__Q
2557 () E_MQ =

_ Q
4anlgr

_|[Vv]_ so00v _
= _SOOV/m_

) V=-3000v=— 2
471104 (6.00 m)

~3000 V
= 6.00 m) = [-2.00 uC
Q (8.99><109VDm/C)( )

25.58 From Example 25.5, the potential created by the ring at the electron's starting point is

V. = k.Q :ke(er)\a)
b +a? X2 +al

while at the center, itis V; =2mk,A. From conservation of energy,

4k A U a U

:m—e(Vf_Vi): mee %_\/xi2+a2%

, 4n(1. 60 x 10‘19)(8. 99 x 109)(1.00 x 107
Vi =

)C 0.20 -
9.11x107 @l 1(0.100)? +(0.200)? Q

=|1.45 x 10’ m/s




25.59

25.60

(@)

(b)

(@)

(b)

©
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Take the origin at the point where we will find the potential. One ring, of width dx, has
charge Qdx/h and, according to Example 25.5, creates potential

k.Q dx

av=——=—~—
hyx?+R?

The whole stack of rings creates potential

2
V= d+h_ kQdx :kehQIn%(+\/X2+Rzad+h— kQ, d+h+y(@+h?+R?

all charge .[d h\/X2+R2 ¢ | h d+\/d2+R2

A disk of thickness dx has charge Qdx/h and charge-per-area Qdx/nR?h.  According to
Example 25.6, it creates potential

_ Qdx 0/ 2. 2 _ .0
dV—27Tker[R2h X“+R" —xpg

Integrating,

V= J’;+h2kEQ%\/x2+R dx—xde 2kQ§x\/x +R2+—In§<+\x +R2E

20f*h

X
2

R%h

O
Ca
: O+ h+(d+h?+R*EH

v= | K gd+h)\;‘(d+h)2+R2—d\/d2+R2—2dh—h2+R2I \( ’
2 2, p2
d+\d +R

h

0 __ 36.0x10°C/m? 03 KN
20y 2(885%x10 Cc?/N-m?) T C

The positive plate by itself creates a field E=

away from the + plate. The negative plate by itself creates the same size field and between the
plates it is in the same direction. Together the plates create a uniform field 4.07 kN/C in the
space between.

Take V = 0 at the negative plate. The potential at the positive plate is then

V-0=[**""(-4.07 kN/ C)dx

The potential difference between the plates is V = (4.07 x 103 N/C)(0.120 m) = |488 V

.2 O_0,..2 O
E‘gmv +qVDi—Bmv +qVDf

qV = (160 x 100 C)(488 V) = 5 mv} =
= [306 km/s
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25.61

25.62

Chapter 25 Solutions

(d)

(®)

®

(@)

(b)

viZ=v? +2a(x - x)

(3.06 x 10° m/s)? = 0 + 2a(0.120 m)

a=3.90 x 10" m/s?|

SF =ma = (167 x 1027 kg)(3.90 x 10! m/s?) =

F  651x107'°N

9 T1e0x100C =[407kn/C]

Q k k 2
W =[Vdq where V=§—q; Therefore, (W = gg
0
B
Vg —V,p = —IA Elds and the field at distance r from a uniformly _a

charged rod (where r > radius of charged rod) is
A _2kA ‘

21egr r

In this case, the field between the central wire and the coaxial
cylinder is directed perpendicular to the line of charge so that

Iy ZkeA
a r

Vg =V :—Ir dr = 2k, A Ingﬁﬁ, or [AV =2kA Iné%ﬁ

From part (a), when the outer cylinder is considered to be at zero potential, the potential at a
distance r from the axis is

_ o, O
V =2kA InDlr 0
. L O
The field at r isgiven by E= NV -2k, A ' D]—Lguz ZkeA
or JH e
But, from part (a), 2k, A = L. Therefore, |E= _ AV OO
In(ra/ry) In(ra/ry) OO
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25.63 VoV = [ Elr =" A gr
n rn27mgr
Vo-Vi= A InDZD
21y rlg
k k.2
25.64 For the given charge distribution, V(x,y,z)= er(q) + e(r )
1 2
where =y (x+R)Z+y?+22 and r, = \x? +y? +22
The surface on which V(x,y,z)=0
.. 01 20
is given b k -—p=0,0r 2ry=r
g y eQHTl I’ZE 1=
This gives: 4(x +R)* +4y? +47% =x% +y? + 72
. . . . 2,..2,.2, 8B A L20_
which may be written in the form: XTryt e o R% +(0)y +(0)z + B R°;=0 K|
The general equation for a sphere of radius a centered at (xo,yo,zo) is:
2 2 2
(x=x0)" +(y=v0)" +(z-2)" -a* =0
or  x?+y?+z? +(—2x0)x+(—2y0)y+(—220)z+(x§ +ys +28 —az):O 2

Comparing equations [1] and [2], it is seen that the equipotential surface for which V =0 is
indeed a sphere and that:

—2X0:%R; -2y =0; -2z5=0; x§+y§+zg—a2:%R2

4 o 6 40, _ 4.2
Thus, X, = -=R, =z,=0, and a°= ———Eﬁ =—R".
0 3 Yo = 2o 09 3 9
. . . 04 O . . 2
The equipotential surface is therefore a sphere centered at 03 R,O,OD ,having a radius §R
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25.65 (a) From Gauss's law, (no charge within)
_p Oa 0, (1L00x107%) _ | 89.90
EB—keﬁ—(8-99x10) v = 0,2 qv/m

r 0O 20

- -9
EC:ke(in-;qB):(g_ggx]_OQ)( 5-002><1O ): 0 45_05\//m
r

_ -9
(b) VC - ke (qA + qB) - (899 x 109) ( 5.00 x 10 ) — D_ 45.0 DV
r r o r O
O At ry, V=- 50 - _150v
0.300
. r 89.9 m 1 0_|0 89.90
Inside r,, Vg==-150V+ [ ——dr =-150+89.9 = - =| =450+ ——V
20 7B [ Or 0.3000° |0 r O
B 89.9 _ -
O At r, V=-450+ =+150V so Va=+150V
0.150
25.66 From Example 25.5, the potential at the center of the ring is
V; =k.Q/R and the potential at an infinite distance from the ring .
is V¢ =0. Thus, the initial and final potential energies of the | ¢ .
point charge are: -
Uniformiy
2 charged ring
ui:Qvi:ke% and U; =QV; =0
From conservation of energy, K;+U; =K; +U;
2 2
1 2 - keQ i — 2k,Q
or sMvi+0=0+—""— ivin Vi = [y ——
2 Mvi R gving IV MR
25.67 The sheet creates a field E; = zii for x> 0. Along the x-—axis, the line of charge creates a
field
A .
E,= away (=1) for x<3.00 m

27 [ ~ 27§(3.00 m - x)
The total field along the x —axis in the region 0<x<3.00 m is then

o _ A
"B 2m(3.00-x)

E=E, +E, §



@
(b)
25.68
2569 (a)
(b)
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The potential at point x follows from

xd o A O
V-Vy,=-[( EOdx= - X
i 55 2ng e
oX A X 0O
=V - -~
20 2ng gl 3.000
-9 2 -9
V =100 KV - (25.O><1E)12 CZ/m )x2 _ 80.0><1_(1)2 C2:/m . E]l X 0O
2(8.85 1072 C?/N [?) 2m(8.85 %1072 C2/ N m?) .000
V =[100kV -141 1.44 kV) In1.00 -
e % ( ) El OOmH
At x=0.800m, V=316V
and U =QV =(2.00x10 C|(316 J/C)=6.33x107 J=[633 nJ
sl 4y TN %:1+L+\/a+L +p2 U
V =k, J = kA In§<+\;‘(x +b)% = kA In O
VX2 +b? a 0 a+a?+02 [
0 ]
_ 0V _|2kpcos@
E=——r="7 3
or r
100 O
In spherical coordinates, the 8 component of the gradient is T Ooal
1wV O_ | kepsin@
Therefore, Eg=--+——"=|"*—F—
97 rOpeD ré
o_2k€p o) — o) — o_kep
Forr>>a, E/(0°)=—- and E(90°)=0, Eg(0°)=0 and Ey(90°)=—5
r r

These results are |reasonab|e forr >> a| .

However, for |r - 0, E(0) - oo| .

_ K.py oV _ 3kpxy
V= (x2 +ey2)3/2 and |E, = v (2 +ey2)5/2
£ o 9V _ e|o(2y2—x2)

y 0)/ (X +y )5/2
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25,70 (a) |Ea>Epg since E= av
As
AV 6-2)V

(b) Eg= —E == "Zem - 200 N/C| down

(c) The figure is shown to the right, with sample field lines sketched in.

ke dq

Vre +x

25.71 For an element of area which is a ring of radius r and width dr, dV =— 5

dg=o0dA =Cr(2nrdr) and

Ror2dr Ny O X 0]

V=C@mk)[—5—— = C(rk,)[IRVR? +x% +x%In :
Jo'\r +x° ¢ 8 EI?2+\/R2+XZ%

k
25.72 dU =Vdg where the potential V = eTq

The element of charge in a shell is dg = p (volume element) or dq = p(4rmr2dr) and the
charge q in a sphere of radius r is

r 3
Wmre O
=4mpfr?dr=
g p{ a3 H
Substituting this into the expression for dU, we have

3
U :Ekequjq— emeLT %30(4m dr) = k H) 2 dr

U= IdU k%ﬁaoj’rd-kglﬁao

But the total charge, Q =p%nR3. Therefore, |U==-—"=-
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AV 1

*25.73 (a) From Problem 62, E:WF
a/'b

o . . SvO10
We require just outside the central wire 5.50 x 10° A M#H
m InD).SSO m O0ry,

I

[0.850 mO_
Iy

or (110 m'l)rbln 1

We solve by homing in on the required value

r, (m) 0.0100 |0.00100 |0.00150 |[0.00145 |0.00143 |0.00142

O
110 m™)r |nm850 m 4.89 0.740 1.05 1.017 1.005 0.999
b Eirb E . . . . . .

Thus, to three significant figures, |r, =142 mm
50.0 kV o 1 0O
b) Atr, E= =19.20 kV/m
o # 7 In(0.850 m/0.00142 m) [0.850 mU]
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