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Chapter 28 Solutions

28.1 (a)
      
P = ∆V( )2

R
 becomes 20.0 W =  

(11.6 V)2

R        so    R = 6.73 Ω   

(b) ∆V = IR so 11.6 V = I (6.73 Ω)      and      I = 1.72 A

ε = IR + Ir so 15.0 V = 11.6 V + (1.72 A)r

r = 1.97 Ω   
Figure for Goal

Solution

Goal Solution
A battery has an emf of 15.0 V.  The terminal voltage of the battery is 11.6 V when it is delivering 20.0 W
of power to an external load resistor   R.  (a) What is the value of   R?  (b) What is the internal resistance of
the battery?

G : The internal resistance of a battery usually is less than   1 Ω, with physically larger batteries having less
resistance due to the larger anode and cathode areas.  The voltage of this battery drops significantly
(23%), when the load resistance is added, so a sizable amount of current must be drawn from the
battery.  If we assume that the internal resistance is about   1 Ω, then the current must be about   3 A to
give the   3.4 V drop across the battery’s internal resistance.  If this is true, then the load resistance
must be about     R ≈ 12 V / 3 A = 4 Ω .  

O : We can find   R  exactly by using Joule’s law for the power delivered to the load resistor when the
voltage is 11.6 V.  Then we can find the internal resistance of the battery by summing the electric
potential differences around the circuit.

A : (a) Combining Joule's law,      P = ∆VI ,  and the definition of resistance,    ∆V = IR ,  gives

 
      
R = ∆V2

P
= 11.6 V( )2

20.0 W
= 6.73 Ω

(b) The electromotive force of the battery must equal the voltage drops across the resistances:
  ε = IR + Ir ,  where    I = ∆V R .

    
r = ε − IR

I
= ε − ∆V( )R

∆V
= (15.0 V − 11.6 V)(6.73 Ω)

11.6 V
= 1.97 Ω

L : The resistance of the battery is larger than   1 Ω, but it is reasonable for an old battery or for a battery
consisting of several small electric cells in series.  The load resistance agrees reasonably well with our
prediction, despite the fact that the battery’s internal resistance was about twice as large as we
assumed.  Note that in our initial guess we did not consider the power of the load resistance;
however, there is not sufficient information to accurately solve this problem without this data.
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28.2 (a) ∆Vterm = IR

becomes 10.0 V = I (5.60 Ω)

so I = 1.79 A   

(b) ∆Vterm = ε – Ir

becomes 10.0 V = ε – (1.79 A)(0.200 Ω)

so ε = 10.4 V   

28.3 The total resistance is R =  
3.00 V

0.600 A   = 5.00 Ω

(a) Rlamp = R – rbatteries = 5.00 Ω – 0.408 Ω = 4.59 Ω   

(b)
    

Pbatteries

Ptotal
 = 

(0.408 Ω)I 2

(5.00 Ω)I 2
   = 0.0816 = 8.16%   

28.4 (a) Here      ε = I(R + r),  so  
    
I = ε

R +  r
= 12.6 V

(5.00 Ω +  0.0800 Ω)
= 2.48 A

Then,     ∆V = IR = 2.48 A( ) 5.00 Ω( ) =    12.4 V  

(b) Let     I1 and    I2 be the currents flowing through the battery and the headlights, respectively.

Then,     I1 = I2 + 35.0 A , and     ε − I1r − I2R = 0

so     ε = (I2 + 35.0 A)(0.0800 Ω) + I2(5.00 Ω) = 12.6 V

giving     I2 = 1.93 A  

Thus,      ∆V2 = (1.93 A)(5.00 Ω) =   9.65 V  

28.5 ∆V = I 1R1 = (2.00 A)R 1   and   ∆V = I 2(R 1 + R 2) = (1.60 A)(R 1 + 3.00 Ω)

Therefore, (2.00 A)R 1 = (1.60 A)(R 1 + 3.00 Ω)   or   R 1 =  12.0 Ω  
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28.6 (a)
    
Rp = 1

1 7.00 Ω( ) + 1 10.0 Ω( ) = 4.12 Ω

Rs = R1 + R2 + R3 = 4.00 + 4.12 + 9.00 =  17.1 Ω   

(b) ∆V = IR

34.0 V = I (17.1 Ω)

I = 1.99 A   for 4.00 Ω, 9.00 Ω resistors

Applying ∆V = IR, (1.99 A)(4.12 Ω) = 8.18 V

8.18 V = I (7.00 Ω) so I = 1.17 A   for 7.00 Ω resistor

8.18 V = I (10.0 Ω) so I = 0.818 A   for 10.0 Ω resistor

*28.7 If all 3 resistors are placed in parallel  ,

1
R    =  

1
500   +  

2
250   =  

5
500  and R = 100 Ω

*28.8 For the bulb in use as intended,

      
I = P

∆V
= 75.0 W

120 V
= 0.625 A      and       R =  

∆V
I    =  

120 V
0.625 A   = 192 Ω

Now, presuming the bulb resistance is unchanged,

I =  
120 V

193.6 Ω
   = 0.620 A

Across the bulb is ∆V = IR = 192 Ω(0.620 A) = 119 V

so its power is     P  = (∆V)I = 119 V(0.620 A) = 73.8 W   
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28.9 If we turn the given diagram on its side, we find that it is the
same as Figure (a).  The 20.0-Ω and 5.00-Ω resistors are in series, so
the first reduction is as shown in (b).  In addition, since the 10.0-Ω,
5.00-Ω, and 25.0-Ω resistors are then in parallel, we can solve for
their equivalent resistance as:

    

Req = 1
1

10.0 Ω
+ 1

5.00 Ω
+ 1

25.0 Ω( ) = 2.94 Ω

This is shown in Figure (c), which in turn reduces to the circuit
shown in (d).

Next, we work backwards through the diagrams applying
I =  ∆V/R   and ∆V  = IR.  The 12.94-Ω resistor is connected across
25.0-V, so the current through the battery in every diagram is

I =  
∆V
R    =  

25.0 V
12.94 Ω

   = 1.93 A

In Figure (c), this 1.93 A goes through the 2.94-Ω equivalent
resistor to give a potential difference of:

∆V = IR = (1.93 A)(2.94 Ω) = 5.68 V

From Figure (b), we see that this potential difference is the same
across Vab, the 10-Ω resistor, and the 5.00-Ω resistor.

(b) Therefore, Vab = 5.68 V   

(a) Since the current through the 20.0-Ω resistor is also the current
through the 25.0-Ω line ab,

I = 
Vab
R ab

   =  
5.68 V
25.0 Ω

   = 0.227 A = 227 mA  

(a)

(b)

(c) (d)

28.10
      
120 V = IReq = I

ρl
A1

+ ρl
A2

+ ρl
A3

+ ρl
A4







, or   

      

Iρl = 120 V( )
1

A1
+ 1

A2
+ 1

A3
+ 1

A4







      

∆V2 = Iρl
A2

= 120 V( )

A2
1

A1
+ 1

A2
+ 1

A3
+ 1

A4







=   29.5 V  
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28.11 (a) Since all the current flowing in the circuit must pass through the
series 100-Ω resistor,       P = RI2

      Pmax = RImax
2  so

      
Imax = P

R
= 25.0 W

100 Ω
= 0.500 A

R eq = 100 Ω + 



1

100 + 
1

100   
–1

 Ω = 150 Ω

∆Vmax = R eq I max = 75.0 V   

(b)   P  = (∆V)I = (75.0 V)(0.500 A) = 37.5 W    total power

  P 1 = 25.0 W           P 2 =   P 3 = RI 2 = (100 Ω)(0.250 A)2 =  6.25 W   

28.12 Using 2.00-Ω, 3.00-Ω, 4.00-Ω resistors, there are 7 series, 4 parallel, and 6 mixed combinations:

Series Parallel Mixed The resistors may be arranged in patterns:
2.00 Ω 6.00 Ω
3.00 Ω 7.00 Ω
4.00 Ω 9.00 Ω
5.00 Ω

0.923 Ω1.56 Ω
1.20 Ω 2.00 Ω
1.33 Ω 2.22 Ω
1.71 Ω 3.71 Ω

4.33 Ω
5.20 Ω

28.13 The potential difference is the same across either combination.

    
∆V = IR = 3I

1
1
R + 1

500( )  so
    
R

1
R

+ 1
500





 = 3

1 +  
R

500   = 3 and R = 1000 Ω = 1.00 kΩ  

28.14 If the switch is open,     I = ε /( ′R + R) and       P = ε 2 ′R /( ′R + R)2

If the switch is closed,     I = ε /(R + ′R / 2)   and           P = ε 2 ( ′R / 2)/(R + ′R / 2)2

Then,
    

ε 2 ′R
( ′R + R)2 =

ε 2 ′R
2(R + ′R / 2)2

    2R2 + 2R ′R + ′R 2 / 2 = ′R 2 + 2R ′R + R2

The condition becomes     R
2 = ′R 2 / 2 so     ′R = 2 R     = 2 (1.00 ) =Ω 1.41 Ω  
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28.15
    
Rp = 1

3.00
+ 1

1.00






−1

= 0.750 Ω

    Rs = 2.00 + 0.750 + 4.00( ) Ω = 6.75 Ω

    
Ibattery = ∆V

Rs
= 18.0 V

6.75 Ω
= 2.67 A

  P     = I2R:   P 2  = 2.67 A( )2 2.00 Ω( )

  P 2 =  14.2 W   in 2.00 Ω

  P 4  = 2.67 A( )2 4.00 Ω( ) =  28.4 W     in 4.00 Ω

    ∆V2 = 2.67 A( ) 2.00 Ω( ) = 5.33 V,         ∆V4 = 2.67 A( ) 4.00 Ω( ) = 10.67 V

    ∆Vp = 18.0 V − ∆V2 − ∆V4 = 2.00 V        = ∆V3 = ∆V1( )

   

    

  P 3
    
=

∆V3( )2

R3
=

2.00 V( )2

3.00 Ω
= 1.33 W     in 3.00 Ω

  P 1
    
=

∆V1( )2

R1
=

2.00 V( )2

1.00 Ω
= 4.00 W     in 1.00 Ω

28.16 Denoting the two resistors as x and y,

x + y = 690,   and   
1

150   =  
1
x   +  

1
y 

1
150   =  

1
x   +  

1
690 – x   =  

(690 – x) + x
x(690 – x)  

x 2 – 690x + 103,500 = 0

x =  
690 ± (690)2 – 414,000

2  

x = 470 Ω       y = 220 Ω  
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28.17 (a)   ∆V = IR :     33.0 V = I1 11.0 Ω( )     33.0 V = I2 22.0 Ω( )

    I1 = 3.00 A     I2 = 1.50 A

  P     = I2R:   P 1  = 3.00 A( )2 11.0 Ω( )   P 2  = 1.50 A( )2 22.0 Ω( )

  P 1  = 99.0 W   P 2  = 49.5 W

The 11.0-Ω resistor uses more power.  

(b)   P 1 +   P 2 =  148 W            P     = I ∆V( ) = 4.50( ) 33.0( ) = 148 W  

(c)     Rs = R1 + R2 = 11.0 Ω + 22.0 Ω = 33.0 Ω

  ∆V = IR :     33.0 V = I 33.0 Ω( ),  so      I = 1.00 A

  P      = I2R:   P 1  = 1.00 A( )2 11.0 Ω( )   P 2  = 1.00 A( )2 22.0 Ω( )

  P 1  = 11.0 W   P 2  = 22.0 W

The 22.0-Ω resistor uses more power.  

(d)   P 1 +   P 2 =    I
2 R1 + R2( ) = 1.00 A( )2 33.0 Ω( ) =  33.0 W  

  P     = I ∆V( ) = 1.00 A( ) 33.0 V( ) = 33.0 W  

(e) The parallel configuration uses more power.  

28.18 +15.0 – (7.00)I1 – (2.00)(5.00) = 0

5.00 = 7.00I1 so I1 = 0.714 A   

I3 = I1 + I2 = 2.00 A

0.714 + I2 = 2.00 so I2 = 1.29 A   

+ε – 2.00(1.29) – (5.00)(2.00) = 0 ε = 12.6 V   
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28.19 We name the currents     I1,  I2 ,  and I3  as shown.

From Kirchhoff's current rule, I3 = I1 + I2

Applying Kirchhoff's voltage rule to the loop containing I2 and I3 ,

12.0 V – (4.00)I3 – (6.00)I2 – 4.00 V = 0

8.00 = (4.00)I3 + (6.00)I2

Applying Kirchhoff's voltage rule to the loop containing I1 and I2 ,

– (6.00)I2 – 4.00 V + (8.00)I1 = 0

(8.00)I1 = 4.00 + (6.00)I2

Solving the above linear systems, I1 = 846 mA,     I2 = 462 mA,     I3 = 1.31 A  

All currents flow in the directions indicated by the arrows in the circuit diagram.

*28.20 The solution figure is shown to the right.

*28.21 We use the results of Problem 19.

(a) By the 4.00-V battery: ∆U = (∆V)It = 4.00 V(– 0.462 A)120 s = – 222 J   

By the 12.0-V battery: 12.0 V (1.31 A) 120 s = 1.88 kJ   

(b) By the 8.00 Ω  resistor: I 2 Rt  = (0.846 A)2(8.00 Ω ) 120 s = 687 J   

By the 5.00 Ω  resistor: (0.462 A)2(5.00 Ω ) 120 s = 128 J   

By the 1.00 Ω  resistor: (0.462 A)2(1.00 Ω ) 120 s = 25.6 J   

By the 3.00 Ω  resistor: (1.31 A)2(3.00 Ω ) 120 s = 616 J   

By the 1.00 Ω  r e s i s t o r : (1.31 A)2(1.00 Ω ) 120 s = 205 J   

(c) –222 J + 1.88 kJ = 1.66 kJ    from chemical to electrical.  

687 J + 128 J + 25.6 J + 616 J + 205 J = 1.66 kJ from electrical to heat.
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28.22 We name the currents     I1,  I2 ,  and I3  as shown.

[1] 70.0 – 60.0 – I2 (3.00 kΩ) – I1 (2.00 kΩ) = 0

[2] 80.0 – I3 (4.00 kΩ) – 60.0 – I2 (3.00 kΩ) = 0

[3] I2 = I1 + I3

(a) Substituting for I2 and solving the resulting simultaneous
equations yields

I1 = 0.385 mA  (through R1) 

I3 = 2.69 mA  (through R3) 

I2 = 3.08 mA  (through R2) 

(b) ∆Vcf =  – 60.0 V – (3.08  mA)(3.00 kΩ) = – 69.2 V   

Point c is at higher potential.  

28.23 Label the currents in the branches as shown in the first figure.
Reduce the circuit by combining the two parallel resistors as
shown in the second figure.

Apply Kirchhoff’s loop rule to both loops in Figure (b) to
obtain:

    2.71R( )I1 + 1.71R( )I2 = 250    and        1.71R( )I1 + 3.71R( )I2 = 500

With     R = 1000 Ω , simultaneous solution of these equations
yields:

    I1 = 10.0 mA    and       I2 = 130.0 mA

From Figure (b),     Vc − Va = I1 + I2( ) 1.71R( ) = 240 V

Thus, from Figure (a),  
    
I4 = Vc − Va

4R
= 240 V

4000 Ω
= 60.0 mA

(a)

(b)

Finally, applying Kirchhoff’s point rule at point   a in Figure (a) gives:

    I = I4 − I1 = 60.0 mA − 10.0 mA = +50.0 mA,

or I = 50.0 mA flowing from point a to point e  .
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28.24 Name the currents as shown in the figure to the right.   Then
w + x + z = y.   Loop equations are

– 200w – 40.0 + 80.0x = 0

– 80.0x + 40.0 + 360 – 20.0y = 0

+ 360 – 20.0y – 70.0z + 80.0 = 0

Eliminate y by substitution.  

    

x w

x w z

w x z

= 2.50 + 0.500
400 100 20.0 20.0 = 0
440 20.0 20.0 90.0 = 0

− − −
− − −








Eliminate x :  
    

350 270 20.0 = 0
430 70.0 90.0 = 0

− −
− −





w z

w z

Eliminate z = 17.5 – 13.5w to obtain     430 70.0 1575 + 1215 = 0− −w w

w = 70.0/70.0 = 1.00 A upward in 200 Ω  

Now z = 4.00 A upward in 70.0 Ω  

x = 3.00 A upward in 80.0 Ω  

y = 8.00 A downward in 20.0 Ω  

and for the 200 Ω,  ∆V = IR = (1.00 A)(200 Ω) = 200 V  

28.25 Using Kirchhoff’s rules,

    12.0 − 0.0100( )I1 − 0.0600( )I3 = 0

    10.0 + 1.00( )I2 − 0.0600( )I3 = 0

and      I1 = I2 + I3

    12.0 − 0.0100( )I2 − 0.0700( )I3 = 0

    10.0 + 1.00( )I2 − 0.0600( )I3 = 0

Solving simultaneously,       I2 = 0.283 A downward   in the
dead battery,

and      I3 = 171 A downward   in the starter.
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28.26     Vab = 1.00( )I1 + 1.00( ) I1 − I2( )

    Vab = 1.00( )I1 + 1.00( )I2 + 5.00( ) I − I1 + I2( )

    Vab = 3.00( ) I − I1( ) + 5.00( ) I − I1 + I2( )

Let     I = 1.00 A,      I1 = x ,  and      I2 = y

Then, the three equations become:

    Vab = 2.00x − y ,  or       y = 2.00x − Vab

    Vab = −4.00x + 6.00 y + 5.00

and     Vab = 8.00 − 8.00x + 5.00 y

Substituting the first into the last two gives:

    7.00Vab = 8.00x + 5.00   and       6.00Vab = 2.00x + 8.00

Solving these simultaneously yields  
    
Vab = 27

17
 V

Then, 
    
Rab = Vab

I
= 27 17  V

1.00 A
 or

    
Rab = 27

17
 Ω  

28.27 We name the currents     I1,  I2 ,  and I3  as shown.

(a) I1 = I2 + I3

Counterclockwise around the top loop,

12.0 V – (2.00 Ω)I3 – (4.00 Ω)I1 = 0

Traversing the bottom loop,

8.00 V – (6.00 Ω)I2 + (2.00 Ω)I3 = 0

I1 = 3.00 –  
1
2  I3     I2 =  

4
3   +  

1
3  I3     and     I3 = 909 mA  

(b) Va – (0.909 A)(2.00 Ω) = Vb

Vb – Va = –1.82 V  
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28.28 We apply Kirchhoff's rules to the second diagram.

50.0 – 2.00I1 – 2.00I2 = 0 (1)

20.0 – 2.00I3 + 2.00I2 = 0 (2)

I1 = I2 + I3 (3)

Substitute (3) into (1), and solve for I1, I2, and I3

I1 = 20.0 A;     I2 = 5.00 A;     I3 = 15.0 A

Then apply   P  = I 2R to each resistor:

(2.00 Ω)1 :   P  =     I1
2(2.00 Ω) = (20.0 A)2 (2.00 Ω) = 800 W  

(4.00 Ω) :   P  = 



 

5.00
2  A   

2
 (4.00 Ω)  = 25.0 W  

(Half of I2 goes through each)

(2.00 Ω)3 :   P  =     I3
2(2.00 Ω) = (15.0 A)2(2.00 Ω) = 450 W  

28.29 (a) RC = (1.00 × 106 Ω)(5.00 × 10–6 F) = 5.00 s   

(b) Q = Cε = (5.00 × 10–6 C)(30.0 V) = 150 µC   

(c)
    
I(t) = ε

R
e−t/RC = 30.0

1.00 × 106 exp
−10.0

(1.00 × 106)(5.00 × 10−6 )






=  4.06 µA  

28.30 (a) I(t) = –I0e–t/RC

I0 =  
Q

RC    =  
5.10 × 10–6 C

(1300 Ω)(2.00 × 10–9 F)
   = 1.96 A

I(t) = – (1.96 A) exp 






–9.00 × 10–6 s

(1300 Ω)(2.00 × 10–9 F)
   = – 61.6 mA   

(b) q(t) = Qe–t/RC = (5.10 µC) exp 






– 8.00 × 10–6 s

(1300 Ω)(2.00 × 10–9 F)
   = 0.235 µC   

(c) The magnitude of the current is I0 = 1.96 A   
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28.31
    
U = 1

2
C ∆V( )2     and       ∆V = Q C

Therefore,     U = Q2 2C  and when the charge decreases to half its original value, the stored

energy is one-quarter its original value:   
    
U f = 1

4
U0  

28.32 (a) τ = RC = (1.50 × 105 Ω)(10.0 × 10–6 F) = 1.50 s   

(b) τ = (1.00 × 105 Ω)(10.0 × 10–6 F) = 1.00 s   

(c) The battery carries current
10.0 V

50.0 × 103 Ω
   = 200 µA

The 100 kΩ carries current of magnitude I = I0e–t/RC =  






10.0 V

100 × 103 Ω
  e–t/ 1.00 s

So the switch carries downward current 200 µA + (100 µA)e–t / 1.00 s   

    

28.33 (a) Call the potential at the left junction VL and at the right VR.   After a
"long" time, the capacitor is fully charged.

VL = 8.00 V because of voltage divider: IL =  
10.0 V
5.00 Ω

   = 2.00 A

VL = 10.0 V – (2.00 A)(1.00 Ω) = 8.00 V

Likewise, VR =  






2.00 Ω

2.00 Ω + 8.00 Ω
   10.0 V = 2.00 V

or IR =  
10.0 V
10.0 Ω

   = 1.00 A

VR = (10.0 V) – (8.00 Ω)(1.00 A) = 2.00 V

Therefore, ∆V = VL – VR = 8.00 – 2.00 = 6.00 V   

(b) Redraw the circuit
    
R = 1

1/ 9.00 Ω( ) + 1/ 6.00 Ω( ) = 3.60 Ω

RC = 3.60 × 10–6 s

and       e–t/RC =  
1

10         so t = RC ln 10 = 8.29 µs   
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28.34 (a)
    
τ = RC = 4.00 × 106 Ω( ) 3.00 × 10−6 F( ) = 12.0 s  

(b)
    
I = ε

R
e− t/RC

    
= 12.0

4.00 × 106 e− t/12.0 s

    
q = Cε 1 − e− t/RC[ ]     

= 3.00 × 10−6 12.0( ) 1 − e− t/12.0[ )

    
q = 36.0 µC 1 − e− t/12.0[ ]          I = 3.00 µAe− t/12.0  

28.35
    
∆V0 = Q

C
     

Then, if        q(t) = Qe− t/RC
    ∆V(t) = ∆V0e− t/RC

    

∆V t( )
∆V0

= e− t/RC

Therefore

    

1
2

= exp − 4.00

R 3.60 × 10−6( )










    

ln
1
2





 = − 4.00

R 3.60 × 10−6( )

R = 1.60 MΩ  

28.36
    
∆V0 = Q

C

Then, if     q(t) = Q e−t RC
    ∆V(t) = ∆V0( )e−t RC

and
    

∆V(t)
∆V0( ) = e−t RC

When 
    
∆V(t) = 1

2
∆V0( ) ,   then

    
e−t RC = 1

2

    
− t

RC
= ln

1
2





 = −ln 2

Thus,
    
R = t

C ln 2( )  
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28.37
    
q(t) = Q 1 − e−t/RC[ ] so

    

q(t)
Q

= 1 − e−t/RC

    0.600 = 1 − e−0.900/RC or     e
−0.900/RC = 1 − 0.600 = 0.400

    

− =0 900
0 400

.
ln( . )

RC
thus

    
RC = − =0 900

0 400
.

ln( . )
  0.982 s  

28.38 Applying Kirchhoff’s loop rule,
    
−Ig 75.0 Ω( ) + I − Ig( )Rp = 0

Therefore, if     I = 1.00 A when     Ig = 1.50 mA ,

    

Rp =
Ig 75.0 Ω( )

I − Ig( ) =
1.50 × 10−3  A( ) 75.0 Ω( )
1.00 A − 1.50 × 10−3  A

= 0.113 Ω  

28.39 Series Resistor → Voltmeter

∆V = IR: 25.0 = 1.50 × 10-3(Rs + 75.0)

Solving, Rs = 16.6 kΩ  Figure for Goal
Solution

Goal Solution    
The galvanometer described in the preceding problem can be used to measure voltages.  In this case a
large resistor is wired in series with the galvanometer in a way similar to that shown in Figure P28.24b
This arrangement, in effect, limits the current that flows through the galvanometer when large voltages
are applied.  Most of the potential drop occurs across the resistor placed in series.  Calculate the value of
the resistor that enables the galvanometer to measure an applied voltage of 25.0 V at full-scale deflection.

G : The problem states that the value of the resistor must be “large” in order to limit the current through
the galvanometer, so we should expect a resistance of kΩ to MΩ.  

O : The unknown resistance can be found by applying the definition of resistance to the portion of the
circuit shown in Figure 28.24b.

A :     ∆Vab = 25.0 V;    From Problem 38,        I = 1.50 mA    and        Rg = 75.0 Ω .  For the two resistors in series,

  Req = Rs + Rg   so the definition of resistance gives us:      ∆Vab = I(Rs + Rg )

Therefore,   
    
Rs = ∆Vab

I
− Rg = 25.0 V

1.50 × 10−3 A
− 75.0 Ω = 16.6 kΩ

L : The resistance is relatively large, as expected.  It is important to note that some caution would be
necessary if this arrangement were used to measure the voltage across a circuit with a comparable
resistance.  For example, if the circuit resistance was 17 kΩ, the voltmeter in this problem would
cause a measurement inaccuracy of about 50%, because the meter would divert about half the current
that normally would go through the resistor being measured.  Problems 46 and 59 address a similar
concern about measurement error when using electrical meters.
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28.40 We will use the values required for the 1.00-V voltmeter to obtain the internal resistance of the
galvanometer. ∆V = Ig (R + rg)

Solve for rg : rg =  
∆V
Ig 

   – R =  
1.00 V

1.00 × 10-3 A
   – 900 Ω = 100 Ω

We then obtain the series resistance required for the 50.0-V voltmeter:

R =  
V
Ig

   – rg =  
50.0 V

1.00 × 10-3 A
   – 100 Ω = 49.9 kΩ  

28.41
  
∆V = Igrg = I − Ig( )Rp ,  or   

    

Rp =
Igrg

I − Ig( ) =
Ig 60.0 Ω( )

I − Ig( )
Therefore, to have     I = 0.100 A = 100 mA  when     Ig = 0.500 mA:

    
Rp = 0.500 mA( ) 60.0 Ω( )

99.5 mA
=    0.302 Ω  

Figure for Goal
Solution

Goal Solution    
Assume that a galvanometer has an internal resistance of   60.0 Ω  and requires a current of
0.500 mA to produce full-scale deflection.  What resistance must be connected in parallel with the
galvanometer if the combination is to serve as an ammeter that has a full-scale deflection for a current of
0.100 A?  

G : An ammeter reads the flow of current in a portion of a circuit; therefore it must have a low resistance
so that it does not significantly alter the current that would exist without the meter.  Therefore, the
resistance required is probably less than   1 Ω.

O : From the values given for a full-scale reading, we can find the voltage across and the current through
the shunt (parallel) resistor, and the resistance value can then be found from the definition of
resistance.

A : The voltage across the galvanometer must be the same as the voltage across the shunt resistor i n
parallel, so when the ammeter reads full scale,

    ∆V = 0.500 mA( ) 60.0 Ω( ) = 30.0 mV

Through the shunt resistor,     I = 100 mA − 0.500 mA = 99.5 mA

Therefore, 
    
R = ∆V

I
= 30.0 mV

99.5 mA
= 0.302 Ω

L : The shunt resistance is less than   1 Ω as expected.  It is important to note that some caution would be
necessary if this meter were used in a circuit that had a low resistance.  For example, if the circuit
resistance was   3 Ω, adding the ammeter to the circuit would reduce the current by about 10%, so the
current displayed by the meter would be lower than without the meter.  Problems 46 and 59 address a
similar concern about measurement error when using electrical meters.
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28.42
    
Rx =

R2R3

R1
=

R2R3

2.50R2
=

1000 Ω
2.50

= 400 Ω  

28.43 Using Kirchhoff’s rules with     Rg << 1,

    − 21.0 Ω( )I1 + 14.0 Ω( )I2 = 0,  so  
    
I1 = 2

3
I2

    
70.0 − 21.0I1 − 7.00 I1 + Ig( ) = 0 , and

    
70.0 − 14.0I2 − 7.00 I2 − Ig( ) = 0

The last two equations simplify to

    
10.0 − 4.00 2

3
I2( ) = Ig ,   and     10.0 − 3.00I2 = −Ig

Solving simultaneously yields:  Ig = 0.588 A  

+

I1

21.0 Ω

I2

14.0 Ω

7.00 Ω

7.00 Ω

I2 - Ig

Ig

I1 + Ig

G

70.0 V

28.44
  
R = ρL

A
   and   

  
Ri = ρLi

Ai

But,   V = AL = AiLi  ,  so   
    
R = ρL2

V
   and   

    
Ri = ρLi

2

V

Therefore,  
    
R =

ρ Li + ∆L( )2

V
=

ρLi 1 + ∆L Li( )[ ]2

V
= Ri 1 + α[ ]2   where 

  
α ≡ ∆L

L

This may be written as:    R = Ri (1 + 2α  + α 2)  

28.45
    

εx

Rs
=

εs

Rs
; εx =

εsRx

Rs
=

48.0 Ω
36.0 Ω






(1.0186 V) = 1.36 V  
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*28.46 (a) In Figure (a), the emf sees an
equivalent resistance of
  200.00 Ω.

    
I = 6.000 0 V

200.00 Ω
=  0.030 000 A  

6.0000 V

20.000 Ω

180.00 Ω 180.00 Ω 180.00 Ω

A
V AV

(a) (b) (c)

20.000 Ω 20.000 Ω

The terminal potential difference is     ∆V = IR = 0.030 000 A( ) 180.00 Ω( ) = 5.400 0 V  

(b) In Figure (b), 
    
Req = 1

180.00 Ω
+ 1

20 000 Ω






−1

= 178.39 Ω

The equivalent resistance across the emf is      178.39 Ω + 0.500 00 Ω + 20.000 Ω = 198.89 Ω

The ammeter reads
    
I = ε

R
= 6.000 0 V

198.89 Ω
=  0.030 167 A  

and the voltmeter reads     ∆V = IR = 0.030 167 A( ) 178.39 Ω( ) = 5.381 6 V  

(c) In Figure (c), 
  

1
180.50 Ω

+ 1
20 000 Ω







−1

= 178.89 Ω

Therefore, the emf sends current through   Rtot =   178.89 Ω + 20.000 Ω = 198.89 Ω

The current through the battery is
    
I = 6.000 0 V

198.89 Ω
= 0.030 168 A

but not all of this goes through the ammeter.

The voltmeter reads     ∆V = IR = 0.030 168 A( ) 178.89 Ω( ) =  5.396 6 V  

The ammeter measures current 
    
I = ∆V

R
= 5.396 6 V

180.50 Ω
= 0.029 898 A  

The connection shown in Figure (c) is better than that shown in Figure (b) for accurate readings.

28.47 (a)   P  = I(∆V) So for the Heater,
      
I = P

∆V
= 1500 W

120 V
= 12.5 A   

For the Toaster, I =  
750 W
120 W   = 6.25 A    

And for the Grill, I =  
1000 W
120 V    = 8.33 A   (Grill)  

(b) 12.5 + 6.25 + 8.33 = 27.1 A     The current draw is greater than 25.0 amps, so this would not be
sufficient.
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28.48 (a)
      
P = I2R = I2 ρl

A




 = (1.00 A)2(1.70 × 10−8 Ω ⋅ m)(16.0 ft)(0.3048 m / ft)

π(0.512 × 10−3 m)2 = 0.101 W  

(b)   P  = I 2 R = 100(0.101 Ω) = 10.1 W  

28.49     IAl
2 RAl = ICu

2 RCu so
    
IAl = RCu

RAl
ICu = ρCu

ρAl
ICu = 1.70

2.82
20.0( ) = 0.776(20.0) = 15.5 A       

*28.50 (a) Suppose that the insulation between either of your fingers and the conductor adjacent is a
chunk of rubber with contact area   4 mm2  and thickness 1 mm.  Its resistance is

      
R = ρl

A
≅

1013  Ω ⋅ m( ) 10−3  m( )
4 × 10−6  m2 ≅ 2 × 1015  Ω

The current will be driven by 120 V through total resistance (series)

  2 × 1015  Ω + 104  Ω + 2 × 1015  Ω ≅ 5 × 1015  Ω

It is:  
    
I = ∆V

R
~

120 V
5 × 1015  Ω

   ~ 10−14  A  

(b) The resistors form a voltage divider, with the center of your hand at potential     Vh 2 , where   Vh
is the potential of the "hot" wire.  The potential difference between your finger and thumb is

    
∆V = IR ~ 10−14  A( ) 104  Ω( ) ~ 10−10  V .  So the points where the rubber meets your fingers are at
potentials of  

    
~

Vh

2
+ 10−10  V       and     

    
~

Vh

2
− 10−10  V  

*28.51 The set of four batteries boosts the electric potential of each bit of charge that goes through them
by 4 × 1.50 V = 6.00 V.  The chemical energy they store is

∆U = q∆V = (240 C)(6.00 J/C) = 1440 J

The radio draws current I =  
∆V
R    =  

6.00 V
200 Ω

   = 0.0300 A

So, its power is   P  = (∆V)I = (6.00 V)(0.0300 A) = 0.180 W = 0.180 J/s

Then for the time the energy lasts, we have     P = E t :
      
t = E

P
= 1440 J

0.180 J / s
= 8.00 × 103  s

We could also compute this from I = Q/t: t =  
Q
I    =  

240 C
0.0300 A   = 8.00 × 103 s = 2.22 h  
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*28.52
  
I = ε

R + r
,   so   

      
P = I2R = ε 2R

R + r( )2 or
      
R + r( )2 = ε 2

P







R

Let 
      
x ≡ ε 2

P
,  then      R + r( )2 = xR or     R

2 + 2r − x( )R − r2 = 0

With     r = 1.20 Ω , this becomes      R
2 + 2.40 − x( )R − 1.44 = 0,

which has solutions of  
    
R =

− 2.40 − x( ) ± 2.40 − x( )2 − 5.76
2

(a) With   ε = 9 20.  V and     P = 12.8 W ,      x = 6.61:
    
R =

+4.21 ± 4.21( )2 − 5.76
2

= 3.84 Ω    or

0.375 Ω  

(b) For   ε = 9 20.  V and     P = 21.2 W,  
      
x ≡ ε 2

P
= 3.99

    
R =

+1.59 ± 1.59( )2 − 5.76
2

= 1.59 ± −3.22
2

The equation for the load resistance yields a complex number, so   there is no resistance  that will
extract 21.2 W from this battery.  The maximum power output occurs when     R = r = 1.20 Ω , and
that maximum is:         Pmax = ε 2 4r = 17.6 W

28.53 Using Kirchhoff’s loop rule for the closed loop,     +12.0 − 2.00 I − 4.00 I = 0,       so         I = 2.00 A

    Vb − Va = +4.00 V − 2.00 A( ) 4.00 Ω( ) − 0( ) 10.0 Ω( ) = −4.00 V

Thus,    ∆Vab =  4.00 V   and point a is at the higher potential  .

28.54 The potential difference across the capacitor
    
∆V t( ) = ∆Vmax 1 −e−t RC[ ]

Using   1 Farad = 1 s Ω ,  
    
4.00 V = 10.0 V( ) 1 −e

− 3.00 s( ) R 10.0 × 10−6  s Ω( )





Therefore,     0.400 = 1.00 −e
− 3.00 × 105  Ω( ) R

   or     e
− 3.00 × 105  Ω( ) R

= 0.600

Taking the natural logarithm of both sides,
    
− 3.00 × 105  Ω

R
= ln 0.600( )

and  
    
R = − 3.00 × 105  Ω

ln 0.600( ) = + 5.87 × 105  Ω = 587 kΩ  



154 Chapter 28 Solutions

28.55 Let the two resistances be x and y.

Then, 
      
Rs = x + y = Ps

I2 = 225 W

5.00 A( )2 = 9.00 Ω  y = 9.00 Ω – x

and  
      
Rp = xy

x + y
=
Pp

I2 = 50.0 W

5.00 A( )2 = 2.00 Ω

x y

x

y

so
    

x 9.00 Ω − x( )
x + 9.00 Ω − x( ) = 2.00 Ω     x

2 − 9.00x + 18.0 = 0

 Factoring the second equation,     x − 6.00( ) x − 3.00( ) = 0

so      x = 6.00 Ω  or     x = 3.00 Ω

Then,     y = 9.00 Ω − x gives      y = 3.00 Ω      or         y = 6.00 Ω

The two resistances are found to be 6.00 Ω   and 3.00 Ω  .

28.56 Let the two resistances be x and y.

Then, 
      
Rs = x + y = Ps

I2   and 
      
Rp = xy

x + y
=
Pp

I2 .

From the first equation, 
      
y = Ps

I2 − x , and the second

becomes 

      

x Ps I2 − x( )
x + Ps I2 − x( ) =

Pp

I2   or 
      
x2 − Ps

I2




 x +

PsPp

I 4 = 0.

Using the quadratic formula,  
      
x =

Ps ± Ps
2 − 4PsPp

2I2 .

Then, 
      
y = Ps

I2 − x  gives  
      
y =

Ps > Ps
2 − 4PsPp

2I2 .

The two resistances are  
      

Ps + Ps
2 − 4PsPp

2I2    and  
      

Ps − Ps
2 − 4PsPp

2I2  
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28.57 The current in the simple loop circuit will be 
  
I = ε

R + r

(a) ∆Vter = ε – Ir =  
  

εR
R + r

and ∆Vter → ε as R → ∞  

(b) I
  
= ε

R + r
     and I →  

  

ε
r

  as R → 0  

(c)   P  = I 2R = ε 2  
R

(R + r)2  

      

dP
dR

= ε 2R(−2)(R + r)−3 + ε 2(R + r)−2

    
= −2ε 2R

(R + r)3 + ε 2

(R + r)2 = 0

Then         2R = R + r      and    R = r  

Figure for Goal
Solution

Goal Solution    
A battery has an emf ε and internal resistance r.  A variable resistor R is connected across the terminals of
the battery.  Determine the value of R such that (a) the potential difference across the terminals is a
maximum, (b) the current in the circuit is a maximum, (c) the power delivered to the resistor is a
maximum.  

G : If we consider the limiting cases, we can imagine that the potential across the battery will be a
maximum when R = ∞ (open circuit), the current will be a maximum when R = 0 (short circuit), and
the power will be a maximum when R is somewhere between these two extremes, perhaps when
R = r.

O : We can use the definition of resistance to find the voltage and current as functions of R, and the
power equation can be differentiated with respect to R.

A : (a) The battery has a voltage
    
∆Vterminal = ε − Ir = εR

R + r
or as   R → ∞ ,     ∆Vterminal → ε

(b) The circuit's current is
  
I = ε

R + r
or as     R → 0,

  
I → ε

r

(c) The power delivered is
      
P = I2R = ε 2R

(R + r)2

To maximize the power   P  as a function of   R , we differentiate with respect to   R , and require that
    dP/dR= 0

      

dP
dR

= ε 2R(−2)(R + r)−3 + ε 2(R + r)−2

    
= −2ε 2R

(R + r)3 + ε 2

(R + r)2 = 0

Then     2R = R + r  and   R = r

L : The results agree with our predictions.  Making load resistance equal to the source resistance to
maximize power transfer is called impedance matching.
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28.58 (a)     ε − I(ΣR) − (ε1 + ε2 ) = 0

    40.0 V − (4.00 A) (2.00 + 0.300 + 0.300 + R)Ω[ ] − (6.00 + 6.00) V = 0; so R = 4.40 Ω  

(b) Inside the supply,       P = I2R = 4.00 A( )2 2.00 Ω( ) =   32.0 W  

Inside both batteries together,       P = I2R = 4.00 A( )2 0.600 Ω( ) =  9.60 W  

For the limiting resistor,     P = 4.00 A( )2 4.40 Ω( ) =   70.4 W  

(c)       P = I(ε1 + ε2 ) = (4.00 A) (6.00 + 6.00)V[ ] =  48.0 W  

28.59 Let Rm = measured value, R = actual value,

IR = current through the resistor R

I = current measured by the ammeter.

(a) When using circuit (a), IRR = ∆V = 20 000(I – IR)        or R = 20 000
    

I
IR

− 1










But since I =  
∆V
Rm

   and  IR =  
∆V
R   , we have  

I
IR   =  

R
Rm

  

(a)

(b)

Figure for Goal
solution

and R = 20 000 
(R – Rm)

Rm
 (1)

When R > Rm, we require  
(R – Rm)

R    ≤ 0.0500

Therefore, Rm ≥ R (1 – 0.0500) and from (1) we find R ≤ 1050 Ω  

(b) When using circuit (b), IRR = ∆V – IR (0.5 Ω).  

But since  IR =  
∆V
Rm

 , Rm = (0.500 + R) (2)

When Rm > R,  we require  
(Rm – R)

R   ≤ 0.0500

From (2) we find R ≥ 10.0 Ω  
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Goal Solution    
The value of a resistor   R  is to be determined using the ammeter-voltmeter setup shown in Figure P28.59.
The ammeter has a resistance of   0.500 Ω, and the voltmeter has a resistance of   20000 Ω .  Within what
range of actual values of   R  will the measured values be correct to within   5.00% if the measurement is
made using (a) the circuit shown in Figure   P28.59a (b) the circuit shown in Figure   P28.59b?

G : An ideal ammeter has zero resistance, and an ideal voltmeter has infinite resistance, so that adding
the meter does not alter the current or voltage of the existing circuit.  For the non-ideal meters in this
problem, a low values of   R will give a large voltage measurement error in circuit (b), while a large
value of   R  will give significant current measurement error in circuit (a). We could hope that these
meters yield accurate measurements in either circuit for typical resistance values of   1 Ω to   1 MΩ .  

O : The definition of resistance can be applied to each circuit to find the minimum and maximum current
and voltage allowed within the 5.00% tolerance range.

A : (a)  In Figure P28.59a, at least a little current goes through the voltmeter, so less current flows through
the resistor than the ammeter reports, and the resistance computed by dividing the voltage by the
inflated ammeter reading will be too small.   Thus, we require that      ∆V/ I = 0.950R   where   I  is the
current through the ammeter.  Call   IR  the current through the resistor; then   I − IR  is the current i n
the voltmeter. Since the resistor and the voltmeter are in parallel, the voltage across the meter equals
the voltage across the resistor.  Applying the definition of resistance:

    ∆V = IRR = I − IR( ) 20000 Ω( ) so
    
I = IR(R + 20000 Ω)

20000 Ω

Our requirement is  

    

IRR
IR(R + 20000 Ω)

20000 Ω






≥ 0.95R

Solving,     20000 Ω ≥ 0.95(R + 20000 Ω) = 0.95R + 19000 Ω

and
    
R ≤ 1000 Ω

0.95
 or     R ≤ 1.05 kΩ

(b)  If   R  is too small, the resistance of an ammeter in series will significantly reduce the current that
would otherwise flow through   R .  In Figure 28.59b, the voltmeter reading is      I 0.500 Ω( ) + IR , at least a
little larger than the voltage across the resistor.  So the resistance computed by dividing the inflated
voltmeter reading by the ammeter reading will be too large.  

We require
    

V
I

≤ 1.05R so that 
    

I (0.500 Ω) + IR
I

≤ 1.05R

Thus,     0.500 Ω ≤ 0.0500R and     R ≥ 10.0 Ω

L : The range of   R  values seems correct since the ammeter’s resistance should be less than 5% of the
smallest   R  value (    0.500 Ω ≤ 0.05R   means that   R  should be greater than 10 Ω), and   R  should be less
than 5% of the voltmeter’s internal resistance (    R ≤ 0.05 × 20 kΩ = 1 kΩ ). Only for the restricted range
between 10 ohms and 1000 ohms can we indifferently use either of the connections (a) and (b) for a
reasonably accurate resistance measurement.  For low values of the resistance   R , circuit (a) must be
used.  Only circuit (b) can accurately measure a large value of   R .
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28.60 The battery supplies energy at a changing rate
      

dE
dt

= P = E I = E E

R
e−1/RC





Then the total energy put out by the battery is
    

dE∫ = ε 2

Rt=0

∞
∫ exp − t

RC




 dt

    
dE∫ = ε 2

R
(−RC)

0

∞
∫ exp − t

RC




 − dt

RC




  

    
= −ε 2C exp − t

RC






0

∞
= −ε 2C[0 − 1] = ε 2C

The heating power of the resistor is
      

dE
dt

= P = ∆VRI = I2R = R
ε 2

R2 exp − 2t
RC







So the total heat is
    

dE∫ = ε 2

R0

∞
∫ exp − 2t

RC




 dt

    
dE∫ = ε 2

R
− RC

2




 exp

0

∞
∫ − 2t

RC




 − 2dt

RC






    
= −ε 2C

2
exp − 2t

RC






0

∞
= −ε 2C

2
[0 − 1] = ε 2C

2

The energy finally stored in the capacitor is U = 
1
2  C (∆V)2 = 

1
2  C ε 2.  Thus, energy is conserved:

ε 2C =  
1
2  ε 2C + 

1
2  ε 2C    and resistor and capacitor share equally in the energy from the battery.

28.61 (a)
    
q = C ∆V( ) 1 − e−t RC[ ]

    
q = 1.00 × 10−6  F( ) 10.0 V( )  =  9.93 µC  

(b)
  
I = dq

dt
= ∆V

R




 e−t RC

    
I = 10.0 V

2.00 × 106  Ω




 e−5.00 = 3.37 × 10−8  A = 33.7 nA  

(c)
    

dU
dt

= d
dt

1
2

q2

C







= q

C
dq
dt

= q
C





 I

    

dU
dt

= 9.93 × 10−6  C
1.00 × 10−6  C V







3.37 × 10−8  A( )  = 3.34 × 10−7  W = 334 nW

 

(d)
      
Pbattery = IE = 3.37 × 10−8  A( ) 10.0 V( ) = 3.37 × 10−7  W = 337 nW  
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28.62 Start at the point when the voltage has just reached

    
2
3

V  and the switch has just closed.  The voltage is  
    
2
3

V

and is decaying towards 0 V with a time constant RBC.

    
VC(t) = 2

3
V




e−t/RBC

We want to know when VC(t) will reach  
    
1
3

V .  

Therefore,     
    

1
3





 V = 2

3
V




e−t/RBC    or   

    
e−t/RBC = 1

2

or t1 = RBC ln 2

After the switch opens, the voltage is 
    
1
3

V , increasing toward V with time constant   RA + RB( )C :

V C (t) = V – 
    

2
3

V




e−t/(RA +RB )C

When VC (t) =  
    
2
3

V ,
    

2
3

V = V − 2
3

Ve−t/(RA +RB )C or
    
e−t/(RA +RB )C = 1

2

so t2 = (RA + RB)C ln 2 and T = t1 + t2 = (RA + 2RB)C ln 2  

28.63 (a) First determine the resistance of each light bulb:           P = (∆V)2 R

      
R = (∆V)2

P
= (120 V)2

60.0 W
= 240 Ω

We obtain the equivalent resistance Req of the network of light bulbs
by applying Equations 28.6 and 28.7:

    
Req = R1 + 1

1/ R2( ) + 1/ R3( ) = 240 Ω + 120 Ω = 360 Ω

The total power dissipated in the 360 Ω is
      
P = (∆V)2

Req
= (120 V)2

360 Ω
=  40.0 W  

(b) The current through the network is given by       P = I2Req :
      
I = P

Req
= 40.0 W

360 Ω
= 1

3
A

The potential difference across R1 is
    
∆V1 = IR1 = 1

3
A



 (240 Ω) =  80.0 V  

The potential difference ∆V23 across the parallel combination of R2 and R3 is

    
∆V23 = IR23 = 1

3
A





1
1/ 240 Ω( ) + 1/ 240 Ω( )







= 40.0 V  
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28.64 ∆V = IR

(a) 20.0 V = (1.00 × 10-3 A)(R1 + 60.0 Ω)

R1 = 1.994 × 104 Ω = 19.94 kΩ  

(b) 50.0 V = (1.00 × 10-3 A)(R2 + R1 + 60.0 Ω) R2 = 30.0 kΩ  

(c) 100 V = (1.00 × 10-3 A)(R3 + R1 + 60.0 Ω) R3 = 50.0 kΩ  

28.65 Consider the circuit diagram shown, realizing that

    Ig = 1.00 mA.  For the 25.0 mA scale:

    24.0 mA( ) R1 + R2 + R3( ) = 1.00 mA( ) 25.0 Ω( )

or
    
R1 + R2 + R3 = 25.0

24.0




  Ω (1)

For the 50.0 mA scale:      49.0 mA( ) R1 + R2( ) = 1.00 mA( ) 25.0 Ω + R3( )

or     49.0 R1 + R2( ) = 25.0 Ω + R3 (2)

For the 100 mA scale:      99.0 mA( )R1 = 1.00 mA( ) 25.0 Ω + R2 + R3( )

or     99.0R1 = 25.0 Ω + R2 + R3 (3)

Solving (1), (2), and (3) simultaneously yields

    R1 = 0.260 Ω,     R2 = 0.261 Ω,     R3 = 0.521 Ω  

28.66     Ammeter:   
    
Igr = 0.500 A − Ig( ) 0.220 Ω( )

or     Ig r + 0.220 Ω( ) = 0.110 V (1)

    Voltmeter:       2.00 V = Ig r + 2500 Ω( ) (2)

Solve (1) and (2) simultaneously to find:  

Ig = 0.756 mA    and  r = 145 Ω  
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28.67 (a) After steady-state conditions have been reached, there is no DC current through the capacitor.  

Thus, for R3:     IR3
= 0   (steady-state)  

For the other two resistors, the steady-state current is simply determined by the 9.00-V emf
across the 12-k Ω and 15-k Ω resistors in series:

For R1 and R2: 
    
I(R1 +R2 ) = ε

R1 + R2
= 9.00 V

(12.0 kΩ + 15.0 kΩ)
= 333 µA (steady-state)  

(b) After the transient currents have ceased, the potential difference across C is the same as the
potential difference across R2(= IR2) because there is no voltage drop across R3.  Therefore, the
charge Q on C is

Q = C (∆V)R2 = C (IR2) = (10.0 µF)(333 µA)(15.0 k Ω) = 50.0 µC  

(c) When the switch is opened, the branch containing R1 is no longer part of the circuit.  The
capacitor discharges through (R2 + R3) with a time constant of (R2 + R3)C = (15.0 k Ω + 3.00
k Ω)(10.0 µF) = 0.180 s.  The initial current Ii in this discharge circuit is determined by the initial
potential difference across the capacitor applied to (R2 + R3) in series:

    
Ii = (∆V)C

(R2 + R3 )
= IR2

(R2 + R3 )
= (333 µA)(15.0 kΩ)

(15.0 kΩ + 3.00 kΩ)
=  278 µA

Thus, when the switch is opened, the current through R2
changes instantaneously from 333 µA (downward) to
278 µA (downward) as shown in the graph.  Thereafter, it
decays according to

    IR2
= Iie

−t/(R2 +R3 )C  =     (278 µA)e−t/(0.180 s)     (for t >  0)  

(d) The charge q on the capacitor decays from Q i to Q i/5
according to

q =     Qie
−t/(R2 +R3 )C

    

Qi

5
 =     Qie

(−t/0.180 s)

5 =     e
t/0.180 s

ln 5 = 
t

180 ms 

t = (0.180 s)(ln 5) = 290 ms  

     (a)



162 Chapter 28 Solutions

28.68   ∆V = ε e−t RC   so   
    
ln

ε
∆V





 = 1

RC




 t

A plot of 
    
ln

ε
∆V





  versus   t  should be a straight line with slope = 

    

1
RC

.   

Using the given data values:     t   s( )     ∆V   (V)     ln ε ∆V( )
0 6.19 0
4.87 5.55 0.109
11.1 4.93 0.228
19.4 4.34 0.355
30.8 3.72 0.509
46.6 3.09 0.695
67.3 2.47 0.919
102.2 1.83 1.219

(a) A least-square fit to this data
yields the graph to the right.

    Σxi = 282 ,        Σxi
2 = 1.86 × 104 ,        Σxiyi = 244,        Σyi = 4.03 ,        N = 8

    

Slope =
N Σxiyi( ) − Σxi( ) Σyi( )

N Σxi
2( ) − Σxi( )2 = 0.0118

    

Intercept =
Σxi

2( ) Σyi( ) − Σxi( ) Σxiyi( )
N Σxi

2( ) − Σxi( )2 = 0.0882

The equation of the best fit line is:   
    
ln

ε
∆V





 = 0.0118( )t + 0.0882  

(b) Thus, the time constant is 
    
τ = = = =RC

1 1
0 0118slope .

 84.7 s  

and the capacitance is  
    
C = τ

R
= 84.7 s

10.0 × 106  Ω
=  8.47 µF  
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28.69
r

r

r

a
r

r

r

b

r

r

r

r

r

r

3 junctions  at
the same potential

another set of
3 junctions at 
the same potential

a b

i/3

i/3

i/3 i/3

i/3

i/3

i/6

i/6

i/6

i/6

i/6

i/6

28.70 (a) For the first measurement, the equivalent circuit is as shown
in Figure 1.

    Rab = R1 = Ry + Ry = 2Ry

so
    
Ry = 1

2
R1 (1)

For the second measurement, the equivalent circuit is shown
in Figure 2.  

Thus, 
    
Rac = R2 = 1

2
Ry + Rx (2)

a b
c

RyRy
Rx

R1

Figure 1

a c

RxRyRy

R2

Figure 2

Substitute (1) into (2) to obtain:
    
R2 = 1

2
1
2

R1




 + Rx ,   or          

    
Rx = R2 − 1

4
R1  

(b) If     R1 = 13.0 Ω  and     R2 = 6.00 Ω , then      Rx = 2.75 Ω  

The antenna is inadequately grounded   since this exceeds the limit of   2.00 Ω.

28.71 Since the total current passes through     R3, that resistor will dissipate
the most power.  When that resistor is operating at its power limit of
32.0 W, the current through it is

      
Itotal

2 = P

R
= 32.0 W

2.00 Ω
= 16.0 A2 , or     Itotal = 4.00 A

Half of this total current (2.00 A) flows through each of the other two
resistors, so the power dissipated in each of them is:

R1

R2

R3

R1 = R2 = R3 = 2.00 Ω

      
P = 1

2
Itotal( )2

R = (2.00 A)2(2.00 Ω) = 8.00 W

Thus, the total power dissipated in the entire circuit is:
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    Ptotal = 32.0 W + 8.00 W + 8.00 W =  48.0 W  
28.72 The  total resistance between points b and c is:

    
R = ( )( )

+
=

2 00 3 00
2 00 3 00

1 20
. .
. .

.
 k  k
 k  k

 k
Ω Ω
Ω Ω

Ω  

The total capacitance between points d and e is:

    C = 2.00 µF + 3.00 µF = 5.00 µF

The potential difference between point d and e in this series RC
circuit at any time is:

    
∆V = ε 1 − e−t RC[ ] = 120.0 V( ) 1 − e−1000t 6[ ]

20 V

.00 kΩ

.00 kΩ

1 = 2.00 µF

2 = 3.00 µF

Therefore, the charge on each capacitor between points d and e is:

    
q1 = C1 ∆V( ) = 2.00 µF( ) 120.0 V( ) 1 − e−1000t 6[ ] = 

    
240 µC( ) 1 − e−1000t 6[ ]  

and 
    
q2 = C2 ∆V( ) = 3.00 µF( ) 120.0 V( ) 1 − e−1000t 6[ ] = 

    
360 µC( ) 1 − e−1000t 6[ ]  

*28.73 (a)     Req = 3R
    
I = ε

3R       Pseries = ε I =      ε 2 3R  

(b)
    
Req = 1

1/ R( ) + 1/ R( ) + 1/ R( ) = R
3     

I = 3ε
R       Pparallel = ε I =

    

3ε 2

R

(c) Nine times more power is converted in the parallel   connection.


