Chapter 31 Even Answers

2. 0.800 mA

4. (b) 3.79 mV

(c) 28.0 mV

6. $7.85 \times 10^{-5} \text{ s}$

8. (a) $\frac{\mu_0 n \pi r_2^2}{2R} \left(\frac{\Delta I}{\Delta t}\right)$

(b) $\frac{{\mu_0}^2 n \pi r_2^2}{4r_1 R} \left(\frac{\Delta I}{\Delta t}\right)$

(c) upward

10. $-14.2\cos(120t)$ mV

12. 61.8 mV

14. $N\mu_0 nI_{\text{max}} \pi R^2 \alpha e^{-\alpha t}$ counter - clockwise

16. 0.672 V

 $-\frac{\mu_0 N\pi r^2}{1} \left(\frac{I_2 - I_1}{\Delta t}\right)$

20. 1.00 m/s

22. (a) 0.500 A

(b) 2.00 W

(c) 2.00 W

24. 0.121 A clockwise

26. (a) To the right

(b) To the right

(c) To the right

(d) Into the paper.

28. (b) 0.750 mA

30. 0.259 mV

32. (a) 8.00×10^{-21} N, clockwise. (b) 1.33 s

34. $2.23 \times 10^{-5} \text{ N/C}$

36. (a) $(19.6 \text{ V})\sin(314t)$ (b) 19.6 V

38. 12.6 mV

40. $I = I_{\text{max}} \cos \omega t$. See solution.

42. (a) 1.60 V

- (b) zero
- (c) They would be unchanged
- (d) See solution
- (e) See solution

- **44.** 0.742 T
- **46.** Both are correct. Note that one occurs as the brake approaches and the other occurs as the brake departs that point on the rail.
- **48.** $\left(-4.39 \times 10^{11} \ \mathbf{i} 1.76 \times 10^{11} \ \mathbf{j}\right) \ \text{m} \ / \ \text{s}^2$
- **50.** See solution.
 - (a) Doubling N doubles amplitude (b) D
- (b) Doubling ω doubles amplitude, halves period.
 - (c) Doubling ω and halving N leaves the amplitude the same and cuts the period in half.
- **52.** 0.0623 A down through 6.00 Ω , 0.860 A down through 5.00 Ω , 0.923 A up through 3.00 Ω
- **54.** $\sim 10^{-4} \text{ V}$
- **56.** $458 \mu V$
- **58.** (b) 0.250 T
- **62.** (a) $C\pi a^2 K$

- (b) upper plate
- (c) A changing magnetic field induces an electric field in the wire.
- **64.** (a) 97.4 nV

(b) Clockwise.

$$68. \frac{mgR}{B^21^2}$$

70.
$$v = \frac{MgR}{B^2 1^2} \left[1 - e^{-B^2 1^2 t / R(M+m)} \right]$$

72.
$$E = \frac{\left(1.18 \times 10^{-4}\right)t}{0.800 - 4.90t^2} \text{ V}; \qquad 98.3 \ \mu\text{V}$$

74. $\tau \propto -\sin^2 \theta$; See solution.