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Chapter 32 Solutions

*32.1 ε   =  L 
∆I

∆t
   = (3.00 × 10– 3 H) 

  

1.50 A − 0.200 A
0.200 s





  = 1.95 × 10–2 V = 19.5 mV   

32.2 Treating the telephone cord as a solenoid, we have:

L = 
      

µ0N2A
l 

  =  
  

(4π× 10−7  T ⋅  m / A)(70.0)2(π)(6.50 × 10−3  m)2

0.600 m
 =    1.36 Hµ  

32.3
    
ε = + L

∆I
∆t





 = (2.00 H)

0.500 A
0.0100 s







= 100 V  

32.4
      
L = µ0n2Al    so   n =

L
µ0Al

= 7.80 × 103 turns/m  

32.5
    
L =

N ΦB

I
→ ΦB =

L I
N

= 240 nT · m2   (through each turn) 

32.6
  
ε = L

dI
dt

   where   
      
L = µ0N2A

l

Thus,
      
ε = µ0N2A

l







dI
dt

=
4π× 10−7  T ⋅ m A( ) 300( )2 π× 10−4  m2( )

0.150 m
10.0 A s( ) =  2.37 mV  

32.7 ε back = –ε = L 
dI
dt   = L 

d
dt (Imax sin ω t)   = Lω Imax cos ω t = (10.0 × 10-3)(120π )(5.00) cos ω t

ε back = (6.00π ) cos (120π t) = (18.8 V) cos (377t)   
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*32.8 From ε   = 
  
L

∆I
∆t





 , we have L = 

  

ε
∆Ι
∆t







  = 
24.0 × 10– 3 V

10.0 A/s    = 2.40 × 10– 3 H

From L =  
NΦB

I  ,   we have ΦB =  
LI
N    =  

(2.40 × 10– 3 H)(4.00 A)
500     = 19.2 µT · m2   

32.9 L =  
µ0N 2A

  l    =  
µ0(420)2(3.00 × 10– 4)

0.160    = 4.16 × 10– 4 H

ε = –L 
dI
dt   → 

dI
dt   = 

  
−ε
L

 = 
–175 × 10– 6 V
4.16 × 10– 4 H

   = – 0.421 A/s   

32.10 The induced emf is 
  
ε = −L

dI
dt

,  where the self-inductance of a solenoid is given by  
      
L = µ0N2A

l
.    

Thus,   
  

dI
dt

= − ε
L

= 
      
− εl

µ0N2A
 

32.11 ε   = L 
dI
dt   = (90.0 × 10-3) 

d
dt (t 

2 – 6t)  V

(a) At t = 1.00 s,   ε = 360 mV   

(b) At t = 4.00 s,   ε = 180 mV   

(c) ε = (90.0 × 10-3)(2t – 6) = 0 when t = 3.00 s   

32.12 (a) B = µ0nI = µ0 



450

0.120  (0.0400 mA)  = 188 µT  

(b) ΦB = BA = 3.33 × 10-8 T · m2  

(c) L =  
NΦB

I    = 0.375 mH  
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(d) B and ΦB are proportional to current; L is independent of current  
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32.13 (a) L =  
µ0N 2A

  l    =  
µ0(120)2π ( 5.00 × 10–3)2

0.0900    = 15.8 µH  

(b)   ′ΦB  =  
µm
µ0

  ΦB → L =  
µmN 2A

  l    = 800(1.58 × 10– 5 H) = 12.6 mH  

32.14 L = 
NΦB

I    =  
NBA

I    ≈  
N A

I    ·  
µ0NI

2π R
   =  

µ0N 2A
2π R  

32.15
    
ε = ε0e−k t = − L

dI
dt

    
dI = − ε0

L
e−k t dt

If we require I → 0 as t → ∞, the solution is  
    
I =

ε0

kL
e−k t =

dq
dt

    
Q = I dt∫ =

ε0

kL
e−k t

0

∞
∫ dt = − ε0

k2L     
Q =

ε0

k2L
 

32.16
    
I = ε

R
(1 − e−Rt/L )

    
0.900 ε

R
= ε

R
1 − e−R(3.00 s)/2.50 H[ ]

    
exp − R(3.00 s)

2.50 H




 = 0.100

    
R = 2.50 H

3.00 s
ln 10.0 =  1.92 Ω  
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32.17 τ =  
L
R    = 0.200 s:    

I
Imax

   = 1 – e–t/τ

(a) 0.500 = 1 – e–t/0.200 → t = τ ln 2.00 = 0.139 s   

(b) 0.900 = 1 – e–t/0.200 → t = τ ln 10.0 = 0.461 s   

Figure for Goal
Solution

Goal Solution    
A 12.0-V battery is about to be connected to a series circuit containing a 10.0-Ω resistor and a 2.00-H
inductor.    How long will it take the current to reach (a) 50.0% and (b) 90.0% of its final value?  

G : The time constant for this circuit is      τ = L R = 0.2 s, which means that in 0.2 s, the current will reach
1/e = 63% of its final value, as shown in the graph to the right.  We can see from this graph that the
time to reach 50% of     Imax  should be slightly less than the time constant, perhaps about 0.15 s, and the
time to reach     0.9Imax  should be about 2.5τ = 0.5 s.  

O : The exact times can be found from the equation that describes the rising current in the above graph
and gives the current as a function of time for a known emf, resistance, and time constant.   We set
time     t = 0 to be the moment the circuit is first connected.

A : At time   t , 
    
I t( ) = ε(1 − e−t/τ )

R

where, after a long time, 
    
Imax = ε(1 − e−∞)

R
= ε

R

At      I t( ) = 0.500Imax ,
    
0.500( ) ε

R
= ε(1 − e−t/0.200 s )

R
so     0.500 = 1 − e−t/0.200 s

Isolating the constants on the right,
    
ln e−t/2.00 s( ) = ln 0.500( )

and solving for   t ,
    
− t

0.200 s
= −0.693 or     t = 0.139 s

(b) Similarly, to reach 90% of     Imax ,     0.900 = 1 − e−t/τ and    t = −τ ln 1 − 0.900( )

Thus,        t = − 0.200 s( ) ln 0.100( ) = 0.461 s

L : The calculated times agree reasonably well with our predictions.  We must be careful to avoid
confusing the equation for the rising current with the similar equation for the falling current.
Checking our answers against predictions is a safe way to prevent such mistakes.
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32.18 Taking   τ = L R,     I = I0e−t/τ :
    

dI
dt

= I0e−t/τ − 1
τ







    
IR + L

dI
dt

= 0   will be true if   
    
I0Re−t/τ + L I0 e−t/τ( ) − 1

τ




 = 0

Because   τ = L R ,  we have agreement with 0 = 0

*32.19 (a)   τ = L R  = 2.00 × 10– 3 s = 2.00 ms   

(b)
    
I = Imax 1 − e−t/τ( ) = 6.00 V

4.00 Ω




 1 − e−0.250/2.00( ) = 0.176 A   

(c) Imax = 
  
ε
R

  =  
6.00 V
4.00 Ω

   = 1.50 A   

(d) 0.800 = 1 – e–t/2.00 ms → t = – (2.00 ms) ln(0.200) = 3.22 ms   

*32.20 I = 
  
ε
R

 (1 – e–t/τ )  =  
120
9.00 (1 – e–1.80/7.00)   = 3.02 A

∆VR = IR = (3.02)(9.00) = 27.2 V

∆VL = ε – ∆VR = 120 – 27.2 = 92.8 V   

32.21 (a)     ∆VR = IR = (8.00 Ω)(2.00 A) = 16.0 V and

    ∆VL = ε − ∆VR = 36.0 V − 16.0 V = 20.0 V

Therefore,
    

∆VR

∆VL
= 16.0 V

20.0 V
= 0.800  

(b)     ∆VR = IR = (4.50 A)(8.00 Ω) = 36.0 V

  ∆VL = ε − ∆VR =  0  

Figure for Goal
Solution
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Goal Solution    
For the RL circuit shown in Figure P32.19, let L = 3.00 H, R = 8.00 Ω, and ε = 36.0 V.  (a) Calculate the ratio
of  the potential difference across the resistor to that across the inductor when I = 2.00 A.  (b) Calculate the
voltage across the inductor when I = 4.50 A.

G : The voltage across the resistor is proportional to the current, ∆ IRVR = , while the voltage across the
inductor is proportional to the rate of change in the current,   εL = −LdI dt .  When the switch is first
closed, the voltage across the inductor will be large as it opposes the sudden change in current.  As the
current approaches its steady state value,  the voltage across the resistor increases and the inductor’s
emf decreases. The maximum current will be ε /R = 4.50 A, so when I = 2.00 A, the resistor and
inductor will share similar voltages at this mid-range current, but when I = 4.50 A, the entire circuit
voltage will be across the resistor, and the voltage across the inductor will be zero.  

O : We can use the definition of resistance to calculate the voltage across the resistor for each current.
We will find the voltage across the inductor by using Kirchhoff's loop rule.

A : (a) When     I = 2.00 A, the voltage across the resistor is     ∆VR = IR = 2.00 A( ) 8.00 Ω( ) = 16.0 V

Kirchhoff's loop rule tells us that the sum of the changes in potential around the loop must be zero:

    ε − ∆VR − εL = 36.0 V − 16.0 V − εL = 0 so     εL = 20.0 V   and  
    

∆VR

εL
= 16.0 V

20.0 V
= 0.800

(b) Similarly, for     I = 4.50 A,     ∆VR = IR = 4.50 A( ) 8.00 Ω( ) = 36.0 V

    ε − ∆VR − εL = 36.0 V − 36.0 V − εL = 0 so     εL = 0

L : We see that when     I = 2.00 A,   ∆VR < εL , but they are similar in magnitude as expected.  Also as
predicted, the voltage across the inductor goes to zero when the current reaches its maximum value.
A worthwhile exercise would be to consider the ratio of these voltages for several different times after
the switch is reopened.

*32.22 After a long time, 12.0 V = (0.200 A)R    Thus, R = 60.0 Ω.   Now, τ =  
L
R    gives

L = τ R = (5.00 × 10– 4 s)(60.0 V/A) = 30.0 mH   

32.23
    
I = Imax 1 − e−t/τ( ) :   

    

dI
dt

= −Imax e−t/τ( ) − 1
τ







τ =  
L
R    =  

15.0 H
30.0 Ω

   = 0.500 s :
dI
dt   =  

R
L   Imax e–t/τ and Imax =  

  
ε
R

(a) t = 0:    
dI
dt   =  

R
L   Imax e0  =  

  
ε
L

  =  
100 V
15.0 H   = 6.67 A/s   

(b) t = 1.50 s:   
dI
dt   = 

  
ε
L

 e–t/τ  = (6.67 A/s)e– 1.50/(0.500) = (6.67 A/s)e–3.00 = 0.332 A/s   
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32.24
    
I = Imax 1 − e−t/τ( )

    0.980 = 1 − e−3.00×10− 3 /τ

    0.0200 = e−3.00×10− 3 /τ

  
τ = − 3.00 × 10−3

ln(0.0200)
= 7.67 × 10−4 s

  τ = L R, so     L = τ R = (7.67 × 10−4 )(10.0) = 7.67 mH  

32.25 Name the currents as shown.    By Kirchhoff’s laws:

    I1 = I2 + I3 (1)

    +10.0 V − 4.00 I1 − 4.00 I2 = 0 (2)

    
+10.0 V − 4.00 I1 − 8.00 I3 − 1.00( ) dI3

dt
= 0 (3)

From (1) and (2),        +10.0 − 4.00 I1 − 4.00 I1 + 4.00 I3 = 0 and     I1 = 0.500 I3 + 1.25 A

Then (3) becomes   
    
10.0 V − 4.00 0.500 I3 + 1.25 A( ) − 8.00 I3 − 1.00( ) dI3

dt
= 0

    1.00 H( ) dI3 dt( ) + 10.0 Ω( ) I3 = 5.00 V

We solve the differential equation using Equations 32.6 and 32.7:  

    
I3 t( ) = 5.00 V

10.0 Ω
1 − e− 10.0 Ω( )t 1.00 H[ ]  = 

    
0.500 A( ) 1 − e−10t/s[ ]  

    I1 = 1.25 + 0.500 I3 =     1.50 A − 0.250 A( )e−10t/s  

32.26 (a) Using 
  
τ = RC = L

R
,  we get

    
R = L

C
= 3.00 H

3.00 × 10−6  F
= 1.00 × 103  Ω =  1.00 kΩ  

(b)
    
τ = RC = 1.00 × 103  Ω( ) 3.00 × 10−6  F( ) = 3.00 × 10−3  s =  3.00 ms  
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32.27 For     t ≤ 0, the current in the inductor is zero.  At     t = 0, it starts to
grow from zero toward 10.0 A with time constant

    τ = L R = 10.0 mH( ) 100 Ω( ) = 1.00 × 10−4  s .

For     0 ≤ t ≤ 200 µs,
    
I = Imax 1 − e

−t/τ



 = 

    
10.00 A( ) 1 − e−10000t/s( )  

At     t = 200 µs, 
    
I = 10.00 A( ) 1 − e−2.00( ) = 8.65 A

Thereafter, it decays exponentially as     I = I0e− ′t τ ,    so for        t ≥ 200 µs,

    
I = 8.65 A( )e−10000 t−200 µs( ) s = 8.65 A( )e−10000t s +2.00 = 8.65e2.00 A( )e−10000t s =     63.9 A( )e−10000t s  

32.28 (a) I = 
  
ε
R

  =  
12.0 V
12.0 Ω

  = 1.00 A   

(b) Initial current is 1.00 A, : ∆V12 = (1.00 A)(12.00 Ω) = 12.0 V   

∆V1200 = (1.00 A)(1200 Ω) = 1.20 kV   

∆VL = 1.21 kV   

(c) I = Imax e–Rt/L:
dI
dt  

 = – Imax 
R
L   e–Rt/L and –L 

dI
dt   = ∆VL = Imax Re–Rt/L

Solving 12.0 V = (1212 V)e–1212t/2.00 so 9.90 × 10– 3 = e– 606t

Thus, t = 7.62 ms   

32.29
    
τ = L

R
= 0.140

4.90
= 28.6 ms;

    
Imax = ε

R
= 6.00 V

4.90 Ω
= 1.22 A

(a)
    
I = Imax 1 − e−t/τ( ) so

    
0.220 = 1.22 1 − e−t/τ( )

    e
−t/τ = 0.820     t = −τ ln(0.820) =  5.66 ms  

(b)
    
I = Imax 1 − e

− 10.0
0.0286









 = (1.22 A) 1 − e−350( ) = 1.22 A  

(c)     I = Imaxe−t/τ and     0.160 = 1.22e−t/τ so t = –τ ln(0.131) = 58.1 ms  
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32.30 (a) For a series connection, both inductors carry equal currents at every instant, so dI/dt is the
same for both.  The voltage across the pair is

    
L eq

dI
dt

= L1
dI
dt

+ L 2
dI
dt

so       L eq = L1 + L 2  

(b)
    
L eq

dI
dt

= L1
dI1

dt
= L 2

dI2

dt
= ∆VL where    I = I1 + I2    and   

    

dI
dt

=
dI1

dt
+

dI2

dt

Thus,   
    

∆VL

L eq
=

∆VL

L1
+

∆VL

L 2
    and   

    

1
L eq

=
1

L1
+

1
L 2

 

(c)
    
L eq

dI
dt

+ R eq I = L1
dI
dt

+ IR1 + L 2
dI
dt

+ IR 2

Now I and dI/dt are separate quantities under our control, so functional equality requires both  

    L eq = L1 + L 2      and         R eq = R 1 + R 2  

(d)
    
∆V = L eq

dI
dt

+ R eqI = L1
dI1

dt
+ R1I1 = L 2

dI2

dt
+ R 2I2      where     I = I1 + I2    and

    

dI
dt

=
dI1

dt
+

dI2

dt

We may choose to keep the currents constant in time.  Then,  
    

1
R eq

=
1

R 1
+

1
R 2

We may choose to make the current swing through 0.   Then,
    

1
L eq

=
1

L1
+

1
L 2

  

This equivalent coil with resistance will be equivalent
to the pair of real inductors for all other currents as well.

 

32.31 L =  
N ΦB

I    =  
200(3.70 × 10– 4)

1.75     =  42.3 mH so U =  
1
2  LI 2   =  

1
2 (0.423 H)(1.75 A) 2 = 0.0648 J   

32.32 (a) The magnetic energy density is given by

u =  
B 2

2µ0
   =  

(4.50 T)2

2(1.26 × 10– 6  T · m/A)
    = 8.06 × 106  J/m3   

(b) The magnetic energy stored in the field equals u  times the volume of the solenoid (the
volume in which B is non-zero).

U = uV = (8.06 × 106  J/m3) 
  
(0.260 m)π(0.0310 m)2[ ] =   6.32 kJ   
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32.33
      
L = µ0

N 2A
l

= µ0
(68.0)2 π(0.600 × 10−2 )2

0.0800
= 8.21 µH

    U = 1
2 LI 2 = 1

2 (8.21× 10−6 H)(0.770 A)2 = 2.44 µJ  

32.34 (a) U =  
1
2  LI 2 =  

1
2  

    
L ε

2R






2

= Lε 2

8R2 =  
(0.800)(500)2

8(30.0)2    = 27.8 J   

(b) I = 
    
ε
R





 1 − e−(R/L)t[ ] so

    
ε
2R

= ε
R





 1 − e−(R/L)t[ ] → e−(R/L)t = 1

2

    

R
L

t = ln 2 so
    
t = L

R
ln 2 = 0.800

30.0
ln 2 =  18.5 ms   

32.35 u = ε 0 
E 2

2    = 44.2 nJ/m3   u = 
B 2

2µ0
   = 995 µ J/m3   

*32.36 (a) U = 
1
2  LI 2 =  

1
2 (4.00 H)(0.500 A) 2 = 0.500 J   

(b)
d U
dt    = LI = (4.00 H)(1.00 A) = 4.00 J/s = 4.00 W   

(c)   P  = (∆V)I = (22.0 V)(0.500 A) = 11.0 W   

32.37 From Equation 32.7,     
    
I = ε

R
1 − e− Rt L( )

(a) The maximum current, after a long time t , is 
    
I = ε

R
= 2.00 A.

At that time, the inductor is fully energized and       P = I(∆V) = (2.00 A)(10.0 V) = 20.0 W  

(b)       Plost = I 2R = (2.00 A)2(5.00 Ω) = 20.0 W  

(c)       Pinductor = I(∆Vdrop) =  0  

(d)
    
U = LI 2

2
= (10.0 H)(2.00 A)2

2
=  20.0 J  
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32.38 We have
      
u = e0

E2

2
and

    
u = B2

2µ0

Therefore
      
e0

E2

2
= B2

2µ0
so       B

2 = e0µ0E2

      
B = E e0µ0 = 6.80 × 105  V / m

3.00 × 108  m / s
= 2.27 × 10– 3 T  

32.39 The total magnetic energy is the volume integral of the energy density,
    
u = B2

2µ0

Because B changes with position, u is not constant.  For     B = B0 R / r( )2 ,
    
u = B0

2

2µ0







R
r







4

Next, we set up an expression for the magnetic energy in a spherical shell of radius r and
thickness dr.  Such a shell has a volume 4π r 2 dr, so the energy stored in it is

    
dU = u 4πr2dr( ) = 2πB0

2R4

µ0







dr
r2

We integrate this expression for r = R to r = ∞ to obtain the total magnetic energy outside the
sphere.  This gives

  U =  
2π B2

0 R 3

µ0
   =  

2π (5.00 × 10–5 T)2(6.00 × 106 m)3

(1.26 × 10– 6 T · m/A)
    = 2.70 × 1018 J   

32.40     I1(t) = Imaxe−α t sinωt   with     Imax = 5.00 A,  α = 0.0250 s−1,  and ω = 377 rad s .

    

dI1

dt
= Imaxe−α t −α sinωt + ωcosωt( )

At     t = 0.800 s ,
    

dI1

dt
= 5.00 A s( )e−0.0200 − 0.0250( )sin 0.800 377( )( ) + 377 cos 0.800 377( )( )[ ]

    

dI1

dt
= 1.85 × 103  A s

Thus,  
    
ε2 = −M

dI1

dt
:

    
M = −ε2

dI1 dt
= +3.20 V

1.85 × 103  A s
= 1.73 mH  
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32.41
    
ε2 = −M

dI1

dt
= −(1.00 × 10−4  H)(1.00 × 104  A / s) cos(1000t)

  ε2( )max = 1.00 V  

32.42
    
M =

ε2

dI1 dt
=

96.0 mV
1.20 A / s

= 80.0 mH  

32.43 (a)
    
M = NBΦBA

IA
= 700(90.0 × 10−6 )

3.50
= 18.0 mH  

(b)
    
LA = ΦA

IA
= 400(300 × 10−6 )

3.50
= 34.3 mH  

(c)
    
εB = −M

dIA

dt
= −(18.0 mH)(0.500 A / s) =  – 9.00 mV  

32.44
    
M = N2Φ12

I1
=

N2 B1A1( )
I1

=
N2 µ0n1I1( )A1[ ]

I1
= N2 µ 0n1A1

    
M = (1.00) 4π× 10−7  T ⋅ m A( ) 70.0

0.0500 m




 π 5.00 × 10−3  m( )2





=  138 nH  

32.45 B at center of (larger) loop:  
    
B1 = µ0 I1

2R

(a)
    
M = Φ2

I1
= B1A 2

I1
= (µ0I1 / 2R)(πr2 )

I1
=  

    

µ π0
2

2
r

R
 

(b)
    
M =

µ0 π(0.0200)2

2(0.200)
= 3.95 nH  
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*32.46 Assume the long wire carries current I.   Then the magnitude of the magnetic field it
generates at distance x from the wire is     B = µ0I 2πx,  and this field passes perpendicularly
through the plane of the loop.  The flux through the loop is

        
ΦB = B ⋅ dA = BdA∫ = B ldx( )∫ =∫

µ0Il
2π

dx
x0.400 mm

1.70 mm
∫ = µ0Il

2π
ln

1.70
0.400







The mutual inductance between the wire and the loop is then

      
M = N2Φ12

I1
= N2µ0Il

2πI
ln

1.70
0.400





 = N2µ0l

2π
1.45( )

  
= 1(4π× 10−7 T ⋅ m A)(2.70 × 10−3 m)

2π
1.45( )

  M   = 7.81× 10−10  H = 781 pH  

32.47 With     I = I1 + I2, the voltage across the pair is:

    
∆V = − L1

dI1

dt
− M

dI2

dt
= − L 2

dI2

dt
− M

dI1

dt
= − L eq

dI
dt

So,
    
− dI1

dt
=

∆V
L1

+
M
L1

dI2

dt

and
    
− L 2

dI2

dt
+

M ∆V( )
L1

+
M2

L1

dI2

dt
= ∆V

(a) (b)

    
(−L1L2 + M2 )

dI2

dt
= ∆V(L1 − M) [1]

By substitution,
    
− dI2

dt
=

∆V
L 2

+
M
L 2

dI1

dt

leads to
    
(− L1L 2 + M 2 )

dI1

dt
= ∆V (L2 − M) [2]

Adding [1] to [2],
    
(− L1L 2 + M 2 )

dI
dt

= ∆V (L1 + L 2 − 2M)

So,
    
L eq = − ∆V

dI / dt
=

    

L1L 2 − M 2

L1 + L 2 − 2M
 

32.48 At different times,     UC( )max =  UL( )max   so
    

1
2 C ∆V( )2[ ]max

= 1
2 LI2( )max

    
Imax = C

L
∆V( )max = 1.00 × 10−6 F

10.0 × 10−3 H
40.0 V( ) =  0.400 A  
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32.49
    

1
2 C ∆V( )2[ ]max

= 1
2 LI2( )max

so
    
∆VC( )max = L

C
Imax = 20.0 × 10−3 H

0.500 × 10−6 F
0.100 A( ) = 20.0 V  

32.50 When the switch has been closed for a long time, battery, resistor,
and coil carry constant current     Imax = ε / R .   When the switch is
opened, current in battery and resistor drops to zero, but the coil
carries this same current for a moment as oscillations begin in the
LC loop.

We interpret the problem to mean that the voltage amplitude of
these oscillations is ∆V, in     

1
2 C ∆V( )2 = 1

2 LImax
2 .

Then,
    
L = C ∆V( ) 2

Imax
2 = C ∆V( )2 R2

ε 2
  
=

0.500 × 10−6  F( ) 150 V( )2 250 Ω( )2

50.0 V( )2 = 0.281 H  

32.51
    
C =

1
(2πf )2 L

=
1

(2π ⋅ 6.30 × 106 )2 (1.05 × 106 )
=  608 pF  

Goal Solution    
A fixed inductance L = 1.05 µ H is used in series with a variable capacitor in the tuning section of a radio.
What capacitance tunes the circuit to the signal from a station broadcasting at 6.30 MHz?

G : It is difficult to predict a value for the capacitance without doing the calculations, but we might expect
a typical value in the µF or pF range.

O : We want the resonance frequency of the circuit to match the broadcasting frequency, and for a simple
RLC circuit, the resonance frequency only depends on the magnitudes of the inductance and
capacitance.

A : The resonance frequency is 
    
f0 = 1

2π LC

Thus,

    

C = 1
(2π f0 )2 L

= 1

(2π)(6.30 × 106  Hz)[ ]2
(1.05 × 10−6  H)

= 608 pF

L : This is indeed a typical capacitance, so our calculation appears reasonable.  However, you probably
would not hear any familiar music on this broadcast frequency.  The frequency range for FM radio
broadcasting is 88.0 – 108.0 MHz, and AM radio is 535 – 1605 kHz.  The 6.30 MHz frequency falls in the
Maritime Mobile SSB Radiotelephone range, so you might hear a ship captain instead of Top 40
tunes!  This and other information about the radio frequency spectrum can be found on the National
Telecommunications and Information Administration (NTIA) website, which at the time of this
printing was at      http://www.ntia.doc.gov/osmhome/allochrt.html  
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32.52
    
f =

1
2π LC

: L =
1

(2πf )2C
=

1
(2π ⋅ 120)2(8.00 × 10−6 )

= 0.220 H  

32.53 (a)
    
f = 1

2π LC
= 1

2π (0.0820 H)(17.0 × 10−6 F)
= 135 Hz  

(b)     Q = Qmax cosωt = (180 µC) cos(847 × 0.00100) = 119 µC  

(c)
    
I = dQ

dt
= −ωQmax sinωt = −(847)(180) sin(0.847) =  – 114 mA  

32.54 (a)
    
f =

1
2π LC

=
1

2π (0.100 H)(1.00 × 10−6 F)
=  503 Hz  

(b)     Q = Cε = (1.00 × 10−6 F)(12.0 V) = 12.0 µC  

(c)     
1
2 Cε 2 = 1

2 LImax
2

    
Imax = ε C

L
 
  
= 12 V

1.00 × 10−6 F
0.100 H

= 37.9 mA  

(d) At all times U =     
1
2 Cε 2 = 1

2 (1.00 × 10−6 F)(12.0 V)2 = 72.0 µ J  

32.55

    

ω = 1
LC

= 1

3.30 H( ) 840 × 10−12  F( )
= 1.899 × 104  rad s

    
Q = Qmax cosωt,    I = dQ

dt
= −ωQmax sinωt

(a)

    

UC = Q2

2C
=

105 × 10−6[ ] cos 1.899 × 104  rad s( ) 2.00 × 10−3  s( )[ ]( )2

2 840 × 10−12( ) = 6.03 J  

(b)
    
UL = 1

2 LI2 = 1
2 Lω2Qmax

2 sin2 ωt( ) =
Qmax

2 sin2 ωt( )
2C

    

UL =
105 × 10−6  C( )2

sin2 1.899 × 104  rad s( ) 2.00 × 10−3  s( )[ ]
2 840 × 10−12  F( ) = 0.529 J  

(c)     Utotal = UC +UL =  6.56 J  
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32.56 (a)

    

ωd = 1
LC

− R
2L







2

= 1

2.20 × 10−3( ) 1.80 × 10−6( ) − 7.60

2 2.20 × 10−3( )










2

  = 1.58 × 104 rad / s

Therefore,
    
fd = ωd

2π
= 2.51 kHz  

(b)
    
Rc = 4L

C
=  69.9 Ω  

32.57 (a)
    
ω0 = 1

LC
= 1

(0.500)(0.100 × 10−6 )
= 4.47 krad/s  

(b)
    
ωd = 1

LC
− R

2L






2

= 4.36 krad/s  

(c)
  

∆ω
ω0

 = 2.53% lower  

32.58 Choose to call positive current clockwise in Figure 32.19.   It drains charge from the capacitor
according to   I = – dQ/dt.  A clockwise trip around the circuit then gives

    
+

Q
C

− IR − L
dI
dt

= 0

    
+

Q
C

+
dQ
dt

R + L
d
dt

dQ
dt

= 0,   identical with Equation 32.29.

32.59 (a)     Q = Qmaxe
− Rt

2L  cos  ωdt so     Imax ∝ e
− Rt

2L

    0.500 = e
− Rt

2L and
    

Rt
2L

= −ln(0.500)

    
t = − 2L

R
ln 0.500( ) =  

    
0.693

2L
R





  

(b)     U0 ∝ Qmax
2      and         U = 0.500U0 so Q = 0.500 Qmax = 0.707Qmax

    
t = − 2L

R
ln(0.707) = 

    
0.347

2L
R





   (half as long) 
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32.60 With     Q = Qmax at     t = 0, the charge on the capacitor at any time is     Q = Qmax cosωt where

    ω = 1 LC .  The energy stored in the capacitor at time t is then

    
U = Q2

2C
= Qmax

2

2C
cos2 ωt = U0 cos2 ωt .

When 
    
U = 1

4
U0 ,

    
cos  ω t = 1

2
and

    
ω t = 1

3
π rad   

Therefore,
    

t
LC

= π
3

or 
    

t2

LC
= π2

9

The inductance is then:    L = 
    

9t 2

π2C
 

32.61 (a)
    
εL = −L

dI
dt

= − 1.00 mH( ) d 20.0t( )
dt

=  – 20.0 mV  

(b)
    
Q = I dt

0

t
∫ = 20.0t( )dt

0

t
∫ = 10.0t 2

    
∆VC = −Q

C
= −10.0t 2

1.00 × 10−6  F
=  

    
− 10.0 MV s2( )t 2  

(c) When 
    

Q 2

2C
≥ 1

2
LI 2, or

    

−10.0t 2( )2

2 1.00 × 10−6( ) ≥ 1
2

1.00 × 10−3( ) 20.0t( )2 ,

then 
    
100t 4 ≥ 400 × 10−9( )t 2 .  The earliest time this is true is at     t = 4.00 × 10−9  s = 63.2 µs  

32.62 (a)
    
ε L = − L

dI
dt

= − L
d
dt

(Kt) =  –LK  

(b)
    
I =

dQ
dt

, so
    
Q = I dt

0

t
∫ = Kt dt

0

t
∫ = 1

2 Kt 2

and
  
∆VC = − Q

C
=  

    
− K t 2

2C
 

(c) When      
1
2 C ∆VC( )2 = 1

2 LI 2 ,
    

1
2 C

K2 t 4

4C 2







= 1

2 L K 2t 2( )

Thus       t =     2 LC  
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32.63
    

1
2

Q2

C
=

1
2C

Q
2







2

+
1
2

LI2 so
    
I =

3Q 2

4CL

The flux through each turn of the coil is  
    
ΦB =

LI
N

=
    

Q
2 N

3L
C

 

where N is the number of turns.

32.64 Equation 30.16:   
    
B = µ0NI

2πr

(a)
    
ΦB = BdA∫ = µ0NI

2πr
hdr

a

b

∫ = µ0NIh
2π

dr
r

a

b

∫ = µ0NIh
2π

ln
b
a







  
L = NΦB

I
=  

    

µ0N2h
2π

ln
b
a





  

(b)
    
L = µ0(500)2(0.0100)

2π
ln

12.0
10.0





 =  91.2 µH  

(c)
    
Lappx = µ0N2

2π
A
R





 = µ0(500)2

2π
2.00 × 10−4  m2

0.110







=  90.9 µH  

*32.65 (a) At the center,
    
B = Nµ0IR2

2(R2 + 02)3/2 = Nµ0I
2R

So the coil creates flux through itself 
    
ΦB ≈ BAcosθ = Nµ0I

2R
πR2 cos0°= π

2
Nµ0IR

When the current it carries changes,
    
εL = −N

dΦB

dt
≈ − N

π
2

Nµ0R
dI
dt

= − L
dI
dt

so
    
L ≈ π

2
N2µ0R   

(b) 2π r ≈ 3(0.3 m),   so r ≈ 0.14 m; L ≈ 
π
2   12 



4π × 10–7 

T · m
A    0.14 m = 2.8 × 10–7 H ~ 100 nH   

(c)
L
R    ≈  

2.8 × 10–7 V · s/A
270 V/A    = 1.0 × 10– 9 s ~ 1 ns   
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32.66 (a) If unrolled, the wire forms the diagonal of a 0.100 m
(10.0 cm) rectangle as shown.  The length of this rectangle
is

    ′L = 9.80 m( )2 − 0.100 m( )2
     ′L  

0.100 m9.80 m

The mean circumference of each turn is     C r= ′2π ,  where  
    

′r = 24.0 + 0.644
2

 mm  is the mean

radius of each turn.   The number of turns is then:    

    

N = ′L
C

=
9.80 m( )2 − 0.100 m( )2

2π 24.0 + 0.644
2





 × 10−3  m

= 127  

(b)

      

R = ρl
A

=
1.70 × 10−8  Ω ⋅ m( ) 10.0 m( )

π 0.322 × 10−3  m( )2 = 0.522 Ω  

(c)
      
L = µN2A

′l
= 800µ0

′l
′L

C






2

π ′r( )2

    

L =
800 4π× 10−7( )

0.100 m
9.80 m( )2 − 0.100 m( )2

π 24.0 + 0.644( ) × 10−3  m













2

π 24.0 + 0.644
2





 × 10−3  m





2

  L   = 7.68 × 10−2  H = 76.8 mH  

32.67 From Ampere’s law, the magnetic field at distance   r ≤ R is found as:

    
B 2πr( ) = µ0J πr 2( ) = µ0

I
πR2







πr 2( ) ,  or    

    
B = µ0Ir

2πR2

The magnetic energy per unit length within the wire is then

      

U
l

= B2

2µ0
2πr dr( )

0

R
∫ =

µ0 I2

4πR4 r 3 dr
0

R
∫ =

µ0 I2

4πR4
R4

4







 =  

    

µ0 I 2

16π
 

This is independent of the radius of the wire.
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32.68 The primary circuit (containing the battery and solenoid) is an
RL circuit with     R = 14.0 Ω ,  and

      
L = µ0N2A

l
=

4π× 10−7( ) 12 500( )2 1.00 × 10−4( )
0.0700

= 0.280 H

(a) The time for the current to reach 63.2% of the maximum
value is the time constant of the circuit:

 
    
τ = L

R
= 0.280 H

14.0 Ω
= 0.0200 s =  20.0 ms  

(b) The solenoid's average back emf is 
    
ε L = L

∆I
∆t





 = L

I f − 0

∆t






where  
    
I f = 0.632 Imax = 0.632

∆V
R





 = 0.632

60.0 V
14.0 Ω





 = 2.71 A

Thus,   
    
εL = 0.280 H( ) 2.71 A

0.0200 s




 =  37.9 V  

(c) The average rate of change of flux through each turn of the overwrapped concentric coil is the
same as that through a turn on the solenoid:

    

∆ΦB

∆t
= µ0n ∆I( )A

∆t
=

4π× 10−7  T ⋅ m A( ) 12500 0.0700 m( ) 2.71 A( ) 1.00 × 10−4  m2( )
0.0200 s

 = 3.04 mV  

(d) The magnitude of the average induced emf in the coil is   εL = N ∆ΦB ∆t( ) and magnitude of
the average induced current is

    
I =

ε L

R
= N

R
∆ΦB

∆t




 = 820

24.0  Ω
3.04 × 10−3  V( ) = 0.104 A =  104 mA  

32.69 Left-hand loop:       E − (I + I2 )R 1 − I2R2 = 0

Outside loop:
      
E − (I + I2 )R 1 − L

dI
dt

= 0

Eliminating I 2 gives   
      

′E − I ′R − L
dI
dt

= 0

This is of the same form as Equation 32.6,  
so its solution is of the same form as Equation 32.7:       

 I t( ) = ′E
′R
(1 − e− ′R t L )

But      ′R = R1R2 / R1 + R2( )    and         ′E = R2E/ R1 + R2( ),   so
      

′E
′R

= ER 2 /(R 1 + R2 )
R 1R2 /(R1 + R2 )

= E

R 1

Thus
      
I(t) =

E

R 1
(1 − e− ′R t L )
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32.70 When switch is closed, steady current     I0 = 1.20 A.  When
the switch is opened after being closed a long time, the
current in the right loop is

    I = I0e−R2 t L

so
    
e Rt L = I0

I
and

    

Rt
L

= ln
I0

I






Therefore,
    
L = R2 t

ln I0 I( ) = 1.00 Ω( ) 0.150 s( )
ln 1.20 A 0.250 A( ) = 0.0956 H =  95.6 mH  

32.71 (a) While steady-state conditions exist, a   9.00 mA flows clockwise around the right loop of the
circuit.  Immediately after the switch is opened, a 9.00 mA current will flow around the outer
loop of the circuit.  Applying Kirchhoff’s loop rule to this loop gives:

  
+ε0 − 2.00 + 6.00( ) × 103  Ω[ ] 9.00 × 10−3  A( ) = 0

  +ε0 =      72 0.  V with end  at the higher potentialb  

(b)

       

(c) After the switch is opened, the current around the outer loop decays as

    I = Imaxe−Rt L  with     Imax = 9.00 mA,     R = 8.00 kΩ ,         and             L = 0.400 H

Thus, when the current has reached a value     I = 2.00 mA, the elapsed time is:

    
t = L

R




 ln

Imax

I




 = 0.400 H

8.00 × 103  Ω




 ln

9.00
2.00







= 7.52 × 10−5  s = 75.2 µs  
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32.72 (a) The instant after the switch is closed, the situation is as shown i n
the circuit diagram of Figure (a).  The requested quantities are:

    IL = 0,    IC = ε0 R ,    IR = ε0 R  

    ∆VL = ε0 ,     ∆VC = 0,     ∆VR = ε0  

(b) After the switch has been closed a long time, the steady-state
conditions shown in Figure (b) will exist.  The currents and
voltages are:

    IL = 0,     IC = 0,     IR = 0  

    ∆VL = 0,        ∆VC = ε0 ,        ∆VR = 0  

IR = 0

+ -

ε0

Q = 0
∆VC = 0

IR = ε0/R

+ -
IL = 0     ∆VL = ε0

∆VR = ε0

Figure (a) 

+ -

ε0

Q = Cε0

∆VC = ε0

+ -
IL = 0     ∆VL = 0

∆VR = 0

Figure (b) 

IC = ε0/R

32.73 When the switch is closed, as
shown in Figure (a), the current
in the inductor is I :

12.0 – 7.50I – 10.0 = 0 → I = 0.267 A

When the switch is opened, the
initial current in the inductor
remains at 0.267 A.

IR = ∆V: (0.267 A)R ≤ 80.0 V

R ≤ 300 Ω  

     

(a) (b)

Goal Solution    
To prevent damage from arcing in an electric motor, a discharge resistor is sometimes placed in parallel
with the armature.  If the motor is suddenly unplugged while running, this resistor limits the voltage
that appears across the armature coils.  Consider a 12.0-V dc motor with an armature that has a resistance
of 7.50 Ω and an inductance of 450 mH.  Assume that the back emf in the armature coils is 10.0 V when
the motor is running at normal speed.  (The equivalent circuit for the armature is shown in Figure
P32.73.)  Calculate the maximum resistance   R  that limits the voltage across the armature to 80.0 V when
the motor is unplugged.
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G : We should expect   R  to be significantly greater than the resistance of the armature coil, for otherwise a
large portion of the source current would be diverted through   R  and much of the total power would
be wasted on heating this discharge resistor.  

O : When the motor is unplugged, the 10-V back emf will still exist for a short while because the motor’s
inertia will tend to keep it spinning.  Now the circuit is reduced to a simple series loop with an emf,
inductor, and two resistors.  The current that was flowing through the armature coil must now flow
through the discharge resistor, which will create a voltage across   R  that we wish to limit to 80 V.  As
time passes, the current will be reduced by the opposing back emf, and as the motor slows down, the
back emf will be reduced to zero, and the current will stop.

A : The steady-state coil current when the switch is closed is found from applying Kirchhoff's loop rule to
the outer loop:

    + 12.0 V − I 7.50 Ω( ) − 10.0 V = 0

so
    
I = 2.00 V

7.50 Ω
= 0.267 A

We then require that     ∆VR = 80.0 V = 0.267 A( )R

so
    
R = ∆VR

I
= 80.0 V

0.267 A
= 300 Ω

L : As we expected, this discharge resistance is considerably greater than the coil’s resistance.  Note that
while the motor is running, the discharge resistor turns     P = (12 V)2 300 Ω = 0.48 W  of power into
heat (or wastes 0.48 W).  The source delivers power at the rate of about
  P     = IV = 0.267 A + 12 V / 300 Ω( )[ ] 12 V( ) = 3.68 W, so the discharge resistor wastes about 13% of the
total power.  For a sense of perspective, this 4-W motor could lift a 40-N weight at a rate of  0.1 m/s.  

32.74 (a)
      
L1 = µ0N1

2A
l1

=
4π× 10−7  T ⋅ m A( ) 1000( )2 1.00 × 10−4  m2( )

0.500 m   = 2.51× 10−4  H =  251 µH  

(b)
      
M = N2Φ2

I1
= N2Φ1

I1
= N2BA

I1
=

N2 µ0 N1 l1( )I1[ ]A

I1
= µ0N1N2A

l1

    
M =

4π× 10−7  T ⋅ m A( ) 1000( ) 100( ) 1.00 × 10−4  m2( )
0.500 m   = 2.51× 10−5  H =  25.1 µH  

(c)
    
ε 1 = −M

dI2

dt
,    or  

    
I1R1 = −M

dI2

dt
   and   

    
I1 = dQ1

dt
= − M

R1

dI2

dt

    
Q1 = − M

R1
dI20

t f∫ = − M
R1

I2 f − I2i( ) = − M
R1

0 − I2i( ) = M I2i

R1

    
Q1 =

2.51× 10−5  H( ) 1.00 A( )
1000 Ω

= 2.51× 10−8  C = 25.1 nC  
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32.75 (a) It has a magnetic field, and it stores energy, so  L =  
2U
I 2

   is non-zero.

(b) Every field line goes through the rectangle between the conductors.

(c) Φ = LI so
    
L = Φ

I
= 1

I
Bda

y=a

w−a
∫

    
L = 1

I
x dy

a

w−a
∫ µ0I

2π y
+ µ0I

2π w −y( )





     
= 2

I
µ0Ix
2π y

dy =∫ 2µ0x
2π

ln y
a

w−a

Thus
    
L = µ0x

π
ln

w − a
a







32.76 For an RL circuit,     I(t) = Imaxe
− R

L
t
:

    

I(t)
Imax

= 1 − 10−9 = e
− R

L
t

≅ 1 − R
L

t

    

R
L

t = 10−9 so
    
Rmax = (3.14 × 10−8 )(10−9)

(2.50 yr)(3.16 × 107  s / yr)
=   3.97 × 10−25  Ω  

(If the ring were of purest copper, of diameter 1 cm, and cross-sectional area 1 mm2, its
resistance would be at least 10– 6 Ω).

32.77 (a) UB =  
1
2  LI 2 =  

1
2 (50.0 H)(50.0 × 10 3 A)  2  = 6.25 × 1010 J   

(b) Two adjacent turns are parallel wires carrying current in the same direction.  Since the loops
have such large radius, a one-meter section can be regarded as straight.  

Then one wire creates a field of B = 
µ0I

2π r
   

This causes a force on the next wire of F =     IlB sin θ

giving F = 
      
Il

µ0I
2πr

sin90°= µ0lI2

2πr

Solving for the force, F = (4π × 10–7 N/A2) 
(1.00 m)(50.0 × 10 3 A) 2

(2π)(0.250 m)
    = 2000 N   
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32.78     P = I ∆V( )

      
I = P

∆V
= 1.00 × 109  W

200 × 103  V
= 5.00 × 103  A

From Ampere’s law,     B 2πr( ) = µ0Ienclosed    or    
    
B = µ0Ienclosed

2πr

(a) At     r = a = 0.0200 m,        Ienclosed = 5.00 × 103  A     and

    
B =

4π× 10−7  T ⋅ m A( ) 5.00 × 103  A( )
2π 0.0200 m( ) = 0.0500 T = 50.0 mT  

(b) At     r = b = 0.0500 m,        Ienclosed = I = 5.00 × 103  A    and

    
B =

4π× 10−7  T ⋅ m A( ) 5.00 × 103  A( )
2π 0.0500 m( ) = 0.0200 T = 20.0 mT  

(c)
      
U = udV∫ =

B r( )[ ]2 2πrldr( )
2µ 0r=a

r=b
∫ = µ0I2l

4π
dr
ra

b
∫ = µ0I2l

4π
ln

b
a







    
U =

4π× 10−7  T ⋅ m A( ) 5.00 × 103  A( )2
1000 × 103  m( )

4π
ln

5.00 cm
2.00 cm





   = 2.29 × 106  J =  2.29 MJ  

(d) The magnetic field created by the inner conductor exerts a force of repulsion on the current i n
the outer sheath.  The strength of this field, from part (b), is 20.0 mT.  Consider a small
rectangular section of the outer cylinder of length   l and width   w .  It carries a current of

    
5.00 × 103  A( ) w

2π 0.0500 m( )






and experiences an outward force 
      
F = IlBsinθ =

5.00 × 103  A( )w
2π 0.0500 m( ) l 20.0 × 10−3  T( ) sin 90.0˚

The pressure on it is 
      
P = F

A
= F

wl
=

5.00 × 103  A( ) 20.0 × 10−3  T( )
2π 0.0500 m( ) =  318 Pa  
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*32.79 (a)
      
B = µ0NI

l
=

4π× 10−7  T ⋅ m A( ) 1400( ) 2.00 A( )
1.20 m

=   2.93 × 10−3  T  (upward)  

(b)

    

u = B2

2µ0
=

2.93 × 10−3  T( )2

2 4π× 10−7  T ⋅ m A( ) = 3.42 
J

m3
1 N ⋅ m

1 J






= 3.42 
N

m2 = 3.42 Pa  

(c) To produce a downward magnetic field, the surface of the super conductor
must carry a clockwise   current.

(d) The vertical component of the field of the solenoid exerts an inward force on the
superconductor.  The total horizontal force is zero.   Over the top end of the solenoid, its field
diverges and has a radially outward horizontal component.  This component exerts upward
force on the clockwise superconductor current.  The total force on the core is upward  .  You
can think of it as a force of repulsion between the solenoid with its north end pointing up,
and the core, with its north end pointing down.

(e)
    
F = PA = 3.42 Pa( ) π 1.10 × 10−2  m( )2





=   1.30 × 10−3  N  

Note that we have not proven that energy density is pressure.  In fact, it is not in some cases;
see problem 12 in Chapter 21.


