Chapter 35 Even Answers

2. 227 Mm/s

4. (a) See solution

(b) 300 Mm/s

6. (a) 4.74×10^{14} Hz

(b) 422 nm

(c) 200 Mm/s

8. (a) 1.52

(b) 417 nm

(c) $4.74 \times 10^{14} \text{ Hz}$

(d) 198 Mm/s

10. 158 Mm/s

12. (a) 327 nm

(b) 287 nm

14. (a) 1.94 m

(b) 50.0° above horizontal

16. 0.388 cm

18. $\theta = 30.4^{\circ}, \ \theta' = 22.3^{\circ}$

20. $\sim 10^{-11}$ s, $\sim 10^3$ wavelengths

24. (a) $\frac{h}{c} \left(\frac{n+1.00}{2} \right)$

(b) $\left(\frac{n+1.00}{2}\right)$ times longer

26. 30.0° and 19.5° at entry, 40.5° and 77.1° at exit

28. (a) 41.5°

(b) 18.5°

(c) 27.6°

(d) 42.6°

32. $\sin^{-1}\left(n\sin\left[\Phi-\sin^{-1}\left(\frac{1.00}{n}\right)\right]\right), \text{ or } \sin^{-1}\left(\sqrt{n^2-1}\sin\Phi-\cos\Phi\right)$

34. (a) See solution

(b) 37.2°

(c) 37.3°

(d) 37.3°

36. (a) 33.4°

(b) 53.4°

(c) there is no critical angle

38. 67.2°

40. 1.41

2 Chapter 35 Even Answers

42. (a) 10.7°

- (b) air
- (c) Sound in air falling on the wall from most directions is 100% reflected.
- **44.** 54.8° east of north
- **46.** (a) $\theta_1' = 30.0^\circ$, $\theta_2 = 18.8^\circ$
- (b) $\theta_1' = 30.0^{\circ}, \ \theta_2 = 50.8^{\circ}$
- (c) See solution
- (d) See solution

- **50.** 67.4°
- **52.** 0.359 mm
- **56.** (a) 0.0426 or 4.26%
- (b) no difference
- (c) $1 2.27 \times 10^{-7}$, almost 100%. This suggests that the condensate would be very shiny, reflecting practically all incident light.
- **58.** 70.6%
- **60.** 3.79 m
- **62.** 36.5°
- **64.** $\sin^{-1} \left[\frac{L}{R^2} \left(\sqrt{n^2 R^2 L^2} \sqrt{R^2 L^2} \right) \right]$
- **66.** 1.93
- **68.** 7.96°
- **70.** See solution. $n = \text{slope} = 1.328 \pm 0.8\%$