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CHAPTER 38

38.1 sin θ = 
λ
a    = 

6.328 × 10– 7

3.00 × 10– 4    = 2.11 × 10– 3

y
1.00 m   = tan θ ≈ sin θ = θ (for small θ)

2y = 4.22 mm   

38.2 The positions of the first-order minima are     y L ≈ sin θ = ±λ a .  Thus, the spacing between
these two minima is     ∆y = 2 λ a( )L  and the wavelength is

    
λ = ∆y

2






a
L





 = 4.10 × 10−3  m

2







0.550 × 10−3  m

2.06 m







=  547 nm  

38.3
y
L   = sin θ = 

mλ
a         ∆y = 3.00 × 10– 3 m       ∆m = 3 – 1 = 2       and       a =  

∆mλ L
∆y

  

a = 
(2)(690 × 10– 9 m)(0.500 m)

3.00 × 10– 3 m
   = 2.30 × 10– 4 m   

*38.4 For destructive interference,

sin θ = m 
λ
a    =  

λ
a    =  

5.00 cm
36.0 cm   = 0.139        and        θ = 7.98°

d
L   = tan θ    gives    d = L tan θ = (6.50 m) tan 7.98° = 0.912 m

d = 91.2 cm   
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*38.5 If the speed of sound is 340 m/s,

λ  = 
v
f    = 

340 m/s
650 /s    = 0.523 m

Diffraction minima occur at angles described by a sin θ = mλ

1.10 m sin θ 1 = 1(0.523 m) θ 1 = 28.4°

1.10 m sin θ 2 = 2(0.523 m) θ 2 = 72.0°

1.10 m sin θ 3 = 3(0.523 m) θ 3 nonexistent

Maxima appear straight ahead at 0°    and left and right at an angle given approximately by

(1.10 m) sin θ x = 1.5(0.523 m) θ x ≈ 46°   

There is no solution to a sin θ = 2.5λ, so our answer is already complete, with three   sound
maxima.

38.6 (a)
    
sin θ λ= =y

L
m
a

Therefore, for first minimum, m = 1 and

    

L
a y
m

= =
×( ) ×( )
( ) ×( ) =

− −

−λ

7 50 10 8 50 10

1 587 5 10

4 4

9

.  m .  m

.  m
 1.09 m  

(b)     w = 2y1 yields     y1 = 0.850 mm

    
w = 2 0.850 × 10−3  m( ) =  1.70 mm  

38.7
    
sin θ ≈ = × −y

L
4.1 10  m

1.20 m

30

    

β θ
λ2

4 00 10
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1 20
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4

9

3
= =

×( )
×

×





=

−

−

−π πasin .  m

.  m
.  m

.  m
.  rad

    

I
Imax

sin /
/

sin .
.

= ( )







 = ( )





=
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β
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38.8 Bright fringes will be located approximately midway between adjacent dark fringes.
Therefore, for the second bright fringe, let m = 2.5 and use

    sin θ = mλ a ≈ y L  .

The wavelength will be
    
λ ≈ ay

mL
= (0.800 × 10−3  m)(1.40 × 10−3  m)

2.5(0.800 m)
= 5.60 × 10−7  m = 560 nm  

38.9 Equation 38.1 states that sin θ =   mλ a , where  m  = ± 1, ± 2, ± 3, . . . .
The requirement for m = 1 is from an analysis of the extra path distance
traveled by ray 1 compared to ray 3 in Figure 38.5.  This extra distance
must be equal to    λ / 2  for destructive interference.  When the source
rays approach the slit at an angle β , there is a distance added to the path
difference (of ray 1 compared to ray 3) of      a / 2( )sinβ    Then, for
destructive interference,

    

a
2

 sin β + 
    

a
2

 sin θ = 
  

λ
2

   so   sin θ = 
  

λ
a

 − sin β.     

Dividing the slit into 4 parts leads to the 2nd order minimum:    sin θ = 
    

2λ
a

 − sin β

Dividing the slit into 6 parts gives the third order minimum:   sin θ = 
    

3λ
a

 − sin β  

Generalizing, we obtain the condition for the mth order minimum:  sin θ =  
  

m
a
λ

 − sin β  

*38.10 (a) Double-slit interference maxima are at angles given by     d msin θ λ= .  

For     m = 0 ,   θ0 =  0°  

For     m = ( ) = ( )1 2 1 0 5015, sin . .80 m  mµ θ µ :   θ1
1 0 179= ( ) =−sin .  10.3°  

Similarly, for     m = 2,  3,  4,  5 and 6,   θ2 = 21.0°  ,   θ3 =  32.5°  ,   θ4 = 45.8°  ,

  θ5 = 63.6°  , and   θ6 = sin−1 1.07( ) = nonexistent .

Thus, there are   5 + 5 + 1 =  11 directions for interference maxima  .

(b) We check for missing orders by looking for single-slit diffraction minima, at     a msin θ λ= .  

For m = 1,   0 700 1 0 5015. sin . m  mµ θ µ( ) = ( ) and   θ1 45 8= °. .  

Thus, there is no bright fringe at this angle.  There are only nine bright fringes  , at

  θ = ° ± ° ± ° ± ° ± °0 32 5, , . ,10.3 , 21.0  and 63.6  .
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(c)
    
I = Imax

sin πasin θ λ( )
πasin θ λ











2

At   θ = 0°,
  

sin θ
θ

→ 1  and
    

I
Imax

→  1.00  

At   θ = 10.3°,
    

πasin θ
λ

=
π 0.700 µm( ) sin 10.3°

0.5015 µm
= 0.785 rad = 45.0°

    

I
Imax

= sin 45.0°
0.785







2

=  0.811  

Similarly, at   θ = 21.0° , 
    

πasin θ
λ

= 1.57 rad = 90.0°         and 
    

I
Imax

=  0.405  

At   θ = 32.5°,
    

πasin θ
λ

= 2.36 rad = 135°           and 
    

I
Imax

=  0.0901  

At   θ = 63.6° ,
    

πasin θ
λ

= 3.93 rad = 225°           and 
    

I
Imax

=  0.0324  

38.11 sin θ = 
λ
a    = 

5.00 × 10– 7 m
5.00 × 10– 4    = 1.00 × 10– 3 rad   

38.12 θ min =  
y
L   = 1.22 

λ
D  

y = 
(1.22)(5.00 × 10– 7)(0.0300)

7.00 × 10– 3    = 2.61 µm  

y = radius of star-image
L = length of eye

λ = 500 nm
D = pupil diameter

θ = half angle

38.13 Following Equation 38.9 for diffraction from a circular opening, the beam spreads into a cone
of half-angle

θ min = 1.22 
λ
D   = 1.22 

(632.8 × 10– 9 m)
(0.00500 m)    = 1.54 × 10– 4 rad

The radius of the beam ten kilometers away is, from the definition of radian measure,

r beam = θ min (1.00 × 104 m) = 1.544 m

and its diameter is d beam = 2r beam = 3.09 m   
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Goal Solution    
A helium-neon laser emits light that has a wavelength of 632.8 nm.  The circular aperture through which
the beam emerges has a diameter of 0.500 cm.  Estimate the diameter of the beam 10.0 km from the laser.

G : A typical laser pointer makes a spot about 5 cm in diameter at 100 m, so the spot size at 10 km would
be about 100 times bigger, or about 5 m across.  Assuming that this HeNe laser is similar, we could
expect a comparable beam diameter.

O : We assume that the light is parallel and not diverging as it passes through and fills the circular
aperture.  However, as the light passes through the circular aperture, it will spread from diffraction
according to Equation 38.9.

A : The beam spreads into a cone of half-angle 
    
θmin = 1.22

λ
D

= 1.22
632.8 × 10−9  m( )

0.00500 m( ) = 1.54 × 10−4  rad

The radius of the beam ten kilometers away is, from the definition of radian measure,

    
rbeam = θmin 1.00 × 104  m( ) = 1.54 m

and its diameter is     dbeam = 2rbeam = 3.09 m

L : The beam is several meters across as expected, and is about 600 times larger than the laser aperture.
Since most HeNe lasers are low power units in the mW range, the beam at this range would be so
spread out that it would be too dim to see on a screen.  

38.14 θ min = 1.22 
λ
D   = 

d
L  1.22 







5.80 × 10– 7 m

4.00 × 10– 3 m
   = 

d
1.80 mi 



1 mi

1609 m   d = 0.512 m    

The shortening of the wavelength inside the patriot's eye does not change the answer.

38.15 By Rayleigh's criterion, two dots separated center-to-center by 2.00 mm would overlap when

    
θmin = d

L
= 1.22

λ
D

Thus,

    

L = dD
1.22λ

=
2.00 × 10−3  m( ) 4.00 × 10−3  m( )

1.22 500 × 10−9  nm( ) =  13.1 m  

38.16 D = 1.22 
λ

θ min
   = 

1.22(5.00 × 10– 7)
1.00 × 10– 5    m = 6.10 cm   
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38.17
    
θmin = 1.22

wavelength
pupil diameter

(distance between sources)





=
L

Thus,  
    

1.22λ
d

= w
vt

,  or  
    
w =

1.22λ vt( )
d

Taillights are red.  Take    λ ≈ 650 nm:
    
w ≈

1.22 650 × 10−9  m( ) 20.0 m s( ) 600 s( )
5.00 × 10−3  m

= 1.90 m  

38.18
    
θmin = 1.22

wavelength
pupil diameter







= (distance between sources)
L

   so
    

1.22λ
d

= w
vt

w = 
    

1.22λ vt( )
d

 where   λ ≈ 650 nm  is the average wavelength radiated by the red taillights.

38.19
1.22λ

D    =  
d
L  λ =  

c
f    = 0.0200 m D = 2.10 m L = 9000 m

d = 1.22 
(0.0200 m)(9000 m)

2.10 m    = 105 m   

38.20 Apply Rayleigh's criterion, 
    
θmin = x

D
= 1.22

λ
d

where   θmin =  half-angle of light cone,      x =  radius of spot,         λ =wavelength of light,
  d =  diameter of telescope,      D =  distance to Moon.

Then, the diameter of the spot on the Moon is

    
2x = 2 1.22

λD
d





 =

2 1.22( ) 694.3 × 10−9  m( ) 3.84 × 108  m( )
2.70 m

=  241 m  

38.21 For 0.100° angular resolution,
    
1.22

3.00 × 10−3 m( )
D

= 0.100°( ) π
180°





 D = 2.10 m  

38.22     L = 88.6 × 109 m, D = 0.300 m, λ = 590 × 10−9 m

(a)
    
1.22

λ
D

= θmin =     2 40 10 6. × − rad  

(b)     d = θminL = 213 km  
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38.23
    
d = 1.00 cm

2000
= 1.00 × 10−2  m

2000
= 5.00 µm

    
sin θ = mλ

d
=

1 640 × 10−9  m( )
5.00 × 10−6  m

= 0.128        θ = 7.35°  

38.24 The principal maxima are defined by

d sin θ = mλ m = 0, 1, 2, . . .

For m = 1,          λ = d sin θ

where θ is the angle between the central (m = 0) and the first order
(m  = 1) maxima.  The value of θ can be determined from the
information given about the distance between maxima and the
grating-to-screen distance.  From the figure,

tan θ =  
0.488 m
1.72 m    = 0.284 so θ = 15.8° and sin θ = 0.273

The distance between grating "slits" equals the reciprocal of the number of grating lines per
centimeter

d =  
1

5310 cm– 1   = 1.88 × 10– 4 cm = 1.88 × 103 nm

The wavelength is λ  = d sin θ = (1.88 × 103 nm)(0.273) = 514 nm   

38.25 The grating spacing is d =  
(1.00 × 10– 2 m)

4500    = 2.22 × 10– 6 m

In the 1st-order spectrum, diffraction angles are given by

sin θ = 
λ
d   : sin θ 1 = 

656 × 10– 9 m
2.22 × 10– 6 m

   = 0.295

so that for red θ1 = 17.17°  

and for violet sin θ 2 = 
434 × 10– 9 m
2.22 × 10–6 m

   = 0.195

so that θ 2 = 11.26°

Figure for Goal Solution
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The angular separation is in first-order, ∆θ = 17.17° – 11.26° = 5.91°   

In the second-order spectrum,        ∆θ = sin– 1 






2λ 1

d    – sin– 1 






2λ 2

d    = 13.2°   

Again, in the third order,                 ∆θ = sin– 1 






3λ 1

d    – sin– 1 






3λ 2

d    = 26.5°   

Since the red line does not appear in the fourth-order spectrum, the answer is complete.

Goal Solution    
The hydrogen spectrum has a red line at 656 nm and a violet line at 434 nm.  What is the angular
separation between two spectral lines obtained with a diffraction grating that has 4500 lines/cm?

G : Most diffraction gratings yield several spectral orders within the 180° viewing range, which means
that the angle between red and violet lines is probably 10° to 30°.  

O : The angular separation is the difference between the angles corresponding to the red and violet
wavelengths for each visible spectral order according to the diffraction grating equation,       dsinθ = mλ .

A : The grating spacing is     
    
d = 1.00 × 10−2  m( ) 4500 lines = 2.22 × 10−6  m

In the first-order spectrum (m = 1), the angles of diffraction are given by         sin  θ = λ d :

    
sinθ1r = 656 × 10−9  m

2.22 × 10−6  m
= 0.295 so     θ1r = 17.17°

    
sinθ1v = 434 × 10−9  m

2.22 × 10−6  m
= 0.195 so     θ1v = 11.26°

The angular separation is        ∆θ1 = θ1r - θ1v = 17.17 - 11.26 = 5.91

In the 2nd-order (    m = 2)
    
∆θ2 = sin−1 2λ r

d




 − sin−1 2λ v

d




 = 13.2°

In the third order (    m = 3),
    
∆θ3 = sin−1 3λ r

d




 − sin−1 3λ v

d




 = 26.5°

In the fourth order, the red line is not visible:     θ4r = sin−1 4λ r / d( ) = sin−1 1.18( ) does not exist

L : The full spectrum is visible in the first 3 orders with this diffraction grating, and the fourth is
partially visible.     We can also see that the pattern is dispersed more for higher spectral orders so
that the angular separation between the red and blue lines increases as m  increases.  It is also worth
noting that the spectral orders can overlap (as is the case for the second and third order spectra
above), which makes the pattern look confusing if you do not know what you are looking for.
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38.26 sin θ = 0.350: d = 
λ

sin θ
   = 

632.8 nm
0.350    = 1.81 × 103 nm

Line spacing = 1.81 µm   

*38.27 (a) d = 
1

3660 lines/cm   = 2.732 × 10– 4 cm = 2.732 × 10– 6 m = 2732 nm

λ = 
d sin θ

m   : At θ = 10.09°  λ = 478.7 nm   

At θ = 13.71°,  λ = 647.6 nm    

At θ = 14.77°,  λ = 696.6 nm   

(b) d = 
λ

sin θ 1
     and   λ = d sin θ 2 so sin θ 2 = 

2λ
d    = 

2λ







λ

sin θ 1

   = 2 sin θ 1

Therefore, if θ 1 = 10.09° then sin θ 2 = 2 sin (10.09°) gives θ 2 =  20.51°   

Similarly, for θ 1 = 13.71°, θ 2 = 28.30°    and for θ 1 = 14.77°, θ 2 =  30.66°   

38.28 d = 
1

800/mm   = 1.25 × 10– 6 m

The blue light goes off at angles   sin θm = 
mλ
d   : θ 1 = sin– 1 







1 × 5.00 × 10– 7 m

1.25 × 10– 6 m
   = 23.6°

θ 2 = sin– 1 (2 × 0.400) = 53.1°

θ 3 = sin– 1 (3 × 0.400) = nonexistent

The red end of the spectrum is at θ 1 = sin– 1 






1 × 7.00 × 10– 7 m

1.25 × 10– 6 m
   = 34.1°

θ 2 = sin– 1 (2 × 0.560) = nonexistent

So only the first-order spectrum is complete, and it does not overlap   the second-order
spectrum.
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38.29 (a) From Equation 38.12,   R = Nm where     N = 3000 lines cm( ) 4.00 cm( ) = 1.20 × 104  lines.

In the 1st order,     R = (1)(1.20 × 104  lines) =    1 20 104. ×  

In the 2nd order,     R = (2)(1.20 × 104  lines) =   2 40 104. ×  

In the 3rd order,     R = (3)(1.20 × 104  lines) =   3 60 104. ×  

(b) From Equation 38.11,
  
R = λ

∆λ
:

In the 3rd order,
    
∆λ = λ

R
= 400 nm

3.60 × 104 = 0.0111 nm = 11.1 pm  

38.30
    
sin θ = mλ

d

Therefore, taking the ends of the visible spectrum to be     λ v = 400 nm and     λ r = 750 nm, the
ends the different order spectra are:

End of second order:
    
sin θ2r =

2λ r

d
= 1500 nm

d

Start of third order:
    
sin θ3v =

2λ v

d
= 1200 nm

d

Thus, it is seen that     θ2r > θ3v and these orders must overlap   regardless of the value of the

grating spacing d.

38.31 (a) Nm  = 
λ

∆λ
  N(1) = 

531.7 nm
0.19 nm    = 2800   

(b)
1.32 × 10– 2 m

2800    = 4.72 µm   

38.32     dsin θ = mλ     and, differentiating,       d(cos θ)dθ = mdλ   or     d 1 − sin2 θ ∆θ ≈ m∆λ

    d 1 − m2λ2 / d2 ∆θ ≈ m∆λ so
    
∆θ ≈ ∆λ

d2 / m2 − λ2
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38.33
    
d = 1.00 × 10−3  m mm

250 lines mm
= 4.00 × 10−6  m = 4000 nm

    
dsin θ = mλ     ⇒      m = dsin θ

λ

(a) The number of times a complete order is seen is the same as the number of orders in which
the long wavelength limit is visible.

    
mmax = dsin θmax

λ
= 4000 nm( )sin 90.0°

700 nm
= 5.71 or   5 orders is the maximum  .

(b) The highest order in which the violet end of the spectrum can be seen is:

    
mmax = dsin θmax

λ
= 4000 nm( )sin 90.0°

400 nm
= 10.0 or    10 orders in the short - wavelength region  

38.34
    
d = = × =−1

4200 cm
2.38 10  m  nm6 2380

    dsin θ = mλ    or   
    
θ = sin−1 mλ

d




   and

    
y = L tan θ = L tan sin−1 mλ

d












Thus,
    
∆y = L tan sin−1 mλ 2

d


















− tan sin−1 mλ 1

d






























For     m = 1,
    
∆y = 2.00 m( ) tan sin−1 589.6

2380












− tan sin−1 589
2380





















= 0.554 mm

For     m = 2,
    
∆y = 2.00 m( ) tan sin−1 2 589.6( )

2380














 − tan sin−1 2 589( )

2380
























= 1.54 mm

For     m = 3,
    
∆y = 2.00 m( ) tan sin−1 3 589.6( )

2380














 − tan sin−1 3 589( )

2380
























= 5.04 mm

 Thus, the observed order must be m = 2  .

38.35 2d sin θ = mλ: λ  = 
2d sin θ

m    = 
2(0.353 × 10– 9 m) sin (7.60°)

(1)    = 9.34 × 10– 11 m = 0.0934 nm   

38.36 2d sin θ = mλ  ⇒  d = 
m λ

2 sin θ
   = 

(1)(0.129 nm)
2 sin (8.15°)    = 0.455 nm   
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38.37 2d sin θ = mλ so sin θ = 
mλ
2d    =  

1(0.140 × 10– 9 m)
2(0.281 × 10– 9 m)

   = 0.249 and θ = 14.4°  

38.38 sin θm = 
mλ
2d   : sin 12.6° = 

1λ
2d   = 0.218

sin θ 2 = 
2λ
2d   = 2(0.218) so θ 2 = 25.9°

Three   other orders appear: θ 3 = sin–1 (3 × 0.218) = 40.9°

θ 4 = sin–1 (4 × 0.218) = 60.8°

θ 5 = sin–1 (5 × 0.218) = nonexistent

38.39     2dsin θ = mλ
    
θ = sin−1 mλ

2d






= sin−1 2 × 0.166
2 × 0.314







= 31.9°  

*38.40 Figure 38.25 of the text shows the situation.     2dsin θ = mλ     or      
    
λ = 2dsin θ

m

    
m = ⇒ = ( ) °

=1
2 2 80 80 0

1
      

 m
1λ

. sin .
 5.51 m  

    
m = ⇒ = ( ) °

=2
2 2 80 80 0

2
      

 m
2λ

. sin .
 2.76 m  

    
m = ⇒ = ( ) °

=3
2 2 80 80 0

3
      

 m
3λ

. sin .
 1.84 m  

*38.41 The average value of the cosine-squared function is

one-half, so the first polarizer transmits  
1
2   the light.

The second transmits cos2 30.0° =  
3
4   .

If =  
1
2   ×  

3
4   Ii = 

3
8 Ii   
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38.42 (a) θ 1 = 20.0°,    θ 2 = 40.0°,    θ 3 = 60.0°

If = Ii cos2(θ 1 – 0°) cos2(θ 2 – θ 1) cos2(θ 3 – θ 2)

If = (10.0 units) cos2(20.0°) cos2(20.0°) cos2(20.0°) = 6.89 units   

(b) θ 1 = 0°,    θ 2 = 30.0°,    θ 3 = 60.0°

If = (10.0 units) cos2(0°) cos2(30.0°) cos2(30.0°) = 5.63 units   

38.43 I = Imax cos2 θ ⇒ θ = cos– 1 



I

Imax
  

1/2

(a)
I

Imax
   = 

1
3.00  ⇒ θ = cos– 1 



1

3.00   
1/2

 = 54.7°   

(b)
I

Imax
   = 

1
5.00  ⇒ θ = cos– 1 



1

5.00   
1/2

 = 63.4°   

(c)
I

Imax
   = 

1
10.0   ⇒ θ = cos– 1





1

10.0   
1/2

 = 71.6°   

38.44 By Brewster's law,        n p= tan = tan(48.0 ) =θ °  1.11  

38.45
    
sin θc n

= 1
    or    

    
n

c
= =

°
=1 1

34 4
1 77

sin sin .
.

θ

Also,      tan θp = n.    Thus,     θp = tan−1 n( ) = tan−1 1.77( ) = 60.5°  

38.46
    
sin θc = 1

n
and     tan θp = n

Thus,   
    
sin θc = 1

tan θp
or     cot sinθ θp c=  
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38.47 Complete polarization occurs at Brewster's angle     tan θp = 1.33 θp = 53.1°

Thus, the Moon is 36.9°   above the horizon.

38.48 For incident unpolarized light of intensity     Imax :

After transmitting 1st disk:  
    
I = 1

2




 Imax

After transmitting 2nd disk:  
    
I = 1

2




 Imax cos2 θ

After transmitting 3rd disk:  
    
I = 1

2




 Imax cos2 θ



 cos2 90°−θ( )

where the angle between the first and second disk is   θ = ωt .

Using trigonometric identities 
  
cos2 θ = 1

2
(1 + cos 2θ)  and  

  
cos2 90 − θ( ) = sin2 θ = 1

2
1 − cos 2θ( )

we have
    
I = 1

2
Imax

(1 + cos 2θ)
2







(1 − cos 2θ)
2







= 1
8

Imax(1 − cos2 2θ) = 1
8

Imax
1
2





 (1 − cos 4θ)

Since   θ = ωt , the intensity of the emerging beam is given by 
    
I = 1

16
Imax(1 − cos 4ωt)  

38.49 Let the first sheet have its axis at angle θ to the original plane of polarization, and let each
further sheet have its axis turned by the same angle.  

The first sheet passes intensity I  max cos2 θ.

The second sheet passes I  max  cos4 θ,

nd the nth sheet lets through I  max  cos2n θ ≥ 0.90I  max   where     θ = 45° n

Try different integers to find cos2 × 5 






45°

5    = 0.885, cos2 × 6 






45°

6    = 0.902,

 (a) So n = 6       

(b)   θ = 7.50°   
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*38.50 Consider vocal sound moving at   340 m s and of frequency 3000 Hz.  Its wavelength is

    
λ = v

f
= 340 m s

3000 Hz
= 0.113 m

If your mouth, for horizontal dispersion, behaves similarly to a slit 6.00 cm wide, then

    a msin θ λ=  predicts no diffraction minima.  You are a nearly isotropic source of this sound.  It
spreads out from you nearly equally in all directions.  On the other hand, if you use a
megaphone with width 60.0 cm at its wide end, then     a msin θ λ=  predicts the first diffraction
minimum at

    
θ = sin−1 mλ

a




 = sin−1 0.113 m

0.600 m




 = 10.9°

This suggests that the sound is radiated mostly toward the front into a diverging beam of
angular diameter only about 20°. With less sound energy wasted in other directions, more is
available for your intended auditors.  We could check that a distant observer to the side or
behind you receives less sound when a megaphone is used.

38.51 The first minimum is at a sin θ = 1λ.  

This has no solution if   
λ
a    > 1

or if a < λ = 632.8 nm   

38.52
    
x = 1.22

λ
d

D = 1.22
5.00 × 10−7  m
5.00 × 10−3  m







250 × 103  m( ) = 30.5 m  

D = 250 × 103 m
λ = 5.00 × 10– 7 m
d = 5.00 × 10– 3 m

38.53 d = 
1

400/mm   = 2.50 × 10– 6 m

(a) d sin θ = mλ θa = sin– 1 






2 × 541 × 10– 9 m

2.50 × 10– 6 m
   = 25.6°   

(b) λ = 
541 × 10– 9 m

1.33    = 4.07 × 10– 7 m

θb = sin– 1 






2 × 4.07 × 10– 7 m

2.50 × 10– 6 m
   = 19.0°    

(c) d sin θa = 2λ d sin θb = 
2λ
n   n sin θb = 1 sin θa
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*38.54 (a)
    
λ = v

f
= 3.00 × 108  m s

1.40 × 109  s−1 = 0.214 m

    
θmin = 1.22

λ
D

= 1.22
0.214 m

3.60 × 104  m




 =   7 26.  radµ   

  
= 7.26 µ rad

180 × 60 × 60 s
π





 = 1.50 arc seconds 

(b)
    
θmin = d

L
:

    
d = θminL = 7.26 × 10−6  rad( ) 26 000 ly( ) =  0.189 ly  

(c)
    
θ λ

min . .
.

= = ×
×







=

−

−1 22 1 22
500 10
12 0 10

9

3D
 m
 m

   50 8.  radµ         10.5 seconds of arc( )

(d)
    
d = θminL = 50.8 × 10−6  rad( ) 30.0 m( ) = 1.52 × 10−3  m = 1.52 mm  

38.55
    
θ λ

min
2.00 m
10.0 m

= = ( )
( ) =1 22 1 22. .

D
 0.244 rad = 14.0°  

38.56 With a grazing angle of 36.0°,  the angle of incidence is 54.0°

    tan θp = n = tan 54.0° = 1.38

 In the liquid,        λ n = λ / n = 750 nm /1.38 = 545 nm  

38.57 (a)     dsin θ = mλ ,   or   
    
d = mλ

sin θ
=

3 500 × 10−9  m( )
sin 32.0°

= 2.83 µm

Therefore, lines per unit length = 
    

1
 md

=
× −

1
2 83 10 6.

or lines per unit length   = × =3 53 105. m    3 53 103. × cm  .

(b)
    
sin θ = mλ

d
=

m 500 × 10−9  m( )
2.83 × 10−6  m 

= m 0.177( )

For   sin .θ ≤ 1 00, we must have      m 0.177( ) ≤ 1.00  or  m ≤ 5.65

Therefore, the highest order observed is m = 5

Total number primary maxima observed is     2m + 1 =  11  



422 Chapter 38 Solutions

Goal Solution    
Light of wavelength 500 nm is incident normally on a diffraction grating.  If the third-order maximum of
the diffraction pattern is observed at 32.0°, (a) what is the number of rulings per centimeter for the
grating?  (b)  Determine the total number of primary maxima that can be observed in this situation.

G : The diffraction pattern described in this problem seems to be similar to previous problems that have
diffraction gratings with 2 000 to 5 000 lines/mm.  With the third-order maximum at 32°, there are
probably 5 or 6 maxima on each side of the central bright fringe, for a total of 11 or 13 primary
maxima.

O : The diffraction grating equation can be used to find the grating spacing and the angles of the other
maxima that should be visible within the 180° viewing range.

A : (a) Use Equation 38.10,      d msinθ λ=

    
d = mλ

sinθ
= (3)(5.00 × 10−7  m)

sin(32.0°)
= 2.83 × 10−6  m

Thus, the grating gauge is
    

1
d

= 3.534 × 105  lines / m = 3530 lines / cm ◊

(b)
    
sinθ = m

λ
d





 = m(5.00 × 10−7  m)

2.83 × 10-6  m
= m(0.177)

For   sin  θ ≤ 1, we require that       m 1.77( ) ≤ 1   or       m ≤ 5.65.  Since m  must be an integer, its maximum
value is really 5.  Therefore, the total number of maxima is      2m + 1 = 11

L : The results agree with our predictions, and apparently there are 5 maxima on either side of the
central maximum.  If more maxima were desired, a grating with fewer lines/cm would be required;
however, this would reduce the ability to resolve the difference between lines that appear close
together.

38.58 For the air-to-water interface,

    
tan θp = nwater

nair
= 1.33

1.00
     θp = 53.1°

and     1.00 sin sin 2( ) = ( )θ θp 1 33.

  
θ2

1 53 1
1 33

36 9= °



 = °−sin

sin .
.

.

θ3
θ2

For the water-to-glass interface,
    
tan θp = tan θ3 =

nglass

nwater
= 1.50

1.33
    so      θ3 48 4= °.

The angle between surfaces is    θ θ θ= − =3 2  11.5°  
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38.59 The limiting resolution between lines

    

θ λ
min . .

.
.= =

×( )
×( ) = ×

−

−
−1 22 1 22 1 34 10 4

D

550 10  m

5 00 10  m
 rad

9

3

Assuming a picture screen with vertical dimension   l , the minimum viewing distance for no
visible lines is found from       θmin = l 485( ) L .   The desired ratio is then  

      

L
l

= 1
485θmin

= 1

485 1.34 × 10−4  rad( ) =  15.4  

38.60 (a) Applying Snell's law gives       n2 sin φ = n1 sin θ .   From the sketch, we
also see that:

  θ + φ+ β = π,   or        φ = π - (θ + β)

  Using the given identity:   sin φ = sin π cos(θ + β) − cos π sin(θ + β),

which reduces to:    sinφ = sin(θ + β).

  Applying the identity again:     sin φ = sin θ cos β + cos θ sin β   

Snell's law then becomes:     n2 sin θ cos β + cos θ sin β( ) = n1 sin θ

or (after dividing by   cos θ ):     n2(tan θ cos β + sin β) = n1 tan θ .

Solving for   tan θ  gives:
    
tan θ = n2 sin β

n1 − n2 cos β
 

(b) If      β = 90.0° ,  n1 = 1.00,  and  n2 = n , the above result becomes:

    
tan θ = n(1.00)

1.00 − 0
 ,    or         n = tan θ ,   which is Brewster's law.

38.61 (a) From Equation 38.1,    
    
θ = sin−1 mλ

a






In this case m = 1 and   
    
λ = = ×

×
= × −c

f
3.00 10  m/s
7.50 10  Hz

4.00 10  m
8

9
2

Thus, 
  
θ = ×

×






=−

−

−sin
.
.

1
2

2
4 00 10
6 00 10

 m
 m

 41.8°  

(b) From Equation 38.4,     
    

I
Imax

=
sin β 2( )

β 2











2

    where   
    
β = 2πasin θ

λ
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When   θ = 15.0°,
  
β = 2π 0.0600 m( )sin 15.0°

0.0400 m
= 2.44 rad

and   
    

I
Imax

= sin 1.22 rad( )
1.22 rad







2

= 0.593  

(c)
    
sin θ = λ

a
   so   θ = 41.8° :

This is the minimum angle subtended by the two sources at the slit.  Let
α  be the half angle between the sources, each a distance     l = 0.100 m
from the center line and a distance L from the slit plane.  Then,

      L = l cot α = 0.100 m( ) cot 41.8 2( ) =  0.262 m  

38.62
    

I
Imax

=
1
2

(cos2 45.0°)(cos2 45.0°) = 
1
8  

38.63 (a) The E and O rays, in phase at the surface of the plate, will have a phase difference

  θ = 2π λ( )δ

after traveling distance   d  through the plate.  Here δ  is the difference in the     optical path lengths
of these rays.  The optical path length between two points is the product of the actual path
length   d  and the index of refraction.  Therefore,

  δ = dnO − dnE

The absolute value is used since   nO nE  may be more or less than unity.  Therefore,

    
θ = 2π

λ




 dnO − dnE =  

    

2π
λ





 d nO − nE  

(b)
    
d = λ θ

2π nO − nE
=

550 × 10−9  m( ) π 2( )
2π 1.544 − 1.553

= 1.53 × 10−5  m =  15.3 µm  

*38.64 For a diffraction grating, the locations of the principal maxima for wavelength λ  are given by

    sin θ = mλ d ≈ y L .  The grating spacing may be expressed as   d = a N  where   a is the width of
the grating and   N  is the number of slits.  Thus, the screen locations of the maxima become
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    y = NLmλ / a .  If two nearly equal wavelengths are present, the difference in the screen
locations of corresponding maxima is

    
∆y =

NLm ∆λ( )
a

For a single slit of width   a, the location of the first diffraction minimum is     sinθ = λ a ≈ y L ,
or     y = L / a( )λ .  If the two wavelengths are to be just resolved by Rayleigh’s criterion,   y = ∆y
from above.  Therefore,

  

L
a





 λ =

NLm ∆λ( )
a

 or the resolving power of the grating is  
    
R”

λ
∆λ

= Nm  .

38.65 The first minimum in the single-slit
diffraction pattern occurs at

      
sin θ =

λ
a

»
ymin

L

Thus, the slit width is given by

      
a =

λL
ymin

For a minimum located at     ymin . .= ±6 36 0 08 mm  mm ,

 the width is
      
a =

632.8· 10- 9  m( ) 1.00 m( )

6.36· 10- 3  m
=    99.5 µm ± 1%  

38.66 (a) From Equation 38.4,   
    

I
Imax

=
sin β 2( )

β 2( )












2

 

If we define   φ ≡ β 2 this becomes
    

I
Imax

sin=










φ
φ

2

 

Therefore, when 
      

I
Imax

=
1
2

we must have
  

sin φ
φ

= 1
2

 ,  or  
  
sin φ φ=

2
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(b) Let     y1 = sin φ and 
      
y2 =

φ
2

.  

A plot of     y y1 2 and  in the range   1.00 ≤ φ ≤ π 2 is shown to
the right.

The solution to the transcendental equation is found to
be   φ = 1.39 rad  .  

(c)
      
β =

2πasin θ
λ

= 2φ   

gives   
      
sin θ =

φ
πŁ ł

λ
a

=
    
0.443

λ
a

.

If  
  

λ
a

 is small, then 
    
θ ≈ 0.443

λ
a

.  

This gives the half-width, measured away from the maximum at   θ = 0.  The pattern is
symmetric, so the full width is given by

    
∆θ = 0.443

λ
a

− −0.443
λ
a





 =  

    

0.886λ
a

 

38.67           φ                                2 sin φ
1 1.19 bigger than φ
2 1.29 smaller than φ
1.5 1.41 smaller
1.4 1.394
1.39 1.391 bigger
1.395 1.392
1.392 1.3917 smaller
1.3915 1.39154 bigger
1.39152 1.39155 bigger
1.3916 1.391568 smaller
1.39158 1.391563
1.39157 1.391560
1.39156 1.391558
1.391559 1.3915578
1.391558 1.3915575
1.391557 1.3915573
1.3915574 1.3915574

We get the answer to seven digits after 17 steps.  Clever guessing, like using the value of   2 sin φ
as the next guess for φ, could reduce this to around 13 steps.
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*38.68 In 
      
I = Imax

sin β 2( )
β 2( )

Ø

º
Œ

ø

ß
œ

2

find

    

dI
dβ

= Imax
2sin β 2( )

β 2( )






β 2( )cos β 2( ) 1 2( ) − sin β 2( ) 1 2( )

β 2( )2













and require that it be zero.  The possibility   sin β 2( ) = 0 locates all of the minima and the
central maximum, according to   

    β 2 = 0,  π,  2π,  .  .  . ; 
      
β =

2πasin θ
λ

= 0,  2π,  4π,  .  .  . ;            asin θ = 0,  λ ,  2λ ,  .  .  . .

The side maxima are found from  
    

β
2

cos
β
2Ł ł

- sin
β
2Ł ł

= 0, or 
    
tan

β
2Ł ł

=
β
2

.  

This has solutions  
    

β
2

= 4.4934  ,  
    

β
2

= 7.7253  ,  and others, giving

(a)       πasin θ = 4.4934λ       asin θ = 1.4303λ  

(b)       πasin θ = 7.7253λ        asin θ = 2.4590λ  

*38.69 (a) We require  
    
θmin = 1.22

λ
D

= radius of diffraction disk
L

= D
2L

.

Then     D
2 = 2.44λ L  

(b)
    
D = ×( )( ) =−2 44 500 10 0 1509. . m  m  428 µm  


