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Chapter 39 Solutions

39.1 In the rest frame,

pi = m1v1i + m2v2i  = (2000 kg)(20.0 m/s) + (1500 kg)(0 m/s) = 4.00 × 104 kg · m/s

pf = (m1 + m2)vf  = (2000 kg + 1500 kg)vf

Since  pi = pf, vf =  
4.00 × 104 kg · m/s
2000 kg + 1500 kg     = 11.429 m/s

In the moving frame, these velocities are all reduced by +10.0 m/s.

    ′v1i = v1i − ′v  = 20.0 m/s – (+10.0 m/s) = 10.0 m/s

    ′v2i = v2i − ′v   = 0 m/s – (+10.0 m/s) = –10.0 m/s

  ′vf   = 11.429 m/s – (+10.0 m/s) = 1.429 m/s

Our initial momentum is then

    ′pi = m1 ′v1i + m2 ′v2i   = (2000 kg)(10.0 m/s) + (1500 kg)(–10.0 m/s) = 5000 kg · m/s

and our final momentum is

  ′pf   = (2000 kg + 1500 kg)  ′vf   = (3500 kg)(1.429 m/s) = 5000 kg · m/s

39.2 (a) v = vT + vB = 60.0 m/s   

(b) v = vT – vB = 20.0 m/s   

(c)     v = vT
2 + vB

2 = 202 + 402 =  44.7 m/s   

39.3 The first observer watches some object accelerate under applied forces.  Call the instantaneous
velocity of the object     v1.  The second observer has constant velocity     v21 relative to the first,
and measures the object to have velocity     v2 = v1 − v21.

The second observer measures an acceleration of a2 =  
dv2
dt    =  

dv1
dt   

This is the same as that measured by the first observer.  In this nonrelativistic case, they
measure the same forces as well.  Thus, the second observer also confirms that   ΣF = ma.
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39.4 The laboratory observer notes Newton's second law to hold: F1 = ma1

(where the subscript 1 implies the measurement was made in the laboratory frame of
reference).  The observer in the accelerating frame measures the acceleration of the mass as   
a2 = a1 –   ′a

(where the subscript 2 implies the measurement was made in the accelerating frame of
reference, and the primed acceleration term is the acceleration of the accelerated frame with
respect to the laboratory frame of reference).  If Newton's second law held for the accelerating
frame, that observer would then find valid the relation

F2 = ma2        or        F1 = ma2

(since F1 = F2 and the mass is unchanged in each).  But, instead, the accelerating frame
observer will find that F2 = ma2 –   m ′a which is not Newton's second law.

*39.5
    
L = Lp 1 − v2 c2 ⇒ v = c 1 − L Lp( )2

Taking     L = Lp / 2  where     Lp = 1.00 m gives
    
v = c 1 −

Lp 2

Lp











2

= c 1 − 1
4

=  0.866 c  

39.6

    

∆t =
∆tp

1 − v c( )2[ ] 1 2 so

    

v = c 1 −
∆tp

∆t






2











1 2

For 

    

∆t = 2∆tp  ⇒   v = c 1 −
∆tp

2∆tp











2













1/2

= c 1 − 1
4







1/2

=  0.866 c  

*39.7 (a)

    

γ = 1

1 − v c( )2
= 1

1 − 0.500( )2
= 2

3

The time interval between pulses as measured by the Earth observer is

    
∆t = γ ∆tp = 2

3
60.0 s
75.0





 = 0.924 s

Thus, the Earth observer records a pulse rate of
  

60 0
0 924
.
.
 s min

 s
= 64.9/min  

(b) At a relative speed     v = 0.990c , the relativistic factor γ  increases to   7 09.  and the pulse rate

recorded by the Earth observer decreases to   10 6. min  .  That is, the life span of the astronaut

(reckoned by the total number of his heartbeats) is much longer as measured by an Earth clock
than by a clock aboard the space vehicle.
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39.8 The observed length of an object moving at speed v is     L = Lp 1 − v2 / c2  with   Lp  as the proper
length.  For the two ships, we know       L2 = L1,          L2 p = 3L1p ,     and         v1 = 0.350c

Thus,      L 2
2 = L1

2        and    
    
9L1p

2 1 − v2
2

c2







= L1p
2 1 − 0.350( )2[ ]

giving  
    
9 − 9

v 2
2

c2 = 0.878,   or       v2 =     0 950. c  

*39.9
    
∆t = γ ∆tp =

∆tp

1 − v2 / c2
so

    
∆tp = 1 − v2 / c2



 ∆t ≈ 1 − v2

2c2







∆t and

    
∆t − ∆tp = v2

2c2







∆t

If 
    
v = 1000 km h = 1.00 × 106  m

3600 s
= 277.8 m s,  then 

    

v
c

= 9.26 × 10−7

and  
    
∆t − ∆tp( ) = (4.28 × 10−13 )(3600 s) = 1.54 × 10−9  s =  1.54 ns  

39.10
    
γ −1 = 1 − v2

c2 = 1 − 0.950( )2 = 0.312

(a) astronauts' time:     ∆tp = γ −1 ∆t = 0.312( ) 4.42 yr( ) =  1.38 yr  

(b) astronauts' distance:     L = γ −1 ∆Lp = 0.312( ) 4.20 ly( ) = 1.31 ly  

39.11 The spaceship appears length-contracted to the Earth observer as given by

    L = Lp 1 − v2 c2        or       
    
L2 = Lp

2 1 − v2 c2( )
Also, the contracted length is related to the time required to pass overhead by:

  L = vt     or        
    
L2 = v2t2 = v2

c2 ct( )2

Equating these two expressions gives
    
Lp

2 − Lp
2 v2

c2 = (ct)2 v2

c2 or
    
Lp

2 + (ct)2[ ] v2

c2 = Lp
2

Using the given values: Lp = 300 m and t = 7.50 × 10– 7 s

this becomes (1.41 × 105 m2) 
v2

c 2
   = 9.00 × 104 m2

giving v = 0.800 c   
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Goal Solution    
A spaceship with a proper length of 300 m takes 0.750 µs seconds to pass an Earth observer.  Determine its
speed as measured by the Earth observer.

G : We should first determine if the spaceship is traveling at a relativistic speed:  classically,
v  = (300m)/(0.750 µs) = 4.00 × 108 m/s, which is faster than the speed of light (impossible)!  Quite
clearly, the relativistic correction must be used to find the correct speed of the spaceship, which we
can guess will be close to the speed of light.  

O : We can use the contracted length equation to find the speed of the spaceship in terms of the proper
length and the time. The time of   0.750 µs is the proper time measured by the Earth observer, because
it is the time interval between two events that she sees as happening at the same point in space.  The
two events are the passage of the front end of the spaceship over her stopwatch, and the passage of the
back end of the ship.

A :     L = Lp / γ , with   L = v∆t :
    
v∆t = Lp 1 − v2 / c2( )1/2

Squaring both sides,
    
v2∆t2 = Lp

2 1 − v2 / c2( )

    v
2c2 = Lp

2c2 / ∆t2 − v2Lp
2 / ∆t2

Solving for the velocity,

    

v =
c Lp / ∆t

c2 + Lp
2 / ∆t2

So

    

v =
3.00 × 108( ) 300 m( ) 0.750 × 10−6  s( )

3.00 × 108( )2
+ 300 m( )2 0.750 × 10−6  s( )2

= 2.40 × 108  m / s

L : The spaceship is traveling at 0.8c.  We can also verify that the general equation for the speed reduces
to the classical relation     v = Lp / ∆t when the time is relatively large.

39.12 The spaceship appears to be of length L to Earth observers,

where
    
L = Lp 1 − v2

c2








1/2

and   L = vt

    
vt = Lp 1 − v2

c2








1/2

so
    
v2t2 = Lp

2 1 − v2

c2








Solving for v,
    
v2 t2 +

Lp
2

c2









 = Lp

2

    

v
c

= Lp c2t2 + Lp
2




−1/2
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*39.13 For 
    

v
c

= 0.990,    γ = 7.09

(a) The muon’s lifetime as measured in the Earth’s rest frame is 
    
∆t = 4.60 km

0.990c

and the lifetime measured in the muon’s rest frame is

    

∆tp = ∆t
γ

= 1
7.09

4.60 × 103  m

0.990 3.00 × 108  m s( )














=  2.18 µs  

(b)
    
L = Lp 1 − v c( )2 =

Lp

γ
= 4.60 × 103  m

7.09
=  649 m  

39.14 We find Carpenter's speed:     
    

GMm
r2 = mv2

r

    
v = GM

(R + h)






1/2

= (6.67 × 10−11)(5.98 × 1024 )
(6.37 × 106 + 0.160 × 106 )











1/2

= 7.82 km / s

Then the time period of one orbit, 
    
T = 2π(R + h)

v
= 2π(6.53 × 106)

7.82 × 103 = 5.25 × 103  s

(a) The time difference for 22 orbits is 
    
∆t − ∆tp = (γ − 1)∆tp = 1 − v2 c2( )−1/2

− 1





22T( )

    
∆t − ∆tp ≈ 1 + 1

2
v2

c2 − 1






22T( ) = 1

2
7.82 × 103  m / s

3 × 108  m / s








2

22 5.25 × 103  s( )= 39.2 µs  

(b) For one orbit,    
    
∆t − ∆tp = 39.2  µs

22
= 1.78 µs . The press report is accurate to one digit  .

39.15 For pion to travel 10.0 m in ∆t in our frame,
    
10.0 m = v ∆t = v(γ ∆tp ) =

v(26.0 × 10−9 s)

1 − v 2 / c2

Solving for the velocity,     (3.85 × 108 m / s)2(1 − v2 / c2 ) = v 2

    1.48 × 1017 m2 / s2 = v2(1+ 1.64)

    v = 2.37 × 108 m / s = 0.789 c  

*39.16

    

γ = 1

1 − v2

c2

= 1.01 so v = 0.140 c   
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*39.17 (a) Since your ship is identical to his, and you are at rest with respect to your own ship, its length
is 20.0 m  .

(b) His ship is in motion relative to you, so you see its length contracted to 19.0 m  .

(c) We have         L = Lp 1 − v2 c2

from which
    

L
Lp

= 19.0 m
20.0 m

= 0.950 = 1 − v2

c2          and       v = 0.312 c   

*39.18 (a)

    

∆t = γ ∆tp =
∆tp

1 − v c( )2
= 15.0 yr

1 − 0.700( )2
=  21.0 yr  

(b)     d = v ∆t( ) = 0.700c[ ] 21.0 yr( ) = 0.700( ) 1.00 ly yr( )[ ] 21.0 yr( ) = 14.7 ly  

(c) The astronauts see Earth flying out the back window at     0 700. c :

    
d = v ∆tp( ) = 0.700c[ ] 15.0 yr( ) = 0.700( ) 1.00 ly yr( )[ ] 15.0 yr( ) = 10.5 ly  

(d) Mission control gets signals for 21.0 yr while the battery is operating, and then for 14.7 years
after the battery stops powering the transmitter, 14.7 ly away:      21.0 yr +  14.7 yr = 35.7 yr  

*39.19 The orbital speed of the Earth is as described by   ΣF = ma:
    

GmSmE

r2 = mEv2

r

    
v = GmS

r
=

6.67 × 10−11 N ⋅ m2 kg2( ) 1.99 × 1030  kg( )
1.496 × 1011 m

= 2.98 × 104  m s

The maximum frequency received by the extraterrestrials is

    

fobs = fsource
1 + v c
1 − v c

= 57.0 × 106  Hz( ) 1 + 2.98 × 104  m s( ) 3.00 × 108  m s( )
1 − 2.98 × 104  m s( ) 3.00 × 108  m s( )   = 57.005 66 × 106  Hz

The minimum frequency received is

    

fobs = fsource
1 − v c
1 + v c

= 57.0 × 106  Hz( ) 1 − 2.98 × 104  m s( ) 3.00 × 108  m s( )
1 + 2.98 × 104  m s( ) 3.00 × 108  m s( )   = 56.994 34 × 106  Hz

The difference, which lets them figure out the speed of our planet, is 

  57 005 66 56 994 34 106. .−( ) × = Hz    1 13 104. ×  Hz  
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39.20 (a) Let   fc  be the frequency as seen by the car.  Thus,
    
fc = fsource

c + v
c − v

and, if   f  is the frequency of the reflected wave,
  
f = fc

c + v
c − v

Combining gives 
    
f = fsource

(c + v)
(c − v)

  

(b) Using the above result,     f c − v( ) = fsource(c + v)

which gives     ( f − fsource )c = ( f + fsource )v ≈ 2 fsourcev

The beat frequency is then
    
fb = f − fsource = 2 fsourcev

c
=

     

2v
λ  

(c)
    
fb = (2)(30.0 m s)(10.0 × 109  Hz)

3.00 × 108  m s
= (2)(30.0 m s)

(0.0300 m)
= 2000 Hz = 2.00 kHz  

    
λ = c

fsource
= 3.00 × 108  m s

10.0 × 109  Hz
= 3.00 cm

(d)
    
v = fb λ

2
so

    
∆v = ∆ fb λ

2
= 5 Hz( )(0.0300 m)

2
=    0.0750 m s ≈ 0.2 mi / h  

39.21 (a) When the source moves away from an observer, the observed frequency is

    
fobs = fsource

c − vs

c + vs







1/2

       where     vs = vsource

When   vs << c , the binomial expansion gives

    

c − vs

c + vs







1 2

= 1 − vs

c












1 2

1 + vs

c












−1 2

≈ 1 − vs

2c




 1 − vs

2c




 ≈ 1 − vs

c






So, 
    
fobs ≈ fsource 1 − vs

c






The observed wavelength is found from     c = λ obs fobs = λ fsource :

    
λ obs = λ fsource

fobs
≈ λ fsource

fsource 1 − vs c( ) = λ
1 − vs c

    
∆λ = λ obs − λ = λ 1

1 − vs c
− 1







= λ 1
1 − vs c

− 1






= λ vs c
1 − vs c







Since     1 − vs c ≈ 1, 
    

∆λ
λ

≈ vsource

c
 

(b)
    
vsource = c

∆λ
λ







= c
20.0 nm
397 nm





 = 0.050 4 c  
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39.22
    

′ux = ux − v
1 − uxv / c2 = 0.950c − 0.750c

1 − 0.950 × 0.750
=   0.696 c   

39.23
    

′ux = ux − v
1 − uxv c2 = −0.750c − 0.750c

1 − (−0.750)(0.750)
= – 0.960 c   

*39.24 γ = 10.0 We are also given:  L1 = 2.00 m, and θ1 = 30.0° (both
measured in a reference frame moving relative to the rod).

Thus,     L1x = L1 cos θ1 = (2.00 m)(0.867) = 1.73 m

and     L1y = L1 sin θ1 = (2.00 m)(0.500) = 1.00 m

    L2x = a  "proper length" is related to     L1x

by     L1x = L2x γ

Therefore,     L2x = 10.0L1x = 17.3 m and     L2y = L1y = 1.00 m

(Lengths perpendicular to the motion are unchanged).

(a)
    
L2 = (L2x )2 + (L2y )2 gives L2 = 17.4 m   

(b)
    
θ2 = tan−1 L2y

L2x
 gives    θ 2 = 3.30°   

39.25   ux =  Enterprise velocity

v = Klingon velocity

From Equation 39.16,

    

′ux = ux − v

1 − ux v
c2

= 0.900c − 0.800c
1 − 0.900( ) 0.800( ) =      0.357c  
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*39.26 (a) From Equation 39.13,     ∆ ′x = γ ∆x − v ∆t( ) ,

    
0 = γ 2.00 m − v 8.00 × 10−9  s( )[ ]

    
v = 2.00 m

8.00 × 10−9  s
=    2.50 × 108  m s  

  

γ = 1

1 − 2.50 × 108  m s( )2
3.00 × 108  m s( )2

= 1.81

(b) From Equation 39.11, 
    

′x = γ x − vt( ) = 1.81 3.00 m − 2.50 × 108  m s( ) 1.00 × 10−9  s( )[ ] =  4.97 m  

(c)

    

′t = γ t − v
c2 x



 = 1.81 1.00 × 10−9  s −

2.50 × 108  m s( )
3.00 × 108  m s( )2 3.00 m( )

















  ′t =    −1.33 × 10−8  s  

39.27   p = γmu

(a) For an electron moving at 0.0100 c,

    

γ = 1

1 − u c( )2
= 1

1 − (0.0100)2
= 1.00005 ≈ 1.00

Thus,
    
p = 1.00 9.11× 10−31 kg( ) 0.0100( ) 3.00 × 108 m / s( ) =    2.73 × 10−24  kg ⋅ m s  

(b) Following the same steps as used in part (a), we find at 0.500 c

  γ = 1.15     and   p =    1.58 × 10−22  kg ⋅ m s  

(c) At 0.900 c,   γ = 2.29 and   p =    5.64 × 10−22  kg ⋅ m s  

*39.28 Using the relativistic form,  

    

p = mu

1 − u c( )2
= γmu ,  

we find the difference   ∆p from the classical momentum,   mu :     ∆ p = γmu − mu = (γ − 1)mu

(a) The difference is 1.00% when     (γ − 1)mu = 0.0100γmu:

    

γ = 1
0.990

= 1

1 − u c( )2
  ⇒   1 − u c( )2 = 0.990( )2 or u = 0.141 c  

(b) The difference is 10.0% when     (γ − 1)mu = 0.100γmu :

    

γ = 1
0.900

= 1

1 − u c( )2
  ⇒   1 − u c( )2 = 0.900( )2 or u = 0.436 c  
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*39.29
    

p − mu
mu

= γmu − mu
mu

= γ − 1

    

γ − 1 = 1

1 − u c( )2
− 1 ≈ 1 + 1

2
u
c







2

− 1 = 1
2

u
c







2

    

p − mu
mu

= 1
2

90.0 m s
3.00 × 108  m s








2

=    4.50 × 10−14  

39.30

    

p = mu

1 − u c( )2
     becomes     

    
1 − u2

c2 = m2u2

p2

which gives:     
    
1 = u2 m2

p2 + 1
c2








or
    
c2 = u2 m2c2

p2 + 1






     and     

    

u = c

m2c2

p2 + 1

 

*39.31 Relativistic momentum must be conserved:

For total momentum to be zero after as it was before, we must have, with subscript 2 referring
to the heavier fragment, and subscript 1 to the lighter,      p2 = p1

or
    
γ2m2u2 = γ1m1u1 = 2.50 × 10−28  kg

1 − (0.893)2
× (0.893c)

or

    

(1.67 × 10−27  kg)u2

1 − u2 c( )2
= (4.960 × 10−28  kg)c

and     u2 =  0.285 c  
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Goal Solution    
An unstable particle at rest breaks into two fragments of unequal mass.  The rest mass of the lighter
fragment is   2.50 × 10−28  kg, and that of the heavier fragment is   1.67 × 10−27  kg.  If the lighter fragment has
a speed of 0.893c after the breakup, what is the speed of the heavier fragment?  

G : The heavier fragment should have a speed less than that of the lighter piece since the momentum of
the system must be conserved.  However, due to the relativistic factor, the ratio of the speeds will not
equal the simple ratio of the particle masses, which would give a speed of 0.134c for the heavier
particle.  

O : Relativistic momentum of the system must be conserved.  For the total momentum to be zero after
the fission, as it was before,  p1 + p2 = 0, where we will refer to the lighter particle with the subscript
'1', and to the heavier particle with the subscript '2.'

A :     γ2m2v2 + γ1m1v1 = 0 so
    
γ2m2v2 + 2.50 × 10−28  kg

1 - 0.8932







0.893c( ) = 0

Rearranging,

    

1.67 × 10−27  kg

1 − v2
2 c2











v2

c
= −4.96 × 10−28  kg

Squaring both sides,
    
2.79 × 10−54( ) v2

c






2

= 2.46 × 10−55( ) 1 − v2
2

c2







and     v2 = −0.285c

We choose the negative sign only to mean that the two particles must move in opposite directions.
The speed, then, is     v2 = 0.285c  

L : The speed of the heavier particle is less than the lighter particle, as expected.  We can also see that for
this situation, the relativistic speed of the heavier particle is about twice as great as was predicted by a
simple non-relativistic calculation.

39.32     ∆E = (γ1 − γ2 )mc2 . For an electron, mc2 = 0.511 MeV.

(a)
    
∆E = 1

(1 − 0.810)
− 1

(1 − 0.250)






mc2 =  0.582 MeV  

(b)
    
∆E = 1

1 − (0.990)2 − 1
1 − 0.810







mc2 =  2.45 MeV  

39.33     E = γmc2 = 2mc2, or   γ = 2

Thus, 
    

u
c

= 1 − 1 γ( )2 = 3
2

,   or   
    
u = c 3

2
.

The momentum is then
    
p = γmu = 2m

c 3
2







= mc2

c







3 = 938.3 MeV

c




 3 =  

    
1.63 × 103  

MeV
c
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*39.34 The relativistic kinetic energy of an object of mass m and speed u is   
    
Kr = 1

1 − u2 / c2
− 1









 mc2

For u = 0.100 c,
    
Kr = 1

1 − 0.0100
− 1





mc2 = 0.005038mc2

The classical equation       Kc = 1
2 mu2 gives     Kc = 1

2 m(0.100c)2 = 0.005000mc2

different by  
0.005038 – 0.005000

0.005038    = 0.751%

For still smaller speeds the agreement will be still better.

39.35 (a)     ER = mc2 = (1.67 × 10−27 kg)(2.998 × 108 m / s)2 = 1.50 × 10−10 J =  938 MeV  

(b)
    
E = γmc2 = 1.50 × 10−10 J

[1 − (0.95c / c)2]1/2 = 4.81× 10−10 J =   3.00 × 103  MeV  

(c)     K = E − mc2 = 4.81× 10−10 J − 1.50 × 10−10 J = 3.31× 10−10 J =   2 07 103. ×  MeV   

*39.36 (a) KE = E – ER = 5ER

    E = 6ER = 6(9.11× 10−31  kg)(3.00 × 108  m / s)2 = 4.92 × 10−13  J = 3.07 MeV   

(b) E = γ mc2 = γ ER

Thus,     
    
γ = E

Er
= 6 = 1

1 − u2 c2
   which yields     u = 0.986 c   

39.37 The relativistic density is

    

ER

c2 V
= mc2

c2 V
= m

V
= m

Lp( ) Lp( ) Lp 1 − u c( )2



   

= 8.00 g

1.00 cm( )3 1 − 0.900( )2
=  18.4 g/cm3  
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*39.38 We must conserve both mass-energy and relativistic momentum.  With subscript 1 referring
to the     0.868c  particle and subscript 2 to the     0.987c  particle,  

  

γ1 = 1

1 − 0.868( )2
= 2.01 and     

  

γ2 = 1

1 − 0.987( )2
= 6.22

Conservation of mass-energy gives  E1 + E2 = Etotal        which is          γ1m1c
2 + γ2m2c2 = mtotalc

2

 or      2.01m1 + 6.22m2 = 3.34 × 10−27  kg

This reduces to:     m1 + 3.09m2 = 1.66 × 10−27  kg [1]

Since the momentum after must equal zero,      p1 = p2           gives              γ1m1u1 = γ2m2u2

or      (2.01)(0.868c)m1 = (6.22)(0.987 c)m2  

which becomes     m1 = 3.52m2 [2]

Solving [1] and [2] simultaneously,     m1 =   8.84 × 10−28  kg     and       m2 =   2.51× 10−28  kg  

39.39 E = γ mc2,    p = γ mu;    E2 = (γ mc2)2;    p2 = (γ mu )2;

    
E2 − p2c2 = (γmc2 )2 − (γmu)2 c2 = γ 2 (mc2 )2 − (mc)2 u2




    
= (mc2 )2 1 − u2

c2













1 − u2

c2








−1

= (mc2 )2      Q.E.D.

39.40 (a)     K = 50.0 GeV

    
mc2 = 1.67 × 10−27  kg( ) 2.998 × 108  m s( )2 1

1.60 × 10−10  J Ge V







= 0.938 GeV

    E = K + mc2 = 50.0 GeV + 0.938 GeV = 50.938 GeV

    
E2 = p2c2 + mc2( )2

  ⇒   p =
E2 − mc2( )2

c2 = 50.938 GeV( )2 − 0.938 GeV( )2

c2

    
 p = 50.9 

GeV
c

= 50.9 GeV
3.00 × 108  m s







1.60 × 10−10  J

1 GeV







=    2.72 × 10−17  kg ⋅ m s  

(b)

    

E = γmc2 = mc2

1 − u c( )2
  ⇒   u = c 1 − mc2 E( )2

    
v = 3.00 × 108  m s( ) 1 − 0.938 GeV

50.938 GeV






2

=    2 9995 108. ×  m s  

39.41 (a)     q ∆V( ) = K = γ − 1( )mec
2
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Thus, 

    

γ = 1

1 − u c( )2
= 1 + q ∆V( )

mec
2 from which u = 0.302 c  

(b)
    
K = γ − 1( )mec

2 = q ∆V( ) = 1.60 × 10−19  C( ) 2.50 × 104  J C( ) =    4.00 × 10−15  J  

39.42 (a)     E = γmc2 = 20.0 GeV  with     mc2 = 0.511 MeV for electrons.  Thus, 
  
γ = 20.0 × 109  eV

0.511× 106  eV
=   3.91× 104  

(b)

    

γ = 1

1 − u c( )2
= 3.91× 104  from which     u =0.999 999 999 7 c  

(c)
    
L = Lp 1 − u c( )2 =

Lp

γ
= 3.00 × 103  m

3.91× 104 = 7.67 × 10−2  m =  7.67 cm  

39.43 Conserving total momentum,     pBefore decay = pafter decay = 0 :     pν = pµ = γmµu = γ 206me( )u

Conservation of mass-energy gives:   Eµ + Eν = Eπ

    γmµc2 + pνc = mπc2

    
γ 206me( ) + pν

c
= 270me

Substituting from the momentum equation above, 
    
γ 206me( ) + γ 206me( ) u

c
= 270me

or
    
γ 1 + u

c




 = 270

206
= 1.31  ⇒  

u
c

= 0.264

Then,
    
Kµ = γ − 1( )mµc2 = γ − 1( )206 mec

2( )
  

= 1

1 − 0.264( )2
− 1













206 0.511 MeV( ) =  3.88 MeV  

Also,     Eν = Eπ − Eµ = mπc2 − γmµc2 = 270 − 206γ( )mec
2

    

Eν = 270 − 206

1 − 0.264( )2













0.511 MeV( ) =  28.8 MeV  

*39.44 Let a 0.3-kg flag be run up a flagpole 7 m high.

We put into it energy mgh = 0.3 kg(9.8 m/s2) 7 m ≈ 20 J



Chapter 39 Solutions 15

© 2000 by Harcourt, Inc.  All rights reserved.

So we put into it extra mass ∆m =  
E
c 2

    =  
20 J

(3 × 108 m/s)2   = 2 × 10–16 kg

for a fractional increase of
2 × 1016 kg

0.3 kg  ~10–15   

*39.45 E = 2.86 × 105 J.   Also, the mass-energy relation says that E = mc2.

Therefore,
    
m = E

c2 = 2.86 × 105  J

(3.00 × 108  m / s)2 =  3.18 × 10–12 kg   

No, a mass loss of this magnitude (out of a total of 9.00 g)  could not be detected  .

39.46 (a)
    
K = (γ − 1)mc2 = 1

1 − u2 / c2
− 1









 mc2 = 0.25mc2 =  2.25 × 1022 J   

(b) E = mfuel c2 so
    
mfuel = 2.25 × 1022

9.00 × 1016 = 2.50 × 105 kg   

39.47

      

∆m = E
c2 = P t

c2 =
0.800 1.00 × 109  J s( ) 3.00 yr( ) 3.16 × 107  s yr( )

3.00 × 108  m s( )2  = 0.842 kg  

39.48 Since the total momentum is zero before decay, it is necessary that after the decay  

    
pnucleus = pphoton =

Eγ

c
= 14.0 keV

c

Also, for the recoiling nucleus,
    
E2 = p2c2 + mc2( )2

with     mc2 = 8.60 × 10−9  J = 53.8 GeV

Thus,
    
mc2 + K( )2

= 14.0 keV( )2 + mc2( )2
 or

    
1 + K

mc2






2

= 14.0 keV
mc2







2

+ 1

So
    
1 + K

mc2 = 1 + 14.0 keV
mc2







2

≈ 1 + 1
2

14.0 keV
mc2







2

   Binomial Theorem( )

and

    

K ≈ 14.0 keV( )2

2mc2 =
14.0 × 103  eV( )2

2 53.8 × 109  eV( ) =    1 82 10 3. × −  eV  

39.49
      
P = dE

dt
=

d mc2( )
dt

= c2 dm
dt

= 3.77 × 1026  W
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Thus,   

    

dm
dt

= 3.77 × 1026  J s

3.00 × 108  m s( )2 =    4 19 109. ×  kg s  

39.50     2mec
2 = 1.02 MeV :   Eγ ≥  1.02 MeV  

39.51 The moving observer sees the charge as stationary, so she says it feels no magnetic force.

      q(E + v × B) = q( ′E + 0) and     ′E = E + v × B  

*39.52 (a) When   Ke = Kp ,   
    
mec

2 γe − 1( ) = mpc2 γp − 1( )

In this case,     mec
2 = 0.511 MeV,         mpc2 = 938 MeV     and    

    
γe = 1 − 0.750( )2[ ]−1/2

= 1.5119

Substituting,  
    
γp = 1 + mec

2(γe − 1)
mpc2 = 1 + 0.511 MeV( ) 1.5119 − 1( )

938 MeV
= 1.000279

but 

    

γp = 1

1 − up c





2











1/2 .    Therefore,  
    
up = c 1 − γp

−2 = 0.0236 c  

(b) When   pe = pp ,   γpmpup = γemeue    or   
  
γpup = γemeue

mp
.

Thus, 
    
γpup =

1.5119( ) 0.511 MeV c2( ) 0.750c( )
938 MeV c2 = 6.1772 × 10−4 c

and   
    

up

c
= 6.1772 × 10−4 1 −

up

c






2

which yields   up =      6.18 × 10−4 c     = 185 km s

39.53 (a) 1013 MeV = (γ – 1)mpc 2 so γ ≈ 1010          vp ≈ c

    
′t = t

γ
= 105  yr

1010 = 10−5  yr ~ 10 2 s   

(b)   ′d = c ′t  ~1011 m   
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Goal Solution    
The cosmic rays of highest energy are protons, which have kinetic energy on the order of 1013 MeV.
(a)  How long would it take a proton of this energy to travel across the Milky Way galaxy, having a
diameter on the order of ~105 light-years, as measured in the proton's frame?  (b)  From the point of view
of the proton, how many kilometers across is the galaxy?

G : We can guess that the energetic cosmic rays will be traveling close to the speed of light, so the time it
takes a proton to traverse the Milky Way will be much less in the proton’s frame than 105 years.  The
galaxy will also appear smaller to the high-speed protons than the galaxy’s proper diameter of 105

light-years.

O : The kinetic energy of the protons can be used to determine the relativistic γ-factor, which can then be
applied to the time dilation and length contraction equations to find the time and distance in the
proton’s frame of reference.

A  : The relativistic kinetic energy of a proton is     K = γ − 1( )mc2 = 1013  MeV

Its rest energy is
    
mc2 = 1.67 × 10−27 kg( ) 2.998 × 108 

m
s







2 1 eV
1.60 × 10−19 kg ⋅ m2/ s2







= 938 MeV

So   1013  MeV = γ − 1( ) 938 MeV( ) ,     and therefore     γ = 1.07 × 1010

The proton's speed in the galaxy’s reference frame can be found from      γ = 1 1 − v2 / c2 :

    1 − v2 c2 = 8.80 × 10−21 and
    
v = c 1 − 8.80 × 10−21 = 1 − 4.40 × 10−21( )c ≈ 3.00 × 108  m / s

The proton’s speed is nearly as large as the speed of light.  In the galaxy frame, the traversal time is

    ∆t = x / v = 105  light - years / c = 105  years

(a) This is dilated from the proper time measured in the proton's frame.  The proper time is found
from    ∆t = γ∆tp :

    ∆tp = ∆t / γ = 105  yr 1.07 × 1010 = 9.38 × 10−6  years = 296 s  ~ a few hundred seconds  

(b) The proton sees the galaxy moving by at a speed nearly equal to c, passing in  296 s:

    
∆Lp = v∆tp = 3.00 × 108( ) 296 s( ) = 8.88 × 107  km ~ 108  km

    
∆Lp = 8.88 × 1010  m( ) 9.46 × 1015  m / ly( ) = 9.39 × 10−6  ly ~ 10-5  ly

L : The results agree with our predictions, although we may not have guessed that the protons would be
traveling so close to the speed of light!  The calculated results should be rounded to zero significant
figures since we were given order of magnitude data.  We should also note that the relative speed of
motion v and the value of γ are the same in both the proton and galaxy reference frames.  
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39.54 Take the primed frame as:

(a) The mother ship:    
    
ux = ′u ′x + v

1 + ′u ′x v c2 = v + v
1 + v2 c2 = 2v

1 + v2 c2
    
= 2(0.500c)

1 + (0.500)2 = 0.800 c   

(b) The shuttle:

    

ux =
v + 2v

1 + v2 / c2

1 + v
c2

2v
1 + v2 / c2







= 3v + v3 / c2

1 + 3v2 / c2
    
= 3(0.500c) + (0.500c)3 c2

1 + 3(0.500)2 =  0.929 c   

39.55
    

∆ mc2

mc2 = 4 938.78 MeV( ) − 3728.4 MeV
4 938.78 MeV( ) × 100% = 0.712%  

39.56 dearth = vtearth = vγ tastro so
    
2.00 × 106  yr ⋅ c = v

1

1 − v2 / c2
30.0 yr

    1 − v2 / c2 = v / c( )(1.50 × 10−5)
    
1 − v2

c2 = v2

c2 (2.25 × 10−10 )

 
    
1 = v2

c2 (1 + 2.25 × 10−10 ) so  
    

v
c

= 1 + 2.25 × 10−10( )−1/2
= 1 − 1

2 (2.25 × 10−10 )

    

v
c

= 1 − 1.12 × 10−10  

*39.57 (a) Take the spaceship as the primed frame, moving toward the right at     v c= +0 600. .  Then

    ′ = +u cx 0 800. , and

    
ux = ′ux + v

1 + ′ux v( ) c2 = 0.800c +0.600c
1 + 0.800( ) 0.600( ) = 0.946 c  

(b)
    
L =

Lp

γ
= 0.200 ly( ) 1 − 0.600( )2 =  0.160 ly  

(c) The aliens observe the 0.160-ly distance closing because the probe nibbles into it from one end
at     0.800c  and the Earth reduces it at the other end at     0.600c .  Thus,

    
time

 ly=
+

=0 160
0 800 0 600

.
. .c c

 0.114 yr  

(d)

    

K = 1

1 − u2 c2
− 1









 mc2

  

= 1

1 − 0.946( )2
− 1













4.00 × 105  kg( ) 3.00 × 108  m s( )2
=   7 50 1022. ×  J  
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39.58 In this case, the proper time is T0 (the time measured by the students on a clock at rest relative
to them).  The dilated time measured by the professor is: ∆t = γ T0

where ∆t = T + t.  Here T is the time she waits before sending a signal and t is the time
required for the signal to reach the students.

Thus, we have: T + t = γ T0 (1)

To determine the travel time t, realize that the distance the students will have moved beyond
the professor before the signal reaches them is: d = v(T + t)

The time required for the signal to travel this distance is:
  
t = d

c
= v

c




 T + t( )

Solving for t gives:
    
t =

v c( )T
1 − v c( )

Substituting this into equation (1) yields:
    
T +

v c( )T
1 − v c( ) = γT0

or     T = 1 − v c( )−1 = γT0

Then 

    

T = T0
1 − v c( )

1 − v2 c2( )     
= T0

1 − v / c( )
1 + v / c( )[ ] 1 − v / c( )[ ]

=
    
T0

1 − v c( )
1 + v c( )

 

39.59 Look at the situation from the instructor's viewpoint since they are at rest relative to the
clock, and hence measure the proper time.  The Earth moves with velocity v  = – 0.280 c
relative to the instructors while the students move with a velocity   ′u  = – 0.600 c relative to
Earth.  Using the velocity addition equation, the velocity of the students relative to the
instructors (and hence the clock) is:

    
u = v + ′u

1 + v ′u c2 = (−0.280c) − (0.600c)
1 + (−0.280c)(−0.600c) c2 = −0.753c  (students relative to clock)

(a) With a proper time interval of ∆ tp = 50.0 min, the time interval measured by the students is:

  ∆t = γ∆tp with 

    

γ = 1

1 − 0.753c( )2 / c2
= 1.52

Thus, the students measure the exam to last   T = 1.52(50.0 min) = 76.0 minutes   

(b) The duration of the exam as measured by observers on Earth is:

  ∆t = γ∆tp with

    

γ = 1

1 − 0.280c( )2 c2
so   T = 1.04(50.0 min) = 52.1 minutes   
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*39.60 The energy which arrives in one year is  
      
E = P t = 1.79 × 1017  J / s( ) 3.16 × 107  s( ) = 5.66 × 1024  J

Thus,

    

m = E
c2 = 5.66 × 1024  J

3.00 × 108  m / s( )2 =  6.28 × 107 kg   

*39.61 The observer sees the proper length of the tunnel, 50.0 m, but sees the train contracted to
length

    L = Lp 1 − v2 c2 = 100 m 1 − (0.950)2 = 31.2 m

shorter than the tunnel by    50.0 – 31.2 = 18.8 m     so it is completely within the tunnel.

*39.62 If the energy required to remove a mass m  from the surface is equal to its mass energy mc2,
then

GMsm
Rg

   = mc2

and
    
Rg = GMs

c2 = (6.67 × 10−11  N ⋅ m2 / kg2)(1.99 × 1030  kg)
(3.00 × 108  m / s)2  = 1.47 × 103 m = 1.47 km   

39.63 (a) At any speed, the momentum of the particle is given by

    

p = γmu = mu

1 − u c( )2

Since  
  
F = qE = dp

dt     
qE = d

dt
mu 1 − u2 c2( )−1/2





    
qE = m 1 − u2 c2( )−1/2 du

dt
+ 1

2
mu 1 − u2 c2( )−3/2

2u c2( ) du
dt

So   

    

qE
m

= du
dt

1 − u2 c2 + u2 c2

1 − u2 c2( )3/2
















   and

    
a = du

dt
= qE

m
1 − u2

c2








3/2

 

(b) As   u → c,     a → 0  

(c)

    

du

1 − u2 / c2





3/20

v
∫ = qE

m
dt

t=0

t
∫ so

    
u = qEct

m2c2 + q2E2t2
 

    
x = udt

0

t
∫ = qEc

tdt

m2c2 + q2E2t20

t
∫ =

    

c
qE

m2c2 + q2E2t2 − mc



  
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*39.64 (a)
    
fobserved = fsource

1 + v c
1 − v c

   implies
    

c
λ + ∆λ

= c
λ

1 + v c
1 − v c

,

or   
    

1 − v c
1 + v c

= λ + ∆λ
λ

   and
    
1 + ∆λ

λ
= 1 − v c

1 + v c
 

(b)
    
1 + 550 nm − 650 nm

650 nm
= 1 − v c

1 + v c
= 0.846

    
1 − v

c
= 0.846( )2 1 + v

c




 = 0.716 + 0.716

v
c







    v = 0.166c =    4 97 107. ×  m s  

39.65 (a) An observer at rest relative to the mirror sees the light travel a distance

    
D = 2d − x = 2 1.80 × 1012  m( ) − 0.800c( )t

where     x = 0.800c( )t  is the distance the ship moves toward the mirror in time   t .  Since this
observer agrees that the speed of light is   c , the time for it to travel distance   D  is:

    
t = D

c
= 2(1.80 × 1012  m)

3.00 × 108  m / s
− 0.800t  =   6 67 103. ×  s  

(b) The observer in the rocket sees a length-contracted initial distance to the mirror of:   

    
L = d 1 − v2

c2 = 1.80 × 1012  m( ) 1 − (0.800c)2

c2   = 1.08 × 1012  m,

and the mirror moving toward the ship at speed      v = 0.800c .   Thus, he measures the distance
the light travels as:  

    
D = 2 1.08 × 1012  m − y( )
where     y = (0.800c) t / 2( )   is the distance the mirror moves toward the ship before the light
reflects off it.  This observer also measures the speed of light to be   c , so the time for it to travel
distance   D  is:

    
t = D

c
= 2

c
1.08 × 1012  m − 0.800c( ) t

2





,  which gives   t =    4 00 103. ×  s  
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39.66 (a) An observer at rest relative to the mirror sees the light travel a distance     D = 2d − x , where

  x = vt   is the distance the ship moves toward the mirror in time   t .  Since this observer agrees
that the speed of light is   c , the time for it to travel distance   D  is

    
t = D

c
= 2d − vt

c
 = 

    

2d
c + v

 

(b) The observer in the rocket sees a length-contracted initial distance to the mirror of   

    
L = d 1 − v2

c2

and the mirror moving toward the ship at speed   v .   Thus, he measures the distance the light
travels as

    D = 2 L − y( )
where     y = vt 2  is the distance the mirror moves toward the ship before the light reflects off it.
This observer also measures the speed of light to be   c , so the time for it to travel distance   D  is:  

    
t = D

c
= 2

c
d 1 − v2

c2 − vt
2









 so

    
c + v( )t = 2d

c
c + v( ) c − v( ) or  

    
t = 2d

c
c − v
c + v

 

39.67 (a) Since Mary is in the same reference frame,   ′S , as Ted, she observes the ball to have the same
speed Ted observes, namely   ′ux =      0.800c  .

(b)

    

∆ ′t =
Lp

′ux
= 1.80 × 1012 m

0.800 3.00 × 108 m s( ) =   7.5 10 s3 0 ×  

(c)
    
L = Lp 1 − v2

c2 = 1.80 × 1012 m( ) 1 − (0.600c)2

c2 =   1.44 10 m12 ×  

Since     v = 0.600c and     ′ux = −0.800c , the velocity Jim measures for the ball is  

    
ux = ′ux + v

1 + ′uxv c2 =
−0.800c( ) + 0.600c( )
1 + −0.800( ) 0.600( ) =      −0.385c  

(d) Jim observes the ball and Mary to be initially separated by   1.44 × 1012  m.  Mary's motion at
0.600c  and the ball's motion at 0.385c nibble into thi distance from both ends.  The gap closes
at the rate 0.600c + 0.385c = 0.985c, so the ball and catcher meet after a time

    

∆t = 1.44 × 1012  m

0.985 3.00 × 1018  m / s( ) =    4.88 × 103  s  
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39.68 (a)     L 0
2 = L 0x

2 + L 0y
2     and       L

2 = L x
2 + L y

2

The motion is in the   x  direction:     Ly = L0y = L0 sin θ0

    Lx = L0x 1 − v c( )2 = L0 cos θ0( ) 1 − v c( )2

Thus,
    
L2 = L0

2 cos2 θ0 1 − v
c







2











+ L0
2 sin2 θ0 = L 0

2 1 − v
c







2

cos2 θ0












or
    
L = L0 1 − v c( )2 cos2 θ0[ ] 1 2

 

(b)

    

tan θ =
Ly

Lx
=

L0y

L0x 1 − v c( )2
=    γ tanθ0  

39.69 (a) First, we find the velocity of the stick relative to   ′S  using     L = Lp 1 − ′ux( )2 c2

Thus
    

′ux = ± c 1 − L Lp( )2
 

Selecting the negative sign because the stick moves in the negative   x  direction in   ′S  gives:

    
′ux = −c 1 − 0.500 m

1.00 m






2

= −0.866c so the speed is   ′ux = 0.866 c  

Now determine the velocity of the stick relative to S, using the measured velocity of the stick
relative to   ′S  and the velocity of   ′S  relative to S.   From the velocity addition equation, we
have:

    
ux = ′ux + v

1 + v ′ux c2 =
−0.866c( ) + 0.600c( )

1 + 0.600c( ) −0.866c( ) =      −0.554c  and the speed is   ux =  0.554 c  

(b) Therefore, the contracted length of the stick as measured in S is:

    L = Lp 1 − ux c( )2 = 1.00 m( ) 1 − 0.554( )2 =  0.833 m  
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39.70 (b) Consider a hermit who lives on an asteroid halfway between the Sun and Tau Ceti, stationary
with respect to both.  Just as our spaceship is passing him, he also sees the blast waves from
both explosions.  Judging both stars to be stationary, this observer concludes
that   the two stars blew up simultaneously  .

(a) We in the spaceship moving past the hermit do not calculate the explosions to be
simultaneous.  We see the distance we have traveled from the Sun as

    L = Lp 1 − v c( )2 = 6.00 ly( ) 1 − 0.800( )2 = 3.60 ly

We see the Sun flying away from us at     0.800c  while the light from the Sun approaches at

    1.00c.  Thus, the gap between the Sun and its blast wave has opened at     1.80c, and the time we
calculate to have elapsed since the Sun exploded is

    3.60 ly 1.80c = 2.00 yr.

We see Tau Ceti as moving toward us at     0.800c , while its light approaches at     1.00c, only

    0.200c  faster.  We see the gap between that star and its blast wave as 3.60 ly and growing at

    0.200c .  We calculate that it must have been opening for

    3.60 ly 0.200c = 18.0 yr

and conclude that   Tau Ceti exploded 16.0 years before the Sun  .

*39.71 The unshifted frequency is 
    
fsource = c

λ
= 3.00 × 108  m s

394 × 10−9  m
= 7.61× 1014  Hz

We observe frequency 
    
f = 3.00 × 108  m s

475 × 10−9  m
= 6.32 × 1014  Hz

Then 
    
f = fsource

1 + v c
1 − v c

gives:  
    
6.32 = 7.61

1 + v c
1 − v c

 

or  
    

1 + v c
1 − v c

= 0.829( )2

Solving for   v  yields:     v = −0.185c =     0.185c  away( )  
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39.72 Take m = 1.00 kg.  

The classical kinetic energy is
    
Kc = 1

2 mu2 = 1
2 mc2 u

c






2

= 4.50 × 1016  J( ) u
c







2

and the actual kinetic energy is 

    

Kr = 1

1 − u c( )2
− 1













mc2 = 9.00 × 1016  J( ) 1

1 − u c( )2
− 1













  u c     Kc   J( )     Kr   J( )
                                                                                                                                                                                                               

0.000 0.000 0.000
0.100 0.045 × 1016 0.0453 × 1016

0.200 0.180 × 1016 0.186 × 1016

0.300 0.405 × 1016 0.435 × 1016

0.400 0.720 × 1016 0.820 × 1016

0.500 1.13 × 1016 1.39 × 1016

0.600 1.62 × 1016 2.25 × 1016

0.700 2.21 × 1016 3.60 × 1016

0.800 2.88 × 1016 6.00 × 1016

0.900 3.65 × 1016 11.6 × 1016

0.990 4.41 × 1016 54.8 × 1016

    Kc = 0.990Kr   when 

    

1
2 u c( )2 = 0.990

1

1 − u c( )2
− 1
















, yielding  u = 0.115 c  

Similarly,       Kc = 0.950Kr     when   u = 0.257 c  

and       Kc = 0.500Kr     when   u = 0.786 c  

39.73
    
∆m = E

c2 = mc ∆T( )
c2 =

ρVc ∆T( )
c2

  

=
1030 kg / m3( ) 1.40 × 109( ) 103  m( )3

4186 J / kg ⋅°C( ) 10.0 °C( )
3.00 × 108  m / s( )2

  ∆m =   6.71 10  kg8×  


