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Chapter 40 Solutions

40.1
    
T = 2.898 × 10−3  m ⋅ K

560 × 10−9  m
=    5 18 103. ×  K  

*40.2 (a)
    
λ max = 2.898 × 10−3  m ⋅ K

T
~

2.898 × 10−3  m ⋅ K
104  K

   ~ 10 7−  m  ultraviolet  .

(b)
  
λ max ~

2.898 × 10−3  m ⋅ K
107  K

   ~ 10 10−  m  .          γ − ray  

40.3 (a) Using λ maxT =   2.898 10 m K3  × ⋅−  

we getλ max = 
  

2.898 10  m
2900 K

× −3
 = 9.99 × 10– 7 m = 999 nm  

(b) The peak wavelength is in the infrared   region of the electromagnetic spectrum, which is
much wider than the visible region of the spectrum.

40.4 Planck's radiation law gives intensity-per-wavelength.  Taking E to be the photon energy and
n  to be the number of photons emitted each second, we multiply by area and wavelength
range to have energy-per-time leaving the hole:

      

P =
2πhc2 (λ 2 − λ 1)π(d / 2)2

λ 1 + λ 2

2






5

e

2hc
(λ 1+λ 2 )kBT − 1















= En = nhf where
    
E = hf = 2hc

λ 1 + λ 2

      

n = P

E
=

8π2c d2(λ 2 − λ 1)

(λ 1 + λ 2 )4  e2hc (λ 1+λ 2 )kBT − 1( )

    

=
8π2 3.00 × 108  m s( ) 5.00 × 10−5  m( )2

1.00 × 10−9  m( )

1001× 10−9  m( )4
e

2 6.626 × 10− 34  J⋅s( ) 3.00×108  m s( )
1001×10− 9 m( ) 1.38×10− 23 J K( ) 7.50×103 K( ) − 1

















    

n
e

= ×
−( ) =5.90 10 s

 1

16 /
.3 84

   1.30 × 1015 / s  
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*40.5 (a)
      
P = eAσT4 = 1 20.0 × 10−4  m2( ) 5.67 × 10−8  W m2 ⋅ K4( ) 5000 K( )4 =    7 09 104. ×  W  

(b)     λ λ λmax max max.T = ( ) = × ⋅ ⇒ =−5000 2 898 10 3 K  m K     580 nm  

(c) We compute:  

    

hc
kBT

=
6.626 × 10−34  J ⋅ s( ) 3.00 × 108  m s( )

1.38 × 10−23  J K( ) 5000 K( )
= 2.88 × 10−6  m

The power per wavelength interval  is 
      
P λ( ) = A I λ( ) = 2πhc2A

λ5 exp hc λ kBT( ) − 1[ ] ,   and

    
2πhc2A = 2π 6.626 × 10−34( ) 3.00 × 108( )2

20.0 × 10−4( ) = 7.50 × 10−19  
J ⋅ m4

s

    

P 580 nm( ) = 7.50 × 10−19  J ⋅ m4 s

580 × 10−9  m( )5
exp 2.88 µm 0.580 µm( ) − 1[ ]     

= 1.15 × 1013  J m ⋅ s
e4.973 − 1

=    7 99 1010. ×  W m  

(d) - (i)   The other values are computed similarly:

λ hc/kBT ehc/λkBT –1 2π hc2A/λ5   P (λ), W/m

(d) 1.00 nm 2882.6 7.96 × 101251 7.50 × 1026 9.42 × 10–1226

(e) 5.00 nm 576.5 2.40 × 10250 2.40 × 1023 1.00 × 10–227

(f) 400 nm 7.21 1347 7.32 × 1013 5.44 × 1010

(c) 580 nm 4.97 143.5 1.15 × 1013 7.99 × 1010

(g) 700 nm 4.12 60.4 4.46 × 1012 7.38 × 1010

(h) 1.00 mm 0.00288 0.00289 7.50 × 10– 4 0.260

(i) 10.0 cm 2.88 × 10–5 2.88 × 10–5 7.50 × 10–14 2.60 × 10–9

(j) We approximate the area under the   P λ( ) versus λ  curve, between 400 nm and 700 nm, as two
trapezoids:

    
P ≈

5.44 + 7.99( ) × 1010  
W
m







580 − 400( ) × 10−9  m[ ]
2   

+ 
7.99 + 7.38( ) × 1010 W

m






700 − 580( ) × 10−9  m[ ]
2

    P = 2.13 × 104  W so the power radiated as visible light is approximately 20 kW  .
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40.6 (a)       P = eAσT4,   so

      

T = P

eAσ






1 4

= 3.77 × 1026  W

1 4π 6.96 × 108  m( )2





5.67 × 10−8  
W

m2 ⋅ K4
























1 4

=    5 75 103. ×  K  

(b)
    
λ max

. .
.

.= × ⋅ = × ⋅
×

= × =
− −

−2 898 10 2 898 10
5 75 10

5 04 10
3 3

3
7 m K  m K

 K
 m

T
 504 nm  

40.7 (a)
    
E = hf = 6.626 × 10−34  J ⋅ s( ) 620 × 1012  s−1( ) 1.00 eV

1.60 × 10−19  J







=  2.57 eV  

(b)
    
E hf= = × ⋅( ) ×( ) ×







=− −
−6 626 10 3 10 10

1 00
1 60 10

34 9
19. .

.
.

 J s  s
 eV

 J
1    1 28 10 5. × −  eV  

(c)
    
E = hf = 6.626 × 10−34  J ⋅ s( ) 46.0 × 106  s−1( ) 1.00 eV

1.60 × 10−19  J







=    1 91 10 7. × −  eV  

(d)
    
λ = c

f
= 3.00 × 108  m s

620 × 1012  Hz
= 4.84 × 10−7  m = 484 nm, visible light (blue)  

    
λ = c

f
= 3.00 × 108  m s

3.10 × 109  Hz
= 9.68 × 10−2  m =  9.68 cm, radio wave  

    
λ = c

f
= 3.00 × 108  m s

46.0 × 106  Hz
=  6.52 m, radio wave  

40.8
    
E = hf = hc

λ
=

6.626 × 10−34  J ⋅ s( ) 3.00 × 108  m s( )
589.3 × 10−9  m

= 3.37 × 10−19  J photon

      
n = P

E
= 10.0 J s

3.37 × 10−19  J photon
=   2 96 1019. ×  photons s  

40.9 Each photon has an energy E = hf = (6.626 × 10– 34)(99.7 × 106) = 6.61 × 10– 26 J

This implies that there are
150 × 103 J/s

6.61 × 10– 26 J/photons
   = 2.27 × 1030 photons/s   



4 Chapter 40 Solutions

*40.10 Energy of a single 500-nm photon:

Eγ = hf = 
hc

λ
   = 

(6.626 × 10 – 34 J · s)(3.00 × 108 m/s)
500 × 10 – 9 m

   = 3.98 × 10 – 19 J

The energy entering the eye each second

E =     P t= (IA)t = (4.00 × 10 – 11 W/m2) 
π
4 (8.50 × 10 – 3 m) 2(1.00 s)  = 2.27 × 10 – 15 J

The number of photons required to yield this energy

n = 
E
Eγ

   = 
2.27 × 10 – 15 J

3.98 × 10 – 19 J/photon
   = 5.71 × 103 photons   

40.11 We take θ = 0.0300 radians.  Then the pendulum's total energy is

E = mgh = mg(L – L cos θ)

E = (1.00 kg)(9.80 m/s2)(1.00 – 0.9995) = 4.41 × 10–3 J

The frequency of oscillation is
    
f = ω

2π
= 1

2π
g L = 0.498 Hz

The energy is quantized, E = nhf

Therefore,   n = 
E
h f   = 

4.41 × 10–3 J
(6.626 × 10–34 J · s)(0.498 s–1)

   = 1.34 × 1031   

40.12 The radiation wavelength of   λ ′= 500 nm that is observed by observers on Earth is not the true
wavelength, λ , emitted by the star because of the Doppler effect.  The true wavelength is
related to the observed wavelength using:

    

c
′λ

= c
λ

1 − v c( )
1 + v c( )

    
λ = λ ′

1 − v c( )
1 + v c( ) = 500 nm( ) 1 − 0.280( )

1 + 0.280( ) = 375 nm

The temperature of the star is given by      λ maxT = 2.898 × 10−3  m ⋅ K:

    
T = 2.898 × 10−3  m ⋅ K

λ max
= 2.898 × 10−3  m ⋅ K

375 × 10−9 =   7.73 10  K3×  
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40.13 This follows from the fact that at low T or long λ , the exponential factor in the denominator
of Planck's radiation law is large compared to 1, so the factor of 1 in the denominator can be
neglected.  In this approximation, one arrives at Wien's radiation law.

*40.14 Planck’s radiation law is 

    

I λ ,T( ) = 2πhc2

λ5 ehc λ kBT − 1( )
Using the series expansion 

    
ex = 1 + x + x2

2!
+ x3

3!
+ .  .  .

Planck’s law reduces to
    
I λ ,T( ) = 2πhc2

λ5 1 + hc λ kBT +  .  .  .( ) − 1[ ] ≈ 2πhc2

λ5 hc λ kBT( ) = 2πckBT
λ4

which is the Rayleigh-Jeans law, for very long wavelengths.

40.15 (a) λ c = 
hc

φ
   = 

(6.626 × 10– 34 J · s)(3.00 × 108 m/s)
(4.20 eV)(1.60 × 10–19 J/eV)

   = 296 nm   

fc = 
c

λ c
   = 

3.00 × 108 m/s
296 × 10– 9 m

   = 1.01 × 1015 Hz   

(b)
h c

λ
   = φ + e(∆VS):

(6.626 × 10– 34)(3.00 × 108)
180 × 10– 9    = (4.20 eV)(1.60 × 10– 19 J/eV) + (1.60 × 10–19)(∆VS)

Therefore, ∆VS = 2.71 V   

40.16     K mvmax max= 1
2

2   =  
1
2 (9.11 × 10– 31)(4.60 × 105) 2 = 9.64 × 10 – 20 J = 0.602 eV

(a) φ = E – Kmax =  
1240 eV · nm

625 nm    – 0.602 eV = 1.38 eV   

(b) fc =  
φ
h    = 

1.38 eV
6.626 × 10– 34 J · s

 






1.60 × 10– 19 J

1 eV    = 3.34 × 1014 Hz   
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40.17 (a) λ c =  
hc

φ
 Li:

    

λ c =
6.626 × 10−34 J ⋅ s( ) 3.00 × 108 m / s( )

2.30 eV( ) 1.60 × 10−19 J / eV( ) = 540 nm

Be:

    

λ c =
6.626 × 10−34 J ⋅ s( ) 3.00 × 108 m / s( )

3.90 eV( ) 1.60 × 10−19 J / eV( ) = 318 nm

Hg: 

    

λ c =
6.626 × 10−34 J ⋅ s( ) 3.00 × 108 m / s( )

4.50 eV( ) 1.60 × 10−19 J / eV( ) = 276 nm

  λ < λ c   for photo current.  Thus, only lithium will exhibit the photoelectric effect.  

(b) For lithium,     
    

hc
λ

= φ + Kmax

    

6.626 × 10−34 J ⋅ s( ) 3.00 × 108 m / s( )
400 × 10−9 m

= 2.30 eV( ) 1.60 × 10−19( ) + Kmax

    Kmax = 1.29 × 10−19 J = 0.808 eV  

40.18 From condition (i), hf = e(∆VS 1) + φ1 and hf = e(∆VS 2) + φ2

(∆VS 1) = (∆VS 2) + 1.48 V

Then φ2 – φ1 = 1.48 eV

From condition (ii), h fc 1 = φ1 = 0.600hfc 2 = 0.600φ2

φ2 – 0.600φ2 = 1.48 eV

φ2 = 3.70 eV      φ1 = 2.22 eV   

40.19 (a)
    
e ∆VS( ) = hc

λ
− φ    →    φ = 1240 nm ⋅ eV

546.1 nm
− 0.376 eV =  1.90 eV  

(b)
    
e ∆VS( ) = hc

λ
− φ = 1240 nm ⋅ eV

587.5 nm
− 1.90 eV    →    ∆VS = 0.216 V  
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Goal Solution    
Two light sources are used in a photoelectric experiment to determine the work function for a particular
metal surface.  When green light from a mercury lamp (λ = 546.1 nm) is used, a retarding potential of
0.376 V reduces the photocurrent to zero.    (a)  Based on this measurement, what is the work function for
this metal?  (b) What stopping potential would be observed when using the yellow light from a helium
discharge tube (λ = 587.5 nm)?

G : According to Table 40.1, the work function for most metals is on the order of a few eV, so this metal
is probably similar.  We can expect the stopping potential for the yellow light to be slightly lower
than 0.376 V since the yellow light has a longer wavelength (lower frequency) and therefore less
energy than the green light.  

O : In this photoelectric experiment, the green light has sufficient energy hf  to overcome the work
function of the metal φ so that the ejected electrons have a maximum kinetic energy of 0.376 eV.
With this information, we can use the photoelectric effect equation to find the work function, which
can then be used to find the stopping potential for the less energetic yellow light.

A : (a) Einstein’s photoelectric effect equation is      Kmax = hf − φ, and the energy required to raise an
electron through a 1 V potential is 1 eV, so that     Kmax = eVs = 0.376 eV.

A photon from the mercury lamp has energy: 
    
hf = hc

λ
=

4.14 × 10−15  eV ⋅ s( ) 3.00 × 108  m s( )
546.1× 10−9  m

    E = hf = 2.27 eV

Therefore, the work function for this metal is:     φ = hf − Kmax = 2.27 eV − 0.376 eV( ) = 1.90 eV

(b) For the yellow light,   λ = 587.5 nm, and
    
hf = hc

λ
=

4.14 × 10−15  eV ⋅ s( ) 3.00 × 108  m / s( )
587.5 × 10−9  m

    E = 2.11 eV

Therefore,      Kmax = hf − φ = 2.11 eV − 1.90 eV = 0.216 eV,   so           Vs = 0.216 V    

L : The work function for this metal is lower than we expected, and does not correspond with any of the
values in Table 40.1.  Further examination in the CRC Handbook of Chemistry and Physics reveals
that all of the metal elements have work functions between 2 and 6 eV.  However, a single metal’s
work function may vary by about 1 eV depending on impurities in the metal, so it is just barely
possible that a metal might have a work function of  1.90 eV.    

The stopping potential for the yellow light is indeed lower than for the green light as we expected.
An interesting calculation is to find the wavelength for the lowest energy light that will eject
electrons from this metal. That threshold wavelength for Kmax = 0 is 658 nm, which is red light in the
visible portion of the electromagnetic spectrum.)  
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40.20 From the photoelectric equation, we have:     e ∆VS1( ) = Eγ1 − φ     and         e ∆VS2( ) = Eγ 2 − φ

Since     ∆VS2 = 0.700 ∆VS1( ), then     e ∆VS2( ) = 0.700(Eγ1 − φ) = Eγ 2 − φ

or      (1 − 0.700)φ = Eγ 2 − 0.700Eγ1

and the work function is:    
    
φ =

Eγ 2 − 0.700Eγ1

0.300

The photon energies are: 
    
Eγ1 =

hc
λ 1

= 1240 nm ⋅ eV
410 eV

= 3.03 eV

and
    
E

hc
γ λ2

2

1240
445

2 79= = ⋅ = nm eV
 eV

 eV.

Thus, the work function is
  
φ = 2.79 eV − 0.700 3.03 eV( )

0.300
= 2.23 eV

and we recognize this as characteristic of potassium  .

*40.21 The energy needed is E = 1.00 eV = 1.60 × 10– 19 J

The energy absorbed in time t is E = Pt = (IA)t

so  t = 
E

IA   = 
1.60 × 10– 19 J

(500 J/s · m2)[π (2.82 × 10– 15 m)2]
   = 1.28 × 107 s = 148 days  

The gross failure of the classical theory of the photoelectric effect contrasts with the success of
quantum mechanics.

*40.22 Ultraviolet photons will be absorbed to knock electrons out of the sphere with maximum
kinetic energy     Kmax = hf − φ, or

    
Kmax =

6.626 × 10−34  J ⋅ s( ) 3.00 × 108  m s( )
200 × 10−9  m

1.00 eV
1.60 × 10−19  J







−4.70 eV = 1.51 eV

The sphere is left with positive charge and so with positive potential relative to     V = 0 at   r = ∞.
As its potential approaches 1.51 V, no further electrons will be able to escape, but will fall back
onto the sphere.  Its charge is then given by

  
V = keQ

r
  or

    
Q = rV

ke
=

5.00 × 10−2  m( ) 1.51 N ⋅ m C( )
8.99 × 109  N ⋅ m2 C2 =    8 41 10 12. × −  C  
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40.23 (a) By having the photon source move toward the metal, the incident photons are Doppler
shifted to higher frequencies, and hence, higher energy.

(b) If      v = 0.280c , 
    

′f = f
1 + v / c
1 − v / c

= 7.00 × 1014( ) 1.28
0.720   = 9.33 × 1014  Hz

Therefore,
  
φ = 6.626 × 10−34  J ⋅ s( ) 9.33 × 1014  Hz( ) = 6.18 × 10−19  J = 3.87 eV  

(c) At     v = 0.900c ,      f = 3.05 × 1015  Hz   

and
    
Kmax = hf − φ = 6.626 × 10−34  J ⋅ s( ) 3.05 × 1015  Hz( ) 1.00 eV

1.60 × 10−19  J







− 3.87 eV  = 8.78 eV  

*40.24 E = 
hc

λ
   = 

(6.626 × 10– 34 J · s)(3.00 × 108 m/s)
700 × 10– 9 m

   = 2.84 × 10– 19 J = 1.78 eV   

p = 
h

λ
   = 

6.626 × 10– 34 J · s
700 × 10– 9 m

   = 9.47 × 10– 28 kg · m/s   

40.25 (a)
    
∆λ = h

mec
(1 − cos θ)  =  

6.626 × 10 – 34

(9.11 × 10 – 31)(3.00 × 108)
 (1 – cos 37.0°)    = 4.88 × 10 – 13 m   

(b)     E0 = hc / λ 0 :
  
300 × 103  eV( ) 1.60 × 10−19  J / eV( ) = 6.626 × 10−34( ) 3.00 × 108  m / s( ) λ 0

λ 0 = 4.14 × 10 – 12 m and   ′λ = λ 0 + ∆λ = 4.63 × 10−12  m

    
′E = hc

′λ
=

6.626 × 10−34  J ⋅ s( ) 3.00 × 108  m / s( )
4.63 × 10−12  m

= 4.30 × 1014  J =  268 keV   

(c)     Ke = E0 − ′E = 300 keV − 268.5 keV =  31.5 keV   

40.26 This is Compton scattering through 180°:

E0 = 
hc

λ 0
   = 

(6.626 × 10 – 34 J · s)(3.00 × 108 m/s)
(0.110 × 10 – 9 m)(1.60 × 10–19 J/eV)

   = 11.3 keV

    
∆λ = h

mec
(1 − cos θ)   =  (2.43 × 10 – 12 m)(1 – cos 180°) = 4.86 × 10 – 12 m

′λ  = λ 0 + ∆λ  = 0.115 nm so
    

′E = hc
′λ

= 10.8 keV

Momentum conservation:
h

λ 0
   i = 

h
′λ  (–i)  + pe (i)  and

    
pe = h

1
λ 0

− 1
′λ







    

pe = 6.626 × 10−34  J ⋅ s( ) 3.00 × 108  m / s( )/ c

1.60 × 10−19  J / eV











1
0.110 × 10−9  m

+ 1
0.115 × 10−9  m





 = 22.1 keV/c   
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Energy conservation: 11.3 keV = 10.8 keV + Ke so that Ke = 478 eV   

Check: E 2 = p 2 c 2  +     m ce
2 4 or     (mec

2 + Ke )2 = (pc)2 + (mec
2 )2

(511 keV + 0.478 keV)2 = (22.1 keV)2 + (511 keV)2

2.62 × 1011 = 2.62 × 1011

40.27 Ke = E0 –   ′E

With Ke =   ′E ,       ′E  = E0 –   ′E :      ′E  = 
E0
2   

′λ  = 
hc
  ′E    = 

h c
1
2 E0

   = 2 
hc
E0

   = 2λ 0 ′λ  = λ 0 + λ C (1 – cos θ)

2λ 0 = λ 0 + λ C (1 – cos θ) 1 – cos θ = 
λ 0
λ C

   = 
0.00160
0.00243   → θ = 70.0°  

40.28 We may write down four equations, not independent, in the three unknowns     λ 0 ,  ′λ ,  and v
using the conservation laws:

    

hc
λ 0

= hc
′λ
+ γmec

2 − mec
2 (Energy conservation)

    

h
λ 0

= γmev cos 20.0° (momentum in   x-direction)

    
0 = h

′λ
− γmev sin 20.0° (momentum in   y-direction)

and Compton's equation  
    

′λ − λ 0 = h
mec

1 − cos 90.0°( ).

It is easiest to ignore the energy equation and, using the two momentum equations, write

    

h / λ 0

h / ′λ
= γ mev cos 20.0°

γ mev sin 20.0°
    or     λ 0 = ′λ tan 20.0°

Then, the Compton equation becomes    ′λ − ′λ tan 20.0°= 0.00243 nm,

or     
  

′λ = 0.00243 nm
1 − tan 20.0°

= 0.00382 nm =  3.82 pm  
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40.29 (a) Conservation of momentum in the   x  direction gives:     pγ = ′pγ cos θ + pe cos φ

or since θ = φ,     
    

h
λ 0

= pe + h
′λ





 cos θ [1]

Conservation of momentum in the   y  direction gives:     0 = ′pγ sin θ − pe sin θ ,

which (neglecting the trivial solution   θ = 0) gives:
  
pe = ′pγ = h

′λ
 [2]

Substituting [2] into [1] gives:   
    

h
λ 0

= 2h
′λ

cos θ ,   or   ′λ = 2λ 0 cos θ [3]

Then the Compton equation is
    

′λ − λ 0 = h
mec

(1 − cos θ)

giving
    
2λ 0 cos θ − λ 0 = h

mec
(1 − cos θ)

 or   
    
2 cos θ − 1 = hc

λ 0

1
mec

2 (1 − cos θ)

Since  
    
Eγ =

hc
λ 0

,  this may be written as:
    
2 cos θ − 1 =

Eγ

mec
2







(1 − cos θ)

which reduces to: 
    

2 +
Eγ

mec
2







cos θ = 1 +

Eγ

mec
2

or     
    
cos θ =

mec
2 + Eγ

2mec
2 + Eγ

= 0.511 MeV + 0.880 MeV
1.02 MeV + 0.880 MeV

= 0.732 so that   θ = φ = 43.0°  

(b) Using Equation (3):
    

′Eγ = hc
′λ

= hc
λ 0 2 cos θ( ) =

Eγ

2 cos θ
= 0.880 MeV

2 cos 43.0°
= 0.602 MeV = 602 keV  

Then,  
    

′pγ =
′Eγ

c
= 0.602 MeV c =   3.21× 10−22  kg ⋅ m s  

(c) From Equation (2),      pe = ′pγ = 0.602 MeV c =   3.21× 10−22  kg ⋅ m s  

From energy conservation:     Ke = Eγ − ′Eγ = 0.880 MeV − 0.602 MeV = 0.278 MeV =  278 keV  
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40.30 The energy of the incident photon is     E0 = pγc = hc λ 0 .

(a) Conserving momentum in the   x  direction gives

    pγ = pe cos φ + ′pγ cos θ ,  or since φ = θ ,    
    

E0

c
= pe + ′pγ( )cos θ [1]

Conserving momentum in the   y  direction (with φ = θ ) yields

    0 = ′pγ sin θ − pe sin θ ,   or    
  
pe = ′pγ = h

′λ
[2]

Substituting Equation [2] into Equation [1] gives

    

E0

c
= h

′λ
+ h

′λ




 cos θ  ,   or    

    
′λ = 2hc

E0
cos θ [3]

By the Compton equation, 
    

′λ − λ 0 = h
mec

1 − cos θ( ), 
    

2hc
E0

cos θ − 2hc
E0

= h
mec

1 − cos θ( )

which reduces to 
    
2mec

2 + E0( )cos θ = mec
2 + E0

Thus,   
    
φ = θ = cos−1 mec

2 + E0

2mec
2 + E0







 

(b) From Equation [3],   
    

′λ = 2hc
E0

cos θ = 2hc
E0

mec
2 + E0

2mec
2 + E0








Therefore,   
    

′Eγ = hc
′λ

= hc

2hc E0( ) mec
2 + E0( ) 2mec

2 + E0( ) =  
    

E0

2
2mec

2 + E0

mec
2 + E0







 ,

and
  

′pγ =
′Eγ

c
= 

    

E0

2c
2mec

2 + E0

mec
2 + E0







 

(c) From conservation of energy,
    
Ke = E0 − ′Eγ = E0 − E0

2
2mec

2 + E0

mec
2 + E0








or
    
Ke = E0

2
2mec

2 + 2E0 − 2mec
2 − E0

mec
2 + E0







= 

    

E0
2

2 mec
2 + E0( )  

Finally, from Equation (2),     pe = ′pγ = 
    

E0

2c
2mec

2 + E0

mec
2 + E0







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40.31 (a) Thanks to Compton we have four equations in the unknowns     φ,  v,  and ′λ :

    

hc
λ 0

= hc
′λ
+ γ mec

2 − mec
2 (energy conservation) [1]

    

h
λ 0

= h
λ '

cos 2φ + γmev  cos φ (momentum in   x  direction) [2]

    
0 = h

′λ
sin 2φ − γ mev sin φ (momentum in   y  direction) [3]

    
′λ − λ 0 = h

mec
(1 − cos 2φ) (Compton equation) [4]

Using   sin 2φ = 2 sin φ cos φ in Equation [3] gives 
    
γ mev = 2h

′λ
cos φ.

Substituting this into Equation [2] and using   cos 2φ = 2 cos2 φ − 1 yields

    

h
λ 0

= h
′λ
(2 cos2φ − 1) + 2h

′λ
 cos2φ = h

′λ
(4 cos2φ − 1),

or   λ ' = 4λ 0 cos2φ − λ 0 [5]

Substituting the last result into the Compton equation gives

    
4λ 0 cos2φ − 2λ 0 = h

mec
1 − 2 cos2φ − 1( )[ ] = 2

hc
mec

2 1 − cos2 φ( ) .

With the substitution     λ 0 = hc E0 , this reduces to

    
cos2 φ = mec

2 + E0

2mec
2 + E0

= 1 + x
2 + x

  where  
    
x ≡ E0

mec
2 .

For 
    
x = 0.700 MeV

0.511 MeV
= 1.37, this gives 

    
φ = cos−1 1 + x

2 + x
= 33.0°  

(b) From Equation [5],  
    

′λ = λ 0 4 cos2φ − 1( ) = λ 0 4
1 + x
2 + x





 − 1





= λ 0
2 + 3x
2 + x





 .  

Then, Equation [1] becomes

    

hc
λ 0

= hc
λ 0

2 + x
2 + 3x





 + γ mec

2 − mec
2    or     

    

E0

mec
2 − E0

mec
2

2 + x
2 + 3x





 + 1 = γ .

Thus,  
    
γ = 1 + x − x

2 + x
2 + 3x





 , and with     x = 1.37  we get   γ = 1.614.

Therefore, 
    

v
c

= 1 − γ −2 = 1 − 0.384 = 0.785  or  v = 0.785 c  .
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40.32
    

′λ − λ =
h

mec
(1 − cos θ)

    
′′λ − ′λ =

h
mec

1 − cos(π − θ)[ ]

    
′′λ − λ =

h
mec

− h
mec

cos(π − θ) +
h

mec
− h

mec
cos θ

 Now cos (π – θ) = – cos θ,  so
    

′′λ − λ = 2
h

mec
= 0.00486 nm  

40.33 (a)
    
K = 1

2 mev
2 = 1

2 9.11× 10−31 kg( ) 1.40 × 106  m s( )2
= 8.93 × 10−19  J = 5.58 eV

    
E0 = hc

λ 0
= 1240 eV ⋅ nm

0.800 nm
= 1550 eV

    ′E = E0 − K ,   and   
    

′λ = hc
′E

= 1240 eV ⋅ nm
1550 eV − 5.58 eV

= 0.803 nm

  ∆λ = ′λ − λ 0 = 0.00288 nm =  2.88 pm  

(b)
  
∆λ = λ C 1 − cos θ( ) ⇒ cos θ = 1 − ∆λ

λ C
= 1 − 0.00288 nm

0.00243 nm
= − 0.189,  so    θ = 101°  

*40.34 Maximum energy loss appears as maximum increase in wavelength, which occurs for
scattering angle 180°.  Then     ∆λ = 1 − cos 180°( ) h / mc( ) = 2h / mc   where   m is the mass of the
target particle.  The fractional energy loss is

    

E0 − ′E
E0

=
hc λ 0 − hc ′λ

hc λ 0
=

′λ − λ 0

′λ
= ∆λ

λ 0 + ∆λ
= 2h mc

λ 0 + 2h mc

Further,     λ 0 = hc E0 ,  so  
    

E0 − ′E
E0

= 2h mc
hc E0 + 2h mc

= 2E0

mc2 + 2E0
.

(a) For scattering from a free electron,     mc2 = 0.511 MeV, so

    

E0 − ′E
E0

= 2 0.511 MeV( )
0.511 MeV + 2 0.511 MeV( ) =  0.667  

(b) For scattering from a free proton,     mc2 = 938 MeV, and

    

E0 − ′E
E0

= 2 0.511 MeV( )
938 MeV + 2 0.511 MeV( ) =  0.00109  
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40.35 Start with Balmer's equation,    
    

1
λ

= RH
1

22 − 1
n 2





  ,    or   

    
λ = (4n 2 / RH )

(n 2 − 4)
.

Substituting      RH = 1.0973732 × 107 m−1,   we obtain

    
λ = (3.645 × 10− 7 m)n 2

n 2 − 4
= 364.5n 2

n 2 − 4
nm,   where n = 3, 4, 5, . . .

40.36 (a) Using  
    

1
λ

= RH
1

nf
2 − 1

ni
2 









 , for nf = 2, and ni ≥ 3,  we get:

    

λ = 4n2

RH n2 − 4( ) = 4n2

2.00 × 107  m−1( ) n2 − 4( ) = 200.0( )n2

n2 − 4
nm

This says that   200 nm ≤ λ ≤ 360 nm, which is ultraviolet  .

(b) Using     n ≥ 3 ,

    

λ = 4n2

RH n2 − 4( ) = 4n2

0.500 × 107 m− 1( ) n2 − 4( ) = (800.0)n2

n2 − 4
nm

This says that   800 nm ≤ λ ≤ 1440 nm,  which is in the infrared  .

40.37 (a) Lyman series:
    

1
λ

= R 1 − 1
n2





    n = 2, 3, 4, . . .

    

1
λ

= 1
94.96 × 10−9 = (1.097 × 107 ) 1 − 1

n2




 n = 5  

(b) Paschen series:
    

1
λ

= R
1

32 − 1
n2





   n = 4, 5, 6, . . .

The shortest wavelength for this series corresponds to n = ∞ for ionization

    

1
λ

= 1.097 × 107 1
9

− 1
n2





 For n = ∞, this gives λ = 820 nm

This is larger than 94.96 nm, so this wave length cannot be associated with the Paschen series   

Brackett series:
    

1
λ

= R
1

42 − 1
n2





   n = 5, 6, 7, . . .

    

1
λ

= 1.097 × 107 1
16

− 1
n2





 n = ∞ for ionization   λ min = 1458 nm

Once again this wavelength cannot be associated with the Brackett series 
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40.38 (a)
    
λ min = hc

Emax

Lyman (nf = 1):
    
λ min = hc

E1
= 1240 eV ⋅ nm

13.6 eV
=  91.2 nm    (Ultraviolet)

Balmer (nf = 2):
    
λ min = hc

E2
= 1240 eV ⋅ nm

1
4( )13.6 eV

=  365 nm    (UV)

Paschen (nf = 3):   λ min =  .  .  .  = 32(91.2 nm) = 821 nm    (Infrared)

Bracket (nf = 4):   λ min =  .  .  .  = 42(91.2 nm) = 1460 nm   (IR) 

(b)
    
Emax = hc

λ min

Lyman: Emax = 13.6 eV       = E1( )
Balmer: Emax = 3.40 eV       = E2( )
Paschen: Emax = 1.51 eV       = E3( )
Brackett: Emax = 0.850 eV       = E4( )

40.39 Liquid O2     λ abs = 1269 nm

    
E = hc

λ
= 1.2398 × 10−6

1.269 × 10−6 = 0.977 eV   for each molecule.

For two molecules,   
    
λ = hc

2E
=  634 nm, red  

By absorbing the red photons, the liquid O2 appears to be blue.

*40.40 (a)
    
v1 =

kee
2

mer1
 where     r1 = 1( )2 a0 = 0.00529 nm = 5.29 × 10−11 m

    

v1 =
8.99 × 109  N ⋅ m2 C2( ) 1.60 × 10−19  C( )2

9.11× 10−31 kg( ) 5.29 × 10−11 m( ) =   2.19 × 106  m s  

(b)
    
K1 = 1

2 mev1
2 = 1

2 9.11× 10−31 kg( ) 2.19 × 106  m s( )2
= 2.18 × 10−18  J = 13.6 eV  

(c)
    
U1 = − kee

2

r1
= −

8.99 × 109  N ⋅ m2 C2( ) 1.60 × 10−19  C( )2

5.29 × 10−11 m
= −4.35 × 10−18  J = –27.2 eV  
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40.41 (a)
    
r 2

2 = 0.0529 nm( ) 2( )2 = 0.212 nm  

(b)
    
mev2 = mekee

2

r 2
=

9.11× 10−31 kg( ) 8.99 × 109  N ⋅ m2 C 2( ) 1.60 × 10−19  C( )2

0.212 × 10−9  m
=   9.95 × 10−25  kg ⋅ m s  

(c)
    
L2 = mev2r 2 = 9.95 × 10−25  kg ⋅ m s( ) 0.212 × 10−9  m( )   =   2.11× 10−34  kg ⋅ m2 s  

(d)

    

K2 = 1
2 mev2

2 =
mev2( )2

2me
=

9.95 × 10−25  kg ⋅ m s( )2

2 9.11× 10−31 kg( ) = 5.43 × 10−19  J = 3.40 eV  

(e)
    
U2 = − kee

2

r 2
= −

8.99 × 109  N ⋅ m2 C 2( ) 1.60 × 10−19  C( )2

0.212 × 10−9  m
= −1.09 × 10−18  J =  – 6.80 eV  

(f)     E2 = K2 +U2 = 3.40 eV − 6.80 eV = – 3.40 eV  

40.42

    

∆E = (13.6 eV)
1

ni
2 − 1

n f
2











Where for     ∆E > 0 we have absorption and for     ∆E < 0 we have emission.

(A) for ni = 2 and nf = 5 ∆E = 2.86 eV (absorption)

(B) for ni = 5 and nf = 3 ∆E = – 0.967 eV (emission)

(C) for ni = 7 and nf = 4 ∆E = – 0.572 eV (emission)

(D) for ni = 4 and nf = 7 ∆E = 0.572 eV (absorption)

(a) E = 
hc

λ
   so the shortest wavelength is emitted in transition B  .

(b) The atom gains most energy in transition A  .

(c) The atom loses energy in transitions B and C  .

40.43 (b)

    

1
λ

= R
1

n f
2 − 1

ni
2









   

= (1.097 × 107  m−1)
1

22 − 1
62





 so     λ = 410 nm  

(a)
    
E = hc

λ
= (6.626 × 10−34 J ⋅ s)(3.00 × 108  m / s)

410 × 10−9  m
= 4.85 × 10−19  J = 3.03 eV  

(c)
    
f = c

λ
= 3.00 × 108

410 × 10−9 = 7.32 × 1014 Hz  
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*40.44 We use   En = 
–13.6 eV

n2   

To ionize the atom when the electron is in the nth level, it is necessary to add an amount of
energy given by

E = – En = 
13.6 eV

n2   

(a) Thus, in the ground state where n = 1, we have E = 13.6 eV   

(b) In the n = 3 level,   E = 
13.6 eV

9    = 1.51 eV   

*40.45 Starting with  12  m ev2 = 
kee2

2r   ,   we have   v2 = 
kee2

m er
   

and using  
      
rn = n2h2

mekee
2

gives  

      

vn
2 = kee

2

me
n2h2

mekee
2

    or     
      
vn = kee

2

nh

*40.46 (a) The velocity of the moon in its orbit is v = 
2π r
T    = 

2π (3.84 × 108 m)
2.36 × 106 s

   = 1.02 × 103 m/s

So, L = mvr = (7.36 × 1022 kg)(1.02 × 103 m/s)(3.84 × 108 m) = 2.89 × 1034 kg · m2/s   

(b) We have L = n  h

or n = 
L
  h   = 

2.89 × 1034 kg · m2/s
1.055 × 10 – 34 J · s

   = 2.74 × 1068   

(c) We have n   h = L = mvr = m(GMe /r)1/2 r,

so r =   h2

m2 GMe
   n2 = Rn2 and  

∆r
r    = 

(n + 1)2 R – n2R
n2R

   = 
2n + 1

n2   

which is approximately equal to   
2
n    = 7.30 × 10– 69   
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40.47 The batch of excited atoms must make these six transitions to get back to state one:  2 → 1,  and
also  3 → 2  and  3 → 1,  and also  4 → 3  and 4 → 2  and  4 → 1.   Thus, the incoming light must
have just enough energy to produce the  1 → 4  transition.  It must be the third line of the
Lyman series in the absorption spectrum of hydrogen.  The absorbing atom changes from
energy

    
Ei = −13.6 eV

12 = −13.6 eV    to   
    
Ef = −13.6 eV

42 = −0.850 eV,

so the incoming photons have wavelength

  
    
λ = hc

Ef − Ei
=

6.626 × 10−34  J ⋅ s( ) 3.00 × 108  m s( )
−0.850 eV − −13.6 eV( )

1.00 eV
1.60 × 10−19  J





   = 9.75 × 10−8  m = 97.5 nm  

40.48 Each atom gives up its kinetic energy in emitting a photon, so

1
2  mv2 =  

hc

λ
   = 

(6.626 × 10– 34 J · s)(3.00 × 108 m/s)
(1.216 × 10– 7 m)

    =  1.63 × 10–18 J

v = 4.42 × 104 m/s   

40.49 (a) The energy levels of a hydrogen-like ion whose charge number
is Z are given by  

    
En = −13.6 eV( ) Z2

n2

Thus for He lium    Z = 2( ) , the energy levels are

    
En = − 54.4 eV

n2    n = 1,  2,  3,   .  .  .  

(b) For   He+,     Z = 2 ,  so we see that the ionization energy (the energy
required to take the electron from the     n = 1 to the   n = ∞  state is

    
E = E∞ − E1 = 0 − −13.6 eV( ) 2( )2

1( )2 =  54.4 eV  
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40.50
      
r = n2h2

Zmekee
2 = n2

Z
h2

mekee
2







 ;     n = 1

    
r = 1

Z
(1.055 × 10−34  J ⋅ s)2

(9.11× 10−31 kg)(8.99 × 109  N ⋅ m2 / C 2 )(1.602 × 10−19  C)2









 = 5.29 × 10−11 m

Z

(a) For He+,   Z = 2
    
r = 5.29 × 10−11 m

2
= 2.65 × 10−11 m = 0.0265 nm  

(b) For Li2+,   Z = 3
    
r = 5.29 × 10−11 m

3
= 1.77 × 10−11 m =  0.0177 nm  

(c) For Be3+,   Z = 4
    
r = 5.29 × 10−11 m

4
= 1.32 × 10−11 m = 0.0132 nm  

40.51 Since 
    
F = qvB = mv2

r
we have    qrB = mv,

or       qr2B = mvr = nh so 
    
rn = nh

qB
 

40.52 (a) The time for one complete orbit is:    
    
T =

2πr
v

From Bohr's quantization postulate,     L = mevr = nh, we see that 
      
v =

nh
mer

Thus, the orbital period becomes:

      
T =

2πmer
2

nh
=

2πme(a0n 2 )2

nh
=

2πmea0
2

h
n3       or         T = t0n3     where    

      
t0 =

2πmea0
2

h
=

2π(9.11× 10−31 kg)(0.0529 × 10−9 m)2

(1.055 × 10−34 J ⋅ s)
=   1.52 10 s16× −  

(b) With n = 2, we have      T = 8t0 = 8(1.52 × 10−16 s) = 1.21× 10−15 s

 Thus, if the electrons stay in the n = 2 state for 10 µs, it will make

  

10.0 × 10−6 s
1.21× 10−15 s / rev

= 8.23 × 109 revolutions   of the nucleus

(c) Yes, for 8.23 × 109 "electron years"  
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*40.53 λ  = 
h
p    = 

h
m v    = 

6.626 × 10–34 J · s
(1.67 × 10–27 kg)(1.00 × 106 m/s)

   = 3.97 × 10–13 m   

40.54 (a)
p2

2m    = (50.0)(1.60 × 10–19 J)

p = 3.81 × 10–24 kg · m/s   

λ  = 
h
p    = 0.174 nm   

(b)
p2

2m    = (50.0 × 103)(1.60 × 10–19 J)

p = 1.20 × 10– 22 kg · m/s

λ  = 
h
p    = 5.49 × 10 –12 m   

The relativistic answer is slightly more precise:

    

λ = h
p

= hc

(mc2 + K)2 − m2c4[ ]1/2 = 5.37 × 10−12  m

*40.55 (a) Electron: λ  =  
h
p    and

    
K = 1

2 mev
2 = me

2v2

2me
= p2

2me

so     p = 2meK       

and

    

λ = h
2meK

= 6.626 × 10−34  J ⋅ s

2 9.11× 10-31 kg( ) 3.00( ) 1.60 × 10−19  J( )

  λ = 7.09 × 10−10  m =  0.709 nm  

(b) Photon:      λ = c / f   and    E = hf    so     f = E h  and

λ  = 
hc
E    = 

(6.626 × 10– 34 J · s)(3.00 × 108 m/s)
(3.00)(1.60 × 10– 19 J)

   = 4.14 × 10–7 m = 414 nm  
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40.56 From the Bragg condition (Eq. 38.13),

    mλ = 2d sin θ = 2d cos φ 2( )

But,     d = a sin φ 2( )    where   a is the lattice spacing.
Thus, with     m = 1,

    λ = 2a sin φ 2( ) cos φ 2( ) = a sin φ

    
λ = h

p
= h

2meK
  

= 6.626 × 10−34  J ⋅ s

2 9.11× 10−31 kg( ) 54.0 × 1.60 × 10−19  J( )
= 1.67 × 10−10  m

Therefore, the lattice spacing is

    
a = λ

sin φ
= 1.67 × 10−10  m

sin 50.0°
= 2.18 × 10−10  m =  0.218 nm  

*40.57 (a)    λ ~ 10−14  m or less.

    
p = h

λ
~

6.6 × 10−34  J ⋅ s
10−14  m

= 10−19  kg ⋅ m s or more.

The energy of the electron is

    
E = p2c2 + me

2c4 ~ 10−19( )2
3 × 108( )2

+ 9 × 10−31( )2
3 × 108( )4





1 2

  ~ 10−11 J~ 108  eV or more,

so that 
    
K = E − mec

2 ~ 108  eV − 0.5 × 106  eV( )    ~ 108  eV   or more.

(b) The electric potential energy of the electron would be

    
Ue = keq1q2

r
~

9 × 109  N ⋅ m2 C2( ) 10−19  C( ) −e( )
10−14  m

~ −105  eV

With its kinetic energy much larger than its negative potential energy,
the electron would immediately escape the nucleus  .
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Goal Solution    
The nucleus of an atom is on the order of   10−14  m in diameter.  For an electron to be confined to a
nucleus, its de Broglie wavelength would have to be of this order of magnitude or smaller. (a) What
would be the kinetic energy of an electron confined to this region?  (b) On the basis of this result, would
you expect to find an electron in a nucleus? Explain.  

G : The de Broglie wavelength of a normal ground-state orbiting electron is on the order   10−10  m (the
diameter of a hydrogen atom), so with a shorter wavelength, the electron would have more kinetic
energy if confined inside the nucleus.   If the kinetic energy is much greater than the potential energy
from its attraction with the positive nucleus, then the electron will escape from its electrostatic
potential well.

O : If we try to calculate the velocity of the electron from the de Broglie wavelength, we find that

    

v = h
meλ

= 6.63 × 10−34  J ⋅ s

9.11× 10-31 kg( ) 10−14  m( ) = 7.27 × 1010  m / s

which is not possible since it exceeds the speed of light.  Therefore, we must use the relativistic
energy expression to find the kinetic energy of this fast-moving electron.  

A : (a) The relativistic kinetic energy of a particle is     K = E − mc2, where 
    
E2 = pc( )2 + mc2( )2

, and the
momentum is   p = h λ :

    
p = 6.63 × 10−34  J ⋅ s

10-14  m
= 6.63 × 10−20  N ⋅ s

    
E = 1.99 × 10−11 J( )2

+ 8.19 × 10−14  J( )2
= 1.99 × 10−11 J

    
K = E − mc2 = 1.99 × 10−11 J − 8.19 × 10−14  J

1.60 × 10−19  J / eV
  = 124 MeV ~ 100 MeV

(b) The electrostatic potential energy of the electron   10−14  m away from a positive proton is :

    
U = −kee

2 r = −
8.99 × 109  

N ⋅ m2

C2







1.60 × 10−19   C( )2

10−14  m
= −2.30 × 10−14  J ~ −0.1 MeV

L : Since the kinetic energy is nearly 1000 times greater than the potential energy, the electron would
immediately escape the proton’s attraction and would not be confined to the nucleus.

 It is also interesting to notice in the above calculations that the rest energy of the electron is
negligible compared to the momentum contribution to the total energy.
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40.58 (a) From E = γ me c2  γ  = 
20.0 × 103 MeV

0.511 MeV    = 3.91 × 104   

(b) p ≈ 
E
c        (for me c2 << pc)

p = 
(2.00 × 104 MeV)(1.60 × 10–13 J/MeV)

3.00 × 108 m/s
   = 1.07 × 10–17 kg · m/s   

(c) λ  = 
h
p    = 

6.626 × 10–34 J · s
1.07 × 10–17 kg · m/s

   = 6.22 × 10–17 m   

Since the size of a nucleus is on the order of 10–14 m, the 20-GeV electrons would be small
enough to go through the nucleus.

40.59 (a) E 2 = p 2 c 2  + m2c4

with E = hf ,  p = 
h

λ
   ,  and mc = 

h

λ C
  

so   h2f 2 = 
h2c2

λ2    +  
    

h c2 2

2λ C
and

    

f
c







2

= 1
λ2 + 1

λ C
2         (Eq. 1)

(b) For a photon     f / c = 1/ λ .   

The third term     1/ λ C  in Equation 1 for electrons and other massive particles shows that

 they will always have a different frequency from photons of the same wavelength  

40.60 (a) The wavelength of the student is   λ = h p = h mv .   If w is the width of the diffraction aperture,
then we need     w ≤ 10.0λ = 10.0 h mv( ) , so that

    
v ≤ 10.0

h
mw

= 10.0
6.626 × 10−34  J ⋅ s

(80.0 kg)(0.750 m)







=    1.10 × 10−34  m s  

(b) Using  
  
t = d

v
  we get:     

    
t ≥ 0.150 m

1.10 × 10−34  m / s
=    1.36 × 1033  s  

(c) No  .  The minimum time to pass through the door is over 1015  times the age of the
Universe.
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40.61 The de Broglie wavelength is:  
  
λ = h

γ mev

The Compton wavelength is:   
    
λ C = h

mec

Therefore, we see that to have   λ = λ C , it is necessary that   γv = c .

This gives:   
    

v

1 − v2 / c2   
= c ,   or   

    

v
c







2

= 1 − v
c







2

,  yielding  v = 
    

c
2

 .

40.62
  
∆VS = h

e




 f − φ

e

From two points on the graph
    
0 = h

e




 4.1× 1014  Hz( ) − φ

e

and
    
3.3 V = h

e




 12 × 1014  Hz( ) − φ

e

Combining these two expressions we find:

(a) φ = 1.7 eV   

(b)
h
e    = 4.2 × 10 – 15 V · s   

(c) At the cutoff wavelength  
hc

λ c
   = φ = 



h

e  
ec

λ c
  

λ c = (4.2 × 10 – 15 V · s)(1.6 × 10 – 19 C) 
(3.0 × 108 m/s)

(1.7 eV)(1.6 × 10 – 19 J/eV)
   = 730 nm   

40.63 Kmax = 
q2B2R2

2m e
  = 

(1.60 × 10 – 19 C)2(2.00 × 10 – 5 T)2(0.200 m)2

2(9.11 × 10 – 31 kg)
   = 2.25 × 10 – 19 J = 1.40 eV = hf – φ

φ = hf – Kmax =  
hc

λ
   – Kmax= 

(4.14 × 10 – 15 eV · s)(3.00 × 108 m/s)
450 × 10 – 9 m

   – 1.40 eV = 1.36 eV   
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40.64 From the path the electrons follow in the magnetic field, the maximum kinetic energy is seen
to be:

    
Kmax = e2B2R2

2me

From the photoelectric equation, 
    
Kmax = hf − φ = hc

λ
− φ

Thus, the work function is  
    
φ = hc

λ
− Kmax = 

    

hc
λ

− e2B2R2

2me
 

40.65 We want an Einstein plot of Kmax versus f

λ , nm f, 1014 Hz Kmax, eV
588 5.10 0.67
505 5.94 0.98
445 6.74 1.35
399 7.52 1.63

(a) slope = 
0.402 eV
1014 Hz

   ± 8%

(b) e(∆VS) = hf – φ

h = (0.402) 
1.60 × 10– 19 J · s

1014    = 6.4 × 10– 34 J · s ± 8%   

(c) Kmax = 0   at   f ≈ 344 × 1012 Hz

φ = hf = 2.32 × 10– 19 J = 1.4 eV   

    f THz( )

40.66
    
∆λ = h

mpc
(1 − cos θ) = (6.626 × 10−34  J ⋅ s)

(1.67 × 10−27  kg)(3.00 × 108  m / s)
(0.234) = 3.09 × 10−16  m

    
λ 0 = hc

E0
= (6.626 × 10−34  J ⋅ s)(3.00 × 108  m / s)

(200 MeV)(1.60 × 10−13  J / MeV)
= 6.20 × 10−15  m

  ′λ = λ 0 + ∆λ = 6.51× 10−15  m

(a)
  
Eγ = hc

′λ
= 191 MeV  

(b) Kp = 9.20 MeV  
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40.67  M is the mass of the positron which equals me, the mass of the electron.

So
    
µ ≡ reduced mass = meM

me + M
= me

2

      
rpos = n2h2

Zµkee
2 = n2h2

Z me / 2( )kee
2 = 2n2h2

Zmekee
2  or     rpos = 2rHyd =

    
1.06 × 10−10 m( )n2  

This is the separation of the two particles.

      
Epos = −µke

2e4

2h2
1

n2 = − meke
2e4

4h2
1

n2




 ;     n = 1, 2, 3, . . . or

    
Epos =

EHyd

2
= 

    

−6.80 eV
n2  

Goal Solution    
Positronium is a hydrogen-like atom consisting of a positron (a positively charged electron) and an
electron revolving around each other.  Using the Bohr model, find the allowed radii (relative to the
center of mass of the two particles) and the allowed energies of the system.

G : Since we are told that positronium is like hydrogen, we might expect the allowed radii and energy
levels to be about the same as for hydrogen:  

    
r = a0n2 = 5.29 × 10−11 m( )n2    and       En = −13.6 eV( )/ n2 .

O : Similar to the textbook calculations for hydrogen, we can use the quantization of angular
momentum of positronium to find the allowed radii and energy levels.

A : Let r represent the distance between the electron and the positron.  The two move in a circle of
radius r/2 around their center of mass with opposite velocities.  The total angular momentum is
quantized according to

  Ln =  

For each particle,   ΣF = ma   expands to
    

kee
2

r2 = mv2

r / 2

We can eliminate     to find  

So the separation distances are  

The orbital radii are  r/2 = a0n
2, the same as for the electron in hydrogen.

The energy can be calculated from
    
E = K +U = 1

2 mv2 + 1
2 mv2 − kee

2

r

Since 
    
mv2 = kee

2

2r
,         

    
E = kee

2

2r
− kee

2

r
= − kee

2

2r
= −kee

2

4a0n2 = − 6.80 eV
n2

L : It appears that the allowed radii for positronium are twice as large as for hydrogen, while the energy
levels are half as big.  One way to explain this is that in a hydrogen atom, the proton is much more
massive than the electron, so the proton remains nearly stationary with essentially no kinetic
energy.  However, in positronium, the positron and electron have the same mass and therefore both
have kinetic energy that separates them from each other and reduces their total energy compared
with hydrogen.
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40.68 Isolate the terms involving
φ  in Equations 40.12 and
40.13.  Square and add to
eliminate φ.

    
h2 1

λ 0
2 + 1

′λ 2 − 2 cos θ
λ 0 ′λ













= γ 2me
2v2

Solve for 

    

v2

c2 = b

b + c2( )  :
    
b = h2

me
2

1
λ 0

2 + 1
′λ 2 − 2 cos θ

λ 0 ′λ













Substitute into Eq. 40.11: 
    
1 + h

mec






1
λ 0

− 1
′λ













= γ = 1 − b
b + c2

Square each side:
    
c2+ 2hc

me

1
λ 0

− 1
′λ













+ h2

me
2

1
λ 0

− 1
′λ













2

= c2+ h2

me
2







1

λ 0
2 + 1

′λ 2 − 2 cos θ
λ 0 ′λ













From this we get Eq. 40.10:       ′λ − λ 0 = h mec( ) 1 − cos θ[ ]

40.69
    
hf = ∆E = 4π2meke

2e4

2h2
1

(n − 1)2 − 1
n2







    so
    
f = 2π2meke

2e4

h3
2n − 1

(n − 1)2 n2






As n approaches infinity, we have f approaching  
    

2π2meke
2e4

h3
2

n3

The classical frequency is  
    
f = v

2πr
= 1

2π
kee

2

me

1
r3/2    where

    
r = n2h2

4πmekee
2

Using this equation to eliminate r from the expression for f, 
    
f = 2π2meke

2e4

h3
2

n3

40.70 Show that if all of the energy of a photon is transmitted to an electron, momentum will not
be conserved.

Energy:
    

hc
λ 0

= hc
′λ
+ Ke = mec

2(γ − 1)  if  
hc

′λ
= 0 (1)

Momentum:
    

h
λ 0

= h
′λ

+ γmev = γmev    if  ′λ = ∞ (2)

From (1),
    
γ = h

λ 0mec
+ 1 (3)

    
v = c 1 −

λ 0mec

h + λ 0mec











2

(4)

Substitute (3) and (4) into (2) and show the inconsistency:

    

h
λ 0

= 1 + h
λ 0mec









 mec 1 −

λ 0mec

h + λ 0mec











2

    
=

λ 0mec + h

λ 0

h(h + 2λ 0mec)

(h + λ 0mec)2 = h
λ 0

h + 2λ 0mec

h

This is impossible, so all of the energy of a photon cannot be transmitted to an electron.

40.71 Begin with momentum expressions:
  
p = h

λ
,  and  

  
p = γ mv = γ mc

v
c





 .   
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Equating these expressions,    
    
γ v

c




 = h

mc






1
λ

=
λ C

λ

Thus,
    

v c( )2

1 − v c( )2 =
λ C

λ






2

  

or    

    

v
c







2

=
λ C

λ






2

−
λ C

λ






2
v
c







2

=
λ C λ( )2

1 + λ C λ( )2 = 1

λ λ C( )2
+ 1 

 

giving  

    

v = c

1 + (λ  / λ C)2
 

40.72 (a) The energy of the ground state is:
    
E1 = − hc

λ series limit
= −1240 eV ⋅ nm

152.0 nm
= – 8.16 eV  

From the wavelength of the   Lα  line, we see:
    
E2 − E1 = hc

λ
= 1240 nm ⋅ eV

202.6 nm
= 6.12 eV

    E2 = E1 + 6.12 eV = – 2.04 eV  

Using the wavelength of the   Lβ  line gives:
    
E3 − E1 = 1240 nm ⋅ eV

170.9 nm
= 7.26 eV

so       E3 = – 0 . 9 0 2   e V  

 Next, using the   Lγ  line gives:
    
E4 − E1 = 1240 nm ⋅ eV

162.1 nm
= 7.65 eV

and       E4 = – 0 . 5 0 8   e V  

From the   Lδ  line,
    
E5 − E1 = 1240 nm ⋅ eV

158.3 nm
= 7.83 eV

so     E5 = – 0 . 3 2 5   e V  

(b) For the Balmer series,  
    

hc
λ

= Ei − E2,  or  
    
λ = 1240 nm ⋅ eV

Ei − E2

For the α  line,     Ei = E3 and so 
  
λα = 1240 nm ⋅ eV

−0.902 eV( ) − (−2.04 eV)
=  1090 nm  

Similarly, the wavelengths of the β  line, γ  line, and the short wavelength limit are found to
be:   811 nm  , 724 nm  , and 609 nm  .
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(c) Computing 60.0% of the wavelengths of the spectral lines shown on the energy-level diagram
gives:  

0.600(202.6 nm) = 122 nm  ,  0.600(170.9 nm) = 103 nm  ,  0.600(162.1 nm) = 97.3 nm  ,  

0.600(158.3 nm) = 95.0 nm  ,  and  0.600(152.0 nm) = 91.2 nm  .  

These are seen to be the wavelengths of the α , β , γ , and δ  lines as well as the short
wavelength limit for the Lyman series in Hydrogen.

(d) The observed wavelengths could be the result of Doppler shift when the source moves away
from the Earth.  The required speed of the source is found from  

    

′f
f

= λ
′λ

=
1 − v c( )
1 + v c( ) = 0.600 yielding v = 0.471c  

40.73 (a) Starting with Planck’s law,  

    

I λ ,T( ) = 2πhc2

λ5 ehc λ kBT − 1[ ]

the total power radiated per unit area

    

I λ ,T( )
0

∞
∫ dλ = 2πhc2

λ5 ehc λ kBT − 1[ ] dλ
0

∞
∫ .

Change variables by letting 
    
x = hc

λ kBT

 and 
    
dx = − hc dλ

kBTλ2

Note that as λ  varies from   0 → ∞ ,   x  varies from   ∞ → 0 .

Then 

    

I λ ,T( )
0

∞
∫ dλ = − 2πkB

4T4

h3c2
x3

ex − 1( ) dx
∞

0
∫ = 2πkB

4T4

h3c2
π4

15








Therefore, 
    

I λ ,T( )
0

∞
∫ dλ = 2π5 kB

4

15h3c2







T4 = σ T 4  

(b) From part (a),   

    

σ = 2π5 kB
4

15h3c2 =
2π5 1.38 × 10−23  J K( )4

15 6.626 × 10−34  J ⋅ s( )3
3.00 × 108  m s( )2

σ =    5.67 × 10−8  W m2 ⋅ K4  
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*40.74 Planck’s law states 

    

I λ ,T( ) = 2πhc2

λ5 ehc λ kBT − 1[ ] = 2πhc2λ−5 ehc λ kBT − 1[ ] −1

To find the wavelength at which this distribution has a maximum, compute

    

dI
dλ

= 2πhc2 −5λ−6 ehc λ kBT − 1[ ] −1
− λ−5 ehc λ kBT − 1[ ] −2

ehc λ kBT − hc
λ2kBT


















= 0

    

dI
dλ

= 2πhc2

λ6 ehc λ kBT − 1[ ] −5 + hc
λ kBT

ehc λ kBT

ehc λ kBT − 1[ ]











= 0

Letting 
    
x = hc

λ kBT
, the condition for a maximum becomes 

    

xex

ex − 1
= 5.

We zero in on the solution to this transcendental equation by iterations as shown in the table
below.  The solution is found to be

x
    
xex ex − 1( )

4.00000 4.0746294
4.50000 4.5505521
5.00000 5.0339183
4.90000 4.9367620
4.95000 4.9853130
4.97500 5.0096090
4.96300 4.9979452
4.96900 5.0037767
4.96600 5.0008609
4.96450 4.9994030
4.96550 5.0003749
4.96500 4.9998890
4.96525 5.0001320
4.96513 5.0000153
4.96507 4.9999570
4.96510 4.9999862
4.965115 5.0000008

    
x = hc

λ max kBT
= 4.965115 and

    
λ maxT = hc

4.965115kB

Thus, 

    

λ maxT =
6.626075 × 10−34  J ⋅ s( ) 2.997925 × 108  m s( )

4.965115 1.380658 × 10−23  J K( ) =   2.897755 × 10−3  m ⋅ K  

This result is very close to Wien’s experimental  value of     λ maxT = 2.898 × 10−3  m ⋅ K   

for this constant.
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40.75
    
∆λ = h

mec
(1 − cos θ) = ′λ − λ 0

    
′E = hc

′λ
= hc

λ 0+ ∆λ     
= hc λ 0 + h

mec
(1 − cos θ)











−1

    
′E = hc

λ 0
1 + hc

mec
2λ 0

(1 − cos θ)












−1

    
′E = hc

λ 0
1 + hc

mec
2λ 0

(1 − cos θ)












−1

= E0 1 + E0

mec
2 (1 − cos θ)











−1

40.76
      
r1 = 1( )2h2

Zµkee
2 = h2

82( ) 207me( )kee
2 = a0

82( ) 207( ) = 0.0529 nm
82( ) 207( ) = 3.12 fm  

    
E1 = −13.6 eV

1( )2
207

1






82
1







2

= – 18.9 MeV  

40.77 This is a case of Compton scattering with a scattering angle of 180°.

    
∆λ = ′λ − λ 0 = h

mec
1 − cos 180°( ) = 2h

mec

    
E0 = hc

λ 0
,   so   

    
λ 0 = hc

E0
    and   

    
′λ = λ 0 + ∆λ = hc

E0
+ 2h

mec
= hc

E0
1 + 2E0

mec
2








The kinetic energy of the recoiling electron is then

    

K = E0 − hc
′λ

= E0 − E0

1 + 2E0 mec
2( ) = E0

1 + 2E0 mec
2 − 1

1 + 2E0 mec
2







= 2E0

2 mec
2

1 + 2E0 mec
2

Defining     a ≡ E0 mec
2 , the kinetic energy can be written as

    
K = 2E0 a

1 + 2a
=

2 hf( )a
1 + 2a

=      2h f a 1 + 2a( )−1  

where   f  is the frequency of the incident photon.
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40.78 (a) Planck's radiation law predicts maximum intensity at a wavelength   λmax  we find from

    

dI
dλ

= 0 = d
dλ

2πhc2 λ−5 e(hc/λ kBT ) − 1[ ] −1







    
0 = 2πhc2λ− 5(−1) e(hc/λ kBT ) − 1[ ] −2

e(hc/λ kBT ) −hc / λ2kBT( )    +2πhc2(−5)λ−6 e(hc/λ kBT ) − 1[ ] −1

 or

    

−hc e(hc/λ kBT )

λ7 kBT e(hc/λ kBT ) − 1[ ] 2 + 5

λ6 e(hc/λ kBT ) − 1[ ]
= 0

which reduces to
    
5 λ kBT hc( ) e(hc/λ kBT ) − 1[ ] = e(hc/λ kBT )

Define     x = hc λ kBT .    Then we require      5ex − 5 = xex .

Numerical solution of this transcendental equation gives     x = 4.965 to four digits.  So

    λ max = hc 4.965kBT , in agreement with Wien's law.

The intensity radiated over all wavelengths is

    

I (λ ,T)dλ = A + B =
0

∞
∫

2πhc2 dλ
λ5 e(hc/λ kBT ) − 1[ ]0

∞
∫

Again, define 
    
x = hc λ kBT   so  λ = hc xkBT  and dλ = − hc x2kBT( )dx

Then,  

    

A + B = − 2πhc2 x5kB
5T5 hc dx

h5c5x2 kBT ex − 1( )x=∞

0
∫ = 2πkB

4T4

h3c2
x3dx

ex − 1( )0

∞
∫

The integral is tabulated as   π
4 /15, so (in agreement with Stefan's law)

    
A + B = 2π5 kB

4 T4

15h3 c2

The intensity radiated over wavelengths shorter than   λ max  is

    

I(λ ,T)dλ = A = 2πhc2 dλ
λ5 e(hc/λ kBT ) − 1[ ]0

λ max∫0

λ max∫

With     x = hc λ kBT ,  this similarly becomes  
    
A = 2πkB

4 T4

h3c2
x3 dx
ex − 14.965

∞
∫

So the fraction of power or of intensity radiated at wavelengths shorter than   λ max  is

   

    

A
A + B

=

2πkB
4T4

h3c2
π4

15
− x3 dx

ex − 10

4.965
∫








2π5 kB
4T4

15h3 c2

=  
    
1 − 15

π4
x3 dx
ex − 10

4.965
∫  
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(b) Here are some sample values of the integrand, along with a sketch of the curve:

Approximating the integral by trapezoids gives
    

A
A + B

≈ 1− 15
π4 4.870( ) = 0.2501  

40.79
    
λ C = h

mec
     and     

  
λ = h

p
 :

    

λ C

λ
= h / mec

h / p
= p

mec
 ;

    E
2 = c2p2 + (mec

2 )2:
    
p = E2

c2 − (mec)2

    

λ C

λ
= 1

mec
E2

c2 − (mec)2 = 1
(mec)2

E2

c2 − (mec)2







 = E

mec
2








2

− 1

40.80
    
p = mv = 2mE = 2 1.67 × 10−27  kg( ) 0.0400 eV( ) 1.60 × 10−19  J / eV( )
λ = 

h
m v    = 1.43 × 10– 10 m = 0.143 nm   

This is of the same order of magnitude as the spacing between atoms in a crystal so diffraction
should appear.

40.81 Let   u′  represent the final speed of the electron and let  
    

′γ = 1 − ′u 2 c2( )−1/2
.  We must

eliminate β  and   u′  from the three conservation equations:

    

hc
λ 0

+ γ mec
2 = hc

′λ
+ ′γ mec

2 [1]

    

h
λ 0

+ γmeu − h
′λ

cos θ = ′γ me ′u cos β [2]

    

h
′λ

sin θ = ′γ me ′u sin β [3]
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Square Equations [2] and [3] and add:

    

h2

λ 0
2 + γ 2 me

2u2 + h2

′λ 2 + 2 hγ meu
λ 0

− 2h2 cos θ
λ 0 ′λ

− 2hγ meu cos θ
′λ

= ′γ 2 me
2 ′u 2

    

h2

λ 0
2 +

h2

′λ 2 + γ 2 me
2u2 + 2 hγ meu

λ 0
− 2hγ meu cos θ

′λ
− 2h2 cos θ

λ 0 ′λ
= me

2 ′u 2

1 − ′u 2 / c2

Call the left-hand side   b.   Then  
    
b − b ′u 2

c2 = me
2 ′u 2     and

    
′u 2 = b

me
2 + b c2 = c2b

me
2c2 + b

Now square Equation [1] and substitute to eliminate ′γ :

    

h2

λ2 + γ 2me
2c2 + h2

′λ 2 + 2 hγ mec
λ 0

− 2h2

λ 0 ′λ
− 2hγ mec

′λ
= me

2c2

1 − ′u 2 / c2 = me
2c2 + b

So we have

    

h2

λ 0
2 + h2

′λ 2 + γ 2me
2c2 + 2hγ mec

λ 0
− 2hγ mec

′λ
− 2h2

λ 0 ′λ

    
= mec

2 + h2

λ 0
2 + h2

′λ 2 + γ 2me
2u2 + 2hγ meu

λ 0
− 2hγ meucosθ

′λ
− 2h2 cosθ

λ 0 ′λ

Multiply through by      λ 0 ′λ me
2c2

    
λ 0 ′λ γ 2 + 2 h ′λ γ

mec
− 2 hλ 0 γ

mec
− 2h2

me
2c2

    
= λ 0 ′λ +

λ 0 ′λ γ 2 u2

c2 + 2h ′λ uγ
mec

2 −
2hγ λ 0 u cos θ

mec
2 − 2h2 cos θ

me
2c2

    
λ 0 ′λ γ 2 − 1 − γ 2 u2

c2







+ 2 hγ ′λ

mec
1 − u

c




 =

2hγ λ 0

mec
1 − u cos θ

c




 + 2h2

me
2c2 1 − cos θ( )

 The first term is zero.  Then 
    

′λ = λ 0
1 − u cos θ( ) c

1 − u c







+ hγ −1

mec
1

1 − u c






1 − cos θ( )

Since     γ
−1 = 1 − u c( )2 = 1 − u c( ) 1 + u c( )

this result may be written as
    

′λ = λ 0
1 − u cos θ( ) c

1 − u c







+ h

mec
1 + u c
1 − u c

1 − cos θ( )  


