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403 (a) Using AmaxT = 2.898 x 1073 m K

-3
we getA max = % =999x10"'m=

(b) The |peak wavelength is in the infrared| region of the electromagnetic spectrum, which is
much wider than the visible region of the spectrum.

40.4 Planck's radiation law gives intensity-per-wavelength. Taking E to be the photon energy and
n to be the number of photons emitted each second, we multiply by area and wavelength
range to have energy-per-time leaving the hole:

21the® (A, — A ;) (d / 2)?
P= ( 2D 1)271 ) D:En:nhf where E hf:/\zrc/\
[M1+A2|:F|;L(/\l+/\2)kBT_1D 172

HzHH ]

p 872cd2(A, - A ) _ 87(3.00x 10° mys)(5.00x 10 m)2(1.00><10‘9 m)
“E 4 [ 2hc/(A1+A )keT _ ) O 2[6.626 x107% Jrs) (3.00x10° mys) O
A+ A2) (e ' —g _\*H (1001x107° m)(1.38x10"2 y/K)(7.50x10°K) _ U
(1001x107° m)"Ce - 1@
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2 Chapter 40 Solutions

*405 (a) P=eAoT*=1(20.0x10"* m?)(5.67x107® w/m? K*)(5000 K)* =
(0)  AmaxT =Amax(5000 K)=2.898 x103 mK 0 A a7

9 w L ho (6.626 x107* y3)(3.00x 10° ms)
C e compute: ——=

=2.88x10° m
keT (1381072 /K](5000 K)

. . _ _ 27hc®A
The power per wavelength interval is P(A)=AI1(A)= )\5[ (o) AkgT) 1]’ and
exp(hc/AkgT) -

271hc2A = 271(6.626 x 10‘34)(3.00 x 108)2(20.0 x 10‘4) =7.50x107% m:f‘

7.50x1071 Jm*/s _115x108 y/m3 _
(580x107° m)’ &P T
m [exp(2.88 pm, 0.580 um) 1]

7.99 x10% W/m

P(580 nm) =

(d) - (i) The other values are computed similarly:

2 hc/kgT hc/AksT _q 2mhc?’A/ZA° P(A), W/m
(d) 1.00 nm 2882.6 7.96 x 10*2°1 [ 7,50 x 1028 9.42 x 1071226
(e) 5.00 nm 576.5 2.40 x 10?50 | 2.40 x 10% 1.00 x 10727
) 400 nm 7.21 1347 7.32 x 105 5.44 x 10%°
c 580 nm 4.97 143.5 1.15 x 10'3 7.99 x 1010
©
(@) 700 nm 4.12 60.4 4.46 x 10*? 7.38 x 10%°
g
(h) 1.00 mm 0.00288 0.00289 7.50 x 10~* 0.260
(i) 10.0 cm 2.88x10™° | 2.88x10° | 7.50x 1071 2.60 x 107°

(j) We approximate the area under the P(}\) versus A curve, between 400 nm and 700 nm, as two
trapezoids:

@5. 44 +7.99) x 10%° %a(sso -400) x10™° m| @7.99 +7.38) x 100 %a(mo ~580)x10™° m|
P= +

2 2

P=2.13x10* W  so the power radiated as visible light is lapproximately 20 kw/| .
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Chapter 40 Solutions

P =eAdT? so
d/4
26 0
3.77x10% w 0 - [s7mx10° K

m? K* 05

2.898x107 ¥ mIK _2.898x107% m K -
A = = =5.04%x10"" m ={504 nm
max T 5.75x 103 K

—hf = -34 12 -1\d 100ev 0O_
E = hf =(6.626 107 113)(620 x 10*2 5 )WE_

0 1.00eV O

E =hf =(6.626 x10™>* J 8(3.10 x10° s* =[1.28x107° eV
( * )( s )Heono‘lgﬁ x ©
E = hf = (6.626 x 1073 J13)(46.0 x 10° S-l)glwievﬂ

60x1020 JH

8
A =%=%812T|/5 =4.84x10"" m = [484 nm, visible light (blue)]
X z

¢ _3.00x10% m/s
f  3.10x10° Hz

=0.68x1072 m= [9.68 cm, radio wave]

8
A :E:w: [6.52 m, radio wave]
f  46.0x10° Hz

-34 8
E:hf:E:(G.GZGXlO JB)(s’_.SOxlo ms)
A 589.3x10™° m

=3.37x107"° J/photon

10_'?9 s =12.96 x10"° photons/s
3.37 x10 J/photon

P
n=—=
E

Each photon has an energy E = hf = (6.626 x 10734)(99.7 x 10°) = 6.61 x 1026 )

150 x 10° J/s
6.61 x 1025 J/photons

This implies that there are = |2.27 x 10%° photons/s
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Energy of a single 500-nm photon:

hc  (6.626 x 10734 - 5)(3.00 x 108 m/s)
E,=hf=— = =5
A 500 x 107° m

=398x10719]
The energy entering the eye each second

— Di— _ —11 T 3.2 _ -15
E= Pt= (IA)t = (400 x 107 W/m?) 7 (8.50 x10~° m) (1.00s) = 2.27 x 10715}

The number of photons required to yield this energy

E 2.27x10715
n=g = —5 = |5.71 x 103 photons|
y 3.98x107" J/photon

We take 6 = 0.0300 radians. Then the pendulum's total energy is \\\\\\\\\\\\\\\

E =mgh =mg(L - L cos 6)

E = (1.00 kg)(9.80 m/s%)(1.00 — 0.9995) = 4.41 x 103

The frequency of oscillation is f= @ =i\/ﬂ =0.498 Hz
2 2m
The energy is quantized, E = nhf

E 4.41 x 1073
Therefore, n=rs = ={1.34 x 1031
hf = (6.626 x 10 J - 5)(0.498 s

The radiation wavelength of A'=500 nm that is observed by observers on Earth is not the true
wavelength, A, emitted by the star because of the Doppler effect. The true wavelength is
related to the observed wavelength using:

¢ [1=(ve)
A A\ 1+(vic)
f1-(vie) _ 1-(0.280) _
A=A \1+EV/C; = (500 nm)\l-kEO.ZSO; =375 nm

The temperature of the star is given by AT =2.898 x 1073 mK:

-3 -3
722898107 mIK _2.898x10 " mIK _ [7755705 ¢
Amax 375X10
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Chapter 40 Solutions 5

This follows from the fact that at low T or long A, the exponential factor in the denominator
of Planck’s radiation law is large compared to 1, so the factor of 1 in the denominator can be
neglected. In this approximation, one arrives at Wien's radiation law.

2
Planck’s radiation law is (A, T)= 2 1the
P |
2 3
Using the series expansion e* :1+x+?+§+
21thc? 2 thc? _ 2mckgT

Planck’s law reduces to (A, T)= )\5[(1+ e AT+ . ) _1] = 2 (he /AgT) Y

which is the Rayleigh-Jeans law, for very long wavelengths.

hc  (6.626 x107% 7 .5)(3.00 x 108 m/s)

Ae=— = =1296 nm
‘o (4.20 eV)(1.60 x 107° J/eV) 296 nm|

¢ 3.00x10°m/s B
fo=— =————75— =|1.01x10%% Hz
Ac 296 x 107° m

(6.626 x 10~34)(3.00 x 108)
180 x 107°

Therefore, AVg=271V

= (4.20 eV)(1.60 x 1071° J/eV) + (1.60 x 1071%)(AVy)

hc
5y =@+ e(AVs):

1
Kmax = 3MVinax = 5 (9.11 x 107%%)(4.60 x 10°) 2= 9.64 x 10720 ) = 0.602 eV

1240 eV - nm

0=E-Kmax = —goemym— 06026V =[138 eV
) 1.38 eV %60 X 10—19 JD —
~h < M= __
fC h 6.626 x 10_34J s 1eV 0 3.34 x 10 Hz

© 2000 by Harcourt, Inc. All rights reserved.



6 Chapter 40 Solutions

L _he ) . _(6:626x107 313)(3.00x10° m/s)
4017 (@) Ac= p Li: Y ev)(1.60 Y 10- J/eV) =540 nm
. . (6.626 107 J(3)(3.00 x10° m/s) s
© © (390ev)(160x107y/ev) "
6.626 x 10734 J[3)(3.00x 108 m /s
Hag: A= =276 nm

4.50eV)(160x107° J/eVv
(4.50 eV

A <A, for photo current. |Thus, only lithium will exhibit the photoelectric effect.

(b) For lithium,

hc
7 = @+ Kmax

(6.626 x107% B)(3.00 x10% m /s)
400x107° m

Kmax =1.29x107%° 1= [0.808 eV

= (2.30 eV)(l.GO x 10‘19) + Kmax

40.18 From condition (i),hf = e(AVs1) + @ and hf = e(AVs2) + @
(AVs1) = (AVs)) + 1.48 V
Then ®—-@ =148¢eV
From condition (ii), hf.1 = ¢ = 0.600hf., = 0.600¢

@ —-0.600¢ = 1.48 eV

lm=370ev] [m=222ev

4019 (a) e(AVS):%—q) . go:%—o.s?eev: 1.90 eV

() e(AVS):%—(p:%—LQOeV L AVg=[0216V
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Goal Solution

Two light sources are used in a photoelectric experiment to determine the work function for a particular
metal surface. When green light from a mercury lamp (A = 546.1 nm) is used, a retarding potential of
0.376 V reduces the photocurrent to zero. (a) Based on this measurement, what is the work function for
this metal? (b) What stopping potential would be observed when using the yellow light from a helium

discharge tube (A = 587.5 nm)?

G:

According to Table 40.1, the work function for most metals is on the order of a few eV, so this metal
is probably similar. We can expect the stopping potential for the yellow light to be slightly lower
than 0.376 V since the yellow light has a longer wavelength (lower frequency) and therefore less
energy than the green light.

In this photoelectric experiment, the green light has sufficient energy hf to overcome the work

function of the metal @so that the ejected electrons have a maximum Kinetic energy of 0.376 eV.
With this information, we can use the photoelectric effect equation to find the work function, which
can then be used to find the stopping potential for the less energetic yellow light.

(a) Einstein’s photoelectric effect equation is K5 =hf — @, and the energy required to raise an
electron through a 1 V potential is 1 eV, so that K, =eV, =0.376 eV.

he _ (4.14x107 eV 3)(3.00x10° mys)
A photon from the mercury lamp has energy: hf=—= s
A 546.1x107° m

E=hf=227eV

Therefore, the work function for this metal is: @ =hf = K, =2.27 eV —(0.376 eV) =1.90 eV

hf = "¢ = (414107 eV [3)(3.00 x 10° m /)

(b) For the yellow light, A =587.5 nm, and s
A 587.5x107° m

E=211leV

Therefore, Ko =hf —@=2.11eV -190 eV =0.216 eV, S0 V,=0.216 V

The work function for this metal is lower than we expected, and does not correspond with any of the
values in Table 40.1. Further examination in the CRC Handbook of Chemistry and Physics reveals
that all of the metal elements have work functions between 2 and 6 eV. However, a single metal’s
work function may vary by about 1 eV depending on impurities in the metal, so it is just barely
possible that a metal might have a work function of 1.90 eV.

The stopping potential for the yellow light is indeed lower than for the green light as we expected.
An interesting calculation is to find the wavelength for the lowest energy light that will eject
electrons from this metal. That threshold wavelength for K.« = 0 is 658 nm, which is red light in the
visible portion of the electromagnetic spectrum.)

© 2000 by Harcourt, Inc. All rights reserved.
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From the photoelectric equation, we have:  ¢(AVg))=E,;-¢ and e(AVg,)=E,, ~ ¢

Since AVg, =0.700(AVg, ), then ¢(AVs,) =0.700(E,, = 9) =E,, — @
or (1-0.700)p=E, - 0.700E
o E,, —0.700E,
and the work function is: p=—"———"
0.300
The photon energies are: E he - 1240 nm eV _ 3.03 eV

TN, T 410ev

and Eyzzm:M:2.79 eV
A,  445ev

_2.79 eV -0.700(3.03 eV)
0.300

Thus, the work function is =2.23 eV

and we recognize this as characteristic of potassium] .

The energy needed is E=1.00eV=160x101%)

The energy absorbed in time tis E =Pt = (IA)t

E 1.60 x 10719 ]
) t=—r = =1.28 x 10" s = [148 days
IA (500 1/s - m?)[m(2.82 x 10> m)?]

The gross failure of the classical theory of the photoelectric effect contrasts with the success of
guantum mechanics.

Ultraviolet photons will be absorbed to knock electrons out of the sphere with maximum
kinetic energy K. =hf — @, or

6.626 x 10™>* J3)(3.00 x 10® m/s| 0
i )(_9 /)E& LOOeYV [-4.70 6V =151 eV
200%107° m 60x1071°

Kmax -

The sphere is left with positive charge and so with positive potential relative to V =0 at r = .
As its potential approaches 1.51 V, no further electrons will be able to escape, but will fall back
onto the sphere. Its charge is then given by

5.00%102 m|(1.51 Nm'C
VL T VN LA ). Garw=d]

Ke 8.99x10° N ?/C?
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By having the photon source move toward the metal, the incident photons are Doppler

shifted to higher frequencies, and hence, higher energy.

If v=0.280c, frof, LtV/c =(7.00x10%) 128 93310 Hz
1-v/c \0.720
Therefore, ¢=(6.626x10‘34 JB)(9.33><1014 Hz) =6.18x107° J=[3.87 eV
At v=0.900c, f =3.05x10% Hz
) 0 1.00 eV
—hf_ e 34 15
and Ky = hf - 9= (6.626 x107* J(3)(3.05 x 10'° Hz) PR

£ hc (6626 x 103 J - 5)(3.00 x 10° m/s)
A 700 x 10°° m

h 6626x10%)-s —
p =y T T 0x10°m |9.47>< 107“° kg m/s|

6.626 x 10~34
AA :L(l—cos ) = T g
m,C (9.11 x 10~%1)(3.00 x 10%)

EO = hC/AO:
Ao=4.14x10"2 m and

he (6.626 %10 113)(3.00x10° m /)

1

K, = Ey —E' = 300 keV - 268.5 keV = [31.5 keV

This is Compton scattering through 180°:

_hc _(6.626 x 107 ] - 5)(3.00 x 10° m/s)
" Ao (0.110 x 107° m)(1.60 x 1071° J/eV)

0 = 11.3 keV

A = %(1— cos 6) = (2.43 x 1072 m)(1 — cos 180°) = 4.86 x 10”1 m

(3

hc

A'=Ag+AA=0.115nm so E':F:10.8 keV

h

Momentum conservation: i:T(—i) + pe (i) and

h
Ao

=284x101)=

E'=—-= =4.30x10" J = [268 keV
Al 4.63x1072% m

E— 3.87 eV =

@-cos 3707 =[Es8x 0]

(300x10° ev)(1.60x 107 3 7eV) = (6.626 x 107)(3.00 x 10° m /) /A,

A'=Ag+M =4.63x107? m

Ineident
FPhoton

= '

oot limgs
Electrom

Scatlered

Phictom

01 1

=h _ 0
Pe = NEy, " H

3.00x10° m/s) /¢ 1 n .
=(6.626 x107%* 13 + 22.1 keV/c
Pe ( )@ 160x107% J/eVv %b.llo x1070 m 0.115x107° mO

© 2000 by Harcourt, Inc. All rights reserved.



10

40.27

40.28

Chapter 40 Solutions

Energy conservation: 11.3 keV = 10.8 keV + K, so that |K,=478¢eV
Check: E2=p?c? + mZ* or (mec? + Ky )? = (pc)? +(myc?)?
(511 keV + 0.478 keV)? = (22.1 keV)? + (511 keV)?

2.62 x 1011 = 2.62 x 1011

Ko =Eg- E'
) Eo
With K, = E', E' =Eg- E": E=>
hc  he hc
Al =E 1 =2E— =2Ap A" =Ag+ Ac (1 -cos 6)
~E 0
0
2
Ao 0.00160 .
2A0—A0+/\c(1—0083) 1—COSQ—E —m —»9—

We may write down four equations, not independent, in the three unknowns Ay, A’, andv
using the conservation laws:

:7‘: - % +ym,c? -m,c?  (Energy conservation)
0

/\L = ym,Vv cos 20.0°(momentum in x-direction)
0

0= )\1 - ymgv sin 20.0° (momentum in y-direction)
and Compton's equation A'-A, = L(l—cos 90.0°).
c
e
It is easiest to ignore the energy equation and, using the two momentum equations, write

h/A o
0 oYMV COS20.0° ) " 3 tan 20.0°
h7A" ymgvsin 20.0°

Then, the Compton equation becomes A'—A'tan 20.0°=0.00243 nm,

0.00243 nm
or A'=———————=0.00382 nm = |3.82 pm
T—tan 20.0°
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(@)
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Conservation of momentum in the x direction gives: p, =p) cos 6+ p, cOs ¢

. _ h _ hD
or since =g, R—Epeﬁ}vmcose [1]

Conservation of momentum in the y direction gives: 0=p) sin 6 -p, sin 6,

which (neglecting the trivial solution 6 =0) gives: Pe =Py = : 2
N . . h _2h
Substituting [2] into [1] gives: 1 = T cos 8, or A'=2Aqcos 8 [3]
0
Then the Compton equation is A'=Ag =%(1—cos 0)
e
. h
giving 2Agcos 8-Ay=——(1-cos )
m.C
or 2 cos 9—1:E%(1—cos 6)
AO meC
Since E h this may be written as 2cos0-1 oEy D1 cos 9)
i =—, thi wri : -1= -
T 2o y E;eczg
hich reduces to D v b 0sf=1+ Ey
whi u : =
%2 m,c? B m,c?

2
mec” +E

or cosf=———" = 0.511MeV +0.880 MeV _, 755 o6 that 0=q=143.0°
2m.c” + Ey 1.02 MeV +0.880 MeV

. . hc hc E, 0.880 MeV
Using Equation (3): E|, = — = = = =0.602 MeV = |602 keV
9= BB =5 =3 o(2cos6) 2cos® 2cos43.0°
Ey -22
Then, Py 27:0.602 MeV/c=|[3.21x10"“ kglOm/s
From Equation (2), P =P}, =0.602 MeV/c = {3.21x10"% kg [in/s
From energy conservation: Ke =E, —E}, =0.880 MeV -0.602 MeV =0.278 MeV = | 278 keV

© 2000 by Harcourt, Inc. All rights reserved.
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(@)

(b)

©

The energy of the incident photon is E; =p,c = hc/)to.

Conserving momentum in the x direction gives

By _

P, =P, COS @ + p|, cos B, orsince p=6, — (p +py)c050

C

Conserving momentum in the y direction (with ¢ = 0) yields

0=p), sin@-p,sin@, or p,=p)=

]

Substituting Equation [2] into Equation [1] gives

E:D£+£Dcose, or /\':z—hccose
c h AU Eo

By the Compton equation, A’ - A, = L(1—cos 6),

meC
which reduces to
Thus,
From Equation [3],
hc

]

2hc
—c
0

0s 6 -

[
A
&
2he _ L(1 - cos 6)
E;, mgc

(2mec2 + Eo)cos 6 =m,c? +E,

@=6=cos

1Om,c?+E, O
mc? +E, E

a=2
Eo

hc

2hc
C

2hc Om,c? +Ey U

0s 0=—

EO meC2 + EO E

Ep (2myc® +E, O

Therefore, E,=—=

Y (2hc/E0)(mec2 +E0) /(Zmecz +E0) 2 Hm,c? +E, 0

y _ | Eg E2myc? +E O

and p'y:T Bimc +EOE

Eq (2m,c? +Ey U

From conservation of energy, K,=E,—-E|, =E,——
ay T T Hme? +E, H
or K _ Ep L2m, c? +2Ey - 2myc® - E, O_ ES
e 2 2
2 E m.Cc” +Ey E Z(mec +E0)

Finally, from Equation (2),

Eo (2m,c? +E U

Pe =Py = 2cHm,c? +E, 0




40.31 (a) Thanks to Compton we have four equations in the unknowns ¢, v, and A":

(b)

Chapter 40 Solutions

E:hc+ymcz—m c?
Ag A ¢ ¢

(energy conservation)

h h
— =-—C0S 2¢+ ym,V COS @

- (momentum in x direction)
Ag A

0 :% sin2¢@—ymyvsin @ (momentum in y direction)

Al=Ag= %(1—003 2¢) (Compton equation)

€
. . . . . . 2h
Using sin 2¢ =2 sin @cos ¢ in Equation [3] gives ym,v = T oS .

Substituting this into Equation [2] and using cos 2¢ = 2 cos? ¢—1 yields

- = h
Ao A

(2 cos’p-1) +§Tr,] cos’p= %(4 cos’p-1),

or  A'=4A,cos’p-A,

Substituting the last result into the Compton equation gives

h hc
4),cos’p-2A :—[1— 2 cos® —1] =2 1-cos® ).
0 ¢ 0 mC ( ¢ ) meCZ ( §0)

With the substitution A =hc/Ey, this reduces to

2 | Lm e 5 |.
cos? g = 2mec 2+F;EO = ;:X where x = iz. oton
m.c” +E, X meC
0.700 MeV o o 1+x
For x=—————=1.37, this gives ¢=cos ~,/—— =|33.0°
0.511 MeV g ¢ V2+x 33.0°

; ' = 2.4\ _ Mm+x0_,0_, 2+3x0
From Equation [5], A —A0(4 cos @ 1)—)\0 o+ xO 15— Oy O
Then, Equation [1] becomes

he _heg2+x o
Ag Ap2+3xU

2 2 Bo _ B 02+x[0
+ymec? -mec®  or -
Ve ? mec?  mgc? [2+3xD

+1=y.

O2+x 0
[P +3x0

vV_| -2 _ |
Therefore, —=+/1- =+1-0.384 =0.785 or v =(0.785¢c| .
gy

Thus, y=1+x-X , and with x =1.37 we get y=1.614.

© 2000 by Harcourt, Inc. All rights reserved.
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h —y
40.32 A=A =——(1-cos ) S @ Electron 1
e A A
FAVA SN = e
§ A b Llectron 2
A" —A':L[l_cos(n_ 9)] A _ @ :I :. n
meC :.:i.ll:.".::.ll [ A
A=A =L—Lcos(n— 6)+L—Lcose
MeC  MeC MeC  MeC

h
Now cos(rr— 6) = -cos 8, so A" — A =2—=]0.00486 nm
(- 6) o

€

2
4033 (a) K=imy?= %(9.11 x 1073 kg)(l. 40 x 10° m/s) =8.93x1079 J=558 eV

Ey = he _ 1240 eV [hm — 1550 eV
Ao 0.800 nm

hc _ 1240 eV [hm
E' 1550 eV -5.58 eV

AA =A"=2A,=0.00288 nm = |2.88 pm

() M =Ac(l-cos6)O cosg=1-A =, 000288nm __, 04
Ac ~ 0.00243 nm

E'=E,-K, and A'= =0.803 nm

*40.34 Maximum energy loss appears as maximum increase in wavelength, which occurs for
scattering angle 180°. Then AA :(1—cos 180°)(h/mc):2h/mc where m is the mass of the
target particle. The fractional energy loss is

Eo—E' _Nc/Aog—ht/A" A=A ar  _  2h/mc
Eo he/Ag A Ag+DA Ay +2h/me
EO_E': 2h/mC _ 2EO

Further, Ay =hc/Ey, so

E,  hc/Ey+2h/mc mc2 +2E,

(a) For scattering from a free electron, mc? =0.511 MeV, so

Eq -F' 2(0.511 MeV)
= = {0.667]
E,  0.511 MeV +2(0.511 MeV)

(b) For scattering from a free proton, mc? =938 MeV, and

By —F' 2(0.511 MeV)
= = {0.00109|
E, 938 MeV +2(0.511 MeV) [0.00109]




40.35

40.36

40.37

(@)

(b)

(@)

(b)
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. , . 1 01 1@ (4n2 / Ry)
Start with Balmer's equation, =R — or A=-——5—727.
a A H;RZ g (n2-4)
Substituting Ry, =1.0973732 x 10’ m™%, we obtain
(3.645x 10" "m)n? _ 364.5n°
A= 3 =— nm, wheren=3,4,5,...
n° -4 n° -4
1 B 10 _ _
Using —=RyG5 -—0 forng=2,andn; = 3, we get:
A M N O
. 4n? 4n? _ (200.0)n?
R,_,(n2 - 4) (2.00 x 107 m‘l)(n2 - 4) n? -
This says that 200 nm < A <360 nm, which is [ultraviolet] .
2 2
Using n=3, A = 42 = ;m V3 (8000)n
Ru(n?-4) (0.500x10" m™*)n?-4)  n’-4

This says that 800 nm < A <1440 nm, which is in the .

s LogQ_1D

Lyman series: 3 Rgl 20

1 1 7 10

—=——— - =(1.097 x10 gl——

A 94.96x107° ( ) n?0
. 1_,01_10

Paschen series: 1 REtgz 70

n=4,56,...

The shortest wavelength for this series corresponds to n = « for ionization

1_ 7|:|l 10
S =1097x107 - 5

For n = o, this gives A = 820 nm

This is larger than 94.96 nm, so this wave Iengtl11

cannot be associated with the Paschen series

s Lo_gOl_1D
Brackett series: 3 RD42 70
1 701 10
—=1097 x10' =—— - =
A (e n?0

Once again this wavelength

n=5267...

n = oo for ionization Amjn = 1458 nm

cannot be associated with the Brackett serie}s

© 2000 by Harcourt, Inc. All rights reserved.
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4038 () Agp =S
EmaX
Lyman (n; = 1): A min = he _1240eVihm _ (Ultraviolet)

\E \ 13.6 eV
hc _ 1240 eV hm _
Balmer (n; = 2): Amin = — 65 nm| (UV)
Es| ( j13 6 eV

Paschen (Nf=3):  Apin= ... =3%(91.2 nm)= (Infrared)

Bracket (Nf=4):  Apin = ... =4%(9L.2 nm)= (IR)

Lyman: Emax = (=)
Balmer: Emax = [3.40 eV] (=[E)
Paschen: Emax = (=1E)

Brackett: Emax = (: ‘E4D

40.39 Liquid Op  Aaps = 1269 nm

-6
E= he 1239810 ° _ 0.977 eV for each molecule.

A 1269x10°8
hc
For two molecules, A :E = (634 nm, red

By absorbing the red photons, the liquid O, appears to be blue.

kee?
mery

*40.40 (a) where r; =(1)?a, =0.00529 nm =5.29 x 107! m

=12.19x10° m/s

(8 99 x10° Nm?/C?)(160x 10" C)
e \/ 9.11x1073% kg)(5.29 x 1071 m)

() Ky=imy? %(9 11x1073L kg)(z 19x10° m/s) =2.18x1078 )=

=-435x10"18 )= _27.2 eV
5.290x1071 m

() Up=-

ry



40.41

40.42

40.43

(@)

(b)

©

(d)

(€)

®

(A)
(B)
©)
(D)

(@)

(b)
©

(b)

(@)

©
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r =(0.0529 nm)(2)* =

mekee? _ 3“‘(9'11" 10" kof8.9910° N ?, 2160107 ] 9.95x107% kg [in/

w

MeVy =

Vor \ 0.212x107° m

Ly =myVyry =(9.95x107% kg in/s)(0.212x107 m) =|2.11x10™* kglm?/s

(mev,)? _(0.95%10°% kgt s)’

K, =1m,3 = = =5.43x1071 J=[3.40 eV

2772MeV2 2m, 2(9_11><10‘31 kg)
2
9 2 2 -19
ke? _ (8.99x10° Nm? c?)(160x107% C) "

U,=--¢ =- =-1.09x10718 J= [~6.80 eV

27, 0.212x107% m
E, =K, +U, =3.40 eV -6.80 eV = [~3.40 eV

O O
AE =(13.6 eV)@%z - 12@
i DNy

Where for AE >0 we have absorption and for AE <0 we have emission.
for nj= 2 and n; = 5AE = 2.86 eV (absorption)

for nj =5 and ns = 3AE = - 0.967 eV (emission)

for nj= 7 and ns = 4AE = - 0.572 eV (emission)

for nj = 4 and n¢ = 7 AE = 0.572 eV (absorption)

E -E so the shortest wavelength is emitted in transition
A g '

The atom gains most energy in transition .

The atom loses energy in transitions .

O O
1_ 1 1 - 7 101 10 _
f i

hc _ (6.626 x1073* J[3)(3.00 X108 m/s) 19
E=—= =4.85x107"° J=[3.03 eV]
A 410x107° m -

8
= C o 3000 75101 1y
A 410x10

© 2000 by Harcourt, Inc. All rights reserved.
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-13.6 eV

*40.44 We use E, =T

To ionize the atom when the electron is in the n' level, it is necessary to add an amount of
energy given by

13.6 eV
E=-E, 2
(@) Thus, in the ground state where n = 1, we have [E = 13.6 eV

13.6 eV
(b) Inthen=3level, E= 9 =[1.51eV

*40.4 Starting with £ mo? =55 | we have v2 =X
45 tarting with 5 mev® =——, we have v =
. n’h?
and using r, = 5
m.k.e
. k.e? kee?
2 _ -
gives v,° = - (:12h2 or v,= rih
® mek,e?
2mr 27(3.84 x 108 m
*40.46 (a) The velocity of the moon in its orbit is V=g = o 5 ) =1.02 x10° m/s
2.36 x10°s
So, L = mvr = (7.36 x 10%? kg)(1.02 x 10° m/s)(3.84 x 108 m) = |2.89 x 10%* kg - m?/s

(b) We have L =nh

L 2.89x10%kg-m?/s
or n=p = =[2.74 x 10%8
h 1.055x10734] . s

() Wehave nh=L=mvr=m(GM,/n)/2r,

h? 2 2
SO r=——— n“=Rn and
m2 GM, r ) n

2
i ; — -69
which is approximately equal to o 7.30 x 10

Ar  (n+1)?R-n’R 2n+1
-_— = = 2




40.47

40.48

40.49

(@)

(b)
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The batch of excited atoms must make these six transitions to get back to state one: 2 - 1, and
also 3 -2 and 31, andalso 4 - 3 and4 - 2 and 4 - 1. Thus, the incoming light must

have just enough energy to produce the 1 - 4 transition. It must be the third line of the
Lyman series in the absorption spectrum of hydrogen. The absorbing atom changes from
energy

1366V _

o =-136eV 1o g =-120eV

2 = -0.850eV,

Ei =
so the incoming photons have wavelength

Che (6.626x10‘34 JB)(B.OOXIOB m/s)D L00ev O

— 8 _
A= E-E -0.850 eV —(-13.6 &V) Hisox10-2 3H 9.75x10 " m=

Each atom gives up its kinetic energy in emitting a photon, so

my2 = Ne _ (6626 107347 - 5)(3.00 x 108 m/s)
oA (1.216 x 107 m)

v = |4.42 x 10* m/s

= 1.63x 10718}

N| =

The energy levels of a hydrogen-like ion whose charge number "
is Z are given by wod ot

22 I ] el HE
E,=(-13.6 eV)n—2 s —
Thus for He lium(Z = 2), the energy levels are e Sk eV
E,=-228 o123 .
n

For He*, Z=2, so we see that the ionization energy (the energy
required to take the electron from the n=1 to the n = » state is

_ 2
E-E, - —0-130eV)2) _

© 2000 by Harcourt, Inc. All rights reserved.
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n’h? n’0 h? O

40.50 r=—— _=__ - n=1
Zmeke?  Z Omkee?H

10 (L055x1073* J[3)? 0 529x10'm

r==— =
z E(g.nx 1073 kg)(8.99 x10° N m? 7/ C?)(1.602 x 10720 C)? E z

-11
(@ ForHe', z=2 r= w =2.65x 107" m = [0.0265 nm

-11
(b) ForLi®*, z=3 r= w =177x10" " m = [0.0177 nm

-11
(c) ForBe®, z=4 r= w =1.32x10™" m=[0.0132 nm

mv2

40.51 Since F=qvB= e we have grB =mv,

or qr’B =mvr =nh SO r, =

40,52 (a) The time for one complete orbitis: T=—

N nh
From Bohr's quantization postulate, L =m,vr =nh, we see that v=—
mer

Thus, the orbital period becomes:

_2mm,r? _ 2mm,(agn?)® _ 2mm,ad I

T or T=tyn® where
nh nh h
2 -31 -9 \2
t = 2rmgay _ 2m(9.11x 10 kg)(O_.S4529 x107" m)” _ 152 %1016
h (L055x10 " J3)

(b) With n =2 we have T=8t,=8(152x10"5)=121x10""s

Thus, if the electrons stay in the n = 2 state for 10 ps, it will make

10.0x107% s
1.21x10 ¥ s/rev

= |8.23 x 10° revolutions| of the nucleus

(c) |Yes, for 8.23 x 10° "electron years"|




*40.53

4054 (a)

(b)

*40.55 (a)

(b)

A—E _h 6.626 x 1034 J - s
P MV (1,67 x 1077 kg)(1.00 x 10° m/s)

2
T = (50.0)(1.60 x 1079 1)

p=381x10%kg-m/s

h
A=p =[0a7anm

2
Zp_m = (50.0 x 10%)(1.60 x 10719 J)

p=120x10"%kg - m/s

h
A =5 = 5.49 x 10712 m

The relativistic answer is slightly more precise:

=13.97x10 % m

PR he 7 =5.37x10"% m
P [(mc2 +K)% - m2c4]
2,2 2
Electron: A= — and K =%mev2 _Mmev- _ P
P 2m,  2m,
so p=+2m.K
and h 6.626 x10734 J[3

A=7.09%10"0 m=

Photon: A=c/f and E=hf so f=E/hand

. hc  (6.626 x 107**] - §)(3.00 x 10° m/s)

2mK ,2(0.11x 10" kg)(3.00)(1.60 x 10 1]

© 2000 by Harcourt, Inc. All rights reserved.
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hc =4.14x 107" m =414 nm|
E (3.00)(1.60 x 10719 ) -

21
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40.56

*40.57 (a)

(b)

From the Bragg condition (Eq. 38.13),

mA = 2d sin 6 = 2d cos(¢/2)
lectrons

But, d=asin(¢/2) where a is the lattice spacing.
Thus, with m=1,

A=2a sin(go/Z) cos((p/Z) =asin ¢

h_  h 6.626 107 13

=— = =167x10"" m
P y2mK \“““2(9.11><10‘31 kg)(54.0 x1.60 x1072° J)

Therefore, the lattice spacing is

-10
A _167x10 m =2.18x107% m=10.218 nm

" sin Q@ "~ sin50.0°

A ~10"* m or less.

h 6.6x107%* )3

p=--

g TRy =107" kgm/s or more.
m

The energy of the electron is
22 24 -19\? 8)2 -31)2 s\’ 11 8
E = p%? +méc ~§10 J"(3x20°)" +(9x20) (3 x10?) 5 ~10710-10° eV or more,

so that K =E -m,c? ~10% eV - (0.5 x10° eV) ~10% eV| or more.

The electric potential energy of the electron would be

kg, (9%10° Nm?/c?)(10™° ¢)(-e)

~-10° eV
r 107" m

Ue

With its kinetic energy much larger than its negative potential energy,
the electron would immediately escape the nucleus|.
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Goal Solution

The nucleus of an atom is on the order of 1074

m in diameter. For an electron to be confined to a

nucleus, its de Broglie wavelength would have to be of this order of magnitude or smaller. (a) What
would be the kinetic energy of an electron confined to this region? (b) On the basis of this result, would

you expect to find an electron in a nucleus? Explain.

The de Broglie wavelength of a normal ground-state orbiting electron is on the order 107 m (the
diameter of a hydrogen atom), so with a shorter wavelength, the electron would have more kinetic
energy if confined inside the nucleus. If the kinetic energy is much greater than the potential energy
from its attraction with the positive nucleus, then the electron will escape from its electrostatic
potential well.

If we try to calculate the velocity of the electron from the de Broglie wavelength, we find that

-34
v=_" - 6'63:110 Ji =7.27x10° m/s
med ~ (9.11x 10 kg)(107 m)

which is not possible since it exceeds the speed of light. Therefore, we must use the relativistic
energy expression to find the kinetic energy of this fast-moving electron.

2
(a) The relativistic kinetic energy of a particle is K =E-mc?, where E2 :(pc)2 +(mcz) , and the
momentum is p=h/A:

_6.63x107 J[s

Ty =6.63x10° N3
m

E= N/(1.99 x 1071 J)2 + (8.19 x 10714 J)2 =199x1071

-1, -14
K =E-mc2=-29%10 J_li'lgxlo I~ 124 MeV ~ 100 MeV
160x107 J/eV

(b) The electrostatic potential energy of the electron 10 m away from a positive proton is :

0 2 2
8.9 x10° Nm ﬁl. 60x107° |
C

U=-ke?/r=- =-2.30x107* )~ -0.1 MeV

107% m
Since the Kkinetic energy is nearly 1000 times greater than the potential energy, the electron would
immediately escape the proton’s attraction and would not be confined to the nucleus.

It is also interesting to notice in the above calculations that the rest energy of the electron is
negligible compared to the momentum contribution to the total energy.

© 2000 by Harcourt, Inc. All rights reserved.
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40.58

40.59

40.60

(@)

(b)

©

(@)

(b)

(@)

(b)

©

20.0 x 10° MeV
From E = yme c? Y ="0511MevV _ - 3.91 x 10*

E 2
P=7< (for mg ¢ << pc)

0= (2.00 x 10* MeV)(1.60 x 10713 J/MeV)

3.00 x 108 m/s :|1.07x10-17 kg - m/s

h  6626x103) s -
A=— = 17 =16.22 x 10 m
P 1.07x10" kg -m/s

Since the size of a nucleus is on the order of 10™* m, the 20-GeV electrons would be small
enough to go through the nucleus.

E2=p2c? + m2c*

h h
with E = hf, p=—, and me¢ = —
A Ac
h?c?  hc? off 1,1
so h2f2 =—— + —— and gl . Eq. 1
For a photon f/c=1/A.

The third term 1/Ac in Equation 1 for electrons and other massive particles shows that

| they will always have a different frequency from photons of the same wavelength

The wavelength of the student is A =h/p=h/mv. If w is the width of the diffraction aperture,
then we need w<10.0A =10.0(h/mv), so that

0 5 0
v<100- " =100 :026x10 © IS -
mw

. =[110x107%* m/s
H80.0 kg)(0.750 m)H

Using t=% we get:  t= 0.150 m =[136x10% s

T110%x107** m/s

. The minimum time to pass through the door is over 10¥® times the age of the
Universe.



40.61

40.62
@)
(b)
©

40.63
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The de Broglie wavelength is: A = h
ymev
The Compton wavelength is: Ac = L
myC
Therefore, we see that to have A =A, it is necessary that yVvV =c.
L v vt ovif c
This gives: —=¢, Oor =~ =1-—", yielding v=|—
9 \/1_\/2/02 Oc O OO y 9 A2

th ®
JAVARSIELIE B
ST e e
From two points on the graph 0= Izllg4.1><1014 Hz)—Q
Ue e
_h W\ @ L0 T a0 T Tl T 10
and 3.3V = {12x10% He) - £ £ (TH)

Combining these two expressions we find:
o=

ho. 42x1071V . s
e

_hpec

hc
At the cutoff wavelength — = ¢=
g A @ Ce ),

C

3.0 x 108 m/s)
Ae=(42x107PV.5)(1.6 x1071°C ( =[730 nm
0= ( X ) (1.7 eV)(1.6 x 10~ J/eV)

Koo q°B%R? _ (1.60 x 10~*° C)?(2.00 x 10~° T)(0.200 m)?
meT 2me - 2(9.11 x 1073 kg)

=225x1071°)=140eV=hf-¢

~ _ he _(4.14x 107 eV - 5)(3.00 x 10° m/s) ~
®= = Kiax = ==~ Kmax= 0105 m ~1.40eV = [1.36 eV

© 2000 by Harcourt, Inc. All rights reserved.
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40.64

40.65

40.66

Chapter 40 Solutions

(@)

(b)

(©

(@)

(b)

From the path the electrons follow in the magnetic field, the maximum Kinetic energy is seen
to be:

_ e’B°R?
Kmax - Tme
From the photoelectric equation, Kmax =hf —¢@= % -@
2n252
Thus, the work function is (pzm— Kmax = he ¢8R
A A 2m,
We want an Einstein plot of Kax versus f
A, nmf 10 Hz  Kpax eV K
588 5.10 0.67 ev] | /
505 5.94 0.98 /
445 6.74 1.35 IF s
399 7.52 1.63 7
ope = 22028V oo ) -f
slope =~oma - +8% ——|7«“-|—|
T4
!
e(AVs)=hf-¢ /
-1k J..-‘
h_0402M_|64xloi34J +8(y 'IIIII
= (0402) 101 L= SO J 2 400 600 B
f(THz)
Kmax=0 at f=344x10'% Hz

@=hf=232x101)=

(0.234) =3.09x 1076 m

-34
w = cos s (08I0,
myC (1.67 x10™“" kg)(3.00x10° m/s)

_hc _ (6.626x107** J[3)(3.00x10° m/s) _
"7 E, T (200 MeV)(160x10"3 1/ MeV)

6.20x107° m
A'=Ag+M =6.51x107° m
_he _
EV—F— 191 MeV
Kp = [9.20 MeV



Chapter 40 Solutions 27

40.67 M is the mass of the positron which equals me, the mass of the electron.
So U = reduced mass = meM__ me
m+M 2
2.2 2.2 2.2
n“h n“h 2n‘h -10 2
Mos = = = or Myos = 2 3 |L06x10 " m|n
PO Zpke®  Z(me /2)ke?  Zmek,e? pos = =" Hyd ( )

This is the separation of the two particles.

_ _ukeze4 1 _ _mek92e4 Oo1Qg

Enya [ -6.80eV
n=123,... or Epos: 2y = v,

s T T o W T T a2 0

Goal Solution

Positronium is a hydrogen-like atom consisting of a positron (a positively charged electron) and an
electron revolving around each other. Using the Bohr model, find the allowed radii (relative to the
center of mass of the two particles) and the allowed energies of the system.

G:

Since we are told that positronium is like hydrogen, we might expect the allowed radii and energy
levels to be about the same as for hydrogen: r =agn® = (5.29 x107H m)n2 and E,=(-13.6 eV)/n?.

Similar to the textbook calculations for hydrogen, we can use the quantization of angular
momentum of positronium to find the allowed radii and energy levels.

Let r represent the distance between the electron and the positron. The two move in a circle of
radius r/2 around their center of mass with opposite velocities. The total angular momentum is
quantized according to

Ln:m+w:nh, where n=123,...
2 2

2 2

For each particle, 2F =ma expands to keg =mv_
r r/2

2 2

We can eliminate U:Lh to find kLZZmz_nzh
mr r m-r
S 2n°h? ;

So the separation distances are r= > = 2agn” = (1.06 x 10710 m) n*

mk e

The orbital radii are r/2 = agn®, the same as for the electron in hydrogen.

2
The energy can be calculated from E=K+U-= %mvz +%mv2 _kee
r
2 2 2 2 _p a2
Since mv? = K&~ ek’ ke’ ke? e’ 6.80eV
2r 2r r 2r  4agn n

It appears that the allowed radii for positronium are twice as large as for hydrogen, while the energy
levels are half as big. One way to explain this is that in a hydrogen atom, the proton is much more
massive than the electron, so the proton remains nearly stationary with essentially no Kkinetic
energy. However, in positronium, the positron and electron have the same mass and therefore both
have kinetic energy that separates them from each other and reduces their total energy compared
with hydrogen.
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40.68 Isolate the terms involving 0
@ in Equations 40.12 and  h’O5 +— ,
40.13. Square and add to Ho A A"

eliminate ¢.
2 2 [ 0
Solve for V—Z: b b:hi2|}]é+ 12_20059D
¢ (b+c?) = AT IN:
Lo OhH1 10U / b
Substitute into Eq. 40.11:; 1+ -~ [=y=.1-
| 5 eC% A'g A
g D 20 DZ On2 [ 0
Square each side: c2+ 2th¢ 1 h 1 1 0 =c2+ %:7 1 1 _2COS’9D
me o Aamea’\o Ag AW T

From this we get Eq. 40.10: A" =Aq =(h/mec)[1~cos 6]

2,4 2.4
40,69 hf=AE=4n2megkee 01 %@ o ‘= 2n2m3k e’ 2n zlzg
2h h n-1)°n
2,4
As n approaches infinity, we have f approaching 27'12r|:1§k623
n
2.2
The classical frequency is f =V - 1 k % where r :%
2m  2m \ e T 47m,k.e
2,4
Using this equation to eliminate r from the expression for f, f= 2712r:§k =
n
40.70 Show that if all of the energy of a photon is transmitted to an electron, momentum will not
be conserved.
hc _ hc hc
Energy: —=—+K, —mc -1 if —= 1
h .
Momentum: — = eV = ymy if A = o 2
Ag A
h
From (1), y= +1 ©)
AgmeC
O Agmee f

\ “HhagmeH )

Substitute (3) and (4) into (2) and show the inconsistency:

h 0. n D / 0 Agme O Agmge+h (h(h+24eme)  h [h+24gmge
Ao El Aom, cD \ “HheagmeH T A, \ (h+Agm,c)? AO\“
This is impossible, so all of the energy of a photon cannot be transmitted to an electron.

g

40.71 Begin with momentum expressions: p :Aﬁ' and p=ymv= ymCDEEI



Equating these expressions,
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O Omcbar A

Us (v/c)2 :DACDZ

Thus, 1—(V/C)2 HTE

or DlDZ:D/\CDZ_[V\CEFDlEF: (AC//\)2 - 1
G0 "HaH HaHeo 1+(2e/A) (AAe) +1

giving Y ¢

i 1+ 7Ac)

. hc 1240 eV [hm
40.72 (a) The energy of the ground state is: E,=- =- = -—8.16 eV
@ ¥ J ' Aserieslimit 152.0 nm -
From the wavelength of the L, line, we see: E,-E; _he_1240nmiev 6.12 eV
A 202.6 nm
E,=E, +6.12eV = (-2.04 eV
Using the wavelength of the Lz line gives: E;-F 1240 nm eV _ 7.26 eV
170.9 nm
SO E; =(-0.902 eV
Next, using the L, line gives: E,-E = 1240 nm BV _ 7.65 eV
162.1 nm
and E, =|-0.508 eV
From the Ly line, E,—E, =220 NM BV _J 836y
158.3 nm
SO E; =(-0.325 eV
(b) For the Balmer series, he _ E,—E,, or A= 1240 nm [8V

For the o line, E; =E; and so

_ 1240 nm [&V _
Aa = (-0.902 eV) - (-2.04 eV)

Similarly, the wavelengths of the g line, y line, and the short wavelength limit are found to
be: [811 nm|, 724 nm|, and [609 nm|.
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40.73

Chapter 40 Solutions

©

(d)

(@)

(b)

Computing 60.0% of the wavelengths of the spectral lines shown on the energy-level diagram
gives:

0.600(202.6 nm) = , 0.600(170.9 nm) = , 0.600(162.1 nm) = ,
0.600(158.3 nm) = , and 0.600(152.0 nm) = .

These are seen to be the wavelengths of the a, B, ¥, and & lines as well as the short
wavelength limit for the Lyman series in Hydrogen.

The observed wavelengths could be the result of Doppler shift when the source moves away
from the Earth. The required speed of the source is found from

oA i=(ve) _ L —
Y _\ 1+(v c) =0.600 yielding

o 1 _ 2mhc?
Starting with Planck’s law, 1(A,T)= W

2 7thc?

the total power radiated per unitarea [ 1(A,T)dA =, /\—s[ehwk—BT_lIdA :

hc

Change variables by lettin X =
g Y 1eting AkgT
and dx = - hch2
kgTA

Note that as A varies from 0 - o, x varies from « - 0.

_2mkgT* O O

® __27T|(éT4 o x3
A
o0 0 40
Therefore, Io |(,\ ,T)d)\ = B%Hﬂ =oT?
c
4 28 (138 x10 k)
From part (a), o= 210 kg = ( )

~15h%? 15(6.626 x 10 J 3)3(3.00 x 108 m/s)2

0=567%x10"% w/m?K*
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2 7thc?

28] ehe AkeT _ ]

-1
*40.74 Planck’s law states 1(A,T) = = 27Thc2)\‘5[ehC AkeT _ 1]

To find the wavelength at which this distribution has a maximum, compute

dr_ 2 “6[he/AkeT _ 4] L 3-5[.hc AkeT _ 4] 2heakeTD he CH_
a2 55)\ [e ’ 1] A [e i 1] e EUZI(BT%_O
dl omhc  H he  eMAkeT H

0

a A6Ieh°/"kBT —1] E_5+ AkgT lehC//\kBT —1J E:

X

=5.

Letting x = he , the condition for a maximum becomes
AkgT eX-1

We zero in on the solution to this transcendental equation by iterations as shown in the table
below. The solution is found to be

X xe* / (ex - l)
4.00000 4,0746294
4,50000 4,5505521
5.00000 5.0339183
4,90000 4,9367620
4.95000 49853130
4,97500 5.0096090
4.96300 4,9979452
4.96900 5.0037767
4,96600 5.0008609
4,96450 4,9994030
4,96550 5.0003749
4,96500 4,9998890
4.96525 5.0001320
4,96513 5.0000153
4,96507 4.9999570
4,96510 4.9999862
4,965115 5.0000008

x=_ M _ 4965115 and he

AmaxT = ————
A max ke T Ma&X" " 4.965115kg

(6.626075 x 107 3(3)(2.997925 x 10° mys)

Thus, ApmaxT = =|2.897755x 1073 m K
mex 4.965115(1.380658 x 102 J/K)

This result is very close to Wien’s experimental value of A ., T =2.898 x107% m K

for this constant.
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40.75

40.76

40.77

Chapter 40 Solutions

h
A =——(1-cosO=A"-A
mc( ) 0

(3

—1

hc _
E'= =hc +— 1-cos @
O o+N\ %‘o mec ( )D
-1
0
goheq, he (1- cos 6)0
A H mgc )0 g
_l _1
g 0 d
gfeq, he (1-cos )0 = Egl+—2(1-cos B)
Aog mg o B 0 mec 0
(1)*h? h? 3 0.0529 nm
ry= = = =— =13.12fm

" Zpke?  (82)(207m, )ke?  (82)(207)  (82)(207)

_ —13.6 eV (207 1B2(f _
ST ormio”

This is a case of Compton scattering with a scattering angle of 180°. I'Luhr’ﬂ"
NoEnn
AA:A'—Aozl(l—cos180°)=2—h M-‘"—h
mec mec ':-L.'I:.:':.".‘ll- Fecoaling:
Phicitaom Electron
0
Eo :E, S0 Ay - e and A'=Ag+AM :E+27h:EE1 2E0
A = E, mec E m, c?

The kinetic energy of the recoiling electron is then

hc E, 1+ 2Ey/m,c? —10_  2EZ /m,c?

K=Ey - =F,- =E,
CA T (1+2E, me?) H1+2e,/mc? H 1+2E0/mc

Defining a= Eo/mecz, the kinetic energy can be written as

_ 2Ega _ 2(hf)a

=|2hfa(1+2a)™
T 1+2a 1+2a

where f is the frequency of the incident photon.
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40.78 (a) Planck's radiation law predicts maximum intensity at a wavelength A, we find from

dr 0 =iH2 hc? /\—S[e(hc//\ ksT) _1] 'ﬂ
dA dA

0=2mhc2A 5(—1)[e(“°“ kaT) _ 1] 2 glhe/AkgT) (~he 7 A%gT) +2 he?(-5)A~° [e(hCM keT) _ 1] .

—hee(ne/AksT) 5
or 7+ =0
A kBT[e(hc//\ keT) _ 1] 26 [e(hc//\ keT) _ 1]
which reduces to 5(A kBT/hc)[e(hC/" keT) — 1] = g(ne/AkeT)
Define x =hc /A kgT. Then we require 5e* —5=xe*.

Numerical solution of this transcendental equation gives x=4.965 to four digits. So
A max =Nc /4.965kgT, in agreement with Wien's law.

2 1the? dA
e(nc/AkgT) _ 1J

The intensity radiated over all wavelengths is L:o I(A,T)dA =A+B :I: Asl

Again, define x =hc /AkgT so A =hc/xkgT and dA = —(hc/xszT)dx

- 21mhe? x*kT® he dx _ 27tkgT* (o x3dx
h%c5x? kg T (eX - 1) h3c? Jo (eX - 1)

0
Then, A+B :IX_

44
The integral is tabulated as m* /15, so (in agreement with Stefan's law) A+B :217;:(3512-
c

The intensity radiated over wavelengths shorter than A . is

2 rthe? dA
25 le(hc//\ kgT) _ 1J

[im™ g mdr =A==

. _ L _27'rk§T4 o x3dx
With x =hc/AkgT, this similarly becomes A= 32 J’4.%5 x_1

So the fraction of power or of intensity radiated at wavelengths shorter than A, is

2mkgT* On* 4965 x* dx U
A hdc2 His .[0 X —1H 15 4.965 X3 dx
= o =1-— X
A+B 2 kgT o X1
15h3¢?
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(b) Here are some sample values of the integrand, along with a sketch of the curve;:

X x3(ex - 1)_1
0.000 | 0.00
0.100 |9.51 x 1073
0.200 | 3.61x1072| (%)

1.00 |0.582
2.00 1.25
3.00 1.42
4.00 1.19
490 |0.883
4.965 | 0.860 © &
. . . . . A 15
Approximating the integral by trapezoids gives B 1-—7(4.870) = |0.2501
A
40.79 Ao = h and A= C:M:L,
mC p A h7p mgc
2_ 22 2\2. E 2
E®=cp +(mec) : p:\““ciz_(mec)
Aiczi g—(mc)zz | I%EF (mC)D “DE lﬁ_
A mgelc? UF \/( e)2 0 \%GCZH
40.80 p=mv=~2mE = \/2(1. 67 x107 kg)(o.04oo eV)(l. 60 x 1072 J/eV)

h
A:m_143x10-1° =(0.143 nm

This is of the same order of magnitude as the spacing between atoms in a crystal so diffraction
should appear.

-1/2

40.81 Let u' represent the final speed of the electron and let y':(l—u'z/cz) . We must
eliminate B and u' from the three conservation equations:
hc 2 _hc , 2 Scattered
TEryme? =y mge i P;i)ts;l\(
0 Incident , A
h h Photon  Electron i
—+ymu-—cosf=y'myucosf [J i, > . 8 Scattered
TR N0~ Ol g

N in 6= B & =
—_— Sln m u’ Sln
X 4 (a) (b)
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Square Equations [2] and [3] and add:

2

+2hymeu_2h2 cos 6 2hymeucost9_y,2 2 2

h 2 22, h?
A A Ay AgA A
2 2 2 2,42
%+L2+y2m§u2+2hymeu_2hymeucose_2h 0059: mel; i
AO Al AO Al Ao/\' 1-u“/c
)2 2
Call the left-hand side b. Then b—bu2 :mezu'z and u'? = 5 b > = 202b
c mg +b/cc  mgce+b

Now square Equation [1] and substitute to eliminate y':

L+y2mzcg+£+2hymec_ 2h® _2hymec _ mic? = m2e? +b
/\2 e /\,2 AO AOAI 2 1_u,2/02 e
So we have
2 2 2
hT+L2+ yzmezcz + ZhymeC _ 2hy[:neC _ 2h :
Ay A Ao A Ao A
2 2 2
:mecz+%+%+ygmguz+2hymeu_2hymetljcose_2h co'se
A2 A Ao A Ao
i ] 2.2
Multiply through by oA’ /mZc
A A,y2+2h}\'y _2hAgy 2h? - ) A,+A0A’y2u2 +2h}\'uy_2hy)\0ucose_2h2 cos 6
0 mC me  mic2 ° c2 meC? m,C? mZc?

2y20 ' 2hy A 2
2_q_Yu L 2hyA EL_ED_ y oEll_ucosem+ 2h

2 H mge ¢ mgec c O mech(l_COSQ)

A /\'E/
0

- -1
The first term is zero. Then A=Ay EL (;J_C(l)JsCQ)/c E+ hr:c E{l—lu/cﬁl_ cos 9)
/ €

Since yt= 1= (u/e) = /(1-we)(1+urc)

M—(ucosB)/cd h [1+u/c

1-u/c H+mTc 1-u C(l—cos 0)

this result may be written as A'=Ag
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