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(b) For destructive interference in a multiple-slit experiment,
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




1
2
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(c) We cannot say the neutron passed through one slit.  We can only say it passed through the slits.

41.2 Consider the first bright band away from the center: d msinθ λ=
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41.3 (a) The wavelength of a non-relativistic particle of mass m  is given by λ = =h p h mK/ 2  where the

kinetic energy K  is in joules.  If the neutron kinetic energy Kn  is given in electron volts, its kinetic

energy in joules is K Kn= ×( )−1 60 10 19.  J/eV  and the equation for the wavelength becomes
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where Kn  is expressed in electron volts.

(b) If Kn = =1 00 1000.  keV  eV, then
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If the particles are electrons and λ ~ .0 1 10 10 nm  m= − , the kinetic energy in electron volts is
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The relativistic answer is more precisely correct:

K p c m c m ce e e= +( ) − =2 2 2 4 1 2 2 14 9
/

/.  keV

(b) photons: E pcγ = = ×( ) ×( ) =−6 63 10 3 00 1023 8. . 124 keV

41.6 The theoretical limit of the electron microscope is the wavelength of the electrons.  If

Ke = 40 0.  keV , then E K m ce e= + =2 551 keV  and
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The electron wavelength, and hence the theoretical limit of the microscope, is then
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Suppose the array is like a flat diffraction grating with openings 0 250.  nm apart:
d msinθ λ=

 −135 8 74 10



Chapter 41 Solutions 496

41.8 (a) ∆ ∆ ∆ ∆p x m v x= ≥h/2 so
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(b) The duck might move by 0 25 5 1 25. . m/s  s  m( )( ) = .  With original position uncertainty of

1 0. 0 m, we can think of ∆x  growing to 1 00 1 25. . m  m+ = 2 25.  m

41.9 For the electron,
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x
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Goal Solution

An electron ( me = × −9 11 10 31.  kg ) and a bullet ( .m = 0 0200 kg) each have a speed of

500 m/s, accurate to within 0 0100. %.  Within what limits could we determine the position of the
objects?

G: It seems reasonable that a tiny particle like an electron could be located within a more narrow region
than a bigger object like a bullet, but we often find that the realm of the very small does not obey
common sense.

O: Heisenberg’s uncertainty principle can be used to find the uncertainty in position from the
uncertainty in the momentum.

A: The uncertainty principle states:  ∆ ∆x px ≥ h/2 where ∆ ∆p m vx =  and h =h/2π.

Both the electron and bullet have a velocity uncertainty, 
∆v = ( )( ) =0 000100 500 0 0500. . m/s  m/s

For the electron, the minimum uncertainty in position is
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41.10
∆ ∆y
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p

p
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x
= and d p hy∆ ≥ /4π Eliminate ∆py  and solve for x .

x p y
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This is 190 times greater than the diameter of the Universe!

41.11 ∆ ∆p x ≥ h
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41.12 With ∆x = × −2 10 15  m, the uncertainty principle requires ∆
∆

p
xx ≥ = × ⋅−h

2
2 6 10 20.  kg m/s

The average momentum of the particle bound in a stationary nucleus is zero.  The uncertainty in

momentum measures the root-mean-square momentum, so we take prms = × ⋅−3 10 20  kg m/s .

For an electron, the non-relativistic approximation p m ve=  would predict v = ×3 1010  m/s,
while vcannot be greater than c .

Thus, a better solution would be E m c pc m ce e= ( ) + ( )
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
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= =2 2 2
1 2

256
/
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v c≈ 0 99996.

For a proton, v p m= /  gives v = ×1 8 107.  m / s, less than one-tenth the speed of light.

41.13 (a) At the top of the ladder, the woman holds a pellet inside a small region ∆xi .  Thus, the uncertainty
principle requires her to release it with typical horizontal momentum ∆ ∆ ∆p m v xx x i= =h/2 .  It

falls to the floor in time given by H gt= +0 1
2

2 as t H g= 2 , so the total width of the impact
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A
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so ∆x Ai = , and the minimum width of the impact points is
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41.16 For an electron to “fit” into an infinitely deep potential well, an
integral number of half-wavelengths must equal the width of the
well.

nλ
2

1 00 10 9= × −.  m so

λ = × =
−2 00 10 9.

n
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p
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e e e
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2 2 2 2 2

9 2
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2 2 2 2 10
0 377

/
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λ
 eV

For K ≈ 6 eV , n = 4

(b) With n = 4 , K = 6 03.  eV

41.17 (a) We can draw a diagram that parallels our treatment of
standing mechanical waves.  In each state, we measure the
distance d  from one node to another (N to N ), and base our
solution upon that:

Since dN to N = λ
2

and

λ h
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Next,

K
p
m

h
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Evaluating, K
d

= × ⋅−6 02 10 38

2
.  J m2

K
d

= × ⋅−3 77 10 19

2
.  eV m2

In state 1, d = × −1 00 10 10.  m
K1 37 7= .  eV

In state 2, d = × −5 00 10 11.  m
K2 151=  eV

In state 3, d = × −3 33 10 11.  m
K3 339=  eV

In state 4, d = × −2 50 10 11.  m
K4 603=  eV

(b) When the electron falls from state 2 to state 1, it puts out
energy

E hf
hc= − = = =151 37 7 113 eV  eV  eV.
λ
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The wavelengths of the other spectral lines we find similarly:

T
r
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n
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n
E eV( )

λ nm( )
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41.18 E1
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Goal Solution
The nuclear potential energy that binds protons and neutrons in a nucleus is often approximated by a
square well.  Imagine a proton confined in an infinitely high square well of width 10 0.  fm , a typical
nuclear diameter.  Calculate the wavelength and energy associated with the photon emitted when the
proton moves from the n = 2 state to the ground state.  In what region of the electromagnetic
spectrum does this wavelength belong?

G: Nuclear radiation from nucleon transitions is usually in the form of high energy gamma rays with
short wavelengths.

O: The energy of the particle can be obtained from the wavelengths of the standing waves
corresponding to each level.  The transition between energy levels will result in the emission of a
photon with this energy difference.

A: At level 1, the node-to-node distance of the standing wave is 1 00 10 14. × −  m, so the wavelength is

twice this distance:  h p/ .= × −2 00 10 14  m.  The proton’s kinetic energy is

K mv
p
m

h
m

= = = =
× ⋅( )

×( ) ×( )
= ×

×
=

−

− −

−

−
1
2

2
2 2

2

34 2

27 14 2

13

192 2

6 63 10

2 1 67 10 2 00 10

3 29 10
1 60 10

2 06
λ

.

. .

.
.

.
 J s

 kg  m

 J
 J/eV

 MeV

In the first excited state, level 2, the node-to-node distance is two times smaller than in state 1.  The
momentum is two times larger and the energy is four times larger:  K = 8 23.  MeV .

The proton has mass, has charge, moves slowly compared to light in a standing-wave state, and stays
inside the nucleus.  When it falls from level 2 to level 1, its energy change is

2 06 8 23 6 17. . . MeV  MeV  MeV− = −

Therefore, we know that a photon (a traveling wave with no mass and no charge) is emitted at the speed
of light, and that it has an energy of +6 17.  MeV.

Its frequency is f
E
h

= =
×( ) ×( )

× ⋅
= ×

−

−

6 17 1 60 10

6 63 10
1 49 10

19

34
21

. .

.
.

10  eV  J/eV

 J s
 Hz

6

and its wavelength is λ = = ×
×

= ×−
−c

f
3 00 10
1 49 10

2 02 10
8

21 1
13.

.
.

 m/s
 s

 m

This is a gamma ray, according to Figure 34.17.

L:The radiated photons are energetic gamma rays as we expected for a nuclear transition.  In the above
calculations, we assumed that the proton was not relativistic ( v c< 0 1. ), but we should check this
assumption for the highest energy state we examined ( n = 2):

v
K

m
c= =

×( ) ×( )
×

= × =
−

−
2 2 8 23 10 1 60 10

1 67 10
3 97 10 0 133

6 19

27
7

. .

.
. .

 eV  J/eV

 kg
 m/s

This appears to be a borderline case where we should probably use relativistic equations, but our

classical treatment should give reasonable results, within ( . ) %0 133 12 =  accuracy.
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41.22 λ = 2D for the lowest energy state

K
p
m

h
m

h
mD

= = = = × ⋅
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= × =

−

− −
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



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2

2
2

8
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8 21 10=

× ⋅( )
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−
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 J

E1 = 0 513.  MeV E E2 14= = 2 05.  MeV E E3 19= = 4 62.  MeV

41.24 (a) < >= 



 = −



∫∫x x

L
x

L
dx

L
x

x
L

dx
LL 2 2 2 1

2
1
2

42
00

sin cos
π π

< >= − +





=x
L

x
L

L x
L

x
L

x
L

L L1
2

1
16

4 4 42

0

2

2
0π

π π π
sin cos L/2

(b) Probability = 



 = −



∫  

2 2 1 1
4

42
0 490

0 510

0 490

0 510

L
x

L
dx

L
x

L
L x

LL

L

L

L

sin sin
.

.

.

.π
π

π

Probability = − −( ) =0 20
1

4
2 04 1 96. sin . sin .

π
π π 5 26 10 5. × −

(c) Probability = −





=x
L

x
L L

L1
4

4

0 240

0 260

π
π

sin
.

.

3 99 10 2. × −

(d) In the n = 2 graph in Figure 41.11 (b), it is more probable to find the particle either near

x
L=
4

or x
L= 3
4

than at the center, where the probability density is zero.
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A
n x

L
dx A

L
x

L 2 2 2
0 2

1sin
π



 = 



 ==∫ or A

L
= 2

41.26 The desired probability is P dx
L

x
L

dx
x

x L L
= = 



=

=
∫ ∫ψ π2

0

4 2
0

42 2/ /
sin

where sin
cos2 1 2
2

θ θ= −

Thus,

P
x
L

x
L

L

= −



 = − − +



 =

1
4

4 1
4

0 0 0
0

4

π
π

sin
/

0 250.

41.27 In 0 ≤ ≤x L , the argument 2πx L/  of the sine function ranges from 0  to 2π .  The probability

density 2 22/ sin /L x L( ) ( )π  reaches maxima at    sinθ = 1    and    sinθ = −1   at

2
2

π πx
L

= and
2 3

2
π πx
L

=

∴ The most probable positions of the particle are at x
L

x
L= =

4
3
4

   and   

41.28 (a) The probability is P dx
L

x
L

dx
L

x
L

dx
L L L

= = 



 = −



∫ ∫ ∫ψ π π2

0

3 2
0

3

0

32 2 1
2

1
2

2/ / /
sin cos

P
x
L

x
L

L

= −



 = −



 = −






=1

2
2 1

3
1

2
2
3

1
3

3
40

3

π
π

π
π

π
sin sin

/

0 196.

(b) The probability density is symmetric about x L= /2.  Thus,
the probability of finding the particle between x L= 2 3/  and
x L=  is the same 0 196. .  Therefore, the probability of finding
it in the range L x L/ /3 2 3≤ ≤  is
P = − ( ) =1 00 2 0 196 0 609. . . .

(c) Classically, the electron moves back and forth with constant
speed between the walls, and the probability of finding the
electron is the same for all points between the walls.  Thus, the
classical probability of finding the electron in any range equal

to one-third of the available space is Pclassical
 = 1 3/ .
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41.29 The ground state energy of a particle (mass m) in a 1-dimensional box of width L  is E
h
mL1

2

28
= .

(a) For a proton m = ×( )−1 67 10 27.  kg  in a 0 200. - nm wide box:

E1

34 2

27 10 2
22

6 626 10

8 1 67 10 2 00 10
8 22 10=

× ⋅( )
×( ) ×( )

= × =
−

− −
−.

. .
.

 J s

 kg  m
 J 5 13 10 3. × −  eV

(b) For an electron m = ×( )−9 11 10 31.  kg  in the same size box:

E1

34 2

31 10 2
18

6 626 10

8 9 11 10 2 00 10
1 51 10=

× ⋅( )
×( ) ×( )

= × =
−

− −
−.

. .
.

 J s

 kg  m
 J 9 41.  eV

(c) The electron has a much higher energy because it is much less massive.

41.30 (a) ψ π
1

2
x

L
x

L
( ) = 



cos P x x

L
x

L1 1
2 22( ) = ( ) = 



ψ π

cos

ψ π
2

2 2
x

L
x

L
( ) = 



sin P x x

L
x

L2 2
2 22 2( ) = ( ) = 



ψ π

sin

ψ π
3

2 3
x

L
x

L
( ) = 



cos P x x

L
x

L3 3
2 2 3( ) = ( ) = 



ψ π

cos

41.31 We have ψ ω= −( )Aei kx t
and

∂ ψ
∂

ψ
2

2
2

x
k= −

Schrödinger’s equation:
∂ ψ
∂

ψ ψ
2

2
2

2
2

x
k

m
E U= − = −( )

h

Since k
p p2

2

2

2

2

2

2
2 2

= ( ) = ( ) =π
λ

π
h h

and E U p m−( ) = 2 2/
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*41.32 ψ x A kx B kx( ) = +cos sin
∂ψ
∂ x

kA kx kB kx= − +sin cos

∂ ψ
∂

2

2
2 2

x
k A k x k B kx= − −cos sin − −( ) = − +( )2 2

2 2
m

E U
mE

A kx B kx
h h

ψ cos sin

Therefore the Schrödinger equation is satisfied if

∂ ψ
∂

ψ
2

2 2
2

x
m

E U= −

 −( )

h
or

− +( ) = −

 +( )k A kx B kx

mE
A kx B kx2

2
2

cos sin cos sin
h

This is true as an identity (functional equality) for all x  if E
k
m

= h
2 2

2

41.33 Problem 45 in Ch. 16 helps students to understand how to draw conclusions from an identity.

(a) ψ x A
x
L

( ) = −






1

2

2
d
dx

Ax
L

ψ = −2
2

∂ ψ
∂

2

2 2
2

x
A

L
= −

Schrödinger’s equation
∂ ψ
∂

ψ
2

2 2
2

x
m

E U= − −( )
h

becomes

− = −






+

−( ) −







−( )
2 2

1
2

1

2 2

2

2 2

2 2
2

2

2 2 2
A

L
m

EA
x
L

m
x A

x
L

mL L xh h

h

− = − + −1
2 2

2

2 2

2

4L
mE mEx

L
x
Lh h

This will be true for all x  if both
1
2 2L

mE=
h

and
mE

L Lh2 2 4
1

0− =

Both of these conditions are satisfied for a particle of energy E
L m

= h2

2 .

(b) For normalization,

1 1 1
22

2

2

2
2

2

2

4

4= −






= − +






−− ∫∫ A
x
L

dx A
x
L

x
L

dx
L

L

L

L

1
2
3 5

2
3 5

2
3 5

16
15

2
3

2

5

4
2 2= − +









 = − + + − +




=

−

A x
x
L

x
L

A L L
L

L L
L

A
L

L

L

A
L

= 15
16

(c)
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P = =47
81

0 580.
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41.34 (a) Setting the total energy E  equal to zero and rearranging the Schrödinger equation to isolate the
potential energy function gives

U x
m

d
dx

( ) = 





h2 2

22
1
ψ

ψ

If ψ x Axe x L( ) = − 2 2/  Then
d
dx

Ax AxL
e

L

x L2

2
3 2

44 6
2 2

ψ = −( )
− /

or

d
dx

x L

L
x

2

2

2 2

4

4 6ψ ψ=
−( ) ( )

and

U x
mL

x
L

( ) = −






h2

2

2

22
4

6

S ee figure to the right .

41.35 (a) S ee figure to the right .

(b) The wavelength of the transmitted wave
traveling to the left is the same as the original
wavelength, which equals 2L .

4

41.37 T e CL= −2   (Use Equation 41.17)

2
2 2 9 11 10 8 00 10

1 055 10
2 00 10 4 58

31 19

34
10CL =

×( ) ×( )
×

×( ) =
− −

−
−

. .
. . F

i
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Goal Solution
An electron with kinetic energy E = 5 00.  eV  is incident on a barrier with thickness L = 0 100.  nm
and height U = 10 0.  eV  (Fig. P41.37).  What is the probability that the electron (a) will tunnel
through the barrier and (b) will be reflected?

G: Since the barrier energy is higher than the kinetic energy of the electron, transmission is not likely,
but should be possible since the barrier is not infinitely high or thick.

O: The probability of transmission is found from the transmission coefficient equation 41.18.

A: The transmission coefficient is

C
m U E

=
−( )

=
×( ) −( ) ×( )

× ⋅
= ×

− −

−
2 2 9 11 10 10 0 5 00 1 60 10

6 63 10
1 14 10

31 19

34
10

h

. . . .

.
.

 kg  eV  eV  J/eV

 J s/2
 m-1

π

(a) The probability of transmission is

T e e eCL= = = =− − ×( ) ×( ) −
− −

2 2 1 14 10 2 00 10 4 58
10 1 10

0 0103
. . . .

 m  m

(b) If the electron does not tunnel, it is reflected, with probability 1 0 0103 0 990− =. .

L:Our expectation was correct:  there is only a 1% chance that the electron will penetrate the barrier.  This
tunneling probability would be greater if the barrier were thinner, shorter, or if the kinetic energy of
the electron were greater.

41.38 C =
×( ) −( ) ×( ) ⋅

× ⋅

− −2 9 11 10 5 00 4 50 1 60 1031 19. . . .  kg m/s

1.055 10  J s-34

T e CL= = − ×( ) ×( )[ ] = −( )− − −2 9 1 122 3 62 10 950 10 6 88exp . exp . m  m

T = 1 03 10 3. × −

41.39 From problem 38,  C = × −3 62 109 1.  m

10 2 3 62 106 9 1− −= − ×( )[ ]exp .  m L

Taking logarithms, − = − ×( )−13 816 2 3 62 109 1. .  m L

New L = 1 91.  nm
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*41.40 With the wave function proportional to e CL− , the transmission coefficient and the tunneling current

are proportional to ψ 2
, to e CL− .

Then,
I
I

e

e
e

0 500
0 515

2 10 0 0 500

2 10 0 0 515
20 0 0 015.

.

. .

. .
. . nm

 nm

 /nm  nm

 /nm  nm
( )
( ) = = =

− ( )( )
− ( )( )

( ) 1 35.

*41.41 With transmission coefficient e CL− , the fractional change in transmission is

e e

e
e

L L

L

− ( ) − ( ) +( )
− ( )

( )− = − = =
2 10 0 2 10 0 0 00200

2 10 0
29 0 0 002001 0 0392

. . .

.
. . .

 /nm  /nm  nm

 /nm
3 92. %

41.42 ψ ω= −( )Be m x/2 2h so
d
dx

m
x

ψ ω ψ= −

h

and
d
dx

m
x

m2

2

2
2ψ ω ψ ω ψ= 


 + −


h h

Substituting into Equation 41.19 gives

m
x

m mE m
x

ω ψ ω ψ ψ ω ψ
h h h h





 + −


 = 


 + 




2
2

2

2
22

which is satisfied provided that E = hω
2

.

41.43 Problem 45 in Chapter 16 helps students to understand how to draw conclusions from an identity.

ψ = −Axe bx2
so

d
dx

Ae bx Aebx bxψ = −− −2 2
2 2

and

d
dx

bxAe bxAe b x Ae b b xbx bx bx
2

2
2 3 2 22 4 4 6 4

2 2 2ψ ψ ψ= − − + = − +− − −

Substituting into Equation 41.19, − + = −

 + 


6 4

22 2
2

2b b x
mE m

xψ ψ ψ ω ψ
h h

For this to be true as an identity, it must be true for all values of x .

So we must have both − = −6
2

2b
mE
h

and 4 2
2

b
m= 




ω
h

(a) Therefore b
m= ω
2h

(b) and E
b
m

= =3 2h 3
2
hω

(c) The wave function is that of the f irst excited state .
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*41.44 The longest wavelength corresponds to minimum photon energy, which must be equal to the spacing
between energy levels of the oscillator:

hc k
mλ

ω= =h h so

λ π π= = ×( ) ×





=

−
2 2 3 00 10

9 11 10
8 99

8
31 1 2

c
m
k

.
.

.

/

 m/s
 kg

 N/m
600 nm

*41.45 (a) With ψ ω= −( )Be m x/2 2h , the normalization condition  ψ 2 1dx =∫all

becomes 1 2 2
1
2

2 2 2 2 2 2
0

22 2
= = =− ( )

−∞

∞ − ( )∞
∫ ∫B e dx B e dx B

m
m x m xω ω π

ω
/ /

/
h h

h

where Table B.6 in Appendix B was used to evaluate the integral.

Thus, 1 2= B
m
π
ω
h

and B
m=






ω
πh

1 4/

(b) For small δ , the probability of finding the particle in the range − ≤ ≤δ δ/ /2 2x  is

ψ δ ψ δ
δ

δ 2

2

2 2 2 00
−

−∫ = ( ) = =
/

/
dx B e δ ω

π
m
h







1 2/

41.46 (a) With < >=x 0  and < >=px 0, the average value of x2 is ∆x( )2 and the average value of px
2  is

∆px( )2 .  Then ∆ ∆x px≥ h/2  requires

E
p

m
k

p
x

x
≥ + =

2 2

22 2 4
h p

m
k
p

x

x

2 2

22 8
+ h

(b) To minimize this as a function of px
2 , we require

dE
dp m

k
px x

2

2

40
1

2 8
1

1= = + −( )h

Then
k
p mx

h2

48
1

2
=

p
mk mk

x
2

2 1 2
2

8 2
=






=h h

/

and E
mk
m

k
mk

k
m

k
m

≥ ( ) + = +h h

h

h h

2 2
3

8 4 4

2
.
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*41.47 Suppose the marble has mass 20 g.  Suppose the wall of the box is 12 cm high and 2 mm thick.
While it is inside the wall,

U mgy= = ( )( )( ) =0 02 9 8 0 12 0 0235. . . . kg  m/s  m  J2

and E K mv= = = ( )( ) =1
2

2 1
2

20 02 0 8 0 0064. . . kg  m/s  J

Then C
m U E

=
−( )

=
( )( )

× ⋅
= ×−

−2 2 0 02 0 0171

1 055 10
2 5 1034

32 1

h

. .

.
.

 kg  J

 J s
 m

and the transmission coefficient is

e e e eCL− − ×( ) ×( ) − × − ×( ) − ×= = = = =
−

2 2 2 5 10 2 10 10 10 2 30 4 3 10 4 3 10
32 3 29 29 29

10
. . . . ~ 10 1030−

*41.48 (a) λ = =2L 2 00 10 10. × −  m

(b) p
h= = × ⋅

×
=

−

−λ
6 626 10 34

10
.  J s
2.00 10  m

3 31 10 24. × ⋅−  kg m/s

(c) E
p
m

= =
2

2
0 172.  eV

41.49 (a) S ee the first figure to the right .

(b) S ee the second figure to the right .

(c) ψ  is continuous and ψ → 0 as x → ±∞

(d) Since ψ  is symmetric,

ψ ψ2 2

0
2 1dx dx= =

∞

−∞

∞
∫∫

or

2
2

2
12 2

0

2
0A e dx

A
e ex−∞ −∞∫ =

−






−( ) =α

α

This gives A = α
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(a) Use Schrödinger’s equation

∂ ψ
∂

ψ
2

2 2
2

x
m

E U= − −( )
h

with solutions ψ1
1 1= + −Ae Beik x ik x

[region I]

ψ 2
2=Ceik x

[region II]

Where k
mE

1
2=
h

and

k
m E U

2
2

=
−( )

h

Then, matching functions and derivatives at x = 0 : ψ ψ1 0 2 0( ) = ( ) ⇒ + =     A B C

and
d
dx

d
dx

k A B k C
ψ ψ1

0

2

0
1 2





 = 


 ⇒ −( ) =      

Then B
k k
k k

A= −
+

1
1

2 1

2 1

C
k k

A=
+

2
1 2 1/

Incident wave Aeikx  reflects Be ikx− , with probability R
B
A

k k

k k
= =

−( )
+( )

=
2

2
2 1

2

2 1
2

1

1

/

/

k k

k k
1 2

2

1 2
2

−( )
+( )

(b) With E = 7 00.  eV and U = 5 00.  eV,
k
k

E U
E

2

1

2 00
7 00

0 535= − = =.
.

.

The reflection probability is R = −( )
+( )

=1 0 535

1 0 535

2

2
.

.
0 0920.

The probability of transmission is T R= − =1 0 908.

41.51 R
k k

k k

k k

k k
=

−( )
+( )

=
−( )
+( )

1 2
2

1 2
2

2 1
2

2 1
2

1

1

/

/

h2 2

2
k
m

E U= −  for constant U

h k
m

E
2

1
2

2
=   since U = 0 (1)
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Dividing (2) by (1),
k
k

U
E

2
2

1
2 1 1

1
2

1
2

= − = − =    so

k
k

2

1

1
2

=

and therefore,

R =
−( )
+( )

=
−( )
+( )

=
1 1 2

1 1 2

2 1

2 1

2

2

2

2

/

/
0 0294.
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41.52 (a) The wave functions and probability densities are the same as those shown in the two lower curves in
Figure 41.11 of the textbook.

(b)

P dx
x

dx
x x

1 1
2

0 150

2

0 150 0 150

0 350
2

1 00 1 00
2 00

2
1 00

4
2

1 00
= = 








 = − 









∫ ∫ψ π

π
π

.
sin

.
. .

sin
.

. . .

.

 nm  nm nm
 nm

 nm
 nm

0.350 nm

 nm

0.350 nm

 nm

 nm

In the above result we used sin / / sin2 2 1 4 2axdx x a ax= ( ) − ( ) ( )∫

P x
x

1
0 150

0 350
1 00 1 00

2
2

1 00
= − 











. .
sin

. .

.

nm
 nm

 nm  nm

 nm

π
π

P1
1 00

0 350 0 1
1 00

2
0 700 0 300= − − ( ) − ( )[ ]







=.

. .
.

sin . sin .
nm

 nm 50 nm
 nm
π

π π 0 200.

(c) P
x

dx
x x

2
2

0 150

0 350

0 150

0 3502
1 00

2
1 00

2 00
2

1 00
8

4
1 00

= 



 = − 









∫.

sin
.

.
.

sin
. .

.

.

. π
π

π

P x
x

2
0 150

0 350

1 00
1 00
4

4
1 00

1 00 0 350 0 150
1 00
4

1 40 0 600= − 











= −( ) − ( ) − ( )[ ]






=.

.
sin

.
. . .

.
sin . sin .

.

.

π
π

π
π π

0 351.

(d) Using E
n h
mLn =
2 2

28
, we find that E1 = 0 377.  eV   and   E2 = 1 51.  eV

41.53 (a) mgy mvi f= 1
2

2 v gyf i= = ( )( ) =2 2 9 80 50 0 31 3. . . m/s  m  m/s2

λ = = × ⋅
( )( ) =

−h
mv

6 626 10
31 3

34.
.

 J s
75.0 kg  m/s

2 82 10 37. × −  m    (not observable)

(b) ∆ ∆E t ≥ h/2 so ∆E ≥ × ⋅
×( ) =
−

−
6 626 10

5 00 10

34

3
.

.

 J s

4  sπ
1 06 10 32. × −  J

(c)
∆E
E

= ×
( )( )( )

=
−1 06 10

75 0 9 80 50 0

32.  J

kg m/s m2
2 87 10 35. %× −  
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41.54 From the uncertainty principle ∆ ∆E t −h/2   or  ∆ ∆mc t2 2( ) =h/ .  Therefore,

∆
∆ ∆

m
m

h
c t m

h
t ER

=
( )

= ( ) = × ⋅
×( )( ) ×






=

−

−4 4
6 626 10

4 8 70 10 135

1
2

34

17π π π
.

.

 J s

 s  MeV

 MeV
1.60 10  J-13

2 81 10 8. × −
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41.55 (a) f
E
h

= =
× ⋅

×





=−

−180 1 60 10
1 00

19 eV
6.626 10  J s

 J
 eV34

.
.

4 34 1014. ×  Hz

(b) λ = = ×
×

= × =−c
f

3 00 10
4 34 10

6 91 10
8

14
7.

.
.

 m/s
 Hz

 m 691 nm

(c) ∆ ∆E t ≥ h
2

so

∆
∆ ∆

E
t

h
t

≥ = = × ⋅
×( ) = × =
−

−
−h

2 4
6 626 10

2 00 10
2 64 10

34

8
29

π π
.

.
.

 J s

4  s
 J 1 65 10 10. × −  eV

41.56 (a) f = E
h

(b) λ = =c
f

hc
E

(c) ∆ ∆E t ≥ h
2

so ∆
∆

E
t

≥ =h

2
h

T4π

41.57 x x dx2 2 2=
−∞

∞
∫ ψ

For a one-dimensional box of width L , ψ π
n L

n x
L

= 





2
sin

Thus,  x
L

x
n x

L
dx

L2 2 2
0

2= 



 =∫ sin

π L L
n

2 2

2 23 2
−

π
(from integral tables)

41.58 (a) ψ 2 1dx
−∞

∞
∫ =  becomes

A
x

L
dx A

L x
L

x
L

A
L

L

L

L

L
2 2

4

4 2

4

4
22

2
1
4

4
2 2

1cos sin
/

/

/

/π
π

π π
π

π



 = 



 + 











= 








 =−

−
∫

or A
L

2 4= and A
L

= 2

(b) The probability of finding the particle between 0  and L/8 is

ψ π
π0

8 2
2 2

0

8 2 1
4

1
2

L L
dx A

x
L

dx
/ /

cos∫ ∫= 



 = + = 0 409.
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41.59 For a particle with wave function ψ x
a

e x a( ) = −2 /   for  x > 0   and   0    for   x < 0

(a) ψ x( ) =2 0 ,  x < 0   and   ψ 2 22
x

a
e x a( ) = − / ,   x > 0

(b) Prob x x dx dx<( ) = ( ) = ( ) =
−∞ −∞∫ ∫0 020 0

ψ 0

(c) Normalization
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∞
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∞
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41.60 (a) λ = =
−
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(b) 50 0. λ = 2 34 10 10. × −  m

41.61 (a) ∆ ∆x p ≥ h 2     so if   ∆x r= ,  ∆p ≥ h 2r

(b) Choosing ∆p
r

= h ,  K
p
m

p
me e
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(c) To minimize E ,

dE k eeh 2 h2
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Then, E
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41.62 (a) The requirement that 
n

L
λ
2
=    so   p

h nh
L

= =
λ 2

   is still valid.
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(b) Taking L = × −1 00 10 12.  m ,  m = × −9 11 10 31.  kg , and  n = 1,   we find  K1 = 4 69 10 14. × −  J
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Comparing this to K1, we see that this value is too large by 28 6. % .
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(d) Since the lithium spacing is a, where Na V3 = , and the density is Nm V/ , where m  is the mass of
one atom, we get:
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(5.62 times larger than c ).
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*41.64 (a) ψ ω= −( )Bxe m x/2 2h
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Substituting into the Schrödinger Equation (41.19), we have
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This is true if − = −3
2ω E
h

;   it is true if  E = 3
2
hω

(b) We never find the particle at x = 0  because ψ = 0 there.
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d
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x
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(e) At x m= 2 h/ ω , the potential energy is 
1
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2 2 1
2
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than the total energy 3 2hω/ , so there is z ero classical probability of finding the particle here.

(f) Probability = = 

 =−( ) −( )ψ δ δω ω2 2

2
2 22 2

dx Bxe B x em x m x/ /h h

Probability = 









 =−( ) ( )δ

π
ω

ω
ω ω2 4

1 2

3 2
4

/

/
/ /m

m
e m m

h

h h h 8
1 2

4δ ω
π

m
e

h






−
/



Chapter 41 Solutions 523

41.65 (a) ψ 2
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so that a A B2 2 1+( ) = ,  giving  A B a2 2 1+ = /  .

*41.66 With one slit open P1 1
2= ψ    or

P2 2
2= ψ

With both slits open, P = +ψ ψ1 2
2

At a maximum, the wave functions are in phase Pmax = +( )ψ ψ1 2
2

At a minimum, the wave functions are out of phase Pmin = −( )ψ ψ1 2
2

Now 
P
P

1 1
2

2 25 0= =
ψ

. ,  so  
ψ
ψ

1 5 00= .
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*41.67 (a) The light is unpolarized.  It contains both horizontal and vertical field oscillations.

(b) The interference pattern appears, but with diminished overall intensity.

(c) The results are the same in each case.

(d) The interference pattern appears and disappears as the polarizer turns, with alternately increasing
and decreasing contrast between the bright and dark fringes.  The intensity on the screen is precisely
zero at the center of a dark fringe four times in each revolution, when the filter axis has turned by 45°,
135°, 225°, and 315° from the vertical.

(e) Looking at the overall light energy arriving at the screen, we see a low-contrast interference pattern.
After we sort out the individual photon runs into those for trial 1, those for trial 2, and those for trial
3, we have the original results replicated:  The runs for trials 1 and 2 form the two blue graphs in
Figure 41.3, and the runs for trial 3 build up the red graph.


