(©

11.3 @

(b)
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-34
411 (@ A= h 6'622;( 10706 =19.92x107" m|
mv  (1.67 %10 kg)(0.400 m/s)
(b) For destructlve interference in a multiple-slit experiment,

dsin@ = a-n

with m = 0 for the first minimum. Then,

4040
——=0.0284°
(a0

y_ _ _ o) =
[=tand  so y =Ltan6 =(10.0 m)(tan 0.0284°) = 4.96 mm |

We cannot say the neutron passed through one slit. We can only say it passed through the slits.

6 =sin

41.2 Consider the first bright band away from the center: dsin@=mA
(6.00x10°® m)sin%an 2. 400% 1 =1.20 1070 m
H200
h h
A= so myVv =— and
meV A
2,,2 2
K=lmy? =TV = 1T —gav)

2m,  2m,A°

2 (6.626 x 10 y13)°

" 2em 2(1.60 x 10719 C)(9.11 x 1073 kg)(l.zo x 10710 m)2 =V

The wavelength of a non-relativistic particle of mass M is givenby A =h/p = h/«/ZmK where the
kinetic energy K isin joules. If the neutron kinetic energy Kn is given in electron volts, its kinetic

energy in joules is K = (1.60 x1071° J/eV)Kn and the equation for the wavelength becomes

__h 6.626 x107%* I3 _|2.87x 1074 0
V2mK 12167 %1077 kg)(1.60x107° asev)k, | VKn

where K, is expressed in electron volts.

If K, =1.00 keV =1000 eV, then
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2
11.4 )\:D:L’ S0 K:h_2
p v2mK 2mA

0—10

If the particles are electronsand A ~0.1 nm =1 M, the kinetic energy in electron volts is

6.626 x10°* 1 8)°
K = ( X ) O leVv D=

2(9.11 x 107! kg)(lo‘lo m)2 Hi.602 x 1009 3H

-34
s A=l p=0 2 0626X10 “ B _ 663102 kg mn/s
p A 1.00x107 m
2
o2 _(663x10% 113)
(a) electrons: Ke = = 1 J=[15.1 keV
2m,  2(9.11x107%)
The relativistic answer is more precisely correct:
2.2 2.4\1/2 2
Ke :(p ¢ +my“c ) -m. =14/.9 keV
&)  photons  E, =pc =(6.63 x10"2%)(3.00 x 10°) <124 keV
11.6 The theoretical limit of the electron microscope is the wavelength of the electrons. If

K, =40.0 keV, then E = K, +m,c? =551 keV and

1o oy (551keV)? (511 keV)? CL60 x 1026 300
p:_\/Ez_mezczl:\( ) 8( ) - -
c 3.00x10° m/s 1.00 keV

1.10 x10722 kg /s

The electron wavelength, and hence the theoretical limit of the microscope, is then

h_ 6.626x107403 12
A=—= =6.03 x10 " m =/6.03 pm
p  1.10x107% kg [In/s

a7 E =K +m,c? =1.00 MeV +0.511 MeV =1.51 MeV

p%c? = [E2 -m,2c* = (151 MeV)? - (0511 MeV)?  so
p =142 MeV/c

=874x10¥ m

Lohoohe (6.626 x 10 113)(3.00 x 10 m/s
TpLa2MeV T (142x10°)160x107 )]

Suppose the array is like a flat diffraction grating with openings 0.250 hm apart:
dsing=mA

—— - — -1 —
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418  (a) ApAX = mAvAX =h/2 )
h 2T )8
Av > = =/0.250 m/s|
4tmAx  471(2.00 kg)(1.00 m)

(b)  The duck might move by (0.25 m/s)(5 S) =1.25 m. Wwith original position uncertainty of
1.00 m, we can think of AX growingto 1.00 m+1.25 m =

11.9 For the electron,

Ap = m,Av = (9.11 x 10731 kg)(soo m/s)(l.OO x 10‘4) = 4.56 x 10 kg [In/s

h _ 6.626x107°* )08

AX = = =
4mhp  47{4.56 %107 kg (/s

)=

For the bullet, Ap = mAv =(0.0200 kg)(500 m/s)(l.OO x 10‘4) =1.00 x103 kg [M/s

=" [528x10%2 m
4rtAp

496

Goal Solution

An electron (M, =9.11 x 1073 kg) and a bullet (m =0.0200 kg) each have a speed of

500 m/s, accurate to within 0.0100%. Within what limits could we determine the position of the
objects?

G: It seems reasonable that a tiny particle like an electron could be located within a more narrow region
than a bigger object like a bullet, but we often find that the realm of the very small does not obey
common sense.

O: Heisenberg’s uncertainty principle can be used to find the uncertainty in position from the
uncertainty in the momentum.

A: The uncertainty principle states: AXAp, =2h/2 where Ap, = mAv and h =h/2.

Both the electron and bullet have a velocity uncertainty,

Av =(0.000100)(500 m/s) = 0.0500 m/s

For the electron, the minimum uncertainty in position is

_h 6.63x10734 )3 _
AX = = a1 =1.16 mm
4mmAvV  471(9.11x 107 kg)(0.0500 m/s)
For the bullet,
-34
Ax = h 6.63 x10 J3 = 5.8 x 10_32 m

T ammAv 4700200 ka0 0500 m /<)
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11.10

11.11

11.12

11.13

(@)
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A
&y _ Sy and  dApy, 2h/4m

Eliminate Ap,, and solve for X.
X Px

(2.00 x1073 m) )
(6.626 x10734 B) B

X = 4an(Ay)% =4 n(l.oo x1073 kg)(100 m/s)(l.OO x 1072 m)

3.79 x 10?8 m|

This is 190 times greater than the diameter of the Universe!

h
APAX = — Ap =m,Av =
P 2 50 P=Me ATTAX
h 6.626 x1072 J[3 6
Av > = = oy =L16x10° m/s
4mm.Ax  471(9.11x 107 kg)(5.00 x 107 m)

With AX =2 x107 m, the uncertainty principle requires Ap, = % =2.6x107% kg /s
X

The average momentum of the particle bound in a stationary nucleus is zero. The uncertainty in
momentum measures the root-mean-square momentum, so we take Pyps = 3 X 10720 kg Mn/s .

For an electron, the non-relativistic approximation p = M,V would predict V = 3 X 1010 m/s,
while Vcannot be greater than C.

2\? 2012 2
Thus, a better solution would be E= @mec ) + (pC) g =56 MeV =ymy
y =110= % so
\/1—v2 /c?
v =0.99996¢

For a proton, V = p/m gives V = 1.8 x 107 m / s, less than one-tenth the speed of light.

At the top of the ladder, the woman holds a pellet inside a small region AXi. Thus, the uncertainty
principle requires her to release it with typical horizontal momentum Ap, = mAv, =h/2Ax;. It

falls to the floor in time given by H =0 +%gt2 as t= \2 H/g , so the total width of the impact
points is

O O
AXf = AXi +(AVX)t = AXi + EQIT]% Z?H = AXi +§, where
| |

A:L ‘2_H

498



so AX; = xK and the minimum width of the impact points is

A

(Axf)min - Eﬂxi s

= 2\/> =
X %Axi:\A

en’? _eno”

OmO Hg H

o (ax)

_ (L0546 %107 1 ) glz (2(2.00 m) 3”*
min H 5.00x107* kg H 59.80 m/sZB

=5.19x107%% m|

Chapter 41 Solutions
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_[a EEﬂDt —1X

- ! 2 _ -4 a
11.14 Probability P—J'_a|¢l(x)| —I_a (x2+a2) T OO 3
—[tan l1-tan~ 1] = n% [E

—a

RIXO_ p o 10
nis @  @(x)= Ast/\ O Asm(5.00 x10 x)

21T 10 2m 10
- =500 x10 A= =11.26 x 10
A (5 00><101°j

~34
b p= h _6626x10 ° JI8 507, qp2 kg [n/s

A 1.26x1070 m

© m=9.11x10"3kg

2
2 (5.27x107%* kg /s 17
K:p_:( ) =152x1071 3= 152)(1919 J =/95.5 eV
2m (2 x9.11x 1073 kg) 1.602 1072 )/ev
11.16 For an electron to “fit” into an infinitely deep potential well, an
integral number of half-wavelengths must equal the width of the
well.
% =1.00 x10™° m ) <><
-9
4= 200x107 _h
n p

IG5 I 7 =(0377n2) ev

(@ Since K = P
2m, 2m, 2m, (2 N 10—9)

For K=6eV, n=4

(b) Wwith n=4, K=6.03 eV

11.17 (@) We can draw a diagram that parallels our treatment of
standing mechanical waves. In each state, we measure the
distance d from one node to another (N to N), and base our M AN AN A
solution upon that:

Since dNtoN :% and M oA M. A




(b)

Next,
-34 20
P :iHG.GZGXm 18 g
2m, 8m.d 20 -3l O
. 8md d E8(9.11>< 10 kg) =
_ _ 6.02x107°8 ymn?
Evaluating, K= 5
d
_3.77x107% eV [n?
K= 2
d
In state 1, d=1.00x10" m
K, =377 eV
In state 2, d=5.00x10""'m
K, =151eV
In state 3, d=333x10""'m
K; =339 eV
In state 4, d=250x10""'m
K, =603 eV
When the electron falls from state 2 to state 1, it puts out
energy
hc
E=151eV -37.7 eV =113 eV =hf :7
into emitting a photon of
hc _ (6626 %107 113)(3.00 x10° m/s)
- = 19 =11.0 nm
E (113 eV)(1.60 1079 J/eV)

The wavelengths of the other spectral lines we find similarly:
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M Ko
+ 603 - &l
3 339 : 4
2 151 1€
| 3.7 :

{

wavelength

T
r
a
n
s

i

t

i
0
n
E

(ev)

A(nm)




11.18

(@)

(b)

11.19

11.20

11.21

E; =2.00 eV =3.20 107

h2
8m,L2

For the ground-state, E =

L= M —434x10° m =0.434 nm

+/8M.Eq
OKR: O 0K O
AE=E, -E. =4 - =(6.00 eV]
2R T P B tH

0 h2 2
AE = hc h Ezz _12] — 3h

HBm, L2 8m,L2

L= 3" _793x10° m <0.793 nm
\ 8mgc

A Bm,2 - 8m,L?
so L= J‘CBhA
| 8mgc
n’h?
" gmL?
3h? _ 3(hc)’
) AE=E, —-E, = =
2 17 gmL2 T 8me2L2
and AE = hf IE
A

smc?L2 _ 8(938 x 10° ev)(1.00 x 107 nm)2

Hence, A =

3hc 3(1240 eV [hm)

A=202x10"* nm (gamma ray)

E:%IGJS MeV
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Goal Solution

The nuclear potential energy that binds protons and neutrons in a nucleus is often approximated by a
square well. Imagine a proton confined in an infinitely high square well of width 10.0 fm, a typical
nuclear diameter. Calculate the wavelength and energy associated with the photon emitted when the
proton moves from the N =2 state to the ground state. In what region of the electromagnetic
spectrum does this wavelength belong?

G:  Nuclear radiation from nucleon transitions is usually in the form of high energy gamma rays with
short wavelengths.

O: The energy of the particle can be obtained from the wavelengths of the standing waves
corresponding to each level. The transition between energy levels will result in the emission of a
photon with this energy difference.

0—14

A: At level 1, the node-to-node distance of the standing wave is 1.00 X 1 Mm, so the wavelength is

twice this distance: h/p = 2.00 x 107 m. The proton’s kinetic energy is

2
_34 —
o (6.63x10° J13) _ 320x107%

=2.06 MeV

In the first excited state, level 2, the node-to-node distance is two times smaller than in state 1. The
momentum is two times larger and the energy is four times larger: K =8.23 MeV.

The proton has mass, has charge, moves slowly compared to light in a standing-wave state, and stays
inside the nucleus. When it falls from level 2 to level 1, its energy change is

2.06 MeV —-8.23 MeV = -6.17 MeV

Therefore, we know that a photon (a traveling wave with no mass and no charge) is emitted at the speed
of light, and that it has an energy of +6.17 MeV.

(6.17 x 10° ev)(1.60 x 10719 J/eV)

. E 21
Its frequency is f=—= =1.49 x10°" Hz
aHeney h 6.63 %107 J[3
8
and its wavelength is A= c- 3.00x10 21m{18 =2.02x10 " m
f  1.49x10% s

This is a gamma ray, according to Figure 34.17.

L:The radiated photons are energetic gamma rays as we expected for a nuclear transition. In the above
calculations, we assumed that the proton was not relativistic (V < 0.1¢), but we should check this
assumption for the highest energy state we examined (N = 2):

=3.97 x10’ m/s =0.133¢c

) /ﬁ _12(8.23x10° ev)(L60x 107 1/eV)
Um Y 167x10% kg

This appears to be a borderline case where we should probably use relativistic equations, but our
classical treatment should give reasonable results, within (0.133)? = 1% accuracy.
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11.23

11.24

(@)

(b)

(©

(d)
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A=2D for the lowest energy state

P’ _ N h2 (6.626 x 10734 ) [3)?

- 2
2m  2mA2  8mD 8[4 (1.66 1077 kg)](l 00x10™ m)
0.517 MeV

~34
=N _6620x10 7 IE i3 31%10% kg /s

2D 2(100><10 ~14 )

K= > =827x107 )=

p:

h
)

34 2
(6.626 10 J13) _14
E, = > =821x107

8(1.67 x 1072 kg)(z.oo x 1074 m)

E; =/0.513 MeV E, =4E; =[2.05 MeV E; =9E; =4.62 MeV

L 2 . 4 11X
<X >= £ = T cos 2
X onLsm LIO cos C Ddx

12 12 B4rrx 4 11X 4 %]
i +cos =/L/2
L2| Lie?BL L B

.510L
5101

Probability = J’ zsinZEQﬂDx:[ﬂx—lLsinArﬂﬁf

os0L L OL O H” Lam L Bl

Probability = 0.20 —4i(sin 2.0471-sin1.96 7) =/5.26 x 10
T

x 1 . 4mx ﬂ'ZGOL >
Probability = a: —ESIHT% =3.99x 10
.240L

In the N = 2 graph in Figure 41.11 (b), it is more probable to find the particle either near

L

3L
X=— or X=— than at the center, where the probability density is zero.

4
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11.27

11.28

(@)

(b)

(©
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2 NTTX[] 200 _ 2
x:OA sin 0L Ddx A Sl =1 or A_\““L
. o x=L/4 2[27'[
The desired probability is P= J' I |l,U| dx ——J'O Sln O DdX
where sin29:1 c0s26
2
Thus,
L/4
X 1 . 4mx m 0
P="-_—"5sin—= = —-0-0+0-=/0.250
. 4m L ao [l O

In 0 < X <L, the argument 277X/ L of the sine function ranges from O to 27T. The probability
density (2/L)Sin2(27TX/L) reaches maximaat Sin@=1 and sin@=-1 at

27TX T 2rrx 3
—=— and — =
L 2 L 2
. . L 3L
U The most probable positions of the particle are at| X = Z and x = T
L L732 . megd 2 73 1 21x[
Th babil — — —d
e probability is J' IO I_Sln aL X = o o 2COS C DX
>x 1 2mxd”_m 1 2mp_ O 430
P= sin=—/—= = — - sin=- N2 2=[0.196]
O 2 L ao B 27 30 B and
The probability density is symmetric about X =L/2. Thus, | s |2

the probability of finding the particle between X = 2L/ 3 and
X = L isthe same 0.196. Therefore, the probability of finding
itintherange L/3<x<2L/3is

P =1.00 - 2(0.196) = 0.609. 0

Classically, the electron moves back and forth with constant
speed between the walls, and the probability of finding the
electron is the same for all points between the walls. Thus, the
classical probability of finding the electron in any range equal

to one-third of the available space is Pgjassical :.
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11.29
(@)
(b)
(©
11.30 @)
11.31

The ground state energy of a particle (mass M) in a 1-dimensional box of width L is E; =

For a proton (m =1.67 x107%/ kg) ina 0.200 - nm wide box:

Chapter 41 Solutions

2

smL?’

(6.626 x 10734 J B)Z

E, = > =822x107% ) =513x107

eV

8(1.67 x 1072 kg)(z.oo x 10710 m)

For an electron (m =9.11x107% kg) in the same size box:

(6.626 x1073% ) B)Z

E = > =151x107% ] =9.41 eV

8(9.11 x 1073 kg)(z.oo x 10710 m)

The electron has a much higher energy because it is much less massive.

—

_ 2 0OmxQ
wl(x)_VLCOSD_L 0
_ |2 . [R2rxO
w2(¥)= | singo
_ 2 BrxQ
L/J3(x)—\“_cosD T O

h

Y
_L/2 T
. 2
We have Y= Ae'(kx_wt) and é’_(,lzl =
ax
2
Schrodinger’s equation: (9_(,[21 = —kZL,U =2—r2n(E —U)L,U
ax h
2 22
2
Since k? = (27‘[) = ( 7Tp) =P and
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11.33

(@)

(b)

(©
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(x) = Acoskx +Bsinkx Z—L’U: ~kAsinkx +kBcoskx
2
g Y = k2Acoskx —k?Bsinkx —im (E-U)y = 2mE(Acoskx +Bsinkx)
X
Therefore the Schrédinger equation is satisfied if
2
J l’U D 2m gE U or
Ix?
0 2mE
—k?(Acoskx +Bsin kx) = 5 3Acoskx+Bsm kx)
h2k?
This is true as an identity (functional equality) for all X if [E = W

Problem 45 in Ch. 16 helps students to understand how to draw conclusions from an identity.

dy _ 2Ax oy 2A
=Arl—— - = - =
H~12H T oxz L2
- . 624/ _2m
Schrodinger’s equation F = __Z(E —U)L,U
X

becomes
2 (_hzxz)AD s
_2A _2m AD _x_D+2_m
12 n? %1 LZE h? mLZ(LZ—XZ)

o . 1 _mE mE 1 _
This will be true for all X if both - = and Y
L h h“L® L
h2
Both of these conditions are satisfied for a particle of energy E = _L2 .
m
For normalization,
Lo L0 x2D2 oLt %2 x40
CRAETE A L T
u 3 5] 15
1=A%1—2%+3Eﬂ :Agg gL+£+L_gL LO_ Asz A= 15
o 3L 50, 3 5 T5E \ 161
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P =—=[0.580



11.34

11.35

11.37

(@)

(@)
(b)
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Setting the total energy E equal to zero and rearranging the Schrédinger equation to isolate the

potential energy function gives

Ch2 01 d%yp

V)= By

or

d2y (4x?-602)

dX2 = L4 l’U(X)
and

h? [4x?

N ]
V= omz Bz ~°H

See figure to the right].

See figure to the right].

The wavelength of the transmitted wave
traveling to the left is the same as the original

wavelength, which equals .

v ()
0 L o L

T =¢2Ct (Use Equation 41.17)

ol - 2,2(9.11x10)(8.00x 107

2 A ..an—34

2 -x2/12
Then 9% - (4Ax3 - 6Ax|_2) ¢
dx? N
L(x)
} f.
[3
- = L
Y2z
N_an?
ml
I i ] '*
0
.q_
Electron
(0,200 nr

(2.00x1071°) = 4.58
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SoOo="Cc =0 W=—®O0(
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Goal Solution
An electron with kinetic energy E =5.00 eV is incident on a barrier with thickness L =0.100 nm

and height U =10.0 eV (Fig. P41.37). What is the probability that the electron (a) will tunnel
through the barrier and (b) will be reflected?

G:  Since the barrier energy is higher than the kinetic energy of the electron, transmission is not likely,
but should be possible since the barrier is not infinitely high or thick.

The probability of transmission is found from the transmission coefficient equation 41.18.

The transmission coefficient is

Jom(U-E) _2(9.11%107% kg)(10.0 eV ~5.00 eV)(1.60 x 107 1/eV)
~h - 6.63x107* J[3/2m

=1.14 x101° m!

(a) The probability of transmission is

otk 2190 Yoo ) _ s g 010

(b) If the electron does not tunnel, it is reflected, with probability 1-0.0103 =0.990

L:Our expectation was correct: there is only a 1% chance that the electron will penetrate the barrier. This
tunneling probability would be greater if the barrier were thinner, shorter, or if the kinetic energy of
the electron were greater.

Jz(g.n x107**)(5.00 - 4.50)(1.60 x 107%?) kg /s Energy
11.38 C= - Elec
1.055x10% J [3 | Fee
f.
0

T=e?CL = exp[ -2(3.62 x10° m™)(950 x 102 m)] = exp(-6.88)
T =1.03x1077

1.39 From problem 38, C = 3.62 x 109 m™

1070 = exp[—2(3.62 x10° m‘l)L]
Taking logarithms, -13.816 = —2(3.62 x10° m'l)L

New L =1.91 nm
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41.41

11.42

11.43

(@)

(b)

(©
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With the wave function proportional to e_CL, the transmission coefficient and the tunneling current

2 -
are proportional to |l,U| ,to € cL

1(0.500 nm) 2(10.0 /nm)(0.500 nm)

e
|(0 515 nm) ¢~2(10.0 /nm)(0.515 nm)

= ¢200(0015) /1 3g]

Then,

With transmission coefficient e_CL, the fractional change in transmission is

-2(10.0 /nm)L _ ,~2(10.0 /nm)(L+0.00200 nm)

€ —€

e—2(10.0 /nm)L

= 1-220(000200) _ 1397 =[3.92%%

W= Be—(maw/2h)x? %‘l’ and  OY_ Em_gz LO0Mmw

dX dx2 H D h

Substituting into Equation 41.19 gives

ot 2y + D_M :mmEEr" ot <2
Oh O h 0 K2 Oh 0%

L . hw
which is satisfied provided that E = T

Problem 45 in Chapter 16 helps students to understand how to draw conclusions from an identity.

W = Axe ™ s0 Z_ll’ = Ae™™ — 2bx2me ™’
X

and

dzw —bx? —bx? 203 A . —bx? 2,,2
v —2bxAe ™" —4bxAe ™" +4b*x*Ae ™ = Bby +4b XY
X

Substituting into Equation 41.19, —6by + 4b2X2l,U =

_E%E{wmwtf 2

U h DhD('U

For this to be true as an identity, it must be true for all values of X.

2mE w
So we must have both —6b = — and 4p? = [m—DZ
h Onph O
mao
Therefore = —
2h
3bh? [3
and E= =—hw
m 2
The wave function is that of the first excited state.
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41.45

11.46

(@)

(b)

(@)

(b)
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The longest wavelength corresponds to minimum photon energy, which must be equal to the spacing
between energy levels of the oscillator:

hc k

—=hw=h |— SO
A m
. /2
m g [0.11x 1073 ng1
A =2mc |— =2m3.00 x10° m/s =[600 nm|
J k g )E 899 N/m 0
With Y= Be—(mw/Zh)x2 , the normalization condition Ia”|L/J |2dx =1
becomes 1= J'oo B2e2(Mmew/ 2 gy ZBZJ'OO e 2ma/2n)C gy = o2 1 7T
—00 0 2\ mw/h

where Table B.6 in Appendix B was used to evaluate the integral.

, [mh meod”

Vmw and 5 =HmH

For small O, the probability of finding the particle in the range —0/2 <X <0/2 is

Thus, 1=B

/2
o/2 2. _ 2 _ 2.0 _ Tt
J’_6/2|(,U| dx = 8| (0)|" = B“e _5%5

with <X >=0 and <p, >=0, the average value of x2 is (AX)2 and the average value of px2 is

(Apx)z. Then AX =h/2Ap, requires

2 2 2 in2
E > pX + K h - pX + kh
2m  24p2 |2m  8p,?

2
To minimize this as a function of pxz, we require d—Ez =0= i +&(—1)i4
dpy 2m 8 Px
kh® _ 1
Then —F =
8p,t  2m
/2 —
Ioz_EkahZD1 _ hmk
“"H s H 2
2 e
o Jhmk | kb3 _h Liﬁ_
2(2m) shvymk 4\Vm 4\m
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“41.47 Suppose the marble has mass 20 g. Suppose the wall of the box is 12 cm high and 2 mm thick.
While it is inside the wall,

U =mgy =(0.02 kg)(9.8 m/sz)(0.12 m) =0.0235 J

and  E=K=_mv? =2(0.02 kg)(0.8 m/s)" =0.0064 J

- 12(0.02 kg)(0.0171J
Then C= 2mU-E) _« ( g)(_34 ) - 25x10%2 m™
h 1.055x107>* J 3

and the transmission coefficient is

o~2CL _ e—2(2.5x1032)(2x10‘3) _ ¢-10x10% =e—2.3o(4.3x1029) _1043x10% | _ ;107
4148 (a) A=2L=200%x107"0 m|
h _6.626x10* 113 =T
b =—= =13.31x 10" kg In/s
O P T 2 00%x10 P m J
02
(¢ E=—=0.172eV
2m
11.49 (@)  [See the first figure to the right . i
(b) [See the second figure to the right]. A

() Y iscontinuousand { — 0 as X — *oo

(d) Since ¥ is symmetric,

fw|‘l’|2d><:2j':|w|2dx:1 1/ 0
i} 2
ZAZI:E_ZaXdX _ %ae_w _ eo) .
This gives A=a
|

- I ] 1



11.51

(@)

(b)

Use Schrodinger’s equation

Y _ 2m
X2 - _h_Z(E —U)lll
with solutions Wy = Aelkix 4 geikix
[region 1]
wz - Ce|k2X
[region 1]
Where ky = ' 2mE
h
and S
k :M
2

h

Then, matching functions and derivatives at X =0:

Chapter 41 Solutions

Incorming

(Wi),=(w,), O A B C

and
My 0 _ Dy, 0
= O kA B)=k,C
DdX [&) 0 dx q) l( ) 2
Then = MA
1+ky /Ky
C= #A
1+ky /Ky
- » 2 (1-kyZk))® (K k)
Incident wave Ae™ reflects Be |kx’ with probability R = B—2 = ( 2 1)2 = ( L 2)2
AT (1+ky /)" (ke ko)
With E =7.00 eV and U =5.00 eV, koo EZU 1200535
kk V. E  \7.00
_ 2
The reflection probability is R= % =/0.0920
(1+0.535)
The probability of transmission is T=1-R =0.908
. (kl _ k2)2 _ (1 _ k2/k1)2 Incoming part
(ke +Ko)*  (L+kyp/ky)? ‘
21,2
ﬁ =E —U for constant U
2m
21, 2
h“ky =E since U =0 o)

2m

515
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Dividing (2) by (1) ﬁ‘1—2—1—1 —1 o)
I k2  E 2 2
ko 1
ky 2
and therefore,
2 2
1-1/+2 2 -1
=( ) = (” ) =[0.0294

(1+17v2)" (V2 +1)f



11.52

}11.53

(@)

(b)

(©

(d)

(@)

(b)

(©

Chapter 41 Solutions 517

The wave functions and probability densities are the same as those shown in the two lower curves in
Figure 41.11 of the textbook.

o _0'35}”m|w Pax - 2 5035}“ ,0 7IX gdx_ 2000x _100nm . 0 21X o nm
1= 1 -
0450 nm Dl 00 nm Do o [1.00 nm nm E 41T (1.00 nm E% 150 nm

In the above result we used Isinz axdx = (X/Z) - (1/4a)sin(2ax)

1000 1.00nm . O 2mx o™
P = - sin
nm 21 [1.00 nm

.150 nm

P _ﬂﬁyssonm ~0.150 nm 100nrn[ sin(0.70077) - sin 030071)]@ 0.200

0350 571X X _1.00 D4nngf35°
P, = f —Sﬁ =200 - =20
1.00J0150>" Ti1.00 % e OLO0CH .,

.350
P, =1.005% - %0 sin 27X 1.00Et0.350 -0.150) - = 2]sin(1.407) - sin(0.600 7 ﬁ:
%( 4 OL00CH ., 4

T
0.351

212

Using E,, = g—hLZ we find that E; =[0.377 eV| and E, =[1.51eV
m

mgy; = %mvf2 =\20y; = (9 80 m/s )(50.0 m) =31.3 m/s

-34
h —_6.626x10 ™ J3 :‘2.82 x 10737 m\ (not observable)
mv  (75.0 kg)(31.3 m/s)

-34
AEAt>h/2 s0 AE » 5626 %10 _3J S _106%x107%2 )
47{5.00x107% s

AE _ 1.06 x 107 ]
E (750 ka)a a0 m/z<2\(500 m)

A=

=2.87 107 %
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.54 From the uncertainty principle AEAt—h/2 or A(mCZ)At =h/2. Therefore,

Am h h 6.626 x 1074 J [3 O 1Mev O

m  4mc?(At)m ) Am(At)ER 4n(8.70 x 1077 s)(135 MeV) Heox107 35
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434 x10% Hz|

nss (@ f=c=_ 180€V (1,60 x 10729 )0
| h 6626102 jsH 100ev H

¢ _3.00x108 m/s _ o
) A =t T a3 x 10 1y =6.91x10"" m =691 nm|

(c0 AEAt> % )

h h _6.626x1024J08

_ _ S =264%107%) =41.65x107 eV
oAt ATTA 4n(2.00 x 10 s)

AE 2

11.56 @ f -E
' h
c |hc
b A=—=—
©) f |E
© MEAxD o aEx =N
2 20t AT
1157 <x2> :f x2|y |2dx

2 . InmTXO
For a one-dimensional box of width L, = [—SIn ——
Un = SN

L 2 2
Thus, <X2> = %IO x2 sin? En—fxgix = L? - ﬁ (from integral tables)

11.58 (a) I:JL/J |2dx =1 becomes

/4
L/4 an L
AZJ' cos? 2¥ 0y - a20L X+EsinD4_”XDﬁ _ a20L tmo_
- 0L O orHL 47 0L H,,, = ConleO
or A2 = i and A= i
L VL

(b)  The probability of finding the particle between O and L/8 is

L/8, 2 5 L/8  L[RmXx[0 1.1
= X gx = = + = =0.409
J’O | dx=A J’O cos® G X =gt -
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|

11.59 For a particle with wave function ¢I(X) = \%e—x/a for x>0 and 0 for x<O
@ [wx)[=0, x<0 and [y2(x)|= ée-zm, x>0 ol
2
1=
()  Prob(x <0) :fw|¢l(x) 7 dx :J’in(o)dx =[0) J\
= e ol ———
(c) Normalization o'

[ lwb)fox=° Jufoceufox =1
ﬁ)ooOdX +I;o(2/a)e_2X/adX =0 _e—2x/a‘: — _(e—oo _1) -1

Prob(0 < x <a) :J’;|L/J |2 dx :J’;(Z/a)e‘z"/adx = e‘ZX/a: =1-e2 =
0.865

11.60 @ A h he =— he

KN VE? ~m;’ct \(mecz + K)2 —(mecz)2

(6.626 x107 113)(3.00x10° m/s) g 1 e
(576 keV)? - (511 keV)? HL60x107% 5

5:4.68 x 10712 m

0) 50.0A=2.34x1070 m|

1161 (@) AxAp=2h/2 soif Ax=r, Ap=2h/2r

2 A 2 2
) Choosing ap=". k=P (&) _ h 2
r 2me 2me 2mer

2 2
ke€” @ E=K+U = N

U=-
r

() Tominimize E,

dF h k_p2 h?2
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h? Omk,e? f Cmeke?d_ Ok, 2e* O

_ ka2 __ _[
men =Bt B “Hn B Ham B

) nA
11.62 (@  The requirement that 7 =L so p=

nh =~
=— isstill valid.
2L

A

mher? | (me2)

2
E:\“s(pc)2+(mcz) 0 Ex \O2L 0

_ . _ 5 _ herf 2\2 _ 2
Kn =E, —mc _VDZLD +(mc ) mc
(b) Taking L=1.00x1072 m, m=9.11x10" kg,and n=1, wefind K; =/4.69x107* ]
2
h2 (6.626 x 107 113 M
Nonrelativistic, E; = = =6.02x10 )

smL2 8(9.11 x 10731 kg)(l.OO x 10712 m)

Comparing this to K, we see that this value is too large by |28.6% .

2 2 2
e 0O,.1 1.0, .10 O_(-7/3)e 7k.e
11.63 U= 14= —= +—1 +=—+(-1)= =K
@ ame,dd 2 3 O 20 (g 4 1Ry d 3d
2h? h?

(b)  From Equation 41.9, K=2E = =

2 2
(0 E=U+K and d—E:O for a minimum: 7ke(; __h 7 =0
dd 302 18m.d

P R (6.626 x 10‘34)2 )
- ()[18ke’m, ) 42mekee” - (42)(9.11%107%)(8.99 x 10°)(1.602 x 1072 c:)2 )

(d)  Since the lithium spacing is a, where Na3 =V, and the density is Nm/ZV , where m is the mass of
one atom, we get:

/3 /3

wvmd? 0 m 0% Deex10? kgx70 10

= — = = =2.80x10 =/0.280 nm|
a CNm U %ensity% E 530 kg E m 8 m

(5.62 times larger than C).



‘4164 (a)

(b)

(©)

(d)

()

()

Chapter 41 Solutions

W= Bxe ~(M@/2h)x®

dy - Be—(mw/Zh)x2 _I_B)(D_mOl)%xe—(ma)/Zh)x2 — Be—(mw/Zh)x2 _BDM 2(_)—(mou/2h)x2
dx U 2h Oh

dzw _ py LMWL ~(mw/2h)x? _ oMW -(maw/2h)x* _ gM 2Lm ~(may2h)x?
o2 0 h O° 0 o 80h 00 h ‘ﬁ(e

dx? Uh

dz(,U _ 3BDM e—(moo/Zh)x2 +BDM§<3€—(mw/2h)x2
Uh

Substituting into the Schrédinger Equation (41.19), we have

-3B——

Emhw e—(moo/Zh)x2 + Bg%)%:%e—(m w/2h)x? _ _2mE Bye (M w/2n)x? M UﬁXZBxe—(m o’ 2h)x?

§hou
2

2E
This is true if —3w = —T; itistrueif |E =

We never find the particle at because = 0 there.

Y is maximized if ?j—l;l(, =0=1-x° g%)g which is true at |X = i\ mlw

We require I:JL/J |2dx =1

2 /21,372
1 :J'oo BZXZe—(mw/h)xde = ZBZIOO X2e—(m0.)/h)x2dx - 282 1 L?) = B——nl h3/2
oo 0 4\ (mw/sh)’ 2 (mw)

M2 (et mde? 174

S0h 0 Hme B

At X =2h/mw, the potential energy is %mwzxz = %m w2(4h/m o.) =2h w Thisis larger
than the total energy 3h w/ 2, so there is classical probability of finding the particle here.

Then B

Probability = |(p |2dx = EBXe_(mw/Zh)XZ %FC; - 5_3)2)(26—(moo/h)x2

Probability =0

2 mwF’’04h %—(mw/h)4(h/mw) — 85DMDUZG-4
20h O COne

UnO
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11.65 ()

(b)

41.66

L2
J'0|l/J| dx =1

AZJ’O gl

ELD L0

A2E17L+16J' sin2 X Lo BT Ly
OL o oL E q 2
A2

a 2 .
I_a|¢l| dx = 1:

a
I%M cosZDﬂXD+|B| sin2B™0
-a |:|2

Oa O

+165sin?

2 X
%]2D+16D2D+8I stL Dsm Efj E
O a2t

X= LD
+&sin3mxa

= 70 so the normalization constant is| A = \2/17L

+2|A||B|cos —Dsm

Chapter 41 Solutions

ﬂXD U7 . K]

+8sin —Ds E%:ix=1

=1

3 UL k=0

OO, 07X

EHszl

2 2
The first two terms are |A| a and | B| a. The third term is:

X Omx0 OO, ;
2|A||B|Icos %smﬂzaﬂ Ooa EEFX_4|A”B|J&COS

so that a(|A|2 +|B|2) =1, giving “A|2 +|B|2 = 1/a‘.

With one slit open
_ 2
P, = |l.U2 |

With both slits open,

At a maximum, the wave functions are in phase

At a minimum, the wave functions are out of phase

ﬂ:Wf

Now —= > =25.0, so

|n
DS Dza 37T [12a

Pl :|w1|2 or

P=|y, "“.Uz|2
max = (|(l11| +|L.U2|)
mln - (|‘p1| _|w2|)

lel =5.00

523
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(@)
(b)
(©
(d)

()

Chapter 41 Solutions

The light is unpolarized. It contains both horizontal and vertical field oscillations.
The interference pattern appears, but with diminished overall intensity.
The results are the same in each case.

The interference pattern appears and disappears as the polarizer turns, with alternately increasing
and decreasing contrast between the bright and dark fringes. The intensity on the screen is precisely
zero at the center of a dark fringe four times in each revolution, when the filter axis has turned by 45°,
135°, 225°, and 315° from the vertical.

Looking at the overall light energy arriving at the screen, we see a low-contrast interference pattern.
After we sort out the individual photon runs into those for trial 1, those for trial 2, and those for trial
3, we have the original results replicated: The runs for trials 1 and 2 form the two blue graphs in
Figure 41.3, and the runs for trial 3 build up the red graph.
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