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Chapter 42 Solutions

42.1 (a) The point of closest approach is found when

    
E = K +U = 0 + keqα qAu

r
  or   

    
rmin = ke 2e( ) 79e( )

E

    

rmin =
8.99 × 10 9  N ⋅ m2 C 2( )158 1.60 × 10−19  C( )2

4.00 MeV( ) 1.60 × 10−13  J MeV( ) =    5.68 × 10−14  m  

(b) The maximum force exerted on the alpha particle is

    

Fmax = keqα qAu

rmin
2 =

8.99 × 10 9  N ⋅ m2 C 2( )158 1.60 × 10−19  C( )2

5.68 × 10−14  m( )2 = 11.3 N   away from the nucleus

42.2 (a) The point of closest approach is found when

    
E = K +U = 0 + keqα qT

r
  or   

    
rmin = ke 2e( ) Ze( )

E
= 

    

2Zkee
2

E
 

(b) The maximum force exerted on the alpha particle is

    
Fmax = keqα qT

rmin
2 = 2Zkee

2 E
2Zkee

2








2

=  
    

E 2

2Zkee
2    away from the target nucleus

42.3 (a) The photon has energy 2.28 eV.

And   13.6 eV( )/ 22 = 3.40 eV  is required to ionize a hydrogen atom from state n  = 2.  So while
the photon cannot ionize a hydrogen atom pre-excited to n = 2, it can ionize a hydrogen atom
in the n = 3   state, with energy

–  
13.6 eV

3 2
   =  – 1.51 eV

(b) The electron thus freed can have kinetic energy Ke = 2.28 eV – 1.51 eV = 0.769 eV =     
1
2 mev

2

    
v = 2(0.769)(1.60 × 10−19)J

(9.11× 10−31)kg
= 520 km/s  
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*42.4 (a) Longest wavelength implies lowest frequency and smallest
energy:  the electron falls from  n = 3 to n = 2, losing energy

–  
13.6 eV

3 2
   +  

13.6 eV
2 2

   = 1.89 eV   

The photon frequency is   f = ∆E h and its wavelength is

    
λ = c

f
= ch

∆E
= (3.00 × 108  m / s)(6.626 × 10−34  J ⋅ s)

1.89 eV
eV

1.60 × 10−19  J







λ  = 656 nm   
Balmer          

Series         

(b) The biggest energy loss is for an electron to fall from ionization, n = ∞, to the n = 2 state.  

It loses energy –  
13.6 eV

∞    +  
13.6 eV

2 2
   = 3.40 eV   

to emit light of wavelength

    

λ = hc
∆E

=
3.00 × 108  m / s( ) 6.626 × 10−34  J ⋅ s( )

3.40 eV 1.60 × 10-19  J / eV( ) =  365 nm   

42.5 (a) For positronium,  µ =  
me
2   ,  so λ 32 = (656 nm)2 = 1312 nm = 1.31 µm   (infrared region) .

(b) For He+,  µ ≈ me,  q1 = e,  and  q2 = 2e,  so λ 32 = (656/4) nm = 164 nm   (ultraviolet region) .

Goal Solution    
A general expression for the energy levels of one-electron atoms and ions is

      
En = − µke

2q1
2q2

2

2h2n2








where ke is the Coulomb constant, q1 and q2 are the charges of the two particles, and µ is the reduced mass,
given by     µ = m1m2 / m1 + m2( ).  In Problem 4 we found that the wavelength for the n = 3 to n  = 2 transition
of the hydrogen atom is 656.3 nm (visible red light).  What are the wavelengths for this same transition
in (a) positronium, which consists of an electron and a positron, and (b) singly ionized helium?  (Note:  A
positron is a positively charged electron.)

G : The reduced mass of positronium is less than hydrogen, so the photon energy will be less for
positronium than for hydrogen. This means that the wavelength of the emitted photon will be
longer than 656.3 nm.  On the other hand, helium has about the same reduced mass but more charge
than hydrogen, so its transition energy will be larger, corresponding to a wavelength shorter than
656.3 nm.  

O : All the factors in the above equation are constant for this problem except for the reduced mass and
the nuclear charge.  Therefore, the wavelength corresponding to the energy difference for the
transition can be found simply from the ratio of mass and charge variables.
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A : For hydrogen,
  
µ =

mpme

mp + me
≈ me

The photon energy is     ∆E = E3 − E2

Its wavelength is   λ = 656.3 nm , where   
  
λ = c

f
= hc

∆E

(a) For positronium,     
    
µ = meme

me + me
= me

2
 

so the energy of each level is one half as large as in hydrogen, which we could call "protonium."
The photon energy is inversely proportional to its wavelength, so for positronium,

  λ 32 = 2(656.3 nm) = 1313 nm   (in the infrared region)

(b) For He+,   µ ≈ me ,      q1 = e ,  and     q2 = 2e ,

so the transition energy is   2
2 = 4 times larger than hydrogen.  Then,

  
λ 32 = 656

4




  nm = 164 nm    (in the ultraviolet region)

L : As expected, the wavelengths for positronium and helium are respectively larger and smaller than
for hydrogen.  Other energy transitions should have wavelength shifts consistent with this pattern.  It
is important to remember that the reduced mass is not the total mass, but is generally close i n
magnitude to the smaller mass of the system (hence the name reduced mass).

*42.6 (a) For a particular transition from ni to nf ,
      
∆EH = −µHke

2e4

2h2
1

nf
2 − 1

ni
2









 = hc

λ H

and
      
∆ED = −µDke

2e4

2h2
1

nf
2 − 1

ni
2









 = hc

λ D

where 
    
µH =

memp

me + mp
  and  

    
µD = memD

me + mD

By division, 
    

∆EH

∆ED
= µH

µD
=

λ D

λ H
or   

  
λ D = µH

µD






λ H

Then,
  
λ H − λ D = 1 − µH

µD






λ H  

(b)
    

µH

µD
=

memp

me + mp











me + mD

memD







=
1.007 276 u( ) 0.000 549 u + 2.013 553 u( )
0.000 549 u + 1.007 276 u( ) 2.013 553 u( )   = 0.999728

  λ H − λ D = 1 − 0.999 728( ) 656.3 nm( ) =  0.179 nm  
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42.7 (a) In the 3d subshell, n = 3 and   l = 2, we have

n 3 3 3 3 3 3 3 3 3 3
  l 2 2 2 2 2 2 2 2 2 2

    ml +2 +2 +1 +1 0 0 -1 -1 -2 -2
m s +1/2 -1/2 +1/2 -1/2 +1/2 -1/2 +1/2 -1/2 +1/2 -1/2

(A total of 10 states)

(b) In the 3p subshell, n = 3 and   l = 1, we have

n 3 3 3 3 3 3
  l 1 1 1 1 1 1

    ml +1 +1 +0 +0 -1 -1
m s +1/2 -1/2 +1/2 -1/2 +1/2 -1/2

(A total of 6 states)

42.8

    
ψ1s(r) = 1

πa0
3

e−r/a0 (Eq. 42.3)

    
P1s(r) = 4r 2

a0
3 e−2r/a0 (Eq. 42.7)

    

42.9 (a)
    

ψ 2 dV∫ = 4π ψ 2 r 2 dr
0

∞
∫ = 4π 1

πa0
3







r 2 e− 2r a0

0

∞
∫ dr

Using integral tables,

    

ψ 2 dV∫ = − 2
a0

2 e− 2r a0 r 2 + a0r + a0
2

2

















 r = 0

r = ∞

= − 2
a0

2







− a0

2

2







=  1  

so the wave function as given is normalized.

(b)
    
Pa0 2 → 3a0 2 = 4π ψ 2 r 2 dr

a0 2

3a0 2
∫ = 4π 1

πa0
3







r 2 e− 2r a0

a0 2

3a0 2
∫ dr

Again, using integral tables,

    

Pa0 2 → 3a0 2 = − 2
a0

2 e− 2r a0 r 2 + a0r + a0
2

2

















 a0 2

3a0 2

= − 2
a0

2 e−3 17 a0
2

4







− e−1 5a0

2

4



















= 0.497  
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42.10
    
ψ = 1

3
1

(2a0 )3/2
r
a0

e−r/2a0 so
    
Pr = 4πr 2 ψ 2 = 4πr 2 r 2

24a0
5 e−r/a0

Set 
    

dP
dr

= 4π
24a0

5 4r 3e−r/a0 + r 4 − 1
a0







e−r/a0








 = 0

Solving for r,  this is a maximum at r = 4 a0   

42.11

    
ψ = 1

πa0
3

e−r/a0

    

2
r

dψ
dr

= −2

r πa0
5

e−r/a0 = 2
ra0

ψ
    

d 2ψ
dr 2 = 1

πa0
7

e−r/a0 = 1
a0

2 ψ

      
− h2

2me

1
a0

2 − 2
ra0







ψ − e 2

4πe0r
ψ = Eψ

But 
      
a0 = h2 4πe0

mee
2 , so

      
− e2

8πe0 a0
= E    or   

    
E = − kee

2

2a0
 

This is true, so the Schrödinger equation is satisfied.

42.12 The hydrogen ground-state radial probability density is

    
P(r) = 4πr 2 ψ1s

2 = 4r 2

a0
3 exp − 2r

a0







The number of observations at 2a0 is, by proportion

    
N = 1000

P(2a0 )
P(a0 / 2)

= 1000
(2a0 )2

(a0 / 2)2
e−4a0 /a0

e−a0 /a0
= 1000(16)e−3 =  797 times  

42.13 (a) For the d state,   l = 2, L =     6h   = 2.58 × 10– 34 J · s

(b) For the f state,   l = 3,       L = l(l+ 1)h =     12h   = 3.65 × 10– 34 J · s
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*42.14       L = l(l+ 1)h so
    
4.714 × 10−34 = l(l+ 1)

6.626 × 10−34

2π

    

l(l+ 1) =
4.714 × 10−34( )2

2π( )2

6.626 × 10−34( )2 = 1.998 × 101 ≈ 20 = 4(4 + 1) so      l = 4  

42.15 The 5th excited state has n = 6, energy
– 13.6 eV

36    =  – 0.378 eV

The atom loses this much energy:
  

hc
λ

  =  
(6.626 × 10– 34 J · s)(3.00 × 108 m/s)
(1090 × 10– 9 m)(1.60 × 10– 19 J/eV)

   = 1.14 eV

to end up with energy – 0.378 eV – 1.14 eV = – 1.52 eV

which is the energy in state 3: – 
13.6 eV

3 3
   =  – 1.51 eV

While n = 3,    l can be as large as 2, giving angular momentum     l(l+ 1)h =     6 h   

42.16 For a 3d state, n = 3 and   l = 2.  Therefore,       L = l(l+ 1)h = 2(2 + 1)h =     6h   = 2.58 × 10– 34 J · s

    ml can have the values – 2, – 1, 0, 1, and 2, so Lz can have the values –2  h, –   h, 0, and 2  h  

Using the relation cos θ =     Lz / L ,  we find that the possible values of θ  are equal to

145°, 114°, 90.0°, 65.9°, and 35.3°  .

42.17 (a)     n = 1:  For 
      
n = 1,  l = 0,  ml = 0,  ms = ± 1

2
,  →  2 sets n    l     ml m s

1 0 0 –1/2

    2 1 12 2n = =( )  2  1 0 0 +1/2

(b) For     n = 2, we have n    l     ml m s
2 0 0   ±1 2

2 1 –1   ±1 2 yields 8 sets;      2 2 22 2n = ( ) = 8  
2 1 0   ±1 2
2 1 1   ±1 2
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Note that the number is twice the  number of     ml values.  Also, for each   l there are     (2l+ 1)
different     ml values.  Finally,   l can take on values ranging from 0 to     n − 1.  So the general
expression is

      
s = 2 2l+ 1( )

0

n − 1
∑

The series is an arithmetic progression:  2 + 6 + 10 + 14, the sum of which is

    
s = n

2
2a + (n − 1)d[ ]  where     a = 2,     d = 4:

    
s = n

2
4 + (n − 1)4[ ] = 2n2

(c)     n = 3:    2(1) + 2(3) + 2(5) = 2 + 6 + 10 = 18     2n2 = 2(3)2 = 18  

(d)     n = 4:    2(1) + 2(3) + 2(5) + 2(7) = 32     2n2 = 2(4)2 =  32  

(e)     n = 5:    32 + 2(9) = 32 + 18 = 50     2n2 = 2(5)2 = 50  

42.18
      
µB = eh

2me
      e = 1.60 × 10– 19 C        h= 1.055 × 10– 34 J · s        me  = 9.11 × 10– 31 kg

  µB = 9.27 × 10– 24 J/T = 5.79 × 10– 5 eV/T   

42.19 (a) Density of a proton:
    
ρ = m

V
= 1.67 × 10−27  kg

(4 / 3)π(1.00 × 10−15  m)3 = 3.99 × 1017 kg/m3  

(b) Size of model electron:
    
r = 3m

4πρ






1/3

= 3 × 9.11× 10−31 kg ⋅ m3

4π× 3.99 × 1017  kg








1/3

=  8.17 × 10– 17 m   

(c) Moment of inertia:
    
I = 2

5
mr2 = 2

5
(9.11× 10−31  kg)(8.17 × 10−17  m)2 = 2.43 × 10−63  kg ⋅ m2

      
Lz = Iω = h

2
= Iv

r

Therefore,

      

v = hr
2I

=
6.626 × 10−34 J ⋅ s( )(8.17 × 10−17  m)

2π 2( ) 2.43 × 10−63  kg ⋅ m2( ) =  1.77 × 1012 m/s  

(d) This is 5.91 × 103 times larger   than the speed of light.
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42.20 (a)
      
L = mvr = m

2πr
T

r = l(l+ 1)h = (l2 +l)h ≈ lh

(5.98 × 1024 kg)  
2π (1.496 × 1011 m)2

3.156 × 107 s
   =   lh    so

2.66 × 1040

1.055 × 10– 34 J · s
   =   l = 2.52 × 1074   

(b)
    
E = −U + K = −K = 1

2
mv2 = 1

2
mr 2

mr 2 mv2

      
= 1

2
L2

mr 2 = 1
2
l(l+ 1)h2

mr 2 ≈ 1
2
l2h2

mr 2

      

dE
dl

= 1
2

2lh2

mr 2
l

l
= 2

E
l

so
      
dE = 2

E
l

dl = 2

1
2 (5.98 × 1024  kg)

2π× 1.496 × 1011 m
3.156 × 107  s








2

1

2.52 × 1074

    
∆E = ×

×
=5 30 10

2 52 10

33

74
.
.

 J
 2.10 × 10– 41 J  

*42.21 µn =  
      

eh
2mp

     e = 1.60 × 10– 19 C        h = 1.055 × 10– 34 J · s       mp = 1.67 × 10– 27 kg

(a) µn = 5.05 × 10– 27 J/T    = 31.6 neV/T   

(b)
µn
µB

   =  
1

1836   =  
  

me

mp

Apparently it is harder to "spin up" a nucleus than a electron, because of its greater mass.

42.22 In the N shell,     n = 4.  For     n = 4,   l can take on values of 0, 1, 2, and 3.  For each value of   l,     ml

can be   −l to   l in integral steps.  Thus, the maximum value for     ml is 3.  Since     Lz = mlh, the

maximum value for   Lz  is   Lz  =     3h  .

42.23  The 3d subshell has   l = 2, and n = 3.  Also, we have s = 1.  
Therefore, we can have n = 3;   l = 2;     ml = – 2, – 1, 0, 1, 2;   s  = 1; and   ms  = – 1, 0, 1  , leading to the

following table:

  n 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

  l 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

    ml –2 –2 –2 –1 –1 –1 0 0 0 1 1 1 2 2 2

  s 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

  ms –1 0 1 –1 0 1 –1 0 1 –1 0 1 –1 0 1
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42.24 (a)     1s 2 2s 2 2p 4   

(b) For the 1s electrons, n = 1,   l = 0,     ml = 0,   ms  =  + 1/2   and   – 1/2
For the two 2s electrons, n = 2,   l = 0,     ml = 0,   ms  =  + 1/2  and   – 1/2
For the four 2p electrons, n = 2;   l = 1;     ml = –1, 0, or 1; and   ms  =  + 1/2   or  – 1/2

42.25 The     4s subshell fills first  , for potassium and calcium, before the 3d subshell starts to fill for

scandium through zinc.  Thus, we would first suppose that     Ar[ ]3d 4 4s 2 would have lower
energy than     Ar[ ]3d 5 4s1.  But the latter has more unpaired spins, six instead of four, and
Hund’s rule suggests that this could give the latter configuration lower energy.  In fact it must,
for     Ar[ ]3d 5 4s1 is the ground state for chromium.

*42.26 (a) For electron one and also for electron two, n = 3 and   l = 1.  The possible states are listed here
in columns giving the other quantum numbers:

electron     ml 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
one   ms   

1
2   

1
2   

1
2   

1
2   

1
2   −

1
2   −

1
2   −

1
2   −

1
2   −

1
2   

1
2   

1
2   

1
2   

1
2   

1
2

electron     ml 1 0 0 –1 –1 1 0 0 –1 –1 1 1 0 –1 –1
two   ms   −

1
2   

1
2   −

1
2   

1
2   −

1
2   

1
2   

1
2   −

1
2   

1
2   −

1
2   

1
2   −

1
2   −

1
2   

1
2   −

1
2

electron     ml 0 0 0 0 0 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1
one   ms   −

1
2   −

1
2   −

1
2   −

1
2   −

1
2   

1
2   

1
2   

1
2   

1
2   

1
2   −

1
2   −

1
2   −

1
2   −

1
2   −

1
2

electron     ml 1 1 0 –1 –1 1 1 0 0 –1 1 1 0 0 –1
two   ms   

1
2   −

1
2   

1
2   

1
2   −

1
2   

1
2   −

1
2   

1
2   −

1
2   −

1
2   

1
2   −

1
2   

1
2   −

1
2   

1
2

There are thirty allowed states, since electron one can have any of three possible values for     ml

for both spin up and spin down, amounting to six states, and the second electron can have any
of the other five states.

(b) Were it not for the exclusion principle, there would be 36   possible states, six for each
electron independently.

42.27 Shell K L M N
n 1 2 3 4

  l 0 0 1 0 1   2 0

    ml 0 0 1 0 – 1 0 1 0 – 1   2 1 0 – 1 – 2 0

  ms ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓   ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓
count 1  2 3 4 10 12 18 21 30 20

He Be Ne Mg Ar Zn Ca

(a) zinc or copper  

(b)     1s2 2s2 2p6 3s2 3p6 4s2 3d10     or       1s2 2s2 2p6 3s2 3p6 4s1 3d10  

42.28 Listing subshells in the order of filling, we have for element 110,
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    1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4 f 14 5d10 6p6 7s2 5 f 14 6d8

In order of increasing principal quantum number, this is

    1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4 f 14 5s2 5p6 5d10 5 f 14 6s2 6p6 6d8 7s2  

42.29 (a) n +   l 1 2 3 4 5 6 7
subshell 1s 2s 2p , 3s 3p , 4s 3d , 4p , 5s 4d , 5p , 6s 4f , 5d , 6p , 7s

(b) Z = 15: Filled subshells: 1s, 2s, 2p, 3s   
(12 electrons)

Valence subshell: 3 electrons in 3p subshell
Prediction: Valance = + 3 or – 5
Element is phosphorus Valence + 3 or – 5 (Prediction correct)

Z = 47: Filled subshells: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s
(38 electrons)

Outer subshell: 9 electrons in 4d subshell
Prediction: Valence = – 1
Element is silver, (Prediction fails)     Valence is + 1

Z = 86: Filled subshells: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p
(86 electrons)

Prediction Outer subshell is full: inert gas
Element is radon, inert (Prediction correct)

42.30 Electronic configuration:  Sodium to Argon

    [1s2 2s2 2p6]     + 3s1 → Na11

    +3s2 → Mg12

    +3s2 3p1 → Al13

    +3s2 3p2 → Si14

    +3s2 3p3 → P15

    +3s2 3p4 → S16

    +3s2 3p5 → Cl17

    +3s2 3p6 → Ar18

    [1s2 2s2 2p6 3s2 3p6]4s1 → K19
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*42.31 n = 3,    l = 0,      ml = 0  

ψ 300 corresponds to E 300 =  – 
Z2 E0

n2    =  – 
22(13.6)

(3)2    = – 6.05 eV   

n = 3,   l = 1,     ml =  –1, 0, 1  

ψ 31 – 1, ψ 310, ψ 311 have the same energy since n is the same.

For n = 3,   l = 2,     ml =  – 2, – 1, 0, 1, 2  

ψ 32 – 2, ψ 32 – 1, ψ 320, ψ 321, ψ 322  have the same energy since n is the same.  

All states are degenerate.

42.32 E =  
hc

λ
   = e(∆V) ⇒   

(6.626 × 10– 34 J · s)(3.00 × 108 m/s)
10.0 × 10– 9  m

    = (1.60 × 10– 19)(∆V)

∆V = 124 V   

*42.33
    
Ephoton max = hc

λ min
= e ∆V( ) = 40.0 keV

    
λ min = hc

Emax
=

6.626 × 10−34  J ⋅ s( ) 3.00 × 108  m s( )
40.0 × 103  eV

1.00 eV
1.60 × 10−19  J







=  0.031 0 nm  

42.34 Some electrons can give all their kinetic energy   Ke = e ∆V( )  to the creation of a single photon
of x-radiation, with

  
h f = hc

λ
= e ∆V( )

    

λ = hc
e ∆V( ) =

6.6261× 10−34  J ⋅ s( ) 2.9979 × 108  m s( )
1.6022 × 10−19  C( ) ∆V( )

 = 
    

1240 nm ⋅ V
∆V

 

42.35 Following Example 42.7, Eγ  =  
3
4 (42 – 1) 2(13.6 eV) = 1.71 × 104 eV = 2.74 × 10– 15 J

f = 4.14 × 1018 Hz and λ = 0.072 5 nm   
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42.36 The Kβ  x-rays are emitted when there is a vacancy in the (n = 1) K shell and an electron from
the (n = 3) M shell falls down to fill it.  Then this electron is shielded by nine electrons
originally and by one in its final state.

  

hc
λ

  =  – 
13.6(Z – 9)2

3 2
   eV + 

13.6(Z – 1)2

12    eV

    

(6.626 × 10−34  J ⋅ s)(3.00 × 108  m / s)
(0.152 × 10−9  m)(1.60 × 10−19  J / eV)

= 13.6 eV − Z2

9
+ 18Z

9
− 81

9
+ Z2 − 2Z + 1








8.17 × 103 eV = 13.6 eV 






8Z2

9  – 8   so 601 =  
8Z2

9    – 8 and Z = 26 Iron   

42.37 (a) Suppose the electron in the M shell is shielded from the nucleus by two K plus seven L
electrons.  Then its energy is

  
− − −13.6 eV(83 9)

3
= 8.27 keV

2

2

Suppose, after it has fallen into the vacancy in the L shell, it is shielded by just two K-shell
electrons.  Then its energy is

  

− − −13.6 eV(83 2)
2

= 22.3 keV
2

2

Thus the electron's energy loss is the photon energy:   (22 3 8.27) keV =. −  14.0 keV  

(b)
  
∆E = hc

λ
so

  
λ =

6.626 × 10−34 J ⋅ s (3.00 × 108 m / s)
14.0 × 103 × 1.60 × 10−19 J

=   8. 5 10 m118 × −  

*42.38 E =  
hc

λ
   =  

1240 eV · nm
λ

   =  
1.240 keV · nm

λ
  

for λ 1 = 0.0185 nm,   E = 67.11 keV

λ 2 = 0.0209 nm,   E = 59.4 keV

λ 3 = 0.0215 nm,   E = 57.7 keV

The ionization energy for K shell = 69.5 keV, so, the ionization energies for the other shells
are: L shell = 11.8 keV  :      M shell = 10.1 keV  :      N shell = 2.39 keV  
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*42.39 (a) The outermost electron in sodium has a 3s state for its ground state.  The longest wavelength
means minimum photon energy and smallest step on the energy level diagram.  Since     n = 3,

  ′n  must be 4.  With     l = 0,   ′l  must be 1  , since   l must change by 1 in a photon absorption
process.

(b)
  

1
330 × 10−9  m

= 1.097 × 107  
1
m







1

3 − 1.35( )2 − 1

4 − δ1( )2













  
0.276 = 1

1.65( )2 − 1

4 − δ1( )2 = 0.367 − 1

4 − δ1( )2 so   4 − δ1( )2 = 10.98 and            δ1 = 0.686  

42.40
    
λ = c

f
= hc

h f
= (6.626 × 10−34  J ⋅ s)(3.00 × 108  m / s)

(2.10 eV)(1.60 × 1019  J / eV)
=  590 nm  

*42.41 We require 
      
A = uf B = 16π2h

λ3 B or

      

uf = 16π2h

λ3 =
16π2 1.055 × 10−34  J ⋅ s( )

645 × 10−9  m( )3 = 
  
6.21× 10−14  

J ⋅ s
m3  

42.42
  
f = E

h
=   2 82 1013. × −s 1  

  
λ = c

f
= 10.6 µm  ,   infrared  

42.43 E =     P t  = (1.00 × 106 W)(1.00 × 10– 8 s) = 0.0100 J

Eγ = h f =  
hc

λ
   =  

(6.626 × 10– 34)(3.00 × 108)
694.3 × 10– 9    J = 2.86 × 10– 19 J

N =  
E
Eγ

   =  
0.0100

2.86 × 10– 19   = 3.49 × 1016 photons   
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Goal Solution    
A ruby laser delivers a 10.0-ns pulse of 1.00 MW average power.  If the photons have a wavelength of
694.3 nm, how many are contained in the pulse?

G : Lasers generally produce concentrated beams that are bright (except for IR or UV lasers that produce
invisible beams).  Since our eyes can detect light levels as low as a few photons, there are probably at
least  1 000 photons in each pulse.

O : From the pulse width and average power, we can find the energy delivered by each pulse.  The
number of photons can then be found by dividing the pulse energy by the energy of each photon,
which is determined from the photon wavelength.

A : The energy in each pulse is      E = P t =   (1.00 × 106  W)(1.00 × 10−8  s) =  1.00 × 10−2  J

The energy of each photon is
    
Eγ = hf = hc

λ
= (6.626 × 10−34 )(3.00 × 108)

694.3 × 10−9  J = 2.86 × 10−19  J

So    

    
N = E

Eγ
= 1.00 × 10−2  J

2.86 × 10−19  J / photon
= 3.49 × 1016  photons

L : With   1016 photons/pulse, this laser beam should produce a bright red spot when the light reflects
from a surface, even though the time between pulses is generally much longer than the width of each
pulse.  For comparison, this laser produces more photons in a single ten-nanosecond pulse than a
typical 5 mW helium-neon laser produces over a full second (about   1.6 × 1016 photons/second).  

*42.44 In     G = eσ nu − nl( )L          we require       1.05 = e
1.00 × 10−18  m2( ) nu − nl( ) 0.500 m( )

Thus,  
      
ln 1.05( ) = 5.00 × 10−19  m3( ) nu − nl( ) so 

      
nu − nl = ln 1.05( )

5.00 × 10−19  m3 =   9 76 1016. × − m 3  

42.45 (a)

    

N3

N2
=

Nge− E3 kB ⋅300 K( )

Nge− E2 kB ⋅300 K( ) = e−(E3 − E2 ) kB ⋅300 K( ) = e− hc λ kB ⋅300 K( )

where λ  is the wavelength of light radiated in the   3 → 2 transition:

    

N3

N2
= e

− 6.626 × 10−34  J ⋅ s( ) 3.00 × 108  m s( ) 632.8 × 10 −9  m( ) 1.38 × 10− 23  J K( ) 300 K( )
    = e−75.8 =   1 22 10 33. × −  

(b)
    

N3

N2
= ehc/λ kBT

    = e
− 6.626 × 10−34  J ⋅ s( ) 3.00 × 10 8  m s( ) 694.3 × 10 −9  m( ) 1.38 × 10−23  J K( ) 4.00 K( )

    = −e 5187

To avoid overflowing your calculator, note that     10 = eln 10.  Take

    

N3

N2
= eln 10 × (−5187/ln 10) =   10 2253−  
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*42.46       Nu Nl = e− Eu − El( ) kBT  where the subscript u refers to an upper energy state and the subscript   l
to a lower energy state.

(a) Since       Eu − El = Ephoton = hc λ ,           Nu Nl = e− hc λkBT

Thus, we require      1.02 = e− hc λkBT or

    

ln 1.02( ) = −
6.626 × 10−34  J ⋅ s( ) 3.00 × 108  m s( )

694.3 × 10−9  m( ) 1.38 × 10−23  J K( )T

    
T = − 2.07 × 104  K

ln 1.02( ) =   − ×1 05 106.  K  

A negative-temperature state is not achieved by cooling the system below 0 K, but by heating it
above   T = ∞ , for as   T → ∞ the populations of upper and lower states approach equality.

(b) Because       Eu − El > 0,  and in any real equilibrium state       T > 0 ,           e
− Eu −El( ) kBT < 1    and       Nu < Nl.

Thus, a population inversion cannot happen in thermal equilibrium.

42.47 (a)
    
I = (3.00 × 10−3  J)

(1.00 × 10−9  s)π(15.0 × 10−6  m)2 =  4.24 × 1015 W/m2  

(b)
  
(3.00 × 10−3  J)

(0.600 × 10−9  m)2

(30.0 × 10−6  m)2 =  1.20 × 10– 12 J   = 7.50 MeV

*42.48 (a) The energy difference between these two states is equal to the energy that is absorbed.

Thus,   E = E2 – E1 =  
(– 13.6 eV)

4    –  
(– 13.6 eV)

1    =  10.2 eV = 1.63 × 10– 18 J   

(b) We have E =  
3
2  kBT,    or   T =  

2
3kB

  E =  
2(1.63 × 10– 18 J)

3(1.38 × 10– 23 J/K)
   = 7.88 × 104 K   

42.49
    
rav =

0

∞
∫ rP(r)dr =

0

∞
∫ 4r 3

a0
3







(e−2r/a0 )dr

Make a change of variables with 
    

2r
a0

= x and
    
dr = a0

2
dx .

Then  
    
rav = a0

4 0

∞
∫ x3e−x dx

    
= a0

4
−x3e−x + 3 −x2e−x + 2e−x(−x − 1)( )[ ]

0

∞
= 

    

3
2

a0  
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*42.50
    

1
r

= 4r 2

a0
3 e− 2r a0

1
r

dr
0

∞
∫ = 4

a0
3 r e− 2 a0( )r dr

0

∞
∫

    
= 4

a0
3

1

2 a0( )2 =  
    

1
a0

 

We compare this to 
    

1
r

= 1
3a0 2

= 2
3a0

, and find that the average reciprocal value is NOT   the

reciprocal of the average value.

42.51 The wave equation for the     2s  state is given by Eq. 42.7:
    
ψ2s r( ) = 1

4 2π
1
a0







3 2

2 − r
a0









 e− r 2a0

(a) Taking     r = a0 = 0.529 × 10−10  m, we find

    
ψ2s a0( ) = 1

4 2π
1

0.529 × 10−10  m






3 2

2 − 1[ ] e−1 2 =    1 57 1014. × − m 3 2  

(b)
    
ψ2s a0( ) 2

= 1.57 × 1014  m−3 2( )2
=    2 47 1028. × − m 3  

(c) Using Equation 42.5 and the results to (b) gives     P2s a0( ) = 4πa0
2 ψ2s a0( ) 2

=    8 69 108. × − m 1  

*42.52 We define the reduced mass to be µ , and the ground state energy to be     E1: 

    

µ = m1m2

m1 + m2
=

207memp

207me + mp
=

207 9.11× 10−31 kg( ) 1.67 × 10−27  kg( )
207 9.11× 10−31 kg( ) + 1.67 × 10−27  kg( ) = 1.69 × 10−28  kg

      

E1 = − µke
2q1

2q2
2

2h2 1( )2 = −
1.69 × 10−28  kg( ) 8.99 × 109  N ⋅ m2 C2( )2

1.60 × 10−19  C( )3
e

2 1.055 × 10−34  J ⋅ s( )2   = − 2.52 × 103  eV

To ionize the muonium "atom" one must supply energy   +2 52.  keV  .

42.53 (a) (3.00 × 108 m/s)(14.0 × 10– 12 s) = 4.20 mm   

(b) E =  
hc

λ
   = 2.86 × 10– 19 J N =  

3.00 J
2.86 × 10– 19 J

   = 1.05 × 1019 photons   

(c) V = (4.20 mm)π (3.00 mm)2 = 119 mm3 n =  
1.05 × 1019

119    = 8.82 × 1016 mm– 3   
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42.54 (a) The length of the pulse is ∆L = ct   

(b) The energy of each photon is Eγ = 
hc

λ
  so N =  

E
Eγ

   =  
Eλ
h c   

(c) V = ∆Lπ  
d 2

4   
  
n = N

V
=

    

4
ct πd2







Eλ
hc





  

42.55 We use 
    
ψ2s(r) = 1

4
(2πa0

3 )−1/2 2 − r
a0







e−r/2a0

By Equation 42.5,
    
P(r) = 4πr 2ψ 2 = 1

8
r2

a0
3







2 − r

a0







2

e−r/a0

(a)

    

dP(r)
dr

= 1
8

2r
a0

3 2 − r
a0







2

− 2r 2

a0
3

1
a0







2 − r
a0







− r2

a0
3 2 − r

a0







2
1
a0


















e−r/a0 = 0

or
    

1
8

r
a0

3







2 − r

a0







2 2 − r
a0







− 2r
a0

− r
a0

2 − r
a0















 e−r/a0 = 0

Therefore we require the roots of 
    

dP
dr

= 0 at     r = 0,     r = 2a0 , and   r = ∞ to be minima with     P r( ) = 0.  

[ . . . . . ] =     4 − 6r / a0( ) + r / a0( )2 = 0 with solutions     r a= ±( )3 5 0.

We substitute the last two roots into P(r) to determine the most probable value:

When     r a a= −( ) =3 5 0 76390 0. , then     P r( ) = 0.0519 / a0

When     r = 3 + 5( )a0 = 5.236a0, then     P r( ) = 0.191/ a0

Therefore, the most probable value of r is      3 5 0+( )a  = 5.236a0   

(b)
    

0

∞
∫ P(r)dr =

0

∞
∫ 1

8
r2

a0
3







2 − r

a0







2

e−r/a0 dr Let u =  
r
a0

   ,   dr = a0 du,

    0
∞

∫ P(r)dr =
0

∞
∫ 1

8
u2(4 − 4u + u2 )e−u dr

    
=

0

∞
∫ 1

8
(u4 − 4u3 + 4u2 )e−u du  

    
= − 1

8
(u4 + 4u2 + 8u + 8)e−u

0

∞
=  1

This is as desired  .

*42.56
    
∆z = at2

2
= 1

2
Fz

m0






t2 =

µz dBz dz( )
2m0

∆x
v







2

 and
      
µz = eh

2me

      

dBz

dz
= 2m0(∆z)v2 2me

∆x2eh
 
  
= × ×

× × ⋅

− − −

− −
2 108 1 66 10 10 2 9 11 10 10

1 00 1 60 10 1 05 10

27 4 2 2 31 3

2 19 34
( )( . )( / ) ( . )( )

( . )( . )( . )
    

  

kg m s kg m
 m C J s

 =  0.389 T/m 
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42.57 With one vacancy in the K shell, excess energy 
    
∆E ≈ −(Z − 1)2(13.6 eV)

1
22 − 1

12




 = 5.40 keV

We suppose the outermost 4s electron is shielded by 20 electrons inside its orbit:

    
Eionization ≈ 22(13.6 eV)

42 = 3.40 eV

Note the experimental ionization energy is 6.76 eV.      K = ∆E − Eionization ≈  5.39 keV  

*42.58 E =  
hc

λ
   =  

1240 eV · nm
λ

   = ∆E

λ 1 = 310 nm,  so  ∆E 1 = 4.00 eV

λ 2 = 400 nm,  ∆E 2 = 3.10 eV

λ 3 = 1378 nm,  ∆E 3 = 0.900 eV

and the ionization energy = 4.10 eV

The energy level diagram having the fewest levels and consistent with these energies is
shown at the right.

42.59 (a) One molecule's share of volume

Al:  
    
V = mass per molecule

density   
= 27.0 g mol

6.02 × 1023  molecules mole







1.00 × 10−6  m3

2.70 g







   = × −1 66 10 29.  m3

    V
3 =    2 55 10 10. × − − m ~ 10  nm1  

U:
    
V = 238 g

6.02 × 1023  molecules






1.00 × 10−6  m3

18.9 g







= 2.09 × 10−29  m3

    V
3 =    2 76 10 10. × − − m ~ 10  nm1  

(b) The outermost electron in any atom sees the nuclear charge screened by all the electrons
below it.  If we can visualize a single outermost electron, it moves in the electric field of net
charge,     +Ze − (Z − 1)e = +e , the charge of a single proton, as felt by the electron in hydrogen.  So
the Bohr radius sets the scale for the outside diameter of every atom.  An innermost electron,
on the other hand, sees the nuclear charge unscreened, and the scale size of its (K-shell) orbit
is     a0 Z.
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42.60 (a) No orbital magnetic moment to consider:  higher energy for 
N
S  

N
S    parallel magnetic

moments, for   antiparallel spins   of the electron and proton.

(b)
    
E = hc

λ
= 9.42 × 10−25  J =   5 89.  eVµ  

(c)
      
∆E∆t ≈ h

2
so

    

∆E ≈ 1.055 × 10−34  J ⋅ s

2 107  yr( ) 3.16 × 107  s yr( )
1.00 eV

1.60 × 10−19  J







=   1.04 × 10−30  eV  

42.61
    
P = 4r2

a0
3 e−2r a0 dr

2.50 a0

∞
∫ = 1

2 z2 e−z dz
5.00

∞
∫   where 

    
z ≡ 2r

a0

    
P = − 1

2
(z2 + 2z + 2)e−z

5.00

∞

    
= − 1

2
[0] + 1

2
25.0 + 10.0 + 2.00( )e−5 = 37

2




 0.00674( )  = 0.125  

Goal Solution    
For hydrogen in the 1s state, what is the probability of finding the electron farther than 2.50  ao from the
nucleus?

G : From the graph shown in Figure 42.8, it appears that the probability of finding the electron beyond
2.5 a0 is about 20%.  

O : The precise probability can be found by integrating the 1s radial probability distribution function
from r = 2.50  ao to ∞.

A : The general radial probability distribution function is     P r( ) = 4πr2 ψ 2

With   
    
ψ1s = πa0

3( )−1/2
e−r/a0 it is     P r( ) = 4r2a0

−3e−2r/a0

The required probability is then

    

P = P r( )dr
2.50a0

∞

∫ = 4r2

a0
3 e−2r/a0 dr

2.50a0

∞

∫

Let       z = 2r a0   and       dz = 2dr a0 :
    
P = 1

2
z2e−zdz

5.00

∞

∫

Performing this integration by parts,
    
P = − 1

2
z2 + 2z + 2



 e−z ] 5.00

∞

    
P = − 1

2
0( ) + 1

2
25.0 + 10.0 + 2.00( )e−5.00 = 37

2( ) 0.00674( ) = 0.125

L : The probability of 12.5% is less than the 20% we estimated, but close enough to be a reasonable result.
In comparing the 1s probability density function with the others in Figure 42.8, it appears that the
ground state is the most narrow, indicating that a 1s electron will probably be found in the narrow
range of 0 to 4 Bohr radii, and most likely at r = a0.
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42.62 The probability, P, of finding the electron within the Bohr radius is

    
P = P1s r( )dr

r = 0

a0∫ = 4r2

a0
3







e−2r a0 dr

r = 0

a0∫

Defining     z ≡ 2r a0 , this becomes

    
P = − 1

2
(z2 + 2z + 2)e−z

0

2
= − 1

2
4 + 4 + 2( )e−2 − 0 + 0 + 2( )e0[ ] = 1

2
2 − 10

e2




  = 0.323  

The electron is likely to be within the Bohr radius about one-third of the time.  The Bohr
model indicates none of the time.

42.63 (a) For a classical atom, the centripetal acceleration is

      
a = v2

r
= 1

4πe0

e2

r 2me

      
E = − e2

4πe0r
+ mev

2

2
= − e2

8πe0r
so

      

dE
dt

= e2

8πe0r 2
dr
dt

= −1
6πe0

e2a2

c3 = −e2

6πe0c3
e2

4πe0r 2me








2

Therefore,
      

dr
dt

= − e4

12π2e0
2r 2me

2c3

(b)
      
−

r= 2.00 × 10−10 m

r = 0
∫ 12π2e0

2r 2me
2c3dr = e4

t = 0

T
∫ dt

      

12π2e0
2me

2c3

e4
r 3

3
0

2.00 × 10−10

= T = 8.46 × 10– 10 s  

Since atoms last a lot longer than 0.8 ns, the classical laws (fortunately!) do not hold for
systems of atomic size.

42.64 (a) +3e – 0.85e – 0.85e = 1.30e   

(b) The valence electron is in an n = 2 state, with energy

– 13.6 eV Z2
eff

n2    =  
– 13.6 eV(1.30)2

2 2
   =  – 5.75 eV

To ionize the atom you must put in + 5.75 eV   

This differs from the experimental value by 6%, so we could say the effective value of Z is
accurate within 3%.
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42.65     ∆E = 2µBB = h f so
    
2 9.27 × 10−24 J / T( ) 0.350 T( ) = 6.626 × 10−34 J ⋅ s( ) f

and    f =   9.79 × 109 Hz  

42.66 The photon energy is 
    
E4 − E3 = 20.66 − 18.70 eV = 1.96 eV =

hc
λ

  
λ = (6.626 × 10−34 J ⋅ s)(3.00 × 108 m / s)

1.96 × 1.60 × 10−19 J
= 633 nm  

42.67 (a)

      

1
α

= hc
kee

2 =
6.626 × 10−34( ) 3.00 × 108( )

2π 8.99 × 109( ) 1.60 × 10−19( )2 = 137  

(b)
    

λ C

re
= h

mc
mc2

kee
2 = hc

ke2 =  
  

2π
α

 

(c)
      

a0

λ C
= h2

mkee
2

mc
h

= 1
2π

hc
kee

2 = 137
2π

=  
  

1
2πα

 

(d)
      

1 RH

a0
= 1

RHa0
= 4πch3

mke
2e4

mkee
2

h2 = 4π hc
kee

2 = 
  

4π
α

 

42.68
    
ψ = 1

4 (2π)−1/2 1
a0







3/2

2 − r
a0







e−r/2a0 = A 2 − r
a0







e−r/2a0

    

∂2ψ
∂r 2 = Ae−r/2a0

a0
2







3
2

− r
4a0







Substituting into Schrödinger's equation and dividing by ψ ,

      

1
a0

2
1
2

− r
4a0







= − 2m
h2 [E −U] 2 − r

a0







Now

      

E −U = h2

2m a0
2

1
4





 −

ke2 4a0( ) m h2( )
m h2( ) = − 1

4
h2

2m a0
2








and
    

1
a0

2







1
2

− r
4a0







= 1
4a0

2 2 − r
a0







       ∴ ψ  is a solution.
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*42.69 The beam intensity is reduced by absorption of photons into atoms in the lower state.  The
number of transitions per time and per area is     −BNl I x( )ndx c .  The beam intensity is
increased by stimulating emission in atoms in the upper state, with transition rate

  +BNuI x( )ndx c .  The net rate of change in photon numbers per area is then

    −B Nl − Nu( )I x( )ndx c .

Each photon has energy   h f , so the net change in intensity is

    dI x( ) = − h f B Nl − Nu( )I x( )ndx c = − h f B∆N I x( )ndx c

Then,  
  

dI x( )
I x( ) = − h f B∆N n

c
dx so

    

dI x( )
I x( )I0

I L( )
∫ = − h f B∆N n

c




 dx

x = 0

L
∫

    
ln I L( )[ ] − ln I0[ ] = ln

I L( )
I0









 = − h f B∆N n

c
L − 0( )

    I L( ) = I0 e−h f B∆N nL c = I0 e−α L

This result is also expressed in problem 42.44 as
      

I L( )
I0

= G = e−σ nl−nu( )L = e+σ nu −nl( )L

*42.70 (a) Suppose the atoms move in the   +x  direction.  The absorption of a photon by an atom is a
completely inelastic collision, described by

    
mvi i + h

λ
−i( ) = mvf i so

  
vf − vi = − h

mλ

This happens promptly every time an atom has fallen back into the ground state, so it
happens every     10−8  s = ∆t .  Then,

    

a =
vf − vi

∆t
= − h

mλ ∆t
~ − 6.626 × 10−34  J ⋅ s

10−25  kg( ) 500 × 10−9  m( ) 10−8  s( )       − 106  m s2  

(b) With constant average acceleration,     vf
2 = vi

2 + 2a ∆x( )

    
0 ~ 103  m s( )2

+ 2 −106  m s2( )∆x    so
    
∆x ~

103  m s( )2

106  m s2    ~ 1 m  


