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421 (a) The point of closest approach is found when

ke (2€)(79¢)

Mmin =

E=K+U =0+ elafau o
r

4.00 MeV)(160x10712 J/MeV
/

Fmin
(b) The maximum force exerted on the alpha particle is

(8.99x10° N2 C?)158(1.60 x 1072 c)2

Frax = kquun = 5 =|11.3 N| away from the nucleus
Fmin (5.68x120™ m)

42.2 (8) The point of closest approach is found when

o (2)(2e)

2
E=K+U=O+keqf"’qT R 2Zkqe

E

(b) The maximum force exerted on the alpha particle is

ke lr 0 e O _[ €
E =_eadT — 927K e = away from the target nucleus
MRy 2 © Hzke?H | 2zke? Y g

min

42.3 (a8) The photon has energy 2.28 eV.

And (13.6 eV)/22 =3.40 eV is required to ionize a hydrogen atom from state n = 2. So while
the photon cannot ionize a hydrogen atom pre-excited to n = 2, it can ionize a hydrogen atom

inthen = state, with energy

13.6 eV
32

= -151eV

(b) The electron thus freed can have kinetic energy K, =2.28 eV — 1.51 eV = 0.769 eV = %mev2

2(0.769)(1.60 x 1072°)J
V= =520 km/s
\ (9.11 x 10—31)kg
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*42.4 (a) Longest wavelength implies lowest frequency and smallest g E (eV)
energy: the electron falls from n =3ton = 2, losing energy 0 0.00
1366V 136eV _ e — | _oars
T T T TLL8eV 5 ———|-| -0544
4 ——|—1-|- -0.850
The photon frequency is f = AE/h and its wavelength is S I 151
8 -34
A :%:ﬁ:(&oomo m /s)(6.626 x 10>" J3) U eV O ) 1 YVYVYY a4

AE 189 eV H.60x 109 3H
Balmer

A= Series

(b) The biggest energy loss is for an electron to fall from ionization, n = o, to the n = 2 state.

13.6 eV N 13.6 eV

2L B Eme

_he_(3.00x10° m/s(6.626 x 107 y13)
CAE 3.40eVv(160x107° 3/eV)

It loses energy

to emit light of wavelength A

- [BeB ]

m
42,5 (&) For positronium, p = Te , SO A3y = (656 nm)2 = 1312 nm =|1.31 um| (infrared region) .

(b) For He*, p=me, gy =e, and g = 2e, s0 Az = (656/4) nm = (ultraviolet region) .

Goal Solution
A general expression for the energy levels of one-electron atoms and ions is

£ = _hke’g,° 0
" 2h?n?

where k. is the Coulomb constant, g, and g, are the charges of the two particles, and u is the reduced mass,
given by u=mm, /(ml + mz). In Problem 4 we found that the wavelength for the n = 3 to n = 2 transition
of the hydrogen atom is 656.3 nm (visible red light). What are the wavelengths for this same transition
in (a) positronium, which consists of an electron and a positron, and (b) singly ionized helium? (Note: A
positron is a positively charged electron.)

G: The reduced mass of positronium is less than hydrogen, so the photon energy will be less for
positronium than for hydrogen. This means that the wavelength of the emitted photon will be
longer than 656.3 nm. On the other hand, helium has about the same reduced mass but more charge
than hydrogen, so its transition energy will be larger, corresponding to a wavelength shorter than
656.3 nm.

O: All the factors in the above equation are constant for this problem except for the reduced mass and
the nuclear charge. Therefore, the wavelength corresponding to the energy difference for the
transition can be found simply from the ratio of mass and charge variables.
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For hyd MpMMe
or rogen, =—P® =m
yares H me+m,  °
The photon energy is AE=E;-E,
. ¢ _ he
Its wavelength is A =656.3 nm, where A=—=—
f AE
(@) For positronium, p=MeMe _ Me
me+m, 2

(b)

so the energy of each level is one half as large as in hydrogen, which we could call "protonium.”
The photon energy is inversely proportional to its wavelength, so for positronium,

Az =2(656.3 nm)=1313 nm (in the infrared region)

For He*, U=my, g;=e, and g, = 2e,
so the transition energy is 22 =4 times larger than hydrogen. Then,

_ 6560

04 Dnm =164 nm (in the ultraviolet region)

A32

L: As expected, the wavelengths for positronium and helium are respectively larger and smaller than
for hydrogen. Other energy transitions should have wavelength shifts consistent with this pattern. It
is important to remember that the reduced mass is not the total mass, but is generally close in
magnitude to the smaller mass of the system (hence the name reduced mass).

*42.6

_queze“Dl 1 D_ hc

(a) For a particular transition from n; to n¢, AEy, = S Oy~ —0=—
2h® [t g An
2,4 [ 0
and AEp = -“Dkeze 12 _%Dzﬁ
2h® i nig Ao
m,m
where fpy = ——— and pp = —TeMD
mg +mj m, +mp
A O
By division, OBy _Hn _ 7D or Ap = %H\H
AEp  pp Ay D
0 uyd
Then, Ay-Ap=f-HH
H~ 4D 9 HDE)\H

=0.999728

pyy _ B memy COm, +mp O_ (1.007 276 u)(0.000 549 u +2.013 553 u)
by == p 0 e D ——
tp  Hm, +myH memp 0 (0.000 549 u+1.007 276 u)(2.013 553 u)

An —Ap =(1-0.999 728)(656.3 nm) =
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42.7 (@) Inthe 3d subshell, n =3 and | =2, we have

n 3 3 3 3 3 3 3 3 3 3
| 2 2 2 2 2 2 2 2 2 2
m, +2 +2 +1 +1 0 0 -1 -1 -2 -2
ms +1/2  -1/2  +1/2  -1/2  +1/2  -1/2  +1/2  -1/2  +1/2 172

(A total of 10 states)

(b) Inthe 3p subshell, n=3 and | =1, we have

n 3 3 3 3 3 3
| 1 1 1 1 1 1
m +1 +1 +0 +0 -1 -1
me | +1/2 /2 4172 1/2 4172 172

(A total of 6 states)

P
42.8 Wis(r) = %e‘f/ao (Eq. 42.3) A
\/”ao | i

wls(r) !

2 I

Piy(r) = 2722 (Eq. 42.7) i

dp [

|

r I

’
ag = 0.0529 nm

e g 0
429 (a) ﬂw‘zdvﬂ'"fo LMZerr:Aanniag “r 6=21/2 g

0 0
Using integral tables, ﬂlp\z dVv = —% e 2% HZ +agr +
a g

so the wave function as given is normalized.

_ 3a9/2, 19 o 1 U3ag2 5 5
(b) Pao/2ﬂ3'clo/2_4nj.ao/2 ‘M J dr—4”%%[ao 2 reem o dr

Again, using integral tables,

O O

-2rjag =2
® +anr +
g o

_ 2
I:’ao/2 - 3ag/2 ~ _g
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42.10 w=é%L 1123 S0 P, —4m2‘w2‘ 4mr? ——e™%
V3 (2ay) ag 24aO
O O
Set dj n::) |ﬂ_r.3e—r/ao +r4|:| i%—r/ag D:O
dr 24 a5 [ E_ao 0

Solving for r, this is a maximum at

1211 P S 24y . 2 v 2, Y1 ey,
' f / 2 ‘ 2
\ T8 rdrrmg rag ar® . /maj Ch

2me% raOHP 4ne0rw o

2 2
But 2= 720 5o S E E:'kze:o
mee 0

This is true, so the Schrédinger equation is satisfied.

4212 The hydrogen ground-state radial probability density is

r2 0O 2r0
P(r):471'r2\1,uls\2 = eXpHa:E

The number of observations at 2ag is, by proportion

—4ay/a,

P(22) (23)° e’ _ 3 - 797G
N = 1000P( 72~ 1000 7275 = 1000(16)e™ =

(372)

4213 (a) For the d state, | =2, L=|V6h| =258x10°3*7J s

b) For the f state, | =3, L=1( +1)h=|+12h| =3.65x107%J s
( \
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*42.14

42.15

42.16

42.17

Chapter 42 Solutions

(@)

(b)

L=+1( +1)h o)

(4724 10‘3“)2(271)2

4.714%1073 =1 (| +1)

6.626 x 10734
2

I +1)= 5 =1.998 x 101 = 20 = 4(4 +1) SO | =4
(6.626 x107)
. -13.6 eV
The 5th excited state has n = 6, energy —35 - -0.378 eV
6.626 x 1072*J - 5)(3.00 x 10® m/s
The atom loses this much energy: he = ( =5 X T ) =1.14eV
A (1090 x 107° m)(1.60 x 10~ J/eV)
to end up with energy -0.378eV -1.14eV =-152 eV
L . 13.6 eV
which is the energy in state 3: -7 33 = -151eV
While n =3, | can be as large as 2, giving angular momentum A +Dh=|+6h

For a 3d state, n =3and | = 2. Therefore, L=+1( +1)h=+2(2+1)h=

m, can have the values -2,-1,0, 1, and 2, so

Veh| =258x107% s

| L, can have the values-2h, - h, 0, and 2h

Using the relation cos 6= L, /L, we find that the possible values of 8 are equal to

145°, 114°,90.0°, 65.9°, and 35.3°| .

n=1: Forn=11=0,m =0, mg=*=, - 2sets

1
2
2n% =1(1)% =

For n=2, we have

NN N NS
= = -
|
N

+1/2
+1/2
+1/2
+1/2

n I m, ms
0 0 -172
0 0 +1/2

yields 8 sets; 2n? =2(2)* =
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Note that the number is twice the number of m; values. Also, for each | there are (2| +1)
different m; values. Finally, | can take on values ranging from 0 to n—-1. So the general
expression is

n-1
s= 3 2(2 +1)

0

The series is an arithmetic progression: 2 + 6 + 10 + 14, the sum of which is

522[2a+(n—1)d] where a=2, d=4: s:g[4+(n—1)4] =2n?
© n=3: 21)+2(3)+2(5)=2+6+10=18 2n? = 2(3)" = [18]
(d) n=4: 2(1)+2(3)+2(5)+2(7) =32 2n% =2(4)? =
(e) n=5: 32+2(9)=32+18=50 2n? = 2(5)° = [50]
42.18 Ug = N - 160x10°9C  h=1085x10%J.s m, =9.11 x 1073 kg

2m,

Ug =|9.27 x 10724 1/T =579 x 107° eV/T

-27
4219 (a) Density of a proton: p= m_ 167x10 " kg

V  (4/3)m(1.00x107 m

3 3
03m 0’ -8 g3’
(b) Size of model electron: r= 3m _ [8x9.11x10 I1<79 =18.17 %107 m
5471,05 5 4mx3.99%x10°" kg H

N 13.99 x 10" kg/m?|

(c) Moment of inertia: | = Zmr? = g(9.11 x 1073 kg)(8.17 x 1071 m)? = 2.43x 107 kg [in?
5 5

Chr_ (6:626x107)(8)8.17 107 m

Therefore, ==
2l 27(2)(2.43 %107 kg (m?)

)
= (177 x 102 m/s

(d) Thisis |5.91 x 10° times Iarger| than the speed of light.

© 2000 by Harcourt, Inc. All rights reserved.
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4220 (a) L:mvr:mz?mr:\/l(l+1)h:\/(I2+I)h=Ih

2m(1.496 x 10* m)? 2.66 x 100
24 - - — 74
(5.98 x 10" kg) 3156 x 107 S =lh o) T | =]2.52 %10

1 1mr? 1 L2 _11( +)h% 11212
O =V K== ™ T a2 T2 w2 me?

1 o rf
X X
, %(5.98X1024 kg)D27T 1.496 170 m 1
dE_121h%1 __E E H 3156x10’s H
— == 2722—50 dE=2—dl =2 -2
dl 2 mre | | | 2.52x10

33
AE = >30x10™ ) 74J = [2.10 x 10741 J
252 %10

*42.21 Hp = % e=160x10°C h=1055x10"*J.s m,=167x10"% kg
p
(8 Mn=[5.05x10723/T| =[3L6neV/T
B 1 _om,

® g =183 my

Apparently it is harder to "spin up" a nucleus than a electron, because of its greater mass.

42.22 In the N shell, n=4. For n=4,1 can take on values of 0, 1, 2, and 3. For each value of |, m,
can be -l to | in integral steps. Thus, the maximum value for m, is 3. Since L, =mh, the

maximum value for L, is L, = .

42.23 The 3d subshell has | =2, and n=3. Also, we have s = 1.
Therefore, we can have [n=3;1 =2, m =-2,-1,0,1,2; s =1;and mg =-1,0, 1], leading to the

following table:

n 3 313313133313 ((3]3]|3(3]3]3
| 2 2222|2222 |2|2|2]|2]|2]|2
m (-2|-2|-2|-1|-1|{-1fO0|O0]|JO| 1| 1|1f2|2]2
s 1 1111111111111 (1]1
m (-1 0)1}|-1j0f1f-1f0|]21|-1]0|1(|-1({0]1




1s22s22p*

(b) For the 1s electrons,
For the two 2s electrons,

4224 (a)
42.25
*42.26 (a)
(b)
42.27
(@)
(b)
42.28

For the four 2p electrons, n=2;1 =1; m =-1,0,0r 1;and mg = +1/2 or -1/2

The |4s subshell fills first| , for potassium and calcium, before the 3d subshell starts to fill for

scandium through zinc. Thus, we would first suppose that [Ar]3d44s2 would have lower
energy than [Ar]3d54sl. But the latter has more unpaired spins, six instead of four, and

Chapter 42 Solutions

n=11=0m =0, mg=+1/2 and -1/2
n=21=0m =0, mg=+1/2 and -1/2

9

Hund'’s rule suggests that this could give the latter configuration lower energy. In fact it must,

for [Ar]3d°®4s! is the ground state for chromium.

For electron one and also for electron two, n =3 and | =1. The possible states are listed here
in columns giving the other quantum numbers:
electron |m | 111111111 f({1]0j0f0]|0O]O
one mg| 1|1 (1|11 _Lf_2j_1j_Lif_1f 11|21 (11
22|21 22| 2| 2| 2| 2 2|2|2|2]2]2
electron |m |1 (0| 0|-1(-1]21(0|0O|-1f-1]21|1|0]|-1(-1
two mg|_1| 1 (_1f 1 ]_1) 1 (1 (_1) L1 )_1f21(_1j_1) 1 (_1
2l 21 2122|212 2| 2| 22| 2| 2|2] 2
electron |m | 0fO0|O|O0O|0O|-1(-1|-1]-1(-21|-1|-1(-1]|-1(-1
one mg|_1|_L1f(_1f_1j_1) 1 (1 (1] 1| L1 (_1f_1j_1)_1(_1
2l 2| 2| 22| 2| 22| 2| 2| 2| 2| 2| 2|2
electron |m | 1|(1]0|-1(-1]1(1|0]0f-1|1|1|(0]|0(-1
two mg| 1 |_L1f 1|1 )_L1) 1 (_1} L1 |_Lif_1f1)_1}) 1 (_1f1
22| 212|222l 2|2 22| 2[2] 2]2

There are thirty allowed states, since electron one can

of the other five states.

have any of three possible values for m,
for both spin up and spin down, amounting to six states, and the second electron can have any

Were it not for the exclusion principle, there would be possible states, six for each
electron independently.
Shell [K L M N
n 1 2 3 4
| 0 0 1 0 1 2 0
m 0 0 1 |0 [-1 |O 1 10 |-1 2 (1 |0 |-1(|-2 |0
ms Tl Tl Tl Tl [ 14 T T 1 Tiri Tl Tl l 14
count 12 34 10 12 18 21 30 20

He Be Ne Mg Ar Zn Ca
152252 2p®3s23p®4523d°| or |1s%2s?2p®3s?3p® 45130

Listing subshells in the order of filling, we have for element 110,

© 2000 by Harcourt, Inc. All rights reserved.
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42.29

42.30

Chapter 42 Solutions

152 252 2p® 352 3p® 452 3d*° 4p® 552 4410 5p® 652 414 5410 6p® 752 5114 6d®

In order of increasing principal quantum number, this is

152 252 2p® 352 3p® 3010 452 4p® 4d° 414 552 5pb 50 5114 652 6p° 6d® 752

@ ([n+1 2 |3 4 5 6 7
subshell |1s [2s |2p,3s|3p,4s|3d,4p,5s |4d,5p, 6s |4f,5d, 6p, 7s
(b) z=15: Filled subshells: 1s, 2s, 2p, 3s
(12 electrons)
Valence subshell: 3 electrons in 3p subshell
Prediction: Valance = +3 or -5
Element is phosphorus Valence +3 or -5 (Prediction correct)
Z=A4T: Filled subshells: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s
(38 electrons)
Outer subshell: 9 electrons in 4d subshell
Prediction: Valence = -1
Element is silver, (Prediction fails)  Valence is +1
Z = 86: Filled subshells: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p,

Prediction
Element is radon, inert

(86 electrons)
Outer subshell is full:
(Prediction correct)

Electronic configuration: Sodium to Argon

[1s%2s%2p®] +3st

[1s?2522p®3s23pBlast

o Nal!
+352 . Mg12
+3s23pt o A
+3s23p2 o sit4
+352 3p3 . P15
+3s?3p* - sl
+3s%3p°> - cIV
+3s23p8 o Ar'8

K19

5s, 4d, 5p, 6s, 4f, 5d, 6p

inert gas
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42.32

*42.33

42.34

42.35
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[n=31=0 m=0

Z%Ey 2%(13.6)

W30 corresponds to Ezgg = — 2 = - (3)2 =|-6.05eV

In=31=1m=-101

Ws1 _ 1, Y10, Y11 have the same energy since n is the same.

For[n=3,1=2m =-2-1012]

Wao _ 2, Wap _ 1, Waoo, W21, Y32 have the same energy since n is the same.

All states are degenerate.

(6.626 x 10734 - 5)(3.00 x 108 m/s)

hc 19
E= 7 =e(AV) O =(1.60 x 10 ~")(AV)

10.0x107° m
AV =124V
_ hc _ _
Ephoton max = S e(AV) =40.0 keV
min

he _ (6.626x107% J13)(3.00x10° m's)g 100ev O

A = =[0.0310
™ E 40.0x10° eV H60x 1072 30

Some electrons can give all their kinetic energy K, :e(AV) to the creation of a single photon
of x-radiation, with

hc

hf =— =e¢(AV
= e(av)
(6 6261x 1073 J E)(Z 9979 x 10°
yo he _I& : m/s| [1240 nm v/
e(aV) (1. 6022 x 1019 c) (Av) AV
3
Following Example 42.7, Ey=7(42-1)%(136eV) =171 x10*eV =274 x 107°J

f=4.14 x 10" Hz and A=[0.0725 nm

© 2000 by Harcourt, Inc. All rights reserved.
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42.36

42.37

*42.38

Chapter 42 Solutions

(@)

(b)

The Kg x-rays are emitted when there is a vacancy in the (n = 1) K shell and an electron from
the (n = 3) M shell falls down to fill it. Then this electron is shielded by nine electrons
originally and by one in its final state.

13.6(Z - 9)2 13.6(Z - 1)?
he _ 13.6( )eV+ ( )

A 32 12

-34 8 0 2 0
(6.626 X 10 JS)(E.00 X107 /5) _ 1o 0 2% 182 8L, 2y,
(0.152 x10™° m)(L60x1072° J/eV) Ho9 9 o H

2
3 _ BZ ~ O _ 8z ~ _
8.17 x 10° eV = 13.6 eV 45— 811 e} 60l=— -8 and Z=26|lron
O 0 9

Suppose the electron in the M shell is shielded from the nucleus by two K plus seven L
electrons. Then its energy is

Y
_136eV(83-9)° eV3(283 O = _ga7kev

Suppose, after it has fallen into the vacancy in the L shell, it is shielded by just two K-shell
electrons. Then its energy is

-13.6eV(83-2)> _

52 = —22.3 keV
Thus the electron's energy loss is the photon energy: (22.3-8.27) keV = |14.0 keV
-34 8
AE:E <o A:6.626><10 3J|3(3.00><1_019m/s): 8.85x10-1 m
A 14.0x10° x1.60x10 *7 J
hc 1240 eV - nm 1.240 keV - nm 0
E=— = = N shell ~2.39keV
A A A M shell -10.1 keV
L shell - -11.8keV
for  A;=00185nm, E =67.11 keV M| A2 A
K shell -695eV
K, Kg a

A2 =10.0209 nm, E =59.4 keV

A3=0.0215 nm, E =57.7 keV

The ionization energy for K shell = 69.5 keV, so, the ionization energies for the other shells
are: |Lshell=11.8keV|: [Mshell=10.1keV|: [N shell = 2.39 keV




*42.39 (a)

(b)

42.40

*42.41

42.42

42.43
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The outermost electron in sodium has a 3s state for its ground state. The longest wavelength
means minimum photon energy and smallest step on the energy level diagram. Since n=3,
n’ must be 4. With | =0, |' must be , since | must change by 1 in a photon absorption
process.

1

0
_ 1gg 1 1
330x107° m

O
mOH3-135) (4-5,) E

= E]l 097 x 107

1 1 1

0.276 = - =0.367 -— 4-9. 2:10.98 d o, =0.686
(1. 65)2 (4 _ 51)2 (4 _ 51)2 SO ( 1) an

y=Cohe_ (6.626 x 10734 J[3)(3.00 x 108 m/s) _

f hf (2.10 eV)(1.60x 1029 1 /eV)

2 2y 16m7(1.055x10734 I3
We require A:ufleeALshB uf = 167h _ ( )

= |6.21x1074 12
m

A (645107 m)3

=|2.82x10%s7?

A :%: [10.6 um|, [infrared

E = Pt = (1.00 x 10° W)(1.00 x 108 s) = 0.0100 J

hc  (6.626 x 10734)(3.00 x 10%)
Ey: hf=— = —5
A 694.3 x 10

J=286x10"19

N = E _ 0010 3.49 x 10%® photons
T E, T 28x10° L P

© 2000 by Harcourt, Inc. All rights reserved.
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Goal Solution

A ruby laser delivers a 10.0-ns pulse of 1.00 MW average power. If the photons have a wavelength of

694.3 nm, how many are contained in the pulse?

G: Lasers generally produce concentrated beams that are bright (except for IR or UV lasers that produce
invisible beams). Since our eyes can detect light levels as low as a few photons, there are probably at
least 1000 photons in each pulse.

O: From the pulse width and average power, we can find the energy delivered by each pulse. The
number of photons can then be found by dividing the pulse energy by the energy of each photon,
which is determined from the photon wavelength.

A: The energy in each pulse is E=Pt=(100x10% W)(1.00x107%s) = 1.00x1072 ]

-34 8
The energy of each photon is E, =hf = he = (6.626 <10 )(3'2? x107) 1=2.86x10719
A 694.3x10
-2
So N=Et = L 00_:910 ) =3.49 x 10'® photons
E, 2.86x10 " J/photon

L: With 10 photons/pulse, this laser beam should produce a bright red spot when the light reflects
from a surface, even though the time between pulses is generally much longer than the width of each
pulse. For comparison, this laser produces more photons in a single ten-nanosecond pulse than a
typical 5 mW helium-neon laser produces over a full second (about 1.6 x 10'° photons/second).

-18 .2 _
*42 44 In G=eoln-n)t we require  105= e(l'00 10 m )(n“ " )(0.500 m)
_ -19 3\ _ o~ __ In(Los)  _ 6 -3
Thus, In(L05)=(5.00x107° m*)n,-n)  so  n,-n ST e =[9.76 x10% m™?|
N.e Es (kg BOOK)
245  (a) N3 _Ng _ o (Es ~E), (ke B0OK) _ o~ he /A (kg B0OK)
»  N.e Ez/(ks(300K)

where A is the wavelength of light radiated in the 3 - 2 transition:

N3 _ e—(6.626 x107% 113)(3.00 ¥ 10° m/s), (632.8 10~ m|(1.38 x 1077 yK(300K) _ o758 =
N, :
) % _ ohe/AkeT = e—(6.626 %107 33)(3.00x10° mys) /(6943 %10 =° m}(1.38 x107% y/K)(4.00K) e
2

To avoid overflowing your calculator, note that 10 = "0 Take

N - Z
3 — oIN10x(-5187/In10) _ [-2253

N,



*42.46

42.47

*42.48

42.49

(@)

(b)

(@)

(b)

(@)

(b)
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Ny/N, = e_(E“ “B ) kT where the subscript u refers to an upper energy state and the subscript |
to a lower energy state.

Since E, —E =Epnoton =he/A, Ny /N, =e Mc/MkeT
_ T (6.626 %107 J13)(3.00 x 10° mys)
Thus, we require 1.02 =g "°/Aks or  In(102)= - 5 3
(694.3x107° m|(1.38 x 1072 y/K|T
4
= _2.07x10" K =|-1.05%10% K
In(1.02)

A negative-temperature state is not achieved by cooling the system below 0 K, but by heating it
above T =, foras T — o the populations of upper and lower states approach equality.

Because E, —E >0, and in any real equilibrium state T >0, e Bu8)keT <1 and Ny <N;.

Thus, a population inversion cannot happen in thermal equilibrium.

_ (3.00x1073J)
(1.00 x107° s)71(15.0 x 10~® m)?

-9 2
(3.00x1073 ) ((oégooo x1100_6 m))z = [1.20 x 10712 )| = 7.50 MeV
.0 x m

= [4.24 x 10° w/m?|

The energy difference between these two states is equal to the energy that is absorbed.

(-13.6eV) (-13.6eV) —
Thus, E=Ey—E; = 7 - T = 10.2eV =[1.63x 10718
3 2 2(1.63 x10718))
We have E= 5 kgT, or T= 5— E= =7.88 x 10* K
2 "B 3kg 3(1.38 x 10-23 1/K) _

00 00 3
Fa = [, PP(Ndr = [/ %Ee‘zr/%)dr

Make a change of variables with i::xand dr:%dx.
_ % ® 3,-x4y — B0[_3,-x _y2,-X “X(_vy _ m:§
Then rav—4I0xe dx-4[ x°e +3( x“e " +2e77(-x 1))]0 2a0

© 2000 by Harcourt, Inc. All rights reserved.
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*42.50

42,51

(@)

(b)

©

*42.52

42.53

(b)

©

@)

< > J_oo 4r _Zr/aO dr—i‘[wre_(z/ao)r dr:i3 1 5 = i
1
We compare this to @ W) 3a0 , and find that the average reciprocal value is the

reciprocal of the average value.

1 01 Dw r O
The wave equation for the 2s state is given by Eq. 42.7: lllzs(r) = on E %—%Ep_r/zao

Taking r =ay =0.529 x 107%0 m, we find

1 0 1 2

420,529 x 1070 mO

[2-1]e¥2 = [157 x10™ m™3?

w2s(a0) =

‘3/2)2 =2.47x10% m™3

ol = (L5720

=8.69x108 m™

Using Equation 42.5 and the results to (b) gives Pas(0) = 47785 |tys (3

We define the reduced mass to be u, and the ground state energy to be E;:

-31 =27
_ mym, _ 207mym, _ 207(9.11x10 kg)(1.67 x 10 kg) - 169102 kg
my+m,  207m, +my  207(9.11x 107 kg) + (167 1077 kg

222
e

@2 (169x107% kg)(8.99x10° N sz/cz)z(l. 60x 10710 c)3 e
o 2(

o
1 2(1. 055 x 10734 ) @)2

To ionize the muonium "atom" one must supply energy | +2.52 keV | .

= -2.52x10°% eV

(3.00 x 10° m/s)(14.0 x 10712 5) =

hc
E= "y =2.86x10719

3.00J

— — 19
= m = |1.05 x 10 phOtOhS|

_1.05 x 10%

o =[8.82x 10 mm™3]

= (4.20 mm)7(3.00 mm)? = 119 mm3




Chapter 42 Solutions 17

4254 (a) The length of the pulse is AL =

b) Th f each photon i _he _E _|EA

(b) The energy of each photon is E, = ) o} N = E, = |hc
d? N _|0 4 OEAD

C V=ALmT — n=—-= —

© 4 \% t rd? Hhe O

_1,, 3124, T
42.55 We use You(r) = 4(Znao) EZ aog
2 r f
By Equation 42.5, P(r)=4mr?y? == -—e
y Eq (r) W 8%%2 20

@ de:%gf_

O
or = -— - -—— 2 =0
s %D a8 % wd awth
Therefore we require the roots of z—l: =0atr=0, r=23, and r =« to be minima with P(r)=0.
[..... 1= 4-(6r7a))+(r/a) =0 with solutions r:(Si\s’S)aO.
We substitute the last two roots into P(r) to determine the most probable value:

When r=(3-5)a =0.76392, then P(r)=0.0519/a,
When r=(3++5)a =5.2368, then P(r)=0.191/a

Therefore, the most probable value of r is (3 +V5)a0 =[5.236aq

o w 10r2 I o _ r
O [ POdr=[Tenag e e et u=g . dr=ady

00 1o U g @14 403 2\,-U g — _ 1,4 2 —u| _
Io P(r)dr-J’0 8u (4-4u+u)e dr-J’0 8(u 4u° +4u)e Mdu = 8(u +4u° +8u+8)e =1

|This is as desired| .

at?> _10F, 0, _ p,(dB, ‘dz) paxf eh
*42.56 NANz=— =31 =z\7z /PP d -
2= T 2En B omy  OvO 2" K e

dB, _ 2my(Az)vZ2m, _ 2(108)(1.66 x 10~2" kg)(10* m?/s?)2(9.11x1073 kg)(10~3 m)
—z= = =[0.389 T/
dz Ax%eh (1.00 m?)(1.60 x 107° C)(1.05 x10~3* J [3)

© 2000 by Harcourt, Inc. All rights reserved.
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42.57 With one vacancy in the K shell, excess energy AE= —(Z —1)2(13.6 eV)gziz—lizg: 5.40 keV

We suppose the outermost 4s electron is shielded by 20 electrons inside its orbit:

_2%(13.6eV) _
2

Eionization - 3.40 eV
Note the experimental ionization energy is 6.76 eV. K = AE - Ejgpization = |5-39 keV
. _hc 1240eV-nm n=om 0
42.58 E= T = 2 =AE 2nd Excited State ) -0.100 eV
1st Excited State —-1.00 eV
A1 =310 nm, o] AE1 =4.00 eV 410 oV
-4.10 e
Ground State 310 1378 400
Ao =400 nm, AE, =3.10 eV nm nm nm
A3 =1378 nm, AE3 =0.900 eV

and the ionization energy = 4.10 eV

The energy level diagram having the fewest levels and consistent with these energies is
shown at the right.

4259 (a) One molecule's share of volume

_ mass per molecule _ O 27.0 g/mol (11.00x107® m30

Al V : = =1.66 x107%° m®
density Hb.02 x 102 molecules/moletH 2709

3v =255x10° m~10" nm|

-6 30
:D 22:389 |j100><10 m :2_09)(10_29 m3
[5.02 x102 moleculestH 1899  H

3V =276 x10° m~10"" nm|

(b) The outermost electron in any atom sees the nuclear charge screened by all the electrons
below it. If we can visualize a single outermost electron, it moves in the electric field of net
charge, +Ze —(Z —1)e = +e, the charge of a single proton, as felt by the electron in hydrogen. So
the Bohr radius sets the scale for the outside diameter of every atom. An innermost electron,
on the other hand, sees the nuclear charge unscreened, and the scale size of its (K-shell) orbit

is ag/Z.



42.60

42.61

(@)

(b)

(©
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N| [N
No orbital magnetic moment to consider: higher energy for parallel magnetic

moments, for |antipara||e| spins| of the electron and proton.

_hc _ —25 4 _
E—7—9.42><10 J=15.89 uev

1.055x107%* )3 0 100ev O
2(107 yr)(3.16 x 10’ s/yr) H60x 107 3H

NEAt = g s0 AE = = 1.04x107% eV

4r?

00 _ 00 _ 2r
P:I 3e2r/a0dr:%f z%e7%dz where z= =~
2.502 g, 5.00 3

__ 15 = __1 1 —5_@5( _
P= -2 +az+2e” = 2[0]+2(25.o+1o.0+2.oo)e =05 0.00674) =[0.125

Goal Solution
For hydrogen in the 1s state, what is the probability of finding the electron farther than 2.50a, from the

nucleus?

G:

O: The precise probability can be found by integrating the 1s radial probability distribution function
from r = 2.50a, to co.

A: The general radial probability distribution function is  P(r) = 47r?| w\z

172
with gy = (na03) e /% it is P(r) = 4r®a, e 2"/%
[oe] [oe] 2
The required probability is then P= J’P(r)dr = %e_zr/aodr
2502 2.50a, %0
Let z=2r/a, and dz=2dr/a: P :% J’zze_zdz
5100
Performing this integration by parts, P= —%%2 +2z+ de_z]:oo

L: The probability of 12.5% is less than the 20% we estimated, but close enough to be a reasonable result.
In comparing the 1s probability density function with the others in Figure 42.8, it appears that the
ground state is the most narrow, indicating that a 1s electron will probably be found in the narrow
range of 0 to 4 Bohr radii, and most likely at r = a,.

From the graph shown in Figure 42.8, it appears that the probability of finding the electron beyond
2.5 aq is about 20%.

P =~ 2(0)+2(25.0+10.0+2.00)e % = (¥)(0.00674) = 0.125

© 2000 by Harcourt, Inc. All rights reserved.
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42.62 The probability, P, of finding the electron within the Bohr radius is

ag D4r

P= J’ Pys(r)dr={" 3Ee'zr/aodr

Defining z =2r/a,, this becomes

__1. 5 —zz__}[ -2 _ o]_}%_ED_

P= 2(z +22+2)e ‘0- 2(4+4+2)e (0+0+2)e =>ff 20" 0.323

The electron is likely to be within the Bohr radius about one-third of the time. The Bohr
model indicates none of the time.

42.63 (a) For a classical atom, the centripetal acceleration is

vi o1 e
aziz 2
r 4me,rem,
e myv? 2 dE e dr _ -1 e%a? -¢? O g2 f
E=- + = - SO —= 5 = 3 3
4regr 2 8rme,r dt  8meyr-dt 6me; c 6neoc E4neor meE
dr e
Therefore, — = 5=
dt  12m%eqy’r’m,c?
r=0

(b) 127'12eo r“me 2c3dr =e* J’

r=2.00x10" m
2.00x 10710

=T={846x1010s

Since atoms last a lot longer than 0.8 ns, the classical laws (fortunately!) do not hold for
systems of atomic size.

12m°ey?m,%c3 r3

4
e 3 0

4264 (a) +3e-0.85e - 0.85¢ =

(b) The valence electron is in an n = 2 state, with energy

_136eVZ% -136eV(L 302 _
n? - 22

To ionize the atom you must put in [+5.75 eV

This differs from the experimental value by 6%, so we could say the effective value of Z is
accurate within 3%.

-5.75 eV




Chapter 42 Solutions 21

42.65 AE=2ugB=hf  so  2(9.27x107%/7T)(0.350 T) = (6.626 x 10 J(s)f

and f=19.79x10° Hz

42.66 The photon energy is E; —E; =20.66-18.70eV =1.96eV = %

_ (6.626 10" 3 113)(3.00 x 10® m/s) _
633 nm
1.96x1.60x107%° ]

1_he _ (6626x10°)(3.00x10°)
42.67 (a) a kee2 - 2"(8-99 < 109)(1.60 y 10_19)2 -

Ac _ hme? _ he 2m
(b) ~—==— T =m0
re mcke ke a
(C) i h2 mc i hC :1377: 71
Ac mkeZ h 2mke? 2m |2ma
/ 3 2
d) VRy _ 1 :47'12h4 mkeze :4nhC2: am
g Ryag  mkge® h kee a
1268 w=l(2n)‘l’2mD3 % —— %_LD . 0’y _UAe™”?0 08 r O
' 4 aoEe 20 o2 H & Hb a0
Substituting into Schroédinger's equation and dividing by ¢,
101 r O 2m g r0O
PR S NS
R 489 h N
Now g-y=_ N 00 e zo[m'?) 102 O
2ma2 th0 (m/h2 4ma
O1m r O 10 rO
and -—— = — O ¢ is a solution.
HZHh s aZH ad "V
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22 Chapter 42 Solutions

*42.69

*42.70 (a)

(b)

The beam intensity is reduced by absorption of photons into atoms in the lower state. The
number of transitions per time and per area is -BN; I(x)ndx/c. The beam intensity is
increased by stimulating emission in atoms in the upper state, with transition rate
+BNylI(x)ndx/c. ~ The net rate of change in photon numbers per area is then

-B(N, - Ny)1(x)ndx/c.
Each photon has energy hf, so the net change in intensity is

di(x) = —hfB(N; =N, )I(x)ndx/c = —hfBAN I(x)ndx/c

di(x) _ _hfBANnN (L) di(x) _ L hf BAN n
Then, i) = . dx SO LO i) _Ix=0%70 @dx

In[I1(L)] = In[1o] = In é‘f'o‘) Ez - thCAN (L-0)

This result is also expressed in problem 42.44 as L) G = o M)t = gro(nun )L

Suppose the atoms move in the +x direction. The absorption of a photon by an atom is a
completely inelastic collision, described by

mv-i+£(—i)=mv i so Vi =V = _h
I A f f i mA
This happens promptly every time an atom has fallen back into the ground state, so it

happens every 1078 s=At. Then,

JoVitVi_ o h 6.626 1073 J[3 T10° m/s?
At mAAt (107 kg)(500x 107° m)(10® )
With constant average acceleration, vZ =vZ +2a(Lx)
2
10°
O~(103 m/s)2+2(—106 m/sZ)Ax SO Ax~(106nn:£)2 ~1lm



