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Chapter 43 Solutions

43.1 (a)
      
F = q2

4πe0r 2 = (1.60 × 10−19)2(8.99 × 109)
(5.00 × 10−10 )2 N =   0.921 10  N9× −   toward the other ion.

(b)
      
U = −q2

4πe0r
= − (1.60 × 10−19)2(8.99 × 109)

5.00 × 10−10 J ≈ – 2.88 eV  

*43.2 We are told   K + Cl + 0.7 eV →  K+ + Cl−

and   Cl + e− →  Cl− + 3.6 eV

or   Cl− →  Cl + e− − 3.6 eV

By substitution,   K + Cl + 0.7 eV →  K+ + Cl + e− − 3.6 eV

  K + 4.3 eV →  K+ + e−

or the ionization energy of potassium is 4.3 eV  

43.3 (a) Minimum energy of the molecule is found from

    

dU
dr

= −12Ar−13 + 6Br−7 = 0,    yielding  
    
r0 = 2A

B






1 6

 

(b)
    
E = U r = ∞ −U r = r 0

= 0 − A
4A2 B2 − B

2A B









 = − 1

4
− 1

2






B2

A
=  

    

B2

4A
 

This is also the equal to the binding energy, the amount of energy given up by the two atoms
as they come together to form a molecule.

(c)

    

r0 =
2 0.124 × 10−120  eV ⋅ m12( )

1.488 × 10−60  eV ⋅ m6















1 6

= 7.42 × 10−11 m =  74.2 pm  

    

E =
1.488 × 10−60  eV ⋅ m6( )2

4 0.124 × 10−120  eV ⋅ m12( ) = 4.46 eV  

*43.4 At the boiling or condensation temperature,
    
kBT ≈ 10−3  eV = 10−3 1.6 × 10−19  J( )

    
T ≈ 1.6 × 10−22  J

1.38 × 10−23  J K
    ~10 K  
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43.5
    
µ = m1m2

m1 + m2
=

132.9(126.9)
132.9 + 126.9

1.66 × 10−27  kg( ) = 1.08 × 10−25  kg

    I = µr 2 = (1.08 × 10−25  kg)(0.127 × 10−9  m)2 = 1.74 × 10−45  kg ⋅ m2

(a)
      
E = 1

2 I ω2 =
(I ω)2

2I
=

J(J + 1)h2

2I

J  = 0  gives  E = 0

J  = 1  gives  
      
E =

h2

I
=

(6.626 × 10−34  J ⋅ s)2

4π2(1.74 × 10−45  kg ⋅ m2 )   = 6.41× 10−24  J =   40.0 µeV  

    h f = 6.41× 10−24  J − 0 to f =   9.66 × 109  Hz  

(b)
      
f =

E1

h
=
h2

h I
=

h
4π2µr2 ∝ r−2 If r is 10% too small, f  is 20% too large.  

43.6
      
h f = ∆E = h2

2I
2 2 + 1( )[ ] − h

2

2I
1 1 + 1( )[ ] = h2

2I
4( )

    

I =
4 h 2π( )2

2h f
= h

2π2 f
= 6.626 × 10−34  J ⋅ s

2π2 2.30 × 1011 Hz( ) =   1.46 × 10−46  kg ⋅ m2  

43.7 For the HCl molecule in the J  = 1 rotational energy level, we are given

    r0 = 0.1275 nm.

      
Erot = h2

2I
J(J + 1)

Taking J = 1, we have   
      
Erot = h2

I
= 1

2 Iω2 or
      
ω = 2h2

I2 = 2
h

I

The moment of inertia of the molecule is given by Equation 43.3.
    
I = µr0

2 = m1m2

m1 + m2







r0
2

    
I = (1 u)(35 u)

1 u +  35 u





r0

2
  = (0.972 u)(1.66 × 10−27  kg / u)(1.275 × 10−10  m)2 = 2.62 × 10−47  kg ⋅ m2

Therefore,
      
ω = 2

h

I
= 2

1.055 × 10−34  J ⋅ s
2.62 × 10−47  kg ⋅ m2 =   5.69 × 1012  rad / s  
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Goal Solution    
An HCl molecule is excited to its first rotational-energy level, corresponding to   J = 1.  If the distance
between its nuclei is 0.127 5 nm, what is the angular speed of the molecule about its center of mass?

G : For a system as small as a molecule, we can expect the angular speed to be much faster than the few
rad/s typical of everyday objects we encounter.  

O : The rotational energy is given by the angular momentum quantum number, J .  The angular speed
can be calculated from this kinetic rotational energy and the moment of inertia of this one-
dimensional molecule.

A : For the HCl molecule in the   J = 1 rotational energy level, we are given      r0 = 0.1275 nm.

      
Erot = h

2I
J J + 1( ) so with   J = 1,

      
Erot = h2

I
= 1

2
Iω2 and

      
ω = 2h2

I2 = h 2
I

The moment of inertia of the molecule is given by:
    
I = µ r0

2 = m1m2

m1 + m2







r0
2 = (1 u)(35 u)

1 u +  35 u





r0

2

    I = (0.972 u)(1.66 × 10-27  kg / u)(1.275 × 10-10  m)2 = 2.62 × 10−47  kg ⋅ m2

Therefore,
  

2
1.055 × 10−34  J ⋅ s

2.62 × 10-47  kg ⋅ m2







= 5.69 × 1012  rad / s

L : This angular speed is more than a billion times faster than the spin rate of a music CD, which rotates
at 200 to 500 revolutions per minute,  or   ω = 20 rad / s to   50 rad / s.

43.8
    
I = m1r1

2 + m2r 2
2    where       m1r1 = m2r 2     and       r1 + r 2 = r

Then   
    
r1 =

m2r 2

m1
so   

    

m2r 2

m1
+ r 2 = r and

    
r 2 = m1r

m1 + m2

Also,   
    
r 2 =

m1r1

m2
Thus,

    
r1 +

m1r1

m2
= r and

    
r1 = m2r

m1 + m2

    
I = m1

m2
2r 2

m1 + m2( )2 + m2m1
2r 2

m1 + m2( )2 =
m1m2r 2 m2 + m1( )

m1 + m2( )2
    
= m1m2r 2

m1 + m2
=      µ r2  

43.9 (a)
  
µ = 22.99 35.45( )

22.99 + 35.45( ) 1.66 × 10−27  kg( ) = 2.32 × 10−26  kg

    
I = µr 2 = 2.32 × 10−26  kg( ) 0.280 × 10−9  m( )2

=     1.81× 10−45  kg ⋅ m2  

(b)
      

hc
λ

= h2

2I
2 2 + 1( ) − h

2

2I
1 1 + 1( ) = 3h2

I
− h

2

I
= 2h2

I
= 2h2

4π2I

    

λ = c 4π2I
2 h

=
3.00 × 108  m / s( )4π2 1.81× 10−45  kg ⋅ m2( )

2 6.626 × 10−34  J ⋅ s( ) =  1.62 cm  
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43.10 The energy of a rotational transition is 
      
∆E = h2 I( ) J  where J  is the rotational quantum

number of the higher energy state (see Equation 43.7).  We do not know J  from the data.
However,

    
∆E = hc

λ
=

6.626 × 10−34  J ⋅ s( ) 3.00 × 108  m s( )
λ

1 eV
1.60 × 10−19  J







For each observed wavelength,

  λ   mm( )     ∆E  eV( )
0.1204 0.01032
0.0964 0.01288
0.0804 0.01544
0.0690 0.01800
0.0604 0.02056

The   ∆ ′E s   consistently increase by 0.00256 eV.       E1 =h2 I = 0.00256 eV

and
      
I = h2

E1
=

1.055 × 10−34  J ⋅ s( )2

0.00256 eV( )
1 eV

1.60 × 10−19  J







=    2.72 × 10−47  kg ⋅ m2  

For the HCl molecule, the internuclear radius is
    
r = I

µ
= 2.72 × 10−47

1.62 × 10−27  m = 0.130 nm

43.11
    
µ = m1m2

m1 + m2
= 35

36
× 1.66 × 10−27  kg = 1.61× 10−27  kg

      
∆Evib =h k

µ
= 1.055 × 10−34( ) 480

1.61× 10−27  
= 5.74 × 10−20  J =  0.358 eV  

43.12 (a) Minimum amplitude of vibration of HI is

    
1
2 kA2 = 1

2 h f :
    
A = h f

k
= (6.626 × 10−34  J ⋅ s)(6.69 × 1013 / s)

320 N / m   = 1.18 × 10−11 m = 0.0118 nm  

(b) For HF,
    
A = (6.626 × 10−34  J ⋅ s)(8.72 × 1013 / s)

970 N / m   = 7.72 × 10−12  m = 0.00772 nm  

Since HI has the smaller   k , it is more weakly bound.
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43.13 (a) The reduced mass of the   O2 is
  
µ = 16 u( ) 16 u( )

16 u( ) + 16 u( ) = 8 u = 8 1.66 × 10−27  kg( ) = 1.33 × 10−26  kg

The moment of inertia is then
    
I = µr 2 = 1.33 × 10−26  kg( ) 1.20 × 10−10 m( )2

= 1.91× 10−46  kg ⋅ m2

The rotational energies are

      

Erot = h2

2I
J J + 1( ) =

1.055 × 10−34  J ⋅ s( )2

2 1.91× 10−46  kg ⋅ m2( ) J J + 1( )

Thus
    
Erot = 2.91× 10−23  J( ) J(J + 1)

And for J  = 0, 1, 2,      Erot =   0,  3.64 × 10−4  eV,  1.09 × 10−3  eV  

(b)
      
Evib = v + 1

2




 h

k
µ

= v + 1
2





 1.055 × 10−34  J ⋅ s( ) 1177 N / m

8(1.66 × 10−27 kg)

    
Evib = v + 1

2




 3.14 × 10−20  J( ) 1 eV

1.60 × 10−19  J







= v + 1
2





 0.196 eV( )

For v = 0, 1, 2,       Evib = 0.0982 eV,  0.295 eV,  0.491 eV  

43.14 In Benzene, the carbon atoms are each 0.110 nm from the axis and each hydrogen atom is

  0.110 + 0.100 nm( ) = 0.210 nm  from the axis.  Thus,     I = Σmr 2:

  I   
= 6 1.99 × 10−26  kg( ) 0.110 × 10−9  m( )2

+ 6 1.67 × 10−27  kg( ) 0.210 × 10−9  m( )2

  = 1.89 × 10−45  kg ⋅ m2

The allowed rotational energies are then

      

Erot = h2

2I
J J + 1( ) =

1.055 × 10−34  J ⋅ s( )2

2 1.89 × 10−45  kg ⋅ m2( ) J J + 1( )
  
= 2.95 × 10−24  J( ) J J + 1( ) = 18.4 × 10−6  eV( ) J J + 1( )

    Erot =   18.4 µeV( )J J + 1( )   where  J =  0,  1,  2,  3,  .  .  .   

The first five of these allowed energies are:        Erot   eV,  111 eV,  221 eV,  and 369 eV= 0 36 9, . µ µ µ µ

43.15
    
h f =

h2

4π2I
J    where the rotational transition is from  J  – 1  to  J ,

where      f = 6.42 × 1013  Hz     and       I = 1.46 × 10−46  kg ⋅ m2   from Example 43.1.

    
J = 4π2If

h
=

4π2 (1.46 × 10−46  kg ⋅ m2 )(6.42 × 1013 / s)
6.626 × 10−34  J ⋅ s

 = 558  
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*43.16 The emission energies are the same as the absorption energies, but the final state must be
below     v = 1,  J = 0( ).  The transition must satisfy   ∆J = ±1, so it must end with   J = 1.  To be
lower in energy, it must be     v = 0, J = 1( ) .  The emitted photon energy is therefore

    
hfphoton = Evib v = 1

+ Erot J = 0





 − Evib v = 0

+ Erot J = 1





     

= Evib v = 1
− Evib v = 0





 − Erot J = 1

− Erot J = 0







    hfphoton = h fvib − h frot

Thus,       fphoton = fvib − frot = 6.42 × 1013  Hz − 1.15 × 1011 Hz =   6.41× 1013  Hz  

*43.17 The moment of inertia about the molecular axis is    
    
Ix = 2

5 mr2 + 2
5 mr2 = 4

5 m 2.00 × 10−15  m( )2

The moment of inertia about a perpendicular axis is  
    
Iy = m

R
2







2

+ m
R
2







2

= m
2

2.00 × 10−10  m( )2

The allowed rotational energies are 
      
Erot = h2 2I( ) J J + 1( ) ,  so the energy of the first excited state

is       E1 =h2 I .  The ratio is therefore

      

E1, x

E1, y
=
h2 Ix( )
h2 Iy( ) =

Iy

Ix
=

1
2

m 2.00 × 10−10  m( )2

4
5

m 2.00 × 10−15  m( ) = 5
8

105( )2
=    6.25 × 109  

*43.18 Consider a cubical salt crystal of edge length 0.1 mm.  

The number of atoms is
  

10−4  m
0.261× 10−9  m








3

   ~ 1017  

This number of salt crystals would have volume
  
10−4  m( )3 10−4  m

0.261× 10−9  m








3

   ~ 105  m3    

 If it is cubic, it has edge length 40 m.

43.19
    
U = −α ke e2

r0
1 − 1

m




   

= −(1.7476)(8.99 × 109)
(1.60 × 10−19)2

(0.281× 10−9)
1 − 1

8




   = − 1.25 × 10−18  J = – 7.84 eV  

43.20 Visualize a  K+ ion at the center of each shaded cube, a C l– ion at the center of each white one.  

The distance ab is   2 0.314 nm) =(  0.444 nm  

Distance ac is   2(0.314 nm) = 0.628 nm  

Distance ad is   2 + ( 2) 0.314 nm)2 2 (  = 0.769 nm  
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43.21
    
U = − kee

2

r
− kee

2

r
+ kee

2

2r
+ kee

2

2r
− kee

2

3r
− kee

2

3r
+ kee

2

4r
+ kee

2

4r
−  .  .  .  

    
= − 2kee

2

r
1 − 1

2
+ 1

3
− 1

4
+  .  .  .  





But,
    
ln 1 1

2 3 4

2 3 4
+( ) = − + − +x

x x x
  . . . 

so,
    
U = − 2kee

2

r
ln 2,     or    

    
U = − keα e2

r
   where   α = 2 ln 2  

43.22
    
EF = h2

2m
3ne

8π






2 3

= (6.625 × 10−34  J ⋅ s)2

2(9.11× 10−31 kg)(1.60 × 10−19  J / eV)









 (3 / 8π)2 3 n2 3

    EF = (3.65 × 10−19)n2 3 eV   with n measured in electrons/m3

43.23 The density of conduction electrons n is given by
    
EF =

h 2

2m
3ne

8π






2 3

or
    
ne =

8π
3

2mEF

h 2






3/2

  
= 8π

3

2(9.11× 10−31 kg)(5.48)(1.60 × 10−19 J)[ ]3/2

(6.626 × 10−34 J ⋅ s)3 = 5.80 × 1028  m-3

The number-density of silver atoms is

    
nAg = 10.6 × 103 kg / m3( ) 1 atom

108 u






1 u
1.66 × 10−27 kg







= 5.91× 1028  m-3

So an average atom contributes
  

5.80
5.91

=  0.981 electron to the conduction band  

43.24 (a)     
1
2 mv2 = 7.05 eV

    
v = 2(7.05 eV)(1.60 × 10−19 J / eV)

9.11× 10−31 kg
=    1.57 10 m/s6×  

(b) Larger than 10– 4 m/s  by ten orders of magnitude.    However, the energy of an electron at

room temperature is typically  
    
kBT = 1

40
eV.
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43.25 For sodium,     M = 23.0 g mol   and    ρ = 0 971.  g cm3 .

(a)
    
ne = NA ρ

M
=

6.02 × 1023  electrons mol( ) 0.971 g cm3( )
23.0 g mol

    ne = 2.54 × 1022  electrons cm3 =   2 54 1028. ×  electrons m3  

(b)

    

EF = h2

2m







3ne

8π






2 3

=
6.626 × 10−34  J ⋅ s( )2

2 9.11× 10−31 kg( )
3 2.54 × 1028  m−3( )

8π















2 3

  = 5.05 × 10−19  J =  3.15 eV  

(c)
    
vF =

2EF

m
=

2 5.05 × 10−19  J( )
9.11× 10−31 kg

=    1.05 × 106  m s  

*43.26 The melting point of silver is 1234 K.  Its Fermi energy at 300 K is 5.48 eV.  The approximate
fraction of electrons excited is

    

kBT
EF

=
1.38 × 10−23  J K( ) 1234 K( )

5.48 eV( ) 1.60 × 10−19  J eV( ) ≈  2%  

43.27 Taking     EF = 5.48 eV for sodium at 800 K,

    
f = e E − EF( ) kBT + 1[ ] −1

= 0.950

    e
E − EF( ) kBT = (1/ 0.950) − 1 = 0.0526

    

E − EF

kBT
= ln 0.0526( ) = −2.94

    
E − EF = −2.94

(1.38 × 10−23 )(800) J
1.60 × 10−19  J / eV

= −0.203 eV or E = 5.28 eV  
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Goal Solution    
Calculate the energy of a conduction electron in silver at 800 K if the probability of finding an electron i n
that state is 0.950.  The Fermi energy is 5.48 eV at this temperature.

G : Since there is a 95% probability of finding the electron in this state, its energy should be slightly less
than the Fermi energy, as indicated by the graph in Figure 43.21.   

O : The electron energy can be found from the Fermi-Dirac distribution function.

A : Taking     EF = 5.48 eV for silver at 800 K, and given     f E( ) = 0.950, we find

    
f E( ) = 1

e E−EF( ) kBT + 1
= 0.950 or    

    
e E−EF( ) kBT = 1

0.950
− 1 = 0.05263

    

E − EF

kBT
= ln 0.05263( ) = −2.944 so    

    
E − EF = −2.944kBT = −2.944 1.38 × 10−23  J / K( ) 800 K( )

    E = EF − 3.25 × 10−20  J = 5.48 eV − 0.203 eV = 5.28 eV

L : As expected, the energy of the electron is slightly less than the Fermi energy, which is about 5 eV for
most metals.  There is very little probability of finding an electron significantly above the Fermi
energy in a metal.

43.28     d = 1.00 mm,  so  
    
V = 1.00 × 10−3  m( )3

= 1.00 × 10−9  m3

The density of states is 
    
g E( ) = CE 1 2 = 8 2 πm3 2

h3 E 1 2

or

    

g E( ) =
8 2 π 9.11× 10−31 kg( )3 2

6.626 × 10−34  J ⋅ s( )3 4.00 eV( ) 1.60 × 10−19  J eV( )

    g E( ) = 8.50 × 1046  m−3 ⋅ J −1 = 1.36 × 1028  m−3 ⋅  eV −1

So, the total number of electrons is

    
N = g E( )[ ] ∆E( )V = 1.36 × 1028  m−3 ⋅  eV −1( ) 0.0250 eV( ) 1.00 × 10−9  m3( ) =    3 40 1017. ×  electrons  

43.29
    
Eav = 1

ne
EN E( )dE

0

∞
∫

At     T = 0,       N E( ) = 0 for     E > EF;    

Since     f E( ) = 1 for     E < EF and     f E( ) = 0  for     E > EF, we can take     N(E) = CE1/2

    
Eav = 1

ne 0

EF∫ CE3/2 dE = C
ne 0

EF∫ E 3 2 dE = 2C
5ne

E 5 2

But from Equation 43.24,   
    

C
ne

= 3
2

EF
−3/2,   so that

    
Eav = 2

5






3
2

EF
−3/2



 EF

5/2 = 
    

3
5

EF  
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43.30 Consider first the wave function in x.   At x = 0  and  x = L , ψ = 0.

Therefore, sin kxL = 0 and kxL = π , 2π , 3π , . . .
Similarly,  sin kyL = 0 and kyL = π , 2π , 3π , . . .

sin kzL = 0 and kzL = π , 2π , 3π , . . .

    
ψ = Asin

nxπx
L





 sin

nyπy

L






sin
nzπz

L






From  
      

d2ψ
dx2 + d2ψ

dy2 + d2ψ
dz2 = 2me

h2 (U − E)ψ ,   we have inside the box, where U = 0,

      
− nx

2π2

L2 −
ny

2π2

L2 − nz
2π2

L2









 ψ = 2me

h2 (−E)ψ  
      
E = h2π2

2meL
2 (nx

2 + ny
2 + nz

2 )       nx , ny , nz = 1, 2, 3, . . .  

Outside the box we require ψ = 0.

The minimum energy state inside the box is  nx = ny = nz = 1,   with 
      
E = 3h2π2

2meL
2

43.31 (a) The density of states at energy   E  is     g E( ) = CE 1 2  

Hence, the required ratio is  
    

g 8.50 eV( )
g 7.00 eV( ) = C 8.50( )1 2

C 7.00( )1 2 =  1.10  

(b) From Eq. 43.22, the number of occupied states having energy E is 
    
N E( ) = CE 1 2

e E−EF( ) kBT + 1

Hence, the required ratio is
    

N 8.50 eV( )
N 7.00 eV( ) = 8.50( )1 2

7.00( )1 2
e 7.00 − 7.00( ) kBT + 1

e 8.50 − 7.00( ) kBT + 1













At      T = 300 K ,      kBT = 4.14 × 10−21 J = 0.0259 eV,  
    

N 8.50 eV( )
N 7.00 eV( ) = 8.50( )1 2

7.00( )1 2
2.00

e 1.50( ) 0.0259 + 1






And
    

N 8.50 eV( )
N 7.00 eV( ) =   1 55 10 25. × −  

Comparing this result with that from part (a), we conclude that very few states with     E > EF  are
occupied.

43.32 (a) Eg = 1.14 eV for Si

h f = 1.14 eV = (1.14 eV)(1.60 × 10– 19 J/eV) = 1.82 × 10– 19 J so f ≥ 2.75 × 1014 Hz  

(b) c = λ f ;      
    
λ = c

f
= 3.00 × 108   m / s

2.75 × 1014  Hz
= 1.09 × 10−6  m = 1.09 µm   (in the infrared region) 
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43.33 Photons of energy greater than 2.42 eV will be absorbed.  This means wavelength shorter than

    
λ = hc

E
= (6.626 × 10−34 J ⋅ s)(3.00 × 108 m / s)

2.42 × 1.60 × 10−19 J
= 514 nm

All the hydrogen Balmer lines except for the red line at 656 nm will be absorbed.

43.34
    
Eg = hc

λ
=

(6.626 × 10−34 J ⋅ s)(3.00 × 108 m / s)
650 × 10−9 m

J ≈ 1.91 eV  

43.35 If    λ ≤ 1.00 × 10−6  m , then photons of sunlight have energy

    
E ≥ hc

λ max
=

6.626 × 10−34  J ⋅ s( ) 3.00 × 108  m s( )
1.00 × 10−6  m

1 eV
1.60 × 10−19  J







= 1.24 eV

Thus, the energy gap for the collector material should be     Eg ≤ 1.24 eV  .  Since Si has an

energy gap     Eg ≈ 1.14 eV , it will absorb radiation of this energy and greater.  Therefore,

  Si is acceptable   as a material for a solar collector.

Goal Solution    
Most solar radiation has a wavelength of   1 µm or less.  What energy gap should the material in a solar
cell have in order to absorb this radiation?  Is silicon appropriate (see Table 43.5)?

G : Since most photovoltaic solar cells are made of silicon, this semiconductor seems to be an
appropriate material for these devices.

O : To absorb the longest-wavelength photons, the energy gap should be no larger than the photon
energy.

A : The minimum photon energy is

    
hf = hc

λ
=

6.63 × 10−34  J ⋅ s( ) 3.00 × 108  m / s( )
10-6  m

1 eV
1.60 × 10-19  J







= 1.24 eV

Therefore, the energy gap in the absorbing material should be smaller than 1.24 eV.

L : So silicon, with gap of 1.14 eV < 1.24 eV, is an appropriate material for absorbing solar radiation.

*43.36 If the photon energy is 5.5 eV or higher, the diamond window will absorb.   Here,

    
h f( )max

= hc
λ min

= 5.50 eV :

    

λ min = hc
5.5 eV

=
6.626 × 10−34  J ⋅ s( ) 3.00 × 108  m s( )

5.5 eV( ) 1.60 × 10−19  J eV( )
  λ min  = 2.26 × 10−7  m =  226 nm  
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43.37
    
I = I0 ee ∆V( ) kBT − 1( ) Thus,     e

e ∆V( ) kBT = 1 + I I0

and
    
∆V = kBT

e
ln 1 + I I0( )

At     T = 300 K , 
    
∆V =

1.38 × 10−23  J K( ) 300 K( )
1.60 × 10−19  C

ln 1 + I
I0







= 25.9 mV( ) ln 1 + I
I0







(a) If     I = 9.00I0 ,     ∆V = 25.9 mV( ) ln 10.0( ) =  59.5 mV  

(b) If     I = −0.900I0,     ∆V = 25.9 mV( ) ln 0.100( ) =  – 59.5 mV  

The basic idea behind a semiconductor device is that a large current or charge can be
controlled by a small control voltage.

43.38 The voltage across the diode is about 0.6 V.   The voltage drop across the resistor is

  (0.025 A)(150 Ω) = 3.75 V.   Thus,      E − 0.6 V − 3.8 V = 0   and     E = 4.4 V  

*43.39 First, we evaluate     I0 in 
    
I = I0 ee ∆V( ) kBT − 1( ), given that     I = 200 mA when     ∆V = 100 mV and

    T = 300 K .

    

e ∆V( )
kBT

=
1.60 × 10−19  C( ) 0.100 V( )
1.38 × 10−23  J K( ) 300 K( )

= 3.86 so
    
I0 = I

ee ∆V( ) kBT − 1
= 200 mA

e3.86 − 1
= 4.28 mA

If      ∆V = −100 mV,  
    

e ∆V( )
kBT

= −3.86 ;  and the current will be

    
I = I0 ee ∆V( ) kBT − 1( ) = 4.28 mA( ) e−3.86 − 1( ) = – 4.19 mA  

43.40 (a) See the figure at right.  

(b) For a surface current around the outside of the cylinder as shown,

      
B = Nµ0I

l
or

      
N I = Bl

µ0   
= (0.540 T)(2.50 × 10−2  m)

(4π× 10−7 ) T ⋅ m / A
= 10.7 kA  
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43.41 By Faraday’s law (Equation 32.1),   
  

∆ΦB

∆t
= L

∆I
∆t

= A
∆B
∆t

.

Thus,   
    
∆I = A ∆B( )

L
= π 0.0100 m( )2 0.0200 T( )

3.10 × 10−8  H
=  203 A  

The direction of the induced current is such as to maintain the B – field through the ring.

Goal Solution    
Determine the current generated in a superconducting ring of niobium metal 2.00 cm in diameter if a
0.0200-T magnetic field in a direction perpendicular to the ring is suddenly decreased to zero.  The
inductance of the ring is 3.10 × 10-8 H.

G : The resistance of a superconductor is zero, so the current is limited only by the change in magnetic
flux and self-inductance. Therefore, unusually large currents (greater than 100 A) are possible.   

O : The change in magnetic field through the ring will induce an emf according to Faraday’s law of
induction.  Since we do not know how fast the magnetic field is changing, we must use the ring’s
inductance and the geometry of the ring to calculate the magnetic flux, which can then be used to find
the current.  

A : From Faraday's law (Eq. 31.1), we have

  
ε = ∆ΦB

∆t
= A

∆B
∆t

= L
∆ I
∆ t

 or
    
∆I = A∆B

L
= π 0.0100 m( )2 0.0200 T( )

3.10 × 10−8  H
= 203 A

The current is directed so as to produce its own magnetic field in the direction of the original field.

L : This induced current should remain constant as long as the ring is superconducting. If the ring failed
to be a superconductor (e.g. if it warmed above the critical temperature), the metal would have a non-
zero resistance, and the current would quickly drop to zero.  It is interesting to note that we were able
to calculate the current in the ring without knowing the emf.  In order to calculate the emf, we would
need to know how quickly the magnetic field goes to zero.

43.42 (a) ∆V = IR

If R = 0, then     ∆V = 0, even when     I ≠ 0.

(b) The graph shows a direct proportionality.

    
Slope = 1

R
= ∆I

∆V   
= −( )

−( )
155 57 8.  mA

3.61 1.356  mV   = −43 1.  1Ω

  R =    0 0232.  Ω  

(c) Expulsion of magnetic flux and therefore fewer current-carrying paths could explain the
decrease in current.
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*43.43 (a) Since the interatomic potential is the same for both molecules, the spring constant is the
same.  

Then 
    
f = 1

2π
k
µ

  where 
  
µ 12 = 12 u( ) 16 u( )

12 u + 16 u
= 6.86 u  and  

  
µ 14 = 14 u( ) 16 u( )

14 u + 16 u
= 7.47 u

Therefore,

    
f 14 = 1

2π
k

µ 14
= 1

2π
k

µ 12

µ 12

µ 14









 = f 12

µ 12

µ 14
= 6.42 × 1013  Hz( ) 6.86 u

7.47 u
 =   6 15 1013. ×  Hz  

(b) The equilibrium distance is the same for both molecules.

    
I14 = µ 14r 2 =

µ 14

µ 12









 µ 12r 2 =

µ 14

µ 12









 I12

    
I14 = 7.47 u

6.86 u




 1.46 × 10−46  kg ⋅ m2( ) =    1.59 × 10−46  kg ⋅ m2  

(c) The molecule can move to the     v = 1, J = 9( )  state or to the     v = 1, J = 11( )  state.  The energy it
can absorb is  either

      
∆E = hc

λ
= 1 + 1

2( )h f 14 + 9 9 + 1( ) h
2

2I14









 − 0 + 1

2( )h f 14 + 10 10 + 1( ) h
2

2I14









 ,

or
      
∆E = hc

λ
= 1 + 1

2( )h f 14 + 11 11 + 1( ) h
2

2I14









 − 0 + 1

2( )h f 14 + 10 10 + 1( ) h
2

2I14









 .

The wavelengths it can absorb are then

      
λ = c

f 14 − 10h 2πI14( )    or   
      
λ = c

f 14 + 11h 2πI14( )

These are:

  

λ = 3.00 × 108  m s

6.15 × 1013  Hz −
10 1.055 × 10−34  J ⋅ s( )

2π 1.59 × 10−46  kg ⋅ m2( )
=    4.96 µm  

and

  

λ = 3.00 × 108  m s

6.15 × 1013  Hz +
11 1.055 × 10−34  J ⋅ s( )

2π 1.59 × 10−46  kg ⋅ m2( )
=    4.79 µm  
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43.44 For the N2 molecule,     k = 2297 N / m,      m = 2.32 × 10−26  kg,      r = 1.20 × 10−10  m ,      µ = m / 2

    ω = k µ = 4.45 × 1014  rad / s,     I = µr 2 = (1.16 × 10−26  kg)(1.20 × 10−10  m)2 = 1.67 × 10−46  kg ⋅ m2

 For a rotational state sufficient to allow a transition to the first exited vibrational state,

      

h2

2I
J(J + 1) =hω so

      
J(J + 1) =

2Iω
h

= 2(1.67 × 10−46 )(4.45 × 1014 )
1.055 × 10−34 = 1410

Thus J  = 37  

43.45
      
∆Emax = 4.5 eV = v + 1

2




 hω so

    

(4.5 eV)(1.6 × 10−19 J / eV)
(1.055 × 10−34 J ⋅ s)(8.28 × 1014  s−1)

≥ v + 1
2







8.25 > 7.5              v = 7  

43.46 With 4 van der Waal bonds per atom pair or 2 electrons per atom, the total energy of the solid
is

    
E = 2(1.74 × 10−23  J / atom)

6.02 × 1023  atoms
4.00 g







= 5.23 J/g  

43.47 The total potential energy is given by Equation 43.16:
    
Utotal = −α ke e2

r
+ B

r m

The total potential energy has its minimum value     U0 at the equilibrium spacing,     r = r0 .   At

this point,   
    
dU dr

r = r 0
= 0,

or

    

dU
dr r = r 0

= d
dr

−α ke e2

r
+ B

r m







r = r 0

= α ke e2

r0
2 − mB

r0
m + 1 = 0

Thus,  
    
B = α ke e2

m
r0

m − 1

Substituting this value of   B  into     Utotal ,

    

U0 = −α ke e2

r0
+ α ke e2

m
r0

m − 1 1

r0
m









 =  

    
−α kee

2

r0
1 − 1

m




  

*43.48 Suppose it is a harmonic-oscillator potential well. Then,      
1
2 h f + 4.48 eV = 3

2 h f + 3.96 eV  is the
depth of the well below the dissociation point.  We see     h f = 0.520 eV , so the depth of the well
is

    
1
2 h f + 4.48 eV = 1

2 0.520 eV( ) + 4.48 eV =  4.74 eV  
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*43.49 (a) For equilibrium, 
    

dU
dx

= 0 :
    

d
dx

Ax−3 − Bx−1( ) = −3Ax−4 + Bx−2 = 0

  x → ∞  describes one equilibrium position, but the stable equilibrium position is at     3Ax0
−2 = B .

    
x0 = 3A

B
=

3 0.150 eV ⋅ nm3( )
3.68 eV ⋅ nm

= 0.350 nm  

(b) The depth of the well is given by
    
U0 = U x = x0

= A
x0

3 − B
x0

= AB 3 2

3 3 2 A 3 2 − BB 1 2

3 1 2 A 1 2

    

U0 = U x = x0
= − 2B 3 2

3 3 2 A 1 2 = − 2 3.68 eV ⋅ nm( ) 3 2

3 3 2 0.150 eV ⋅ nm3( )1 2 = – 7.02 eV  

(c)
    
Fx = − dU

dx
= 3Ax−4 − Bx−2

To find the maximum force, we determine finite   xm  such that
    

dFx

dx x = xm

= 0

Thus,
    
−12Ax−5 + 2Bx−3[ ] x = x0

= 0 so that
    
xm = 6A

B






1 2

Then
    
Fmax = 3A

B
6A







2

− B
B

6A




 =  

    
− B2

12A
  

= − 3.68 eV ⋅ nm( )2

12 0.150 eV ⋅ nm3( )

or
    
Fmax = −7.52 

eV
nm

1.60 × 10−19  J
1 eV







1 nm

10−9  m




   = −1.20 × 10−9  N =    −1 20.  nN  

43.50 (a) For equilibrium,  
    

dU
dx

= 0 :
    

d
dx

Ax−3 − Bx−1( ) = −3Ax−4 + Bx−2 = 0

  x → ∞  describes one equilibrium position, but the stable equilibrium position is at

    3Ax0
−2 = B or     x0 = 3A B  

(b) The depth of the well is given by
    
U0 = U x = x0

= A
x0

3 − B
x0

= AB 3 2

3 3 2 A 3 2 − BB 1 2

3 1 2 A 1 2 =  
    
−2

B3

27A
 

(c)
    
Fx = − dU

dx
= 3Ax−4 − Bx−2

To find the maximum force, we determine finite   xm  such that

    

dFx

dx x = xm

= −12Ax−5 + 2Bx−3[ ] x = x0
= 0 then       

    
Fmax = 3A

B
6A







2

− B
B

6A




 =  

    
− B2

12A
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*43.51 (a) At equilibrium separation,   r = re ,
    

dU
dr r = re

= −2aB e
−a re − r 0( ) − 1





e
−a re − r 0( ) = 0

We have neutral equilibrium as   re → ∞ and stable equilibrium at     e
−a re −r 0( ) = 1,

or   re =     r0  

(b) At     r = r0 ,      U = 0.   As   r → ∞ ,    U → B .   The depth of the well is   B  .

(c) We expand the potential in a Taylor series about the equilibrium point:

    

U r( ) ≈ U r0( ) + dU
dr r = r 0

r − r0( ) + 1
2

d2U
dr 2

r = r 0

r − r0( )2

  U r( )
    

≈ 0 + 0 + 1
2 −2Ba( ) −ae

−2 r − r 0( ) − ae
− r − r 0( ) e

−2 r − r 0( ) − 1















r = r 0

r − r0( )2

    
≈ Ba2 r − r0( )2

This is of the form 
    
1
2 kx2 = 1

2 k r − r0( )2

for a simple harmonic oscillator with     k = 2Ba2

Then the molecule vibrates with frequency
    
f = 1

2π
k
µ

= a
2π

2B
µ

= 
    

a
π

B
2µ

 

(d) The zero-point energy is  
      

1
2hω = 1

2 h f = ha
π

B
8µ

Therefore, to dissociate the molecule in its ground state requires energy  
    
B − ha

π
B

8µ
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43.52
    T = 0     T = 0.1TF     T = 0.2TF     T = 0.5TF

    E / EF     e

E
EF

−1






TF
T   f E( )     e

E
EF

−1






TF
T   f E( )     e

E
EF

−1






TF
T   f E( )     e

E
EF

−1






TF
T   f E( )

0   e
−∞ 1.00     e

−10.0 1.000     e
−5.00 0.993     e

−2.00 0.881

0.500   e
−∞ 1.00     e

−5.00 0.993     e
−2.50 0.924     e

−1.00 0.731

0.600   e
−∞ 1.00     e

−4.00 0.982     e
−2.00 0.881     e

−0.800 0.690

0.700   e
−∞ 1.00     e

−3.00 0.953     e
−1.50 0.818     e

−0.600 0.646

0.800   e
−∞ 1.00     e

−2.00 0.881     e
−1.00 0.731     e

−0.400 0.599

0.900   e
−∞ 1.00     e

−1.00 0.731     e
−0.500 0.622     e

−0.200 0.550

1.00     e
0 0.500     e

0 0.500     e
0 0.500     e

0 0.500

1.10   e
+∞ 0.00     e

1.00 0.269     e
0.500 0.378     e

0.200 0.450

1.20   e
+∞ 0.00     e

2.00 0.119     e
1.00 0.269     e

0.400 0.401

1.30   e
+∞ 0.00     e

3.00 0.0474     e
1.50 0.182     e

0.600 0.354

1.40   e
+∞ 0.00     e

4.00 0.0180     e
2.00 0.119     e

0.800 0.310

1.50   e
+∞ 0.00     e

5.00 0.00669     e
2.50 0.0759     e

1.00 0.269
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43.53 (a) There are 6   Cl−  ions at distance     r = r0 .  The
contribution of these ions to the electrostatic
potential energy is      −6 kee

2 r0 .

There are 12   Na+ ions at distance     r = 2 r0.  Their
contribution to the electrostatic potential energy is

    +12kee
2 2 r0 .   Next, there are 8   Cl−  ions at distance

    r = 3 r0.  These contribute a term of     −8kee
2 3 r0  to

the electrostatic potential energy.

To three terms, the electrostatic potential energy is:

    
U = −6 + 12

2
− 8

3






kee
2

r0
= −2.13

kee
2

r0
or

    
U = −α kee

2

r0
 with α = 2.13  

(b) The fourth term consists of 6   Na+ at distance     r r= 2 0 .  Thus, to four terms,

    
U = −2.13 + 3( ) kee

2

r0
= 0.866

kee
2

r0
 

So we see that the electrostatic potential energy is not even attractive to 4 terms, and that the
infinite series   does not converge rapidly   when groups of atoms corresponding to nearest

neighbors, next-nearest neighbors, etc. are added together.


