Chapter 44 Even Answers (b) See solution $7.89 \text{ cm for } ^{12}\text{C}, 8.21 \text{ cm for } ^{13}\text{C}$ 2. 4. 29.5 fm (b) 5.18 fm λ is much smaller than d_{\min} (a) (c) 6. 25.6 MeV A = 308. 6.16×10^{15} N toward the other ball 10. 12. (a) 48 (b) 6 (c) 44 (d) (c) 2.13 kHz 14. (a) 29.2 MHz 42.6 MHz 16. See solution 0.210 MeV greater for ²³Na 18. 20. (a) 84.1 MeV (b) 342 MeV The nuclear force is so strong that the binding energy greatly exceeds the minimum energy needed to overcome electrostatic repulsion. 22. To compensate for an overestimate by the volume term. R/3 for spherical volume, R/6 for cubical volume; spherical shapes are more tightly bound. 24. (a) 491 MeV (b) 179%, -53.0%, -24.6%, -1.37% 0.200 mCi 26. 28. 86.4 h $\frac{R_0T_{1/2}}{\ln\ 2}\Big(2^{-t_1/T_{1/2}}-2^{-t_2/T_{1/2}}\Big)$ 30. ⁶⁵₂₈Ni (b) ${}^{211}_{82}$ Pb (c) ${}^{55}_{27}$ Co 32. (a) (d) $^{0}_{-1}e$ (e) ${}_{1}^{1}H$ (or p) $9.96 \times 10^{3} \text{ yr}$ 34. **36**. cannot occur (a) (b) cannot occur (c) can occur - **38.** (a) 4.00×10^9 yr - (b) $0.0199 \text{ for } ^{235}\text{U to } ^{207}\text{Pb}$, $4.60 \text{ for } ^{232}\text{Th to } ^{208}\text{Pb}$ - **40.** (a) 148 Bq/m^3 - (b) $7.05 \times 10^7 \text{ atoms/m}^3$ - (c) 2.17×10^{-17} - **42.** -2.64 MeV - **44.** (a) $^{21}_{10}$ Ne (b) 144₅₄Xe (c) $X = {}^{0}_{1}e^{+}, X' = {}^{0}_{0}v$ **46.** (a) ${}^{13}_{6}$ C (b) $^{10}_{5}$ B - **48**. 165 MeV - **50.** 1.88 MeV - 52. (a) cannot occur - (b) can occur - (c) K_e can range from zero to 156 keV in the reaction of (b). - **54.** (a) See solution - (b) $4.17 \times 10^{-3} \text{ min}^{-1}$, 2.77 h - (c) 4.02×10^3 counts/min - (d) 9.65×10^6 atoms - **56.** (a) 3.91×10^9 yr - (b) no **58.** (a) $^{141}_{59}$ Pr - (b) 2.32 MeV - (c) 97.2% **60.** (a) 61.8 Bq - (b) 40.3 d - **62.** $5.94 \times 10^9 \text{ yr}$ - **64.** (a) 5.69 MeV (b) 3.27 MeV, exothermic **66.** (a) 12.3 mg - (b) 0.166 W - **68.** (a) All states can be reached by electron capture. The 2.44 MeV state cannot be reached by β^+ decay. - (b) 93₄₂Mo - **70.** (a) See solution - (b) 1.53 MeV