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Chapter 2 
Motion in One Dimension 
 
Conceptual Problems 
 
1 •  
Determine the Concept The "average velocity" is being requested as opposed to "average 
speed". 

 
The average velocity is defined as 
the change in position or 
displacement divided by the 
change in time. 
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The change in position for any 
"round trip" is zero by definition.  
So the average velocity for any 
round trip must also be zero. 
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*2 •  
Determine the Concept The important concept here is that "average speed" is being 
requested as opposed to "average velocity".   
 
Under all circumstances, including constant acceleration, the definition of the average 
speed is the ratio of the total distance traveled (H + H) to the total time elapsed, in this 
case 2H/T. correct. is )(d  

 
Remarks: Because this motion involves a round trip, if the question asked for 
"average velocity," the answer would be zero. 
 
3 •  
Determine the Concept  Flying with the wind, the speed of the plane relative to the 
ground (vPG) is the sum of the speed of the wind relative to the ground (vWG) and the 
speed of the plane relative to the air (vPG = vWG + vPA). Flying into or against the wind the 
speed relative to the ground is the difference between the wind speed and the true air 
speed of the plane  (vg = vw – vt).  Because the ground speed landing against the wind is 
smaller than the ground speed landing with the wind, it is safer to land against the wind. 
 
4 •  
Determine the Concept The important concept here is that a = dv/dt, where a is the 
acceleration and v is the velocity.  Thus, the acceleration is positive if dv is positive; the 
acceleration is negative if dv is negative. 
 
(a) Let’s take the direction a car is 
moving to be the positive direction: 
 
  
 
 

Because the car is moving in the direction 
we’ve chosen to be positive, its velocity is 
positive (dx > 0). If the car is braking, then 
its velocity is decreasing (dv < 0) and its 
acceleration (dv/dt) is negative.  

(b) Consider a car that is moving to Because the car is moving in the direction 
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the right but choose the positive 
direction to be to the left: 
 

opposite to that we’ve chosen to be 
positive, its velocity is negative (dx < 0). If 
the car is braking, then its velocity is 
increasing (dv > 0) and its acceleration 
(dv/dt) is positive. 

 
*5 •  
Determine the Concept The important concept is that when both the acceleration and 
the velocity are in the same direction, the speed increases.  On the other hand, when the 
acceleration and the velocity are in opposite directions, the speed decreases. 
 

(a) 
. be

must nt displacemeyour  negative, remainsity your veloc Because
negative

 

 

(b) 
reached. is  wall theuntil  walking,of speed  theslowgradually  steps five

last  theDuring direction. negative  theas your trip ofdirection   theDefine
 

 
(c) A graph of v as a function of t 
that is consistent with the conditions 
stated in the problem is shown to the 
right: 
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6 •  
Determine the Concept True. We can use the definition of average velocity to express 
the displacement ∆x as ∆x = vav∆t. Note that, if the acceleration is constant, the average 
velocity is also given by vav = (vi + vf)/2. 

 
7 •  
Determine the Concept Acceleration is the slope of the velocity versus time curve, 
a = dv/dt; while velocity is the slope of the position versus time curve, v = dx/dt. The 
speed of an object is the magnitude of its velocity. 
 
(a) True. Zero acceleration implies that the velocity is constant. If the velocity is constant 
(including zero), the speed must also be constant. 
 
(b) True in one dimension. 
 
Remarks: The answer to (b) would be False in more than one dimension.  In one 
dimension, if the speed remains constant, then the object cannot speed up, slow 
down, or reverse direction.  Thus, if the speed remains constant, the velocity 
remains constant, which implies that the acceleration remains zero.  (In more than 
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one-dimensional motion, an object can change direction while maintaining constant 
speed.  This constitutes a change in the direction of the velocity.)  Consider a ball 
moving in a circle at a constant rotation rate.  The speed (magnitude of the velocity) 
is constant while the velocity is tangent to the circle and always changing.  The 
acceleration is always pointing inward and is certainly NOT zero. 
 
*8 ••  
Determine the Concept Velocity is the slope of the position versus time curve and 
acceleration is the slope of the velocity versus time curve.  See the graphs below. 
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9 •  
Determine the Concept False. The average velocity is defined (for any acceleration) as 
the change in position (the displacement) divided by the change in time txv ∆∆=av . It is 
always valid.  If the acceleration remains constant the average velocity is also given by  

2
fi

av
vvv +

=  

Consider an engine piston moving up and down as an example of non-constant velocity.  
For one complete cycle, vf = vi and xi = xf so vav = ∆x/∆t is zero. The formula involving 
the mean of vf and vi cannot be applied because the acceleration is not constant, and 
yields an incorrect nonzero value of vi. 
 
10 •  
Determine the Concept This can occur if the rocks have different initial speeds. 
Ignoring air resistance, the acceleration is constant. Choose a coordinate system in which 
the origin is at the point of release and upward is the positive direction. From the 
constant-acceleration equation 

2
2
1

00 attvyy ++=  

we see that the only way two objects can have the same acceleration (–g in this case) and 
cover the same distance, ∆y = y – y0, in different times would be if the initial velocities of 
the two rocks were different.  Actually, the answer would be the same whether or not the 
acceleration is constant.  It is just easier to see for the special case of constant 
acceleration. 
 
*11 ••  
Determine the Concept Neglecting air resistance, the balls are in free fall, each with the 
same free-fall acceleration, which is a constant. 
 
At the time the second ball is released, the first ball is already moving.  Thus, during any 
time interval their velocities will increase by exactly the same amount.  What can be said 
about the speeds of the two balls? The first ball will always be moving faster than the 
second ball. 
 
This being the case, what happens to the separation of the two balls while they are both 
falling? Their separation increases. correct. is )(a  

 
12 ••  
Determine the Concept The slope of an x(t) curve at any point in time represents the 
speed at that instant. The way the slope changes as time increases gives the sign of the 
acceleration.  If the slope becomes less negative or more positive as time increases (as 
you move to the right on the time axis), then the acceleration is positive.  If the slope 
becomes less positive or more negative, then the acceleration is negative. The slope of the 
slope of an x(t) curve at any point in time represents the acceleration at that instant. 
 
The slope of curve (a) is negative 
and becomes more negative as time 
increases. 
 

Therefore, the velocity is negative and the 
acceleration is negative. 

The slope of curve (b) is positive Therefore, the acceleration is zero. 
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and constant and so the velocity is 
positive and constant.  
 
The slope of curve (c) is positive 
and decreasing. 
  

Therefore, the velocity is positive and the 
acceleration is negative. 
 

The slope of curve (d) is positive  
and increasing.   
 

Therefore, the velocity and acceleration are 
positive. We need more information to 
conclude that a is constant. 
 

The slope of curve (e) is zero.  Therefore, the velocity and acceleration are 
zero. 
 

 
 

on.accelerati positive
constanth motion wit showsbest  )(d

 

 
*13  •  
Determine the Concept The slope of a v(t) curve at any point in time represents the 
acceleration at that instant. Only one curve has a constant and positive slope. 

( ) correct. is b  

 
14 •  
Determine the Concept No. The word average implies an interval of time rather than an 
instant in time; therefore, the statement makes no sense. 
 
*15 •  
Determine the Concept Note that the ″average velocity″ is being requested as opposed 
to the ″average speed.″ 
 
Yes. In any roundtrip, A to B, and 
back to A, the average velocity is 
zero. 
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On the other hand, the average 
velocity between A and B is not 
generally zero. 

( ) 0AB
BAav ≠

∆
∆

=→ t
xv  

 
Remarks: Consider an object launched up in the air.  Its average velocity on the way 
up is NOT zero.  Neither is it zero on the way down.  However, over the round trip, 
it is zero. 
 
16 •  
Determine the Concept An object is farthest from the origin when it is farthest from the 
time axis. In one-dimensional motion starting from the origin, the point located farthest 
from the time axis in a distance-versus-time plot is the farthest from its starting point. 
Because the object’s initial position is at x = 0, point B represents the instant that the 
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object is farthest from x = 0. correct. is )(b  

 
17 •  
Determine the Concept No. If the velocity is constant, a graph of position as a function 
of time is linear with a constant slope equal to the velocity. 
 
18 •  
Determine the Concept Yes. The average velocity in a time interval is defined as the 
displacement divided by the elapsed time txv ∆∆=av . The fact that vav = 0 for some 
time interval, ∆t, implies that the displacement ∆x over this interval is also zero. Because 
the instantaneous velocity is defined as ( )txv t ∆∆= →∆ /lim 0 , it follows that v must also 
be zero. As an example, in the following graph of x versus t, over the interval between 
t = 0 and t ≈ 21 s, ∆x = 0. Consequently, vav = 0 for this interval. Note that the 
instantaneous velocity is zero only at t ≈ 10 s. 
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19 ••  
Determine the Concept In the one-dimensional motion shown in the figure, the velocity 
is a minimum when the slope of a position-versus-time plot goes to zero (i.e., the curve 
becomes horizontal). At these points, the slope of the position-versus-time curve is zero; 
therefore, the speed is zero. correct. is )(b  

 
*20 ••  
Determine the Concept In one-dimensional motion, the velocity is the slope of a 
position-versus-time plot and can be either positive or negative.  On the other hand, the 
speed is the magnitude of the velocity and can only be positive. We’ll use v to denote 
velocity and the word “speed” for how fast the object is moving. 

 
(a)  
curve a: ( ) ( )12 tvtv <  
curve b: ( ) ( )12 tvtv =  
curve c: ( ) ( )12 tvtv >  
curve d: ( ) ( )12 tvtv <  
 

(b) 
curve a: ( ) ( )12 speedspeed tt <  
curve b: ( ) ( )12 speedspeed tt =  
curve c: ( ) ( )12 speedspeed tt <  
curve d: ( ) ( )12 speedspeed tt >  
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21 •  
Determine the Concept Acceleration is the slope of the velocity-versus-time curve, a = 
dv/dt, while velocity is the slope of the position-versus-time curve, v = dx/dt. 

 
(a) False. Zero acceleration implies that the velocity is not changing.  The velocity could 
be any constant (including zero).  But, if the velocity is constant and nonzero, the particle 
must be moving. 

 
(b) True. Again, zero acceleration implies that the velocity remains constant.  This means 
that the x-versus-t curve has a constant slope (i.e., a straight line). Note: This does not 
necessarily mean a zero-slope line. 
 
22 •  
Determine the Concept Yes. If the velocity is changing the acceleration is not zero. The 
velocity is zero and the acceleration is nonzero any time an object is momentarily at rest.  
If the acceleration were also zero, the velocity would never change; therefore, the object 
would have to remain at rest. 
 
Remarks: It is important conceptually to note that when both the acceleration and 
the velocity have the same sign, the speed increases.  On the other hand, when the 
acceleration and the velocity have opposite signs, the speed decreases.   

 
23 •  
Determine the Concept In the absence of air resistance, the ball will experience a 
constant acceleration. Choose a coordinate system in which the origin is at the point of 
release and the upward direction is positive. 
 
The graph shows the velocity of a ball 
that has been thrown straight upward 
with an initial speed of 30 m/s as a 
function of time. Note that the slope 
of this graph, the acceleration, is the 
same at every point, including the 
point at which v = 0 (at the top of its 
flight). Thus, 0flight of top =v  and 

ga −=flight of top . 

-30

-20

-10

0

10

20

30

0 1 2 3 4 5 6

t  (s)

v
 (m

/s
)

 
The acceleration is the slope (–g). 

 
24 •  
Determine the Concept The "average speed" is being requested as opposed to "average 
velocity." We can use the definition of average speed as distance traveled divided by the 
elapsed time and expression for the average speed of an object when it is experiencing 
constant acceleration to express vav in terms of v0. 
The average speed is defined as the 
total distance traveled divided by 
the change in time: 

T
H

T
HH

v

2
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 traveleddistancetotal
av

=
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=
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Find the average speed for the 
upward flight of the object: 
 T

Hvv
2
1

0
upav, 2

0
=

+
=  

Solve for H to obtain: 
 

TvH 04
1=  

Find the average speed for the 
downward flight of the object: 
 T

Hvv
2
1

0
downav, 2

0
=

+
=  

Solve for H to obtain: 
 

TvH 04
1=  

Substitute in our expression for vav 
to obtain: 

( )
2

2 004
1

av
v

T
Tvv ==  

Because 00 ≠v , the average speed is not 
zero. 
 

Remarks: 1) Because this motion involves a roundtrip, if the question asked for 
″average velocity″, the answer would be zero. 2) Another easy way to obtain this 
result is take the absolute value of the velocity of the object to obtain a graph of its 
speed as a function of time. A simple geometric argument leads to the result we 
obtained above. 
 
25 •  
Determine the Concept In the absence of air resistance, the bowling ball will experience 
constant acceleration. Choose a coordinate system with the origin at the point of release 
and upward as the positive direction. Whether the ball is moving upward and slowing 
down, is momentarily at the top of its trajectory, or is moving downward with ever 
increasing velocity, its acceleration is constant and equal to the acceleration due to 
gravity. correct. is )(b  

 
26 •  
Determine the Concept Both objects experience the same constant acceleration. Choose 
a coordinate system in which downward is the positive direction and use a constant-
acceleration equation to express the position of each object as a function of time. 
 
Using constant-acceleration 
equations, express the positions of 
both objects as functions of time: 
 
 
 

 2
2
1

0A0,A gttvxx ++=   
and 

2
2
1

0B,0B gttvxx ++=  
where v0 = 0. 

Express the separation of the two 
objects by evaluating xB − xA: 
 

m10A.0B,0AB =−=− xxxx  

and correct. is )(d  

 
*27 ••  
Determine the Concept Because the Porsche accelerates uniformly, we need to look for 
a graph that represents constant acceleration. We are told that the Porsche has a constant 
acceleration that is positive (the velocity is increasing); therefore we must look for a 
velocity-versus-time curve with a positive constant slope and a nonzero intercept. 
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( ) correct. is c  

 
*28 ••  
Determine the Concept In the absence of air resistance, the object experiences constant 
acceleration. Choose a coordinate system in which the downward direction is positive. 
 
Express the distance D that an 
object, released from rest, falls in 
time t: 
 

2
2
1 gtD =  

Because the distance fallen varies 
with the square of the time, during 
the first two seconds it falls four 
times the distance it falls during the 
first second. 

 
 

( ) correct. is a  

 
29 ••  
Determine the Concept In the absence of air resistance, the acceleration of the ball is 
constant. Choose a coordinate system in which the point of release is the origin and 
upward is the positive y direction. 
 
The displacement of the ball 
halfway to its highest point is: 

 2
maxyy ∆

=∆  

Using a constant-acceleration 
equation, relate the ball’s initial and 
final velocities to its displacement 
and solve for the displacement: 

 

ygvyavv ∆−=∆+= 22 2
0

2
0

2  

Substitute v0 = 0 to determine the 
maximum displacement of the ball: 

 ( ) g
v

g
vy

22

2
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2
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−=∆  

Express the velocity of the ball at 
half its maximum height: 
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Solve for v: 

00 707.0
2
2 vvv ≈=  

and ( ) correct. is c  
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30 •  
Determine the Concept As long as the acceleration remains constant the following 
constant-acceleration equations hold.  If the acceleration is not constant, they do not, in 
general, give correct results except by coincidence. 

2
2
1

00 attvxx ++=  atvv += 0  xavv ∆+= 22
0

2  
2

fi
av

vvv +
=  

 
(a) False. From the first equation, we see that (a) is true if and only if the acceleration is 
constant. 
 
(b) False. Consider a rock thrown straight up into the air.  At the "top" of its flight, the 
velocity is zero but it is changing (otherwise the velocity would remain zero and the rock 
would hover); therefore the acceleration is not zero.   
 
(c) True. The definition of average velocity, txv ∆∆=av , requires that this always be 
true. 
 
*31 •  
Determine the Concept Because the acceleration of the object is constant, the constant-
acceleration equations can be used to describe its motion. The special expression for 

average velocity for constant acceleration is
2

fi
av

vvv +
= . ( ) correct. is c  

 
32 •  
Determine the Concept The constant slope of the  x-versus-t graph tells us that the 
velocity is constant and the acceleration is zero. A linear position versus time curve 
implies a constant velocity.  The negative slope indicates a constant negative velocity.  
The fact that the velocity is constant implies that the acceleration is also constant and 
zero. ( ) correct. is e  

 
33 ••  
Determine the Concept The velocity is the slope of the tangent to the curve, and the 
acceleration is the rate of change of this slope. Velocity is the slope of the position-
versus-time curve.  A parabolic x(t) curve opening upward implies an increasing velocity.  
The acceleration is positive. ( ) correct. is a  

 
34 ••  
Determine the Concept The acceleration is the slope of the tangent to the velocity as a 
function of time curve. For constant acceleration, a velocity-versus- time curve must be a 
straight line whose slope is the acceleration.  Zero acceleration means that slope of v(t) 
must also be zero. ( ) correct. is c  

 
35 ••  
Determine the Concept The acceleration is the slope of the tangent to the velocity as a 
function of time curve. For constant acceleration, a velocity-versus- time curve must be a 
straight line whose slope is the acceleration.  The acceleration and therefore the slope can 
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be positive, negative, or zero. ( ) correct. is d  

 
36 ••  
Determine the Concept The velocity is positive if the curve is above the v = 0 line (the t 
axis), and the acceleration is negative if the tangent to the curve has a negative slope. 
Only graphs (a), (c), and (e) have positive v.  Of these, only graph (e) has a negative 
slope. ( ) correct. is e  

 
37 ••  
Determine the Concept The velocity is positive if the curve is above the v = 0 line (the t 
axis), and the acceleration is negative if the tangent to the curve has a negative slope. 
Only graphs (b) and (d) have negative v.  Of these, only graph (d) has a negative slope. 

( ) correct. is d  

 
38 ••  
Determine the Concept A linear velocity-versus-time curve implies constant 
acceleration. The displacement from time t = 0 can be determined by integrating v-
versus-t — that is, by finding the area under the curve.  The initial velocity at t = 0 can be 
read directly from the graph of v-versus-t as the v-intercept; i.e., v(0).  The acceleration of 
the object is the slope of v(t) .  The average velocity of the object is given by drawing a 
horizontal line that has the same area under it as the area under the curve. Because all of 
these quantities can be determined ( ) correct. is e  

 
*39 ••  
Determine the Concept The velocity is the slope of a position versus time curve and the 
acceleration is the rate at which the velocity, and thus the slope, changes.   

 

Velocity 
 
 

 

(a) Negative at t0 and t1.  
(b) Positive at t3, t4, t6, and t7.  
(c) Zero at t2 and t5.  
 

Acceleration 
 
The acceleration is positive at points 
where the slope increases as you 
move toward the right. 

(a) Negative at t4.  
(b) Positive at t2 and t6.   
(c) Zero at t0, t1, t3, t5, and t7. 
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40 ••  
Determine the Concept Acceleration is the slope of a velocity-versus-time curve. 
 
(a) Acceleration is zero and constant 
while velocity is not zero. 
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(b) Acceleration is constant but not 
zero. 
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(c) Velocity and acceleration are both 
positive. 
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(d) Velocity and acceleration are both 
negative. 
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(e) Velocity is positive and 
acceleration is negative. 
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(f) Velocity is negative and 
acceleration is positive. 
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(g) Velocity is momentarily zero at 
the intercept with the t axis but the 
acceleration is not zero. 
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41 ••  
Determine the Concept Velocity is the slope and acceleration is the slope of the slope of 
a position-versus-time curve.  Acceleration is the slope of a velocity- versus-time curve. 

 
(a) For constant velocity, x-versus-t 
must be a straight line; v-versus-t 
must be a horizontal straight line; 
and a-versus-t must be a straight 
horizontal line at a = 0. 
 

(a), (f), and (i) are the correct answers. 

(b) For velocity to reverse its 
direction x-versus-t must have a 
slope that changes sign and v-
versus-t must cross the time axis.  
The acceleration cannot remain zero 
at all times. 
 

 
(c) and (d) are the correct answers.   

(c) For constant acceleration, x- (a), (d), (e), (f), (h), and (i) are the correct 
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versus-t must be a straight line or a 
parabola, v-versus-t must be a 
straight line, and a-versus-t must be 
a horizontal straight line. 
 

answers. 

(d) For non-constant acceleration, x-
versus-t must not be a straight line 
or a parabola; v-versus-t must not be 
a straight line, or a-versus-t must 
not be a horizontal straight line. 
 

(b), (c), and (g) are the correct answers. 

For two graphs to be mutually 
consistent, the curves must be 
consistent with the definitions of 
velocity and acceleration. 

Graphs (a) and (i) are mutually consistent. 
Graphs (d) and (h) are mutually consistent. 
Graphs (f) and (i) are also mutually 
consistent. 

 
Estimation and Approximation  
 
42 •  
Picture the Problem Assume that your heart beats at a constant rate.  It does not, but the 
average is pretty stable. 
 
(a) We will use an average pulse 
rate of 70 bpm for a seated (resting) 
adult.  One’s pulse rate is defined as 
the number of heartbeats per unit 
time: 

 

Time
heartbeats of #rate Pulse =  

and 
Timerate Pulse  heartbeats of # ×=  

 

The time required to drive 1 mi at 
60 mph is (1/60) h or 1 min:   
 

( )( )
beats 70 

min1beats/min 70  heartbeats of #

=

=
 

 
(b) Express the number of 
heartbeats during a lifetime in terms 
of the pulse rate and the life span of 
an individual: 
 

TimeratePulseheartbeatsof# ×=  

Assuming a 95-y life span, calculate 
the time in minutes: 

( )( )( )
( )

min1000.5
hmin/60

h/d24d/y25.365y95Time

7×=

×
=

 

 
Substitute numerical values and 
evaluate the number of heartbeats: 

( )
( )

beats1050.3

min1000.5
min/beats70heartbeatsof#

9

7

×=

××

=
 

 
*43 ••  
Picture the Problem In the absence of air resistance, Carlos’ acceleration is constant. 
Because all the motion is downward, let’s use a coordinate system in which downward is 
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positive and the origin is at the point at which the fall began. 
 
(a) Using a constant-acceleration 
equation, relate Carlos’ final 
velocity to his initial velocity, 
acceleration, and distance fallen and 
solve for his final velocity: 
 

yavv ∆+= 22
0

2  
and, because v0 = 0 and a = g, 

ygv ∆= 2  
 

Substitute numerical values and 
evaluate v: 
 

( )( ) m/s2.54m150m/s81.92 2 ==v  

(b) While his acceleration by the 
snow is not constant, solve the same 
constant- acceleration equation to 
get an estimate of his average 
acceleration: 
  

y
vva

∆
−

=
2

2
0

2

 

 

Substitute numerical values and 
evaluate a: ( )

( )
g

a

123

m/s1020.1
m22.12

m/s54 23
22

−=

×−=
−

=
 

 
Remarks:  The final velocity we obtained in part (a), approximately 121 mph, is 
about the same as the terminal velocity for an "average" man.  This solution is 
probably only good to about 20% accuracy. 
 
44 ••  
Picture the Problem Because we’re assuming that the accelerations of the skydiver and 
the mouse are constant to one-half their terminal velocities, we can use constant-
acceleration equations to find the times required for them to reach their ″upper-bound″ 
velocities and their distances of fall. Let’s use a coordinate system in which downward is 
the positive y direction. 
 
(a) Using a constant-acceleration 
equation, relate the upper-bound 
velocity to the free-fall acceleration 
and the time required to reach this 
velocity: 
 

tgvv ∆+= 0boundupper  
or, because v0 = 0, 

tgv ∆=boundupper  

Solve for ∆t: 

g
v

t boundupper=∆  

 
Substitute numerical values and 
evaluate ∆t: 
 

s55.2
m/s9.81
m/s52

2 ==∆t  

 
Using a constant-acceleration 
equation, relate the skydiver’s 
distance of fall to the elapsed time 
∆t: 

( )2
2
1

0 tatvy ∆+∆=∆  
or, because v0 = 0 and a = g, 

( )2
2
1 tgy ∆=∆  
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Substitute numerical values and 
evaluate ∆y: 
 

( ) ( ) m31.9s2.55m/s9.81 22
2
1 ==∆y  

 
(b)  Proceed as in (a) with  
vupper bound = 0.5 m/s to obtain: s0510.0

m/s9.81
m/s5.0

2 ==∆t  

and 
( )( ) cm27.1s0510.0m/s9.81 22

2
1 ==∆y

 
45 ••  
Picture the Problem This is a constant-acceleration problem. Choose a coordinate 
system in which the direction Greene is running is the positive x direction. During the 
first 3 s of the race his acceleration is positive and during the rest of the race it is zero. 
The pictorial representation summarizes what we know about Greene’s race. 

 
 
Express the total distance covered 
by Greene in terms of the distances 
covered in the two phases of his 
race: 
 

1201m100 xx ∆+∆=  

Express the distance he runs getting 
to his maximum velocity: 
 

( ) ( )2
2
12

01012
1

01001 s3atatvx =∆+∆=∆  
 

Express the distance covered during 
the rest of the race at the constant 
maximum velocity: 
 

( )
( )

( )( )s79.6s3
1201

2
12122

1
12max12

a
tta

tatvx

=
∆∆=

∆+∆=∆

 

 
Substitute for these displacements 
and solve for a: 

( ) ( )( )s79.6s3s3m100 2
2
1 aa +=  

and 
2m/s02.4=a  

 
*46 ••  
Determine the Concept This is a constant-acceleration problem with a = −g if we take 
upward to be the positive direction. 
 
At the maximum height the ball will 
reach, its speed will be near zero 

Because the ball is moving slowly its blur 
is relatively short (i.e., there is less 
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and when the ball has just been 
tossed in the air its speed is near its 
maximum value.  What conclusion 
can you draw from the image of the 
ball near its maximum height? 
 

blurring). 
 

To estimate the initial speed of the 
ball: 
 

 

a) Estimate how far the ball being 
tossed moves in 1/30 s: 
 

The ball moves about 3 ball diameters in 
1/30 s. 
 

b) Estimate the diameter of a tennis 
ball: 
 

The diameter of a tennis ball is 
approximately 5 cm. 
 

c) Now one can calculate the 
approximate distance the ball moved 
in 1/30 s: 
 

( )
( )
cm 15

rcm/diamete 5
diameters 3   traveledDistance

=
×

=
 

 
d) Calculate the average speed of 
the tennis ball over this distance: 
 

m/s4.50

cm/s 450
s

30
1
cm 15speed Average

=

==
 

 
e) Because the time interval is very 
short, the average speed of the ball 
is a good approximation to its initial 
speed: 
 

∴ v0 = 4.5 m/s 
 

f) Finally, use the constant-
acceleration equation 

yavv ∆+= 22
0

2  to solve for and 
evaluate ∆y: 
 

( )
( ) m03.1

m/s81.92
m/s5.4

2 2

22
0 =

−
−

=
−

=∆
a
vy  

 

Remarks: This maximum height is in good agreement with the height of the higher 
ball in the photograph. 

 
*47 ••   
Picture the Problem The average speed of a nerve impulse is approximately 120 m/s. 
Assume an average height of 1.7 m and use the definition of average speed to estimate 
the travel time for the nerve impulse. 

 
Using the definition of average 
speed, express the travel time for the 
nerve impulse: 
 

avv
xt ∆

=∆  

Substitute numerical values and 
evaluate ∆t: ms14.2

m/s120
m1.7

==∆t  
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Speed, Displacement, and Velocity 
 

48 •  
Picture the Problem Think of the electron as traveling in a straight line at constant speed 
and use the definition of average speed. 
 
(a) Using its definition, express the 
average speed of the electron: 

t
s

∆
∆

=

=
flight of time

traveleddistancespeed  Average
 

 
Solve for and evaluate the time of 
flight: 

ns00.4s104

sm104
m16.0

speed Average
9

7

=×=

×
=

∆
=∆

−

st
 

 
(b) Calculate the time of flight for 
an electron in a 16-cm long current 
carrying wire similarly.  

min7.66s104

sm104
m16.0

speed Average
3

5

=×=

×
=

∆
=∆ −

st
 

 
*49 •  
Picture the Problem In this problem the runner is traveling in a straight line but not at 
constant speed - first she runs, then she walks. Let’s choose a coordinate system in which 
her initial direction of motion is taken as the positive x direction. 

 
(a) Using the definition of average 
velocity, calculate the average 
velocity for the first 9 min: 
 

min/km278.0
min9

km5.2
av ==

∆
∆

=
t
xv  

 

(b) Using the definition of average 
velocity, calculate her average speed 
for the 30 min spent walking: 

min/km0833.0

min30
km5.2

av

−=

−
=

∆
∆

=
t
xv

 

 
(c) Express her average velocity for 
the whole trip: 00tripround

av =
∆

=
∆

∆
=

tt
x

v  

 
(d) Finally, express her average 
speed for the whole trip: 

min/km128.0

min9min30
)km5.2(2

timeelapsed
traveleddistancespeed Average

=

+
=

=
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50 •  
Picture the Problem The car is traveling in a straight line but not at constant speed.  Let 
the direction of motion be the positive x direction. 
 
(a) Express the total displacement of 
the car for the entire trip: 21total xxx ∆+∆=∆  

 

 
Find the displacement for each leg 
of the trip: 
 

( )( )
km200

h5.2km/h8011,1

=

=∆=∆ tvx av  

and 
( )( )

km0.60
h5.1km/h4022,2

=

=∆=∆ tvx av  

 
Add the individual displacements to 
get the total displacement: 

km260

km0.60km20021total

=

+=∆+∆=∆ xxx
 

 
(b) As long as the car continues to 
move in the same direction, the 
average velocity for the total trip is 
given by: hkm0.65

h5.1h5.2
km260

total

total

=

+
=

∆
∆

≡
t
xvav

 

 
51 •  
Picture the Problem However unlikely it may seem, imagine that both jets are flying in 
a straight line at constant speed. 
 
(a) The time of flight is the ratio 
of the distance traveled to the 
speed of the supersonic jet. 

( )( )
h25.2

s/h3600km/s340.02
km5500

speedsupersonic

Atlantic
supersonic

=

=

=
st

 

 
(b) The time of flight is the ratio 
of the distance traveled to the 
speed of the subsonic jet. 

( )( )
h99.4

s/h3600km/s340.09.0
km5500

speedsubsonic

Atlantic
subsonic

=

=

=
st

 

 
(c) Adding 2 h on both the front 
and the back of the supersonic 
trip, we obtain the average speed 
of the supersonic flight. hkm880

h00.4h25.2
km5500speed supersonic av,

=

+
=
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(d) Adding 2 h on both the front 
and the back of the subsonic trip, 
we obtain the average speed of the 
subsonic flight. hkm611

h00.4h00.5
km5500speed subsonic av,

=

+
=

 

 
*52 •  
Picture the Problem  In free space, light travels in a straight line at constant speed, c. 
 
(a) Using the definition of average 
speed, solve for and evaluate the 
time required for light to travel from 
the sun to the earth: 

t
s

=speedaverage  

and 

min33.8s500

m/s103
m101.5

speedaverage 8

11

==

×
×

==
st

 

 
(b) Proceed as in (a) this time using 
the moon-earth distance: 
 

s28.1
m/s103

m1084.3
8

8

=
×

×
=t  

 
(c) One light-year is the distance 
light travels in a vacuum in one 
year: ( )( )

mi1089.5

kmmi/1.611km109.48

km1048.9m1048.9year-light1

12

12

1215

×=

×=

×=×=

 
53 •  
Picture the Problem  In free space, light travels in a straight line at constant speed, c. 
 
(a) Using the definition of average 
speed (equal here to the assumed 
constant speed of light), solve for 
the time required to travel the 
distance to Proxima Centauri: 

y4.33  s1037.1

sm103
m101.4

light of speed
 traveleddistance

8

8

16

=×=

×
×

==t
 

 
(b) Traveling at 10-4c, the delivery 
time (ttotal) will be the sum of the 
time for the order to reach Hoboken 
and the time for the pizza to be 
delivered to Proxima Centauri: 

( )( )

y1033.4
y1033.4y33.4

sm10310
km101.433.4

6

6

84

13
delivered be order toHoboken sent to be order tototal

×≈

×+=

×
×

+=

+=

−y

ttt

 

 
 

pay.  tohave
not  doesGregor  y,1000y10  4.33 Since 6 >>×

 
54 •  
Picture the Problem The time for the second 50 km is equal to the time for the entire 
journey less the time for the first 50 km. We can use this time to determine the average 
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speed for the second 50 km interval from the definition of average speed. 
 
Using the definition of average 
speed, find the time required for the 
total journey: 
 
 

h2
hkm50

km100
speed average

distance total
total ===t  

Find the time required for the first 
50 km: 
 

h25.1
hkm40

km50
km501st ==t  

 
Find the time remaining to travel the 
last 50 km: h0.75

h1.25h2km 50st 1totalkm 50 2nd

=
−=−= ttt

 

 
Finally, use the time remaining to 
travel the last 50 km to determine 
the average speed over this distance: 
 

hkm7.66
h75.0

km50
time

 traveleddistance
speed Average

km 50 2nd

km 50 2nd

km 50 2nd

==

=  

 
*55 ••  
Picture the Problem  Note that both the arrow and the sound travel a distance d. We can 
use the relationship between distance traveled, the speed of sound, the speed of the arrow, 
and the elapsed time to find the distance separating the archer and the target. 
 
Express the elapsed time between 
the archer firing the arrow and 
hearing it strike the target: 
 

soundarrows1 ttt ∆+∆==∆  

 
 

Express the transit times for the 
arrow and the sound in terms of the 
distance, d, and their speeds: 
 

m/s40arrow
arrow

d
v

dt ==∆  

and 

m/s340sound
sound

d
v

dt ==∆  

 
Substitute these two relationships in 
the expression obtained in step 1 
and solve for d: 

s1
m/s340m/s40

=+
dd

 

and m8.35=d  

 
56 ••  
Picture the Problem Assume both runners travel parallel paths in a straight line along 
the track. 
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(a) Using the definition of average 
speed, find the time for Marcia: 
 
 
 
 
 
 

( )

( ) s5.14
sm61.15

m 100
speed sJohn'15.1
run distance

speed sMarcia'
run distance

Marcia

==

=

=t

 
 

Find the distance covered by John in 
14.5 s and the difference between 
that distance and 100 m: 

( )( ) m 0.87s 14.5sm6John ==x  
and Marcia wins by 

m 13.0  m 87  m 100 =−  

 
(b) Using the definition of average 
speed, find the time required by 
John to complete the 100-m run: 

s 7.16
sm6

m 100
speedsJohn'

rundistance
John ===t  

 
Marsha wins by 16.7 s – 14.5 s = 2.2 s 
 
Alternatively, the time required by John to 
travel the last 13.0 m is  
(13 m)/(6 m/s) = s 17.2  

 
57 •  
Picture the Problem The average velocity in a time interval is defined as the 
displacement divided by the time elapsed; that is txv ∆∆= /av . 

 
 (a) ∆xa = 0 0av =v  

 
(b) ∆xb = 1 m and ∆tb = 3 s m/s333.0av =v  

 
(c) ∆xc = –6 m and ∆tc = 3 s m/s00.2av −=v  

 
(d) ∆xd = 3 m and ∆td = 3 s m/s00.1av =v  

 
58 ••  
Picture the Problem In free space, light travels in a straight line at constant speed c. We 
can use Hubble’s law to find the speed of the two planets.  
 
(a) Using Hubble’s law, calculate 
the speed of the first galaxy: 

( )( )
m/s1090.7

s1058.1m105
4

11822
a

×=

××= −−v
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(b) Using Hubble’s law, calculate 
the speed of the second galaxy: 

( )( )
m/s1016.3

s1058.1m102
7

11825
b

×=

××= −−v
 

 
(c) Using the relationship between 
distance, speed, and time for both 
galaxies, determine how long ago 
they were both located at the same 
place as the earth: yearsbillion  1.20

y1020.1s1033.6

1

917

=

×=×=

===
HrH

r
v
rt

 

 
 
*59 ••  
Picture the Problem Ignoring the time intervals during which members of this relay 
time get up to their running speeds, their accelerations are zero and their average speed 
can be found from its definition. 
 
Using its definition, relate the 
average speed to the total distance 
traveled and the elapsed time: timeelapsed

traveleddistance
av =v  

 
Express the time required for each 
animal to travel a distance L: 
 

sailfish
sailfish

falcon
falcon

cheetah
cheetah

and

,

,

v
Lt

v
Lt

v
Lt

=

=

=

 

 
Express the total time, ∆t: 
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++=∆

sailfishfalconcheetah

111
vvv

Lt  

 
Use the total distance traveled by the relay team and the elapsed time to calculate the 
average speed: 
 

km/h122

km/h105
1

km/h161
1

km/h113
1

3
av =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

=
L

Lv  

 
Calculate the average of the three speeds: 
 

avspeedsthree 03.1km/h126
3

km/h105km/h161km/h113Average v==
++

=  
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60 ••  
Picture the Problem Perhaps the easiest way to solve this problem is to think in terms of 
the relative velocity of one car relative to the other.  Solve this problem from the 
reference frame of car A.  In this frame, car A remains at rest. 
 
Find the velocity of car B relative to 
car A: 

vrel = vB – vA = (110 – 80) km/h  
      = 30 km/h 
 

Find the time before car B reaches 
car A: 
 

h1.5
km/h30
km45

rel

==
∆

=∆
v

xt  

 
Find the distance traveled, relative 
to the road, by car A in 1.5 h: 

( )( ) km120km/h80h1.5 ==d  

 
*61 ••  
Picture the Problem One way to solve this problem is by using a graphing calculator to 
plot the positions of each car as a function of time.  Plotting these positions as functions 
of time allows us to visualize the motion of the two cars relative to the (fixed) ground.  
More importantly, it allows us to see the motion of the two cars relative to each other. We 
can, for example, tell how far apart the cars are at any given time by determining the 
length of a vertical line segment from one curve to the other. 
 
(a) Letting the origin of our 
coordinate system be at the 
intersection, the position of the 
slower car, x1(t), is given by: 
 

x1(t) = 20t 
where x1 is in meters if t is in seconds.  

Because the faster car is also 
moving at a constant speed, we 
know that the position of this car is 
given by a function of the form: 
 

x2(t) = 30t + b 
 

We know that when t = 5 s, this 
second car is at the intersection (i.e.,  
x2(5 s) = 0).  Using this information, 
you can convince yourself that:  
 

b = −150 m 
 

Thus, the position of the faster car is 
given by: 
 

( ) 150302 −= ttx  
 

One can use a graphing calculator, 
graphing paper, or a spreadsheet to 
obtain the graphs of x1(t) (the solid 
line) and x2(t) (the dashed line) 
shown to the right: 
 

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16

t  (s)

x 
(m

)

 
(b) Use the time coordinate of the From the intersection of the two lines, one 
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intersection of the two lines to 
determine the time at which the 
second car overtakes the first:  
 

can see that the second car will "overtake" 
(catch up to) the first car at s 15  =t . 

 
(c) Use the position coordinate of 
the intersection of the two lines to 
determine the distance from the 
intersection at which the second car 
catches up to the first car: 
 

From the intersection of the two lines, one 
can see that the distance from the 
intersection is m 300 .  

 

(d) Draw a vertical line from t = 5 
s to the red line and then read the 
position coordinate of the 
intersection of this line and the red 
line to determine the position of the 
first car when the second car went 
through the intersection: 

From the graph, when the second car 
passes the intersection, the first car was 

ahead m 100 . 

 
62 •  
Picture the Problem Sally’s velocity relative to the ground (vSG) is the sum of her 
velocity relative to the moving belt (vSB) and the velocity of the belt relative to the ground 
(vBG). Joe’s velocity relative to the ground is the same as the velocity of the belt relative 
to the ground. Let D be the length of the moving sidewalk. 
 
Express D in terms of vBG (Joe’s 
speed relative to the ground): 

( ) BGmin2 vD =  
 
 

Solve for vBG: 

min2BG
Dv =  

 
Express D in terms of vBG + vSG 
(Sally’s speed relative to the 
ground): 
 

( )( )

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

+=

SG

SGBG

min2
min1

min1

vD

vvD
 

 
Solve for vSG: 
 min2min2min1SG

DDDv =−=  

 
Express D in terms of vBG + 2vSB 
(Sally’s speed for a fast walk 
relative to the ground): 
 

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=+=

min2
3

min2
2

min2
2

f

fSBBGf

Dt

DDtvvtD
 

 
Solve for tf as time for Sally's fast 
walk: s0.40

3
min2

f ==t  
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63 ••  
Picture the Problem The speed of Margaret’s boat relative to the riverbank ( BRv ) is the 

sum or difference of the speed of her boat relative to the water ( BWv ) and the speed of 

the water relative to the riverbank ( RvW ), depending on whether she is heading with or 
against the current. Let D be the distance to the marina. 
 
Express the total time for the trip: 
 

21tot ttt +=  
 

Express the times of travel with the 
motor running in terms of D, RvW  

and BWv : 
 

h4
WRBW

1 =
−

=
vv

Dt  

and 

WRBW
2 vv

Dt
+

=  

 
Express the time required to drift 
distance D and solve for WRv : 
 

h8

and

h8

WR

WR
3

Dv

v
Dt

=

==

 

 
From t1 = 4 h, find BWv : 
 h8

3
h8h4h4 WRBW

DDDvDv =+=+=  

 
Solve for t2: 
 h2

h8h8
3

WRBW
2 =

+
=

+
= DD

D
vv

Dt  

 
Add t1 and t2 to find the total time: h621tot =+= ttt  

 
Acceleration 
 
64 •  
Picture the Problem In part (a), we can apply the definition of average acceleration to 
find aav. In part (b), we can find the change in the car’s velocity in one second and add 
this change to its velocity at the beginning of the interval to find its speed one second 
later. 
 
(a) Apply the definition of average 
acceleration: 
 

sh
km8.70

s3.7
km/h48.3km/h80.5

av

⋅
=

−
=

∆
∆

=
t
va
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Convert to m/s2: 

2

3
av

m/s42.2

s3600
h1

sh
m108.70

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⋅
×=a

 

 
(b) Express the speed of the car at 
the end of 4.7 s: 
 

( ) ( )
s1

s1

km/h5.80

s7.3s7.4

v

vvv

∆+=

∆+=
 

Find the change in the speed of the 
car in 1 s: ( )

km/h8.70

s1
sh

km8.70av

=

⎟
⎠
⎞

⎜
⎝
⎛

⋅
=∆=∆ tav

 

 
Substitute and evaluate v(4.7 s): ( )

km/h2.89

km/h7.8km/h5.80s7.4

=

+=v
 

 
65 •  
Picture the Problem  Average acceleration is defined as aav = ∆v/∆t. 
 
The average acceleration is defined 
as the change in velocity divided by 
the change in time: 

 

( ) ( )
( ) ( )

2

av

m/s00.2

s5s8
m/s5m/s1

−=

−
−−

=
∆
∆

=
t
va

 

 
66 ••  
Picture the Problem The important concept here is the difference between average 
acceleration and instantaneous acceleration. 
 
(a) The average acceleration is 
defined as the change in velocity 
divided by the change in time: 
 

aav = ∆v/∆t 
 

Determine v at t = 3 s, t = 4 s, and  
t = 5 s: 
 

v(3 s) = 17 m/s 
v(4 s) = 25 m/s 
v(5 s) = 33 m/s 
 

Find aav for the two 1-s intervals: 
 

aav(3 s to 4 s) = (25 m/s – 17 m/s)/(1 s) 
                      = 8 m/s2 
and 
aav(4 s to 5 s) = (33 m/s – 25 m/s)/(1 s)  
                      = 8 m/s2 
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(b) The given function was used to 
produce the graph of v-versus-t 
shown to the right: 
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10

15

20
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35
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t  (s)

v 
(m

/s)

The instantaneous acceleration is 
defined as the time derivative of the 
velocity or the slope of the velocity- 
versus-time curve: 

2m/s00.8==
dt
dva  

 
67 ••  
Picture the Problem We can closely approximate the instantaneous velocity by the 
average velocity in the limit as the time interval of the average becomes small.  This is 
important because all we can ever obtain from any measurement is the average velocity, 
vav, which we use to approximate the instantaneous velocity v. 
 
(a) Find x(4 s) and x(3 s): 
 
 
 

x(4 s) = (4)2 – 5(4) + 1 = –3 m  
and 
x(3 s) = (3)2 – 5(3) + 1 = −5 m  

Find ∆x: 
 

∆x = x(4 s) – x(3 s) = (–3 m) – (–5 m)            

= m2  

 
Use the definition of average velocity: vav = ∆x/∆t = (2 m)/(1 s) = m/s 2  

 
(b) Find x(t + ∆t): 
 
 
 

x(t + ∆t) =  (t + ∆t)2 − 5(t + ∆t) + 1  
= (t2 + 2t∆t + (∆t)2) –                     

5(t + ∆t) + 1 
 

Express x(t + ∆t) – x(t) = ∆x: ( ) ( )252 tttx ∆+∆−=∆  

where ∆x is in meters if t is in seconds. 
 

(c) From (b) find ∆x/∆t as ∆t → 0: ( ) ( )

tt
t

ttt
t
x

∆+−=
∆

∆+∆−
=

∆
∆

52

52 2

 

and 
( )  52/lim 0 −=∆∆= →∆ ttxv t   

where v is in m/s if t is in seconds. 
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Alternatively, we can take the 
derivative of x(t) with respect to 
time to obtain the instantaneous 
velocity. 

( ) ( ) ( )
522

12

−=+=

++==

tbat

btat
dt
ddttdxtv

 

 
*68 ••  
Picture the Problem The instantaneous velocity is dtdx and the acceleration is dtdv . 
 
Using the definitions of 
instantaneous velocity and 
acceleration, determine v and a: 

[ ] BAtCBtAt
dt
d

dt
dxv −=+−== 22  

and 

[ ] ABAt
dt
d

dr
dva 22 =−==     

 
 

Substitute numerical values for A 
and B and evaluate v and a: 

( )
( ) m/s6m/s 16

m/s 6m/s82
2

2

−=

−=

t

tv
 

and 

( ) 22 m/s 0.16m/s 82 ==a  

 
69 ••  
Picture the Problem We can use the definition of average acceleration (aav = ∆v/∆t) to 
find aav for the three intervals of constant acceleration shown on the graph. 

 
(a) Using the definition of average 
acceleration, find aav for the interval 
AB: 
 

2
AB av, m/s33.3

s3
m/s5m/s15

=
−

=a  

Find aav for the interval BC: 
 0

s3
m/s15m/s15

BC av, =
−

=a  

 
Find aav for the interval CE: 
 

2
CE av, m/s50.7

s4
15m/sm/s15

−=
−−

=a

 
 

(b) Use the formulas for the areas of 
trapezoids and triangles to find the 
area under the graph of v as a 
function of t. 
 

( ) ( ) ( )
( )

( )( )

m0.75

s) m/s)(2 15()sm/s)(215(
s) m/s)(3 (15s3m/s15m/s5

2
1

2
1

2
1

ED

DCCBBA

=

−++

++=
∆+

∆+∆+∆=∆

→

→→→

x
xxxx

 
 



Chapter 2 
 

 

62 

(c) The graph of displacement, x, as 
a function of time, t, is shown in the 
figure to the right. In the region 
from B to C the velocity is constant 
so the x- versus-t curve is a straight 
line. 
 
 0
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80

100
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(d) Reading directly from the figure, 
we can find the time when the 
particle is moving the slowest. 0.   , thereforeaxis;  timethe

crossesgraph   thes, 8   D,point At 
=

=
v

t
 

 
 
Constant Acceleration and Free-Fall 
 
*70 •  
Picture the Problem Because the acceleration is constant (–g) we can use a constant-
acceleration equation to find the height of the projectile.   
 
Using a constant-acceleration 
equation, express the height of the 
object as a function of its initial 
velocity, the acceleration due to 
gravity, and its displacement: 
 

yavv ∆+= 22
0

2  
 
 
 

Solve for ∆ymax = h: 
 

Because v(h) = 0, 

( )   
22

2
0

2
0

g
v

g
vh =

−
−

=  

 
From this expression for h we see 
that the maximum height attained is 
proportional to the square of the 
launch speed: 
 

2
0vh ∝  

Therefore, doubling the initial speed 
gives four times the height: 

( )
00

4
2

4
2

2 2
0

2
0

2v vh
g

v
g

vh =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==  

and ( ) correct. is a  

 
71 •  
Picture the Problem Because the acceleration of the car is constant we can use constant-
acceleration equations to describe its motion. 
 
(a) Uing a constant-acceleration 
equation, relate the velocity to the 
acceleration and the time: 
 

( )( )
sm0.80

s10sm80 2
0

=

+=+= atvv
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(b) sing a constant-acceleration 
equation, relate the displacement to 
the acceleration and the time: 
 

2
00 2

tatvxxx +=−=∆  

Substitute numerical values and 
evaluate ∆x: ( ) ( ) m400s10sm8

2
1 22 ==∆x  

 
(c) Use the definition of vav: m/s40.0

s10
m400

av ==
∆
∆

=
t
xv  

 
Remarks: Because the area under a velocity-versus-time graph is the displacement 
of the object, we could solve this problem graphically. 
 
72 •  
Picture the Problem Because the acceleration of the object is constant we can use 
constant-acceleration equations to describe its motion. 
 
Using a constant-acceleration 
equation, relate the velocity to the 
acceleration and the displacement: 
 

xavv ∆+= 22
0

2  
 
  

Solve for and evaluate the 
displacement: 

( )
( )

m0.50

sm22
sm515

2 2

22222
0

2

=

−
=

−
=∆

a
vvx

 

 
*73 •  
Picture the Problem Because the acceleration of the object is constant we can use 
constant-acceleration equations to describe its motion. 
 
Using a constant-acceleration 
equation, relate the velocity to the 
acceleration and the displacement: 

xavv ∆+= 22
0

2  
 
 

Solve for the acceleration: 
x
vva

∆
−

=
2

2
0

2

 

Substitute numerical values and 
evaluate a: 

 

( )
( )

2
2222

sm6.15
m42

sm1015
=

−
=a  

 
74 •  
Picture the Problem Because the acceleration of the object is constant we can use 
constant-acceleration equations to describe its motion. 
 
Using a constant-acceleration 
equation, relate the velocity to the 
acceleration and the displacement: 

xavv ∆+= 22
0

2  
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Solve for and evaluate v: 
 ( ) ( )( )

m/s00.3

m1sm42sm1 22

=

+=v
 

 
Using the definition of average 
acceleration, solve for the time: s500.0

sm4
sm1sm3

2
av

=
−

=
∆

=
a

vt  

 
75 ••  
Picture the Problem In the absence of air resistance, the ball experiences constant 
acceleration. Choose a coordinate system with the origin at the point of release and the 
positive direction upward. 
 
(a) Using a constant-acceleration 
equation, relate the displacement of 
the ball to the acceleration and the 
time:  
 

2
2
1

0 attvy +=∆  
 

Setting ∆y = 0 (the displacement for 
a round trip), solve for and evaluate 
the time required for the ball to 
return to its starting position: 
 

( ) s08.4
m/s9.81
m/s2022

2
0

tripround ===
g
vt  

 

(b) Using a constant-acceleration 
equation, relate the final speed of 
the ball to its initial speed, the 
acceleration, and its displacement: 

yavv ∆+= 22
0

2
top  

or, because vtop = 0 and a = −g, 
( )Hg−+= 2v0 2

0  
 

Solve for and evaluate H: 
 

( )
( ) m4.20

sm81.92
sm20

2 2

22
0 ===
g

vH  

 
(c) Using the same constant-
acceleration equation with which we 
began part (a), express the 
displacement as a function of time: 
 

2
2
1

0 attvy +=∆  
 
 

Substitute numerical values to 
obtain: ( ) 2

2

2
m/s81.9m/s20m15 tt ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=  

 
Solve the quadratic equation for the 
times at which the displacement of 
the ball is 15 m: 

The solutions are s991.0=t  (this 

corresponds to passing 15 m on the way 
up) and s09.3=t  (this corresponds to 

passing 15 m on the way down). 
 
76 ••  
Picture the Problem This is a multipart constant-acceleration problem using two 
different constant accelerations.  We’ll choose a coordinate system in which downward is 
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the positive direction and apply constant-acceleration equations to find the required 
times. 
 
(a) Using a constant-acceleration 
equation, relate the time for the slide 
to the distance of fall and the 
acceleration: 

2
12

1
100 0 attvhyyy +=−=−=∆   

or, because v0 = 0, 
2
12

1 ath =  
 

Solve for t1: 

g
ht 2

1 =  

 
Substitute numerical values and 
evaluate t1: 

( ) s68.9
sm81.9

m4602
21 ==t  

 
(b) Using a constant-acceleration 
equation, relate the velocity at the 
bottom of the mountain to the 
acceleration and time: 

1101 tavv +=  
or, because v0 = 0 and a1 = g, 

11 gtv =  
 

Substitute numerical values and 
evaluate v1: 

( )( ) sm0.95s68.9sm81.9 2
1 ==v  

 
(c) Using a constant-acceleration 
equation, relate the time required to 
stop the mass of rock and mud to its 
average speed and the distance it 
slides: 
 

avv
xt ∆

=∆  

 
 

Because the acceleration is constant: 

22
0

2
11f1

av
vvvvv =

+
=

+
=  

 
Substitute to obtain: 

1

2
v

xt ∆
=∆  

 
Substitute numerical values and 
evaluate ∆t: 

( ) s168
sm0.95

m80002
==∆t  

 
*77 ••  
Picture the Problem In the absence of air resistance, the brick experiences constant 
acceleration and we can use constant-acceleration equations to describe its motion.  
Constant acceleration implies a parabolic position-versus-time curve. 
 
(a) Using a constant-acceleration  
equation, relate the position of the 
brick to its initial position, initial 
velocity, acceleration, and time into 
its fall: 

The graph of 
( )

( ) ( ) 22

2
2
1

00

sm91.4sm5m6 tt

tgtvyy

−+=

−++=
 

was plotted using a spreadsheet program. 
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(b) Relate the greatest height 
reached by the brick to its height 
when it falls off the load and the 
additional height it rises ∆ymax: 
 

max0 ∆yyh +=  

Using a constant-acceleration 
equation, relate the height reached 
by the brick to its acceleration and 
initial velocity:  

( ) max
2
0

2
top 2 ygvv ∆−+=  

or, because vtop = 0, 
( ) max

2
0 20 ygv ∆−+=  

 
Solve for ∆ymax: 

g
vy
2

2
0

max =∆  

 
Substitute numerical values and 
evaluate ∆ymax: 

( )
( ) m27.1

sm81.92
sm5

2

2

max ==∆y  

 
Substitute to obtain: m7.27m1.27m6∆ max0 =+=+= yyh

Note: The graph shown above confirms 
this result. 
 

(c) Using the quadratic formula, 
solve for t in the equation obtained 
in part (a): 

( )

( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ∆
−±⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎠
⎞

⎜
⎝
⎛ −

∆−⎟
⎠
⎞

⎜
⎝
⎛ −

−±−
=

2
0

0

2
00

211

2
2

2
4

v
yg

g
v

g

ygvv
t

 

With ybottom = 0 and yo = 6 m or  
∆y  = –6 m, we have s73.1=t  and 

t = –0.708 s. Note: The second solution is 
nonphysical. 
 

(d) Using a constant-acceleration 
equation, relate the speed of the 
brick on impact to its acceleration 

ghv 2=  
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and displacement, and solve for its 
speed: 
 
Substitute numerical values and 
evaluate v: ( )( ) sm9.11m27.7sm81.92 2 ==v  

 
78 ••  
Picture the Problem In the absence of air resistance, the acceleration of the bolt is 
constant. Choose a coordinate system in which upward is positive and the origin is at the 
bottom of the shaft (y = 0). 
 
(a) Using a constant-acceleration 
equation, relate the position of the 
bolt to its initial position, initial 
velocity, and fall time: 
 

( ) 2
2
1

00

bottom 0

tgtvy

y

−++=

=
 

 

Solve for the position of the bolt 
when it came loose: 

2
2
1

00 gttvy +−=  
 

Substitute numerical values and 
evaluate y0: 

( )( ) ( )( )
m1.26

s3sm81.9s3sm6 22
2
1

0

=

+−=y
 

 
(b) Using a constant-acceleration 
equation, relate the speed of the bolt 
to its initial speed, acceleration, and 
fall time: 
 

atvv += 0  

Substitute numerical values and 
evaluate v : 

( )( ) sm4.23s3sm81.9sm6 2 −=−=v  
and 

sm23.4  =v  

 
*79 ••  
Picture the Problem In the absence of air resistance, the object’s acceleration is 
constant. Choose a coordinate system in which downward is positive and the origin is at 
the point of release. In this coordinate system, a = g and y = 120 m at the bottom of the 
fall. 
 
Express the distance fallen in the 
last second in terms of the object’s 
position at impact and its position 1 
s before impact: 
 

impactbefores1secondlast m120 yy −=∆    (1) 
 

Using a constant-acceleration 
equation, relate the object’s position 
upon impact to its initial position, 
initial velocity, and fall time: 
 

2
2
1

00 gttvyy ++=  
or, because y0 = 0 and v0 = 0, 

2
fall2

1 gty =  
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Solve for the fall time: 

g
yt 2

fall =  

 
Substitute numerical values and 
evaluate tfall: 

( ) s95.4
m/s81.9

m1202
2fall ==t  

 
We know that, one second before 
impact, the object has fallen for 3.95 
s.  Using the same constant-
acceleration equation, calculate the 
object’s position 3.95 s into its fall: 
 

( )( )
m4.76

s95.3m/s81.9s) (3.95 22
2
1

=

=y
 

Substitute in equation (1) to obtain: m6.43m4.76m120secondlast =−=∆y  
 
80 ••  
Picture the Problem In the absence of air resistance, the acceleration of the object is 
constant. Choose a coordinate system with the origin at the point of release and 
downward as the positive direction. 
 
Using a constant-acceleration 
equation, relate the height to the 
initial and final velocities and the 
acceleration; solve for the height: 

yavv ∆+= 22
0

2
f  

or, because v0 = 0, 

g
vh
2

2
f=                      (1) 

 
Using the definition of average 
velocity, find the average velocity of 
the object during its final second of 
fall: 
 

sm38
s1
m38

2
fs1-f

av ==
∆
∆

=
+

=
t
yvv

v  

 

Express the sum of the final velocity 
and the velocity 1 s before impact: 
 

( ) sm76sm382fs1-f ==+ vv  
 

From the definition of acceleration, 
we know that the change in velocity 
of the object, during 1 s of fall, is 
9.81 m/s: 
 

sm81.9s1-ff =−=∆ vvv  

Add the equations that express the 
sum and difference of vf – 1 s and vf 
and solve  
for vf: 
 

sm9.42
2

sm81.9sm76
f =

+
=v  

Substitute in equation (1) and 
evaluate h: 

( )
( ) m8.93

sm81.92
sm9.42

2

2

==h  
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*81 •  
Picture the Problem In the absence of air resistance, the acceleration of the stone is 
constant. Choose a coordinate system with the origin at the bottom of the trajectory and 
the upward direction positive. Let 21-fv be the speed one-half second before impact 

and fv the speed at impact. 
 
Using a constant-acceleration 
equation, express the final speed of 
the stone in terms of its initial speed, 
acceleration, and displacement: 
 

yavv ∆+= 22
0

2
f  

 
 
 

Solve for the initial speed of the 
stone: 
 

ygvv ∆+= 22
f0              (1) 

 
Find the average speed in the last 
half second: 
 

sm90
s0.5

m45
2

second halflast f21-f
av

=

=
∆

∆
=

+
=

t
xvv

v
 

and 
( ) sm180sm902f21-f ==+ vv  

 
Using a constant-acceleration 
equation, express the change in 
speed of the stone in the last half 
second in terms of the acceleration 
and the elapsed time; solve for the 
change in its speed: 
 

( )( )
sm91.4

s5.0sm81.9 2

21-ff

=
=

∆=−=∆ tgvvv

 

Add the equations that express the 
sum and difference of vf – ½ and vf 
and solve for vf: 
 

sm5.92
2

sm91.4sm180
f =

+
=v  

 

Substitute in equation (1) and 
evaluate v0: 

( ) ( ) ( )
sm1.68

m200sm81.92sm5.92 22
0

=

−+=v
 

 
Remarks: The stone may be thrown either up or down from the cliff and the results 
after it passes the cliff on the way down are the same. 
 
82 ••  
Picture the Problem In the absence of air resistance, the acceleration of the object is 
constant. Choose a coordinate system in which downward is the positive direction and the 
object starts from rest. Apply constant-acceleration equations to find the average velocity 
of the object during its descent. 
 
Express the average velocity of the 
falling object in terms of its initial 
and final velocities: 
 

2
f0

av
vvv +

=  
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Using a constant-acceleration 
equation, express the displacement 
of the object during the 1st second in 
terms of its acceleration and the 
elapsed time:   
 

hgty  0.4  m 91.4
2

2

second1st ===∆  

 

Solve for the displacement to 
obtain: 

h = 12.3 m 
 

Using a constant-acceleration 
equation, express the final velocity 
of the object in terms of its initial 
velocity, acceleration, and 
displacement: 
 

 22
0

2
f ygvv ∆+=  

or, because v0 = 0, 
 2f ygv ∆=  

Substitute numerical values and 
evaluate the final velocity of the 
object: 
 

( ) ( ) sm5.15m3.12sm81.92 2
f ==v  

 

Substitute in the equation for the 
average velocity to obtain: sm77.7

2
sm5.150

av =
+

=v  

 
83 ••  
Picture the Problem This is a three-part constant-acceleration problem.  The bus starts 
from rest and accelerates for a given period of time, and then it travels at a constant 
velocity for another period of time, and, finally, decelerates uniformly to a stop. The 
pictorial representation will help us organize the information in the problem and develop 
our solution strategy. 
 

 
 
(a) Express the total displacement of 
the bus during the three intervals of 
time. 
 

( ) ( )
( )ends37

s37s12s120total

→∆+
→∆+→∆=∆

x
xxx

 

 
Using a constant-acceleration 
equation, express the displacement 
of the bus during its first 12 s of 
motion in terms of its initial 
velocity, acceleration, and the 
elapsed time; solve for its 
displacement: 
 

( ) 2
2
1

0s120 attvx +=→∆  
or, because v0 = 0, 

( ) m108s120 2
2
1 ==→∆ atx  
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Using a constant-acceleration 
equation, express the velocity of the 
bus after 12 seconds in terms of its 
initial velocity, acceleration, and the 
elapsed time;  solve for its velocity 
at the end of 12 s: 
 

( )( )
m/s18

s12m/s5.1 2
s1200s12

=

=∆+= → tavv
 

During the next 25 s, the bus moves 
with a constant velocity. Using the 
definition of average velocity, 
express the displacement of the bus 
during this interval in terms of its 
average (constant) velocity and the 
elapsed time: 
 

( ) ( )( )
m450

s25m/s18s37s12 s12

=

=∆=→∆ tvx
 

Because the bus slows down at the 
same rate that its velocity increased 
during the first 12 s of motion, we 
can conclude that its displacement 
during this braking period is the 
same as during its acceleration 
period and the time to brake to a 
stop is equal to the time that was 
required for the bus to accelerate to 
its cruising speed of 18 m/s. Hence: 
 

( ) m108s49s37 =→∆x  

Add the displacements to find the 
distance the bus traveled: 

m 666

m 108  m 450  m 108total

=

++=∆x

 
 

(b) Use the definition of average 
velocity to calculate the average 
velocity of the bus during this trip: 

sm6.13
s49
m666total

av ==
∆

∆
=

t
xv  

 
Remarks: One can also solve this problem graphically.  Recall that the area under a 
velocity as a function-of-time graph equals the displacement of the moving object. 
 
*84 ••  
Picture the Problem While we can solve this problem analytically, there are many 
physical situations in which it is not easy to do so and one has to rely on numerical 
methods; for example, see the spreadsheet solution shown below. Because we’re 
neglecting the height of the release point, the position of the ball as a function of time is 
given by 2

2
1

0 gttvy −= . The formulas used to calculate the quantities in the columns are 
as follows: 
 

Cell Content/Formula Algebraic Form
B1 20 v0 
B2 9.81 g 
B5 0 t 
B6 B5 + 0.1 tt ∆+  



Chapter 2 
 

 

72 

C6 $B$1*B6 − 0.5*$B$2*B6^2 2
2
1

0 gttv −   
 
(a) 
 A B C 

1 v0 = 20 m/s 
2 g = 9.81 m/s^2 
3  t height 
4  (s) (m) 
5  0.0 0.00 
6  0.1 1.95 
7  0.2 3.80 
8  0.3 5.56 
9  0.4 7.22 

10  0.5 8.77 
    

40  3.5 9.91 
41  3.6 8.43 
42  3.7 6.85 
43  3.8 5.17 
44  3.9 3.39 
45  4.0 1.52 
46  4.1 −0.45  

 
The graph shown below was generated from the data in the previous table. Note that the 
maximum height reached is a little more than 20 m and the time of flight is about 4 s. 
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(b) In the spreadsheet, change the value in cell B1 from 20 to 10.  The graph should 
automatically update.  With an initial velocity of 10 m/s, the maximum height achieved is 
approximately 5 m and the time-of-flight is approximately 2 s. 
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*85 ••  
Picture the Problem Because the accelerations of both Al and Bert are constant, 
constant-acceleration equations can be used to describe their motions. Choose the origin 
of the coordinate system to be where Al decides to begin his sprint. 
 
(a) Using a constant-acceleration 
equation, relate Al's initial velocity, 
his acceleration, and the time to 
reach the end of the trail to his 
displacement in reaching the end of 
the trail: 
 

2
2
1

0 attvx +=∆  
 
 
 
 

Substitute numerical values to 
obtain: 
 

22
2
1 )m/s5.0(  m/s) (0.75m35 tt +=  

 

Solve for the time required for Al to 
reach the end of the trail: 
 

s4.10=t  

(b) Using constant-acceleration 
equations, express the positions of 
Bert and Al as functions of time.  At 
the instant Al turns around at the 
end of the trail, t = 0.  Also, x = 0 at 
a point 35 m from the end of the 
trail: 
 

( )
and

m/s75.0Bert,0Bert txx +=
 

( )
( )t

txx
m/s0.85m35
m/s85.00,AlAl

−=

−=
 

 

Calculate Bert’s position at t = 0.  
At that time he has been running for 
10.4 s: 
 

( )( ) m80.7s4.10m/s75.0Bert,0 ==x  

Because Bert and Al will be at the 
same location when they meet, 

( ) ( )tt m/s85.0m35m/s75.0m80.7 −=+
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equate their position functions and 
solve for t: 
 

and 
s0.17=t  

 
To determine the elapsed time from 
when Al began his accelerated run, 
we need to add 10.4 s to this time: 
 

s4.27s4.10s0.17start =+=t  

(c) Express Bert’s distance from the 
end of the trail when he and Al 
meet: 
 

Al meets he until runsBert 

Bert,0 trailof end m35
d

xd
−

−=
 

 
Substitute numerical values and 
evaluate dend of trail: 

m5.14

m/ss)(0.7517(
m80.7m35 trailof end

=

−
−=d

 

 
86 ••   
Picture the Problem Generate two curves on one graph with the first curve representing 
Al's position as a function of time and the second curve representing Bert’s position as a 
function of time.  Al’s position, as he runs toward the end of the trail, is given by 

2
Al2

1
0Al tatvx += and Bert’s position by tvxx BertBert0,Bert += . Al’s position, once he’s 

reached the end of the trail and is running back toward Bert, is given 
by ( )s5.10AlAl,0Al −+= tvxx . The coordinates of the intersection of the two curves give 
the time and place where they meet. A spreadsheet solution is shown below. The formulas 
used to calculate the quantities in the columns are as follows: 
 

Cell Content/Formula Algebraic Form 
B1 0.75 v0 
B2 0.50 aAl 
B3 −0.85 t 

B10 B9 + 0.25 t + ∆t 
C10 $B$1*B10 + 0.5*$B$2*B10^2 2

Al2
1

0 tatv +  
C52 $C$51 + $B$3*(B52 − $B$51) ( )s5.10AlAl,0 −+ tvx
F10 $F$9 + $B$1*B10 tvx BertBert0, +  

 
 
(b) and (c) 

 
 A B C D E F 

1 v0 = 0.75 m/s    
2 a(Al) = 0.5 m/s^2    
3 v(Al) = −0.85 m/s    
4       
5  t (s) x (m)   x (m) 
6       
7       
8   Al   Bert 
9  0.00 0.00   0.00 
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10  0.25 0.20   0.19 
11  0.50 0.44   0.38 
12  0.75 0.70   0.56 
13  1.00 1.00   0.75 

       
49  10.00 32.50   7.50 
50  10.25 33.95   7.69 
51  10.50 35.44 *Al reaches 7.88 
52  10.75 35.23 end of trail 8.06 
53  11.00 35.01 and starts  8.25 
54  11.25 34.80 back toward 8.44 
55  11.50 34.59  Bert  8.63 

56  11.75 34.38   8.81 
57  12.00 34.16   9.00 
58  12.25 33.95   9.19 
59  12.50 33.74   9.38 
60  12.75 33.53   9.56 
       
119  27.50 20.99   20.63 
120  27.75 20.78   20.81 
121  28.00 20.56   21.00 
122  28.25 20.35   21.19 
123  28.50 20.14   21.38 
124  28.75 19.93   21.56 
125  29.00 19.71   21.75 
126  29.25 19.50   21.94 
127  29.50 19.29   22.13 
128  29.75 19.08   22.31 
129  30.00 18.86   22.50  

 
The graph shown below was generated from the spreadsheet; the positions of both Al and 
Bert were calculated as functions of time. The dashed curve shows Al’s position as a 
function of time for the two parts of his motion.  The solid line that is linear from the 
origin shows Bert’s position as a function of time. 
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Note that the spreadsheet and the graph (constructed from the spreadsheet data) confirm 
the results in Problem 85 by showing Al and Bert meeting at about 14.5 m from the end of 
the trail after an elapsed time of approximately 28 s. 
 
87 ••  
Picture the Problem This is a two-part constant-acceleration problem. Choose a 
coordinate system in which the upward direction is positive. The pictorial representation 
will help us organize the information in the problem and develop our solution strategy. 
 

 
 
(a) Express the highest point the 
rocket reaches, h, as the sum of its 
displacements during the first two 
stages of its flight: 
 

stage2ndstage1st xxh ∆+∆=  
 

Using a constant-acceleration 
equation, express the altitude 
reached in the first stage in terms of 
the rocket’s initial velocity, 
acceleration, and burn time;  
solve for the first stage altitude: 
 

m 6250
s) 25)(m/s (20 22

2
1

2
stagst12

1
00stage1st

=

=

++= tatvxx e

 

Using a constant-acceleration 
equation, express the velocity of the 
rocket at the end of its first stage in 
terms of its initial velocity, 
acceleration, and displacement; 
calculate its end-of-first-stage 
velocity: 
 

m/s 500 
s) 25)(m/s (20 2

stagest10stagest1

=
=

+= tavv

 

Using a constant-acceleration 
equation, express the final velocity 
of the rocket during the remainder 
of its climb in terms of its shut-off 
velocity, free-fall acceleration, and 
displacement; solve for its 
displacement: 
 

stage2ndstagend2
2
shutoff

2
pointhighest 2 yavv ∆+=  

and, because vhighest point = 0, 
( )
( )
m102742.1

sm81.92
sm500

2
 

4

2

22
shutoff

stagend2

×=

=
−

−
=∆

g
vy

 

Substitute in the expression for the 
total height to obtain: 

km0.19

m1027.1m6250 4

=

×+=h
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(b) Express the total time the 
rocket is in the air in terms of the 
three segments of its flight: descentsegment2nd

descentsegment2ndclimbpoweredtotal

s25 tt

tttt

∆+∆+=

∆+∆+∆=∆

 
 

Express ∆t2nd segment in terms of the 
rocket’s displacement and average 
velocity: 
 

 velocityAverage
ntDisplaceme

segment2nd =∆t  

Substitute numerical values and 
evaluate ∆t2nd segment: 
 

s 50.97

2
m/s5000

m102742.1 4

segment2nd =
⎟
⎠
⎞

⎜
⎝
⎛ +

×
=∆t  

 
Using a constant-acceleration 
equation, relate the fall distance to 
the descent time: 
 

( )2
descent2

1
0 tgtvy ∆+=∆  

or, because v0 = 0, 
( )2

descent2
1 tgy ∆=∆  

 
Solve for ∆tdescent: 
 g

yt ∆
=∆

2
descent  

 
Substitute numerical values and 
evaluate ∆tdescent: 

( )
s2.62

m/s9.81
m1090.12

2

4

descent =
×

=∆t  

 
Substitute and calculate the total 
time the rocket is in the air: 
 s18min2

s138s62.2s50.97s25

=

=++=∆t
 

 
(c) Using a constant-acceleration 
equation, express the impact 
velocity of the rocket in terms of its 
initial downward velocity, 
acceleration under free-fall, and 
time of descent; solve for its impact 
velocity: 

descent0impact tgvv ∆+=  
and, because v0 = 0, 

( )( )
m/s610

s2.62m/s81.9 2
impact

=

=∆= tgv
 

 
88 ••  
Picture the Problem In the absence of air resistance, the acceleration of the flowerpot is 
constant. Choose a coordinate system in which downward is positive and the origin is at 
the point from which the flowerpot fell.  Let t = time when the pot is at the top of the 
window, and t + ∆t the time when the pot is at the bottom of the window. 
 
Using a constant-acceleration 
equation, express the distance y 
below the ledge from which the pot 
fell as a function of time:  
 

2
2
1

00

2
2
1

00

,0=and  =  Since

gty

yvga
attvyy

=

=
++=
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To find the distance from the ledge 
to the top of the window, first find 
the time ttop that it takes the pot to 
fall to the top of the window: 
 

 

Express the position of the pot as it 
reaches the top of the window: 
 

2
top2

1
top gty =  

Express the position of the pot as it 
reaches the bottom of the window: 
 
 

( )2
windowtop2

1
bottom ttgy ∆+=  

where ∆twindow = t top − tbottom  
 

Subtract ybottom from ytop to obtain an 
expression for the displacement 
∆ywindow of the pot as it passes the 
window: 
 

( )[ ]
( )[ ]2

windowwindowtop2
1

2
top

2
windowtop2

1
window

2 tttg

tttgy

∆+∆=

−∆+=∆
 

 

Solve for ttop: 
 ( )

window

2
window

window

top 2
g

2

t

ty

t
∆

∆−
∆

=  

 
Substitute numerical values and 
evaluate ttop: 
 

( ) ( )

( ) s839.1
s2.02

s2.0
m/s9.81
m42 2

2

top =
−

=t  

 
Substitute this value for ttop to obtain 
the distance from the ledge to the 
top of the window: 

m 18.4s) )(1.939m/s (9.81 22
2
1

top ==y

 
*89 ••  
Picture the Problem The acceleration of the glider on the air track is constant. Its 
average acceleration is equal to the instantaneous (constant) acceleration.  Choose a 
coordinate system in which the initial direction of the glider’s motion is the positive 
direction. 
 
Using the definition of acceleration, 
express the average acceleration of 
the glider in terms of the glider’s 
velocity change and the elapsed 
time: 
 

t
vaa

∆
∆

== av  

 
 

Using a constant-acceleration 
equation, express the average 
velocity of the glider in terms of the 
displacement of the glider and the 
elapsed time:  
 

2
0

av
vv

t
xv +

=
∆
∆

=  
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Solve for and evaluate the initial 
velocity: 

( )

cm/s 0.40

cm/s) 15(
s8
cm10022

0

=

−−=−
∆
∆

= v
t
xv

 

 
Substitute this value of v0 and 
evaluate the average acceleration of 
the glider: 

2cm/s 6.88
s 8

cm/s) (40 cm/s 15

−=

−−
=a

 

 
90 ••  
Picture the Problem In the absence of air resistance, the acceleration of the rock is 
constant and its motion can be described using the constant-acceleration equations. 
Choose a coordinate system in which the downward direction is positive and let the 
height of the cliff, which equals the displacement of the rock, be represented by h. 
 
Using a constant-acceleration 
equation, express the height h of the 
cliff in terms of the initial velocity 
of the rock, acceleration, and time of 
fall: 
 

2
2
1

0 attvy +=∆  
or, because v0 = 0, a = g, and ∆y = h, 

2
2
1 gth =  

 

Using this equation, express the 
displacement of the rock during the 
 

 

a) first two-thirds of its fall, and 
 

2
2
1

3
2 gth =                            (1) 

 
b) its complete fall in terms of the 
time required for it to fall this 
distance. 
 

( )2
2
1 s1+= tgh                     (2) 

 

Substitute equation (2) in equation 
(1) to obtain a quadratic equation in 
t: 
 

t2 – (4 s)t – 2 s2 = 0 
 

Solve for the positive root: 
 

s45.4=t  

Evaluate ∆t = t + 1 s: 
 

∆t = 4.45 s + 1 s = 5.45 s 
 

Substitute numerical values in 
equation (2) and evaluate h: 

( )( ) m146s45.5m/s81.9 22
2
1 ==h  

 
91 •••  
Picture the Problem Assume that the acceleration of the car is constant. The total 
distance the car travels while stopping is the sum of the distances it travels during the 
driver’s reaction time and the time it travels while braking. Choose a coordinate system 
in which the positive direction is the direction of motion of the automobile and apply a 
constant-acceleration equation to obtain a quadratic equation in the car’s initial speed v0. 
 



Chapter 2 
 

 

80 

(a) Using a constant-acceleration 
equation, relate the velocity of the 
car to its initial velocity, 
acceleration, and displacement 
during braking: 
 

brk
2
0

2 2 xavv ∆+=  
or, because the final velocity is zero, 

brk
2
0 20 xav ∆+=  

 

Solve for the distance traveled 
during braking: 
 a

vx
2

2
0

brk −=∆  

Express the total distance traveled 
by the car as the sum of the distance 
traveled during the reaction time 
and the distance traveled while 
slowing down: 
 

a
vtv

xxx

2

2
0

react0

brkreacttot

−∆=

∆+∆=∆
 

Rearrange this quadratic equation to 
obtain:  
 

022 tot0react
2
0 =∆+∆− xavtav  

Substitute numerical values and 
simplify to obtain: 
 

( )( )
( ) 0m)4(m/s72

s5.0m/s72
2
0

22
0

=−+

−− vv
 

or 
( ) 0s/m56m/s5.7 22

0
2
0 =−+ vv  

 
Solve the quadratic equation to 
obtain: 
 

m/s8.37m/s75.30 ±−=v  

Because the car’s initial velocity is 
in the positive direction, we use the 
positive sign between the terms to 
obtain: 
 

( )

mi/h68.9

m/s0.477
mi/h1m/s62.4m/s62.40

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==v

 

 
(b) Find the reaction-time distance:  

m 2.31s) m/s)(0.5 (4.62
react0react

==
∆=∆ tvx

 

 
Express and evaluate the ratio of the 
reaction distance to the total distance: 578.0

m 4
m 2.31

tot

react ==
∆
∆

x
x

 

 
92 ••  
Picture the Problem Assume that the accelerations of the trains are constant.  Choose a 
coordinate system in which the direction of the motion of the train on the left is the 
positive direction. Take xo = 0 as the position of the train on the left at t = 0. 
 
Using a constant-acceleration 
equation, relate the distance the train 
on the left will travel before the 
trains pass to its acceleration and the 
time-to-passing: 

( )
( ) 22

22
2
12

L2
1

L

sm7.0

sm4.1

t

ttax

=

==
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Using a constant-acceleration 
equation, relate the position of the 
train on the right to its initial 
velocity, position, and acceleration: 
 

( ) 22
2
1

2
R2

1

sm2.2m40

m40

t

taxR

−=

−=
 

Equate xL and xR and solve for t: 
 

s71.4
and

1.1407.0 22

=

−=

t

tt
 

 
Find the position of the train 
initially on the left, xL, as they pass: 

m 15.6s) 71.4)(m/s (1.4 22
2
1

L ==x  

  
Remarks: One can also solve this 
problem by graphing the functions for 
xL and xR.  The coordinates of the 
intersection of the two curves give one 
the time-to-passing and the distance 
traveled by the train on the left. 

 

 
93 ••  
Picture the Problem In the absence of air resistance, the acceleration of the stones is 
constant. Choose a coordinate system in which the downward direction is positive and the 
origin is at the point of release of the stones. 
 
Using constant-acceleration 
equations, relate the positions of the 
two stones to their initial positions, 
accelerations, and time-of-fall: 
 

2
2
1

2

2
2
1

1

s)1.6(
and

 

−=

=

tgx

gtx
 

Express the difference between x1 
and x2: 
 

x1 − x2 = 36 m 
 

Substitute for x1 and x2 and solve for 
the time at which the stones will be 
separated by 36 m: 
 

( )2
2
12

2
1 s6.1m36 −−= tggt  

and 
t = 3.09 s 
 

Substitute this result in the 
expression for x2 and solve for x2: 

( )( )
m9.10

s1.6s3.09sm81.9 22
2
1

2

=

−=x
 

 
*94 ••  
Picture the Problem The acceleration of the police officer’s car is positive and constant 
and the acceleration of the speeder’s car is zero. Choose a coordinate system such that the 
direction of motion of the two vehicles is the positive direction and the origin is at the 
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stop sign. 
 
Express the velocity of the car in 
terms of the distance it will travel 
until the police officer catches up to 
it and the time that will elapse 
during this chase: 
 

car

caught
car t

d
v =  

 
 

Letting t1 be the time during which 
she accelerates and t2 the time of 
travel at v1 = 110 km/h, express the 
time of travel of the police officer: 
  

21office ttt r +=  
 

Convert 110 km/h into m/s: 
 

( )
m/s30.6

s) h/3600 (1m/km) 10(km/h 110 3
1

=
=v  

 
Express and evaluate t1: 
 s 94.4

m/s 6.2
m/s 6.30

2
motorcycle

1
1 ===

a
vt  

 
Express and evaluate d1: m 75.6 s) m/s)(4.94 (30.62

1
112

1
1 === tvd

 
 

Determine d2: 

m1324.4

m 75.6  m 1400  1caught2

=

−=−= ddd
 

 
Express and evaluate t2: s 43.3 

m/s 30.6
m 1324.4

1

2
2 ===

v
dt  

 
Express the time of travel of the car: 
 

tcar = 2.0 s + 4.93 s + 43.3 s = 50.2 s 
 

Finally, find the speed of the car: 
 

( )

mi/h62.4 

 
m/s0.447

mi/h1m/s 27.9

 m/s 27.9 
s 50.2
m 1400

car

caught
car

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

===
t

d
v

 

 
95 ••  
Picture the Problem In the absence of air resistance, the acceleration of the stone is 
constant. Choose a coordinate system in which downward is positive and the origin is at 
the point of release of the stone and apply constant-acceleration equations. 
 
Using a constant-acceleration 
equation, express the height of the 
cliff in terms of the initial position 
of the stones, acceleration due to 

2
12

1 gth =  
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gravity, and time for the first stone 
to hit the water: 
 

 

Express the displacement of the 
second stone when it hits the water 
in terms of its initial velocity, 
acceleration, and time required for it 
to hit the water. 
 

2
22

1
2022 gttvd +=  

where t2 = t1 – 1.6 s. 
 

Because the stones will travel the 
same distances before hitting the 
water, equate h and d2 and solve for 
t. 
 

  2
22

1
202

2
12

1 gttvgt +=  
or 

( ) ( )( )
( ) ( )2

1
2

2
1

1
2
1

2
2
1

s6.1m/s81.9

s6.1m/s32m/s81.9

−+

−=

t

tt
 

 
Solve for t1 to obtain: 
 

s37.21 =t  

Substitute for t1 and evaluate h: 
 

m 27.6s) 37.2)(m/s (9.81 22
2
1 ==h  

 
96 •••   
Picture the Problem Assume that the acceleration of the passenger train is constant.  Let 
xp = 0 be the location of the passenger train engine at the moment of sighting the freight 
train’s end; let t = 0 be the instant the passenger train begins to slow (0.4 s after the 
passenger train engineer sees the freight train ahead).  Choose a coordinate system in 
which the direction of motion of the trains is the positive direction and use constant-
acceleration equations to express the positions of the trains in terms of their initial 
positions, speeds, accelerations, and elapsed time. 
 
(a) Using constant-acceleration 
equations, write expressions for the 
positions of the front of the 
passenger train and the rear of the 
freight train, xp and xf, respectively: 

( )( )  s4.0m/s29 2
2
1

p attx −+=

( ) ( ) s)0.4 (t m/s6m360f ++=x  
where xp and xf are in meters if t is in 
seconds. 
 

Equate xf = xp to obtain an equation 
for t: 

( ) 0m8.350m/s232
2
1 =+− tat  

 
Find the discriminant 
( )AC4B2 −=D  of this equation: 
 

( ) ( )m8.350
2

4m/s23 2
⎟
⎠
⎞

⎜
⎝
⎛−=

aD  

The equation must have real roots if 
it is to describe a collision.  The 
necessary condition for real roots is 
that the discriminant be greater than 
or equal to zero: 
 

If (23 m/s)2 – a (701.6 m) ≥ 0, then 
2m/s754.0≤a  

 

(b) Express the relative speed of the 
trains: 
 

fppfrel vvvv −==                  (1) 
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Repeat the previous steps with  
a = 0.754 m/s2 and a 0.8 s reaction 
time. The quadratic equation that 
guarantees real roots with the longer 
reaction time is: 
 

( ) ( )
0m6.341

m/s23m/s754.0 22
2
1

=+
− tt

  

 
 

Solve for t to obtain the collision 
times: 
 

t = 25.6 s and t = 35.4 s  
 

Note that at t = 35.4 s, the trains 
have already collided; therefore this 
root is not a meaningful solution to 
our problem. 
 

Note: In the graph shown below, you will 
see why we keep only the smaller of the 
two solutions. 
 

Now we can substitute our value for 
t in the constant-acceleration 
equation for the passenger train and 
solve for the distance the train has 
moved prior to the collision:  
 

xp = (29 m/s)(25.6 s + 0.8 s) 
          – ( 0.377 m/s2)(25.6 s)2 

    = m518  

Find the speeds of the two trains: vp = vop + at 
    = (29 m/s) + (–0.754 m/s2)(25.5 s)  
    = 9.77 m/s 
and 
vf = vof = 6 m/s  
 

Substitute in equation (1) and 
evaluate the relative speed of the 
trains: 
 

m/s77.3m/s6.00-m/s77.9rel ==v  

The graph shows the location of both trains as functions of time.  The solid straight line is 
for the constant velocity freight train; the dashed curves are for the passenger train, with 
reaction times of 0.4 s for the lower curve and 0.8 s for the upper curve. 
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Remarks: A collision occurs the first time the curve for the passenger train crosses 
the curve for the freight train.  The smaller of two solutions will always give the time 
of the collision. 
 
97 •  
Picture the Problem In the absence of air resistance, the acceleration of an object near 
the surface of the earth is constant. Choose a coordinate system in which the upward 
direction is positive and the origin is at the surface of the earth and apply constant-
acceleration equations. 
 
Using a constant-acceleration 
equation, relate the velocity to the 
acceleration and displacement: 
 

yavv ∆+= 22
0

2  
or, because v = 0 and a = −g, 

ygv ∆−= 20 2
0  

 
Solve for the height to which the 
projectile will rise: g

vyh
2

2
0=∆=  

 
Substitute numerical values and 
evaluate h: 

( )
( ) km59.4

m/s81.92
m/s300

2

2

==h  

 
*98 •  
Picture the Problem This is a composite of two constant accelerations with the 
acceleration equal to one constant prior to the elevator hitting the roof, and equal to a 
different constant after crashing through it.  Choose a coordinate system in which the 
upward direction is positive and apply constant-acceleration equations. 
 
(a) Using a constant-acceleration 
equation, relate the velocity to the 
acceleration and displacement: 
 

yavv ∆+= 22
0

2  
or, because v = 0 and a = −g, 

ygv ∆−= 20 2
0  

 
 

Solve for v0: 
 

ygv ∆= 20  

Substitute numerical values and 
evaluate v0: 
 

( )( ) m/s443m10m/s81.92 42
0 ==v  

 
(b) Find the velocity of the elevator 
just before it crashed through the 
roof: 
 

vf  = 2 × 443 m/s = 886 m/s 
 

Using the same constant-
acceleration equation, this time with 
v0 = 0, solve for the acceleration: 
 

yav ∆= 22  
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Substitute numerical values and 
evaluate a: 

( )
( )

g

a

267

m/s1062.2
m1502

m/s886 23
2

=

×==
 

 
99 ••  
Picture the Problem Choose a coordinate system in which the upward direction is 
positive.  We can use a constant-acceleration equation to find the beetle’s velocity as its 
feet lose contact with the ground and then use this velocity to calculate the height of its 
jump. 
 
Using a constant-acceleration 
equation, relate the beetle’s 
maximum height to its launch 
velocity, velocity at the top of its 
trajectory, and acceleration once it is 
airborne; solve for its maximum 
height: 
 

( )hgv

yavv

−+=

∆+=

2

2
2
launch

fallfree
2
launch

2
pointhighest  

g
vh

v

2

,0Since
2
launch

pointhighest

=

=

 

 
Now, in order to determine the 
beetle’s launch velocity, relate its 
time of contact with the ground to 
its acceleration and push-off 
distance: 
 

launch
2
0

2
launch 2 yavv ∆+=  

or, because v0 = 0, 

launch
2
launch 2 yav ∆=  

Substitute numerical values and 
evaluate 2

launchv : 
( )( )( )

22

222
launch

/sm1.47

m106.0m/s81.94002

=

×= −v
 

 
Substitute to find the height to 
which the beetle can jump: 
 ( ) m40.2

m/s81.92
/sm1.47

2 2

222
launch ===

g
vh  

 
Using a constant-acceleration 
equation, relate the velocity of the 
beetle at its maximum height to its 
launch velocity, free-fall 
acceleration while in the air, and 
time-to-maximum height: 
 

heightmax.launchheightmax.

0

or
gtvv

atvv

−=

+=
 

and, because vmax height = 0, 
heightmax.launch0 gtv −=  

 
Solve for tmax height: 

g
vt launch

heightmax =  

 
For zero displacement and constant 
acceleration, the time-of-flight is 
twice the time-to-maximum height: 

( )

s40.1

m/s81.9
m/s86.6222 2

launch
heightmax.flight

=

===
g

vtt
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100 •  
Picture the Problem Because its acceleration is constant we can use the constant- 
acceleration equations to describe the motion of the automobile. 
 
Using a constant-acceleration 
equation, relate the velocity to the 
acceleration and displacement: 
 

xavv ∆+= 22
0

2  
or, because v = 0, 

xav ∆+= 20 2
0  

 
Solve for the acceleration a: 
 x

va
∆

−
=

2

2
0  

 
Substitute numerical values and 
evaluate a: 

( )( )( )[ ]
( )

2

23

sm41.7

m502
s 3600h1kmm10hkm98

−=

−
=a

 
Express the ratio of a to g and then 
solve for a: 
 

755.0
sm81.9
sm41.7
2

2

−=
−

=
g
a

 

and 
ga 755.0−=  

 
Using the definition of average 
acceleration, solve for the stopping 
time: 
 

t
va

∆
∆

=av  ⇒ 
ava
vt ∆

=∆  

 
 

Substitute numerical values and 
evaluate ∆t: 

( )( )( )

s67.3

sm7.41
s3600h1kmm10hkm98

2

3

=

−
−

=∆t
 

 
*101 ••  
Picture the Problem In the absence of air resistance, the puck experiences constant 
acceleration and we can use constant-acceleration equations to describe its position as a 
function of time. Choose a coordinate system in which downward is positive, the particle 
starts from rest (vo = 0), and the starting height is zero (y0 = 0). 
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Using a constant-acceleration 
equation, relate the position of the 
falling puck to the acceleration and 
the time. Evaluate the y-position at 
successive equal time intervals ∆t, 
2∆t, 3∆t, etc: 
 
 
 
 
 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

etc.

)16(
2

4
2

)9(
2

3
2

)4(
2

2
2

22

22
4

22
3

22
2

22
1

tgtgy

tgtgy

tgtgy

tgtgy

∆
−

=∆
−

=

∆
−

=∆
−

=

∆
−

=∆
−

=

∆
−

=∆
−

=

 

Evaluate the changes in those 
positions in each time interval: 
 

( )

( )

( )

( )

etc.

7
2

7

5
2

5

3
2

3

2
0

10
2

3443

10
2

2332

10
2

1221

2
110

ytgyyy

ytgyyy

ytgyyy

tgyy

∆=∆⎟
⎠
⎞

⎜
⎝
⎛ −

=−=∆

∆=∆⎟
⎠
⎞

⎜
⎝
⎛ −

=−=∆

∆=∆⎟
⎠
⎞

⎜
⎝
⎛ −

=−=∆

∆⎟
⎠
⎞

⎜
⎝
⎛ −

=−=∆
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Picture the Problem Because the particle moves with a constant acceleration we can use 
the constant-acceleration equations to describe its motion. A pictorial representation will 
help us organize the information in the problem and develop our solution strategy. 
 

 
 
Using a constant-acceleration 
equation, find the position x at  
t = 6 s. To find x at t = 6 s, we first 
need to find v0 and x0: 
 

2
2
1

00 attvxx ++=  
 

Using the information that when  
t = 4 s, x = 100 m, obtain an 
equation in x0 and v0: 
 

( )
( ) ( )( )22

2
1

00 s4m/s3s4

m100s4

++=

=

vx

x
 

or 
( ) m76s4 00 =+ vx  

 
Using the information that when  
t = 6 s, v = 15 m/s, obtain a second 
equation in x0 and v0: 

( ) ( )( )s6m/s3s6 2
0 += vv  
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Solve for v0 to obtain: 
 

v0 = −3 m/s 

Substitute this value for v0 in the  
previous equation and solve for x0: 
 

x0 = 88 m 
 

Substitute for x0 and v0 and evaluate x at t = 6 s: 
 

( ) ( ) ( ) ( ) ( ) m124s6m/s3s6m/s3m88s6 22
2
1 =+−+=x  

 
*103 ••  
Picture the Problem We can use constant-acceleration equations with the final velocity 
v = 0 to find the acceleration and stopping time of the plane. 
 
(a) Using a constant-acceleration 
equation, relate the known velocities 
to the acceleration and displacement: 
 

xavv ∆+= 22
0

2  
 
 

Solve for a: 

x
v

x
vva

∆
−

=
∆
−

=
22

2
0

2
0

2

 

 
Substitute numerical values and 
evaluate a: 

( )
( )

2
2

sm7.25
m702

sm60
−=

−
=a  

 
(b) Using a constant-acceleration 
equation, relate the final and initial 
speeds of the plane to its 
acceleration and stopping time: 
 

tavv ∆+= 0  
 

Solve for and evaluate the stopping 
time: s33.2

m/s7.25
sm600
2

0 =
−

−
=

−
=∆

a
vvt  

 
104 ••  
Picture the Problem This is a multipart constant-acceleration problem using three 
different constant accelerations (+2 m/s2 for 20 s, then zero for 20 s, and then –3 m/s2 
until the automobile stops).  The final velocity is zero. The pictorial representation will 
help us organize the information in the problem and develop our solution strategy. 
 

 
 
Add up all the displacements to get 
the total: 
 

∆x03 = ∆x01 + ∆x12 + ∆x23  
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Using constant-acceleration 
formulas, find the first 
displacement: 
 

m 400=s) 20)(m/s 2(0 22
2
1

2
1012

1
1001

+=

+=∆ tatvx
 

 
The speed is constant for the second 
displacement.  Find the 
displacement: 
 

( )
and0 vwhere 10110101

12112

tatav
ttvx

+=+=
−=∆

 

( )
m  800=s) s)(20 20)(m/s 2( 2

1210112

=

−=∆ tttax
 

 
Find the displacement during the 
braking interval: 
 and0 and =  where

2

310112

2323
2
2

2
3

==
∆+=

vtavv
xavv

 

( ) [ ]
( )

m267
sm32

s) 20(m/s) 2(
2

0
2

2

23

2
101

2

23

=
−

−
=

−
=∆

a
tax

 

 
Add the displacements to get the 
total: 
 km 1.47=

m 146723120103 =∆+∆+∆=∆ xxxx
 

 
Remarks: Because the area under the curve of a velocity-versus-time graph equals 
the displacement of the object experiencing the acceleration, we could solve this 
problem by plotting the velocity as a function of time and finding the area bounded 
by it and the time axis. 
 
*105 ••  
Picture the Problem Note: No material body can travel at speeds faster than light. When 
one is dealing with problems of this sort, the kinematic formulae for displacement, 
velocity and acceleration are no longer valid, and one must invoke the special theory of 
relativity to answer questions such as these.  For now, ignore such subtleties. Although 
the formulas you are using (i.e., the constant- acceleration equations) are not quite 
correct, your answer to part (b) will be wrong by about 1%. 
 
(a) This part of the problem is an exercise in the conversion of units. Make use of the fact 
that 1 c⋅y = 9.47×1015 m and 1 y = 3.16×107 s: 
 

( ) ( )
( )

2
2

27

15
2 y/y03.1

y1
s1016.3

m1047.9
y1m/s81.9 ⋅=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ×
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⋅
= ccg  

 
(b) Let t1/2 represent the time it takes 
to reach the halfway point.  Then the 
total trip time is: 
 

t = 2 t1/2                           (1) 

Use a constant- acceleration 
equation  to relate the half-distance 
to Mars ∆x to the initial speed, 

2
212

1
0 attvx +=∆  
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acceleration, and half-trip time t1/2 :  
 
Since v0 = 0 and a = g: 
 

a
xt ∆

=
2

2/1  

 
The distance from Earth to Mars at 
closest approach is 7.8 × 1010 m. 
Substitute numerical values and 
evaluate t1/2 : 
 

( ) s1092.8
m/s81.9

m109.32 4
2

10

2/1 ×=
×

=t  

Substitute for t1/2 in equation (1) to 
obtain: 

( ) d2s1078.1s1092.82 54 ≈×=×=t  

 
Remarks:  Our result in part (b) seems remarkably short, considering how far Mars 
is and how low the acceleration is. 
 
106 •  
Picture the Problem Because the elevator accelerates uniformly for half the distance and 
uniformly decelerates for the second half, we can use constant-acceleration equations to 
describe its motion 
 
Let t1/2 = 40 s be the time it takes to 
reach the halfway mark. Use the 
constant-acceleration equation that 
relates the acceleration to the known 
variables to obtain: 
 

2
2
1

0 attvy +=∆  
or, because v0 = 0,  

2
2
1 aty =∆  

Solve for a: 
 2

2/1

2
t

ya ∆
=  

 
Substitute numerical values and 
evaluate a: 

( )( )( )
( )

g

a

0228.0

m/s223.0
s40

ftm/3.2811ft11732 2
2

2
1

=

==

 
107 ••  
Picture the Problem Because the acceleration is constant, we can describe the motions 
of the train using constant-acceleration equations.  Find expressions for the distances 
traveled, separately, by the train and the passenger.  When are they equal?  Note that the 
train is accelerating and the passenger runs at a constant minimum velocity (zero 
acceleration) such that she can just catch the train. 
 
1. Using the subscripts ″train″ and 
″p″ to refer to the train and the 
passenger and the subscript ″c″ to 
identify ″critical″ conditions, 
express the position of the train and 
the passenger: 
 

( )

( ) ( )ttvtx

tatx

∆−=

=

ccp,ccp,

2
c

train
cctrain,

 
 and 

 
2
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Express the critical conditions that  
must be satisfied if the passenger is 
to catch the train: 
 

cp,ctrain, vv =  
and 

cp,ctrain, xx =  
 

2. Express the train’s average 
velocity. 22

0
)  to(0 ctrain,ctrain,

cav
vv

tv =
+

=     

 
3. Using the definition of average 
velocity, express vav in terms of xp,c 
and tc. c

cp,

c

cp,
av 0

0
t

x
t

x
t
xv =

+
+

=
∆
∆

≡  

 
4. Combine steps 2 and 3 and solve 
for xp,c. 2

cctrain,
cp,

tv
x =  

 
5. Combine steps 1 and 4 and solve 
for tc. ( )

2

or 

 
2

c
c

cctrain,
ccp,

ttt

tv
ttv

=∆−

=∆−

 

and 
tc = 2 ∆t = 2 (6 s) = 12 s 
 

6. Finally, combine steps 1 and 5 
and solve for vtrain, c. 

( )( )
m/s 80.4

s12m/s4.0 2
ctrainctrain,cp,

=

=== tavv
 

 
The graph shows the location of both the passenger and the train as a function of time.  
The parabolic solid curve is the graph of xtrain(t) for the accelerating train.  The straight 
dashed line is passenger's position xp(t) if she arrives at ∆t = 6.0 s after the train departs. 
When the passenger catches the train, our graph shows that her speed and that of the train 
must be equal ( cp,ctrain, vv = ).  Do you see why? 
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108 •••  
Picture the Problem Both balls experience constant acceleration once they are in flight. 
Choose a coordinate system with the origin at the ground and the upward direction 
positive.  When the balls collide they are at the same height above the ground. 
 
Using constant-acceleration 
equations, express the positions of 
both balls as functions of time.  At 
the ground y = 0.   
 
 

2
2
1

0B

2
2
1

A

y
  and

  

gttv

gthy

−=

−=

 

 
The conditions at collision are that 
the heights are equal and the 
velocities are related: 
 BA

BA

2
  and

  

vv

yy

−=

=
 

 
Express the velocities of both balls 
as functions of time: 
 

gtvv

gtv

−=

−=

0B

A

 and
  

 

 
Substituting the position and 
velocity functions into the 
conditions at collision gives: 
 ( )c0c

2
c2

1
c0

2
c2

1

2 
and

  

gtvgt

gttvgth

−−=−

−=−

 

where tc is the time of collision.   
 

We now have two equations and 
two unknowns, tc and v0. Solving the 
equations for the unknowns gives: 
 

2
3  and 

3
2

0c
ghv

g
ht ==  

 
Substitute the expression for tc into 
the equation for yA to obtain the 
height at collision: 
 

3
2

3
2

2
1

A
h

g
hghy =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=  

Remarks: We can also solve this problem graphically by plotting velocity- versus-
time for both balls. Because ball A starts from rest its velocity is given by gtvA −= . 
Ball B initially moves with an unknown velocity vB0 and its velocity is given 
by gtvv B0B −= . The graphs of these equations are shown below with T 
representing the time at which they collide. 
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The height of the building is the sum of the sum of the distances traveled by the 
balls.  Each of these distances is equal to the magnitude of the area ″under″ the 
corresponding v-versus-t curve. Thus, the height of the building equals the area of 
the parallelogram, which is vB0T.  The distance that A falls is the area of the lower 
triangle, which is (1/3) vB0T.  Therefore, the ratio of the distance fallen by A to the 
height of the building is 1/3, so the collision takes place at 2/3 the height of the 
building.  
 
109 •••  
Picture the Problem Both balls are moving with constant acceleration.  Take the origin 
of the coordinate system to be at the ground and the upward direction to be positive.  
When the balls collide they are at the same height above the ground. The velocities at 
collision are related by vA = 4vB. 
 
Using constant-acceleration 
equations, express the positions of 
both balls as functions of time: 
 
 

2
2
1

0B

2
2
1

A

y
  and

 

gttv

gthy

−=

−=

 

The conditions at collision are that 
the heights are equal and the 
velocities are related: 
 BA

BA

4
  and

 

vv

yy

=

=
 

 
Express the velocities of both balls 
as functions of time: 
 

gtvvgtv −=−= 0BA  and   

Substitute the position and velocity 
functions into the conditions at 
collision to obtain: 
 ( )c0c

2
c2

1
c0

2
c2

1

4
and

gtvgt

gttvgth

−=−

−=−

 

where tc is the time of collision. 
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We now have two equations and 
two unknowns, tc and v0. Solving the 
equations for the unknowns gives: 
 

4
3vand

3
4

0c
gh

g
ht ==  

Substitute the expression for tc into 
the equation for yA to obtain the 
height at collision: 33

4
2
1

A
h

g
hghy =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=  

 
*110 ••  
Determine the Concept The problem describes two intervals of constant acceleration; 
one when the train’s velocity is increasing, and a second when it is decreasing. 
 
(a) Using a constant-acceleration 
equation, relate the half-distance ∆x 
between stations to the initial speed 
v0, the acceleration a of the train, 
and the time-to-midpoint ∆t: 
 

( )2
2
1

0 tatvx ∆+∆=∆  
or, because v0 = 0, 

( )2
2
1 tax ∆=∆  

Solve for ∆t: 
 a

xt ∆
=∆

2
 

 
Substitute numerical values and 
evaluate the time-to-midpoint ∆t: 
 

( ) s0.30
m/s1

m4502
2 ==∆t  

 
Because the train accelerates 
uniformly and from rest, the first 
part of its velocity graph will be 
linear, pass through the origin, and 
last for 30 s.  Because it slows down 
uniformly and at the same rate for 
the second half of its journey, this 
part of its graph will also be linear 
but with a negative slope. The graph 
of v as a function of t is shown to 
the right. 
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(b) The graph of x as a function of t 
is obtained from the graph of v as a 
function of t by finding the area 
under the velocity curve. Looking at 
the velocity graph, note that when 
the train has been in motion for 10 s, 
it will have traveled a distance of 
 

( )( ) m50m/s10s102
1 =  

 
and that this distance is plotted 
above 10 s on the graph to the right. 

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60

t  ( s)

 
Selecting additional points from the 
velocity graph and calculating the areas 
under the curve will confirm the graph of x 
as a function of t that is shown. 
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111 ••  
Picture the Problem This is a two-stage constant-acceleration problem. Choose a 
coordinate system in which the direction of the motion of the cars is the positive 
direction. The pictorial representation summarizes what we know about the motion of the 
speeder’s car and the patrol car. 
 

 
 
Convert the speeds of the vehicles 
and the acceleration of the police car 
into SI units: 
 

2m/s22.2
s3600

h1
sh

km8
sh

km8 =×
⋅

=
⋅

, 

m/s7.34
s3600

h1
h

km125
h

km125 =×= , 

and 

m/s8.52
s3600

h1
h

km190
h

km190 =×=  

 
(a) Express the condition that 
determines when the police car  
catches the speeder; i.e., that their 
displacements will be the same: 
 

∆xP,02 = ∆xS,02 
 
 
 

Using a constant-acceleration  
equation, relate the displacement of  
the patrol car to its displacement  
while accelerating and its  
displacement once it reaches its 
maximum velocity: 
 

( )121,PP,01

P,12P,01P,02

ttvx
xxx

−+∆=

∆+∆=∆

 

Using a constant-acceleration  
equation, relate the displacement of  
the speeder to its constant velocity 
and the time it takes the patrol car to 
catch it: 
 

( ) 2

02S,02S,02

m/s7.34 t
tvx

=

∆=∆
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Calculate the time during which the 
police car is speeding up: 
 

s8.23
m/s2.22

0m/s52.8
2

P,01

0P,1,P

P,01

P,01
P,01

=
−

=

−
=

∆
=∆

a
vv

a
v

t
 

 
Express the displacement of the 
patrol car: 
 ( )( )

m629
s8.23m/s22.20 22

2
1

2
01,P01,P2

1
P,01P,0P,01

=

+=

∆+∆=∆ tatvx

 

 
Equate the displacements of the two 
vehicles: 
 ( )

( ) )s8.23(m/s8.52m629 2

121,PP,01

P,12P,01P,02

−+=

−+∆=

∆+∆=∆

t
ttvx

xxx
 

 
Solve for the time to catch up to 
obtain: 
 

(34.7 m/s) t2 = 629 m  
                       + (52.8 m/s)(t2 – 23.8 s) 
  s7.342 =∴ t  

 
(b) The distance traveled is the 
displacement, ∆x02,S, of the speeder 
during the catch: 
 

( )( )
km1.20

s34.7m/s34.702S,02S,02

=

=∆=∆ tvx
 

 
(c) The graphs of xS and xP are shown below. The straight line (solid) represents xS(t) and 
the parabola (dashed) represents xP(t). 
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112 ••  
Picture the Problem The accelerations of both cars are constant and we can use 
constant-acceleration equations to describe their motions. Choose a coordinate system in 
which the direction of motion of the cars is the positive direction, and the origin is at the 
initial position of the police car. 
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(a) The collision will not occur if, 
during braking, the displacements of 
the two cars differ by less than 100 
m. 

∆xP − ∆xS < 100 m. 
 
 
 
 

Using a constant-acceleration 
equation, relate the speeder’s initial 
and final speeds to its displacement 
and acceleration and solve for the 
displacement: 
 

ss
2

s,0
2
s 2 xavv ∆+=  

or, because vs = 0, 

s

2
s,0

s 2a
v

x
−

=∆  

 
Substitute numerical values and 
evaluate ∆xs: 
 

( )
( ) m100

m/s62
m/s7.34

2

2

S =
−

−
=∆x  

 
Using a constant-acceleration 
equation, relate the patrol car’s 
initial and final speeds to its 
displacement and acceleration and 
solve for the displacement: 
 

pp
2

p,0
2
p 2 xavv ∆+=  

or, assuming vp = 0, 

p

2
p,0

p 2a
v

x
−

=∆  

Substitute numerical values and 
evaluate ∆xp: 
 

( )
( ) m232

m/s62
m/s8.52

2

2

P =
−

−
=∆x  

 
Finally, substitute these 
displacements into the inequality 
that determines whether a collision 
occurs: 
 

232 m − 100 m = 132 m 
Because this difference is greater than  
100 m, collide cars the . 

 
(b) Using constant-acceleration 
equations, relate the positions of 
both vehicles to their initial 
positions, initial velocities, 
accelerations, and time in motion: 
  

( ) ( )

( ) ( ) 22
P

22
S

m/s3m/s8.52
and

m/s3m/s7.34m100

ttx

ttx

−=

−+=
 

 
 

Equate these expressions and solve 
for t: 
 

100 m + (34.7 m/s) t – (3 m/s2) t2  
          = (52.8 m/s) t – (3m/s2) t2  
and 

s52.5=t  

 

(c) 
severe. more be andsooner 

occur willcollision   theaccount, into imereaction t  theyou take If
 

 
113 ••  
Picture the Problem Lou’s acceleration is constant during both parts of his trip.  Let t1 
be the time when the brake is applied; L1 the distance traveled from t = 0 to t = t1.  Let tfin 
be the time when Lou's car comes to rest at a distance L from the starting line. A pictorial 
representation will help organize the given information and plan the solution. 
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(a) Express the total length, L, of the 
course in terms of the distance over 
which Lou will be accelerating, 
∆x01, and the distance over which he 
will be braking, ∆x12: 
 

L = ∆x01 + ∆x12 
 
 
 
 
 

Express the final velocity over the 
first portion of the course in terms 
of the initial velocity, acceleration, 
and displacement; solve for the 
displacement: 
 

0101
2
0

2
1 2 xavv ∆+=  

or, because v0 = 0, ∆x01 = L1, and  
a01 = a, 

a
v

a
vLx

22

2
max

2
1

101 ===∆  

 
Express the final velocity over the 
second portion of the course in 
terms of the initial velocity, 
acceleration, and displacement; 
solve for the displacement: 
 

1212
2
1

2
2 2 xavv ∆+=  

or, because v2 = 0 and a12 = −2a, 

24
1

2
1

12
L

a
vx ==∆  

Substitute for ∆x01 and ∆x12 to 
obtain: 

12
3

12
1

11201 LLLxxL =+=∆+∆=  
and 

LL 3
2

1 =  

 
(b) Using the fact that the 
acceleration was constant during 
both legs of the trip, express Lou’s 
average velocity over each leg: 
  

2
max

12,av01,av
vvv ==  

 
 

Express the time for Lou to reach 
his maximum velocity as a function 
of L1 and his maximum velocity: 
 

max

1

av,01

01
01

2
v

L
v

xt =
∆

=∆  

and 

LLt
3
2

101 =∝∆  

 
Having just shown that the time 
required for the first segment of the 
trip is proportional to the length of 
the segment, use this result to 
express ∆t01 (= t1) in terms tfin: 

fin3
2 tt =  
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114 ••  
Picture the Problem There are three intervals of constant acceleration described in this 
problem. Choose a coordinate system in which the upward direction (shown to the left 
below) is positive. A pictorial representation will help organize the details of the problem 
and plan the solution. 
 

 

 
 

(a) The graphs of a(t) (dashed lines) and v(t) (solid lines) are shown below. 
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(b) Using a constant-acceleration 
equation, express her speed in terms 
of her acceleration and the elapsed 
time; solve for her speed after 8 s of 
fall: 
 

( )( )
m/s5.78

s8m/s81.90 2
10101

=

+=

+= tavv

 

(c) Using the same constant- 
acceleration equation that you used 
in part (b), determine the duration of 
her constant upward acceleration: 
 

121212 tavv ∆+=  
( )

s90.4

m/s15
m/s78.5m/s5

2
12

12
12

=

−−−
=

−
=∆

a
vvt

 

 
(d) Find her average speed as she 
slows from 78.5 m/s to 5 m/s: 

m/s8.41
2

m/s5m/s78.5
2

21
av

=

+
=

+
=

vvv
 

 
Use this value to calculate how far 
she travels in 4.90 s: 

( )
m204

s) 90.4(m/s 8.4112av12

=
=∆=∆ tvy

 

down.
slowingwhilem204travelsshe∴

 

 
(e) Express the total time in terms of 

231201total tttt ∆+∆+∆=  
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the times for each segment of her 
descent: 
 

 
 

We know the times for the intervals 
from 0 to 1 and 1 to 2 so we only 
need to determine the time for the 
interval from 2 to 3. We can 
calculate ∆t23 from her displacement 
and constant velocity during that 
segment of her descent. 
 

( )

m0.57

m204s8
2
m/s5.78m575

1201total23

=

−⎟
⎠
⎞

⎜
⎝
⎛−=

∆−∆−∆=∆ yyyy

 

Add the times to get the total time: 

s3.24

m/s5
m0.75s9.4s8

231201total

=

++=

++= tttt

 

 
(f) Using its definition, calculate her 
average velocity: m/s18.7

s209
m1500

av −=
−

=
∆
∆

=
t
xv  

 
Integration of the Equations of Motion 
 
*115 •   
Picture the Problem The integral of a function is equal to the "area" between the curve 
for that function and the independent-variable axis. 
 
(a) The graph is shown to the 
right.  The distance is found by 
determining the area under the 
curve.  You can accomplish this 
easily Because the shape of the 
area under the curve is a 
trapezoid. 
 

( ) m90s0s5
2

m/s3m/s33
=−⎟

⎠
⎞

⎜
⎝
⎛ +

=A

 
 
  
 

0

5

10

15

2 0
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3 0

3 5
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t  (s )

 
A = (36 blocks)(2.5 m/block) = m90  

 

Alternatively, we could just count 
the blocks and fractions thereof.   
 

There are approximately 36 blocks each 
having an area of (5 m/s)(0.5 s) = 2.5 m. 
 

(b) To find the position function 
x(t), we integrate the velocity 
function v(t) over the time 
interval in question: 
 

( ) ( )

( ) ( )[ ] 'dm/s3'm/s6

'd'

0

2

0

tt

ttvtx

t

t

∫

∫

+=

=
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and 
( ) ( ) ( )tttx m/s3m/s3 22 +=  

 
Now evaluate x(t) at 0 s and 5 s 
respectively and subtract to obtain 
∆x: 

( ) ( )
m 90.0 

 m 0 - m 90 s0s5

=

=−=∆ xxx
 

 
116 •  
Picture the Problem The integral of v(t) over a time interval is the displacement (change 
in position) during that time interval. The integral of a function is equivalent to the "area" 
between the curve for that function and the independent-variable axis.  Count the grid 
boxes. 

 
(a) Find the area of the shaded 
gridbox: 

( )( ) boxper  m 1s 1m/s 1 ==Area  

(b) Find the approximate area under 
curve for 1 s ≤ t ≤ 2 s: 

 

∆x1 s to 2 s  = m 1.2  

 

Find the approximate area under 
curve for 2 s ≤ t ≤ 3 s: 

∆x2 s to 3 s = m 2.3  

 

(c) Sum the displacements to 
obtain the total in the interval 
1 s ≤ t ≤ 3 s: 
 

∆x1 s to 3 s = 1.2 m + 3.2 m  
               = 4.4 m 
 

Using its definition, express and 
evaluate vav: 
 

m/s2.20
s2
m4.4

t s 3  tos 1

s 3  tos 1
av ==

∆
∆

=
xv  

 
(d) Because the velocity of the 
particle is dx/dt, separate the 
variables and integrate over the 
interval 1 s ≤ t ≤ 3 s to determine the 
displacement in this time interval: 
 
 
 
 
 

( )dtdx 3m/s5.0=  
so 

( )

( ) m33.4
3

m/s5.0

''m/s5.0'

s3

s1

3
3

s3

s1

23
s3s1

0

=⎥
⎦

⎤
⎢
⎣

⎡ ′
=

==∆ ∫∫→

t

dttdxx
x

x
 

This result is a little smaller than the sum 
of the displacements found in part (b). 
 

Calculate the average velocity over 
the 2-s interval from 1 s to 3 s: m/s17.2

s2
m33.4

s3s1

s3s1
s)3s1( av ==

∆
∆

=
−

−
− t

x
v  
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Calculate the initial and final 
velocities of the particle over the 
same interval: 
 

( ) ( )( )
( ) ( )( ) m/s5.4s3m/s5.0s3

m/s5.0s1m/s5.0s1
23

23

==

==

v

v
 

Finally, calculate the average value  

of the velocities at t = 1 s and t = 3 s: 
m/s50.2

2
m/s 4.5 m/s 0.5

2
s) (3  s) (1 

=

+
=

+ vv
 

This average is not equal to the average 
velocity calculated above. 

Remarks: The fact that the average velocity was not equal to the average of the 
velocities at the beginning and the end of the time interval in part (d) is a 
consequence of the acceleration not being constant. 
 
*117 ••  
Picture the Problem Because the velocity of the particle varies with the square of the 
time, the acceleration is not constant. The displacement of the particle is found by 
integration. 
 
Express the velocity of a particle as 
the derivative of its position 
function:  

( ) ( )
dt

tdxtv =  

Separate the variables to obtain: ( ) ( )dttvtdx =  

Express the integral of x from xo = 0 
to x and t from t0 = 0 to t: ( ) ( )∫∫

==

==
t

t

tx

t

dttvdxtx
0

)(

0 00

'''  

Substitute for v(t′) to obtain: 
( ) ( ) ( )[ ]

( ) ( )tt

dtttx
t

t

m/s5m/s

'm/s5'm/s7

33
3
7

0

23

0

−=

−= ∫
=  

 
118 ••  
Picture the Problem The graph is one of constant negative acceleration.  Because  

vx = v(t) is a linear function of t, we can make use of the slope-intercept form of the 
equation of a straight line to find the relationship between these variables. We can then 
differentiate v(t) to obtain a(t) and integrate v(t) to obtain x(t). 

 
Find the acceleration (the slope of the 
graph) and the velocity at time 0 (the 
v-intercept) and use the slope-
intercept form of the equation of a 
straight line to express vx(t): 
 

2m/s10−=a  

ttvx )m/s 10(m/s50)( 2−+=  

 
 



Chapter 2 
 

 

104 

Find x(t) by integrating v(t): 
 

( ) ( )[ ]
( ) ( ) Cm/s5m/s50

m/s50m/s10
22

2

+−=

+−= ∫
tt

dtttx
 

 
Using the fact that x = 0 when t = 0, 
evaluate C: 
 

( )( ) ( )( ) C0m/s50m/s500 22 +−=  
and 
C = 0 
 

Substitute to obtain: ( ) ( ) ( ) 22m/s5m/s50 tttx −=  

 
 Note that this expression is quadratic in t 

and that the coefficient of t2 is negative and 
equal in magnitude to half the constant 
acceleration. 
 

Remarks: We can check our result for x(t) by evaluating it over the 10-s interval 
shown and comparing this result with the area bounded by this curve and the time 
axis. 
 
119 •••  
Picture the Problem During any time interval, the integral of a(t) is the change in 
velocity and the integral of v(t) is the displacement. The integral of a function equals the 
"area" between the curve for that function and the independent-variable axis. 

 
(a) Find the area of the shaded  
grid box in Figure 2-37: 
 

Area = (0.5 m/s2)(0.5 s)  
         = boxper  m/s 0.250  

 
(b) We start from rest (vo = 0) at 
t = 0.  For the velocities at the other 
times, count boxes and multiply by 
the 0.25 m/s per box that we found 
in part (a): 

Examples: 
v(1 s) = (3.7 boxes)[(0.25 m/s)/box]  
          =  m/s 925.0  

v(2 s) = (12.9 boxes)[(0.25 m/s)/box]  
          = m/s 3.22   

v(3 s) = (24.6 boxes)[(0.25 m/s)/box]  
          = m/s 6.15  

 
(c) The graph of v as a function of t 
is shown to the right.  
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Area = (1.0 m/s)(1.0 s) = 1.0 m per box 
 

Count the boxes under the v(t) curve 
to find the distance traveled: 

( ) ( )
( ) ( )[ ]

m00.7

box/m0.1boxes7
s30s3

=

=
→∆= xx

 

 
120 ••  
Picture the Problem The integral of v(t) over a time interval is the displacement (change 
in position) during that time interval. The integral of a function equals the "area" between 
the curve for that function and the independent-variable axis. Because acceleration is the 
slope of a velocity versus time curve, this is a non-constant-acceleration problem. The 
derivative of a function is equal to the "slope" of the function at that value of the 
independent variable. 

 
(a) To obtain the data for x(t), we 
must estimate the accumulated area 
under the v(t) curve at each time 
interval: 

 
 
 
 
 

Find the area of a shaded grid box  
in Figure 2-38: 
 

A = (1 m/s)(0.5 s) = 0.5 m per box. 

We start from rest (vo = 0) at to= 0.  
For the position at the other times, 
count boxes and multiply by the 
0.5 m per box that we found above.  
Remember to add the offset from 
the origin, xo = 5 m, and that boxes 
below the v = 0 line are counted as 
negative: 
 

Examples: 

( ) ( )

m17.9

m5
box

m0.5boxes25.8s3

=

+⎟
⎠
⎞

⎜
⎝
⎛=x

 

( ) ( )

m0.92

m5
box

m0.5boxes0.84s5

=

+⎟
⎠
⎞

⎜
⎝
⎛=x

 

( ) ( )

( )

m5.12

m5
box

m0.5boxes0.36

box
m0.5boxes0.51s10

=

+⎟
⎠
⎞

⎜
⎝
⎛−

⎟
⎠
⎞

⎜
⎝
⎛=x

 

A graph of x as a function of t is 
shown to the right. 
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(b) To obtain the data for a(t), we Examples: 
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must estimate the slope (∆v/∆t) of 
the v(t) curve at each time. A good 
way to get reasonably reliable 
readings from the graph is to enlarge 
several fold:  
 
 
 
 
 
 
 

( ) ( ) ( )

2m/s3.8
s0.5

m/s3.0m/s4.9
s5.0

s75.0s25.1s1

=
−

=

−
=

vva
 

( ) ( ) ( )

2m/s2.4
s0.5

m/s4.0m/s7.1
s5.0

s75.5s25.6s6

−=
−−

=

−
=

vva
 

 
A graph of a as a function of t is 
shown to the right: 
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*121 ••  
Picture the Problem Because the position of the body is not described by a parabolic 
function, the acceleration is not constant. 
 
Select a series of points on the graph 
of x(t) (e.g., at the extreme values 
and where the graph crosses the t 
axis), draw tangent lines at those 
points, and measure their slopes.  In 
doing this, you are evaluating  
v = dx/dt at these points. Plot these 
slopes above the times at which you 
measured the slopes. Your graph 
should closely resemble the one to 
the right. 
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Select a series of points on the graph 
of v(t) (e.g., at the extreme values 
and where the graph crosses the t 
axis), draw tangent lines at those 
points, and measure their slopes.  In 
doing this, you are evaluating  
a = dv/dt at these points. Plot these 
slopes above the times at which you 
measured the slopes. Your graph 
should closely resemble the one at 
the right. 
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122 ••  
Picture the Problem Because the acceleration of the rocket varies with time, it is not 
constant and integration of this function is required to determine the rocket’s velocity and 
position as functions of time.  The conditions on x and v at t = 0 are known as initial 
conditions. 
 
(a) Integrate a(t) to find v(t): 
 
 
 

∫ ∫ +=== C  )()( 2
2
1 btdttbdttatv  

where C, the constant of integration, can be 
determined from the initial conditions. 

Integrate v(t) to find x(t): 
 

( ) ( ) [ ]
 DC

C
3

6
1

2
2
1

++=

+== ∫ ∫
tbt

dtbtdttvtx
 

where D is a second constant of 
integration. 
 

Using the initial conditions, find the 
constants C and D: 
 

( )

( ) 0D00
and

0C00

=⇒=

=⇒=

x

v
 

( ) 3
6
1 bttx =∴  

 
(b) Evaluate v(5 s) and x(5 s) with 
C = D = 0 and b = 3 m/s2: ( ) ( )( ) m/s5.37s5m/s3

2
1s5 22 ==v  

and 

( ) ( )( ) m5.62s5m/s3
6
1s5 32 ==x  

 
123 ••  
Picture the Problem The acceleration is a function of time; therefore it is not constant. 
The instantaneous velocity can be determined by integration of the acceleration and the 
average velocity from the displacement of the particle during the given time interval. 
 
(a) Because the acceleration is the 
derivative of the velocity, integrate 
the acceleration to find the 
instantaneous velocity v(t). 

 

( ) ( )
( )

( )∫∫
==

==⇒=
t

t

tv

v

dttadvtv
dt
dvta

00 00

'''  

Calculate the instantaneous velocity 
using the acceleration given. ( ) ( ) ∫

=

=
t

t

dtttv
0

3

0

''m/s2.0  

and 

( ) ( ) 23m/s1.0 ttv =  
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(b) To calculate the average 
velocity, we need the displacement: ( ) ( )

( )

( )∫∫
==

==⇒≡
t

t

tx

x

dttvdxtx
dt
dxtv

00 00

'''  

Because the velocity is the 
derivative of the displacement, 
integrate the velocity to find ∆x. 

( ) ( ) ( )
3

m/s1.0''m/s1.0
3

3

0

23

0

tdtttx
t

t

== ∫
=

 

and 

( ) ( )

m 11.2

3
s) 2(s 7m/s1.0

s) (2s) (7
33

3

=

⎥
⎦

⎤
⎢
⎣

⎡ −
=

−=∆ xxx

 

 
Using the definition of the average 
velocity, calculate vav. m/s 23.2

s5
m 11.2

av ==
∆
∆

=
t
xv  

 
124 •   
Determine the Concept Because the acceleration is a function of time, it is not constant.  
Hence we’ll need to integrate the acceleration function to find the velocity as a function 
of time and integrate the velocity function to find the position as a function of time. The 
important concepts here are the definitions of velocity, acceleration, and average velocity. 
 
(a) Starting from to = 0, integrate the 
instantaneous acceleration to obtain 
the instantaneous velocity as a 
function of time: 

( )∫∫ +=

=

tv

v

dtbtadv

dt
dva

0
0 '''

thatfollowsit

From

0

 

and 
2

2
1

00 bttavv ++=  

 
(b) Now integrate the instantaneous 
velocity to obtain the position as a 
function of time: 

 
dt
dxv =From  

it follows that 

( )

∫

∫∫

⎟
⎠
⎞

⎜
⎝
⎛ ++=

=
=

t

t

t

t

x

x

dttbtav

dttvdx

0

00

''
2

'

'''

2
09

0
 

and 
3

6
12

02
1

00 bttatvxx +++=  

 
(c) The definition of the average 
velocity is the ratio of the 
displacement to the total time 
elapsed: 

t
bttatv

tt
xx

t
xv

3
6
12

02
1

0

0

0
av

++
=

−
−

=
∆
∆

≡  

and 
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2
6
1

02
1

0av bttavv ++=  

Note that vav is not the same as that  
due to constant acceleration: ( )

( )

av

2
4
1

02
1

0

2
2
1

000

0
avonacceleraticonstant

2

2

v
bttav

bttavv

vvv

≠
++=

+++
=

+
=

 

 
General Problems 
 
125 •••  
Picture the Problem The acceleration of the marble is constant. Because the motion is 
downward, choose a coordinate system with downward as the positive direction. The 
equation gexp = (1 m)/(∆t)2 originates in the constant-acceleration equation 

( )2
2
1

0 tatvx ∆+∆=∆ . Because the motion starts from rest, the displacement of the 
marble is 1 m, the acceleration is the experimental value gexp, and the equation simplifies 
to gexp = (1 m)/(∆t)2. 
 
Express the percent difference 
between the accepted and 
experimental values for the 
acceleration due to gravity: 
 

accepted

expaccepteddifference%
g

gg −
=

 

 
Using a constant-acceleration 
equation, express the velocity of the 
marble in terms of its initial 
velocity, acceleration, and 
displacement: 
 

yavv ∆+= 22
0

2
f  

or, because v0 = 0 and a = g, 
ygv ∆= 22

f  

Solve for vf: 
 

ygv ∆= 2f  

Let v1 be the velocity the ball has 
reached when it has fallen 0.5 cm, 
and v2 be the velocity the ball has 
reached when it has fallen 0.5 m to 
obtain.  
 

( )( ) m/s313.0m005.0m/s81.92 2
1 ==v  

and 

( )( ) m/s13.3m5.0m/s81.92 2
2 ==v  

 

Using a constant-acceleration 
equation, express v2 in terms of v1, g 
and ∆t:  
 

tgvv ∆+= 12  

Solve for ∆t: 
 g

vvt 12 −
=∆  

 



Chapter 2 
 

 

110 

Substitute numerical values and 
evaluate ∆t: s2872.0

m/s81.9
m/s313.0m/s13.3

2 =
−

=∆t  

 
Calculate the experimental value of 
the acceleration due to gravity from  
gexp = (1 m)/(∆t)2: 
 

( )
2

2exp m/s13.12
s2872.0

m1
==g  

 
Finally, calculate the percent 
difference between this 
experimental result and the value 
accepted for g at sea level. %6.23

m/s81.9
m/s13.12m/s81.9

difference% 2

22

=

−
=

 

 
*126 •••  
Picture the Problem We can obtain an average velocity, vav = ∆x/∆t, over fixed time 
intervals.  The instantaneous velocity, v = dx/dt can only be obtained by differentiation. 
 
(a) The graph of x versus t is shown 
to the right: 
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(b)  Draw a tangent line at the origin 
and measure its rise and run.  Use 
this ratio to obtain an approximate 
value for the slope at the origin:  
 

The tangent line appears to, at least 
approximately, pass through the point  
(5, 4). Using the origin as the second point, 
 

∆x = 4 cm – 0 = 4 cm 
and 

∆t = 5 s – 0 = 5 s 
 
Therefore, the slope of the tangent line and 
the velocity of the body as it passes 
through the origin is approximately 
 

( ) cm/s800.0
s5

cm4
run
rise0 ==

∆
∆

==
t
xv

 
(c) Calculate the average velocity for the series of time intervals given by completing the 
table shown below: 
 

t0 t ∆t x0 x ∆x vav=∆x/∆t 
(s) (s) (s) (cm) (cm) (cm) (m/s) 
0 6 6 0 4.34 4.34 0.723 
0 3 3 0 2.51 2.51 0.835 
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0 2 2 0 1.71 1.71 0.857 
0 1 1 0 0.871 0.871 0.871 
0 0.5 0.5 0 0.437 0.437 0.874 
0 0.25 0.25 0 0.219 0.219 0.875  

 
(d) Express the time derivative of 
the position: tA

dt
dx ωω cos=  

 
Substitute numerical values and 

evaluate 
dt
dx

at t = 0: 

 
( )( )

cm/s0.875

s0.175m0.05

0cos

1

=

=

==

−

ωω AA
dt
dx

 

 
(e) Compare the average velocities 
from part (c) with the instantaneous 
velocity from part (d): 
 

As ∆t, and thus ∆x, becomes small, the 
value for the average velocity approaches 
that for the instantaneous velocity obtained 
in part (d). For ∆t = 0.25 s, they agree to 
three significant figures. 

 
127 •••  
Determine the Concept Because the velocity varies nonlinearly with time, the 
acceleration of the object is not constant. We can find the acceleration of the object by 
differentiating its velocity with respect to time and its position function by integrating the 
velocity function. The important concepts here are the definitions of acceleration and 
velocity. 
 
(a) The acceleration of the object is 
the derivative of its velocity with 
respect to time: 
 
 
 

( )[ ]

( )tv

tv
dt
d

dt
dva

ωω

ω

cos

sin

max

max

=

==
 

constant.  isit  with time
ly sinusoidal  varies Because

not
a

 

 
(b) Integrate the velocity with 
respect to time from 0 to t to obtain 
the change in position of the body: 

 

( )[ ]∫∫ =
t

t

x

x

dttvdx
00

''sin' max ω  

and 

( )

( )
ω

ω
ω

ω
ω

maxmax

0

max
0

cos

'cos

vtv

tvxx
t

+
−

=

⎥⎦
⎤

⎢⎣
⎡−

=−
 

or 

( )
ω

ω
ω

maxmax
0 cos vtvxx +−=  
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Note that, as given in the problem 
statement, x(0 s) = x0. 

 
128 •••  
Picture the Problem Because the acceleration of the particle is a function of its position, 
it is not constant. Changing the variable of integration in the definition of acceleration 
will allow us to determine its velocity and position as functions of position. 
 
(a) Because a = dv/dt, we must 
integrate to find v(t). Because a is 
given as a function of x, we’ll need 
to change variables in order to carry 
out the integration. Once we’ve 
changed variables, we’ll separate 
them with v on the left side of the 
equation and x on the right: 
 

( )x
dx
dvv

dt
dx

dx
dv

dt
dva 2s2 −====  

 
or, upon separating variables, 
 

( )xdxvdv 2s2 −=  
 
 

Integrate from xo and vo to x and v: 
 ( )∫∫ −

=

=
x

x

v

v

dxxdvv
00

''s2'' 2

0

 

and 
( )( )2

0
222

0
2 s2 xxvv −=− −  

 
Solve for v to obtain: 
 ( )( )2

0
222

0 s2 xxvv −+= −  
 

Now set vo = 0, xo = 1 m, x = 3 m,  
b =2 s–2 and evaluate the speed: ( ) ( ) ( )[ ]222 m1m3s2 −±= −v  

and 
v = 4.00m/s  
 

(b) Using the definition of v, 
separate the variables, and integrate 
to get an expression for t: 
 

( )
dt
dxxv =  

and 

( )∫∫ ′
′

=
x

x

t

xv
xddt

00

'  

 
To evaluate this integral we first 
must find v(x). Show that the 
acceleration is always positive and 
use this to find the sign of v(x). 
 
 

a = (2 s–2 )x and x0 = 1 m.  x0 is positive, so 
a0 is also positive. v0 is zero and a0 is 
positive, so the object moves in the 
direction of increasing x.  As x increases 
the acceleration remains positive, so the 
velocity also remains positive.  Thus,  

( )( )2
0

22s2 xxv −= − . 
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Substitute ( )( )2
0

22s2 xx −−  for v 
and evaluate the integral.  (It can be 
found in standard integral tables.) 
 
 
 
 
 
 
 
 

( )

( )( )

( )

( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −+
=

−′

′
=

−′

′
=

′
′

==

−

−

−

∫

∫

∫∫

0

2
0

2

2

2
0

22

2
0

22

0

ln
s2
1

s2
1

s2

0

0

0

x
xxx

xx
xd

xx
xd

xv
xddt't

x

x

x

x

x

x

t

 

 
Evaluate this expression with 
xo = 1 m and x = 3 m to obtain: 

s25.1=t  

 
129 •••  
Picture the Problem The acceleration of this particle is not constant.  Separating 
variables and integrating will allow us to express the particle’s position as a function of 
time and the differentiation of this expression will give us the acceleration of the particle 
as a function of time. 
 
(a) Write the definition of velocity: 
 dt

dxv =  

 
We are given that x = bv, where  
b = 1 s.  Substitute for v and 
separate variables to obtain: 
 

x
dxbdt

b
x

dt
dx

=⇒=   

Integrate and solve for x(t): 
 ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=−⇒

′
′

= ∫∫
0

0 ln  '
00

x
xbtt

x
xdbdt

x

x

t

t

 

and 

( ) ( ) btt
extx

/

0
0−

=  

 
(b) Differentiate twice to obtain v(t) 
and a(t): 
 

( ) btt
ex

bdt
dxv

/

0
01 −

==  

and 
( ) btt

ex
bdt

dva
/

02

01 −
==  

 
Substitute the result in part (a) to 
obtain the desired results:  
 
 
 
 
 

)(1)(

  and

)(1)(

2 tx
b

ta

tx
b

tv

=

=
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 so 

)(1)(1)( 2 tx
b

tv
b

ta ==  

 

in time.instant each at  same  theare and   of  valuesnumerical
  theone, is units, SIin  expressed , of  valuenumerical  theBecause

xv,a,
b

 

 
130 •••  
Picture the Problem Because the acceleration of the rock is a function of time, it is not 
constant.  Choose a coordinate system in which downward is positive and the origin at 
the point of release of the rock. 
 
Separate variables in  
a(t) = dv/dt = ge−bt to obtain: 
 

dtgedv bt−=  

Integrate from to = 0, vo = 0 to some 
later time t and velocity v: [ ]

( ) ( )btbt

tbt
t

bt
v

eve
b
g

e
b

gdtgedvv

−−

−−

−=−=

−
=== ∫∫

11

''

term

0
'

0

'

0  

where 

 
b
gv =term  

 
Separate variables in 

( )btevdtdyv −−== 1term  to 
obtain: 
 

( )dtevdy bt−−= 1term  

Integrate from to = 0, yo = 0 to some  
later time t and position y: ( )∫∫ −−=

t
bt

y

tevdy
0

'
term

0

'd1'  

( )bt

t
bt

e
b

vtv

e
b

tvy

−

−

−−=

⎥⎦
⎤

⎢⎣
⎡ +=

1

1'

term
term

0

'
term

 

 
This last result is very interesting.  It says that throughout its free-fall, the object 
experiences drag; therefore it has not fallen as far at any given time as it would have if it 
were falling at the constant velocity, vterm.   
 
On the other hand, just as the 
velocity of the object asymptotically 
approaches vterm, the distance it has 
covered during its free-fall as a 
function of time asymptotically 
approaches the distance it would 

( ) tv
b
vtvty termtermlarge →−→  

 
This should not be surprising because in 
the expression above, the first term grows 
linearly with time while the second term 
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have fallen if it had fallen with vterm 
throughout its motion. 

approaches a constant and therefore 
becomes less important with time. 

 
*131 •••  
Picture the Problem Because the acceleration of the rock is a function of its velocity, it 
is not constant.  Choose a coordinate system in which downward is positive and the 
origin is at the point of release of the rock. 
 
Rewrite a = g – bv explicitly as a 
differential equation: 

 

bvg
dt
dv

−=  

 

Separate the variables, v on the left, 
t on the right: 

 

dt
bvg

dv
=

−
 

Integrate the left-hand side of this 
equation from 0 to v and the right-
hand side from 0 to t: 

 

∫∫ =
−

t

00

'
'

' dt
bvg

dvv

 

and 

t
g

bvg
b

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
− ln1

 

 

Solve this expression for v. 

 
( )bte

b
gv −−= 1  

Finally, differentiate this expression 
with respect to time to obtain an 
expression for the acceleration and 
to complete the proof. 

btge
dt
dva −==  

 
132 •••  
Picture the Problem The skydiver’s acceleration is a function of her velocity;  therefore 
it is not constant. Expressing her acceleration as the derivative of her velocity, separating 
the variables, and then integrating will give her velocity as a function of time. 
 
(a) Rewrite a = g – cv2 explicitly as a 
differential equation: 

 

2cvg
dt
dv

−=  

Separate the variables, with v on the 
left, and t on the right: 

 

dt
cvg

dv
=

− 2  
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Eliminate c by using 2
Tv
gc = : 

 

gdt

v
v

dv

dt

v
vg

dv

v
v
gg

dv

T

T
T

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
−

2

2
2

2

1

or

1

 

Integrate the left-hand side of this 
equation from 0 to v and the right-
hand side from 0 to t: 
 

gtdtg

Tv
v

dv tv

==

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

∫∫
00

2 '
'1

'
 

 

The integral can be found in integral 
tables: 
 

( ) ( )tvgvv

gtvvv

TT

TT

//tanh
or

)/(tanh

1-

1

=

=−

 

 

Solve this equation for v to obtain: 
 t

v
gvv
T

T ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= tanh  

 

Because c has units of m−1, and g 
has units of m/s2, (cg)−1/2 will have 
units of time.  Let’s represent this 
expression with the time-scale factor 
T:  
 

i.e., T = (cg)−1/2 
 

The skydiver falls with her terminal 
velocity when a = 0. Using this 
definition, relate her terminal 
velocity to the acceleration due to 
gravity and the constant c in the 
acceleration equation: 
 

20 Tcvg −=  
and 

c
gvT =  

Convince yourself that T is also 
equal to vT/g and use this 
relationship to eliminate g and vT in 
the solution to the differential 
equation: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛=

T
tvtv T tanh  

 
(b) The following table was generated using a spreadsheet and the equation we derived in 
part (a) for v(t). The cell formulas and their algebraic forms are: 
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Cell Content/Formula Algebraic Form
D1 56 vT 
D2 5.71 T 
B7 B6 + 0.25 t + 0.25 
C7 $B$1*TANH(B7/$B$2)

⎟
⎠
⎞

⎜
⎝
⎛

T
tvT tanh  

 
 

 A B C D E 
1 vT = 56 m/s   
2 T= 5.71 s   
3     
4      
5  time (s) v (m/s)   
6  0.00 0.00   
7  0.25 2.45   
8  0.50 4.89   
9  0.75 7.32   

10  1.00 9.71   
      

54  12.00 54.35   
55  12.25 54.49   
56  12.50 54.61   
57  12.75 54.73   
58  13.00 54.83   
59  13.25 54.93    

 
 

0
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40
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60
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t  (s)

v  
(m

/s
)

 
 

Note that the velocity increases linearly over time (i.e., with constant acceleration) for 
about time T, but then it approaches the terminal velocity as the acceleration decreases. 
 


