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Chapter 3 
Motion in Two and Three Dimensions 
 
Conceptual Problems 
 
*1 •  
Determine the Concept The distance traveled along a path can be represented as a 
sequence of displacements. 

 
Suppose we take a trip along some path and consider the trip as a sequence of many very 
small displacements.  The net displacement is the vector sum of the very small 
displacements, and the total distance traveled is the sum of the magnitudes of the very 
small displacements.  That is,  
 

total distance = NN 1,3,22,11,0 ... −∆++∆+∆+∆ rrrr
rrrr

 

 
where N is the number of very small displacements.  (For this to be exactly true we have 
to take the limit as N goes to infinity and each displacement magnitude goes to zero.)  
Now, using ″the shortest distance between two points is a straight line,″ we have  
 

NNN 1,3,22,11,0,0 ... −∆++∆+∆+∆≤∆ rrrrr
rrrrr

, 

 
 where N,0r

r
∆  is the magnitude of the net displacement.   

 
Hence, we have shown that the magnitude of the displacement of a particle is less than or 
equal to the distance it travels along its path. 

 
2 •  
Determine the Concept The displacement of an object is its final position vector minus 
its initial position vector ( if rrr rrr

−=∆ ).  The displacement can be less but never more 
than the distance traveled.  Suppose the path is one complete trip around the earth at the 
equator. Then, the displacement is 0 but the distance traveled is 2πRe. 
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3 •  
Determine the Concept The important distinction here is that average velocity is being 
requested, as opposed to average speed.  
 
The average velocity is defined as 
the displacement divided by the 
elapsed time. 
 

00
av =

∆
=

∆
∆

=
tt

rv
r

r
 

circuit. completeeach  of end the
at zero always is velocity average  thes,car travel race fast the howmatter 
no that see  weThus zero. is track  thearound any tripfor nt displaceme The

 

 
What is the correct answer if we were asked for average speed? 
 
The average speed is defined as the 
distance traveled divided by the 
elapsed time. 
 

t
v

∆
≡

distancetotal
av  

zero.not  is average  theand zeroan greater th
be  will traveleddistance  total theany track, ofcircuit  complete oneFor 

 

 
4 •  
False. Vectors are quantities with magnitude and direction that can be added and 
subtracted like displacements. Consider two vectors that are equal in magnitude and 
oppositely directed.  Their sum is zero, showing by counterexample that the statement is 
false. 
 
5 •  
Determine the Concept We can answer 
this question by expressing the relationship 
between the magnitude of vector A

r
 and its 

component AS and then using properties of 
the cosine function. 

 

 
 
Express AS in terms of A and θ : AS = A cosθ 

 

Take the absolute value of  both 
sides of this expression: 

 

⎜AS⎜ = ⎜A cosθ ⎜ = A⎜cosθ ⎜  

and 

⎜cosθ ⎜=
A
AS  
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Using the fact that 0 < ⎟cosθ ⎜≤ 1, 
substitute for⎟cosθ ⎜to obtain: 10 S ≤<

A
A

or AA ≤< S0  

 vector. theof magnitude  theto
 equalor  than less bemust  vector a ofcomponent  a of magnitude The No.

 

 

 equal. arecomponent  its and vector  theof magnitude the
 then,180 of multiplesor  0  toequal is figure in theshown   angle  theIf °°θ

 

 
*6 • 
Determine the Concept The diagram 
shows a vector A

r
and its components Ax 

and Ay. We can relate the magnitude of 
A
r

is related to the lengths of its 
components through the Pythagorean 
theorem. 

 
 
Suppose that A

r
is equal to zero. Then .0222 =+= yx AAA  

But .0022 ==⇒=+ yxyx AAAA  

 too.zero bemust  components its ofeach  zero,  toequal is vector a If No.  

 
7 •  
Determine the Concept No. Consider the special case in which AB

rr
−= . 

If 0then,0 =≠−= CAB
rrr

and the magnitudes of the components of BA
rr

and are 

larger than the components of .C
r

 
 
*8 •  
Determine the Concept The instantaneous acceleration is the limiting value, as ∆t 
approaches zero, of .t∆∆vr Thus, the acceleration vector is in the same direction as .vr∆     
 
 
False. Consider a ball that has been 
thrown upward near the surface of 
the earth and is slowing down.  The 
direction of its motion is upward. 
 
The diagram shows the ball’s 
velocity vectors at two instants of 
time and the determination of .vr∆  
Note that because vr∆ is downward 
so is the acceleration of the ball. 
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9 •  
Determine the Concept The instantaneous acceleration is the limiting value, as ∆t 
approaches zero, of t∆∆vr and is in the same direction as .vr∆   
 
Other than through the definition of ,ar the instantaneous velocity and acceleration vectors 
are unrelated.  Knowing the direction of the velocity at one instant tells one nothing about 
how the velocity is changing at that instant. correct. is )(e  

 
10 •  
Determine the Concept The changing velocity of the golf ball during its flight can be 
understood by recognizing that it has both horizontal and vertical components. The nature 
of its acceleration near the highest point of its flight can be understood by analyzing the 
vertical components of its velocity on either side of this point. 
 
At the highest point of its flight, the 
ball is still traveling horizontally 
even though its vertical velocity is 
momentarily zero.  The figure to the 
right shows the vertical components 
of the ball’s velocity just before and 
just after it has reached its highest 
point. The change in velocity during 
this short interval is a non-zero, 
downward-pointing vector.  Because 
the acceleration is proportional to 
the change in velocity, it must also 
be nonzero. 

 
 

correct. is )(d  

Remarks: Note that vx is nonzero and vy is zero, while ax is zero and ay is nonzero. 
 
11 •  
Determine the Concept The change in the velocity is in the same direction as the 
acceleration.  Choose an x-y coordinate system with east being the positive x direction 
and north the positive y direction. 

 
Given our choice of coordinate system, the x component of a

r
is negative and so vr  will 

decrease. The y component of ar  is positive and so vr  will increase toward the north. 
correct. is )(c  

 
*12 •  
Determine the Concept The average velocity of a particle, ,avvr is the ratio of the 
particle’s displacement to the time required for the displacement. 
 
 (a) We can calculate r

r
∆ from the 

given information and ∆t is known. 
correct. is )(a  
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(b) We do not have enough 
information to calculate vr∆  and 
cannot compute the particle’s 
average acceleration. 

 

(c) We would need to know how the 
particle’s velocity varies with time 
in order to compute its 
instantaneous velocity. 

 

(d) We would need to know how the 
particle’s velocity varies with time 
in order to compute its 
instantaneous acceleration. 

 

 
13 ••  
Determine the Concept The velocity vector is always in the direction of motion and, 
thus, tangent to the path. 
 

(a) 
path.  theo tangent tis motion,

ofdirection  in the being always of econsequenc a as vector, velocity The
 

 
(b) A sketch showing two velocity 
vectors for a particle moving along a 
path is shown to the right. 

 
 
14 •  
Determine the Concept An object experiences acceleration whenever either its speed 
changes or it changes direction. 
 
The acceleration of a car moving in a straight path at constant speed is zero.  In the other 
examples, either the magnitude or the direction of the velocity vector is changing and, 
hence, the car is accelerated. correct. is )(b  

 
*15 •  
Determine the Concept The velocity vector is defined by ,/ dtdrv

rr
= while the 

acceleration vector is defined by ./ dtdva rr
=  

 
(a) A car moving along a straight road while braking. 
 

(b) A car moving along a straight road while speeding up. 
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(c) A particle moving around a circular track at constant speed. 

 
16 •  
Determine the Concept A particle experiences accelerated motion when either its speed 
or direction of motion changes. 
 
A particle moving at constant speed in a circular path is accelerating because the 
direction of its velocity vector is changing. 
 
If a particle is moving at constant velocity, it is not accelerating. 
 
17 ••  
Determine the Concept The acceleration vector is in the same direction as the change in 
velocity vector, .vr∆  

 
(a) The sketch for the dart thrown 
upward is shown to the right. The 
acceleration vector is in the 
direction of the change in the 
velocity vector .vr∆  

 
(b) The sketch for the falling dart is 
shown to the right. Again, the 
acceleration vector is in the 
direction of the change in the 
velocity vector .vr∆  
 

 

 
(c) The acceleration vector is in the 
direction of the change in the 
velocity vector … and hence is 
downward as shown the right: 

 

 
 
*18 ••  
Determine the Concept The acceleration vector is in the same direction as the change in 
velocity vector, .vr∆  

 

The drawing is shown to the right. 

 
 
19 ••  
Determine the Concept The acceleration vector is in the same direction as the change in 
velocity vector, .vr∆  
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The sketch is shown to the right. 

 
 
20 •  
Determine the Concept We can decide what the pilot should do by considering the 
speeds of the boat and of the current. 
 
Give up.  The speed of the stream is equal to the maximum speed of the boat in still 
water.  The best the boat can do is, while facing directly upstream, maintain its position 
relative to the bank. correct. is )(d  

 
*21 •  
Determine the Concept True. In the absence of air resistance, both projectiles 
experience the same downward acceleration. Because both projectiles have initial vertical 
velocities of zero, their vertical motions must be identical. 
 
22 •  
Determine the Concept In the absence of air resistance, the horizontal component of the 
projectile’s velocity is constant for the duration of its flight. 

 
At the highest point, the speed is the horizontal component of the initial velocity.  The 
vertical component is zero at the highest point. correct. is )(e  

 
23 •  
Determine the Concept In the absence of air resistance, the acceleration of the ball 
depends only on the change in its velocity and is independent of its velocity. 
 
As the ball moves along its trajectory between points A and C, the vertical component of 
its velocity decreases and the change in its velocity is a downward pointing vector. 
Between points C and E, the vertical component of its velocity increases and the change 
in its velocity is also a downward pointing vector.  There is no change in the horizontal 
component of the velocity. correct. is )(d  

 
24 •  
Determine the Concept In the absence of air resistance, the horizontal component of the 
velocity remains constant throughout the flight. The vertical component has its maximum 
values at launch and impact. 
 
(a) The speed is greatest at A and E. 
 
(b) The speed is least at point C. 
 
(c) The speed is the same at A and E. The horizontal components are equal at these points 
but the vertical components are oppositely directed. 
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25 •  
Determine the Concept Speed is a scalar quantity, whereas acceleration, equal to the 
rate of change of velocity, is a vector quantity. 

(a) False. Consider a ball on the end of a string.  The ball can move with constant speed 
(a scalar) even though its acceleration (a vector) is always changing direction. 

(b) True. From its definition, if the acceleration is zero, the velocity must be constant and 
so, therefore, must be the speed. 

 
26 •  
Determine the Concept The average acceleration vector is defined by ./av t∆∆= va rr

 
 
The direction of avar is that of 

,if vvv rrr
−=∆ as shown to the right. 

 
 
27 •  
Determine the Concept The velocity of B relative to A is .ABBA vvv rrr

−=  
 
The direction of ABBA vvv rrr

−= is shown to 
the right. 

 
 
*28 ••  
(a)  The vectors ( )tA

r
 and ( )tt ∆+A

r
 are of equal length but point in slightly different 

directions.  A
r

∆ is shown in the diagram below. Note that A
r

∆ is nearly perpendicular 
to ( )tA
r

.  For very small time intervals, A
r

∆  and ( )tA
r

 are perpendicular to one another. 

Therefore, dtd /A
r

is perpendicular to .A
r

 

 
(b) If A

r
represents the position of a particle, the particle must be undergoing circular 
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motion (i.e., it is at a constant distance from some origin). The velocity vector is tangent 
to the particle’s trajectory; in the case of a circle, it is perpendicular to the circle’s radius. 

 
(c) Yes, it could in the case of uniform circular motion. The speed of the particle is 
constant, but its heading is changing constantly. The acceleration vector in this case is 
always perpendicular to the velocity vector. 
 
29 ••  
Determine the Concept The velocity vector is in the same direction as the change in the 
position vector while the acceleration vector is in the same direction as the change in the 
velocity vector. Choose a coordinate system in which the y direction is north and the x 
direction is east. 
(a)  

Path Direction of velocity 
vector 

AB north 
BC northeast 
CD east 
DE southeast 
EF south  

(b)  
Path Direction of acceleration 

vector 
AB north 
BC southeast 
CD 0 
DE southwest 
EF north  

  

(c) 
ere.smaller th ispath 

  theof radius  thesince DEfor larger but  ,comparable are magnitudes The
 

 
*30 ••  
Determine the Concept We’ll assume that the cannons are identical and use a constant-
acceleration equation to express the displacement of each cannonball as a function of 
time. Having done so, we can then establish the condition under which they will have the 
same vertical position at a given time and, hence, collide. The modified diagram shown 
below shows the displacements of both cannonballs. 

 
 

Express the displacement of the 
cannonball from cannon A at any 
time t after being fired and before 
any collision: 
 

2
2
1

0 tt gvr rrr
+=∆  

Express the displacement of the 
cannonball from cannon A at any 
time t′ after being fired and before 

2
2
1

0 tt ′+′′=′∆ gvr rrr
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any collision: 
 
 

usly.simultaneo
guns  thefire should they Therefore,  times.allat sight  of line  thebelow 

distance same  theare balls  theand '   usly,simultaneo fired are guns  theIf
2

2
1 gt

tt =

 

 
Remarks: This is the ″monkey and hunter″ problem in disguise. If you imagine a 
monkey in the position shown below, and the two guns are fired simultaneously, and 
the monkey begins to fall when the guns are fired, then the monkey and the two 
cannonballs will all reach point P at the same time. 
 

 
 
31 ••  
Determine the Concept The droplet leaving the bottle has the same horizontal velocity 
as the ship.  During the time the droplet is in the air, it is also moving horizontally with 
the same velocity as the rest of the ship.  Because of this, it falls into the vessel, which 
has the same horizontal velocity.  Because you have the same horizontal velocity as the 
ship does, you see the same thing as if the ship were standing still. 
 
32 •  
Determine the Concept  
 

(a) 
stone.  theof velocity therepresent 

 could  themofeither  stone,  theofpath   theo tangent tare   and  Because DA
rr

 

 

 
 



Motion in One and Two Dimensions 
 

 

129

(b) 

( ) ( )

( ) ( )

stone.  theofon accelerati therepresent  could  vector only the

 and  lar toperpendicu is / Therefore, another. one lar toperpendicu

 are  and  intervals,  timesmallFor very   . lar toperpendicu

nearly  is  that Note above. diagram in theshown  are  and vectors

  twoThese circle.  thearound moves stone  theas directionsdifferent 
slightlyin point but length  equal of be and   vectorsLet the

E

AA

AAA

AA

BA

r

rr

rrr

rr

rr

dtd

tt

ttt

∆

∆∆

∆+

 

 
33  •  
Determine the Concept True. An object accelerates when its velocity changes; that is, 
when either its speed or its direction changes. When an object moves in a circle the 
direction of its motion is continually changing. 
 
34    ••  
Picture the Problem In the diagram, (a) 
shows the pendulum just before it reverses 
direction and (b) shows the pendulum just 
after it has reversed its direction.  The 
acceleration of the bob is in the direction of 
the change in the velocity if vvv rrr

−=∆  and 
is tangent to the pendulum trajectory at the 
point of reversal of direction. This makes 
sense because, at an extremum of motion,  
v = 0, so there is no centripetal 
acceleration.  However, because the 
velocity is reversing direction, the 
tangential acceleration is nonzero. 

 

 

 
35 •  
Determine the Concept The principle reason is aerodynamic drag. When moving 
through a fluid, such as the atmosphere, the ball's acceleration will depend strongly on its 
velocity.   
 
Estimation and Approximation  
 
*36 ••  
Picture the Problem During the flight of the ball the acceleration is constant and equal 
to 9.81 m/s2 directed downward. We can find the flight time from the vertical part of the 
motion, and then use the horizontal part of the motion to find the horizontal distance.  
We’ll assume that the release point of the ball is 2 m above your feet. 
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Make a sketch of the motion.  
Include coordinate axes, initial and 
final positions, and initial velocity 
components: 

 
Obviously, how far you throw the 
ball will depend on how fast you 
can throw it.  A major league 
baseball pitcher can throw a fastball 
at 90 mi/h or so.  Assume that you 
can throw a ball at two-thirds that 
speed to obtain: 

m/s8.26
mi/h1

m/s0.447mi/h600 =×=v  

 

There is no acceleration in the x 
direction, so the horizontal motion is 
one of constant velocity. Express the 
horizontal position of the ball as a 
function of time: 
 

tvx x0=                         (1) 
 

Assuming that the release point of 
the ball is a distance h above the 
ground, express the vertical position 
of the ball as a function of time:  
 

2
2
1

0 tatvhy yy ++=           (2) 
 

(a)  For θ = 0 we have: 
 

( )
m/s8.26

0cosm/s8.26cos 000

=
°== θvv x  

and 
( ) 00sinm/s8.26sin 000 =°== θvv y  

 
Substitute in equations (1) and (2) to 
obtain: 
 

( )tx m/s8.26=  
and 

( ) 22
2
1 m/s81.9m2 ty −+=  

 
Eliminate t between these equations 
to obtain: 
 ( )

2
2

2

m/s8.26
m/s4.91m2 xy −=  

 
At impact, y = 0 and x = R: 
 ( )

2
2

2

m/s8.26
m/s4.91m20 R−=  

 
Solve for R to obtain: 
 

m1.17=R  
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(b) Using trigonometry, solve for v0x 
and v0y: 

( )
m/s0.19

45cosm/s8.26cos 000

=
°== θvv x  

and 
( )

m/s0.19

45sinm/s8.26sin 000

=

°== θvv y  

 
Substitute in equations (1) and (2) to 
obtain: 
 

( )tx m/s0.19=  
and 

( ) ( ) 22
2
1 m/s81.9m/s19.0m2 tty −++=  

 
Eliminate t between these equations 
to obtain: 
 ( )

2
2

2

m/s0.19
m/s4.905m2 xxy −+=  

 
At impact, y = 0 and x = R. Hence: 
 ( )

2
2

2

m/s0.19
m/s4.905m20 RR −+=  

or 
( ) 0m2.147m60.73 22 =−− RR  

 
Solve for R (you can use the 
″solver″  or ″graph″ functions of 
your calculator) to obtain: 
 

m6.75=R  

(c)  Solve for v0x and v0y: m/s8.2600 == vv x  
and 

00 =yv  
 

Substitute in equations (1) and (2) to 
obtain: 
 

( )tx m/s8.26=  
and 

( ) 22
2
1 m/s81.9m14 ty −+=  

 
Eliminate t between these equations 
to obtain: 
 ( )

2
2

2

m/s8.26
m/s4.905m14 xy −=  

 
At impact, y = 0 and x = R: 
 ( )

2
2

2

m/s8.26
m/s4.905m140 R−=  

 
Solve for R to obtain: 
 

m3.45=R  

 
(d)  Using trigonometry, solve for 
v0x and v0y: 
 

  v0x = v0 y = 19.0 m / s  
 

Substitute in equations (1) and (2) to ( )tx m/s0.19=  
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obtain: 
 

and 
( ) ( ) 22

2
1 m/s81.9m/s19.0m14 tty −++=  

 
Eliminate t between these equations 
to obtain: 
 ( )

2
2

2

m/s0.19
m/s4.905m14 xxy −+=  

 
At impact, y = 0 and x = R: 
 ( )

2
2

2

m/s0.19
m/s4.905m140 RR −+=  

 
Solve for R (you can use the 
″solver″  or ″graph″ function of your 
calculator) to obtain: 

m6.85=R  

 
37 ••   
Picture the Problem We’ll ignore the height of Geoff’s release point above the ground 
and assume that he launched the brick at an angle of 45°. Because the velocity of the 
brick at the highest point of its flight is equal to the horizontal component of its initial 
velocity, we can use constant-acceleration equations to relate this velocity to the brick’s x 
and y coordinates at impact. The diagram shows an appropriate coordinate system and the 
brick when it is at point P with coordinates (x, y). 
 

 
 
Using a constant-acceleration 
equation, express the x coordinate of 
the brick as a function of time: 
 

2
2
1

00 tatvxx xx ++=  
or, because x0 = 0 and ax = 0, 

tvx x0=  
 

Express the y coordinate of the brick 
as a function of time: 
 

2
2
1

00 tatvyy yy ++=  

or, because y0 = 0 and ay = −g, 
2

2
1

0 gttvy y −=  
 

Eliminate the parameter t to obtain: ( ) 2
2
0

0 2
tan x

v
gxy

x

−= θ  

 
Use the brick’s coordinates when it 
strikes the ground to obtain: ( ) 2

2
0

0 2
tan0 R

v
gR

x

−= θ  

where R is the range of the brick. 
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Solve for v0x to obtain: 

0
0 tan2 θ

gRv x =  

 
Substitute numerical values and 
evaluate v0x: 

( )( ) m/s8.14
45tan2

m44.5m/s9.81 2

0 =
°

=xv  

Note that, at the brick’s highest point,  
vy = 0. 

 
Vectors, Vector Addition, and Coordinate Systems 
 
38 •  
Picture the Problem Let the positive y direction be straight up, the positive x direction 
be to the right, and A

r
and B

r
be the position vectors for the minute and hour hands.  The 

pictorial representation below shows the orientation of the hands of the clock for parts (a) 
through (d). 
 

 
 

(a) The position vector for the 
minute hand at12:00 is:  
 

( ) jA ˆm5.000:12 =
r

 

The position vector for the hour 
hand at 12:00 is: 
 

( ) jB ˆm25.000:12 =
r

 

(b) At 3:30, the minute hand is positioned along the −y axis, while the hour hand is at an 
angle of (3.5 h)/12 h × 360° = 105°, measured clockwise from the top. 
 
The position vector for the minute 
hand is: 
 

( ) jA ˆm5.030:3 −=
r

 

Find the x-component of the vector 
representing the hour hand: 
 

( ) m241.0105sinm25.0 =°=xB  

Find the y-component of the vector 
representing the hour hand: 
 

( ) m0647.0105cosm25.0 −=°=yB  

The position vector for the hour 
hand is: 
 

( ) ( ) jiB ˆm0647.0ˆm241.030:3 −=
r

 

(c) At 6:30, the minute hand is positioned along the −y axis, while the hour hand is at an 
angle of (6.5 h)/12 h × 360° = 195°, measured clockwise from the top. 
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The position vector for the minute 
hand is: 
 

( ) jA ˆm5.030:6 −=
r

 

Find the x-component of the vector 
representing the hour hand: 
 

( ) m0647.0195sinm25.0 −=°=xB  

Find the y-component of the vector 
representing the hour hand: 
 

( ) m241.0195cosm25.0 −=°=yB  

The position vector for the hour 
hand is: 
 

( ) ( ) jiB ˆm241.0ˆm0647.030:6 −−=
r

 

(d) At 7:15, the minute hand is positioned along the +x axis, while the hour hand is at an 
angle of (7.25 h)/12 h × 360° = 218°, measured clockwise from the top. 
 
The position vector for the minute 
hand is: 
 

( )iA ˆm5.015:7 =
r

 

Find the x-component of the vector 
representing the hour hand: 
 

( ) m154.0218sinm25.0 −=°=xB  

Find the y-component of the vector 
representing the hour hand: 
 

( ) m197.0218cosm25.0 −=°=yB  

The position vector for the hour 
hand is: 
 

( ) ( ) jiB ˆm197.0ˆm154.015:7 −−=
r

 

 
(e)  Find A

r
 − B

r
 at 12:00: ( ) ( )

( ) j

jjBA
ˆm25.0

ˆm25.0ˆm5.0

=

−=−
rr

 

 
Find A

r
 − B

r
 at 3:30: ( )

( ) ( )[ ]
( ) ( ) ji

ji

jBA

ˆm435.0ˆm241.0

ˆm0647.0ˆm241.0

ˆm5.0

−−=

−−

−=−
rr

 

 
Find A

r
 − B

r
 at 6:30: ( )

( ) ( )[ ]
( ) ( ) ji

ji

jBA

ˆm259.0ˆm0647.0

ˆm241.0ˆm0647.0

ˆm5.0

−−=

−−

−=−
rr

 

 
Find A

r
 − B
r

 at 7:15: ( )
( ) ( )[ ]

( ) ( ) ji

ji

jBA

ˆm697.0ˆm152.0

ˆm197.0ˆm152.0

ˆm5.0

+=

−−−

=−
rr
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*39 •  
Picture the Problem The resultant displacement is the vector sum of the individual 
displacements. 
 
The two displacements of the bear 
and its resultant displacement are 
shown to the right: 
 
 
 
 
 
 
  
Using the law of cosines, solve for 
the resultant displacement:  
 

( ) ( )
( )( ) °−

+=
cos135m12m122

m12m12 222R
 

and 
m2.22=R  

 
Using the law of sines, solve for α: 

m2.22
135sin

m12
sin °

=
α

 

∴ α = 22.5° and the angle with the 
horizontal is 45° − 22.5° = °5.22  

 
40 •  
Picture the Problem The resultant displacement is the vector sum of the individual 
displacements. 
 
(a) Using the endpoint coordinates 
for her initial and final positions, 
draw the student’s initial and final 
position vectors and construct her 
displacement vector.  
 
 
 
 

 
Find the magnitude of her 
displacement and the angle this 
displacement makes with the 
positive x-axis: 
 

.135 @ m 25 isnt displacemeHer °  

 

(b) 
.135 @ 25 also

isnt displaceme his so ),(in  as same  theare positions final and initial His

°

a
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*41 •  
Picture the Problem Use the standard rules for vector addition.  Remember that 
changing the sign of a vector reverses its direction. 

 
 (a) 

 

(b) 

 
 

(c) 

 
 

(d) 

 
 
(e) 
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42 •  
Picture the Problem The figure 
shows the paths walked by the 
Scout.  The length of path A is  
2.4 km; the length of path B is 
2.4 km; and the length of path C is 
1.5 km: 

 
 

(a) Express the distance from the 
campsite to the end of path C: 
 

2.4 km – 1.5 km = km9.0   

(b) Determine the angle θ subtended 
by the arc at the origin (campsite): 

°==

==

57.3rad1
km2.4
km2.4

radius
lengtharc

radiansθ
 

east.ofnorth rad 1 is
camp  fromdirectionHis

 

 
(c) Express the total distance as the 
sum of the three parts of  his walk: 
 
 
 

dtot = deast + darc + dtoward camp 
 
 
 
 

Substitute the given distances to 
find the total: 
 

dtot = 2.4 km + 2.4 km + 1.5 km  
      = 6.3 km 
 

Express the ratio of the magnitude 
of his displacement to the total 
distance he walked and substitute to 
obtain a numerical value for this 
ratio: 7

1

km6.3
km0.9

 walkeddistance Total
ntdisplaceme his of Magnitude

=

=

 
 
43 •  
Picture the Problem The direction of a vector is determined by its components. 
 

°−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= − 5.32

m/s5.5
m/s3.5tan 1θ   

The vector is in the fourth quadrant and 

correct. is )(b   
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44 •  
Picture the Problem The components of the resultant vector can be obtained from the 
components of the vectors being added.  The magnitude of the resultant vector can then 
be found by using the Pythagorean Theorem. 
 
A table such as the one shown to the 
right is useful in organizing the 
information in this problem. Let D

r
 

be the sum of vectors ,A
r

,B
r

 and .C
r

 
 
 
 

 
Vector x-component y-component 

A
r

 6 −3 

B
r

 −3 4 

C
r

 2 5 

D
r

   
 

Determine the components of D
r

by 
adding the components of ,A

r
,B
r

 
and .C

r
 

 

Dx = 5 and Dy = 6 
 

Use the Pythagorean Theorem to 
calculate the magnitude of D

r
: 

( ) ( ) 81.765 2222 =+=+= yx DDD  

and correct. is )(d  

 
45 •  
Picture the Problem The components of the given vector can be determined using right-
triangle trigonometry. 
 
Use the trigonometric relationships between the magnitude of a vector and its 
components to calculate the x- and y-components of each vector. 

 A θ Ax Ay 
(a) 10 m 30° 8.66 m 5 m 
(b) 5 m 45° 3.54 m 3.54 m 
(c) 7 km 60° 3.50 km 6.06 km 
(d) 5 km 90° 0  5 km 
(e) 15 km/s 150° −13.0 km/s 7.50 km/s 
(f) 10 m/s 240° −5.00 m/s −8.66 m/s 
(g) 8 m/s2 270° 0 −8.00 m/s2

 
*46 •  
Picture the Problem Vectors can be added and subtracted by adding and subtracting 
their components. 
 
Write A

r
in component form:  

 
Ax =  (8 m) cos 37° = 6.4 m 
Ay = (8 m) sin 37° = 4.8 m 
∴ ( ) ( ) jiA ˆm8.4ˆm4.6 +=
r
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(a), (b), (c) Add (or subtract) x- and  
y-components: 
 

( ) ( )

( ) ( )

( ) ( ) jiF

jiE

jiD

ˆm8.23ˆm6.17

ˆm8.9ˆm4.3

ˆm8.7ˆm4.0

+−=

−−=

+=

r

r

r

 

 
(d) Solve for G

r
and add 

components to obtain: 
( )

( ) ( ) ji

CBAG

ˆm9.2ˆm3.1

2
2
1

−=

++−=
rrrr

 

 
47 ••  
Picture the Problem The magnitude of each vector can be found from the Pythagorean 
theorem and their directions found using the inverse tangent function. 
 
(a) jiA ˆ3ˆ5 +=

r
 

 
 
  

83.522 =+= yx AAA  

and, because A
r

is in the 1st quadrant, 

°== − 0.31tan 1

x

y

A
A

θ  

 
(b) jiB ˆ7ˆ10 −=

r
 

 
 

2.1222 =+= yx BBB  

and, because B
r

is in the 4th quadrant, 

°−== − 0.35tan 1

x

y

B
B

θ  

 
(c) kjiC ˆ4ˆ3ˆ2 +−−=

r
 

 
 

39.5222 =++= zyx CCCC  

°== − 1.42cos 1

C
Czθ  

where θ is the polar angle measured from 
the positive z-axis and 

°=⎟
⎠
⎞

⎜
⎝
⎛ −

== −− 112
29
2coscos 11

C
Cxφ   

 

 
48 •  
Picture the Problem The magnitude and direction of a two-dimensional vector can be 
found by using the Pythagorean Theorem and the definition of the tangent function. 
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 (a) jiA ˆ7ˆ4 −−=
r

 
 
 
 
 

 06.822 =+= yx AAA  

and, because A
r

is in the 3rd quadrant, 

°== − 240tan 1

x

y

A
A

θ  

 
jiB ˆ2ˆ3 −=

r
  61.322 =+= yx BBB  

and, because B
r

is in the 4th quadrant, 

°−== − 7.33tan 1

x

y

B
B

θ  

 
jiBAC ˆ9ˆ −−=+=

rrr
  06.922 =+= yx CCC  

and, because C
r

is in the 3rd quadrant, 

°== − 264tan 1

x

y

C
C

θ  

 
(b) Follow the same steps as in (a). A = 12.4 ; θ = °− 0.76  

B = 6.32 ; θ = °71.6  

C = 3.61 ; θ = °33.7   

 
49 •  
Picture the Problem The components of these vectors are related to the magnitude of 
each vector through the Pythagorean Theorem and trigonometric functions. In parts (a) 
and (b), calculate the rectangular components of each vector and then express the vector 
in rectangular form. 
 
(a) Express vr in rectangular form: jiv ˆˆ

yx vv +=
r

 
 

Evaluate vx and vy: vx = (10 m/s) cos 60° = 5 m/s 
and 
vy = (10 m/s) sin 60° = 8.66 m/s 
 

Substitute to obtain: jiv ˆ)m/s66.8(ˆ)m/s5( +=
r

 

 
(b) Express v

r
in rectangular form: 

 
jiA ˆˆ

yx AA +=
r

 

Evaluate Ax and Ay: 
 

Ax = (5 m) cos 225° = −3.54 m 
and 
Ay = (5 m) sin 225° = −3.54 m 
 

Substitute to obtain: ( ) ( ) jiA ˆm54.3ˆm54.3 −+−=
r
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(c) There is nothing to calculate as 
we are given the rectangular 
components: 

( ) ( ) jir ˆm6ˆm14 −=
r

 

 
50 •  
Picture the Problem While there are infinitely many vectors B that can be constructed 
such that A = B, the simplest are those which lie along the coordinate axes.  
 
Determine the magnitude of :A

r
 

 
543 2222 =+=+= yx AAA  

 
Write three vectors of the same 
magnitude as :A

r
 

 
jBiBiB ˆ5andˆ5ˆ5 321 =−==

rrr
,,  

 
The vectors are shown to the right: 

 
 
*51 ••  
Picture the Problem While there are 
several walking routes the fly could take to 
get from the origin to point C, its 
displacement will be the same for all of 
them. One possible route is shown in the 
figure. 

 
 
Express the fly’s 
displacement D

r
during its trip from 

the origin to point C and find its 
magnitude: 

( ) ( ) ( )kji

CBAD
ˆm3ˆm3ˆm3 ++=

++=
rrrr

 

and 

( ) ( ) ( )
m20.5

m3m3m3 222

=

++=D
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*52 •  
Picture the Problem The diagram shows the locations of the transmitters relative to the 
ship and defines the distances separating the transmitters from each other and from the 
ship. We can find the distance between the ship and transmitter B using trigonometry. 

 

 
 
Relate the distance between A and B 
to the distance from the ship to A 
and the angle θ: 
 

SB

ABtan
D
D

=θ  

Solve for and evaluate the distance 
from the ship to transmitter B: 
 

km173
30tan
km100

tan
AB

SB =
°

==
θ

DD  

 
Velocity and Acceleration Vectors 
 
53 •  
Picture the Problem For constant speed 
and direction, the instantaneous velocity is 
identical to the average velocity.  Take the 
origin to be the location of the stationary 
radar and construct a pictorial 
representation. 

 
 
Express the average velocity: 
 t

r
∆
∆

=
r

r
avv  

Determine the position vectors: 
 

( )

( ) ( ) jir

jr

ˆkm1.14ˆkm1.14

and

ˆkm10

2

1

−+=

−=

r

r

 

 
Find the displacement vector: 
 ( ) ( ) ji

rrr
ˆkm1.4ˆkm1.14

12

−+=

−=∆
rrr
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Substitute for r
r

∆  and ∆t to find the 
average velocity. 

( ) ( )

( ) ( ) ji

jiv

ˆkm/h1.4ˆkm/h1.14

h1

ˆkm1.4ˆkm1.14
av

−+=

−+
=

r

 

 
54 •  
Picture the Problem The average velocity is the change in position divided by the 
elapsed time. 
 
(a) The average velocity is: 
 
 t

rv
∆
∆

=av  

Find the position vectors and the 
displacement vector: 
 

( ) ( ) jir ˆm3ˆm20 +=
r

 

( ) ( ) jir ˆm7ˆm62 +=
r

 
and 

( ) ( ) jirrr ˆm4ˆm412 +=−=∆
rrr

 
 

Find the magnitude of the 
displacement vector for the interval 
between t = 0 and t = 2 s: 
 

( ) ( ) m66.5m4m4 22
02 =+=∆r  

Substitute to determine vav: 
 m/s83.2

s2
m66.5

av ==v  

and 

°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= − 0.45

m4
m4tan 1θ  measured 

from the positive x axis. 
 

(b) Repeat (a), this time using the 
displacement between t = 0 and  
t = 5 s to obtain: 

( ) ( ) jir ˆm14ˆm135 +=
r

, 

( ) ( ) jirrr ˆm11ˆm110505 +=−=∆
rrr

, 

( ) ( ) m15.6m11m11 22
05 =+=∆r , 

m/s3.11
s5
m15.6

av ==v , 

and 

°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= − 0.45

m11
m11tan 1θ  measured 

from the positive x axis. 
 
*55 • 
Picture the Problem The magnitude of the velocity vector at the end of the 2 s of 
acceleration will give us its speed at that instant.  This is a constant-acceleration problem. 
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Find the final velocity vector of the 
particle: 

( ) ( )( )
( ) ( ) ji

ji

jijiv

ˆm/s0.6ˆm/s0.4

ˆs0.2m/s0.3ˆm/s0.4

ˆˆˆˆ

2

0

+=

+=

+=+= tavvv yxyx
r

 

Find the magnitude of :vr  ( ) ( ) m/s7.21m/s6.0m/s4.0 22 =+=v  

and correct. is )(b  

 
56 •  
Picture the Problem Choose a coordinate system in which north coincides with the 
positive y direction and east with the positive x direction. Expressing the west and north 
velocity vectors is the first step in determining v

r
∆ and avar . 

 
(a) The magnitudes of 

NW and vv rr
are 40 m/s and 30 m/s, 

respectively. The change in the 
magnitude of the particle’s velocity 
during this time is: 
 

m/s10
WN

−=

−=∆ vvv
 

(b) The change in the direction of 
the velocity is from west to north. 

The change in direction is °90  

 
(c) The change in velocity is: 
 
 

( ) ( )
( ) ( ) ji

ijvvv
ˆm/s30ˆm/s40

ˆm/s40ˆm/s30WN

+=

−−=−=∆
rrr

 

 
Calculate the magnitude and 
direction  of :vr∆  ( ) ( ) m/s50m/s30m/s40 22 =+=∆v  

and 

°== −
+ 9.36

m/s40
m/s30tan 1

axisxθ  

 
(d) Find the average acceleration 
during this interval: 
 
 
 

( ) ( )

( ) ( )ji

jiva

ˆm/s6ˆm/s8

s5

ˆm/s30ˆm/s40

22

av

+=

+
=∆∆≡ t

rr

  

The magnitude of this vector is: 
 ( ) ( ) 22222

av m/s10m/s6m/s8 =+=a  

and its direction is 

°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= − 9.36

m/s8
m/s6tan 2

2
1θ measured 

from the positive x axis. 
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57 •  
Picture the Problem The initial and final positions and velocities of the particle are 
given.  We can find the average velocity and average acceleration using their definitions 
by first calculating the given displacement and velocities using unit vectors .ˆ and ̂ ji  
 
(a) The average velocity is: t∆∆≡ rv rr

av  

 
The displacement of the particle 
during this interval of time is: 
 

( ) ( ) jir ˆm80ˆm100 +=∆
r

 

Substitute to find the average 
velocity: 
 

( ) ( )

( ) ( ) ji

jiv

ˆm/s7.26ˆm/s3.33

s3

ˆm80ˆm100
av

+=

+
=

r

 

 
(b) The average acceleration is: 
 

t∆∆= va rr
av  

 
Find vvv vrr

∆and,, 21 : 
 

( ) ( )

( ) ( )
( ) ( ) jiv

jiv

jiv

ˆm/s30.5ˆm/s00.9

ˆm/s0.23ˆm/s3.19

and

ˆm/s3.28ˆm/s3.28

2

1

−+−=∆∴

+=

+=

r

r

r

 

 
Using ∆t = 3 s, find the average 
acceleration: ( ) ( )jia ˆm/s77.1ˆm/s00.3 22

av −+−=
r

 

 
*58 ••  
Picture the Problem The acceleration is constant so we can use the constant-acceleration 
equations in vector form to find the velocity at t = 2 s and the position vector at t = 4 s. 
 
(a) The velocity of the particle, as a 
function of time, is given by: 

 

tavv rrr
+= 0  

 

Substitute to find the velocity at  
t = 2 s: 
 [ ]( )

ji

ji

jiv

ˆm/s) 3(  ̂m/s) (10

s2ˆ)m/s (3ˆ)m/s (4

ˆm/s) 9(ˆm/s) (2
22

−+=

++

−+=
r

 

 
(b) Express the position vector as a 
function of time: 
 

2
2
1

00 tt avrr rrrr
++=  
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Substitute and simplify:  
 [ ]( )

[ ]( )
ji

ji

ji

jir

ˆm) 9(  ̂m) (44

s4ˆ)m/s (3  ̂)m/s (4

s4ˆm/s) (-9  ̂m/s) (2

ˆm) (3  ̂m) (4 

222
2
1

−+=

++

++

+=
r

 

 
Find the magnitude and direction of 
r
r

 at t = 4 s: ( ) ( ) m9.44m9m44s) (4 22 =−+=r  

and, because r
r

is in the 4th quadrant, 

°−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= − 6.11

m44
m9tan 1θ  

 
59 ••  
Picture the Problem The velocity vector is the time-derivative of the position vector and 
the acceleration vector is the time-derivative of the velocity vector. 
 
Differentiate rr with respect to time: ( ) ( )[ ]

( ) ji

jirv

ˆ1040ˆ30

ˆ540ˆ30 2

t

ttt
dt
d

dt
d

−+=

−+==
r

r

 

where vr has units of m/s if t is in seconds. 

Differentiate v
r

with respect to time: ( )[ ]
( )j

jia

ˆm/s10

ˆ1040ˆ30

2−=

−+== t
dt
d

dt
vdrr

 

 

60 ••  
Picture the Problem We can use the constant-acceleration equations in vector form to 
solve the first part of the problem.  In the second part, we can eliminate the parameter t 
from the constant-acceleration equations and express y as a function of x.  
 
 
(a) Use 0with 00 =+= vavv rrrr t  
to find :vr  
 

( ) ( )[ ]tjiv ˆm/s4ˆm/s6 22 +=
r

 

Use 2
2
1

00 tt avrr rrrr
++= with ( )ir ˆm100 =

r
to find :rr  

 

( ) ( )[ ] ( )[ ]jir ˆm/s2ˆm/s3m10 2222 tt ++=
r

 

 
(b) Obtain the x and y 
components of the path from the 
vector equation in (a): 

( ) 22m/s3m10 tx +=  
and 

( ) 22m/s2 ty =  
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Eliminate the parameter t from 
these equations and solve for y 
to obtain:  
 

 m
3

20 
3
2 −= xy  

Use this equation to plot the 
graph shown to the right.  Note 
that the path in the xy plane is a 
straight line. 

0
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61 •••   
Picture the Problem The displacements 
of the boat are shown in the figure.  We 
need to determine each of the 
displacements in order to calculate the 
average velocity of the boat during the 30-
s trip. 

 
 
(a) Express the average velocity of 
the boat:  
 
 

t∆
∆

=
rv
r

r
av  

 

Express its total displacement: 
 ( ) ( )ij

rrr
ˆˆ

                   

WW
2

NN2
1

WN

−∆+∆=

∆+∆=∆

tvta

rrr

 

 
 
To calculate the displacement we 
first have to find the speed after the 
first 20 s: 
 

 
  vW = vN,  f = aN∆tN = 60 m/s  

so 
( ) ( )

( ) ( )ij

ijr
ˆm600       ˆm600  

ˆm/s 60ˆ
W

2
NN2

1

−=

∆−∆=∆ ttar

 

 
Substitute to find the average 
velocity: 

( )( )

( )( )ji

jirv

ˆˆm/s20

s30

ˆˆm600
av

+−=

+−
=

∆
∆

=
t

r
r
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(b) The average acceleration is 
given by: 
 

( ) ( )ii

vvra

ˆm/s2
s30

0ˆm/s60 2

if
av

−=
−−

=

∆
−

=
∆
∆

=
tt

rrr
r

 

 
(c) The displacement of the boat 
from the dock at the end of the 30-s 
trip was one of the intermediate 
results we obtained in part (a). 

( ) ( )
( )( )ji

ijr
ˆˆm600

ˆm600ˆm600

+−=

−+=∆
r

 

 
*62 •••  
Picture the Problem Choose a coordinate 
system with the origin at Petoskey, the 
positive x direction to the east, and the 
positive y direction to the north. Let t = 0 at 
9:00 a.m. and θ  be the angle between the 
velocity vector of Robert’s boat and the 
easterly direction. Let ″M″ and ″R″ denote 
Mary and Robert, respectively. 

 
 
Express Mary’s displacement from 
Petoskey: 
 

( ) jjr ˆ8ˆ
MM ttv ==∆

r
  

where Mr
r

∆ is in miles if t is in hours. 
 

Note that Robert’s initial position 
coordinates (xi, yi) are: 
 

(xi, yi) = (−13 mi, 22.5 mi) 
 

Express Robert’s displacement from 
Beaver Island: 

j

i

j

ir

ˆ}]sin)1(6{5.22[

ˆ}]cos)1(6{13[

ˆ)]1)(sin([

ˆ1)]))(cos( [

Ri

RiR

θ

θ

θ

θ

−++

−+−=

−++

−+=∆

t

t

tvy

tvx
r

 

where the units are as above. 
 

When Mary and Robert rendezvous, 
their coordinates will be the same. 
Equating their north and east 
coordinates yields: 
 

 East: –13 + (6t cosθ) – (6 cosθ) = 0 
  
 North: 22.5 + (6t sinθ) – (6 sinθ) = 8t 

Eliminate t between the two 
equations to obtain: 
 

(78 tanθ  + 87) cosθ  = 104 
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This transcendental equation can be  
solved by writing it as 
 

f(θ) = (78 tanθ  + 87) cosθ  − 104 
 
and then plotting its graph. The 
graph shown to the right was plotted 
using a spreadsheet program and the 
root at 0.258 rad (14.8°) was found 
using a calculator’s ″trace″ function. 

0

2

4

6

8

10

12

14

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

theta (rad)

f(t
he

ta
)

 

east. of
south  14.8 head shouldRobert °

 

 
Use either the north or east equation 
to solve for t: 
 

t =  min15h3h24.3 =  

 
Finally, find the distance traveled 
due north by Mary: 

rM = vMt  
     = (8 mi/h) (3.24 h)  
     = Petoskey ofnorth duemi,9.25  

 
Remarks: Two alternatives to solving the transcendental equation using a 
calculator’s ″trace″ function are: (a) to search the spreadsheet program used to 
generate data for the function f(θ ) = (78 tanθ  + 87) cosθ  − 104 for values of θ  that 
satisfy the condition f(θ) = 0, or (b) a trial-and-error sequence of substitutions for θ 
… using the result of each substitution (e.g., a change in sign) to motivate the next 
substitution … until a root is found. 
 
Relative Velocity 
 
63 ••  
Picture the Problem Choose a coordinate 
system in which north is the positive y 
direction and east is the positive x 
direction. Let θ  be the angle between 
north and the direction of the plane’s 
heading. The velocity of the plane relative 
to the ground, PGvr , is the sum of the 
velocity of the plane relative to the air, 

PAvr , and the velocity of the air relative to 
the ground, AGvr . i.e.,   

AGPAPG vvv rrr
+=  

The pilot must head in such a direction that 
the east-west component of PGvr is zero in 
order to make the plane fly due north. 

 
 

 

 
(a) From the diagram one can see vAG cos 45° =  vPA sinθ 
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that:  
 

 

Solve for and evaluate θ : 

north of west 1.13

km/h250
km/h6.56sin 1

°=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −θ

 

 
(b) Because the plane is headed due 
north, add the north components of 

AGPA and vv rr
 to determine the 

plane’s ground speed: 

PGvr = (250 km/h) cos 13.1° 
                     + (80 km/h) sin 45° 
          = km/h300  

 
64 ••  
Picture the Problem Let SBvr represent the 
velocity of the swimmer relative to the 
bank; SWvr the velocity of the swimmer 
relative to the water; and WBvr the velocity 
of the water relative to the shore; i.e.,  
 

SBvr = SWvr + WBvr  
 
The current of the river causes the 
swimmer to drift downstream.   
 
(a) The triangles shown in the figure 
are similar right triangles. Set up a 
proportion between their sides and 
solve for the speed of the water 
relative to the bank: 
 

m80
m40

SW

WB =
v
v

 

and 
( ) m/s800.0m/s6.12

1
WB ==v  

 
(b) Use the Pythagorean Theorem to 
solve for the swimmer’s speed 
relative to the shore: 
 

( ) ( )
m/s79.1

m/s8.0m/s6.1 22

2
WS

2
SWSB

=

+=

+= vvv

 

 
(c) The swimmer should head in a 
direction such that the upstream 
component of her velocity is equal 
to the speed of the water relative to 
the shore: 
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°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= − 0.30

m/s1.6
m/s0.8sin 1θ  

 
*65 ••  

 
Use the diagram to express the 
condition relating the eastward 
component of AGvr  and the 
westward component of .PAvr This 
must be satisfied if the plane is to 
stay on its northerly course. [Note: 
this is equivalent to equating the x-
components of equation (1).]  
 

(50 km/h) cos 45° = (240 km/h) sinθ   
 

Now solve for θ  to obtain:   
 

( )
°=⎥

⎦

⎤
⎢
⎣

⎡ °
= − 47.8

km/h240
cos45km/h50sin 1θ   

 
Add the north components of PAvr  
and AGvr  to find the velocity of the 
plane relative to the ground: 
 

vPG + vAGsin45° = vPAcos8.47° 
and 
vPG  = (240 km/h)cos 8.47° 
                    − (50 km/h)sin 45° 
       =  202 km/h 
 

Finally, find the time of flight: 

h57.2
km/h202
km520

travelleddistance

PG
flight

==

=
v

t
 

 

Picture the Problem Let the velocity of 
the plane relative to the ground be 
represented by ;PGvr the velocity of the 
plane relative to the air by ,PAvr and the 
velocity of the air relative to the ground by 

.AGvr  Then 

AGPAPG vvv rrr
+=  (1) 

Choose a coordinate system with the origin 
at point A, the positive x direction to the 
east, and the positive y direction to the 
north.  θ is the angle between north and the 
direction of the plane’s heading. The pilot 
must head so that the east-west component 
of PGvr is zero in order to make the plane fly 
due north.  
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66 ••  
Picture the Problem Let BSvr be the 
velocity of the boat relative to the shore; 

BWvr be the velocity of the boat relative to 
the water; and WSvr represent the velocity of 
the water relative to the shore. 
Independently of whether the boat is going 
upstream or downstream: 

BSvr = BWvr + WSvr  

Going upstream, the speed of the boat 
relative to the shore is reduced by the speed 
of the water relative to the shore. 
 
 
Going downstream, the speed of the boat 
relative to the shore is increased by the 
same amount. 

 

 
For the upstream leg of the trip: 
 

vBS = vBW − vWS 

For the downstream leg of the trip: 
 

vBS = vBW + vWS  
 

Express the total time for the trip in 
terms of the times for its upstream 
and downstream legs: 
 WSBWWSBW

downstreamupstreamtotal

vv
L

vv
L

ttt

+
+

−
=

+=
 

 
Multiply both sides of the equation 
by     (vBW − vWS)(vBW + vWS)  (the 
product of the  denominators) and 
rearrange the terms to obtain: 
 

 

02 2
WSBW

total

2
BW =−− vv

t
Lv  

Solve the quadratic equation for 
vBW.  (Only the positive root is 
physically meaningful.) 

vBW = km/h18.5   

 
 
67 ••  
Picture the Problem Let pgvr be the 
velocity of the plane relative to the ground; 

agvr be the velocity of the air relative to the 

ground; and pavr the velocity of the plane 

relative to the air. Then, pgv
r

= pav
r

+ 

.agvr The wind will affect the flight times 
differently along these two paths.  
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The velocity of the plane, relative to 
the ground, on its eastbound leg is 
equal to its velocity on its 
westbound leg. Using the diagram, 
find the velocity of the plane 
relative to the ground for both 
directions: 
 

( ) ( ) m/s1.14m/s5m/s15 22

2
ag

2
papg

=−=

−= vvv
 

Express the time for the east-west 
roundtrip in terms of the distances 
and velocities for the two legs: 
 

s141
m/s14.1

m102

circle the of radius

circletheofradius

3

westboundpg,

eastboundpg,

westboundeastboundEWtrip,round

=
×

=

+

=

+=

v

v

ttt

 

 
Use the distances and velocities for the two legs to express and evaluate the time for 
the north-south roundtrip: 
 

s150
m/s) (5m/s) (15

m10
m/s) (5m/s) (15

m10

circletheofradiuscircletheofradius

33

southboundpg,northboundpg,
southboundnorthboundNStrip,round

=
+

+
−

=

+=+=
vv

ttt
 

 wind. theacross planeyour fly  shouldyou  , Because NStrip,roundEWroundtrip, tt <  

 
 
68 •  
Picture the Problem This is a relative 
velocity problem. The given quantities are 
the direction of the velocity of the plane 
relative to the ground and the velocity 
(magnitude and direction) of the air relative 
to the ground. Asked for is the direction of 
the velocity of the air relative to the 
ground. Using ,AGPAPG vvv rrr

+=  draw a 
vector addition diagram and solve for the 
unknown quantity. 

 

 
Calculate the heading the pilot must 
take: °== − 5.11

kts150
kts30sin 1θ  

Because this is also the angle of the 
plane's heading clockwise from 
north, it is also its azimuth or the 
required true heading: 

Az = (011.5°) 
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*69 ••  
Picture the Problem  The position of  B 
relative to A is the vector from A to B; i.e.,  

ABAB rrr rrr
−=  

The velocity of B relative to A is 

dtd ABAB rv rr
=   

and the acceleration of B relative to A is        

dtd ABAB va rr
=  

Choose a coordinate system with the origin 
at the intersection, the positive x direction 
to the east, and the positive y direction to 
the north. 

 

 

 
(a) Find ABAB and,, rrr rrr

: 
 
 
 
 
 
 
 

( )[ ]
( )[ ]ir

jr
ˆm/s20

ˆm/s2m40

A

22
2
1

B

t

t

=

−=
r

r

 

and 

( )[ ]
( )[ ]j

i

r

ˆm/s2m40

ˆm/s20
22

2
1

ABAB

t

t

rr

−+

−=

−=
rrr

 

 
Evaluate ABrr at t = 6 s: 
 

jir ˆ m) (4  ̂ m) (120)s6(AB +=
r

 

(b) Find dtd ABAB rv rr
= : 

 
 
 
 
 

( ){ }[
( ){ } ]

ji

j

irv

ˆ)m/s 2(ˆm/s) 20(

ˆm/s 2m 40

m/s 20

2

22
2
1

AB
AB

t

t

t
dt
d

dt
d

−+−=

−+

−==
rr

r

 

Evaluate ABvr at t = 6 s: 
 

( ) ( ) ( ) jiv ˆm/s12ˆm/s20s6AB −−=
r

 

(c) Find dtd ABAB va rr
= : 

 
 
 
 

[ ]
( )j

jia

ˆm/s2

ˆ )m/s 2(  ̂ m/s) 20(

2

2
AB

−=

−+−= t
dt
dr

 

Note that ABar is independent of time. 
 
*70 •••  
Picture the Problem Let h and h′ represent the heights from which the ball is dropped 
and to which it rebounds, respectively. Let v and v′ represent the speeds with which the 
ball strikes the racket and rebounds from it. We can use a constant-acceleration equation 
to relate the pre- and post-collision speeds of the ball to its drop and rebound heights. 
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(a) Using a constant-acceleration 
equation, relate the impact speed of 
the ball to the distance it has fallen: 
 

ghvv 22
0

2 +=  
or, because v0 = 0, 

ghv 2=  
 

Relate the rebound speed of the ball 
to the height to which it rebounds: 
 

gh'v'v 222 −=  
or because v = 0, 

gh'v' 2=  
 

Divide the second of these equations 
by the first to obtain: 

h
h'

gh
gh'

v
v'

==
2
2

 

 
Substitute for h′ and evaluate the 
ratio of the speeds: 
 

8.064.0
==

h
h

v
v'

 ⇒ vv' 8.0=  

 
(b) Call the speed of the racket V.   In a reference frame where the racket is 
unmoving, the ball initially has speed V, moving toward the racket.  After it 
"bounces" from the racket, it will have speed 0.8 V, moving away from the racket.   
 
In the reference frame where the 
racket is moving and the ball 
initially unmoving, we need to add 
the speed of the racket to the speed 
of the ball in the racket's rest frame.  
Therefore, the ball's speed is:  

mi/h100

m/s548.18.0

≈

==+= VVVv'
 

This speed is close to that of a tennis pro’s 
serve. Note that this result tells us that the 
ball is moving significantly faster than the 
racket.   
 

(c) 
racket.  theas

fast as e than twicmore movenever can  ball  the),(part in result   theFrom b
 

 
Circular Motion and Centripetal Acceleration 
 
71 •  
Picture the Problem We can use the definition of centripetal acceleration to express ac in 
terms of the speed of the tip of the minute hand. We can find the tangential speed of the 
tip of the minute hand by using the distance it travels each revolution and the time it takes 
to complete each revolution.  
 
Express the acceleration of the tip of 
the minute hand of the clock as a 
function of the length of the hand 
and the speed of its tip: 
 

R
va

2

c =  

Use the distance the minute hand 
travels every hour to express its 
speed: 
 

T
Rv π2

=  
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Substitute to obtain: 
2

2

c
4

T
Ra π

=  

 
Substitute numerical values and 
evaluate ac: 

( )
( )

26
2

2

c m/s1052.1
s3600
m5.04 −×==

πa  

 
Express the ratio of ac to g: 

7
2

26
c 1055.1

m/s9.81
m/s101.52 −

−

×=
×

=
g
a

 

 
72 •  
Picture the Problem The diagram shows 
the centripetal and tangential accelerations 
experienced by the test tube. The tangential 
acceleration will be zero when the 
centrifuge reaches its maximum speed. The 
centripetal acceleration increases as the 
tangential speed of the centrifuge increases. 
We can use the definition of centripetal 
acceleration to express ac in terms of the 
speed of the test tube. We can find the 
tangential speed of the test tube by using 
the distance it travels each revolution and 
the time it takes to complete each 
revolution. The tangential acceleration can 
be found from the change in the tangential 
speed as the centrifuge is spinning up. 

 
 
 

 

 
(a) Express the acceleration of the 
centrifuge arm as a function of the 
length of its arm and the speed of 
the test tube: 
 

R
va

2

c =  

Use the distance the test tube travels 
every revolution to express its 
speed: 
  

T
Rv π2

=                           

Substitute to obtain: 
2

2

c
4

T
Ra π

=  

 
Substitute numerical values and 
evaluate ac: 

( )

25

2

2

c

m/s1070.3

min
s60

rev15000
min1

m15.04

×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

=
πa
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(b) Express the tangential 
acceleration in terms of the 
difference between the final and 
initial tangential speeds: 
 

tT
R

t
T

R

t
vva

∆
=

∆

−
=

∆
−

=
π

π
202

if
t  

 

Substitute numerical values and 
evaluate aT: 

( )

( )

2

t

m/s14.3

s75
min

s60
rev15000

min1
m15.02

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

=
πa

 

 
73 •  
Picture the Problem The diagram includes 
a pictorial representation of the earth in its 
orbit about the sun and a force diagram 
showing the force on an object at the 
equator that is due to the earth’s rotation, 

,RF
r

 and the force on the object due to the 

orbital motion of the earth about the sun, 
.oF

r
Because these are centripetal forces, 

we can calculate the accelerations they 
require from the speeds and radii associated 
with the two circular motions. 

 
 

 

 
Express the radial acceleration due 
to the rotation of the earth: R

va
2
R

R =  

Express the speed of the object on 
the equator in terms of the radius of 
the earth R and the period of the 
earth’s rotation TR: 
 

R
R

2
T

Rv π
=  

Substitute for vR in the expression 
for aR to obtain: 2

R

2

R
4

T
Ra π

=  

 
Substitute numerical values and 
evaluate aR: 

( )
( )

g

a

3

22

2

32

R

1044.3

m/s1037.3

h1
s3600h24

m1063704

−

−

×=

×=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

×
=

π

 

Note that this effect gives rise to the well-
known latitude correction for g. 
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Express the radial acceleration due 
to the orbital motion of the earth: r

va
2
o

o =  

 
Express the speed of the object on 
the equator in terms of the earth-sun 
distance r and the period of the 
earth’s motion about the sun To: 
 

o
o

2
T

rv π
=  

Substitute for vo in the expression 
for ao to obtain: 2

o

2

o
4
T

ra π
=  

 
Substitute numerical values and evaluate 
ao: 

( )
( )

g

a

423

2

112

o

1007.6m/s1095.5

h1
s3600

d1
h24d365

m10.514

−− ×=×=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

×
=

π

 

 
74 ••  
Picture the Problem We can relate the acceleration of the moon toward the earth to its 
orbital speed and distance from the earth. Its orbital speed can be expressed in terms of its 
distance from the earth and its orbital period. From tables of astronomical data, we find 
that the sidereal period of the moon is 27.3 d and that its mean distance from the earth is 
3.84×108 m.  
 
Express the centripetal acceleration 
of the moon: 
 r

va
2

c =  

Express the orbital speed of the 
moon: 
 T

rv π2
=  

 
Substitute to obtain: 

2

2

c
4
T

ra π
=  

 
Substitute numerical values and 
evaluate ac: 

( )

g

πa

4

23

2

82

c

1078.2

m/s1072.2
h

s3600
d

h24d27.3

m103.844

−

−

×=

×=

⎟
⎠
⎞

⎜
⎝
⎛ ××

×
=
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Remarks: Note that 
moon to earth fromdistance 

earthofradius
g
ac =  (ac is just the acceleration 

due to the earth’s gravity evaluated at the moon’s position). This is Newton’s 
famous ″falling apple″ observation. 
 
75 •   
Picture the Problem We can find the number of revolutions the ball makes in a given 
period of time from its speed and the radius of the circle along which it moves. Because 
the ball’s centripetal acceleration is related to its speed, we can use this relationship to 
express its speed. 
 
Express the number of revolutions 
per minute made by the ball in terms 
of the circumference c of the circle 
and the distance x the ball travels in 
time t: 
 

c
xn =                                   (1) 

Relate the centripetal acceleration of 
the ball to its speed and the radius of 
its circular path: 
 

R
vga

2

c ==  

Solve for the speed of the ball: 
 

Rgv =  
 

Express the distance x traveled in 
time t at speed v: 
 

vtx =  
 

Substitute to obtain: 
 

tRgx =  
 

The distance traveled per revolution 
is the circumference c of the circle:  

Rc π2=  
 
 

Substitute in equation (1) to obtain: 
t

R
g

R
tRg

n
ππ 2
1

2
==  

 
Substitute numerical values and 
evaluate n: ( ) 1

2

min33.4s60
m0.8

m/s9.81
2
1 −==
π

n

Remarks: The ball will oscillate at the end of this string as a simple pendulum with 
a period equal to 1/n. 
 
Projectile Motion and Projectile Range 
 
76 •  
Picture the Problem Neglecting air resistance, the accelerations of the ball are constant 
and the horizontal and vertical motions of the ball are independent of each other. We can 
use the horizontal motion to determine the time-of-flight and then use this information to 
determine the distance the ball drops. Choose a coordinate system in which the origin is 
at the point of release of the ball, downward is the positive y direction, and the horizontal 
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direction is the positive x direction. 
 
Express the vertical displacement of 
the ball: 

( )2
2
1

0 tatvy yy ∆+∆=∆  
or, because v0y = 0 and ay = g, 

( )2
2
1 tgy ∆=∆  

 
Find the time of flight from 
vx = ∆x/∆t: 
 ( )( )

( )( ) s0.473
m/km1000km/h140
s/h3600m18.4

==

∆
=∆

xv
xt

 

 
Substitute to find the vertical 
displacement in 0.473 s: 

( )( ) m1.10s0.473m/s9.81 22
2
1 ==∆y  

 
77 •  
Picture the Problem In the absence of air resistance, the maximum height achieved by a 
projectile depends on the vertical component of its initial velocity. 
 
The vertical component of the 
projectile’s initial velocity is: 

v0y = v0 sinθ0 
 
 

Use the constant-acceleration 
equation: 
 

  v y
2 = v0 y

2 + 2ay∆y  

Set vy = 0, a = −g, and ∆y = h to 
obtain: 
 

( )
g

vh
2

sin 2
00 θ

=  

 
*78 ••  
Picture the Problem Choose the 
coordinate system shown to the right. 
Because, in the absence of air resistance, 
the horizontal and vertical speeds are 
independent of each other, we can use 
constant-acceleration equations to relate 
the impact speed of the projectile to its 
components.   

 

 
 
The horizontal and vertical velocity 
components are: 
 
 

v0x = vx= v0cosθ  
and   
v0y = v0sinθ 

Using a constant-acceleration 
equation, relate the vertical 

yavv yyy ∆+= 22
0

2  

or, because ay = −g and ∆y = −h, 
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component of the velocity to the 
vertical displacement of the 
projectile: 
 

( ) ghvvy 2sin 2
0

2 += θ  

Express the relationship between the 
magnitude of a velocity vector and 
its components, substitute for the 
components, and simplify to obtain: 
  
 

( )
( )

ghv

ghv

vvvvv yyx

2

2cossin

cos

2
0

222
0

22
0

222

+=

++=

+=+=

θθ

θ

 

 
Substitute for v: ( ) ghvv 22.1 2

0
2

0 +=  
 

Set v = 1.2 v0, h = 40 m and solve 
for v0: 

m/s2.420 =v  

 
Remarks: Note that v is independent of θ. This will be more obvious once 
conservation of energy has been studied. 
 
79 ••  
Picture the Problem Example 3-12 shows that the dart will hit the monkey unless the 
dart hits the ground before reaching the monkey’s line of fall. What initial speed does the 
dart need in order to just reach the monkey’s line of fall? First, we will calculate the fall 
time of the monkey, and then we will calculate the horizontal component of the dart’s 
velocity.  
 
Using a constant-acceleration 
equation, relate the monkey’s fall 
distance to the fall time: 
 

2
2
1 gth =  

 

Solve for the time for  
the monkey to fall to the ground: 
 g

ht 2
=  

 
Substitute numerical values and 
evaluate t: 

( ) s51.1
m/s9.81

m2.112
2 ==t  

 
Let θ  be the angle the barrel of the 
dart gun makes with the horizontal. 
Then:  
 

°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= − 3.11

m50
m10tan 1θ  

Use the fact that the horizontal 
velocity is constant to determine v0: 

( ) m/s8.33
cos11.3

s1.51m50 
cos0 =

°
==

θ
xvv  
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80 ••  
Picture the Problem Choose the 
coordinate system shown in the figure to 
the right. In the absence of air resistance, 
the projectile experiences constant 
acceleration in both the x and y directions. 
We can use the constant-acceleration 
equations to express the x  and y 
coordinates of the projectile along its 
trajectory as functions of time. The 
elimination of the parameter t will yield an 
expression for y as a function of x that we 
can evaluate at (R, 0) and (R/2, h). Solving 
these equations simultaneously will yield 
an expression for θ. 

 

 

 
Express the position coordinates 
of the projectile along its flight 
path in terms of the parameter t: 

 

( )tvx θcos0=  
and 

( ) 2
2
1

0 sin gttvy −= θ  
 

Eliminate the parameter t to 
obtain: 
 

( ) 2
22

0 cos2
tan x

v
gxy

θ
θ −=        (1) 

 
Evaluate equation (1) at (R, 0) to 

obtain: 
 g

vR θθ cossin2 2
0=  

 
Evaluate equation (1) at (R/2, h) 
to obtain: 

 

( )
g

vh
2
sin 2

0 θ
=  

 
Equate R and h and solve the 
resulting equation for θ : 

 

°== − 0.764tan 1θ  

 
Remarks: Note that this result is independent of v0. 
 
81 ••  
Picture the Problem In the absence of air 
resistance, the motion of the ball is 
uniformly accelerated and its horizontal 
and vertical motions are independent of 
each other. Choose the coordinate system 
shown in the figure to the right and use 
constant-acceleration equations to relate the 
x and y components of the ball’s initial 
velocity.  
 
Use the components of v0 to express 
θ in terms of v0x and v0y: 
 x

y

v
v

0

01tan−=θ                          (1) 
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Use the Pythagorean relationship 
between the velocity and its 
components to express v0: 
 

2
0

2
00 yx vvv +=                       (2) 

 

Using a constant-acceleration 
equation, express the vertical speed 
of the projectile as a function of its 
initial upward speed and time into 
the flight: 
 

vy= v0y+ ay t 
 

Because vy = 0 halfway through the 
flight (at maximum elevation): 
 

v0y = (9.81 m/s2)(1.22 s) = 12.0 m/s 
 

Determine v0x: 
 m/s4.16

s2.44
m40

0x ==
∆
∆

=
t
xv  

 
Substitute in equation (2) and 
evaluate v0: 
 

( ) ( )
m/s3.20

m/s0.12m/s4.16 22
0

=

+=v
 

 
Substitute in equation (1) and 
evaluate θ : 
 

°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= − 2.36

m/s16.4
m/s12.0tan 1θ  

 
*82 ••  
Picture the Problem In the absence of 
friction, the acceleration of the ball is 
constant and we can use the constant- 
acceleration equations to describe its 
motion. The figure shows the launch 
conditions and an appropriate coordinate 
system. The speeds v, vx, and vy are related 
through the Pythagorean Theorem. 

  

 
The squares of the vertical and 
horizontal components of the 
object’s velocity are: 
 θ

θ

22
0

2

22
0

2

cos
and

2sin

vv

ghvv

x

y

=

−=

 

 
The relationship between these 
variables is: 
 

222
yx vvv +=  

Substitute and simplify to obtain: ghvv 22
0

2 −=  

Note that v is independent of θ ... as was 
to be shown. 
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83 ••  
Picture the Problem In the absence of air 
resistance, the projectile experiences 
constant acceleration during its flight and 
we can use constant-acceleration equations 
to relate the speeds at half the maximum 
height and at the maximum height to the 
launch angle θ of the projectile. 

 

 
 
The angle the initial velocity makes 
with the horizontal is related to the 
initial velocity components. x

y

v
v

0

0tan =θ  

Write the equation 
y,avv yy ∆+= 22

0
2 for ∆y = h and  

vy = 0: 

    20  2
0 ghvhy y −=⇒=∆         (1) 

Write the equation 
y,avv yy ∆+= 22

0
2  for ∆y = h/2:   

 

     
2

2  
2

2
0

2 hgvvhy yy −=⇒=∆    (2) 

We are given vy = (3/4)v0. Square 
both sides and express this using the 
components of the velocity.  The x 
component of the velocity remains 
constant. 
 

( )     
4
3 2

0
2
0

2
22

0 yxyx vvvv +⎟
⎠
⎞

⎜
⎝
⎛=+     (3) 

where we have used vx = v0x . 

(Equations 1, 2, and 3 constitute three equations and four unknowns v0x, v0y, vy, and h.  To 
solve for any of these unknowns, we first need a fourth equation.  However, to solve for 
the ratio (v0y/v0x) of two of the unknowns, the three equations are sufficient.  That is 
because dividing both sides of each equation by v0x

2  gives three equations and three 
unknowns vy/v0x, v0y/v0x, and h/ .2

x0v  
 
Solve equation 2 for gh and 
substitute in equation 1: ( )22

0
2
0 2 hyy vvv −= ⇒

2

2
02 y

y

v
v =  

Substitute for vy
2 in equation 3: ( )2

0
2
0

2
2
0

2
0 4

3
2
1

yxyx vvvv +⎟
⎠
⎞

⎜
⎝
⎛=+  
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Divide both sides by v0x
2 and solve 

for v0y/v0x to obtain:  
 
 
 

7 

and

 1
16
9

2
11

0

0

2
0

2
0

2
0

2
0

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=+

x

y

x

y

x

y

v
v

v
v

v
v

 

Using tan θ = v0y/v0x, solve for θ : 
°=== −− 3.697tantan 1

0

01

x

y

v
v

θ  

 
84 •  
Picture the Problem The horizontal speed 
of the crate, in the absence of air resistance, 
is constant and equal to the speed of the 
cargo plane. Choose a coordinate system in 
which the direction the plane is moving is 
the positive x direction and downward is 
the positive y direction and apply the 
constant-acceleration equations to describe 
the crate’s displacements at any time 
during its flight. 

 
 
(a) Using a constant-acceleration 
equation, relate the vertical 
displacement of the crate ∆y to the 
time of fall ∆t: 
 

( )2
2
1

0 tgtvy y ∆+∆=∆  
or, because v0y = 0, 

( )2
2
1 tgy ∆=∆  

 
Solve for ∆t: 

g
yt ∆

=∆
2

 

 
Substitute numerical values and 
evaluate ∆t: 

( ) s5.49
m/s81.9

m10122
2

3

=
×

=∆t  

 
(b) The horizontal distance traveled 
in 49.5 s is: 
 
 

( ) ( )

km4.12

s5.49
s3600

h1km/h900

0

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∆=∆= tvxR x

 

 
(c) Because the velocity of the plane 
is constant, it will be directly over 
the crate when it hits the ground; 
i.e., the distance to the aircraft will 
be the elevation of the aircraft. 

km0.12=∆y  
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*85 ••   
Picture the Problem In the absence of air 
resistance, the accelerations of both Wiley 
Coyote and the Roadrunner are constant 
and we can use constant-acceleration 
equations to express their coordinates at 
any time during their leaps across the 
gorge. By eliminating the parameter t 
between these equations, we can obtain an 
expression that relates their y coordinates 
to their x coordinates and that we can solve 
for their launch angles. 

 
 
(a) Using constant-acceleration 
equations, express the x coordinate 
of the Roadrunner while it is in 
flight across the gorge: 
 

2
2
1

00 tatvxx xx ++=  
or, because x0 = 0, ax = 0 and  
v0x = v0 cosθ0, 

( )tvx 00 cosθ=  
 

Using constant-acceleration 
equations, express the y coordinate 
of the Roadrunner while it is in 
flight across the gorge: 
 

2
2
1

00 tatvyy yy ++=  
or, because y0 = 0, ay =−g and  
v0y = v0 sinθ0, 

( ) 2
2
1

00 sin gttvy −= θ  
 

Eliminate the parameter t to obtain: 
 ( ) 2

0
22

0
0 cos2

tan x
v

gxy
θ

θ −=        (1) 

 
Letting R represent the 
Roadrunner’s range and using the 
trigonometric identity  
sin2θ = 2sinθ cosθ, solve for and 
evaluate its  launch speed: 

( )( )

m/s2.17

30sin
m/s9.81m15

2sin

2

0
0

=

°
==

θ
Rgv

 

 
(b) Letting R represent Wiley’s 
range, solve equation (1) for his 
launch angle: 
 

2
0

1
0 sin

2
1

v
Rg−=θ  

 
Substitute numerical values and 
evaluate θ0: 

( )( )
( )

°=

⎥
⎦

⎤
⎢
⎣

⎡
= −

4.14

m/s2.71
m/s9.81m14.5sin

2
1

2

2
1

0θ
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86 •  
Picture the Problem Because, in the 
absence of air resistance, the vertical and 
horizontal accelerations of the cannonball 
are constant, we can use constant-
acceleration equations to express the ball’s 
position and velocity as functions of time 
and acceleration. The maximum height of 
the ball and its time-of-flight are related to 
the components of its launch velocity.  

 

 

 
(a) Using a constant-acceleration 
equation, relate h to the initial and 
final speeds of the cannonball: 
 

yavv yy ∆+= 22
0

2  
or, because v = 0 and ay = −g, 

ygv y ∆−= 20 2
0  

 
 Find the vertical component of the 
firing speed: 
 
 

v0y = v0sinθ = (300 m/s)sin 45°  
     = 212 m/s  

Solve for and evaluate h: ( )
( ) km29.2

m/s81.92
m/s212

2 2

22
0 ===
g

v
h y  

 
(b) The total flight time is: 
 
 ( ) s2.43

m/s9.81
m/s21222

2

2
0

updnup

===

=+=∆

g
v

tttt

y  

 
(c) Express the x coordinate of the 
ball as a function of time: 
 

( ) tvtvx x ∆=∆= θcos00  
 

Evaluate x (= R) when ∆t = 43.2 s: ( )[ ]( )
km9.16

s43.2cos45m/s300

=

°=x
 

 
87 ••  
Picture the Problem Choose a coordinate 
system in which the origin is at the base of 
the tower and the x- and y-axes are as 
shown in the figure to the right. In the 
absence of air resistance, the horizontal 
speed of the stone will remain constant 
during its fall and a constant-acceleration 
equation can be used to determine the time 
of fall. The final velocity of the stone will 
be the vector sum of its x and y 
components. 
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(a) Using a constant-acceleration 
equation, express the vertical 
displacement of the stone (the 
height of the tower) as a function of 
the fall time: 
 
 

( )2
2
1

0 tatvy yy ∆+∆=∆  

or, because v0y = 0 and a = −g, 
( )2

2
1 tgy ∆−=∆  

Solve for and evaluate the time of 
fall: 
 

( ) s21.2
m/s81.9

m2422
2 =

−
−=

∆
−=∆

g
yt  

 
Use the definition of average 
velocity to find the velocity with 
which the stone was thrown from 
the tower: 
 

s/m14.8
s2.21

m18
0 ==

∆
∆

≡=
t
xvv xx  

 

(b) Find the y component of the 
stone’s velocity after 2.21 s: 
 
 
 

m/s 21.7
 s) m/s2)(2.21 (9.81 0

0

−=
−=

−= gtvv yy

 

Express v in terms of its 
components: 

22
yx vvv +=  

 
Substitute numerical values and 
evaluate v: ( ) ( )

m/s2.23

m/s7.21m/s14.8 22

=

−+=v
 

 
88 ••  
Picture the Problem In the absence of air resistance, the acceleration of the projectile is 
constant and its horizontal and vertical motions are independent of each other. We can 
use constant-acceleration equations to express the horizontal and vertical displacements 
of the projectile in terms of its time-of-flight. 
 
Using a constant-acceleration 
equation, express the horizontal 
displacement of the projectile as a 
function of time: 
 

( )2
2
1

0 tatvx xx ∆+∆=∆  

or, because v0x = v0cosθ and ax = 0, 
( ) tvx ∆=∆ θcos0  

 
Using a constant-acceleration 
equation, express the vertical 
displacement of the projectile as a 
function of time: 
 

 

( )2
2
1

0 tatvy yy ∆+∆=∆  
or, because v0y = v0sinθ and ay = −g, 

( ) ( )2
2
1

0 cos tgtvy ∆−∆=∆ θ  

Substitute numerical values to 
obtain the quadratic equation: 
 

( )( )
( )( )22

2
1 m/s81.9

60sinm/s60m200

t

t

∆−

∆°=−
 

 
Solve for ∆t: 
 

∆t = 13.6 s 
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Substitute for ∆t and evaluate the 
horizontal distance traveled by the 
projectile: 

∆x = (60 m/s)(cos60°)(13.6 s)  
     = m408  

 
89 ••  
Picture the Problem In the absence of air 
resistance, the acceleration of the 
cannonball is constant and its horizontal 
and vertical motions are independent of 
each other. Choose the origin of the 
coordinate system to be at the base of the 
cliff and the axes directed as shown and 
use constant- acceleration equations to 
describe both the horizontal and vertical 
displacements of the cannonball. 

 
 
Express the direction of the velocity 
vector when the projectile strikes 
the ground: 
 

x

y

v
v1tan−=θ  

Express the vertical displacement 
using a constant-acceleration 
equation: 
 
 
 

( )2
2
1

0 tatvy yy ∆+∆=∆  
or, because v0y = 0 and ay = −g, 

( )2
2
1 tgy ∆−=∆  

 

Set ∆x = −∆y (R = −h) to obtain: ( )2
2
1 tgtvx x ∆=∆=∆  

 
Solve for vx: 
 tg

t
xvx ∆=

∆
∆

= 2
1  

 
Find the y component of the 
projectile as it hits the ground: 
 

xyy vtgtavv 20 −=∆−=∆+=  
 

Substitute and evaluate θ : ( ) °−=−== −− 4.632tantan 11

x

y

v
v

θ  

 
90 •  
Picture the Problem In the absence of air 
resistance, the vertical and horizontal 
motions of the projectile experience 
constant accelerations and are independent 
of each other. Use a coordinate system in 
which up is the positive y direction and 
horizontal is the positive x direction and 
use constant-acceleration equations to 
describe the  horizontal and vertical 
displacements of the projectile as functions 
of the time into the flight. 
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(a) Use a constant-acceleration 
equation to express the horizontal 
displacement of the projectile as a 
function of time: 
 

( ) tv
tvx x

∆=
∆=∆

θcos0

0  

 

Evaluate this expression when  
∆t = 6 s: 
 

( )( )( ) m900s6cos60m/s300 =°=∆x  

 
(b) Use a constant-acceleration 
equation to express the vertical 
displacement of the projectile as a 
function of time: 
 

( ) ( )2
2
1

0 sin tgtvy ∆−∆=∆ θ  
 

Evaluate this expression when ∆t = 6 s: 
 

( )( )( ) ( )( ) km38.1s6m/s9.81s6sin60m/s300 22
2
1 =−°=∆y  

 
91 ••  
Picture the Problem In the absence of air 
resistance, the acceleration of the projectile 
is constant and the horizontal and vertical 
motions are independent of each other.  
Choose the coordinate system shown in the 
figure with the origin at the base of the cliff 
and the axes oriented as shown and use 
constant-acceleration equations to find the 
range of the cannonball.  
 
Using a constant-acceleration 
equation, express the horizontal 
displacement of the cannonball as a 
function of time: 
 

( )2
2
1

0 tatvx xx ∆+∆=∆  

or, because v0x = v0cosθ and ax = 0, 
( ) tvx ∆=∆ θcos0  

 
Using a constant-acceleration 
equation, express the vertical 
displacement of the cannonball as a 
function of time: 
 
 
 

( )2
2
1

0 tatvy yy ∆+∆=∆  
or, because y = −40 m, a = −g, and  
v0y = v0sinθ, 

( )( )
( )( )22

2
1 m/s81.9

30sinm/s42.2m04

t

t

∆−

∆°=−
 

 
Solve the quadratic equation for ∆t: 
 

∆t = 5.73 s 

Calculate the range: ( )( )( )
m209

s5.73cos30m/s42.2

=

°=∆= xR
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*92 ••  
Picture the Problem Choose a coordinate 
system in which the origin is at ground 
level. Let the positive x direction be to the 
right and the positive y direction be 
upward. We can apply constant-
acceleration equations to obtain parametric 
equations in time that relate the range to 
the initial horizontal speed and the height h 
to the initial upward speed. Eliminating the 
parameter will leave us with a quadratic 
equation in R, the solution to which will 
give us the range of the arrow. In (b), we’ll 
find the launch speed and angle as viewed 
by an observer who is at rest on the ground 
and then use these results to find the 
arrow’s range when the horse is moving at 
12 m/s. 

 
 

 

 
(a) Use constant-acceleration 
equations to express the 
horizontal and vertical 
coordinates of the arrow’s 
motion:   

 

tvxxxR x00 =−=∆=  
and 

( ) 2
2
1

0 tgtvhy y −++=  
where 

θcos00 vv x = and θsin00 vv y =  
 

Solve the x-component equation 
for time: 
 

θcos00 v
R

v
Rt

x

==  

 
Eliminate time from the 
y-component equation: 
 

2

00
0 2

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=

xx
y v

Rg
v
Rvhy  

and, at (R, 0), 

( ) 2
22

0 cos2
tan0 R

v
gRh

θ
θ −+=  

Solve for the range to obtain: 
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++=

θ
θ 22

0

2
0

sin
2112sin

2 v
gh

g
vR

 
 

Substitute numerical values and evaluate R: 
 

( )
( )

( )( )
( ) ( ) m6.81

10sinm/s45
m25.2m/s81.921120sin

m/s81.92
m/s45

22

2

2

2

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

°
++°=R  
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(b) Express the speed of the 
arrow in the horizontal direction: 
 

( )
m/s56.3

m/s12cos10m/s45
archerarrow

=
+°=

+= vvvx

 

 
Express the vertical speed of the 
arrow: 

( ) m/s7.81sin10m/s45 =°=yv  
 

Express the angle of elevation 
from the perspective of someone 
on the ground: 
 

°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== −− 90.7

m/s56.3
m/s7.81tantan 11

x

y

v
v

θ  

 
Express the arrow’s speed 
relative to the ground: 
 ( ) ( )

m/s56.8
m/s7.81m/s56.3 22

22
0

=

+=

+= yx vvv

 

 
Substitute numerical values and evaluate R: 
 

( )
( )

( )( )
( ) ( ) m104

9.7sinm/s8.65
m2.25m/s9.812115.81sin

m/s9.812
m/s8.65

22

2

2

2

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

°
++°=R  

Remarks: An alternative solution for part (b) is to solve for the range in the 
reference frame of the archer and then add to it the distance the frame travels, 
relative to the earth, during the time of flight.  
 
93 •  
Picture the Problem In the absence of air 
resistance, the horizontal and vertical 
motions are independent of each other. 
Choose a coordinate system oriented as 
shown in the figure to the right and apply 
constant-acceleration equations to find the 
time-of-flight and the range of the spud-
plug. 

  

 
(a) Using a constant-acceleration 
equation, express the vertical 
displacement of the plug: 
 
 

( )2
2
1

0 tatvy yy ∆+∆=∆  
or, because v0y = 0 and ay = −g, 

( )2
2
1 tgy ∆−=∆  

 
Solve for and evaluate the flight 
time ∆t: 

( )

s452.0

m/s9.81
m00.122

2

=

−
−=

∆
−=∆

g
yt
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(b) Using a constant-acceleration 
equation, express the horizontal 
displacement of the plug: 
 
 

( )2
2
1

0 tatvx xx ∆+∆=∆  
or, because ax = 0 and v0x = v0,  

tvx ∆=∆ 0  
 

Substitute numerical values and 
evaluate R: 

( )( ) m22.6s0.452m/s50 ===∆ Rx  

 
94 ••  
Picture the Problem An extreme value (i.e., a maximum or a minimum) of a function is 
determined by setting the appropriate derivative equal to zero. Whether the extremum is a 
maximum or a minimum can be determined by evaluating the second derivative at the 
point determined by the first derivative. 
 
Evaluate dR/dθ0: 
 
 
 

( )[ ] ( )0

2
0

0
0

2
0

0

2cos22sin θθ
θθ g

v
d
d

g
v

d
dR

==  

 
Set dR/dθ0= 0 for extrema and solve 
for θ0: 
 

( ) 02cos2
0

2
0 =θ

g
v

 

and 
°== − 450cos 1

2
1

0θ  
 

Determine whether 45° is a 
maximum or a minimum: ( )[ ]

0

2sin4 450
2
0

45
2

0

2

0

0

<

−= °=

°=

θ
θ

θ
θ

gv
d

Rd
 

∴ R is a maximum at θ0 = 45° 
 
95 •  
Picture the Problem We can use constant-
acceleration equations to express the x and 
y coordinates of a bullet in flight on the 
moon as a function of t. Eliminating this 
parameter will yield an expression for y as 
a function of x that we can use to find the 
range of the bullet. The necessity that the 
centripetal acceleration of an object in orbit 
at the surface of a body equal the 
acceleration due to gravity at the surface 
will allow us to determine the required 
muzzle velocity for orbital motion. 

 

 

 
(a) Using a constant-acceleration 
equation, express the x coordinate of 
a bullet in flight on the moon: 
 

2
2
1

00 tatvxx xx ++=  
or, because x0 = 0, ax = 0 and  
v0x = v0cosθ0, 

( )tvx 00 cosθ=  
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Using a constant-acceleration 
equation, express the y coordinate of 
a bullet in flight on the moon: 
 

2
2
1

00 tatvyy yy ++=  
or, because y0 = 0, ay = −gmoon and  
v0y = v0sinθ0, 

( ) 2
moon2

1
00 sin tgtvy −= θ  

Eliminate the parameter t to obtain: 
 ( ) 2

0
22

0

moon
0 cos2

tan x
v

gxy
θ

θ −=         

 
When y = 0 and x = R: 
 ( ) 2

0
22

0

moon
0 cos2

tan0 R
v

gR
θ

θ −=  

and 

0
moon

2
0 2sin θ

g
vR =  

 
Substitute numerical values and 
evaluate R: 
 

( )

km485

m104.85sin90
m/s1.67
m/s900 5

2

2

=

×=°=R
 

 
 This result is probably not very accurate 

because it is about 28% of the moon’s 
radius (1740 km). This being the case, we 
can no longer assume that the ground is 
″flat″ because of the curvature of the moon. 
  

(b) Express the condition that the 
centripetal acceleration must satisfy 
for an object in orbit at the surface 
of the moon: 
 

r
v

ga
2
moonc

=

=
 

Solve for and evaluate v: ( )( )
km/s1.70

m101.74m/s1.67 62
moon

=

×== rgv

 
96 •••  
Picture the Problem We can show that ∆R/R = –∆g/g by differentiating R with respect 
to g and then using a differential approximation. 
 
Differentiate the range equation 
with respect to g: 
 

g
R

g
v

g
v

dg
d

dg
dR

−=

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 02

2
0

0

2
0 2sin2sin θθ

 

 
Approximate dR/dg by ∆R/∆g: 
 g

R
g
R

−=
∆
∆
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Separate the variables to obtain: 
 g

g
R
R ∆

−=
∆

 

i.e., for small changes in gravity 
( ggg ∆±≈ ), the fractional change in R 
is linearly opposite to the fractional change 
in g. 
 

Remarks:  This tells us that as gravity increases, the range will decrease, and vice 
versa.  This is as it must be because R is inversely proportional to g. 
 
97 •••  
Picture the Problem We can show that ∆R/R = 2∆v0/ v0 by differentiating R with respect 
to v0 and then using a differential approximation. 
 
Differentiate the range equation 
with respect to v0: 
 

0

0
0

0

2
0

00

2

2sin22sin

v
R

g
v

g
v

dv
d

dv
dR

=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= θθ

 

 
Approximate dR/dv0 by ∆R/∆v0: 
 

00

2
v
R

v
R

=
∆
∆

 

 
Separate the variables to obtain: 
 

0

02
v
v

R
R ∆

=
∆

 

i.e., for small changes in the launch 
velocity ( 000 vvv ∆±≈ ), the fractional 
change in R is twice the fractional change 
in v0. 
 

Remarks:  This tells us that as launch velocity increases, the range will increase 
twice as fast, and vice versa. 
 
98 •••  
Picture the Problem Choose a coordinate system in which the origin is at the base of the 
surface from which the projectile is launched. Let the positive x direction be to the right 
and the positive y direction be upward. We can apply constant-acceleration equations to 
obtain parametric equations in time that relate the range to the initial horizontal speed and 
the height h to the initial upward speed. Eliminating the parameter will leave us with a 
quadratic equation in R, the solution to which is the result we are required to establish. 
 
Write the constant-acceleration 
equations for the horizontal and 
vertical parts of the projectile’s 
motion:   

 

tvx x0=  
and 

( ) 2
2
1

0 tgtvhy y −++=  
where 

θcos00 vv x = and θsin00 vv y =  
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Solve the x-component equation for 
time: 
 θcos00 v

x
v
xt

x

==  

 
Using the x-component equation, 
eliminate time from the 
y-component equation to obtain: 
 

( ) 2
22

0 cos2
tan x

v
gxhy

θ
θ −+=  

 
 

When the projectile strikes the 
ground its coordinates are (R, 0) and 
our equation becomes: 
 

( ) 2
22

0 cos2
tan0 R

v
gRh

θ
θ −+=  

 
Using the plus sign in the quadratic 
formula to ensure a physically 
meaningful root (one that is 
positive), solve for the range to 
obtain: 

0

2
0

0
22

0

2sin
2sin

211 θ
θ g

v
v

ghR ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++=  

 
*99 ••  
Picture the Problem We can use trigonometry to relate the maximum height of  
the projectile to its range and the sighting angle at maximum elevation and the range 
equation to express the range as a function of the launch speed and angle. We can use a 
constant-acceleration equation to express the maximum height reached by the projectile 
in terms of its launch angle and speed. Combining these relationships will allow us to 
conclude that θφ tantan 2

1= .  
 
Referring to the figure, relate the 
maximum height of the projectile to 
its range and the sighting angle φ: 
 

2
tan

R
h

=φ  

Express the range of the rocket and 
use the trigonometric identity 

θθθ cossin22sin =  to rewrite the 
expression as: 
 

θθθ cossin2)2sin(
22

g
v

g
vR ==  

 

Using a constant-acceleration 
equation, relate the maximum height 
of a projectile to the vertical 
component of its launch speed: 
 

ghvv yy 22
0

2 −=  

or, because vy = 0 and v0y = v0sinθ, 
ghv 2sin22

0 =θ  

Solve for the maximum height h: 
θ2

2

sin
2g
vh =  

 
Substitute for R and h and simplify 
to obtain: 

θ
θθ

θ
φ tan

cossin2

sin
2

2
tan 2

1
2

2
2

==

g
v

g
v
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100 •  
Picture the Problem In the absence of air 
resistance, the horizontal and vertical 
displacements of the projectile are 
independent of each other and describable 
by constant-acceleration equations. Choose 
the origin at the firing location and with the 
coordinate axes as shown in the figure and 
use constant-acceleration equations to 
relate the vertical displacement to vertical 
component of the initial velocity and the 
horizontal velocity to the horizontal 
displacement and the time of flight. 

 
 

 

 
(a) Using a constant-acceleration 
equation, express the vertical 
displacement of the projectile as a 
function of its time of flight:  

( )2
2
1

0 tatvy yy ∆+∆=∆  
or, because ay = −g, 

( )2
2
1

0 tgtvy y ∆−∆=∆  
 

Solve for v0y:  ( )
t

tgyv y ∆
∆+∆

=
2

2
1

0  

 
Substitute numerical values and 
evaluate v0y: 
 

( )( )

m/s121

s20
s20m/s9.81m450 22

2
1

0

=

+
=yv

 

 
(b) The horizontal velocity remains 
constant, so: m/s150

s20
m3000

0 ==
∆
∆

==
t
x

vv xx  

 
*101 ••  
Picture the Problem In the absence of air 
resistance, the acceleration of the stone is 
constant and the horizontal and vertical 
motions are independent of each other.  
Choose a coordinate system with the origin 
at the throwing location and the axes 
oriented as shown in the figure and use 
constant- acceleration equations to express 
the x and y coordinates of the stone while it 
is in flight.  
 
Using a constant-acceleration 
equation, express the x coordinate of 
the stone in flight: 
  

2
2
1

00 tatvxx xx ++=  
or, because x0 = 0, v0x = v0 and ax = 0, 

tvx 0=  
 

Using a constant-acceleration 
equation, express the y coordinate of 

2
2
1

00 tatvyy yy ++=  
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the stone in flight: 
 

or, because y0 = 0, v0y = 0 and ay = g, 
2

2
1 gty =  

 
Referring to the diagram, express 
the relationship between θ, y and x 
at impact: 
 

x
y

=θtan  

 

Substitute for x and y and solve for 
the time to impact: 
 

t
v
g

tv
gt

00

2

22
tan ==θ  

 
Solve for t to obtain: 

θtan2 0

g
vt =  

 
Referring to the diagram, express 
the relationship between θ, L, y and 
x at impact: 
 

θ
θ

tan
cos yLx ==  

 

Substitute for y to obtain: 
 θcos

2

2

L
g

gt
=  

 
Substitute for t and solve for L to 
obtain: 
 θ

θ
cos
tan2 2

0

g
vL =  

 
102 •••  
Picture the Problem The equation of a particle’s trajectory is derived in the text so we’ll 
use it as our starting point in this derivation. We can relate the coordinates of the point of 
impact (x, y) to the angle φ and use this relationship to eliminate y from the equation for 
the cannonball’s trajectory. We can then solve the resulting equation for x and relate the 
horizontal component of the point of impact to the cannonball’s range. 
 
The equation of the cannonball’s 
trajectory is given in the text: 
 

2

0
22

0
0 cos2
)(tan)( x

v
gxxy ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

θ
θ  

 
Relate the x and y components of a 
point on the ground to the angle φ: 
 

y(x) = (tan φ)x  

Express the condition that the 
cannonball hits the ground: 
 

( ) 2

0
22

0
0 cos2
)(tantan x

v
gxx ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

θ
θφ  

 
Solve for x to obtain: 

g
vx )tan(tancos2 00

22
0 φθθ −

=  

 
Relate the range of the cannonball’s  
flight R to the horizontal distance x: 
 

φcosRx =  
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Substitute to obtain: 

g
vR )tan(tancos2cos 00

22
0 φθθφ −

=  

 
Solve for R: 

φ
φθθ

cos
)tan(tancos2 00

22
0

g
vR −

=  

 
103 ••  
Picture the Problem In the absence of air 
resistance, the acceleration of the rock is 
constant and the horizontal and vertical 
motions are independent of each other.  
Choose the coordinate system shown in the 
figure with the origin at the base of the 
building and the axes oriented as shown 
and apply constant-acceleration equations 
to relate the horizontal and vertical 
displacements of the rock to its time of 
flight.  
 
Find the horizontal and vertical 
components of v0: 
 

v0x = v0 cos53° = 0.602v0 
v0y = v0 sin53° = 0.799v0 
 

Using a constant-acceleration 
equation, express the horizontal 
displacement of the projectile: 
 

( ) tvtvx x ∆=∆==∆ 00 602.0m20  
 

Using a constant-acceleration 
equation, express the vertical 
displacement of the projectile: 
 

( )
( ) ( )2

2
1

0

2
2
1

0

799.0

m20

tgtv

tgtvy y

∆−∆=

∆−∆=−=∆
 

 
Solve the x-displacement equation 
for ∆t: 
 0602.0

m20
v

t =∆  

 
Substitute ∆t into the expression for 
∆y:  

( ) ( )( )22
0 m/s91.4799.0m20 ttv ∆−∆=−  

 
Solve for v0 to obtain: m/s8.100 =v  

 
Find ∆t at impact: 
 ( ) s08.3

cos53m/s10.8
m20

=
°

=∆t  

Using constant-acceleration 
equations, find vy and vx at impact: 
 

m/s50.60 == xx vv  
and 

m/s210 −=∆−= tgvv yy  
 

Express the velocity at impact in 
vector form: jiv ˆm/s) 21.6( ̂m/s) (6.50 −+=

r
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104 ••  
Picture the Problem The ball experiences constant acceleration, except during its 
collision with the wall, so we can use the constant-acceleration equations in the analysis 
of its motion. Choose a coordinate system with the origin at the point of release, the 
positive x axis to the right, and the positive y axis upward. 
 
Using a constant-acceleration 
equation, express the vertical 
displacement of the ball as a 
function of ∆t: 
 

( )2
2
1

0 tgtvy y ∆−∆=∆  
 

When the ball hits the ground,  
∆y = −2 m:   
 

( )
( )( )22

2
1 m/s81.9

m/s10m2

t

t

∆−

∆=−
 

 
Solve for the time of flight: 
 

t flight = ∆t  = 2.22 s 
 

Find the horizontal distance traveled 
in this time: 
 

∆x = (10 m/s) (2.22 s)  = 22.2 m 
 

The distance from the wall is: 
 

∆x – 4 m = m2.18  

 
Hitting Targets and Related Problems 
 
105 •  
Picture the Problem In the absence of air 
resistance, the acceleration of the pebble is 
constant.  Choose the coordinate system 
shown in the diagram and use constant-
acceleration equations to express the 
coordinates of the pebble in terms of the 
time into its flight. We can eliminate the 
parameter t between these equations and 
solve for the launch velocity of the pebble. 
We can determine the launch angle from 
the sighting information and, once the 
range is known, the time of flight can be 
found using the horizontal component of 
the initial velocity. 

 

 

 
Referring to the diagram, express θ 
in terms of the given distances: 
 

°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= − 91.6

m40
m4.85

tan 1θ  

 
Use a constant-acceleration equation 
to express the horizontal position of 
the pebble as a function of time: 
 

2
2
1

00 tatvxx xx ++=  
or, because x0 = 0, v0x = v0cosθ, and  
ax = 0, 

( )tvx θcos0=                              (1) 
 



Motion in One and Two Dimensions 
 

 

181

Use a constant-acceleration equation 
to express the vertical position of 
the  
pebble as a function of time: 
 

2
2
1

00 tatvyy yy ++=  
or, because y0 = 0, v0y = v0sinθ, and  
ay = −g, 

( ) 2
2
1

0 sin gttvy −= θ  
 

Eliminate the parameter t to obtain: 
 ( ) 2

22
0 cos2

tan x
v

gxy
θ

θ −=  

 
At impact, y = 0 and x = R: 
  ( ) 2

22
0 cos2

tan0 R
v

gR
θ

θ −=  

 
Solve for v0 to obtain: 
 

θ2sin0
Rgv =  

 
Substitute numerical values and 
evaluate v0: m/s6.40

8.13sin
)m/s m)(9.81 40( 2

0 =
°

=v  

Substitute in equation (1) to relate R 
to tflight: 
 

( ) flight0 cos tvR θ=  
 

Solve for and evaluate the time of 
flight: 
 ( ) s0.992

cos6.91m/s40.6
m40

flight =
°

=t  

 
*106 ••  
Picture the Problem The acceleration of 
the ball is constant (zero horizontally and –
g vertically) and the vertical and horizontal 
components are independent of each other. 
Choose the coordinate system shown in the 
figure and assume that v and t are 
unchanged by throwing the ball slightly 
downward. 
  

 
Express the horizontal displacement 
of the ball as a function of time: 
 

( )2
2
1

0 tatvx xx ∆+∆=∆  
or, because ax = 0, 

tvx x∆=∆ 0  
 

Solve for the time of flight if the 
ball were thrown horizontally: 
 

s0.491
m/s37.5
m18.4

0

==
∆

=∆
xv
x

t  

 
Using a constant-acceleration 
equation, express the distance the 
ball would drop (vertical 
displacement) if it were thrown 

( )2
2
1

0 tatvy yy ∆+∆=∆  
or, because v0y = 0 and ay = −g, 

( )2
2
1 tgy ∆−=∆  
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horizontally: 
 

 

Substitute numerical values and 
evaluate ∆y: 

( )( ) m1.18s0.491m/s9.81 22
2
1 −=−=∆y  

 
The ball must drop an additional 
0.62 m before it gets to home plate.  

y = (2.5 – 1.18) m  
   = 1.32 m above ground 
 

Calculate the initial downward 
speed the ball must have to drop 
0.62 m in 0.491 s: 

m1.26
s0.491
m0.62

−=
−

=yv  

 
Find the angle with horizontal: 
 

°−=

−
== −−

92.1

m/s37.5
m/s1.26tantan 11

x

y

v
v

θ
 

 

Remarks: One can readily show that 22
yx vv + = 37.5 m/s to within 1%; so the 

assumption that v and t are unchanged by throwing the ball downward at an angle 
of 1.93° is justified. 
 
107 ••  
Picture the Problem The acceleration of 
the puck is constant (zero horizontally and 
–g vertically) and the vertical and 
horizontal components are independent of 
each other. Choose a coordinate system 
with the origin at the point of contact with 
the puck and the coordinate axes as shown 
in the figure and use constant-acceleration 
equations to relate the variables v0y, the 
time t to reach the wall, v0x, v0, and θ0. 

 

 

 
Using a constant-acceleration 
equation for the motion in the y 
direction, express v0y as a function  
of the puck’s displacement ∆y:   
 

yavv yyy ∆+= 22
0

2  

or, because vy= 0 and ay = −g, 
ygv y ∆−= 20 2

0  

Solve for and evaluate v0y: 
 

( )( )
m/s41.7

m/s81.9m80.222 2
0

=

=∆= ygv y
 

 
Find t from the initial velocity in the 
y direction: 
 

s0.756
m/s9.81
m/s7.41

2
0 ===
g

v
t y  

 
Use the definition of average 
velocity to find v0x: 
 

m/s15.9
s0.756

m12.0
0 ==

∆
==

t
xvv xx  
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Substitute numerical values and 
evaluate v0: 
 ( ) ( )

m/s5.17

m/s41.7m/s9.15 22

2
0

2
00

=

+=

+= yx vvv

 

 
Substitute numerical values and 
evaluate θ : 

°=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== −−

0.25

m/s15.9
m/s7.41tantan 1

0

01

x

y

v
v

θ  

 
108 ••  
Picture the Problem In the absence of air 
resistance, the acceleration of Carlos and 
his bike is constant and we can use 
constant-acceleration equations to express 
his x and y coordinates as functions of 
time. Eliminating the parameter t between 
these equations will yield y as a function of 
x … an equation we can use to decide 
whether he can jump the creek bed as well 
as to find the minimum speed required to 
make the jump. 

 

 

 
(a) Use a constant-acceleration 
equation to express Carlos’ 
horizontal position as a function  
of time: 
 

2
2
1

00 tatvxx xx ++=  
or, because x0 = 0, v0x = v0cosθ, and  
ax = 0, 

( )tvx θcos0=                               
 

Use a constant-acceleration equation 
to express Carlos’ vertical position 
as a function of time: 
 

2
2
1

00 tatvyy yy ++=  
or, because y0 = 0, v0y = v0sinθ, and 
ay = −g, 

( ) 2
2
1

0 sin gttvy −= θ  
 

Eliminate the parameter t to obtain: 
 ( ) 2

22
0 cos2

tan x
v

gxy
θ

θ −=  

 
Substitute y = 0 and x = R to obtain: 
 ( ) 2

22
0 cos2

tan0 R
v

gR
θ

θ −=  

 
Solve for and evaluate R: 
 ( ) ( )

m30.4

20sin
m/s81.9
m/s1.112sin 2

2

0

2
0

=

°== θ
g
vR

 

brakes! apply the should He  
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(b) Solve the equation we used in 
the previous step for v0,min:  ( )0

min,0 2sin θ
Rgv =  

 
Letting R = 7 m, evaluate v0,min: ( )( )

km/h51.0m/s2.14
sin20

m/s81.9m7 2

min,0

==

°
=v

 

 
109 •••  
Picture the Problem In the absence of air 
resistance, the bullet experiences constant 
acceleration along its parabolic trajectory. 
Choose a coordinate system with the origin 
at the end of the barrel and the coordinate 
axes oriented as shown in the figure and 
use constant-acceleration equations to 
express the x and y coordinates of the 
bullet as functions of time along its flight 
path. 

 

 
 
Use a constant-acceleration equation 
to express the bullet’s horizontal 
position as a function of time: 
 

2
2
1

00 tatvxx xx ++=  
or, because x0 = 0, v0x = v0cosθ, and  
ax = 0, 

( )tvx θcos0=                               
 

Use a constant-acceleration 
equation to express the bullet’s 
vertical position as a function of 
time: 
 

2
2
1

00 tatvyy yy ++=  
or, because y0 = 0, v0y = v0sinθ, and  
ay = −g, 

( ) 2
2
1

0 sin gttvy −= θ  
 

Eliminate the parameter t to obtain: 
 ( ) 2

22
0 cos2

tan x
v

gxy
θ

θ −=  

 
Let y = 0 when x = R to obtain: ( ) 2

22
0 cos2

tan0 R
v

gR
θ

θ −=  

 
Solve for the angle above  
the horizontal that the rifle must be 
fired to hit the target: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

2
0

1
2
1

0 sin
v
Rgθ  

Substitute numerical values and 
evaluate θ0: 

( )( )
( )

°=

⎥
⎦

⎤
⎢
⎣

⎡
= −

450.0
m/s250

m/s81.9m100sin 2

2
1

2
1

0θ
 

Note: A second value for θ0, 89.6° is 
physically unreasonable. 
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Referring to the diagram, relate h to 
θ0 and solve for and evaluate h: m100

tan 0
h

=θ  

and 
( ) ( ) m785.0450.0tanm100 =°=h  

 
General Problems 
 
110 •  
Picture the Problem The sum and difference of two vectors can be found from the 
components of the two vectors.  The magnitude and direction of a vector can be found 
from its components. 

 
(a) The table to the right 
summarizes the components of A

r
 

and B
r

. 
 
 

 
Vector x component y component 

 (m) (m) 
A
r

 0.707 0.707 

B
r

 0.866 −0.500  
(b) The table to the right shows the 
components of S

r
. 

 
 
 
 

 
Vector x component y component 

 (m) (m) 
A
r

 0.707 0.707 

B
r

 0.866 −0.500 

S
r

 1.57 0.207 
 
 

Determine the magnitude and 
direction of S

r
from its components: 

m59.122 =+= yx SSS  

and, because S
r

is in the 1st  

°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= − 50.7tan 1

x

y
S S

S
θ  

 
(c) The table to the right shows the 
components of :D

r
 

 
 
 
 
 
 

 
Vector x component y component 

 (m) (m) 
A
r

 0.707 0.707 

B
r

 0.866 −0.500 

D
r

 −0.159 1.21  

Determine the magnitude and 
direction of D

r
from its components: 

m22.122 =+= yx DDD  

and, because D
r

is in the 2nd quadrant, 
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°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= − 5.97tan 1

x

y
D D

D
θ  

 
*111 •  
Picture the Problem A vector quantity can be resolved into its components relative to 
any coordinate system.  In this example, the axes are orthogonal and the components of 
the vector can be found using trigonometric functions. 
 
The x and y components of g

r
are 

related to g through the sine and 
cosine functions: 
 

gx = gsin30° = 2m/s91.4  

and 
gy = gcos30° = 2m/s50.8  

 
112 •  
Picture the Problem  The figure shows 
two arbitrary, co-planar vectors that (as 
drawn) do not satisfy the condition that A/B 
= Ax/Bx. 
 
Because Ax AA θcos=  and 

Bx BB θcos= , 1
cos
cos

=
B

A

θ
θ

 for the 

condition to be satisfied. 

 

 

 
∴ A/B = Ax/Bx if and only if A

r
and B

r
 are parallel (θA = θB) or on opposite sides of the 

x-axis (θA = –θB). 
 
113 •  
Picture the Problem We can plot the path of the particle by substituting values for t and 
evaluating rx and ry coordinates of .rr The velocity vector is the time derivative of the 
position vector. 
 
(a) We can assign values to t in  the 
parametric equations x = (5 m/s)t 
and y = (10 m/s)t to obtain ordered 
pairs (x, y) that lie on the path of 
the particle. The path is shown in 
the figure to the right: 

0

5

10

15

20

25

0 2 4 6 8 10 12

x  (m)

y 
(m

)

 
 

(b) Evaluate dtdrr : 
 
 
 

( ) ( )[ ]
( ) ( ) ji

jirv

ˆm/s10ˆm/s5

ˆm/s10ˆm/s5

+=

+== tt
dt
d

dt
drr

 



Motion in One and Two Dimensions 
 

 

187

Use its components to find the 
magnitude of vr : 

m/s2.1122 =+= yx vvv  

 
114 ••  
Picture the Problem In the absence of air 
resistance, the hammer experiences 
constant acceleration as it falls.  Choose a 
coordinate system with the origin and 
coordinate axes as shown in the figure and 
use constant-acceleration equations to 
describe the x and y coordinates of the 
hammer along its trajectory. We’ll use the 
equation describing the vertical motion to 
find the time of flight of the hammer and 
the equation describing the horizontal 
motion to determine its range.  
 
Using a constant-acceleration 
equation, express the x coordinate of 
the hammer as a function of time:  
 

2
2
1

00 tatvxx xx ++=  
or, because x0 = 0, v0x = v0cosθ0, and 
ax = 0, 

( )tvx 00 cosθ=  
 

Using a constant-acceleration 
equation, express the y coordinate of 
the hammer as a function of time:  
 

2
2
1

00 tatvyy yy ++=  

or, because y0 = h, v0y = v0sinθ, and  
ay = −g, 

( ) 2
2
1

0 sin gttvhy −+= θ  
 

Substitute numerical values to 
obtain: 
 

( )( )
( ) 22

2
1 m/s81.9

30sinm/s4m10
t

ty
−

°+=
 

 
Substitute the conditions that exist  
when the hammer hits the ground: 
 

( )
( ) 22

2
1 m/s81.9

30sinm/s4m100
t

t
−

°−=
 

 
Solve for the time of fall to obtain: 
 

t = 1.24 s 

Use the x-coordinate equation to 
find  
the  horizontal distance traveled by 
the hammer in 1.24 s: 

( )( )( )
m4.29

s1.24cos30m/s4

=

°=R
 

 
115 ••  
Picture the Problem We’ll model Zacchini’s flight as though there is no air resistance 
and, hence, the acceleration is constant.  Then we can use constant- acceleration 
equations to express the x and y coordinates of Zacchini’s motion as functions of time. 
Eliminating the parameter t between these equations will leave us with an equation we 
can solve forθ. Because the maximum height along a parabolic trajectory occurs 
(assuming equal launch and landing elevations) occurs at half range, we can use this 
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same expression for y as a function of x to find h. 

 
 
Use a constant-acceleration equation 
to express Zacchini’s horizontal 
position as a function of time: 
 

2
2
1

00 tatvxx xx ++=  
or, because x0 = 0, v0x = v0cosθ, and  
ax = 0, 

( )tvx θcos0=                               
 

Use a constant-acceleration 
equation to express Zacchini’s 
vertical position as a function of 
time: 
 

2
2
1

00 tatvyy yy ++=  
or, because y0 = 0, v0y = v0sinθ, and  
ay = −g, 

( ) 2
2
1

0 sin gttvy −= θ  
 

Eliminate the parameter t to obtain: 
 ( ) 2

22
0 cos2

tan x
v

gxy
θ

θ −=  

 
Use Zacchini’s coordinates when he  
lands in a safety net to obtain: ( ) 2

22
0 cos2

tan0 R
v

gR
θ

θ −=  

 
Solve for his launch angle θ : 
 
 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

2
0

1
2
1 sin

v
Rgθ  

Substitute numerical values and 
evaluate θ :  

( )( )
( )

°=⎥
⎦

⎤
⎢
⎣

⎡
= − 3.31

m/s2.42
m/s81.9m53sin 2

2
1

2
1θ  

 
Use the fact that his maximum 
height was attained when he was 
halfway through his flight to obtain: 

( )
2

22
0 2cos22

tan ⎟
⎠
⎞

⎜
⎝
⎛−=

R
v

gRh
θ

θ  

 
Substitute numerical values and evaluate h: 
 

( )
( )

m06.8
2
m53

3.31cosm/s2.242
m/s81.9

2
m533.31tan

2

22

2

=⎟
⎠
⎞

⎜
⎝
⎛

°
−°=h  
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116 ••  
Picture the Problem Because the acceleration is constant; we can use the constant-
acceleration equations in vector form and the definitions of average velocity and average 
(instantaneous) acceleration to solve this problem. 
 
(a) The average velocity is given by: 
 
 
 
 

ji

rrrv

ˆm/s) 2.5(ˆm/s) (3

12
av

−+=
∆
−

=
∆
∆

=
tt

rrr
r

 

The average velocity can also be 
expressed as: 
 2

21
av

vvv
rr

r +
=  

and 
2av1 2 vvv rrr

−=  
 

Substitute numerical values to 
obtain: jiv ˆm/s) 1(ˆm/s) (11 +=

r
 

 
(b) The acceleration of the particle 
is given by: 
 
 ji

vvva

ˆ)m/s 3.5(ˆ)m/s 2( 22

12

−+=

∆
−

=
∆
∆

=
tt

rrr
r

 

 
(c) The velocity of the particle as a function of time is: 
 

( ) jiavv ˆ])m/s 3.5(m/s) [(1ˆ])m/s (2m/s) 1[( 22
1 tttt −+++=+=

rrr
 

 
(d) Express the position vector as a 
function of time: 
 

2
2
1

11)( ttt avrr rrrr
++=  

Substitute numerical values and evaluate ( )trr : 
 

( ) jir ˆ]m/s 1.75m/s) (1m) (3[ˆ])m/s (1m/s) (1m) [(4)( 2222 ttttt −+++++=
r

 

 
*117 ••   
Picture the Problem In the absence of air resistance, the steel ball will experience 
constant acceleration.  Choose a coordinate system with its origin at the initial position of 
the ball, the x direction to the right, and the y direction downward. In this coordinate 
system y0 = 0 and a = g. Letting (x, y) be a point on the path of the ball, we can use 
constant-acceleration equations to express both x and y as functions of time and, using the 
geometry of the staircase, find an expression for the time of flight of the ball. Knowing its 
time of flight, we can find its range and identify the step it strikes first. 
 
The angle of the steps, with respect 
to the horizontal, is: 
 

°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= − 0.31

m0.3
m0.18tan 1θ  
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Using a constant-acceleration 
equation, express the x coordinate of 
the steel ball in its flight: 
 

2
2
1

00 tatvxx y++=  
or, because x0 = 0 and ay = 0, 

tvx 0=  
 

Using a constant-acceleration 
equation, express the y coordinate of 
the steel ball in its flight: 
 

2
2
1

00 tatvyy yy ++=  
or, because y0 = 0, v0y = 0, and ay = g, 

2
2
1 gty =  

 
The equation of the dashed line in 
the figure is: 
 02

tan
v
gt

x
y

== θ  

 
Solve for the flight time: 
 θtan2 0

g
vt =  

 
Find the x coordinate of the landing 
position: 
 

θ
θ

tan2
tan

2
0

g
vyx ==  

 
Substitute the angle determined in 
the first step: 
 

( ) m1.10tan31
m/s9.81

m/s32
2

2

=°=x  

 
Find the first step with x > 1.10 m: 
 

step.4th   theis 
m 1.10 with stepfirst  The >x

 

 
118 ••  
Picture the Problem Ignoring the 
influence of air resistance, the acceleration 
of the ball is constant once it has left your 
hand and we can use constant-acceleration 
equations to express the x and y 
coordinates of the ball. Elimination of the 
parameter t will yield an equation from 
which we can determine v0. We can then 
use the y equation to express the time of 
flight of the ball and the x equation to 
express its range in terms of x0, v0,θ and the 
time of flight.  

 
 

 

 
Use a constant-acceleration equation 
to express the ball’s horizontal 
position as a function of time: 
 

2
2
1

00 tatvxx xx ++=  
or, because x0 = 0, v0x = v0cosθ, and  
ax = 0, 

( )tvx θcos0=                             (1)             
 

Use a constant-acceleration 
equation to express the ball’s 

2
2
1

00 tatvyy yy ++=  
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vertical position as a function of 
time: 
 

or, because y0 = x0, v0y = v0sinθ, and  
ay = −g, 

( ) 2
2
1

00 sin gttvxy −+= θ            (2) 
 

Eliminate the parameter t to obtain: 
 ( ) 2

22
0

0 cos2
tan x

v
gxxy

θ
θ −+=  

 
For the throw while standing on 
level ground we have: ( ) 2

022
0

0 cos2
tan0 x

v
gx

θ
θ −=  

and 

( )
g
v

g
v

g
vx

2
0

2
0

2
0

0 452sin2sin =°== θ  

Solve for v0: 
00 gxv =  

 

At impact equation (2) becomes: ( ) 2
flight2

1
flight00 sin0 gttgxx −+= θ  

 

Solve for the time of flight: ( )2sinsin 20
flight ++= θθ

g
xt  

 

Substitute in equation (1) to express 
the range of the ball when thrown 
from an elevation x0 at an angle θ 
with the horizontal: 

( )
( ) ( )

( )2sinsincos

2sinsincos

cos

2
0

20
0

flight0

++=

++=

=

θθθ

θθθ

θ

x

g
xgx

tgxR

 

 

Substitute θ = 0°, 30°, and 45°: ( ) 041.10 xx =°  

( ) 073.130 xx =°  

and 

( ) 062.145 xx =°  

 
119 •••   
Picture the Problem Choose a coordinate system with its origin at the point where the 
motorcycle becomes airborne and with the positive x direction to the right and the 
positive y direction upward. With this choice of coordinate system we can relate the x and 
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y coordinates of the motorcycle (which we’re treating as a particle) using Equation 3-21. 
 
(a) The path of the motorcycle is 
given by: 
 

y(x) = (tanθ)x −
g

2v0
2 cos2 θ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ x

2  

For the jump to be successful,  
h < y(x).  Solving for v0, we find: 
 )tan(2cosmin hx

gxv
−

>
θθ

 

 
(b) Use the values given to obtain: vmin > mph58.0orm/s26.0  

 
(c) In order for our expression for 
vmin to be real valued; i.e., to predict 
values for vmin that are physically 
meaningful, x tanθ − h > 0.  

∴ hmax < x tanθ 
 
The interpretation is that the bike "falls 
away" from traveling on a straight-line 
path due to the free-fall acceleration 
downwards.  No matter what the initial 
speed of the bike, it must fall a little bit 
before reaching the other side of the pit. 

 
120 •••  
Picture the Problem Let the origin be at 
the position of the boat when it was 
engulfed by the fog.  Take the x and y 
directions to be east and north, 
respectively.  Let BWvr  be the velocity of 
the boat relative to the water, BSvr be the 
velocity of the boat relative to the shore, 
and WSvr be the velocity of the water with 
respect to the shore. Then  

BSvr  =  BWvr + WSvr . 

θ  is the angle of WSvr  with respect to the x 
(east) direction. 

 
 

 

 
(a) Find the position vector for the 
boat at t  = 3 h: 
 
 

( )( ){ }
( )( ){ }

( ){ }
( ){ }j

i

j

ir

ˆkm4km6.22

ˆkm6.22

ˆkm 4 sin135km32

ˆ135coskm32boat

−+

−=

−°+

°=

t

t

t

t
r

 

 
Find the coordinates of the boat at  
t = 3 h: 
 

( )[ ]( )h3cos135coskm/h10 WS θvrx +°=  
and 

( )[ ]( )h3sin135sinkm/h10 WS θvry +°=  
 

Simplify the expressions involving 3vWS cosθ  =  −1.41 km/h 
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rx and ry and equate these simplified 
expressions to the x and y 
components of the position vector of 
the boat: 
 

and 
3vWS sinθ  =  −2.586 km/h 

Divide the second of these equations 
by the first to obtain: 
 km41.1

km586.2tan
−

−
=θ  

or 

°°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
= − 241.4or  4.61

km1.41
km2.586tan 1θ

 
 

Because the boat has drifted south, 
use θ = 241.4° to obtain: 
 ( )

°==

°

−
==

4.241atkm/h982.0

4.241cos
3
km/h41.1

cosWS

θ

θ
xvv  

 
(b) Letting φ be the angle between 
east and the proper heading for the 
boat, express the components of the 
velocity of the boat with respect to 
the shore: 
 
 

vBS,x = (10 km/h) cosφ  
              + (0.982 km/h) cos(241.3°) 
 
vBS,y = (10 km/h) sinφ  
              + (0.982 km/h) sin(241.3°) 
 

For the boat to travel northwest: 
 

vBS,x = –vBS,y 

Substitute the velocity components, 
square both sides of the equation, 
and simplify the expression to obtain 
the equations: 

sinφ + cosφ = 0.133, 
sin2φ + cos2φ + 2 sinφ cosφ = 0.0177, 
and 
1 + sin(2φ) = 0.0177 
 

Solve for φ: 
 

φ = 129.6° or 140.4° 
 

Because the current pushes south, 
the boat must head more northerly 
than 135°: 

Using 129.6°, the correct heading 
is northofwest6.39 ° . 

 
(c) Find vBS: 
 

vBS,x = –6.84 km/h 
and 
vBS =  vBx /cos135° = 9.68 km/h 
 

To find the time to travel 32 km, 
divide the distance by the boat’s 
actual speed: 
 

t = (32 km)/(9.68 km/h)  
  = min18h3h31.3 =  
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*121 ••   
Picture the Problem In the absence of air resistance, the acceleration of the projectile is 
constant and the equation of a projectile for equal initial and final elevations, which was 
derived from the constant-acceleration equations, is applicable. We can use the equation 
giving the range of a projectile for equal initial and final elevations to evaluate the ranges 
of launches that exceed or fall short of 45° by the same amount. 
 
Express the range of the projectile 
as a function of its initial speed and 
angle of launch: 

0

2
0 2sin θ
g
vR =  

 
Let θ0= 45° ± θ:  
 ( )

( )θ

θ

2cos

290sin

2
0

2
0

±=

±°=

g
v
g
vR

 

 
Because cos(–θ) = cos(+θ) (the 
cosine function is an even function): 

)(45)(45 θθ −°=+° RR  

 
122 ••  
Picture the Problem In the absence of air 
resistance, the acceleration of both balls is 
that due to gravity and the horizontal and 
vertical motions are independent of each 
other.  Choose a coordinate system with 
the origin at the base of the cliff and the 
coordinate axes oriented as shown and use 
constant-acceleration equations to relate 
the x and y components of the ball’s speed. 

 
 
Independently of whether a ball is 
thrown upward at the angle α or 
downward at β, the vertical motion 
is described by: 

ghv

yavv

y

yy

2

2
2
0

2
0

2

−=

∆+=
 

 
 

The horizontal component of the  
motion is given by: 
 

vx = v0x 
 

Find v at impact from its 
components: 
 ghv

ghvvvvv yxyx

2

2

2
0

2
0

2
0

22

−=

−+=+=
 

 

 


