Chapter 3
Motion in Two and Three Dimensions

Conceptual Problems

*1 °
Determine the Concept The distance traveled along a path can be represented as a
sequence of displacements.

Suppose we take a trip along some path and consider the trip as a sequence of many very
small displacements. The net displacement is the vector sum of the very small
displacements, and the total distance traveled is the sum of the magnitudes of the very
small displacements. That is,

total distance = ‘Aro?l‘ + ‘Arl,z‘ + ‘Arm‘ +..+ ‘ArN,I, N‘

where N is the number of very small displacements. (For this to be exactly true we have
to take the limit as N goes to infinity and each displacement magnitude goes to zero.)
Now, using "the shortest distance between two points is a straight line,” we have

b

‘AFO,N‘ < ‘Afo,l‘ + ‘Aﬁ,z‘ + ‘Afm‘ +..+ ‘AFN%,N

where ‘AI’O, N‘ is the magnitude of the net displacement.

Hence, we have shown that the magnitude of the displacement of a particle is less than or
equal to the distance it travels along its path.

2 .

Determine the Concept The displacement of an object is its final position vector minus
its initial position vector (Al =T; —T;). The displacement can be less but never more
than the distance traveled. Suppose the path is one complete trip around the earth at the
equator. Then, the displacement is 0 but the distance traveled is 2 7Re.

119
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3 °
Determine the Concept The important distinction here is that average velocity is being
requested, as opposed to average speed.

The average velocity is defined as . AF 0

. o . V ===
the dlsplgcement divided by the T AL A
elapsed time.

The displacement for any trip around the track is zero. Thus we see that no
matter how fast the race car travels, the average velocity is always zero at

the end of each complete circuit.

What is the correct answer if we were asked for average speed?

The average speed is defined as the _ total distance
distance traveled divided by the Vav = A
elapsed time.

For one complete circuit of any track, the total distance traveled will be

greater than zero and the average is not zero.

4 .

False. Vectors are quantities with magnitude and direction that can be added and
subtracted like displacements. Consider two vectors that are equal in magnitude and
oppositely directed. Their sum is zero, showing by counterexample that the statement is
false.

5 .
Determine the Concept We can answer
this question by expressing the relationship

between the magnitude of vector A and its
component As and then using properties of
the cosine function.

Express Ag in terms of 4 and & Ag=A cosb
Take the absolute value of both | 4d =14 cos8| = 4l cosd|
sides of this expression:

and

| cos@| = u

A
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Using the fact that 0 < |cos@] < 1, |AS|
substitute for [cos@| to obtain: 0< I <lor 0< |As| <4

No. The magnitude of a component of a vector must be less than or equal

to the magnitude of the vector.

If the angle & shown in the figure is equal to 0° or multiples of 180°, then

the magnitude of the vector and its component are equal.

*6 °

Determine the Concept The diagram y
shows a vector A and its components A, A
and A4,. We can relate the magnitude of

A is related to the lengths of its B |

components through the Pythagorean |
theorem. o N

Suppose that Ais equal to zero. Then 4% = A + Ay2 =0.
But Af+Aj =0=>4,=4,=0.

No. If a vector is equal to zero, each of its components must be zero too.

7 .
Determine the Concept No. Consider the special case in which B=-A.
IfB =—A=0, then C = 0 and the magnitudes of the components of A and B are

larger than the components of C.

*8 °
Determine the Concept The instantaneous acceleration is the limiting value, as At
approaches zero, of AV/At. Thus, the acceleration vector is in the same direction as AV.

False. Consider a ball that has been l
thrown upward near the surface of @
the earth and is slowing down. The

direction of its motion is upward. I | ‘

The diagram shows the ball’s
velocity vectors at two instants of -
time and the determination of AV. @

Note that because AV is downward ‘ |

so 1is the acceleration of the ball.
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9 .
Determine the Concept The instantaneous acceleration is the limiting value, as At
approaches zero, of A\7/ At and is in the same direction as AV.

Other than through the definition of @, the instantaneous velocity and acceleration vectors
are unrelated. Knowing the direction of the velocity at one instant tells one nothing about

how the velocity is changing at that instant. | (e) is correct.

10 -

Determine the Concept The changing velocity of the golf ball during its flight can be
understood by recognizing that it has both horizontal and vertical components. The nature
of its acceleration near the highest point of its flight can be understood by analyzing the
vertical components of its velocity on either side of this point.

At the highest point of its flight, the 7,

ball is still traveling horizontally | | |

even though its vertical velocity is , @ . 7,
momentarily zero. The figure to the

right shows the vertical components || y[a7

of the ball’s velocity just before and
just after it has reached its highest
point. The change in velocity during LAl
this short interval is a non-zero,
downward-pointing vector. Because
the acceleration is proportional to
the change in velocity, it must also
be nonzero.

e
|

(d)1s correct.

Remarks: Note that v, is nonzero and vy is zero, while ay is zero and a, is nonzero.

11 -

Determine the Concept The change in the velocity is in the same direction as the
acceleration. Choose an x-y coordinate system with east being the positive x direction
and north the positive y direction.

Given our choice of coordinate system, the x component of @ is negative and so V will
decrease. The y component of @ is positive and so V. will increase toward the north.

(c)1s correct.

*12

Determine the Concept The average velocity of a particle, V_, is the ratio of the

av?

particle’s displacement to the time required for the displacement.

(a) We can calculate AT from the
given information and At is known.

(a)1s correct.
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(b) We do not have enough
information to calculate Av and
cannot compute the particle’s
average acceleration.

(c) We would need to know how the
particle’s velocity varies with time
in order to compute its
instantaneous velocity.

(d) We would need to know how the
particle’s velocity varies with time
in order to compute its
instantaneous acceleration.

13 o0
Determine the Concept The velocity vector is always in the direction of motion and,
thus, tangent to the path.

The velocity vector, as a consequence of always being in the direction of

(a)

motion, is tangent to the path.

(b) A sketch showing two velocity
vectors for a particle moving along a
path is shown to the right.

14 -
Determine the Concept An object experiences acceleration whenever either its speed
changes or it changes direction.

The acceleration of a car moving in a straight path at constant speed is zero. In the other
examples, either the magnitude or the direction of the velocity vector is changing and,

hence, the car is accelerated. | () is correct.

*15 .
Determine the Concept The velocity vector is defined byV = dr / dt, while the
acceleration vector is defined by a = dv / dt.

(a) A car moving along a straight road while braking.

(b) A car moving along a straight road while speeding up.
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(c) A particle moving around a circular track at constant speed.

16 -
Determine the Concept A particle experiences accelerated motion when either its speed
or direction of motion changes.

A particle moving at constant speed in a circular path is accelerating because the
direction of its velocity vector is changing.

If a particle is moving at constant velocity, it is not accelerating.

17

Determine the Concept The acceleration vector is in the same direction as the change in
velocity vector, AV.

(a) The sketch for the dart thrown

upward is shown to the right. The B Jsf-= %-3,
acceleration vector is in the -7,
direction of the change in the 1 I

velocity vector AV.

=

(b) The sketch for the falling dart is
shown to the right. Again, the

acceleration vector is in the 7,
direction of the change in the
velocity vector AV. -
(4 - -
: Uy — Ty

(¢) The acceleration vector is in the
direction of the change in the 7,

velocity vector ... and hence is \351 -7,
v, h

downward as shown the right: 2

*18 oo
Determine the Concept The acceleration vector is in the same direction as the change in
velocity vector, AV.

The drawing is shown to the right. v,

o +’Av:vz—vl
vz‘ vz‘ -

19 (1]
Determine the Concept The acceleration vector is in the same direction as the change in
velocity vector, AV.
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The sketch is shown to the right. -
v,
Av =05—0¢

20 -
Determine the Concept We can decide what the pilot should do by considering the
speeds of the boat and of the current.

Give up. The speed of the stream is equal to the maximum speed of the boat in still
water. The best the boat can do is, while facing directly upstream, maintain its position

relative to the bank. | (d) 1s correct.

*21

Determine the Concept True. In the absence of air resistance, both projectiles
experience the same downward acceleration. Because both projectiles have initial vertical
velocities of zero, their vertical motions must be identical.

22

Determine the Concept In the absence of air resistance, the horizontal component of the
projectile’s velocity is constant for the duration of its flight.

At the highest point, the speed is the horizontal component of the initial velocity. The

vertical component is zero at the highest point. | (e) is correct.

23 -
Determine the Concept In the absence of air resistance, the acceleration of the ball
depends only on the change in its velocity and is independent of its velocity.

As the ball moves along its trajectory between points A and C, the vertical component of
its velocity decreases and the change in its velocity is a downward pointing vector.
Between points C and E, the vertical component of its velocity increases and the change
in its velocity is also a downward pointing vector. There is no change in the horizontal

component of the velocity. | (d)is correct.

24

Determine the Concept In the absence of air resistance, the horizontal component of the
velocity remains constant throughout the flight. The vertical component has its maximum
values at launch and impact.

(a) The speed is greatest at A and E.
(b) The speed is least at point C.

(c) The speed is the same at A and E. The horizontal components are equal at these points
but the vertical components are oppositely directed.
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25 o
Determine the Concept Speed is a scalar quantity, whereas acceleration, equal to the
rate of change of velocity, is a vector quantity.

(a) False. Consider a ball on the end of a string. The ball can move with constant speed
(a scalar) even though its acceleration (a vector) is always changing direction.

(b) True. From its definition, if the acceleration is zero, the velocity must be constant and

so, therefore, must be the speed.

26 -
Determine the Concept The average acceleration vector is defined by &,, = AV /At.

The direction of @, is that of
AV =V, —V,, as shown to the right.

27 -
Determine the Concept The velocity of B relative to A is Vi, =

The direction of V,, = Vg — V, is shown to
the right.

*28 e
(a) The vectors A(t) and A(t + At) are of equal length but point in slightly different
directions. AAis shown in the diagram below. Note that AAis nearly perpendicular

to A(t) For very small time intervals, AA and A(l‘) are perpendicular to one another.
Therefore, dA/ dt is perpendicular to A.

(b) If A represents the position of a particle, the particle must be undergoing circular
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motion (i.e., it is at a constant distance from some origin). The velocity vector is tangent
to the particle’s trajectory; in the case of a circle, it is perpendicular to the circle’s radius.

(¢) Yes, it could in the case of uniform circular motion. The speed of the particle is
constant, but its heading is changing constantly. The acceleration vector in this case is
always perpendicular to the velocity vector.

29 oo

Determine the Concept The velocity vector is in the same direction as the change in the
position vector while the acceleration vector is in the same direction as the change in the

velocity vector. Choose a coordinate system in which the y direction is north and the x
direction is east.

(@) (b)
Path Direction of velocity Path Direction of acceleration
vector vector
AB north AB north
BC northeast BC southeast
CD east CD 0
DE southeast DE southwest
EF south EF north
© The magnitudes are comparable, but larger for DE since the radius of the
¢
path is smaller there.
*30 e

Determine the Concept We’ll assume that the cannons are identical and use a constant-
acceleration equation to express the displacement of each cannonball as a function of
time. Having done so, we can then establish the condition under which they will have the
same vertical position at a given time and, hence, collide. The modified diagram shown
below shows the displacements of both cannonballs.

Express the displacement of the AF =vVi+ L gi?

cannonball from cannon A at any o2

time ¢ after being fired and before

any collision:

Express the displacement of the AF' =V!f' + 1 gt
)

cannonball from cannon A at any
time ¢’ after being fired and before
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any collision:

If the guns are fired simultaneously, # =¢' and the balls are the same distance

1 gt” below the line of sight at all times. Therefore, they should fire the guns

simultaneously.

Remarks: This is the "monkey and hunter” problem in disguise. If you imagine a
monkey in the position shown below, and the two guns are fired simultaneously, and
the monkey begins to fall when the guns are fired, then the monkey and the two
cannonballs will all reach point P at the same time.

B

31 ee

Determine the Concept The droplet leaving the bottle has the same horizontal velocity
as the ship. During the time the droplet is in the air, it is also moving horizontally with
the same velocity as the rest of the ship. Because of this, it falls into the vessel, which
has the same horizontal velocity. Because you have the same horizontal velocity as the
ship does, you see the same thing as if the ship were standing still.

32
Determine the Concept

Because Aand D are tangent to the path of the stone, either of them could

()

represent the velocity of the stone.

A(t)

‘\ —[-i(f)
A(m A(t +At) :;AE =A(t + At - A(H)
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Let the vectors A(f)and B(z + Ar) be of equal length but point in slightly
different directions as the stone moves around the circle. These two

vectors and AA are shown in the diagram above. Note that AAis nearly

(b) N L
perpendicular to A(z). For very small time intervals, AA and A(r)are
perpendicular to one another. Therefore, dA/dt is perpendicular to Aand
only the vector E could represent the acceleration of the stone.

33

Determine the Concept True. An object accelerates when its velocity changes; that is,
when either its speed or its direction changes. When an object moves in a circle the
direction of its motion is continually changing.

34 e

Picture the Problem In the diagram, (@)

shows the pendulum just before it reverses @ ®
direction and (b) shows the pendulum just

after it has reversed its direction. The

acceleration of the bob is in the direction of

the change in the velocity AV =V, —V. and

is tangent to the pendulum trajectory at the 2

point of reversal of direction. This makes

sense because, at an extremum of motion, o 7
. . D, -7,

v =0, so there is no centripetal ‘\

acceleration. However, because the B N

velocity is reversing direction, the
tangential acceleration is nonzero.

35 -

Determine the Concept The principle reason is aecrodynamic drag. When moving
through a fluid, such as the atmosphere, the ball's acceleration will depend strongly on its
velocity.

Estimation and Approximation

*36 oo

Picture the Problem During the flight of the ball the acceleration is constant and equal
to 9.81 m/s” directed downward. We can find the flight time from the vertical part of the
motion, and then use the horizontal part of the motion to find the horizontal distance.
We’ll assume that the release point of the ball is 2 m above your feet.
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Make a sketch of the motion.
Include coordinate axes, initial and
final positions, and initial velocity
components:

Obviously, how far you throw the
ball will depend on how fast you
can throw it. A major league
baseball pitcher can throw a fastball
at 90 mi/h or so. Assume that you
can throw a ball at two-thirds that
speed to obtain:

There is no acceleration in the x
direction, so the horizontal motion is
one of constant velocity. Express the
horizontal position of the ball as a
function of time:

Assuming that the release point of
the ball is a distance / above the
ground, express the vertical position

of the ball as a function of time:

(a) For =0 we have:

Substitute in equations (1) and (2) to
obtain:

Eliminate ¢ between these equations
to obtain:

At impact, y=0and x = R:

Solve for R to obtain:

X = Vol (1)

2
y=h+vyt+iat (2)

Vo, =V, cos6, = (26.8m/s)cos 0°
=26.8m/s

and

Vo, =V, 8in6, = (26.8 m/s)sin 0°=0

x =(26.8m/s)t
and
y=2m+1(-9.81m/s* )

PN 4.91m/s> 2
Y (26.8m/s)’
2

0=2m— 491m/s : )
(26.8m/s)

R=|17.1m




(b) Using trigonometry, solve for vy,
and vyy:

Substitute in equations (1) and (2) to
obtain:

Eliminate 7 between these equations
to obtain:

At impact, y = 0 and x = R. Hence:

Solve for R (you can use the
"solver” or "graph” functions of
your calculator) to obtain:

(¢) Solve for vy, and voy:

Substitute in equations (1) and (2) to
obtain:

Eliminate ¢ between these equations
to obtain:

At impact, y=0and x = R:

Solve for R to obtain:

(d) Using trigonometry, solve for
Vox and vgy:

Substitute in equations (1) and (2) to
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Vo, =V, cos 6, = (26.8m/s)cos 45°

=19.0m/s

and

Vo, = Vo sin g, = (26.8 m/s)sin 45°
=19.0m/s

x =(19.0m/s)t
and

y=2m+(19.0m/s) +%(-9.81m/s? )2

4.905m/s*>
y=2m+x—-———X
(19.0m/s)
2
0=2m+R _%IH/SZRZ
(19.0m/s)
or

R*—(73.60m)R—147.2m> =0

R=|75.6m

Vo, =V, =26.8m/s

and

Vo, =0

x =(26.8m/s)t

and
y=14m+1(-9.81m/s* )¢’

V= 14m— 4.905m/s’ 2
(26.8m/s)’
2
0—1dm_ 4.905m/s2 e
(26.8m/s)
R=|453m
Vox =V, =19.0m/ s

x=(19.0m/s)z
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obtain: and
y=14m+(19.0m/s)t +1(-9.81m/s? )

Eliminate ¢ between these equations 4.905m/s* ,
to obtain: y=14m+x—mx
.Om/s
At impact, y=0and x = R: 4.905m/s>
0=14m+R-—— R’
(19.0mysy
Solve for R (you can use the R=1%856m

"solver” or "graph” function of your
calculator) to obtain:

37 e
Picture the Problem We’ll ignore the height of Geoff’s release point above the ground
and assume that he launched the brick at an angle of 45°. Because the velocity of the
brick at the highest point of its flight is equal to the horizontal component of its initial
velocity, we can use constant-acceleration equations to relate this velocity to the brick’s x
and y coordinates at impact. The diagram shows an appropriate coordinate system and the
brick when it is at point P with coordinates (x, y).

P(x, 1)

X

0 R=445m

. i . 5
Usmg a constant acceleratmnI X=X,V l+ % at
equation, express the x coordinate of

. . . T a =0 an =
the brick as a function of time: or, because xo = 0 and 4, =0,

X =Vt
: . 5
Express the y cogrdmate of the brick Y=y, tvyt+tat
as a function of time:
or, because yo =0 and a, = -g,
2
y=vot=28l
Eliminate the parameter 7 to obtain:
y=(tan6, Jv——5-x’
va

Use the brick’s coordinates when it

8 n2
strikes the ground to obtain: 0= (tan 6, )R - R

2
0x

where R is the range of the brick.




Motion in One and Two Dimensions 133

Solve for vy, to obtain: o gR
* 1\ 2tang,

Substitute numerical values and 2
81 44.5
evaluate v, Vo, = \/(9 m/s )( m) =|14.8m/s
2tan45°
Note that, at the brick’s highest point,

v, = 0.
Vectors, Vector Addition, and Coordinate Systems

38
Picture the Problem Let the positive y direction be straight up, the positive x direction

be to the right, and Aand B be the position vectors for the minute and hour hands. The
pictorial representation below shows the orientation of the hands of the clock for parts (a)
through (d).

(@) (b)

y y
X X x
(a) The position vector for the O H
minute hand at12:00 is: Ao = (O.Sm)J
The position vector for the hour 5 2
hand at 12:00 is: Bago =| (025m)j

(b) At 3:30, the minute hand is positioned along the —y axis, while the hour hand is at an
angle of (3.5 h)/12 h x 360° = 105°, measured clockwise from the top.

The position vector for the minute o[ 2

hand is: Asso = (O.Sm)]

Find the x-component of the vector B, =(0.25m)sin105° = 0.241m
representing the hour hand:

Find the y-component of the vector B, = (0.25m)cos105° = —0.0647m
representing the hour hand:

The position vector for the hour 5 a =
B o B, =/ (0.241m)i —(0.0647m)]

(c) At 6:30, the minute hand is positioned along the —y axis, while the hour hand is at an
angle of (6.5 h)/12 h x 360° = 195°, measured clockwise from the top.
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The position vector for the minute
hand is:

Find the x-component of the vector
representing the hour hand:

Find the y-component of the vector
representing the hour hand:

The position vector for the hour
hand is:

~

Aszo =1 — (O.Sm)J

BX

(0.25m)sin195° = —0.0647m

B, =(0.25m)cos195° =—0.241m

~

o0 =| —(0.0647m)i —(0.241m)]

o

(d) At 7:15, the minute hand is positioned along the +x axis, while the hour hand is at an
angle of (7.25 h)/12 h x 360° = 218°, measured clockwise from the top.

The position vector for the minute
hand is:

Find the x-component of the vector
representing the hour hand:

Find the y-component of the vector
representing the hour hand:

The position vector for the hour
hand is:

(e) Find A — B at 12:00:

Find A — B at 3:30:

Find A — B at 6:30:

Find A —é at 7:15:

Ays = (O'Sm)f

B, =(0.25m)sin218° = —0.154m

B, =(0.25m)cos218°=-0.197m

~

B, =| —(0.154m)i —(0.197m)j

A

A-B=(0.5m)j—(0.25m)j

~

=1 (0.25m)]

A

A-B =—(0.5m)j
~[(0.241m)7 - (0.0647m)j]

~ A

—(0.241m)i —(0.435m)j

~

A-B =—(0.5m)]
~[(0.0647m)i - (0.241m)j]

Y

—(0.0647m)i —(0.259m)j

~

A-B=(0.5m)]
_[_(0.152m)f—(0-197m)j]

~

(0.152m)i +(0.697m)j
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*39 -
Picture the Problem The resultant displacement is the vector sum of the individual
displacements.

The two displacements of the bear N /
and its resultant displacement are 4
shown to the right: p
8%\ o
135,
\"'{\\ R
o
E
Using the law of cosines, solve for R = (12 rn)2 n (12 rn)2
the resultant displacement:
—2(12m)(12m)cos135°
and
R=|222m
Using the law of sines, solve for a: sina _ sin135°
I2Zm 222m

- a=22.5° and the angle with the
horizontal is 45° — 22.5° =| 22.5°

40 -
Picture the Problem The resultant displacement is the vector sum of the individual
displacements.

(a) Using the endpoint coordinates ¥ m
for her initial and final positions, J
draw the student’s initial and final
position vectors and construct her
displacement vector.

~. _a—path
~ followed

=

0

Her displacement is 5J2m @ 135°.

|
=)

Find the magnitude of her
displacement and the angle this
displacement makes with the
positive x-axis:

His initial and final positions are the same as in (a), so his displacement is

b
® alsoS\/E@BSO.
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*41 .

Picture the Problem Use the standard rules for vector addition. Remember that
changing the sign of a vector reverses its direction.

(a) (b)

>
|
|
|

=l
+
=)
=)
2
I
=)

=)

(d)

=

1)
I
=

(e)
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Picture the Problem The figure
shows the paths walked by the
Scout. The length of path A is

2.4 km; the length of path B is

2.4 km; and the length of path C is
1.5 km:

(a) Express the distance from the
campsite to the end of path C:

(b) Determine the angle 8 subtended
by the arc at the origin (campsite):

(c) Express the total distance as the
sum of the three parts of his walk:

Substitute the given distances to
find the total:

Express the ratio of the magnitude
of his displacement to the total
distance he walked and substitute to
obtain a numerical value for this
ratio:

43 .

Motion in One and Two Dimensions

2.4km-1.5km=| 0.9km

_arclength  2.4km
wiEns o radius 2.4km
=1lrad =57.3°

His direction from camp

is 1 rad north of east.

dtot = deast + darc + dtoward camp

dii=24km+24km+ 1.5 km
=6.3 km

Magnitude of his displacement  0.9km

137

Total distance walked ~ 6.3km

1
7

Picture the Problem The direction of a vector is determined by its components.

O =tan™ Lm/s =-32.5°
5.5m/s

The vector is in the fourth quadrant and

(b) 1s correct.
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44

Picture the Problem The components of the resultant vector can be obtained from the
components of the vectors being added. The magnitude of the resultant vector can then
be found by using the Pythagorean Theorem.

A table such as the one shown to the

right is useful in organizing the Vector | x-component | y-component
information in this problem. Let D A 6 -3
be the sum of vectors A, B, andC. B -3 4

c 2 5

D

Determine the components of D by Dy=5and Dy =6

adding the components of A, B,
andC.

Use the Pythagorean Theorcim to D= \/Df + Df, _ \/(5)2 + (6)2 — 7381
calculate the magnitude of D : )

and| (d)1is correct.

45 .
Picture the Problem The components of the given vector can be determined using right-
triangle trigonometry.

Use the trigonometric relationships between the magnitude of a vector and its
components to calculate the x- and y-components of each vector.

A 0 Ay A,

(@) 10m 30° 8.66 m 5m
(b) 5m 45° 3.54m 3.54m
(¢) | 7km 60° 3.50 km 6.06 km
(| Skm | 90° 0 5km
(e) | 15km/s | 150° | —13.0 km/s | 7.50 km/s
() | 10m/s | 240° | —=5.00 m/s | —8.66 m/s
()| 8m/s* | 270° 0 —8.00 m/s’

*46 -
Picture the Problem Vectors can be added and subtracted by adding and subtracting
their components.

Ax= (8 m)cos 37°=6.4 m
Ay=(8m)sin37°=4.8 m

~

. A=(64m)i +(4.8m)]

Write A in component form:



(a), (b), (¢) Add (or subtract) x- and

y-components:

(d) Solve for G and add
components to obtain:

47 e
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Y

D =| (0.4m)i +(7.8m)j
E =[ (-3.4m)i - (9.8m)j
F =[ (~17.6m)i +(23.8m)j

G :—%(A+ I_5>+2C)

Y

(1.3m)i —(2.9m)j

Picture the Problem The magnitude of each vector can be found from the Pythagorean
theorem and their directions found using the inverse tangent function.

(@) A=51+3]

(b) B=10i-7]

() C=-2i-3]+4k

/
Z—zf
o y

48 .

2 2
A=A+ 47 =| 583

and, because Ais in the 1% quadrant,

A
Q:tan’lA—y: 31.0°

X

2 2
B=,B*+B’ =122

and, because B is in the 4" quadrant,

B
0 =tan™ B—y =|-35.0°

X

C=,JC?+C2+C? =] 5.39

0=cos_12= 42.1°
C

where @is the polar angle measured from
the positive z-axis and

-2

C
¢ =cos" —* =cos” (—] =|112°
C V29

Picture the Problem The magnitude and direction of a two-dimensional vector can be
found by using the Pythagorean Theorem and the definition of the tangent function.
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(@) A=—4i -7]

2 2
A=A+ 4> =]8.06

and, because A s in the 3™ quadrant,

_ -1 AY_ o
0 =tan A—— 240

X

5 _ b At B 3 >
B=31-2] B—,‘,BX-FBJ/ =13.61
and, because B is in the 4" quadrant,
. B,
f=tan —=| —33.7°
BX
C=A+B=-i1-9] C=,C}+C} =[9.06

and, because C is in the 3" quadrant,

(b) Follow the same steps as in (a).

49 -

C
6 =tan™ Cy =| 264°

A=14.121|;0=|-76.0°
B=|632|;60=]|71.6°
C=13.61|;0=|33.7°

Picture the Problem The components of these vectors are related to the magnitude of
each vector through the Pythagorean Theorem and trigonometric functions. In parts (a)
and (b), calculate the rectangular components of each vector and then express the vector
in rectangular form.

(a) Express V in rectangular form: V= fo + Vyj

Evaluate v, and v vy = (10 m/s) cos 60° =5 m/s
and

v, = (10 m/s) sin 60° = 8.66 m/s

Substitute to obtain:

V=| (5m/s)i +(8.66m/s) |

(b) Express V in rectangular form: A=Ai+A4]
x v

Evaluate 4, and 4,: Ax=(5 m) cos 225°=-3.54 m
and

Ay = (5 m) sin 225°=-3.54 m

~

Substitute to obtain: A= (_ 3.54m)f + (_ 3.54 m)j
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~

(14m)i —(6m)j

(c¢) There is nothing to calculate as
we are given the rectangular
components:

=i
Il

50 -

Picture the Problem While there are infinitely many vectors B that can be constructed
such that 4 = B, the simplest are those which lie along the coordinate axes.

Determine the magnitude of A: A= \/Af + AyZ — \/32 +4% =5

Write three vectors of the same
magnitude as A : Bl =3i, éz =-5i, and B3 =5]

The vectors are shown to the right: y

@
=

*51 oo

Picture the Problem While there are
several walking routes the fly could take to
get from the origin to point C, its
displacement will be the same for all of
them. One possible route is shown in the
figure.

Express the fly’s D=A

+B+

displacement D during its trip from ~ 2 ~
the origin to point C and find its - (3 m)l + (3 m)j + (3 m)k
magnitude: and
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Picture the Problem The diagram shows the locations of the transmitters relative to the

ship and defines the distances separating the transmitters from each other and from the
ship. We can find the distance between the ship and transmitter B using trigonometry.

Relate the distance between A and B
to the distance from the ship to A
and the angle &

D
tan @ = —28
SB

Solve for and evaluate the distance D,, 100km 173K
from the ship to transmitter B: B tand  tan30°

Velocity and Acceleration Vectors

53

Picture the Problem For constant speed N (y)
and direction, the instantaneous velocity is
identical to the average velocity. Take the E (x)
origin to be the location of the stationary

radar and construct a pictorial 7,
representation.

wtt

Express the average velocity: _ AF
V, =—
av At
Determine the position vectors: F= (_ 10 km)]

and

A

F, = (14.1km)i +(—14.1km)]

=i
Il

Find the displacement vector: A -7,

r
(14.1km)i +(~4.1km)]



Substitute for AF and At to find the

average velocity.

54 .
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~

- (14.1km)i +(—4.1km)j
av lh

=| (14.1knvh)i +(-4.1km/h)]

Picture the Problem The average velocity is the change in position divided by the

elapsed time.

(a) The average velocity is:

Find the position vectors and the
displacement vector:

Find the magnitude of the
displacement vector for the interval
betweenf=0and =2 s:

Substitute to determine v,,:

(b) Repeat (a), this time using the
displacement between ¢ = 0 and
t =15 s to obtain:

*55 e

_266m e s

Yoy 2s

and

@ =tan" (j—mj =1 45.0° | measured
m

from the positive x axis.

=——=|3.11m/s |,

6 =tan" (F—m] =| 45.0° | measured

from the positive x axis.

Picture the Problem The magnitude of the velocity vector at the end of the 2 s of

acceleration will give us its speed at that instant. This is a constant-acceleration problem.
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Find the final velocity vector of the
particle:

Find the magnitude of V :

56 -

v

v, f j = onl +aytj
(3.0m/s”)2.05)]
(6.0m/s)j

4.0m/s
(4.0m/s

)i+
)i+

\/40m/s (6.0m/s)’ =7.21m/s

and | (b)is correct.

Picture the Problem Choose a coordinate system in which north coincides with the
positive y direction and east with the positive x direction. Expressing the west and north

velocity vectors is the first step in determining AV and @,

(a) The magnitudes of
Vy and V are 40 m/s and 30 m/s,

respectively. The change in the
magnitude of the particle’s velocity
during this time is:

(b) The change in the direction of
the velocity is from west to north.

(c) The change in velocity is:

Calculate the magnitude and
direction of AV :

(d) Find the average acceleration
during this interval:

The magnitude of this vector is:

Av=v —vy

=| —-10m/s

The change in direction is | 90°

AV =V, -V, = (30m/s)j — (- 40m/s)i
= (40m/s)i +(30m/s)j

|Av| = \/(4Orn/s)2 +(30m/s)” =| 50m/s

and

6. —tan” 205 3600
40m/s
A = AV/AL = (40m/s)f+(30m/s)j
Ss
= (8m/s2)f+(6m/s2)i

=\/(8m/sz)2 +(6m/s2)2 =[10m/s*

and its direction is

2
0= tanl(gmjsz ] =| 36.9° | measured
m/s

from the positive x axis.
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57 -«
Picture the Problem The initial and final positions and velocities of the particle are
given. We can find the average velocity and average acceleration using their definitions

by first calculating the given displacement and velocities using unit vectors I and j

(a) The average velocity is: V., =AF/At
The displacement of the particle AT = (1 OOm)f + (80m)j
during this interval of time is:
Substitute to find the average ~ (1 00 m)f n (80 m)j
velocity: Vo = 3

s

~

=| (33.3m/s)i +(26.7m/s)]

(b) The average acceleration is: a, =AV/At
Find V,, V,, and AV : v, = (28.3m/s)i +(28.3m/s)]
and

Vv, = (19.3m/s)f+(23.0m/s)j
AV = (=9.00m/s)i +(-5.30m/s)j

Using At.= 3 s, find the average i = (_ 300 m/sz)f + (_1.77 m/sz)j
acceleration: a
*58 e

Picture the Problem The acceleration is constant so we can use the constant-acceleration
equations in vector form to find the velocity at # =2 s and the position vector at t =4 s.

(a) The velocity of the particle, as a V=V,+ar
function of time, is given by:
tSubzstitute to find the velocity at vV =(2m/s) i L (-9m /S)j
=2s: R R
l@ms) i+ Gmsh) j(2s)
=| (10m/s)i +(-3m/s) |
(b) Express the position vector as a F=7+V+d ar?

function of time:
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Substitute and simplify: F=@dm)i+(3m)]j
+ [(2 m/s) i+ -9 m/s)j](4 s)
+1 [(4 m/s?)i + (3 m/s?) j](4 s)

=| (44m)i +(-9m)]j

Find the magnitude and direction of r(4s) = \/( 44 m)z N (_ 9 m)z [ 449m

ratt=4s:
and, because T is in the 4™ quadrant,
0=tan”| 2™ | [ “116°
44m
59 [ 1)

Picture the Problem The velocity vector is the time-derivative of the position vector and
the acceleration vector is the time-derivative of the velocity vector.

Differentiate I with respect to time: _dr
Cdt

=| 30i +(40—10t)j

_d [30z|+ (40r - 52)j]

<l

where V has units of m/s if ¢ is in seconds.

Differentiate V with respect to time: 5o ccz’l\; % [3 o + ( 40 -1 Ot) j]

(—IOm/s2 )j

60 e

Picture the Problem We can use the constant-acceleration equations in vector form to
solve the first part of the problem. In the second part, we can eliminate the parameter ¢
from the constant-acceleration equations and express y as a function of x.

(a) Use V =V, +arwithvV, =0

:(6m/sz) i + (4m/s2 )j
to find V :

<
I
~

ar’ with T, —(IOm) i tofind 7 :

r= [(1 Om)+ (3rn/s2 )tz] i+ [(2m/s2 )t 2]]

(b) Obtain the x and y x=10m + (3 m/s2 )tz
components of the path from the

o and
vector equation in (a):

y= (2rn/sz)t2
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Eliminate the parameter ¢ from 2 20
these equations and solve for y y= Ex - ?m
to obtain:

Use this equation to plot the
graph shown to the right. Note

that the path in the xy plane is a . /
straight line. " /
12 /
g 10 /
~ /

o N A O ®

x (m)
61 o0
Picture the Problem The displacements N,y
of the boat are shown in the figure. We ATy

need to determine each of the \
displacements in order to calculate the
average velocity of the boat during the 30- \ -

ATy,
s trip. ar A
E, x
(a) Express the average velocity of _ AT
the boat: Vay = E
Express its total displacement: AT = ATy, + AFW
2 2 o
= %aN(AtN) j+ vatW(— [ )
To calculate the displacement we Vi = W ¢ = Aty =60 m/s
first have to find the speed after the S0
first 20's: AF =Lay (At ] - (60 m/s)Aty, i
= (600m)j — (600m)i
Substitute to find the average - AF (600m)(— i+ j)
velocity: Vy =—=

At 30s
= (20m/s)(— i+ j)
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(b) The average acceleration is
given by:

(¢) The displacement of the boat
from the dock at the end of the 30-s
trip was one of the intermediate
results we obtained in part (a).

*6D  eoe

Picture the Problem Choose a coordinate
system with the origin at Petoskey, the
positive x direction to the east, and the
positive y direction to the north. Let =0 at
9:00 a.m. and @ be the angle between the
velocity vector of Robert’s boat and the
easterly direction. Let "M" and "R"” denote
Mary and Robert, respectively.

Express Mary’s displacement from
Petoskey:

Note that Robert’s initial position
coordinates (x;, ;) are:

Express Robert’s displacement from
Beaver Island:

When Mary and Robert rendezvous,
their coordinates will be the same.
Equating their north and east
coordinates yields:

Eliminate ¢ between the two
equations to obtain:

3 _ﬁ_ f_\_/i
YA At
_ (-60m/s)i -0 _ C2mis)i
30s

AF = (600m)j +(— 600m )i

- [(60oml7+]]

_______ — —F (\)

Petoskey

A

Al = vyt j = (8t)J

where AFM is in miles if 7 is in hours.

(6, 1) = (=13 mi, 22.5 mi)

AF, =[x, +(vgcosO)(t —1)])i

+ [, + (sinO) (¢ =]
=[-13+{6(t—=1)cosO}]i
+[22.5+{6(t—=1)sin6}]]

where the units are as above.
East: —13 + (6t cosd) — (6 cosd) =0

North: 22.5 + (6¢ sin6) — (6 sind) = 8¢

(78 tan@ + 87) cos@ = 104
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This transcendental equation can be
solved by writing it as

A6)= (78 tan@ + 87) cosd — 104

f(theta)

/ \
/ \

and then plotting its graph. The
graph shown to the right was plotted /
using a spreadsheet program and the T
root at 0.258 rad (14.8°) was found theta (ad)

using a calculator’s "trace” function.

o N & o o

o
°

Robert should head 14.8° south

of east.

Use either the north or east equation

t=13.24h=3h 15min
to solve for ¢

Finally, find the distance traveled ™ = vt
due north by Mary: = (8 mi/h) (3.24 h)

= | 25.9mi,duenorth of Petoskey

Remarks: Two alternatives to solving the transcendental equation using a
calculator’s "trace” function are: (a) to search the spreadsheet program used to
generate data for the function (@) = (78 tan@ + 87) cos@ — 104 for values of @ that
satisfy the condition f(8) = 0, or (b) a trial-and-error sequence of substitutions for &
... using the result of each substitution (e.g., a change in sign) to motivate the next
substitution ... until a root is found.

Relative Velocity

63 e

Picture the Problem Choose a coordinate
system in which north is the positive y
direction and east is the positive x
direction. Let @ be the angle between
north and the direction of the plane’s
heading. The velocity of the plane relative
to the ground, V, , is the sum of the g

velocity of the plane relative to the air,
V,, » and the velocity of the air relative to Ty

e
T

Upg

the ground, V, . i.e.,
W E

Vo = Vpa TVag

The pilot must head in such a direction that
the east-west component of V,, is zero in

order to make the plane fly due north.

(a) From the diagram one can see VaG COS 45° = vp, sind
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that:

Solve for and evaluate 8:

(b) Because the plane is headed due
north, add the north components of

Vp, and V, to determine the
plane’s ground speed:

64 o
Picture the Problem Let Vg, represent the

velocity of the swimmer relative to the
bank; Vg, the velocity of the swimmer
relative to the water; and Vy,; the velocity

of the water relative to the shore; i.e.,

<|

s~ Vsw TVws

The current of the river causes the
swimmer to drift downstream.

(a) The triangles shown in the figure
are similar right triangles. Set up a
proportion between their sides and
solve for the speed of the water
relative to the bank:

(b) Use the Pythagorean Theorem to
solve for the swimmer’s speed
relative to the shore:

(c) The swimmer should head in a
direction such that the upstream
component of her velocity is equal
to the speed of the water relative to
the shore:

0 =sin

. _1(56.6km/hj

250km/h

13.1° west of north

V| = (250 km/h) cos 13.1°
+ (80 km/h) sin 45°

= | 300km/h
l— 40 m —»
A

80m
Vws _ 40m
Vow S0m
and

vy =+ (1.6m/s)=| 0.800m/s

_ [ 2
Vsg = A Vsw T Vws

JL6m/s) +(0.8m/s)

1.79m/s

Vs
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Picture the Problem Let the velocity of
the plane relative to the ground be
represented by V,; the velocity of the

plane relative to the air by V,, ,and the
velocity of the air relative to the ground by
V,;- Then

VPG = \_iPA +\7AG (D

Choose a coordinate system with the origin
at point A, the positive x direction to the
east, and the positive y direction to the
north. @is the angle between north and the
direction of the plane’s heading. The pilot
must head so that the east-west component

of V, is zero in order to make the plane fly
due north.

Use the diagram to express the
condition relating the eastward

component of V, and the

westward component of V,,, . This

must be satisfied if the plane is to
stay on its northerly course. [Note:
this is equivalent to equating the x-
components of equation (1).]

Now solve for @ to obtain:

Add the north components of V,,
and V, to find the velocity of the
plane relative to the ground:

Finally, find the time of flight:
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30.0°

0 = sin” 0.8m/s |
1.6m/s

(50 km/h) cos 45° = (240 km/h) sin@

8.47°

0= sin! (50km/h)cos45° |
240km/h

Vpg + VAGSiIl450 = VPACOSS.47O

and
vpg = (240 km/h)cos 8.47°
— (50 km/h)sin 45°
= 202 km/h
distance travelled
flight —
Vpg
_ 520km _[557h
202 km/h
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Picture the Problem Let Vg be the
velocity of the boat relative to the shore;
Vg be the velocity of the boat relative to
the water; and Vy, represent the velocity of
the water relative to the shore.
Independently of whether the boat is going
upstream or downstream:

Ves = Vaw T Vs

Going upstream, the speed of the boat
relative to the shore is reduced by the speed
of the water relative to the shore.

Going downstream, the speed of the boat
relative to the shore is increased by the
same amount.

For the upstream leg of the trip:
For the downstream leg of the trip:

Express the total time for the trip in
terms of the times for its upstream
and downstream legs:

Multiply both sides of the equation

by (Vaw = Vis)(Vew + Vys) (the
product of the- denominators) and
rearrange the terms to obtain:

Solve the quadratic equation for
vpw. (Only the positive root is
physically meaningful.)

67 )
Picture the Problem Let \7pg be the

velocity of the plane relative to the ground;
V,, be the velocity of the air relative to the

ground; and \7pa the velocity of the plane
relative to the air. Then, Ve = Vo T

\7ag. The wind will affect the flight times
differently along these two paths.

B LA
——————— =
o R w—— T S S T S -

—
vys=14km/h
Going upstream:
Vs Ups
— i —
-
Upw

Going downstream:

Upw  Ows
— c—
—
Ugs
VBS = VBW — Vws
VBs = VBw t Vws
ttota] = tupstream + tdownstream
L L
= +
Vew “Vws  Vew T Vws
2 2L 2 _
Vew — Vew — Vs =0
total
Vo = | 5.18km/h
N
- v
ag re
i)
W - — E
Upg
S
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The velocity of the plane, relative to /
the ground, on its eastbound leg is
equal to its velocity on its \/ 1 5 m /s 5 m /S) —14.1m/s

westbound leg. Using the diagram,
find the velocity of the plane
relative to the ground for both
directions:

Express the time for the east-west
roundtrip in terms of the distances
and velocities for the two legs:

troundtrip,EW = teastbound + twestbound

_ radius of the circle

vpg,eastbound

N radius of the circle

Vpg,westbound
3
= w =141s
14.1m/s

Use the distances and velocities for the two legs to express and evaluate the time for
the north-south roundtrip:

radius of the circle N radius of the circle

troundtrip,NS = tnorthbound + tsouthbound:
vpg,northbound vpg,southbound
10°m 10°m
= + =150s
(15m/s)—(S5m/s)  (15m/s)+(5m/s)

Because #,,,,quiprw < rounanipns» YOU should fly your plane across the wind.
68 -
Picture the Problem This is a relative N
velocity problem. The given quantities are Tpg

the direction of the velocity of the plane

relative to the ground and the velocity

(magnitude and direction) of the air relative

to the ground. Asked for is the direction of e T

the velocity of the air relative to the
0

ground. Using V,; =V,, +V,;, drawa

vector addition diagram and solve for the
unknown quantity.

Calculate the heading the pilot must - 30 kts S
take: f=sinn ———=|11.5

: 150 kts
Because this is also the angle of the Az=(011.5°)

plane's heading clockwise from
north, it is also its azimuth or the
required true heading:
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Picture the Problem The position of B
relative to A is the vector from A to B; i.e.,

ag = Tg =T

-

The velocity of B relative to A is
Vi =dlyp / dt

and the acceleration of B relative to A is
A =dVyp / dt

Choose a coordinate system with the origin
at the intersection, the positive x direction
to the east, and the positive y direction to
the north.

(a) Find 1y, I, and T, :

Evaluate T zat t=6s:

(b) Find V,, =dr,, /dt :

Evaluate Vg at t=6s:

(¢) Find 8, =dV,;;/dt

*70 (X1}

~

ry = [40m —%(Zm/s2 )t2 ]j

r, = [(20m/s)t]f
and
FAB =Ty =Ty
=[(- 20m/s)t]f
+ [40m —%(2m/s2 )tz]j

(120m)i +(4m) |

M (68) =

7o =20 = [ 20 ms)}7
+laom-12ms? )2}

= (=20 m/s)i + (=2 m/s>)¢ |

V,5(65)=| (-20ms)i —(12mys)]
a5 :%[(—20 m/s)f+(—2 m/s’)t j]
= (—Zm/sz)j

Note that @, is independent of time.

Picture the Problem Let 4 and 7’ represent the heights from which the ball is dropped
and to which it rebounds, respectively. Let v and V' represent the speeds with which the
ball strikes the racket and rebounds from it. We can use a constant-acceleration equation
to relate the pre- and post-collision speeds of the ball to its drop and rebound heights.
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(a) Uging a constant'-acceleration V2= VOZ +2gh
equation, relate the impact speed of

the ball to the distance it has fallen: or, because vy = 0,

2gh
Relate the rebound speed of the ball vi=v"?—2gh'
to the height to which it rebounds: _
or because v=0,
2gh’
Divide the second of these equations /2 hr
by the first to obtain: g
Substitute for 4" and evaluate the N O 647
ratio of the speeds: 5o — =08 = 0.8v

(b) Call the speed of the racket V. In a reference frame where the racket is
unmoving, the ball initially has speed V, moving foward the racket. After it
"bounces" from the racket, it will have speed 0.8 V, moving away from the racket.

In the reference frame where the v =V+0.8V =18V =45m/s

racket is moving and the ball -

initially unmoving, we need to add ~| 100mi/h

the speed of the racket to the speed This speed is close to that of a tennis pro’s

of the ball in the racket's rest frame. serve. Note that this result tells us that the

Therefore, the ball's speed is: ball is moving significantly faster than the
racket.

From the result in part (b), the ball can never move more than twice as fast

(©)

as the racket.

Circular Motion and Centripetal Acceleration

71 e

Picture the Problem We can use the definition of centripetal acceleration to express a. in
terms of the speed of the tip of the minute hand. We can find the tangential speed of the
tip of the minute hand by using the distance it travels each revolution and the time it takes
to complete each revolution.

Express the acceleration of the tip of V2
the minute hand of the clock as a a.=—
function of the length of the hand R
and the speed of its tip:

Use the distance the minute hand 2R
travels every hour to express its v= T

speed:
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Substitute to obtain:

Substitute numerical values and
evaluate a.:

Express the ratio of a. to g:

72 e

Picture the Problem The diagram shows
the centripetal and tangential accelerations
experienced by the test tube. The tangential
acceleration will be zero when the
centrifuge reaches its maximum speed. The
centripetal acceleration increases as the

tangential speed of the centrifuge increases.

We can use the definition of centripetal
acceleration to express «. in terms of the
speed of the test tube. We can find the
tangential speed of the test tube by using
the distance it travels each revolution and
the time it takes to complete each
revolution. The tangential acceleration can
be found from the change in the tangential
speed as the centrifuge is spinning up.

(a) Express the acceleration of the
centrifuge arm as a function of the
length of its arm and the speed of
the test tube:

Use the distance the test tube travels
every revolution to express its

speed:

Substitute to obtain:

Substitute numerical values and
evaluate a.:

47°R
c = Tz

a

_ 47 (O.Sm) _

a, > 1.52x10"° m/s”
(3600s)

a, 1.52x10°m/s* _

1.55x1077

9.81m/s’

V2
a =—
° R
27R
vV=—-
T
47’R
a. = T2
. 47°(0.15m)

’ 1min ><6Os ?
15000rev min

=13.70x10° m/s>
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(b) Express the tangential 2R

acceleration in terms of the Ve =V T 2R
difference between the final and a, = = =
initial tangential speeds:

Substitute numerical values and 27[(0. 15 m)
evaluate ar: a, = )
Imin 60s
75s)

X
15000rev min

=|3.14m/s*

73 e

Picture the Problem The diagram includes
a pictorial representation of the earth in its
orbit about the sun and a force diagram
showing the force on an object at the
equator that is due to the earth’s rotation,

IER, and the force on the object due to the

orbital motion of the earth about the sun,

©

IEO .Because these are centripetal forces,

we can calculate the accelerations they
require from the speeds and radii associated
with the two circular motions.

Express the radial acceleration due vé
to the rotation of the earth: R
Express the speed of the object on 27R
the equator in terms of the radius of T R
the earth R and the period of the

earth’s rotation 7x:

Substitute for v in the expression 47°R
a =
R TRz

for ag to obtain:

Substitute numerical values and _ 4 (63 70%10° m)

NEES)

=3.37x107% m/s’
=|3.44x107g

evaluate ag:

Note that this effect gives rise to the well-
known latitude correction for g.
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Express the radial acceleration due LA

. . a, =—
to the orbital motion of the earth: °
Express the speed of the object on v o= 2 r
the equator in terms of the earth-sun ° T,

distance r and the period of the
earth’s motion about the sun 7

Substitute for v, in the expression Ar’r
. a =
for a, to obtain: © T 2
Substitute numerical values and evaluate 4 = 4 (1 S5x10" m)

e

=5.95x10" m/s* =| 6.07x107'g
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Picture the Problem We can relate the acceleration of the moon toward the earth to its
orbital speed and distance from the earth. Its orbital speed can be expressed in terms of its
distance from the earth and its orbital period. From tables of astronomical data, we find
that the sidereal period of the moon is 27.3 d and that its mean distance from the earth is
3.84x10° m.

Express the centripetal acceleration V2
of the moon: a, = 7
Express the orbital speed of the 2
moon: V= T
Substitute to obtain: 47
a, =——
T
Substitute numerical values and 47 (3.84 x10°® m)
evaluate a.: a. = 2
24h 3600
(27.3d><>< h Sj

=2.72x10" m/s’
= 2.78x10" g




Motion in One and Two Dimensions 159

a radius of earth
Remarks: Note that —& = —
g distance from earth to moon

due to the earth’s gravity evaluated at the moon’s position). This is Newton’s
famous "falling apple” observation.

(ac is just the acceleration
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Picture the Problem We can find the number of revolutions the ball makes in a given
period of time from its speed and the radius of the circle along which it moves. Because
the ball’s centripetal acceleration is related to its speed, we can use this relationship to
express its speed.

Express the number of revolutions
per minute made by the ball in terms
of the circumference c of the circle
and the distance x the ball travels in
time ¢:

n=" (1)
C

Relate the centripetal acceleration of
the ball to its speed and the radius of a=8=
its circular path:

Solve for the speed of the ball: v=. Rg

Express the distance x traveled in x=vt
time ¢ at speed v:

Substitute to obtain:

x =./Rgt
The distance traveled per revolution c=27R
is the circumference c of the circle:
Substitute in equation (1) to obtain: Rot
,_NRet _ 1 \/Et
2R 27 VR
Substitute numerical values and 2
1 .81 I
evaluate n: n=— M@Os) =|33.4min™"
27 0.8m

Remarks: The ball will oscillate at the end of this string as a simple pendulum with
a period equal to 1/n.

Projectile Motion and Projectile Range
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Picture the Problem Neglecting air resistance, the accelerations of the ball are constant
and the horizontal and vertical motions of the ball are independent of each other. We can
use the horizontal motion to determine the time-of-flight and then use this information to
determine the distance the ball drops. Choose a coordinate system in which the origin is
at the point of release of the ball, downward is the positive y direction, and the horizontal
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direction is the positive x direction.

Express the vertical displacement of
the ball:

Find the time of flight from
Vx = Ax/At

Substitute to find the vertical
displacement in 0.473 s:

77 e

Ay =v, At+5a (At)

27y
or, because v, =0 and a, = g,
py=Lg(arf
At =2
vX
_ (184m)(3600s/h) 04735
(140km/h )(1000 m/km)

Ay =1(0.81m/s*)(0.473s) =[ 1.10m

Picture the Problem In the absence of air resistance, the maximum height achieved by a
projectile depends on the vertical component of its initial velocity.

The vertical component of the
projectile’s initial velocity is:

Use the constant-acceleration
equation:

Setv,=0,a=-g,and Ay =hto
obtain:
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Picture the Problem Choose the
coordinate system shown to the right.
Because, in the absence of air resistance,
the horizontal and vertical speeds are
independent of each other, we can use
constant-acceleration equations to relate
the impact speed of the projectile to its
components.

The horizontal and vertical velocity
components are:

Using a constant-acceleration
equation, relate the vertical

Voy = v, sinf,

2 2
v,=Vv,+2aAy

(v,sin6, )

(0, -40) \1 2,

Vox = V= Vocosf
and
Voy = vosinH

22
v, =V, + 2ayAy

or, because a, = —g and Ay = —h,



component of the velocity to the
vertical displacement of the
projectile:

Express the relationship between the
magnitude of a velocity vector and
its components, substitute for the
components, and simplify to obtain:

Substitute for v:

Setv=1.2 v, h =40 m and solve
for v,
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V2 =(v,sin @)’ +2gh

V=1 +v) = (v, cos0) +v7
= v(f(sin2 0+ cos’ 0)—1— 2gh
=v, +2gh

(1.2v, ) =vi +2gh

v, =| 42.2m/s

Remarks: Note that v is independent of 8. This will be more obvious once

conservation of energy has been studied.
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Picture the Problem Example 3-12 shows that the dart will hit the monkey unless the
dart hits the ground before reaching the monkey’s line of fall. What initial speed does the
dart need in order to just reach the monkey’s line of fall? First, we will calculate the fall
time of the monkey, and then we will calculate the horizontal component of the dart’s

velocity.

Using a constant-acceleration
equation, relate the monkey’s fall
distance to the fall time:

Solve for the time for
the monkey to fall to the ground:

Substitute numerical values and
evaluate ¢:

Let & be the angle the barrel of the
dart gun makes with the horizontal.
Then:

Use the fact that the horizontal
velocity is constant to determine vy:

h=1gt
2h
t=_|=—
g
t= 201;21112):1.513
9.81m/s
0 = tan”| 19 | 11 30
50m

v, _(50m/151s) _ SENT

V. =

®" cos®  cosll.3°
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80 e
Picture the Problem Choose the
coordinate system shown in the figure to
the right. In the absence of air resistance,
the projectile experiences constant
acceleration in both the x and y directions.
We can use the constant-acceleration
equations to express the x and y
coordinates of the projectile along its
trajectory as functions of time. The
elimination of the parameter ¢ will yield an
expression for y as a function of x that we
can evaluate at (R, 0) and (R/2, k). Solving
these equations simultaneously will yield
an expression for 6.

Express the position coordinates
of the projectile along its flight
path in terms of the parameter ¢:

Eliminate the parameter ¢ to
obtain:

Evaluate equation (1) at (R, 0) to
obtain:

Evaluate equation (1) at (R/2, &)
to obtain:

Equate R and /4 and solve the
resulting equation for &

Remarks: Note that this result is independent of v,.
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Picture the Problem In the absence of air
resistance, the motion of the ball is
uniformly accelerated and its horizontal
and vertical motions are independent of
each other. Choose the coordinate system
shown in the figure to the right and use
constant-acceleration equations to relate the
x and y components of the ball’s initial
velocity.

Use the components of v, to express
0in terms of vy, and vy,

y
(R/2, h)
_50 |
: (x, y)
|
|
4 | ,
®0)"
x = (v, cos Q)
and
y=v,sin@) -1 g’
8
=(tan @)y ——2>——x 1
y =(tanf) 2v; cos’ 0 )
R 2v; sin@cos 6
g
b (v,sin @)
2g
f=tan"'4=|76.0°
y,m
P
0 '
0 m X, m
v
0 = tan" 2 (1)

X



Use the Pythagorean relationship
between the velocity and its
components to €xpress vy:

Using a constant-acceleration
equation, express the vertical speed
of the projectile as a function of its
initial upward speed and time into
the flight:

Because v, = 0 halfway through the
flight (at maximum elevation):

Determine vy,:

Substitute in equation (2) and
evaluate vo:

Substitute in equation (1) and
evaluate 4:
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Picture the Problem In the absence of
friction, the acceleration of the ball is
constant and we can use the constant-
acceleration equations to describe its
motion. The figure shows the launch
conditions and an appropriate coordinate
system. The speeds v, v,, and v, are related
through the Pythagorean Theorem.

The squares of the vertical and
horizontal components of the
object’s velocity are:

The relationship between these
variables is:

Substitute and simplify to obtain:

Motion in One and Two Dimensions

Vo :1/v§x+vgy 2)

w=vota,t

oy = (9.81 m/s%)(1.22 ) = 12.0 m/s

y _ﬂ_ 40m
™ At 2.44s

=16.4m/s

v, =+/(16.4m/s) +(12.0m/s)’
=|20.3m/s

0 = tan-| 120MS | 3650
16.4m/s

h+ ©

vj = v, sin’ @ —2gh
and

22 2
v, =V, cos @

2_ .2, .2
Vi=v oty

2

vi=| v —2gh

163

Note that v is independent of ... as was

to be shown.
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Picture the Problem In the absence of air
resistance, the projectile experiences
constant acceleration during its flight and
we can use constant-acceleration equations h{— — — — —
to relate the speeds at half the maximum
height and at the maximum height to the
launch angle & of the projectile.

i

The angle the initial velocity makes Vo,
with the horizontal is related to the tan & = —
initial velocity components. Vo

X

Write the equation Ay=h=0= vgy ~2gh (1)
v}% = véy +2aAy, for Ay = h and
vy = 0:

Write the equation

vi = vé}, +2aAy, for Ay = h/2:

h » h
Ay:E:M/y :voy—2g5 (2)

both sides and express this using the §x + vé y) 3)
components of the velocity. The x

component of the velocity remains where we have used v_=v, .
constant.

We are given v, = (3/4)v,. Square 32
L+ = H (v

(Equations 1, 2, and 3 constitute three equations and four unknowns voy, voy, vy, and 4. To
solve for any of these unknowns, we first need a fourth equation. However, to solve for
the ratio (vo,/vox) of two of the unknowns, the three equations are sufficient. That is

because dividing both sides of each equation by \/02X gives three equations and three

2
unknowns vy/voy, Voy/Vox, and a/ v, .

Solve equation 2 for gh and
. . . 2 2 2 2
substitute in equation 1: Voy = 2(v0y -V, ):> v, =

Substitute for vy2 in equation 3: 1 3)
2 2 2 2
v0x+_v0y - 5 (v0x+v0y)



Divide both sides by véx and solve
for voy/vox to obtain:

Using tan 8= vy,/voy, solve for 6:
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Picture the Problem The horizontal speed
of the crate, in the absence of air resistance,
is constant and equal to the speed of the
cargo plane. Choose a coordinate system in
which the direction the plane is moving is
the positive x direction and downward is
the positive y direction and apply the
constant-acceleration equations to describe
the crate’s displacements at any time
during its flight.

(a) Using a constant-acceleration
equation, relate the vertical
displacement of the crate Ay to the
time of fall Az

Solve for At:

Substitute numerical values and
evaluate At:

(b) The horizontal distance traveled
in49.5 s is:

(c) Because the velocity of the plane
is constant, it will be directly over
the crate when it hits the ground;
1.e., the distance to the aircraft will
be the elevation of the aircraft.

Motion in One and Two Dimensions

2 2

v v,

+l—‘;y _ 24 +—
2v,. 16 Vou

and

Yo _ 7

Vo

X

v
6 =tan"' -2 =tan'\J7 =| 69.3°

12 .
(R, 12)
y, km
Ay =v, At + Lo(Aty
or, because vy, = 0,
Ay =4 g(ar)
Ars P
8
3
ar= [AU2A0M) g5
9.81m/s

R=Ax=v, At
= (900km/h th (49.55)
36005
=| 12.4km
Ay =[12.0km

165
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Picture the Problem In the absence of air
resistance, the accelerations of both Wiley
Coyote and the Roadrunner are constant
and we can use constant-acceleration
equations to express their coordinates at
any time during their leaps across the
gorge. By eliminating the parameter ¢
between these equations, we can obtain an
expression that relates their y coordinates
to their x coordinates and that we can solve
for their launch angles.

(a) Using constant-acceleration
equations, express the x coordinate
of the Roadrunner while it is in
flight across the gorge:

Using constant-acceleration
equations, express the y coordinate
of the Roadrunner while it is in
flight across the gorge:

Eliminate the parameter 7 to obtain:

Letting R represent the
Roadrunner’s range and using the
trigonometric identity

sin2 6= 2siné cos 6, solve for and
evaluate its launch speed:

(b) Letting R represent Wiley’s
range, solve equation (1) for his
launch angle:

Substitute numerical values and
evaluate 6:

-100

X=X, +v t+tat’

or, because xp = 0, a, = 0 and
Vox = Vo COS O,
x=(v,cosf,)t

2
Y=Y, +v0yt+%ayt

or, because yy =0, a, =—g and
Voy = Vo sin 90,

y=(v,sin6,)r —1 gt

2

g 2
2 cos’ 0,
v, cos’ 6,

R 15m)(9.81m/s”
B B (0 O
* " \sin26, sin 30°

=|17.2m/s

y =(tan @, )x -

(1

kg

6, = lsin 5
2 vy

g _ L [(45m)081ms)
’ (17.2m/s)

=|14.4°
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Picture the Problem Because, in the
absence of air resistance, the vertical and
horizontal accelerations of the cannonball
are constant, we can use constant-
acceleration equations to express the ball’s
position and velocity as functions of time
and acceleration. The maximum height of
the ball and its time-of-flight are related to
the components of its launch velocity.

(@) Us-ing a constant—accdgr‘ation V= ng +2a Ay
equation, relate /4 to the initial and

final speeds of the cannonball: or, because v =0 and a, = —g,

0= vgy —2gAy
Find the vertical component of the Voy = vosin@ = (300 m/s)sin 45°
firing speed: =212 m/s
Solve for and evaluate A: V2 2
Yo 12ms) mag
2g 2‘9.81m/s ’
(b) The total flight time is: At=t,+1,, =21,
1Z
=22 - —2(212m/f) =[43.2s
g 9.81m/s
(c) Express the x coordinate of the x =v, At = (Vo cos Q)At
ball as a function of time:
Evaluate x (= R) when Ar =432 s: x =[(300m/s)cos45°](43.25)
=|9.16km
87 e
Picture the Problem Choose a coordinate y,m

system in which the origin is at the base of
the tower and the x- and y-axes are as
shown in the figure to the right. In the
absence of air resistance, the horizontal
speed of the stone will remain constant
during its fall and a constant-acceleration
equation can be used to determine the time
of fall. The final velocity of the stone will S YA A /.IS\/ X, m

be the vector sum of its x and y

components.
v
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(a) Using a constant-acceleration
equation, express the vertical
displacement of the stone (the
height of the tower) as a function of
the fall time:

Solve for and evaluate the time of
fall:

Use the definition of average
velocity to find the velocity with
which the stone was thrown from
the tower:

(b) Find the y component of the
stone’s velocity after 2.21 s:

Express v in terms of its
components:

Substitute numerical values and
evaluate v:

88 oo

Ay =v, At+1a, (At)
or, because vy, =0 and a = —g,

Ay =—1g(At)

At=\/— 28y =J— 2(_24““)=2.21s

g 9.81m/s>
yomy, =X I8m s
At 221s

v, =V, ~ gt
=0-(9.81m/s2)(2.215)
=-21.7m/s

_ 2 2
v=4/v, +V,

v=1/(8.14m/s) +(-21.7m/s)’
=123.2m/s

Picture the Problem In the absence of air resistance, the acceleration of the projectile is
constant and its horizontal and vertical motions are independent of each other. We can
use constant-acceleration equations to express the horizontal and vertical displacements
of the projectile in terms of its time-of-flight.

Using a constant-acceleration
equation, express the horizontal
displacement of the projectile as a
function of time:

Using a constant-acceleration
equation, express the vertical
displacement of the projectile as a
function of time:

Substitute numerical values to
obtain the quadratic equation:

Solve for At:

Ax =v, At+1a (At}
or, because vy, = vocos@and a, =0,

Ax = (v, cos )At

Ay = v, At +%ay(At)2
or, because vy, = vosinfand a, = —g,

Ay = (v, cos O)At — 1 g(At)

~200m = (60m/s )(sin 60°)At
~1(9.81m/s% )(Ar)

At=13.6s



Substitute for A¢ and evaluate the
horizontal distance traveled by the
projectile:
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Picture the Problem In the absence of air
resistance, the acceleration of the
cannonball is constant and its horizontal
and vertical motions are independent of
each other. Choose the origin of the
coordinate system to be at the base of the
cliff and the axes directed as shown and
use constant- acceleration equations to
describe both the horizontal and vertical
displacements of the cannonball.

Express the direction of the velocity
vector when the projectile strikes
the ground:

Express the vertical displacement
using a constant-acceleration
equation:

Set Ax =—Ay (R = —h) to obtain:

Solve for v,:

Find the y component of the
projectile as it hits the ground:

Substitute and evaluate G
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Picture the Problem In the absence of air
resistance, the vertical and horizontal
motions of the projectile experience
constant accelerations and are independent
of each other. Use a coordinate system in
which up is the positive y direction and
horizontal is the positive x direction and
use constant-acceleration equations to
describe the horizontal and vertical
displacements of the projectile as functions
of the time into the flight.
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Ax = (60 m/s)(cos60°)(13.6 s)
=1 408 m
¥
/O///////R\/y *
y
6 =tan"' 2~
vx
Ay = v, At + %ay (At)2
or, because vy, = 0 and a, = —g,
Ay =-tg(ar)
Ax = v, At = g(At)
Ax 1
v, =—=5gAt
UYEREL
v, =V, +alAt =—gAt =-2v,
6=tan' L = tan_l(— 2): —63.4°
V)C
Y, m P
7 N
£l AN
Uy /
i/ N\
\
y/
\
" \
@] }2 X, m
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(a) Use a constant-acceleration
equation to express the horizontal
displacement of the projectile as a
function of time:

Evaluate this expression when
At=6s:

(b) Use a constant-acceleration
equation to express the vertical
displacement of the projectile as a
function of time:

Evaluate this expression when Az =6 s:

Ay = (300m/s)(sin60°)(65)— £ (9.8 1m/s* )(6s)’ = 1.38km
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Picture the Problem In the absence of air
resistance, the acceleration of the projectile
is constant and the horizontal and vertical
motions are independent of each other.
Choose the coordinate system shown in the
figure with the origin at the base of the cliff
and the axes oriented as shown and use
constant-acceleration equations to find the

range of the cannonball.

Using a constant-acceleration
equation, express the horizontal
displacement of the cannonball as a
function of time:

Using a constant-acceleration
equation, express the vertical

displacement of the cannonball as a
function of time:

Solve the quadratic equation for At:

Calculate the range:

Ax =v, At
= (v, cos@)At

Ax = (300m/s)(c0s60°)(6s) = | 900m

Ay = (v, sin @)Ar — L g(Ar)

0]

Ax =v, At+1a (At}
or, because vy, = vocos@and a, =0,

Ax = (v, cos 9)At

Ay =v, At+7a, (At)
or, because y =—40 m, a = —g, and

Voy = V()Sil’l 49,

—40m = (42.2m/s)(sin 30°)Az
—1(9.81m/s%)(Ar)

At=5.73s

R = Ax = (42.2m/5)(c0s30°)(5.73s)

=|209m
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Picture the Problem Choose a coordinate
system in which the origin is at ground
level. Let the positive x direction be to the
right and the positive y direction be
upward. We can apply constant-
acceleration equations to obtain parametric
equations in time that relate the range to
the initial horizontal speed and the height /4
to the initial upward speed. Eliminating the
parameter will leave us with a quadratic
equation in R, the solution to which will
give us the range of the arrow. In (b), we’ll
find the launch speed and angle as viewed
by an observer who is at rest on the ground
and then use these results to find the
arrow’s range when the horse is moving at
12 m/s.

(a) Use constant-acceleration
equations to express the
horizontal and vertical
coordinates of the arrow’s
motion:

Solve the x-component equation
for time:

Eliminate time from the
y-component equation:

Solve for the range to obtain:

Motion in One and Two Dimensions
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R=Ax=x—-x,=v,1
and
— 1 2
y_h+v0yt+7(_g)t
where
Vo, =V,cos@and v, =v,sind

,_R__R
Voo V,c0s6
2
y v va 2g va

and, at (R, 0),

g 2
0=h+(tand)R——=——R
(1an6) 2v; cos” @

2
R="0sin20| 1+ |1+ 28"
2g vy sin” @

Substitute numerical values and evaluate R:

_ (45m/s)
2(0.81m/s?)

2
in20d 1s 1+2(9.81m/2s J2.25m) | _
(45m/s) (sin210°)

81.6m
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(b) Express the speed of the
arrow in the horizontal direction:

Express the vertical speed of the
arrow:

Express the angle of elevation
from the perspective of someone
on the ground:

Express the arrow’s speed
relative to the ground:

Ve =Vaow TV

arrow archer

= (45m/s)cos10°+12m/s

=56.3m/s

v =(45m/s)sin10° =7.81m/s
L = (45m/s)s

0 =tan =
\

X

[ 2
Vo =4/Vi HV;

v, =tan_l(7.81m/s

—— | =7.90°
56.3m/s]

Substitute numerical values and evaluate R:

2
R= (56.8m/s) sin15.8°(1+\/1+

"~ 2(0.81m/5?)

(56.8m/s)’ (sin2 7.90)

= \/(56.3 m/s)2 + (7.81m/s)2
=56.8m/s
20.81m/s’J2.25m) | _ o —

Remarks: An alternative solution for part (b) is to solve for the range in the
reference frame of the archer and then add to it the distance the frame travels,
relative to the earth, during the time of flight.

93 -

Picture the Problem In the absence of air
resistance, the horizontal and vertical
motions are independent of each other.
Choose a coordinate system oriented as
shown in the figure to the right and apply
constant-acceleration equations to find the
time-of-flight and the range of the spud-

plug.

(a) Using a constant-acceleration
equation, express the vertical
displacement of the plug:

Solve for and evaluate the flight
time At:

Y, m

Ay = v, At —1—%ay(At)2

or, because vy, = 0 and a, = —g,
Y V

Ay =—+g(Atf
Af \/_ 20y _ \/_ 2(—1.00n;)
g 9.81m/s

=| 0.452s




(b) Using a constant-acceleration
equation, express the horizontal
displacement of the plug:

Substitute numerical values and
evaluate R:
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Ax=v, At+3a, (At)2
or, because a, = 0 and vo, = vy,

Ax =v,At

Ax = R =(50m/s)(0.452s)=| 22.6m

Picture the Problem An extreme value (i.e., a maximum or a minimum) of a function is
determined by setting the appropriate derivative equal to zero. Whether the extremum is a
maximum or a minimum can be determined by evaluating the second derivative at the

point determined by the first derivative.

Evaluate dR/d 6,:

Set dR/d6y= 0 for extrema and solve
for 6:

Determine whether 45° is a
maximum or a minimum:
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Picture the Problem We can use constant-
acceleration equations to express the x and
y coordinates of a bullet in flight on the
moon as a function of ¢. Eliminating this
parameter will yield an expression for y as
a function of x that we can use to find the
range of the bullet. The necessity that the
centripetal acceleration of an object in orbit
at the surface of a body equal the
acceleration due to gravity at the surface
will allow us to determine the required
muzzle velocity for orbital motion.

(a) Using a constant-acceleration
equation, express the x coordinate of
a bullet in flight on the moon:

dR vy, d . 2v,

d_(90 = ‘izod—go in(26,)]= icos(2t90)
V2

=70 ¢0s(26,)= 0

g

and

6, = %cos_1 0=45°

d’R
de,’

= [_ 4("3 /g)sin 200]6’():45“

6,=45°

<0

.. R 1s a maximum at &, = 45°

Uy

(x, 1)

X=X, +V,,t+ %axtz

or, because xp = 0, a, = 0 and
Vox = Voc0S B,

x = (v, cosf,)t
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Using a constant-acceleration

equation, express the y coordinate of
a bullet in flight on the moon:

Eliminate the parameter 7 to obtain:

When y =0 and x = R:

Substitute numerical values and
evaluate R:

(b) Express the condition that the
centripetal acceleration must satisfy
for an object in orbit at the surface
of the moon:

Solve for and evaluate v:

96 (1 1]

Y=Yyt Jr%ayt2
or, because yy = 0, @, = —Zmoon and
Voy = V()Sil’l 90,

— 1 1
Y= (VO S 90 )t _7gmoont

8 2
=(tan g, Jx ——=moon
y=(tand,) 2v; cos” 6,

2

g 2
0=(tan g, )R ——>2x2 —R
(tan6,) 2v; cos’ 6,
and
2

R=-1 sin 26,
ngOn

_ (900m/s)’
1.67m/s>

=| 485km

sin90° =4.85x10°m

This result is probably not very accurate
because it is about 28% of the moon’s
radius (1740 km). This being the case, we
can no longer assume that the ground is
"flat” because of the curvature of the moon.

g = Zpmoon
V2
~
V=gt =\[1.67m/s% 1.74x10°m)
=|1.70km/s

Picture the Problem We can show that AR/R = —Ag/g by differentiating R with respect
to g and then using a differential approximation.

Differentiate the range equation
with respect to g:

Approximate dR/dg by AR/Ag:

2 2
dar _ i(V—Osin 200J = —V—Ozsin 26,
dg dgl g g
__R
g
AR R



Motion in One and Two Dimensions 175

Separate the variables to obtain: AR Ag

R g
i.e., for small changes in gravity
(g = g £ Ag), the fractional change in R
is linearly opposite to the fractional change
ing.
Remarks: This tells us that as gravity increases, the range will decrease, and vice

versa. This is as it must be because R is inversely proportional to g.

97 (1 1]
Picture the Problem We can show that AR/R = 2Avy/ v, by differentiating R with respect

to v and then using a differential approximation.

Differentiate the range equation dR V2 oy
with respect to vy: — =— —%sin26, |=—"sin 26,
dv, dv,\ g g
LR
Vo
Approximate dR/dvy by AR/Avy: AR ) R
Ay, Vo
Separate the variables to obtain: AR Av,
R Vo

i.e., for small changes in the launch
velocity (v, ® v, = Av,), the fractional

change in R is twice the fractional change
n vy.

Remarks: This tells us that as launch velocity increases, the range will increase
twice as fast, and vice versa.

08  eee
Picture the Problem Choose a coordinate system in which the origin is at the base of the
surface from which the projectile is launched. Let the positive x direction be to the right
and the positive y direction be upward. We can apply constant-acceleration equations to
obtain parametric equations in time that relate the range to the initial horizontal speed and
the height 4 to the initial upward speed. Eliminating the parameter will leave us with a
quadratic equation in R, the solution to which is the result we are required to establish.

Write the constant-acceleration x =v,,t

equations for the horizontal and and )

vertical parts of the projectile’s B . )

motion: y= h+v0yt+7(_ g)t
where

Vo, =Vyc086and v, =v,;siné
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Solve the x-component equation for
time:

Using the x-component equation,
eliminate time from the
y-component equation to obtain:

When the projectile strikes the
ground its coordinates are (R, 0) and
our equation becomes:

Using the plus sign in the quadratic
formula to ensure a physically
meaningful root (one that is
positive), solve for the range to
obtain:

*99 oo

X X

t=—=

Vv, cos 6

g 2
=h+(tanf)x—-—=—x
Y ( ) 2v; cos” @
g 2
O0=h+(tan@)R —
(tan?) vy cos’ @

Picture the Problem We can use trigonometry to relate the maximum height of

the projectile to its range and the sighting angle at maximum elevation and the range
equation to express the range as a function of the launch speed and angle. We can use a
constant-acceleration equation to express the maximum height reached by the projectile
in terms of its launch angle and speed. Combining these relationships will allow us to

conclude thattan¢g = L tan 6.

Referring to the figure, relate the
maximum height of the projectile to
its range and the sighting angle ¢:

Express the range of the rocket and
use the trigonometric identity

sin 26 = 2sin @ cos @ to rewrite the
expression as:

Using a constant-acceleration
equation, relate the maximum height
of a projectile to the vertical
component of its launch speed:

Solve for the maximum height 4:

Substitute for R and / and simplify
to obtain:

tan¢:i

R/2

2 2

R= v—sin(20) =2Y sinfcoso
g g

22

v, =v,, —2gh

or, because v, = 0 and vy, = v¢sin6,
202 _

vy sin® @ =2gh

2
h=""sin?@
2g
2
2;—sin29
tang = —5>—— g =| +tané

2V—sin6?cosl9
g
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Picture the Problem In the absence of air
resistance, the horizontal and vertical
displacements of the projectile are
independent of each other and describable
by constant-acceleration equations. Choose
the origin at the firing location and with the
coordinate axes as shown in the figure and
use constant-acceleration equations to
relate the vertical displacement to vertical
component of the initial velocity and the
horizontal velocity to the horizontal
displacement and the time of flight.

(a) Using a constant-acceleration Ay =v, At +1a ( At)z
equation, express the vertical o S
displacement of the projectile as a or, because a, = —g,
function of its time of flight: Ay =v, At -5 g(Ae)
. 2
Solve for vy,: - Ay + L g(At)
g At
Substitute numerical values and 450 m + 1 (9.8 1m/s? Xzo 5)2
evaluate vy, Vo, = 2 20s
=[121m/s
(b) The horizontal velocity remains Ax 3000 m
constant, so: Voy =V, =—=———=|150m/s
’ At 20s
*101 e

Picture the Problem In the absence of air
resistance, the acceleration of the stone is
constant and the horizontal and vertical
motions are independent of each other.
Choose a coordinate system with the origin
at the throwing location and the axes
oriented as shown in the figure and use
constant- acceleration equations to express
the x and y coordinates of the stone while it
is in flight.

. i . ,
Usmg a constant acceleratloq X=X, + Vot + % at
equation, express the x coordinate of

the stone in flight: or, because xy =0, vo, = vp and a, = 0,

X =V,

Using a constant-acceleratioq Y=Yyt + % aytz
equation, express the y coordinate of
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the stone in flight:

Referring to the diagram, express
the relationship between 6, y and x
at impact:

Substitute for x and y and solve for
the time to impact:

or, because yo =0, vo, =0 and a, = g,
2
y=5gt

tant9=Z
X

2
tané?:&—it

2v,t - 2v,
Solve for ¢ to obtain: 2v
t=—""Ltand
g
Referring to the diagram, express t = [ cosd — y
the relationship between 6, L, y and - " tan
X at impact:
Substitute for y to obtain: gt2
2—=Lcosd
2g
Subs.tltute for ¢ and solve for L to ) vg tan @
obtain: L= ——
gcosd
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Picture the Problem The equation of a particle’s trajectory is derived in the text so we’ll
use it as our starting point in this derivation. We can relate the coordinates of the point of
impact (x, y) to the angle ¢ and use this relationship to eliminate y from the equation for
the cannonball’s trajectory. We can then solve the resulting equation for x and relate the
horizontal component of the point of impact to the cannonball’s range.

The equation of the cannonball’s
trajectory is given in the text:

y(x)=(tan,)x — [L}cz

2v; cos’ 6,
Relate the x and y components of a V(x) = (tan ¢)x
point on the ground to the angle ¢:

Express the condition that the
cannonball hits the ground:

(tan ¢ )x = (tan 6, )x — (L}cz

2 2
2v, cos” 6,

Solve for x to obtain: e 2v; cos’ 6, (tan 6, — tan )

g

Relate the range of the cannonball’s
flight R to the horizontal distance x:

x=Rcos¢



Substitute to obtain:

Solve for R:
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Picture the Problem In the absence of air
resistance, the acceleration of the rock is
constant and the horizontal and vertical
motions are independent of each other.
Choose the coordinate system shown in the
figure with the origin at the base of the
building and the axes oriented as shown
and apply constant-acceleration equations
to relate the horizontal and vertical
displacements of the rock to its time of
flight.

Find the horizontal and vertical
components of vy:

Using a constant-acceleration
equation, express the horizontal
displacement of the projectile:

Using a constant-acceleration
equation, express the vertical
displacement of the projectile:

Solve the x-displacement equation
for At:

Substitute At into the expression for

Ay:

Solve for v, to obtain:

Find At at impact:

Using constant-acceleration
equations, find v, and v, at impact:

Express the velocity at impact in
vector form:
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2v; cos’ 0, (tan 6, — tan @)
g

Rcos¢ =

2v; cos’ 0,(tan 6, — tan §)
gcosg

20

x,m

Vox = Vo co0s53° = 0602V0
Voy = Vo sin53° = 0799V0

Ax =20m = v, At = (0.602v, At

Ay =-20m=v, At —1 g(Ar)
=(0.799v, )At — L g(At)

At = 20—11’1
0.602v,

—20m =(0.799v, At — (4.91 m/s> At )?

v, =|10.8m/s

ar=—2M _308s
(10.8m/s )cos53°

V. =V, =650m/s

and

v, =V, —gAt =-21m/s

(6.50 m/s)i +(-21.6m/s)j

V=
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Picture the Problem The ball experiences constant acceleration, except during its
collision with the wall, so we can use the constant-acceleration equations in the analysis
of its motion. Choose a coordinate system with the origin at the point of release, the
positive x axis to the right, and the positive y axis upward.

Using a constant-acceleration Ay=v, At—1 g( At)2
equation, express the vertical 0y :
displacement of the ball as a

function of A#:

When the ball hits the ground, —-2m= (10 m/s)At

y=—2m —1(9.81m/s? )(ArY
Solve for the time of flight: ! fighe = Af =2.22s

Find the horizontal distance traveled Ax=(10m/s) (2.22s) =222 m

in this time:

The distance from the wall is: Ar—4m=|182m

Hitting Targets and Related Problems
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Picture the Problem In the absence of air

resistance, the acceleration of the pebble is ¥, m
constant. Choose the coordinate system i — e e e e e A
shown in the diagram and use constant- -
acceleration equations to express the # |
coordinates of the pebble in terms of the /s |
time into its flight. We can eliminate the Y |
parameter ¢ between these equations and s |
solve for the launch velocity of the pebble. Y |
We can determine the launch angle from |
the sighting information and, once the |
range is known, the time of flight can be 0 X, m
found using the horizontal component of
the initial velocity.

(x, )

Referring to the diagram, express ¢ 4.85m

. . . -1 . o

in terms of the given distances: 0 = tan =6.91
40 m

Use a constant-acceleration equation X=X, +Vv,t+ia £

to express the horizontal position of

the pebble as a function of time: or, because xo = 0, vo, = vocos o, and

a, =0,

x = (v, cosO)t (1)
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Use a constant-acc.eleratio.n.equation Y=Yyttt 1 ayt2
to express the vertical position of .

the or, because yy = 0, vo, = vosiné, and
pebble as a function of time: ay=-8,

y=v,sin@) -1 g’

Eliminate the parameter ¢ to obtain: g
y= (tan H)x - —2v2 ey x?
0
At impact, y=0and x = R: g 5
0 = (tanH)R —mR
0
Solve for v, to obtain: Rg
* \sin20
Substitute numerical values and 2
evaluate vy: Vo = \/(40 m)(9138;n/s ) =|40.6m/s
sinl3.
Substitute in equation (1) to relate R R= (Vo cos 9) 2 ight
to fhignt:
Solve for and evaluate the time of , 40m 0.992
. . . = = . S
flight: Ml (40,6 m/s)c0s6.91°
*106 e
Picture the Problem The acceleration of Y, m

the ball is constant (zero horizontally and —
g vertically) and the vertical and horizontal
components are independent of each other.
Choose the coordinate system shown in the
figure and assume that v and t are
unchanged by throwing the ball slightly
downward.

Express the horizontal displacement Ac=v. Af+1a ( At)z
of the ball as a function of time: 0 N

or, because a, =0,

Ax =v, At
Solve for the time of flight if the Ax 184m
ball were thrown horizontally: At =— =——=0491s

Vo, 37.5m/s
Using a constant-acceleration Ay =v, At +1a ( A t)2
y 27y

equation, express the distance the
ball would drop (vertical
displacement) if it were thrown Ay=—1 g(At)2

or, because vy, = 0 and a, = —g,
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horizontally:

Substitute numerical values and
evaluate Ay:

The ball must drop an additional
0.62 m before it gets to home plate.

Calculate the initial downward
speed the ball must have to drop
0.62 min 0.491 s:

Find the angle with horizontal:

Ay =—1(9.81m/s>0.491s) =—1.18m

y=(2.5-1.18)m
=1.32 m above ground

p =2002m _oem
Y 0.491s
6 =tan” Do tan™ —126m/s
v, 37.5m/s
=| —1.92°

Remarks: One can readily show that /v’ + vj = 37.5 m/s to within 1%; so the
assumption that v and t are unchanged by throwing the ball downward at an angle

of 1.93° is justified.
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Picture the Problem The acceleration of
the puck is constant (zero horizontally and
—g vertically) and the vertical and
horizontal components are independent of
each other. Choose a coordinate system
with the origin at the point of contact with
the puck and the coordinate axes as shown
in the figure and use constant-acceleration
equations to relate the variables vy,, the
time # to reach the wall, vy, vy, and 6.

Using a constant-acceleration
equation for the motion in the y
direction, express vy, as a function
of the puck’s displacement Ay:

Solve for and evaluate vy,

Find ¢ from the initial velocity in the

y direction:

Use the definition of average
velocity to find vy,:

¥y, m

280 ——————— =

B
wall
6 }
0 : Ll x,m
2

2 2
v, =V, +2a,Ay

or, because v,= 0 and a, = g,

0 :vgy —2gAy
v, =288y = /2(2.80m)9.81m/s? )
=|7.41m/s
p= Yo o TS Goses
g 9.8Im/s
Vo, =V, _Ax_120m 15.9m/s
t  0.756s
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Substitute numerical values and _ [2 2

evaluate v,: Yo = Vo £V,
= J(15.9m/s) +(7.41m/s)
=|17.5m/s

Sublstitutee numerical values and 0w tan” Vo, . 7 41m/s

t N = - = -

cvatuate Vor 15.9m/s
=|25.0°
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Picture the Problem In the absence of air
resistance, the acceleration of Carlos and
his bike is constant and we can use
constant-acceleration equations to express
his x and y coordinates as functions of
time. Eliminating the parameter ¢ between
these equations will yield y as a function of
X ... an equation we can use to decide
whether he can jump the creek bed as well
as to find the minimum speed required to
make the jump.

(a) Use a constant-acceleration X=X+ Vot +4 at’
equation to express Carlos’ ’
horizontal position as a function
of time:

or, because xy = 0, vo, = vocos6, and
a,=0,
x = (v, cos @)t

i . . B L2
Use a constant ac’celergtlon eq}lgtlon Y=Yty ttiat
to express Carlos’ vertical position b 0 10, and
as a function of time: Of, because yo = U, Voy = voSING, an
ay= -8

y=(v,sin@) —1Lgt’

Eliminate the parameter ¢ to obtain:
b y=(tan )y ——=——x’
2v, cos” @
Substitute y = 0 and x = R to obtain:
g 0=(tanO)R-— 5 R
2v,cos” @
Solve for and evaluate R: 2 2
rR=2 sin(26,) = (lll—m/sz sin 20°
g 9.81m/s
=4.30m

He should apply the brakes!
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(b) Solve the equation we used in
the previous step for Vo min:

Letting R = 7 m, evaluate v min:
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Picture the Problem In the absence of air
resistance, the bullet experiences constant
acceleration along its parabolic trajectory.
Choose a coordinate system with the origin
at the end of the barrel and the coordinate
axes oriented as shown in the figure and
use constant-acceleration equations to
express the x and y coordinates of the
bullet as functions of time along its flight
path.

Use a constant-acceleration equation
to express the bullet’s horizontal
position as a function of time:

Use a constant-acceleration
equation to express the bullet’s
vertical position as a function of
time:

Eliminate the parameter ¢ to obtain:

Let y =0 when x = R to obtain:

Solve for the angle above
the horizontal that the rifle must be
fired to hit the target:

Substitute numerical values and
evaluate 6:

V = —Rg
min = sin(26), )

B \/(7m)(9.81m/sz)

V., . =
0, K
e sin20°
=|14.2m/s = 51.0km/h
¥, m
~
= |
~
- |
o
5, 7 |
; @y
|
O P?\'] e
0 100

X=Xy + vt +Lar’

or, because xy = 0, vy, = vocos6, and
a,=0,

x=(v,cos@)

Y=Y+t + %ayt2

or, because yy = 0, vy, = vosiné, and
a,=-g,

y=v,sin@) -1 g’

8 2
=(tan @) ——5——
y=(tano) 2v§cos26?x
0=(tanO)R ——25 R’
(tan6) 2v; cos’ 6
0, =1sin™ R_igj
Vo
5 _ 1gin | (100m)0.81m/s’)
e (250m/s)’
=0.450°

Note: A second value for 6,, 89.6° is
physically unreasonable.



Referring to the diagram, relate , to
@, and solve for and evaluate 4:

General Problems
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and

h = (100m)tan(0.450°) =
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0.785m

Picture the Problem The sum and difference of two vectors can be found from the
components of the two vectors. The magnitude and direction of a vector can be found

from its components.

(a) The table to the right
summarizes the components of A
and B .

(b) The table to the right shows the
components of S .

Determine the magnitude and

direction of S from its components:

(c) The table to the right shows the
components of D:

Determine the magnitude and

direction of D from its components:

Vector | x component | y component
(m) (m)
A 0.707 0.707
B 0.866 -0.500
Vector | x component | y component
(m) (m)
A 0.707 0.707
B 0.866 —-0.500
S 1.57 0.207

S=S:+8> =

1.59m

and, because S is in the 1%

S
O =tan”' (—yj =
S)C

7.50°

Vector | x component | y component
(m) (m)
A 0.707 0.707
B 0.866 —-0.500
D —-0.159 1.21

D=\D+D? =

1.22m

and, because Dis in the 2™ quadrant,
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-1 Dy [}
0,=tan"| — |=|97.5
DX
*111 .

Picture the Problem A vector quantity can be resolved into its components relative to
any coordinate system. In this example, the axes are orthogonal and the components of
the vector can be found using trigonometric functions.

The x and y components of § are

related to g through the sine and
cosine functions:

g, = gsin30° = | 4.91m/s>

and

g, = gcos30° = | 8.50m/s”

112 -

Picture the Problem The figure shows
two arbitrary, co-planar vectors that (as y
drawn) do not satisfy the condition that 4/B
= A,/B,.

=1

Because 4, = Acos@, and |

cosd
4 — 1 for the ty f |

B_=Bcosb,,

cosd,
condition to be satisfied.

.. AIB = Ay/By if and only if AandB are parallel (64 = 6B) or on opposite sides of the
x-axis (64 =—6R).
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Picture the Problem We can plot the path of the particle by substituting values for ¢ and
evaluating 7, and r, coordinates of I'. The velocity vector is the time derivative of the
position vector.

(a) We can assign values to 7 in the
parametric equations x = (5 m/s)t

25

and y = (10 m/s)¢ to obtain ordered » //
pairs (x, y) that lie on the path of R /
the particle. The path is shown in £ . A

the figure to the right: /

(b) Evaluate dr/dt : g=4r_4d [Sm/s )i + (IOm/StJ]

= (Sm/s)i +(10m/s)j




Use its components to find the
magnitude of V :
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Picture the Problem In the absence of air
resistance, the hammer experiences
constant acceleration as it falls. Choose a
coordinate system with the origin and
coordinate axes as shown in the figure and
use constant-acceleration equations to
describe the x and y coordinates of the
hammer along its trajectory. We’ll use the
equation describing the vertical motion to
find the time of flight of the hammer and
the equation describing the horizontal
motion to determine its range.

Using a constant-acceleration
equation, express the x coordinate of
the hammer as a function of time:

Using a constant-acceleration
equation, express the y coordinate of
the hammer as a function of time:

Substitute numerical values to
obtain:

Substitute the conditions that exist
when the hammer hits the ground:

Solve for the time of fall to obtain:
Use the x-coordinate equation to
find

the horizontal distance traveled by
the hammer in 1.24 s:

115 e
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11.2m/s

x=x,+v,t+Lar’

or, because xy = 0, vo, = vocos &, and
a,=0,
x = (v, cos6,

_ 1 2
y=y,+ voyt + ant
or, because yy = h, vo, = vosind, and
ay = -8,

y=h+(v,sin@)t—1Lgt

2
y =10m + (4 m/s)(sin 30°)¢
—1(0.81m/s?)?

0 =10m — (4 m/s)sin 30°¢
~1(0.81m/s?) 2
t=124s

R = (4m/s)(cos30°)(1.24s)
=14.29m

Picture the Problem We’ll model Zacchini’s flight as though there is no air resistance
and, hence, the acceleration is constant. Then we can use constant- acceleration
equations to express the x and y coordinates of Zacchini’s motion as functions of time.
Eliminating the parameter ¢ between these equations will leave us with an equation we
can solve foré Because the maximum height along a parabolic trajectory occurs
(assuming equal launch and landing elevations) occurs at half range, we can use this
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same expression for y as a function of x to find 4.

¥, m

Use a constant-acceleration equation
to express Zacchini’s horizontal
position as a function of time:

Use a constant-acceleration
equation to express Zacchini’s
vertical position as a function of
time:

Eliminate the parameter ¢ to obtain:

Use Zacchini’s coordinates when he
lands in a safety net to obtain:

Solve for his launch angle &:

Substitute numerical values and
evaluate 6:

Use the fact that his maximum
height was attained when he was
halfway through his flight to obtain:

Substitute numerical values and evaluate A4:

h=(tan31.39)221 _

9.81m/s>

_ 1 2
X=X, +Vv,,t +3axt

or, because xo = 0, vo, = vocosd, and
a,=0,
x = (v, cos9)t

Y=Y+ t+1at’
or, because yy = 0, v, = vpsin, and
a,=-g,

y=(v,sin@)t -1 gt

2

g 2
=(tanf)x - —=>——x
y=(tan0) 2v; cos” 6
g 2
0=(tan0)R -
(tan0) v cos’ 0
0 =1sin™ R—(ZC’,J
Yo

31.3°

(24.2m/s)

2
h= (tan 0)5——2 & > (ﬁj
2 2vycos O\ 2

2 2(24.2m/s) cos®31.3°

2
(53“1} ~[8.06m
2
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Picture the Problem Because the acceleration is constant; we can use the constant-
acceleration equations in vector form and the definitions of average velocity and average
(instantaneous) acceleration to solve this problem.

(a) The average velocity is given by: i - A_F _ r,—T
YA N
=B m/s)i +(-2.5m/s)]

The average velocity can also be

L V4V,
Vv
expressed as: av >

and
v, =2V, —V,

Substitute numerical values to = B 2
obtain: V, =| (Im/s)i +(1m/s)]
(b) The acceleration of the particle ~ AV V,—V,

is given by: a= A7 = Ar

= 2m/s))i +(=3.5m/s?)]

(c) The velocity of the particle as a function of time is:

V(t) =V, +ar =| [(1m/s)+Qm/s>)]i +[(1m/s)+(=3.5m/s?)t]

I

ar’

-

(d) Express the position vector as a r(t) =

: : V4
function of time:

o=

Substitute numerical values and evaluate F(l‘):

F(6) =| [(4m)+ (Im/s) +(1m/s*)]E +[(3m)+(Im/s)e + (- 1.75 m/s* 1]
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Picture the Problem In the absence of air resistance, the steel ball will experience
constant acceleration. Choose a coordinate system with its origin at the initial position of
the ball, the x direction to the right, and the y direction downward. In this coordinate
system y, = 0 and a = g. Letting (x, ) be a point on the path of the ball, we can use
constant-acceleration equations to express both x and y as functions of time and, using the
geometry of the staircase, find an expression for the time of flight of the ball. Knowing its
time of flight, we can find its range and identify the step it strikes first.

to the horizontal, is:

The angle of the steps, with respect 0.18
0=tan"!| = | =31.0°
0.3m
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. 5 . 5
Usmg a constant acceleratloq X=X, +vt+1 at
equation, express the x coordinate of

the steel ball in its flight: or, because xp = 0 and @, = 0,

X =V
Usmg a constant—acceleratlog Y=Yy, + vOyt + % aytz
equation, express the y coordinate of b ~0 — 0. and q. =
the steel ball in its flight: Of, Decatiie yo =L Yo, T, N 4y T &5
y=78t
The equation of the dashed line in % gt
the figure is: —=tanf=_>—
' x 2v,
Solve for the flight time: 2
s t="Ytang
4
Find the x coordinate of the landing y 2v02
position: = =—>tanf
tand g
Substitute the angle determined in 2(3m/s)
the first step: x=(—)2tan31°=1.10m
9.81m/s
Find the first step with x > 1.10 m: The first step with x > 1.10 m
is the 4th step.
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Picture the Problem Ignoring the
influence of air resistance, the acceleration
of the ball is constant once it has left your
hand and we can use constant-acceleration
equations to express the x and y
coordinates of the ball. Elimination of the
parameter ¢ will yield an equation from
which we can determine vy. We can then
use the y equation to express the time of
flight of the ball and the x equation to

express its range in terms of x, vo, @ and the o R
time of flight.
Use a constant-acceleration equation X=X, + vyt +1a £

X X

to express the ball’s horizontal

position as a function of time: or, because xp = 0, vo, = vocos6, and

a, =0,
X= (vo cos H)t (1)
Use a constant-acceleration Y=Yyt % a, £

equation to express the ball’s
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vertical position as a function of or, because Yy = X, v, = v¢siné, and
tirne: a,=—4g,
y=x,+(v,sin @) —1 gt* 2)

Eliminate the parameter ¢ to obtain:

g 2
=x,+(tanf)x ——=——x
y =3 +{nf) 2v; cos” 0
For the throw while standing on _ _ g 2
level ground we have: 0= (tan 9) 0 2v2 cos’ 0 %o
and
2 2
=20 §in26 =Y sin 2(45°)= o
g g g
Solve for vy: ax,

At impact equation (2) becomes: 0=x, +( gx, sin e)tﬂight —1 gtéight

Solve for the time of flight:

Lhight = fﬁ(sinﬁJr\/sin2 9+2)
g

Substitute in equation (1) to express R= ( X, Cos 9) ;o
the range of the ball when thrown 0 flight

from an elevation x; at an angle & ( /—)
with the horizontal: ( 8%, 08 ‘9)1/ g sin@+~sin” 0+ 2
=X, cosé’(sin&’—i-\/sin2 0+ 2)

Substitute 8= 0°, 30°, and 45°: x(()O) =|1.41x,

x(30°)=| 1.73x,

and

x(45°) =] 1.62x,
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Picture the Problem Choose a coordinate system with its origin at the point where the
motorcycle becomes airborne and with the positive x direction to the right and the
positive y direction upward. With this choice of coordinate system we can relate the x and
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y coordinates of the motorcycle (which we’re treating as a particle) using Equation 3-21.

(a) The path of the motorcycle is
given by:

For the jump to be successful,
h <y(x). Solving for vy, we find:

(b) Use the values given to obtain:

(c) In order for our expression for
Vmin to be real valued; i.e., to predict
values for vy, that are physically
meaningful, x tand— A > 0.
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Picture the Problem Let the origin be at
the position of the boat when it was
engulfed by the fog. Take the x and y
directions to be east and north,

respectively. LetVy,, be the velocity of
the boat relative to the water, V4 be the

velocity of the boat relative to the shore,
and V,be the velocity of the water with
respect to the shore. Then

<l

Bs = Vew T Vws-

@ is the angle of V¢ with respect to the x
(cast) direction.

(a) Find the position vector for the
boatat¢ =3 h:

Find the coordinates of the boat at
t=3h:

Simplify the expressions involving

2
2v, cos’ HJ

X 8
Vo> /
" cos@\ 2(xtan @ - h)

Vimin > | 26.0m/s or 58.0 mph

y(x) = (tan@)x —LL x

Jo Max < x tan@

The interpretation is that the bike "falls
away" from traveling on a straight-line
path due to the free-fall acceleration
downwards. No matter what the initial
speed of the bike, it must fall a little bit
before reaching the other side of the pit.

Harbor

Moot = {(32 km)(cosl35°)t}f

A

+{(32km)sin135°)t — 4 km}]

={(-22.6km)}i
+{(22.6km)s — 4km}]
r. =[(10km/h)cos135° + vy cos 6](3h)
and

r, =[(10km/h)sin135° + vy sin 0](3h)

3vys cos@ = —1.41 km/h



ry and r, and equate these simplified
expressions to the x and y
components of the position vector of
the boat:

Divide the second of these equations
by the first to obtain:

Because the boat has drifted south,
use &= 241.4° to obtain:

(b) Letting ¢ be the angle between
east and the proper heading for the
boat, express the components of the
velocity of the boat with respect to
the shore:

For the boat to travel northwest:

Substitute the velocity components,
square both sides of the equation,
and simplify the expression to obtain
the equations:

Solve for ¢

Because the current pushes south,
the boat must head more northerly
than 135°:

(c) Find vgs:

To find the time to travel 32 km,
divide the distance by the boat’s
actual speed:

Motion in One and Two Dimensions

and
3vys sind = —2.586 km/h

—2.586km
tan @ =
—1.41km
or
0 = tan-'| Z2280Kkm | _ &1 o 01241 40
—1.41km
_1.41km/h

Vs 3

v =
WS cos®  cos(241.4°)
=1 0.982km/h at @ = 241.4°

vpsx = (10 km/h) cos¢
+(0.982 km/h) cos(241.3°)

ves, = (10 km/h) sing
+(0.982 knv/h) sin(241.3°)

VBSx = _VBS,y

sing + cosg=0.133,

sin’g+ cos’@+ 2 sing cosg=0.0177,
and

1 +sin(2¢) = 0.0177

¢=129.6° or 140.4°

Using 129.6°, the correct heading
is| 39.6° west of north |.

Vpsy = —60.84 km/h
and

Ve = Vpy /€08135° =9.68 km/h

BS

t = (32 km)/(9.68 km/h)
=|3.31h =3h 18min

193
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Picture the Problem In the absence of air resistance, the acceleration of the projectile is
constant and the equation of a projectile for equal initial and final elevations, which was
derived from the constant-acceleration equations, is applicable. We can use the equation
giving the range of a projectile for equal initial and final elevations to evaluate the ranges
of launches that exceed or fall short of 45° by the same amount.

Express the range of the projectile vé ]
as a function of its initial speed and R =—"sin26),
angle of launch: g
Let G=45°+ & 2
R= v—°sin(90° + 29)
g
V2
=~ cos(+20)

g

Because cos(—6) = cos(+6) (the R(45°+60) = R(45°—0)

cosine function is an even function):

122 o
Picture the Problem In the absence of air y
resistance, the acceleration of both balls is
that due to gravity and the horizontal and
vertical motions are independent of each
other. Choose a coordinate system with
the origin at the base of the cliff and the
coordinate axes oriented as shown and use
constant-acceleration equations to relate
the x and y components of the ball’s speed.

Independently of whether a ball is V=
thrown upward at the angle « or g
downward at S, the vertical motion =
is described by:

The horizontal component of the Ve= Vox
motion is given by:

Find v at impact from its v = \/Vz 4% = \/Vér 12 2gh
components: Y ’




