Chapter 5

Applications of Newton’s Laws

Conceptual Problems

1 .
Determine the Concept Because the
objects are speeding up (accelerating),
there must be a net force acting on them.
The forces acting on an object are the
normal force exerted by the floor of the
truck, the weight of the object, and the
friction force; also exerted by the floor of
the truck.

Of these forces, the only one that acts in
the direction of the acceleration (chosen
to be to the right in the free-body
diagram) is the friction force.

*2 °

Determine the Concept The forces acting
on an object are the normal force exerted
by the floor of the truck, the weight of the
object, and the friction force; also exerted
by the floor of the truck. Of these forces,
the only one that acts in the direction of the
acceleration (chosen to be to the right in
the free-body diagram) is the friction force.
Apply Newton’s 2™ law to the object to
determine how the critical acceleration
depends on its weight.

Taking the positive x direction to be
to the right, apply XF, = ma, and
solve for a,:

The force of friction between the
object and the floor of the truck

must be the force that causes the

object to accelerate.

S = msw = psmg = ma,
and

a

x = Mg

Because a, is independent of m and
w, the critical accelerations are the

same.
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3 o
Determine the Concept The forces acting
on the block are the normal force F

exerted by the incline, the weight of the
block m( exerted by the earth, and the

static friction force 1?s exerted by an

external agent. We can use the definition of
14 and the conditions for equilibrium to
determine the relationship between g4 and
o

Apply z F_=ma_to the block:

Apply sz =ma,inthey

direction:

Divide equation (1) by equation (2)
to obtain:

Substitute for f; (< 1Fy):

*4 .
Determine the Concept The block is in

equilibrium under the influence of |En , mg,

and f; ie.,

F +mg+f =0

We can apply Newton’s 2™ law in the x
direction to determine the relationship
between f; and mg.

Apply ZFX = 0 to the block:

Solve for f:

N\

fs—mgsind =0

F,-

mgcos@ =0

n

(d)is correct.

(1

@

‘l’m§

fs —mgsing =0
fs =mgsin@
and| (d)1is correct.
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5 oo
Picture the Problem The forces acting on
the car as it rounds a curve of radius R at
maximum speed are shown on the free-body n
diagram to the right. The centripetal force is
the static friction force exerted by the i g
roadway on the tires. We can apply O—p» —x
Newton’s 2™ law to the car to derive an
expression for its maximum speed and then

compare the speeds under the two friction  / m§
conditions described.

Apply Z F = ma to the car: ZF S Viax

From the y equation we have: F.=mg
Express f;max in terms of F, in the x Viax = A 18R
equation and solve for vy,y: or
Viax = Constant ./
Express v for s, =1 41, ,
max 1O A =2 A V.. = constant % =.707v, . ~71%v,_.

and | (b)is correct.

*6 (L]
Picture the Problem The normal reaction ,T
force F,, provides the centripetal force and A }F
the force of static friction, s F,, keeps the $
cycle from sliding down the wall. We can F
n
apply Newton’s 2™ law and the definition — —X
of f; max to derive an expression for V.
¥ mig
= = 2
Apply Z F = ma to the motorcycle: Z FoFp —m¥
X n R

and
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Z F,=f -mg=0
For the minimum speed: Js = fomax = tsF
Substitute for f;, eliminate F, Rg
between the force equations, and Vmin = 75
solve for vy,:
Assume that R = 6 m and 4= 0.8 (6m)(9.81m/sz)
and solve for vy, Vinin = 0.8

=| 8.58m/s=30.9km/h

7 oo

Determine the Concept As the spring is extended, the force exerted by the spring on the
block increases. Once that force is greater than the maximum value of the force of static
friction on the block, the block will begin to move. However, as it accelerates, it will
shorten the length of the spring, decreasing the force that the spring exerts on the block.
As this happens, the force of kinetic friction can then slow the block to a stop, which starts
the cycle over again. One interesting application of this to the real world is the bowing of
a violin string: The string under tension acts like the spring, while the bow acts as the
block, so as the bow is dragged across the string, the string periodically sticks and frees
itself from the bow.

8 .
True. The velocity of an object moving in a circle is continually changing independently
of whether the object’s speed is changing. The change in the velocity vector and the
acceleration vector and the net force acting on the object all point toward the center of
circle. This center-pointing force is called a centripetal force.

9 .

Determine the Concept A particle traveling in a vertical circle experiences a downward
gravitational force plus an additional force that constrains it to move along a circular path.
Because the net force acting on the particle will vary with location along its trajectory,
neither (), (¢), nor (d) can be correct. Because the velocity of a particle moving along a

circular path is continually changing, (@) cannot be correct. | (e)is correct.

*10 -

Determine the Concept We can analyze these demonstrations by drawing force diagrams
for each situation. In both diagrams, h denotes "hand”, g denotes "gravitational”, m
denotes "magnetic”, and n denotes "normal”.
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(a) Demonstration 1: Demonstration 2:

TF]’

Magnet

ViV,
y

Magnet

-]

i

=T

m

Iron
Vi

(b) Because the magnet doesn’t lift the iron in the first demonstration, the force exerted on
the iron must be less than its (the iron’s) weight. This is still true when the two are falling,
but the motion of the iron is not restrained by the table, and the motion of the magnet is
not restrained by the hand. Looking at the second diagram, the net force pulling the
magnet down is greater than its weight, implying that its acceleration is greater than g.
The opposite is true for the iron: the magnetic force acts upwards, slowing it down, so its
acceleration will be less than g. Because of this, the magnet will catch up to the iron piece
as they fall.

*11 (1 1]

Picture the Problem The free-body Fo -
diagrams show the forces acting on the two . Tg\
objects some time after block 2 is dropped. d

Note that, while'I:1 # fz, T, =T>.

— -
mg mg

The only force pulling block 2 to the left is the horizontal component of the tension.
Because this force is smaller than the magnitude of the tension, the acceleration of block
1, which is identical to block 2, to the right (77 = T,) will always be greater than the
acceleration of block 2 to the left.

Because the initial distance from block 1 to the pulley is the same as the initial
distance of block 2 to the wall, block 1 will hit the pulley before block 2 hits
the wall.

12 -
True. The terminal speed of an object is given by v, = (mg / b)l/ " where b depends on the

shape and area of the falling object as well as upon the properties of the medium in which
the object is falling.

13 -
Determine the Concept The terminal speed of a sky diver is given by v, = (mg/ b)l/ "

where b depends on the shape and area of the falling object as well as upon the properties
of the medium in which the object is falling. The sky diver’s orientation as she falls
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determines the surface area she presents to the air molecules that must be pushed aside.

(d)is correct.

14 e
Determine the Concept In your frame of
reference (the accelerating reference frame
of the car), the direction of the force must
point toward the center of the circular path
along which you are traveling; that is, in
the direction of the centripetal force that
keeps you moving in a circle. The friction
between you and the seat you are sitting on
supplies this force. The reason you seem
to be "pushed" to the outside of the curve is
that your body’s inertia "wants" , in
accordance with Newton’s law of inertia,
to keep it moving in a straight line—that is,
tangent to the curve.

*15 .

Determine the Concept The centripetal force that keeps the moon in its orbit around the
earth is provided by the gravitational force the earth exerts on the moon. As described by
Newton’s 3 law, this force is equal in magnitude to the force the moon exerts on the

earth. | (d)is correct.

16 -

Determine the Concept The only forces acting on the block are its weight and the force
the surface exerts on it. Because the loop-the-loop surface is frictionless, the force it exerts
on the block must be perpendicular to its surface.

Point A: the weight is downward Free-body diagram 3
and the normal force is to the right.

Point B: the weight is downward, Free-body diagram 4
the normal force is upward, and the

normal force is greater than the

weight so that their difference is the

centripetal force.

Point C: the weight is downward and Free-body diagram 5
the normal force is to the left.

Point D: both the weight and the Free-body diagram 2
normal forces are downward.
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17 e
Picture the Problem Assume that the drag force on an object is given by the Newtonian

formula £, =4 CA pvz, where 4 is the projected surface area, v is the object’s speed, p

is the density of air, and C a dimensionless coefficient.

Express the net force acting on the F,.,=mg—F,=ma
falling object:
Substitute for Fp under terminal mg —1CA PV% -0

speed conditions and solve for the

. or
terminal speed:

o 2mg
! CAp

Thus, the terminal velocity depends on the
ratio of the mass of the object to its surface
area.

For a rock, which has a relatively small surface area compared to its mass, the terminal
speed will be relatively high; for a lightweight, spread-out object like a feather, the
opposite is true.

Another issue is that the higher the terminal velocity is, the longer it takes for a falling
object to reach terminal velocity. From this, the feather will reach its terminal velocity
quickly, and fall at an almost constant speed very soon after being dropped; a rock, if not
dropped from a great height, will have almost the same acceleration as if it were in free-
fall for the duration of its fall, and thus be continually speeding up as it falls.

An interesting point is that the average drag force acting on the rock will be larger than
that acting on the feather precisely because the rock’s average speed is larger than the
feather's, as the drag force increases as v. This is another reminder that force is not the
same thing as acceleration.

Estimation and Approximation

*18 -

Picture the Problem The free-body

diagram shows the forces on the Tercel as it

slows from 60 to 55 mph. We can use

Newton’s 2™ law to calculate the average N
force from the rate at which the car’s speed Frolling
decreases and the rolling force from its < —a—()— —X
definition. The drag force can be inferred
from the average and rolling friction forces
and the drag coefficient from the defining N
equation for the drag force. Y mg

» —'=
.

=

/5 &l'ag

(a) Apply Z F_=ma_ to the car to relate F Av

av av
the average force acting on it to its average At
velocity:
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Substitute numerical values and evaluate F,,:

52‘%1.609“& 361(?0 x 101?0“‘
F, =(1020kg) L > _[58IN
3.92s
(b) Using its definition, express and f. oling = Hroliing F, = HioitingME
evaluate the force of rolling friction: (0 02) (1 020k )(9 S 1m/ 2)
=10. g)\9. S
=| 200N
Assuming that only two forces are F, = deg + meng
acting on the car in the direction of
. . . . . and
its motion, express their relationship F -F _F
and solve for and evaluate the drag drag = “av "~ rolling
force: — 581N —-200N =[ 381N
¢) Convert 57.5 mi/h to m/s: i i
© 57.5M _ 57,501, 1.609km
h h mi
1h 10°m
X X
3600s  km
=25.7m/s
Using the definition of the drag 5 2 deg
force and its calculated value from Fiy=3CpAv = C= Yy
(b) and the average speed of the car pAV
during this 5 mph interval, solve for
C:
Substitute numerical values and 3 2(3 81 N)
evaluate C- (1.21kg/m’)(1.91m?)(25.7 m/s)
=10.499
19 -

Picture the Problem We can use the dimensions of force and velocity to determine the
dimensions of the constant b and the dimensions of p, 7, and v to show that, for n =2,
Newton’s expression is consistent dimensionally with our result from part (). In parts (d)
and (e), we can apply Newton’s 2™ law under terminal velocity conditions to find the
terminal velocity of the sky diver near the surface of the earth and at a height of 8 km.

(a) Solve the drag force equation for b= F,
bwithn=1: %
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Substitute the dimensions of F and ML

v and simplify to obtain: [b] _T ’ _ M
L T
T

and the units of b are | kg/s

(b) Solve the drag force equation for b= Fy

b with n = 2: v

Substitute the dimensions of F and ML

v and simplify to obtain: [b] __T ? _ M
L

(c) Express the dimensions of . - M »( L :
Newton’s expression: [F]= [7 PRy ]_ 2 () T
ML
= F
From part (b) we have: MY LY
[F,]=[pv*]= (f)(;)
ML
= F
(d) Letting the downward direction mg—+ /07z7f2v,2 =0
be the positive y direction, apply
sz = ma, to the sky diver:
Solve for and evaluate v;: 2mg 2(56 kg)(g.g 1m/s> )
Vv, = =
"ozt \zll2kgm®)03m)
=1 56.9m/s
(e) Evaluate v, at a height of 8 km: 2(56 kg)(9.8 1 m/sz)
Vv, =
*\#(0.514kg/m’ )(0.3m)

=1 86.9m/s
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20 oo

Picture the Problem From Newton’s 2™ law, the equation describing the motion of
falling raindrops and large hailstones is mg — Fy = ma where F, =1 prr r*v? = by’ is the

drag force. Under terminal speed conditions (a = 0), the drag force is equal to the weight

of the falling object. Take the radius of a raindrop 7, to be 0.5 mm and the radius of a

golf-ball sized hailstone r, to be 2 cm.

Using b = %72’,0 r*, evaluate b, and by:

Express the mass of a sphere in
terms of its volume and density:

Using p; = 10° kg/m’ and p, = 920
kg/m’, evaluate n, and my,:

Express the relationship between v,
and the weight of a falling object
under terminal speed conditions and
solve for v:

Use numerical values to evaluate v,
and vy,

b =% 7r(1 2kg/m’ XO.S x107 m)2
=4.71x107" kg/m

and

b, = %71’(1 2kg/m’ XZ x107 m)2
=7.54x10"* kg/m

_ 47(0.5x10° m ) (10° kg/m® )

. 3
=524x107" kg
and
_4x(2x10 m)'(920kg/m*)
b 3
=3.08x107 kg
bv; =mg=v, = %

L _ [(5:24x107 ke )0.81m/s?)
o 4.71x107" kg/m

=|3.30m/s

and

L _ |3.08x107kg)0.81m/s’)
o 7.54x10"* kg/m

=| 20.0m/s
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Friction

*21
Picture the Problem The block is in

equilibrium under the influence of IEn ,

mg, and f; ie.,

F,+mg+f =0

We can apply Newton’s 2™ law to
determine the relationship between f, 6,
and mg.

Using its definition, express the L, = A )

coefficient of kinetic friction: F
Apply Z:F)c = ma, to the block: fx — mgsin@ = ma, = 0 because a, =0
Solve for fi: fx = mgsin@
Apply sz = ma, to the block: F, —mgcos@ = ma, = 0 because a, =0
Solve for F: F,=mgcosf
Substitute in equation (1) to obtain: _ mgsinf _

. = =tan @
mg cos @

and | (b)1s correct.

22
Picture the Problem The block is in y
equilibrium under the influence of lfn , L 7
— n
mg, F,, and f; ie, R
= G+ F f = K Fapp
F.+mg+F, +f=0 < o >
We can apply Newton’s 2" law to
determine f. v
Apply ZFx = ma, to the block: Fapp — fx = ma, = 0 because a, = 0
Solve for f: Je=Fapp=20N

and
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*23 o

Picture the Problem Whether the friction
force is that due to static friction or kinetic
friction depends on whether the applied
tension is greater than the maximum static
friction force. We can apply the definition
of the maximum static friction to decide
whether f; m.x or T is greater.

Calculate the maximum static
friction force:

(a) Because f;max > T
(b) Because T > f; max:

24
Picture the Problem The block is in
equilibrium under the influence of the
forces T, fk, and mg; i.e.,

T+f +mg=0
We can apply Newton’s 2" Jaw to
determine the relationship between 7 and

Jx

Apply ZFX = ma, to the block:

Solve for f:

(e)is correct.

1
AE

7 Fapp

< L » —x
\ AT

Somax = UsFn = pw = (0.8)(20N) =16 N

f=fi=7=[15.0

N

f=fi=w=(0.6)20N) =| 12.0N

T cos@— fi = ma, = 0 because a, = 0

fx = T cosd and

(b) s correct.
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Picture the Problem Whether the friction
force is that due to static friction or kinetic
friction depends on whether the applied
tension is greater than the maximum static
friction force.

Calculate the maximum static

friction force:

Because f; max > Fapp, the box does
not move and :

26 -

Picture the Problem Because the box is
moving with constant velocity, its
acceleration is zero and it is in equilibrium

under the influence of E Ifn, W, and

app?
f:ie.,
FoptF,tw+f =0
We can apply Newton’s 2" law to
determine the relationship between fand

mg.

The definition of g4 is:

Apply sz = ma, to the box:
Solve for F:
Apply ZFX = ma, to the box:

Solve for f:

Substitute to obtain L.

Applications of Newton’s Laws 271

Somax = Ml = 5w
= (0.6)(100 kg)(9.81 m/s%)

=589 N
Fu=fs=| 500N
g
I
A —>
n
}: Fapp
< | » —x
Yw
Hy :%

F,—w=ma,= 0 because a,=0
F,=w=600N
2F, = Fopp —f= ma, = 0 because a, = 0

Fup=fi =250 N

14 = (250 N)/(600 N) = | 0.417
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27 -

Picture the Problem Assume that the car
is traveling to the right and let the positive
x direction also be to the right. We can use
Newton’s 2™ law of motion and the
definition of z4 to determine the maximum
acceleration of the car. Once we know the
car’s maximum acceleration, we can use a
constant-acceleration equation to determine

the least stopping distance.

(a) ApplyZFx = ma, to the car:

ApplyZFy = ma, to the car and

solve for F:

Substitute (2) in (1) and solve for

ax, max-

(b) Using a constant-acceleration
equation, relate the stopping
distance of the car to its initial
velocity and its acceleration and
solve for its displacement:

Substitute numerical values and
evaluate Ax:

*28 e

Picture the Problem The free-body
diagram shows the forces acting on the
drive wheels, the ones we’re assuming
support half the weight of the car. We can
use the definition of acceleration and apply
Newton’s 2™ law to the horizontal and
vertical components of the forces to
determine the minimum coefficient of
friction between the road and the tires.

1
A —
n
Js
Sy
Y
_fs,max = _,uan = may (1)
F,-w=ma,=0
or, because a, = 0,
F.=mg (2)

= ug= (0.6)(9.81m/s%)
= | —5.89m/s’

ax,max

2 2

v =v, +2alAx

or, because v=0,
2

Yo

2a

Ax =

—(30mys)’

Ax = s1=| 76.4m
2‘—5.89m/s )

Y 2mg

(a) | Because u, > u, , f will be greater if the wheels do not slip.




(b) Apply ZF; = ma, to the car:
ApplyZFy = ma, to the car and

solve for F:

Find the acceleration of the car:

Solve equation (1) for z:

Substitute numerical values and
evaluate a,:

29 o
Picture the Problem The block is in
equilibrium under the influence of the

forces shown on the free-body diagram.

We can use Newton’s 2" law and the
definition of z4 to solve for f; and F,.

(a) Apply sz = ma, to the block

and solve for f;:

Solve for and evaluate f;:

(b) Use the definition of x4 to
express Fy:

Substitute numerical values and
evaluate F:

Applications of Newton’s Laws
fs = 1Fo = may €]

n

—Llmo =
F,—3mg=ma,
Because a, = 0,

F -—img=0=F =1img

n

P\ (90km/h)(1000 m/km)

YA 12s
=2.08m/s’
ma, 2a,
ﬂs = 1 =
2 mg g
2
4= 2!2.08m/s2 !: 0.424
9.81m/s
}!
|
J\E
F, 100 N
-« —x
‘Fm_é

Jfo—mg=ma,
or, because a, = 0,

fo—mg=0

f.=mg= (5kg)(9.81m/sz)

=| 49.1N
Fn — ]ps,max
H
F =N My
0.4

273
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30 -

Picture the Problem The free-body
diagram shows the forces acting on the
book. The normal force is the net force the
student exerts in squeezing the book. Let
the horizontal direction be the x direction
and upward the y direction. Note that the
normal force is the same on either side of
the book because it is not accelerating in
the horizontal direction. The book could be
accelerating downward. We can apply
Newton’s 2™ law to relate the minimum
force required to hold the book in place to
its mass and to the coefficients of static
friction. In part (b), we can proceed
similarly to relate the acceleration of the
book to the coefficients of kinetic friction.

(a) Apply Z F = ma to the book:

Noting that | . = F, ., solve the

,min 2,min ?

y equation for F,:

(b) Apply D_F, =ma, with the

book accelerating downward, to
obtain:

Solve for a to obtain:

Substitute numerical values and
evaluate a:

M EFEI. min

zFx = FZ,min - E,min = O
and

ZFy = /us,ll-?l:min + /us,2F2',min - mg = 0

F_ = mg (10.2 kg)(9.81m/sz)
M+ U, 0.32+0.16

=| 208N

sz = M '+, F —mg =ma

a= M+ s F-g
m
_ 024099 (195n) -9 81 m/s?
10.2kg

=| —4.27 m/s*
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Picture the Problem A free-body diagram
showing the forces acting on the car is
shown to the right. The friction force that
the ground exerts on the tires is the force f;
shown acting up the incline. We can use
the definition of the coefficient of static
friction and Newton’s 2™ law to relate the
angle of the incline to the forces acting on
the car.

Apply Z F = ma to the car:

Solve equation (1) for f; and
equation (2) for Fy:

Use the definition of y to relate f;
and F:

Solve for and evaluate 8 :

*32 o

Picture the Problem The free-body
diagrams for the two methods are shown to
the right. Method 1 results in the box being
pushed into the floor, increasing the normal
force and the static friction force. Method 2
partially lifts the box,, reducing the normal
force and the static friction force. We can
apply Newton’s 2™ law to obtain
expressions that relate the maximum static

friction force to the applied force F.
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Y F. =f —mgsing=0 (1)
and
ZFyan—mgCOSG:O ?2)

f. =mgsin@

and
F =mgcosf

“ :LZ mg sin @ — tand
F. mgcosé

n

0 =tan"' y, =tan"'(0.08)=| 4.57°

A J m:g,;

Method 1 Method 2

(a) | Method 2 is preferable as it reduces F, and, therefore, f,

(b) Apply Z:FY = ma, to the box:

Fcos@—f;=Fcosf— uF, =0
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Method 1: Apply ZFy =ma, to
the block and solve for F,:

Relate f max to F:

Method 2: Apply ZFy =ma, to

the forces in the y direction and
solve for F,:

Relate f; max to F:

Express the condition that must be
satisfied to move the box by either
method:

Method 1: Substitute (1) in (3) and
solve for F:

Method 2: Substitute (2) in (3) and
solve for F:

Evaluate (4) and (5) with 8= 30°:

Evaluate (4) and (5) with = 0°:

33 -

Picture the Problem Draw a free-body
diagram for each object. In the absence of
friction, the 3-kg box will move to the
right, and the 2-kg box will move down.

The friction force is indicated by f without
subscript; it is ]?S for (a) and fk for (b). For

values of 4 less than the value found in
part (a) required for equilibrium, the system
will accelerate and the fall time for a given
distance can be found using a constant-
acceleration equation.

(a) Apply Z:FY = ma, to the 3-kg

F,—mg—Fsind =0
- Fy=mg+ Fsin@

Jomax = MsFn = p(mg + Fsin6) (1)

F,—mg+ Fsinf =0
.. Fy=mg — Fsinf

J[s,max = ,uan = ,us(mg - FSinH) (2)

Jsmax = Fcos@ 3)

F‘l — ﬂsmg -
cos@ — u sinf

“

Hmg

F,= -
cos@+ u, sind

)

F(30°)
F,(30°)

520N

252N

294N

F(0°)= F,(0°) = pmg =

. T
«—}—> =

Vm3§

T—-fs= 0because a, =0 (1)
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box:
ApplyZFy = ma, to the 3-kg box, F,3—m3g =0 because a, =0
solve for F, 3, and substitute in (1): and
T msg =0 2

Apply ZF; = ma, to the 2-kg box: myg — T=0Dbecause @, =0 (3)
Solve (2) and (3) simultaneously m,
and solve for z: Hs = . 0.667

3
(b) The time of fall is related to the Ax =v,At + %a(At)z

acceleration, which is constant: or, because vy =0,

Av=La(Ar)
Solve for At: 2Ax
At=,|—
a
Apply ZFX =ma, to each box: T— i myg = msa )
and
myg — T =ma ®)
Add equations (4) and (5) and solve q= (mz — Hy m;, )g
for a: m, +mj
 [2kg-03(3kg)](0.81m/5?)
2kg+3kg
=|2.16m/s’
Substitute to obtain:
ubstitute to obtain Ao 2(2m)2 1369
2.16m/s

34 e

Picture the Problem The application of Newton’s 2™ law to the block will allow us to
express the coefficient of kinetic friction in terms of the acceleration of the block. We can
then use a constant-acceleration equation to determine the block’s acceleration. The
pictorial representation summarizes what we know about the motion.
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to=0 f1=9
— |
[ |
XO_O xl—d
Vo=V vi=0

A free-body diagram showing the

|
forces acting on the block is shown F,
to the right. 7
——
mg

Apply ZF; = ma, to the block: —fx = —tuF = ma (1
ApplyZFy = ma, to the block and F,—mg =0 because a, =0
solve for F: and

Fo=mg (2)
Substitute (2) in (1) and solve for z: M= —alg 3)
Using a constant-acceleration v, =v; +2aAx
equation, relate the initial and final or, because v, = 0, vy = v, and Ax = d,
velocities of the block to its 0=1v>+2ad

displacement and acceleration:

Solve for a to obtain: -V

Substitute for a in equation (3) to V2

obtain: Hy = 2gd
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Picture the Problem We can find the
speed of the system when it has moved a
given distance by using a constant-
acceleration equation. Under the influence
of the forces shown in the free-body
diagrams, the blocks will have a common
acceleration a. The application of
Newton’s 2™ law to each block, followed
by the elimination of the tension 7 and the
use of the definition of £, will allow us to
determine the acceleration of the system.

Using a constant-acceleration
equation, relate the speed of the
system to its acceleration and
displacement; solve for its speed:

Apply F,., = ma to the block whose

mass 1s m;:

Using fi = t4F,, substitute (2) in (1)
to obtain:

Apply ZFX = ma, to the block

whose mass 1s m,:

Add the last two equations to
eliminate 7 and solve for a to obtain:

Substitute and evaluate a:
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et

myg

v =V +2aAx

and, because vo =0,

v =+/2aAx

YF.=T-fx—mgsin30° = ma (1)
and
XF, = Fy1 —migcos30° =0 (2)

T — . myg cos30° — m;gsin30° = ma

myg — T =mpa

(m, — 1, m, c0s30° —m, sin30°)g

a=
m1+m2

=1.16m/s’

v=4/2(1.16m/s?)(0.3m) =0.835m/s

and | (a)1is correct.
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Picture the Problem Under the influence

of the forces shown in the free-body
diagrams, the blocks are in static

equilibrium. While f; can be either up or
down the incline, the free-body diagram
shows the situation in which motion is
impending up the incline. The application

of Newton’s 2™ law to each block,

followed by the elimination of the tension
T and the use of the definition of £, will
allow us to determine the range of values

for m,.

(@) Apply z F = ma to the block

whose mass 1s m;:

Using fsmax = tisFn, substitute (2) in
(1) to obtain:

Apply Z:FY = ma, to the block

whose mass 1s m;:

Add equations (3) and (4) to
eliminate 7 and solve for m,:

Evaluate (5) denoting the value of
m, with the plus sign as m, + and the
value of m, with the minus sign as
m,,. to determine the range of values
of m, for which the system is in
static equilibrium:

(b) With m;, =1 kg, the impending
motion is down the incline and the
static friction force is up the incline.
Apply ZFx = ma, to the block

whose mass is m;:

Apply ZFx = ma, to the block

whose mass is m,:

SF,=T% fimax—mgsin30° =0
and
XF, =F,;, —mgcos30°=0

T+ pmgcos30°

. apo
—m,gsin30° =m,a

mg-T=0

m, =m, (% 11, c0s30° +sin 30°)

= (4kg)[+(0.4)cos30° +5in 30°]

m,, =3.39kg and m,_=0.614kg

-] 0.614kg <m, <3.39kg

T+ fo — mygsin30° =0

mg—-T=0

et

myg

(1)

2

3)

(4)

)

(6)

(7



Applications of Newton’s Laws 281

Add equations (6) and (7) and solve fs = (msin30° —my)g

for and evaluate f;: = [(4 kg)sin30° — 1 kg](9.81 m/s%)
=|9.81N
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Picture the Problem Under the influence

of the forces shown in the free-body AT

diagrams, the blocks will have a common
acceleration a. The application of
Newton’s 2™ law to each block, followed
by the elimination of the tension 7 and the
use of the definition of f, will allow us to
determine the acceleration of the system.

Finally, we can substitute for the tension in \ L
either of the motion equations to determine = |
the acceleration of the masses. ms =
Apply Y F = m to the block SF.=T—fi—mgsin30° =ma (1)
. ] and

whose mass 1s m;:

XF, = F, —mgcos30°=0 )
Using f = i4F,, substitute (2) in (1) T — p,m,gcos30° 3
to obtain: —-m,gsin30° =ma
Apply Z:FY = ma, to the block myg — T =moa 4)
whose mass 1s m,:
Add equations (3) and (4) to g (m2 — p,m, cos30° —m, sin 30°)g
eliminate 7 and solve for and m, +m,
evaluate a to obtain: —[236 m/s2
Substitute for a in equation (3) to T =|373N

obtain:
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Picture the Problem The truck will stop in
the shortest possible distance when its
acceleration is a maximum. The maximum
acceleration is, in turn, determined by the
maximum value of the static friction force.
The free-body diagram shows the forces e
acting on the box as the truck brakes to a —()— — —x
stop. Assume that the truck is moving in
the positive x direction and apply Newton’s
2" Jaw and the definition of fs.max to find

» —'<
'

=3

the shortest stopping distance. Y m_é
Using a constant-acceleration V= vé +2alAx
equation, relate the truck’s stopping or, since v =0,
distance to its acceleration and >
initial velocity; solve for the Ax, . = —
stopping distance: 20
Apply Ifnet = mé to the blOCk: EFx = *]fs,max = MAmax (1)
and
XF,=F,-mg=0 2)
Using the definition of f; yax, Solve Somax = MsF
equations (1) and (2) simultaneously and
for a: Amax = —1g = — (0.3)(9.81 m/s?)
=-2.943 m/s’
Substitute numerical values and evaluate Axp;,:
—(80km/h )’ (1000 km/m ) (1h/3600s )’
Axmir\ = ) =[19.16m
2(-2.943m/s?)
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Picture the Problem We can find the
coefficient of friction by applying
Newton’s 2" law and determining the
acceleration from the given values of
displacement and initial velocity. We can

find the displacement and speed of the
block by using constant-acceleration fo
equations. During its motion up the incline,
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the sum of the kinetic friction force and a
component of the object’s weight will
combine to bring the object to rest. When it
is moving down the incline, the difference
between the weight component and the
friction force will be the net force.

(a) Draw a free-body diagram for
the block as it travels up the incline:

Apply z F = ma to the block: YF,.=—fx— mgsin37°= ma (1)

and

XF,=F,—mgcos37°=0 )
Substitute fx = 4 F, and F, from (2) _—gsin37°—a
. He=—"""—"-
in (1) and solve for z4: gcos37 3)

— —tan37°———
gcos37°
Using a constant-acceleration vl2 = VO2 +2alAx
equation, reljdte'th-e. final Ve¥ocity of ~ V12 _ vg ~ (5'2 m /s)2 _ (1 Am /s)2
the block to its initial velocity, a= Ar 2(8 rn)
acceleration, and displacement; 5
) =-10.6m/s

solve for and evaluate a:
Substitute for a in (3) to obtain: o —-10.6m/s’

M, =—tan37°— 5

(9.81m/s? kos37°
=] 0.599
(b) Use the same constant- vl =v; +2aAx where v, = 0
acceleration equation used above but and
VV.Ith v = 0, solve for the o ) _Vg ) —(l4m/s)2 )
displacement of the block as it slides Ax = = S =19.25m
2 2(-10.6m/s%)

to a stop:
(c) When the block slides down the XF, = fx—mgsin37°= ma
incline, f is in the positive x and

direction: XF, = Fy—mgcos37° =0



284 Chapter 5
Solve for a as in part (a): a= g(,uk c0s37°—sin 37°) =-1.21m/s’

Use the same constant-acceleration v =V, +2alx
equation used in part (b) to obtain:

Set vo = 0 and solve for v: v =A~/2aAx
Substitute numerical values and V= \/ 2(_ 1.21m/s> )(— 9.25 m)
evaluate v:
=| 4.73m/s
40 e

Picture the Problem We can find the stopping distances by applying Newton’s 2™ law
to the automobile and then using a constant-acceleration equation. The friction force the
road exerts on the tires and the component of the car’s weight along the incline combine
to provide the net force that stops the car. The pictorial representation summarizes what
we know about the motion of the car. We can use Newton’s 2™ law to determine the
acceleration of the car and a constant-acceleration equation to obtain its stopping

distance.
vy =30 m/s
(a) Using a constant-acceleration V12 = vé +2a,, Ax .
equation, relate the final speed of or, because v, =0,
the car to its initial speed, 2
acceleration, and displacement; Ax i = > 0
a

solve for its displacement:



Draw the free-body diagram for the
car going up the incline:

Apply z F = ma to the car:

Substitute f; max = t:Fy and F;, from
(2) in (1) and solve for a:

Substitute to obtain:

(b) Draw the free-body diagram for
the car going down the incline:

Apply Z F = ma to the car:

Proceed as in (a) to obtain @p,x:

Again, proceed as in (@) to obtain the

displacement of the car:

41 e

Applications of Newton’s Laws 285

2F, = —fymax — mgsinl5® = ma (D)
and
XF, = F,—mgcos15° =0 2)

Ao = —g(yS cos15°+ sin15°)
=-9.17m/s’

—(30my/sy

Ax . = =1 49.1m
2‘—9.17m/s )

EF, = fomax — mgsinl5°® = ma
and
XF, = F,—mgcosl5°=0

a,. =g(u cos15°—sin15°)=4.09m/s’

max

=|110m

Picture the Problem The friction force the road exerts on the tires provides the net force
that accelerates the car. The pictorial representation summarizes what we know about the

motion of the car. We can use Newton’s 2™ law to determine the acceleration of the car

and a constant-acceleration equation to calculate how long it takes it to reach 100 km/h.
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© O — Q) © .
I I
0 1
.’0—0 flzi
_Yn=0 Xlz?
v=0 v; =100 km/p

(a) Because 40% of the car’s weight
is on its two drive wheels and the
accelerating friction forces act just
on these wheels, the free-body
diagram shows just the forces acting
on the drive wheels.

Apply Z F = ma to the car:

Use the definition of f; .x in
equation (1) and eliminate £,

between the two equations to obtain:

(b) Using a constant-acceleration
equation, relate the initial and final
velocities of the car to its
acceleration and the elapsed time;
solve for the time:

XF = fomax = Ma (D
and
XF,=F,—04mg=0 (2)

a=04ug=040.7).81m/s)
2.75m/s>

v, =V, +alt

or, because vy = 0 and Ar =1,

Substitute numerical values and evaluate #;:

1
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Picture the Problem To hold the box in
place, the acceleration of the cart and box

must be great enough so that the stat

friction force acting on the box will equal

the weight of the box. We can use
Newton’s 2™ law to determine the
minimum acceleration required.

f=
a
(100km/h )(1h/36005 )(1000 m/km)
t = / =(10.1s
2.75m/s

ic
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(a) Apply z F = ma to the box: F, = Fy = mami (D

and

ZFy :fs,max -mg=0 (2)
Substitute 4, for f; max in equation uE —mg=0, w(ma_ )—mg=0
(2), eliminate F, between the two and

ti d solve for and evaluat 9.81m/s’
equations and solve for and evaluate a _8 _ m/s” _ 16.4m/s
Amin- /’ls 06
(b) Solve equation (2) for f;max, and Sfomax = Mg
substitute numerical values and = (2 kg)(9.81 m/s?)=|19.6N
evaluate f; max:
(c) If a is twice that required to hold fomax =| 19.6N
the box in place, f; will still have its
maximum value given by:
(d) | Because g/, is a,,, , the box will not fallif a > g/ ..
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Picture the Problem The pictorial Y
representation shows the orientation of the '
two blocks with a common acceleration on
the inclined surface. Draw the free-body
diagrams for each block and apply
Newton’s 2" law of motion and the ®
definition of the kinetic friction force to
each block to obtain simultaneous o
equations in ¢ and 7.
Draw the free-body diagram for the o\ .
lower block: Py
B
u.i:g;

Apply Z F = ma to the lower XF.=fa + Ty — mgsind =ma (1)
block: and

2F, = Fy1 —mgcosf =0 2)
The relationship between f ; and F), Jfra = taFan 3)
is:
Eliminate f ; and F,; between (1), Hicmigeos@+ Ty — mygsind =ma  (4)
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(2), and (3) to obtain:

Draw the free-body diagram for the
upper block:

Apply Z F = ma to the block:

The relationship between fi, and F),,
is:

Noting that 75 = T, eliminate f ,
and F,, between (5), (6), and (7) to
obtain:

Add equations (4) and (8) to
eliminate 7 and solve for a:

Substitute numerical values and
evaluate a to obtain:

() Eliminate a between equations
(4) and (8) and solve for T=T, =T,
to obtain:

Substitute numerical values and
evaluate 7"

myg
YF = fxo— To— mogsin@=mya (5)
and
SF, = Fyy —mygcos =0 (6)

Je2 = thoFn (7

L omogcos@ — Tp — mpgsind =mpa (8)

m, + f ,m

a=g Mcos&’—sin@}
m, +m,

a=|0.965m/s’

_ mm, (;Uk,z — My, )g cost
m, +m,

T'=|0.184N
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Picture the Problem The free-body
diagram shows the forces acting on the
two blocks as they slide down the
incline. Down the incline has been
chosen as the positive x direction. 7'is
the force transmitted by the stick; it can
be either tensile (7> 0) or compressive
(T < 0). By applying Newton’s 2™ law
to these blocks, we can obtain equations
in 7T and @ from which we can eliminate
either by solving them simultaneously.
Once we have expressed 7, the role of
the stick will become apparent.

(@) Apply Z F = ma to block 1:

Apply Z F = ma to block 2:

Letting 7y = T, = T, use the
definition of the kinetic friction
force to eliminate f; ; and F;,
between the equations for block 1
and f,, and F,; between the
equations for block 2 to obtain:

Add equations (1) and (2) to
eliminate 7 and solve for a:

(b) Rewrite equations (1) and (2) by
dividing both sides of (1) by m; and
both sides of (2) by m, to obtain.

Subtracting (4) from (3) and
rearranging yields:
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ZFX =T +mgsin@— f, , =ma
and
ZFy =F,,—mgcosd =0

ZFx =m,gsin@-T, - f,, =m,a
and
sz =F,,-m,gcosd =0

ma=m,gsin@+T —pumgcosd (1)
and
m,a=m,gsin@ —T — yu,m,gcosd (2)

g(sing_wm QJ

a=
m, +m,
. T
a=gsinf+——u,gcosd 3)
1
and
. T
a=gsinf ——— u,gcosd 4)

m,

mm,

T= (—j(ﬂl — 11, )g cos 6
my—m,
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If 1, = u,, T =0 and the blocks move down the incline with the same

acceleration of g(sin&’ — [ COS 6’). Inserting a stick between them can't

change this; therefore, the stick must exert no force on either block.
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Picture the Problem The pictorial
representation shows the orientation of the
two blocks on the inclined surface. Draw
the free-body diagrams for each block and
apply Newton’s 2™ law of motion and the
definition of the static friction force to each
block to obtain simultaneous equations in
6. and T.

(a) Draw the free-body diagram for
the lower block:

mg
Apply Z F = ma to the block: XF,=mgsin@.—f,;, —T=0 (1)
and
XF, = Fy —mgcos@. =0 2)
The relationship between f;; and F;, Joi = MsaFo 3)
is:
Eliminate f;; and F},; between (1), mgsing, — s ;migcosé, — T=0 (@)
(2), and (3) to obtain:
Draw the free-body diagram for the 4
upper block:
Apply Y F =ma to the block: SF, =T+ magsin. — f,5 =0 (5)
and

XF, = F,, —mygcos€, =0 (6)
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The relationship between f;, and F;, Js2 = ts2F )
is:

Eliminate f;, and F,; between (5), T + mygsin@, — s ,mygcos . =0 ()
(6), and (7) to obtain:

Add equations (4) and (8) to 0 — tan” My + p,m,
eliminate 7 and solve for &.: ¢ m, +m,
_ tan (0.4)(0.2kg)+(0.6)(0.1kg)
0.1kg+0.2kg
=|25.0°
(b) Because 6, is greater than the T'=mg (sin O — K, COS 9C)

angle of repose (tan' (1) =
tan"'(0.4) = 21.8°) for the lower
block, it would slide if 7= 0. Solve
equation (4) for T:

Substitute numerical values and evaluate T:

T = (0.2kg)(9.81m/s” )[sin25° - (0.4)cos25°] = [ 0.118 N
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Picture the Problem The pictorial
representation shows the orientation of the
two blocks with a common acceleration on e
the inclined surface. Draw the free-body =
diagrams for each block and apply
Newton’s 2™ law and the definition of the
kinetic friction force to each block to
obtain simultaneous equations in ¢ and 7.

(a) Draw the free-body diagram for \
the lower block: Fa, 1\

Hl]§
Apply Z F = ma to the lower XF,=mgsin20° — fi 1 — T=ma (1)

block: and
XF,=F,; —mgcos20° =0 )



292 Chapter 5

Express the relationship between f
and F,;:

Eliminate f; ; and F,; between (1),
(2), and (3) to obtain:

Draw the free-body diagram for the
upper block:

Apply Z F = ma to the upper
block:

Express the relationship between f; ,
and F; :

Eliminate f; , and F,,, between (5),
(2), and (7) to obtain:

Add equations (4) and (8) to
eliminate 7 and solve for a:

Substitute the given values and
evaluate a:

(b) Substitute for @ in either equation
(4) or (8) to obtain:

ﬁ<,1 = ,uk,an,l 3)

m, g sin 20° — 44 m, g cos 20° @

-T'=ma

YF. =T+ mygsin20° — fio,=mpa  (5)
and
2F, = Fy,—mygcos20° =0 6)

fk,2 = ,Uk,zF n2 (7)

T +m,gsin20° -y, ,m, g cos 20° ®)

=m,a

a= g(sin 20° - Mcos 20°J
m, +m,

a=|0.944m/s*

T =|—-0.426N |; i.e., the rod is under

compression.
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Picture the Problem The vertical J|’

component of F reduces the normal force; ZA
n

Bl

hence, the static friction force between the
surface and the block. The horizontal
component is responsible for any tendency DA AR X
to move and equals the static friction force i’
until it exceeds its maximum value. We can

apply Newton’s 2™ law to the box, under

equilibrium conditions, to relate F'to 6. ¥ mg

(a) The static-frictional force opposes the motion of the object, and the maximum value
of the static-frictional force is proportional to the normal force Fy. The normal force is
equal to the weight minus the vertical component Fy of the force F. Keeping the
magnitude F constant while increasing € from zero results in a decrease in Fy and thus a
corresponding decrease in the maximum static-frictional force f,,,.. The object will begin
to move if the horizontal component Fy of the force F exceeds fi.x. An increase in 6
results in a decrease in Fy. As @ increases from 0, the decrease in FYy is larger than the
decrease in Fy, so the object is more and more likely to slip. However, as 8 approaches
90°, Fyy approaches zero and no movement will be initiated. If F is large enough and if &
increases from 0, then at some value of & the block will start to move.

(b) Apply D F = mdto the block: SF, =Fcosf—f,=0 (1)
and
XF,=F,+Fsin0-mg=0  (2)

Assuming that f; = f; max, €liminate f; F— HmMg
and F, between equations (1) and cos@ + u sinf
(2) and solve for F:

Use this function with mg = 240 N to generate the table shown below:

0| (deg) | 0 | 10 | 20 | 30 | 40 | 50 | 60
F| (N) | 240 | 220 | 210 | 206 | 208 | 218 | 235

The following graph of F(6) was plotted using a spreadsheet program.
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240
235 4 /
230

225 4

F(N)

220

215 4

210 +

205

0 10 20 30 40 50 60
theta (degrees)

From the graph, we can see that the minimum value for F occurs when 6 ~ 32°.

Remarks: An alternative to manually plotting F as a function of @ or using a
spreadsheet program is to use a graphing calculator to enter and graph the function.
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Picture the Problem The free-body d
diagram shows the forces acting on the Fy
block. We can apply Newton’s 2™ law,

under equilibrium conditions, to relate F'to

@ and then set its derivative with respect to

@ equal to zero to find the value of O that

Ce . Y mg
minimizes F. e

(a) Apply Z F = ma to the block: LF, =Fcos0-f=0 (1
and
XF,=F,+ Fsin0-mg=0 2)

Assuming that f; = f; max, €liminate f; F= H,mMG
and F, between equations (1) and (2) cos@+ u, sinf
and solve for F:

)

To find 6., differentiate ' with respect to & and set the derivative equal to zero for
extrema of the function:
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dF (cos @+ 1, sin H)L(ysmg) ysmg;;(cosﬁ + 41,5in 6)

do (cos @+ p,sin O (cos @+ p, sin @)
—sin 6+ 0
= ’USMg( S ‘,us C(;S ) = 0 for extrema
(cos@+ 1, sin B)
Solve for 6., to obtain: 0. = tan™' ya
(b) Use the reference triangle shown below Fo= HME
to substitute for cosf and siné in equation m 1 Hs

M
3): 1+ 4] 1+ 1

(©)

The coefficient of kinetic friction is less than the coefficient of static friction.

An analysisidentical to the one above shows that the minimum force one
should apply to keep the block moving should be applied at an angle given by
0. =tan"' . Therefore, once the block is moving the coefficient of friction

m

will decrease, so the angle can be decreased.
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Picture the Problem The vertical component of F increases the normal force and the
static friction force between the surface and the block. The horizontal component is
responsible for any tendency to move and equals the static friction force until it exceeds
its maximum value. We can apply Newton’s 2™ law to the box, under equilibrium
conditions, to relate /' to 6.

(a) As Oincreases from zero, F’

increases the normal force exerted by AF,

the surface and the static friction force.

As the horizontal component of F «— ——x
L. . - (t)

decreases with increasing 6, one would A

expect F' to continue to increase.

T

Y mg



296 Chapter 5

(b) Apply Z F = ma to the block: XF, =Fcosf—f,=0 €))
and
XF, =F,— Fsin0—mg=0 2)

Assuming that f;= f; max, eliminate fg F= H Mg 3)
and F, between equations (1) and cos@ — u sinf
(2) and solve for F*:

Use this function with mg = 240 N to generate the table shown below.

6 |(deg)| O 10 | 20 | 30 | 40 | 50 60
F | (N) | 240 | 273 | 327 | 424 | 631 | 1310 | very
large

The graph of F as a function of 6, plotted using a spreadsheet program, confirms our
prediction that F’ continues to increase with 6.

1400 )
1200
1000 <

800 4

F(N)

600

400 +

200

0 10 20 30 40 50
theta (degrees)

(a) From the graph we see that: 0. =|0°

(b) Evaluate equation (3) for 8= 0° F- umg
to obtain: cos0° -z sin0°

=| umg

(©) You should keep the angle at 0°.

Remarks: An alternative to the use of a spreadsheet program is to use a graphing
calculator to enter and graph the function.
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Picture the Problem The forces acting on each of these masses are shown in the free-
body diagrams below. m, represents the mass of the 20-kg mass and m, that of the 100-kg
mass. As described by Newton’s 3rd law, the normal reaction force F,,; and the friction
force fi; (= fi2) act on both masses but in opposite directions. Newton’s 2™ law and the
definition of kinetic friction forces can be used to determine the various forces and the
acceleration called for in this problem.

(a) Draw a free-body diagram |

showing the forces acting on the AR,
20-kg mass: 7
_>- I —X
Ymg

Apply Z F = ma to this mass: LF, = fg = ma ()

and

2F‘y:F'n,l_’nlg:O (2)
Solve equation (1) for fi: fer=ma; = (20 kg)(4 m/s*) = | 80.0N
(b) Draw a free-body diagram
showing the forces acting on the
100-kg mass:
Apply ZFX =ma, to the 100-kg F. =ma,
object and evaluate Fe: = (1 00 kg)(6 m/s’ ) =| 600N
Express F in terms of Fy and f o F=Futt+/2=600N+80N=| 680N
(¢) When the 20-kg mass falls off, a= h _ 630N —[6.80m/s?
the 680-N force acts just on the m  100kg

100-kg mass and its acceleration is
given by Newton’s 2™ law:
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Picture the Problem The forces acting on
each of these blocks are shown in the free-
body diagrams to the right. m; represents
the mass of the 60-kg block and m, that of
the 100-kg block. As described by
Newton’s 3" law, the normal reaction force
F,1 and the friction force fi; (= fi2) act on
both objects but in opposite directions.
Newton’s 2™ law and the definition of
kinetic friction forces can be used to
determine the coefficient of kinetic friction
and acceleration of the 100-kg block.

(a) Apply Z F = ma to the 60-kg
block:

Apply ZF; =ma, to the 100-kg
block:

Using equation (2), express the
relationship between the kinetic

friction forces f,_and T _,:

Substitute equation (4) into equation
(1) and solve for z:

Substitute numerical values and
evaluate uy:

(b) Substitute equation (4) into
equation (3) and solve for a:

Substitute numerical values and

evaluate a,:

y
) | -
| - ]';1.2
‘\‘hh. ,
i F
<« —>—x
En.l
Ymg
mz_é?
ZFX :F—ﬁ(ﬂl =ma (1)
and
2F, = Fyi—mg=0 (2
fk,z = mas 3)

S =fo = fo= g = pang (4)

0.238

1 = F-ma,
‘ mg
320N - (60kg)3m/s?)
M= (bokg)o.81mis?)
_ Mg
2 m,
_ (0.238)(60kg)9.81m/s?)
2 100kg

=|1.40m/s*
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Picture the Problem The accelerations of
the truck can be found by applying
Newton’s 2™ law of motion. The free-body
diagram for the truck climbing the incline
with maximum acceleration is shown to the

-

right.

(a) Apply Z F = ma to the truck

when it is climbing the incline:

Solve equation (2) for F, and use
the definition of f; . to obtain:

Substitute equation (3) into equation
(1) and solve for a:

Substitute numerical values and
evaluate a:

(b) When the truck is descending the
incline with maximum acceleration,
the static friction force points down
the incline; i.e., its direction is
reversed on the FBD. Apply

z F_=ma_ to the truck under

these conditions:

Substitute equation (3) into equation
(4) and solve for a:

Substitute numerical values and
evaluate a:

SF, = fimax —mgsinl2° = ma (1)
and
2F, = Fy,— mgcos12° =0 ()

Somax = Hsmgcos12° 3)

a= g(,uS cos12°— sin12°)

a = (9.81m/s* )[(0.85)cos12°—sin12°]
=[6.12m/s?

— fomax — mgsin12° = ma (4)

a= —g(,uS cos12°+sin 12°)

a =(-9.81m/s?)[(0.85)cos12° +sin12°]
=| —10.2m/s’
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Picture the Problem The forces acting on
each of the blocks are shown in the free-
body diagrams to the right. m; represents
the mass of the 2-kg block and m, that of
the 4-kg block. As described by Newton’s
3" law, the normal reaction force F, 1 and
the friction force f;; (= f;2) act on both
objects but in opposite directions. Newton’s
2" Jaw and the definition of the maximum
static friction force can be used to
determine the maximum force acting on the
4-kg block for which the 2-kg block does
not slide.

(@) Apply D F =mdto the 2-kg
block:

Apply Z F = ma to the 4-kg block:

Using equation (2), express the
relationship between the static
and f :

5,2, max

friction forces f

s,1,max

Substitute (5) in (1) and solve for

a max-

Solve equation (3) for F'= Fpax:

Substitute numerical values and
evaluate Foax:

(b) Use Newton’s 2™ law to express
the acceleration of the blocks
moving as a unit:

Substitute numerical values and
evaluate a:

y -
|

Tﬁl,l
a1 L2 F
—x «— —>—x
‘”L;I.I
m1§

\rng

ZFX = fs,l,max = M1Amax (1)
and

ZFy=Fn,17m1g=O (2)
ZFX = F—ﬁ,2,1nax = MrAmax (3)
and

XF, = Fop—Fo- mg=0 4
f;,l,max :f;,Z,max = Hs g (5)

Amax = g = (0.3)g = 2.94 m/s’

F = m2amax + ﬂsmlg

max

F,,. =(4kg)2.94m/s?)+(0.3)2ke)

x(9.81m/s?)
=[17.7N
F
a=
m, +m,
1
a :M =| 1.47 m/s’
2kg+4kg




Because the friction forces are an
action-reaction pair, the friction
force acting on each block is given

by:

(c) If F=2F ., then my slips on m,
and the friction force (now kinetic)
is given by:

Use z F_=ma_ to relate the

acceleration of the 2-kg block to the
net force acting on it and solve for

ap.

Use Z F_=ma_ to relate the

acceleration of the 4-kg block to the
net force acting on it and solve for

as.
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Picture the Problem Let the positive x
direction be the direction of motion of
these blocks. The forces acting on each of
the blocks are shown, for the static friction
case, on the free-body diagrams to the
right. As described by Newton’s 3™ law,
the normal reaction force F),; and the
friction force f;; (= f;2) act on both objects
but in opposite directions. Newton’s 2"
law and the definition of the maximum
static friction force can be used to
determine the maximum acceleration of the
block whose mass is m;.

(a) Apply Z F = ma to the 2-kg

block:

Apply z F = ma to the 4-kg
block:

Applications of Newton’s Laws 301

fo=ma=(2kg)(1.47 m/s?)
=|2.94N

S=h= g

Jo = pamg = ma

and
a1 = ug=(02)g=|1.96m/s>
F — g = ma,
q, = L= Hmg
m,
_2(17.7N)-(0.2)(2kg)(0.8 1m/s°)
4kg
=| 7.87m/s>

EFc = fo1max = Mimax (1
and
YF, = Fy —mg=0 2)
XF.= T—fiomax = Malmax (3)
and
XF, = Foy—Fhi— mg=0 “)
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Using equation (2), express the
relationship between the static
friction forces f and f,

s,1,max s,2,max *

Substitute (5) in (1) and solve for

Amax:
(b) Use ZFX = ma, to express the

acceleration of the blocks moving
as a unit:

Apply Z:Fr = ma, to the object

whose mass 1s m;:

Add equations (6) and (7) to
eliminate 7 and then solve for and
evaluate ms:

(c) If m; =30 kg, then m; will slide
on m;, and the friction force (now
kinetic) is given by:

Use ZFX = ma, to relate the

acceleration of the 30-kg block to
the net force acting on it:

Noting that @, = a; and that the
friction force on the body whose
mass is m, is due to kinetic friction,
add equations (3) and (8) and solve
for and evaluate the common
acceleration:

With block 1 sliding on block 2, the
friction force acting on each is
kinetic and equations (1) and (3)
become:

](s,l,max :fs‘,z,max = U g (5)

amax = 1g = (0.6)g = | 5.89m/s’

T= (ml + m2) Amax (6)

msg — T = M3 Qpmax (7

my =

u(m +m,)  (0.6)10kg+5kg)

1—p, 1-0.6
=|22.5kg
f=h= mamg
myg — T = msa; ()
a,=a, = g(m3 _Iukml)
m, +m3
~ (0.81m/s?)Bokg - (0.4)5kg)]
10kg +30kg
=] 6.87m/s’
S = g =ma 1)
T—fc = T— taimg =ma (39



Solve equation (1") for and evaluate

ap.

Solve equation (3") for T

Substitute numerical values and evaluate T

T = (10kg)(6.87m/s? )+ (0.4)5kg)(9.81m/s? ) =

55
Picture the Problem Let the direction of
motion be the positive x direction. The

free-body diagrams show the forces acting
on both the block (M) and the

counterweight (7). While 'I:I # 'I:Z, T =T

By applying Newton’s 2™ law to these
blocks, we can obtain equations in 7 and a
from which we can eliminate the tension.
Once we know the acceleration of the
block, we can use constant-acceleration
equations to determine how far it moves in
coming to a momentary stop.

(a) Apply Z F = ma to the block

on the incline:

Apply Z F = ma to the

counterweight:

Letting 7y = T, = T and using the
definition of the kinetic friction
force, eliminate f; and F, between
the equations for the block on the
incline to obtain:

Eliminate 7 from equations (1) and
(2) by adding them and solve for a:

Substitute numerical values and evaluate a:
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a, = 1,g =(0.4)(9.81m/s”)
=|3.92m/s’

T =mya, + pmg

88.3N
y
\
F, N AT,
Tl

' T
s 9\

K \

Mg Y mg

Y F,=T,-Mgsin0- f, = Ma
and
sz =F,—Mgcosf =0

> F.=mg-T,=ma (1)

T—Mgsin@—u, Mgcos@=Ma (2)

m—M (sin @+ u1, cos6)
m+M &

a =

, - 550kg —(1600kg) (sinlO°+0.1500510°)(9.81m/82): W

550kg +1600kg
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(b) Using a constant-acceleration
equation, relate the speed of the
block at the instant the rope breaks
to its acceleration and displacement
as it slides to a stop. Solve for its
displacement:

The block had been accelerating up
the incline for 3 s before the rope
broke, so it has an initial speed of :

From equation (2) we can see that,
when the rope breaks (7 = 0) and:

Substitute in equation (3) and
evaluate Ax:

(c) When the block is sliding down
the incline, the kinetic friction force
will be up the incline. Express the
block’s acceleration:

56 00
Picture the Problem If the 10-kg block is
not to slide on the bracket, the maximum

value for F must be equal to the maximum
value of f; and will produce the maximum
acceleration of this block and the bracket.
We can apply Newton’s 2™ law and the
definition of f; max to first calculate the
maximum acceleration and then the
maximum value of F.

(@) and (b) Apply »_F =mato the

10-kg block when it is experiencing
its maximum acceleration:

Express the static friction force
acting on the 10-kg block:

Eliminate f; ,,.x and F,, from

2 2
v =V, +2alAx
or, because vy =0,

2
Ax="1 3)

2a

(0.163 m/s*)(3 s) = 0.489 m/s

a=—g(sin@+ u, cosf)
= —(9.81m/s?)[sin10°+ (0.15)cos10°]

=-3.15m/s*

where the minus sign indicates that the
block is being accelerated down the incline,
although it is still sliding up the incline.

2
Ap o —(0.489m/s)" _
2(=3.15m/5?)
a= —g(siné’—,uk oS (9)
= —(9.81m/s?)[sin10°— (0.15)cos 10°]
=| -0.254m/s’

0.0380m

¥ nog ¥ mg

z:va :f;,max - F = m2a2,max (1)

and
XF,=Fyy—myg=0 2)
fs,max = ,usF n,2 (3 )

ﬂsng -F= m2a2,max (4)



equations (1), (2) and (3) to obtain:

Apply ZFX = ma, to the bracket

to obtain:

Because aj max = d2.max, denote this
acceleration by a,x. Eliminate F'
from equations (4) and (5) and solve
for amax:

Substitute numerical values and

evaluate a .

Solve equation (4) for F' = F,.:

Substitute numerical values and
evaluate F*:
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Picture the Problem The free-body
diagram shows the forces acting on the
block as it is moving up the incline. By
applying Newton’s 2™ law, we can obtain
expressions for the accelerations of the
block up and down the incline. Adding and
subtracting these equations, together with
the data found in the notebook, will lead to
values for gy and z4.

Apply Z,- Ifl. = ma to the block when

it is moving up the incline:

Using the definition of f, eliminate
F, between the two equations to
obtain:

When the block is moving down the
incline, f is in the positive x
direction, and its acceleration is:
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2F — M2 & = M A1 max Q)
m
amax = llls 2g
m, +2m,

_ (0.4)(10kg)(9.81m/5?)
e 5kg+2(10kg)

=11.57m/s*

F = Hm,g —m,a .. =m, (lusg _amax)

F =(10kg)|(0.4)(9.81m/s* )—1.57 m/s? |

=| 23.5N
Y
F
n /x
-
A
J N
0

Vo,
ZFx =—f, —mg,sinfd=ma,
and

ZFy =F —-mg,cos@=0

a,, =—H gy cosf — g, sinf (1)

Ao = Mgy O8O — g sinf ()
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Add equations (1) and (2) to obtain: Ay + Qg = —2g, sinf (3)
Solve equation (3) for gv: Ay + Aygn
Ev = 2siné @
Determine 6 from the figure:
0= tan"| L8P | _ 14 o
3.82glapp

Substitute the data from the notebook in equation (4) to obtain:

_ 1.73glapp/plipp” +1.42 glapp/plipp”

—8.41glapp/plipp’
v ~25in10.8° S2PPPIPP
Subtract equation (1) from equation Ao — Ay = 2u, g, cosd
(2) to obtain:
Solve for z4: Qiown ~ Aup
K =
2g, cosl

Substitute numerical values and evaluate z4:

—1.42 glapp/plipp® —1.73 glapp/plipp”
/le = . 2 O. 1 9 1
2(— 8.41glapp/plipp )cos 10.8°
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Picture the Problem The free-body y

diagram shows the block sliding down the \

incline under the influence of a friction F

force, its weight, and the normal force n

exerted on it by the inclined surface. We ﬁ{
can find the range of values for m for the

two situations described in the problem - \
statement by applying Newton’s 2™ law of
motion to, first, the conditions under which \
the block will not move or slide if pushed, 0
and secondly, if pushed, the block will
move up the incline.

Y Mg

(a) Assume that the block is sliding z F.=—f, +Mgsinf =0
down the incline with a constant *

velocity and with no hanging weight and
(m = 0) and apply ZF =ma to ZFyZFn—Mg0059=0
the block:

Using fi = t4F,, eliminate F, F . =—-u Mgcosf+ Mgsinf



between the two equations and solve
for the net force acting on the block:

If the block is moving, this net force
must be nonnegative and:

This condition requires that:

Because g4 = 0.2, this condition is
satisfied and:

To find the maximum value, note
that the maximum possible value for
the tension in the rope is mg. For
the block to move down the incline,
the component of the block’s weight
parallel to the incline minus the
frictional force must be greater than
or equal to the tension in the rope:

Solve for mmayx:

Substitute numerical values and
evaluate Mmayx:

The range of values for m is:

(b) If the block is being dragged up
the incline, the frictional force will
point down the incline, and:

Solve for and evaluate my;,:

If the block is not to move unless
pushed:

Solve for and evaluate m,y:

The range of values for m is:
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(= 1, cos8 +sin@)Mg >0

M, <tan@ =tan18°=0.325

m. =0

min

Mgsin@— pMgcosd > mg

m,. < M(sin 0 — p, cos 9)

m,. <(100kg)[sin18°—(0.2)cos18°]
=11.9kg

0<m<11.9kg

Mg sin@+ Mg cos0< mg

Mmin > M (sin@+ 4 cosb)
= (100 kg)[sin18° + (0.2)cos18°]
= 49.9kg

Mg sin@ + u; Mg cos@ > mg

Mmax < M (sin@+ p5 cosb)
= (100 kg)[sin18° + (0.4)cos18°]
= 68.9kg

49.9kg < m < 68.9kg
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Picture the Problem The free-body
diagram shows the forces acting on the 0.5
kg block when the acceleration is a
minimum. Note the choice of coordinate
system is consistent with the direction of

F. Apply Newton’s 2™ law to the block
and solve the resulting equations for ay,

and @pmax.

(@) Apply D F =mdto the 0.5-kg
block:

Under minimum acceleration,
Jfs=fsmax- Express the relationship
between f; max and Fy:

Substitute f; max for f; in equation (2)
and solve for F:

Substitute for F;, in equation (1) and
solve for a = ay,:

Substitute numerical values and
evaluate ap;,:

Treat the block and incline as a
single object to determine F iy

To find the maximum acceleration,

reverse the direction of ]?S and apply

Z F = ma to the block:

Proceed as above to obtain:

Substitute numerical values and

evaluate a .

XF, = F,sinf— f,cos0 = ma (D)
and
2F, = FycosO + fisinf—mg = 0 (2)

ﬁ,max = ,Uan (3)

Fo=— S
cosé + p sin@

sin@— u cosd

min

cos@+ u sind
0, —(0.81 m/sz)s1n35 - (0.8)c9s35
c0s35°+(0.8)sin35°
=-0.627m/s’
Fin = Miomin = (2.5 kg)( —0.627 m/s%)
=|-1.57N

LF, = Fysin@ + ficos@ = ma 4)
and

2F, = FycosO— fsind—mg = 0 4)

__sin@+ p cosd
Anax =

cosd— u sind

2\sin35°+(0.8)c0s35°

=19.81m/
s ( ; ! c0s35°—(0.8)sin35°

=33.5m/s*



Treat the block and incline as a single
object to determine Fyqx:

(b) Repeat (a) with g = 0.4 to obtain:

60

Picture the Problem The kinetic friction
force fy is the product of the coefficient of
sliding friction z4 and the normal force F,
the surface exerts on the sliding object. By
applying Newton’s 2™ law in the vertical
direction, we can see that, on a horizontal
surface, the normal force is the weight of
the sliding object. Note that the
acceleration of the block is opposite its
direction of motion.

(a) Relate the force of kinetic
friction to z4 and the normal force
acting on the sliding wooden object:

Substitute v = 10 m/s and evaluate

fe:

(b) Substitute v =20 m/s and
evaluate fy:

61 oo
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Fnax = Mioimax = (2.5 kg)(33.5 m/s?)

=|83.8N
F, =[575N]and F,, =[37.5N
y
[
A—f
n
Jx
<« ——x
¥ mg
0.11
So=mF, = o e
(1+23%x10?)

~0.11(100kg)(9.81m/s? )

=| 103N

C(1+23x107 (10mss)? )

0.11(100kg)(9.81m/s?)
(1+23x10*(20mss)? )
~[90.5N

S

Picture the Problem The pictorial representation shows the block sliding from left to
right and coming to rest when it has traveled a distance Ax. Note that the direction of the
motion is opposite that of the block’s acceleration. The acceleration and stopping
distance of the blocks can be found from constant-acceleration equations. Let the
direction of motion of the sliding blocks be the positive x direction. Because the surface
is horizontal, the normal force acting on the sliding block is the block’s weight.

JL;’:’n

=1 A

V=1V,

x=0 ‘fmg
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(a) Using a constant-acceleration v = Vg +2alx
equation, relate the block’s stopping

. . r a =
distance to its initial speed and or, because v =0,

acceleration; solve for the stopping Ax = — Vg (1)
distance: 2a
Apply ZFX = ma, to the sliding g Frw —fi  04E
block, introduce Konecny’s m m m
empirical expression, and solve for 0.91
the block’s acceleration: =— O.4(mg)
m
Evaluate a with m = 10 kg: o (0.4)[(10kg)(9.81m/52 )]0.91
10kg

=| -2.60m/s’
Substitute in equation (1) and _ (1 Om. /s) 2
evaluate the stopping distance when Ax = 7—2) =119.2m
vo = 10 m/s: 2(=2.60m/s
(b) Proceed as in (a) with (0.4)[(1 00 kg)(9.8 1m/s> )] 0.91
m = 100 kg to obtain: a=-

100kg

=|-2.11m/s’

Find the stopping distance as in (a): _ 2
A = —2(L0ms) ~=[237m
2‘— 2.11m/s ,
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Picture the Problem The kinetic friction force f is the product of the coefficient of
sliding friction z4 and the normal force F), the surface exerts on the sliding object. By
applying Newton’s 2™ law in the vertical direction, we can see that, on a horizontal
surface, the normal force is the weight of the sliding object. We can apply Newton’s 2™
law in the horizontal (x) direction to relate the block’s acceleration to the net force acting
on it. In the spreadsheet program, we’ll find the acceleration of the block from this net
force (which is velocity dependent), calculate the increase in the block’s speed from its
acceleration and the elapsed time and add this increase to its speed at end of the previous
time interval, determine how far it has moved in this time interval, and add this distance
to its previous position to find its current position. We’ll also calculate the position of the
block x,, under the assumption that g4 = 0.11, using a constant-acceleration equation.
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AR,
p— 11: —
g— — pr—
| f |
t=0 K t
x=0 \ x
vp=0 v

The spreadsheet solution is shown below. The formulas used to calculate the quantities in
the columns are as follows:

Cell Formula/Content Algebraic Form
C9 C8+$B$6 1+ At
D9 D8+F9*$B$6 v+ alAt
E9 | $B$5—($B$3)*($B$2)*$B$5/ ~ uomg
A VAN -
(1+$B34*D9%2)"2 (1+2.34x107)

F9 E10/$B$5 F./m
G9 G9+D10*$B$6 X+ VAt
K9 0.5%5.922*110"2 %aﬁ
L9 J10-K10 X - X,

A B C D E |[F| G H I J
1 g=19.81 |m/s"2
2 Coeffl=|0.11
3 Coeff2=|2.30E-

04

4 Mass=|10 kg
5 Applied |70 N

Force=
6 Time | 0.05 S

step= t X x2 X—Xx2
7
8
9 Net

t v force | a X mu=variable | mu=constant
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11 0.05 0.30 | 59.22 |5.92| 0.01 0.05 0.01 0.01 0.01
12 0.10 0.59 | 59.22 [5.92| 0.04 0.10 0.04 0.03 0.01
13 0.15 0.89 | 59.22 |5.92| 0.09 0.15 0.09 0.07 0.02
14 0.20 1.18 | 59.22 [5.92] 0.15 0.20 0.15 0.12 0.03
15 0.25 1.48 | 59.23 |5.92| 0.22 0.25 0.22 0.19 0.04
205 9.75 61.06 | 66.84 |6.68|292.37 9.75| 292.37 281.48 10.89
206 9.80 61.40 | 66.88 |6.69|295.44 9.80| 295.44 284.37 11.07
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207] 9.85 61.73 | 66.91 [6.69|298.53 9.85| 298.53 287.28 11.25
208| 9.90 62.07 | 66.94 16.69|301.63 9.90| 301.63 290.21 11.42
209] 9.95 62.40 | 66.97 16.70|304.75 9.95| 304.75 293.15 11.61
210] 10.00 | 62.74 | 67.00 16.70/307.89| [10.00] 307.89 296.10 11.79

The displacement of the block as a function of time, for a constant coefficient of friction
(14 = 0.11) is shown as a solid line on the graph and for a variable coefficient of friction,
is shown as a dotted line. Because the coefficient of friction decreases with increasing
particle speed, the particle travels slightly farther when the coefficient of friction is
variable.

300

250 +—— - - - mu = variable — '/
mu = constant /

200 -

150 //

100 /,

50
0.00 2.00 4.00 6.00 8.00 10.00
t(s)

x (m)

The velocity of the block, with variable coefficient of kinetic friction, is shown below.

70

60 /
50

40 1

v (m/s)

30 A

o /
10

t(s)
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Picture the Problem The free-body
diagram shows the forces acting on the
block as it moves to the right. The kinetic
friction force will slow the block and,
eventually, bring it to rest. We can relate
the coefficient of kinetic friction to the
stopping time and distance by applying
Newton’s 2™ law and then using constant-
acceleration equations.

(a) Apply z F = ma to the block

of wood:

Using the definition of f, eliminate
F, between the two equations to
obtain:

Use a constant-acceleration equation
to relate the acceleration of the
block to its displacement and its
stopping time:

Relate the initial speed of the block,
Vo, to its displacement and stopping
distance:

Use this result to eliminate v, in
equation (2):

Substitute equation (1) in equation
(4) and solve for g4:

Substitute for Ax = 1.37 m and
At =0.97 s to obtain:

(b) Use equation (3) to find vy:

Applications of Newton’s Laws
y
| —_
A T
<« -~
mg
ZFx = _fk =ma
and
Y F,=F,-mg=0
a=-mg (1
Ax = vyAt + La(At) 2)
Av=v, At =0TV Ay
3)
=Jv,Atsince v =0.
Ax = —La(At) 4)
= 2Ax
" oglar)y
2(1.37m)
M o.81mis?)(0.97s)
vy = ZAA;“ _2A137m) e s

0.97s

313
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Picture the Problem The free-body

diagram shows the forces acting on the ¥y
block as it slides down an incline. We can J;*

apply Newton’s 2™ law to these forces to k

obtain the acceleration of the block and

then manipulate this expression ~
algebraically to show that a graph of a/cos& /6
versus tané will be linear with a slope
equal to the acceleration due to gravity and
an intercept whose absolute value is the
coefficient of kinetic friction.

e T

s

mg 0

(a) Apply z F = ma to the block ZFx =mgsinf — f, =ma

as it slides down the incline: and

ZFy =F —mgcosfd=0

Substitute 4F, for fi and eliminate a= g(sin 0 — u, cos 9)
F, between the two equations to
obtain:

Divide both sides of this equation by

- =gtand -
cos@to obtain: c0sO g EH
Note that this equation is of the form Thus, if we graph a/cos@ versus tané, we
y=mx+b: should get a straight line with slope g and

y-intercept —g k.

(b) A spreadsheet solution is shown below. The formulas used to calculate the quantities
in the columns are as follows:

Cell Formula/Content Algebraic Form
C7 0
D7 a
E7 TAN(C7*PI()/180) ( T j
tan| @x——
180
F7 | D7/COS(C7*PI()/180) a
cos(@ X ”j
180
C D E F
6 theta a tan(theta) |a/cos(theta)
7 25 1.691 0.466 1.866
8 27 2.104 0.510 2.362
9 29 2.406 0.554 2.751
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10 31 2.888 0.601 3.370
11 33 3.175 0.649 3.786
12 35 3.489 0.700 4.259
13 37 3.781 0.754 4.735
14 39 4.149 0.810 5.338
15 41 4.326 0.869 5.732
16 43 4.718 0.933 6.451
17 45 5.106 1.000 7.220

A graph of a/cos@ versus tan@ is shown below. From the curve fit (Excel’s Trendline

_2.62m/s*

was used), ¢ =9.77 m/s* and = =
»8 M =977 mis?

The percentage error in g from the commonly accepted value of 9.81 m/s” is

0.408%

9.81m/s*

2 2
100(9.81m/s 9.77m/s J _

0.268.

4 y=9.7681x - 2.6154

P

R? = 0.9981 /

/

a /cos(theta)
oOFRr N WA O N ®
- L

0.4 0.5 0.6 0.7
tan(theta)

0.8 0.9 10

Motion Along a Curved Path

65 -

Picture the Problem The free-body
diagram showing the forces acting on the
stone is superimposed on a sketch of the
stone rotating in a horizontal circle. The
only forces acting on the stone are the
tension in the string and the gravitational
force. The centripetal force required to
maintain the circular motion is a
component of the tension. We’ll solve the
problem for the general case in which the
angle with the horizontal is &by applying
Newton’s 2" law of motion to the forces
acting on the stone.
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Apply Z F = ma to the stone:

Use the right triangle in the diagram
torelate 7, L, and 0

Eliminate T and » between equations
(1), (2) and (3) and solve for v,:

Express the velocity of the stone in
terms of its period:

Eliminate v between equations (4)
and (5) and solve for 6:

Substitute numerical values and
evaluate 6

66 o

Picture the Problem The free-body
diagram showing the forces acting on the
stone is superimposed on a sketch of the
stone rotating in a horizontal circle. The
only forces acting on the stone are the
tension in the string and the gravitational
force. The centripetal force required to
maintain the circular motion is a
component of the tension. We’ll solve the
problem for the general case in which the
angle with the horizontal is 8 by applying
Newton’s 2™ law of motion to the forces
acting on the stone.

Apply Z F = ma to the stone:

Use the right triangle in the diagram
to relate », L, and &

YF, = TcosO = ma. = mv*/r
and
2F,=Tsin0-mg =0

r = Lcosd

v’ = gLcotfcosd

27
y=22
tlrev
0 — Sinfl gtlzrev
47’
5 i (9.81m/5°)(1.225)

47*(0.85m)

and| (c)is correct.

Q)

2)

3)

“4)

)

=25.8°

YF, = TcosO = ma. = mv*/r
and
2F,=Tsin@-mg =0

r = Lcosd

(1

2

3)
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Eliminate 7 and r between equations v=,/gLcotdcosl
(1), (2), and (3) and solve for v: \/(9 R 11/’ )(O 8m)cot 20° 003 20°

=|4.50m/s

67 o

Picture the Problem The free-body
diagram showing the forces acting on the
stone is superimposed on a sketch of the
stone rotating in a horizontal circle. The
only forces acting on the stone are the
tension in the string and the gravitational
force. The centripetal force required to
maintain the circular motion is a
component of the tension. We’ll solve the
problem for the general case in which the
angle with the vertical is @ by applying
Newton’s 2™ law of motion to the forces
acting on the stone.

(@) Apply Y F =mdto the stone: SF, = Tsinf = ma, = m*/r (1)

and

XF,=Tcos@ —mg =0 2)
Eliminate T between equations (1) v=,rgtand
and (2) and solve for v:
Substitute numerical values and Y= \/ (0. 35 m)(9.8 1m/s? )tan3 0°
evaluate v

=|1.41m/s
(b) Solve equation (2) for T: T mg
cosf
Substitut ical val d : : ’
ubstitute numerical values an T:(O 75kg)(9 81m/s ): 2 SON

evaluate 7: c0s30°
*68 oo
Picture the Problem The sketch shows the 2
forces acting on the pilot when her plane is /+
at the lowest point of its dive. IEn is the -

force the airplane seat exerts on her. We’ll
apply Newton’s 2™ law for circular motion
to determine F, and the radius of the
circular path followed by the airplane.
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(a) Apply sz =ma, to the pilot:

Solve for and evaluate F:

(b) Relate her acceleration to her
velocity and the radius of the
circular arc and solve for the radius:

Substitute numerical values and evaluate r :

[(345km/h)(1h/36005)(1000m/km)]*

F, —mg = ma,

Fy=mg + ma.=m(g + a)
=m(g + 8.5¢) =9.5mg
=(9.5) (50 kg) (9.81 m/s?)

= | 4.66kN
v v
a,=— =>r=—
r a

69 oo

Picture the Problem The diagram shows
the forces acting on the pilot when her

plane is at the lowest point of its dive.

IEn is the force the airplane seat exerts on

her. We’ll use the definitions of centripetal
acceleration and centripetal force and apply

Newton’s 2™ law to calculate these

quantities and the normal force acting on

her.

(a) Her acceleration is centripetal
and given by:

Substitute numerical values and

evaluate a.:

(b) The net force acting on her at the
bottom of the circle is the force
responsible for her centripetal
acceleration:

(¢) Apply ZFy =ma, to the pilot:

8.5(9.81m/s?)

=|110m

2
v
a, =—,upward
r

C

(180 km/h)(11/36005)(10° /km )|*

= 300m
=| 8.33m/s’, upward |
F,., = ma, = (65kg)(8.33m/s*)

=| 541N, upward

F,—mg =ma,



Solve for F,:

Substitute numerical values and
evaluate F,:

70 oo

Picture the Problem The free-body
diagrams for the two objects are shown to
the right. The hole in the table changes the
direction the tension in the string (which
provides the centripetal force required to
keep the object moving in a circular path)
acts. The application of Newton’s 2™ law
and the definition of centripetal force will
lead us to an expression for  as a function
of m;, m,, and the time T for one
revolution.

Apply ZFX = ma, to both objects

and use the definition of centripetal
acceleration to obtain:

Because F| = F, we can eliminate
both of them between these
equations to obtain:

Express the speed v of the object in
terms of the distance it travels each
revolution and the time 7 for one

revolution:

Substitute to obtain:

Solve for r:
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Fn:mg+mac:m(g+ac)

F,=(65kg)(9.81 m/s* + 8.33 m/s%)
= | 1.18kN, upward

1
AF,
F
F
X — —(
mg
| -
= Ymg
mg—F,=0

and

2
Fi=ma,=myv/r

%
ng—m17=O

4r’m,
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Picture the Problem The free-body
diagrams show the forces acting on each
block. We can use Newton’s 2™ law to
relate these forces to each other and to the
masses and accelerations of the blocks.

Apply ZFX = ma, to the block

whose mass is m;:

Apply Z:Fr =ma, to the block

whose mass 1s m,:

Relate the speeds of each block to v
1

their common period and their
distance from the center of the
circle:

Solve the first force equation for 75,

substitute for v,, and simplify to T
obtain:
Substitute for 75> and v, in the first

T,

force equation to obtain:

*72 e

Picture the Problem The path of the
particle and its position at 1-s intervals are
shown. The displacement vectors are also
shown. The velocity vectors for the
average velocities in the first and second
intervals are along T, and T,,, respectively,

and are shown in the lower diagram.
AV points toward the center of the circle.

r 3 F, 2
\Fm{lé




Use the diagram to the right to find Ar:

Find the average velocity of the
particle along the chords:

Using the lower diagram and the
fact that the angle between

V, and V), is 45°, express Av in
terms of v; (= w):

Evaluate Av using v,, as vi:

Now we can determine a = Av/At:

Find the speed v (= v; = v, ...) of the
particle along its circular path:

Calculate the radial acceleration of
the particle:

Compare a. and a by taking their
ratio:
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Ar =2rsin22.5°=2(4 cm) sin22.5°
=3.06 cm

Vay = Ar/At = (3.06 cm)/(1 s)
=3.06 cm/s

Av = 2v;51n22.5°

Av =2(3.06 cm/s)sin22.5° = 2.34 cm/s

g =234 s
1s
V= 27 = 2n(4cm) =3.14cm/s
T 8s
2 2
a. :V_ = —(3140m/5) = 2.46cm/52
r 4cm
2
a, _ 2.46cm/s2 _1.05
a 2.34cm/s
or

a, =1.05a
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Picture the Problem The diagram to the
right has the free-body diagram for the
child superimposed on a pictorial
representation of her motion. The force her
father exerts is F and the angle it makes
with respect to the direction we’ve chosen
as the positive y direction is 8. We can
infer her speed from the given information
concerning the radius of her path and the
period of her motion. Applying Newton’s
2" Jaw as it describes circular motion will
allow us to find both the direction and
magnitude of F.

mg

Apply Z F = ma to the child: YF, = Fsinf=mv*/r

and

2F, =Fcos@ —mg=0

Eliminate F between these equations

and solve for 4: 0=
Express v in terms of the radius and

period of the child’s motion:

Substitute for v in the expression for 0
@to obtain: B
Substitute numerical values and 0
evaluate 6: B
Solve the y equation for F: F=

Substitute numerical values and _

evaluate F*:

2
| 47°(0.75m) _|_[535
(9.81m/s%)(1.55)

mg
cosd

(25kg)(9.81m/s?)
c0s53.3°

=| 410N
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Picture the Problem The diagram to the
right has the free-body diagram for the bob
of the conical pendulum superimposed on a
pictorial representation of its motion. The
tension in the string is F and the angle it
makes with respect to the direction we’ve
chosen as the positive x direction is€. We
can findé from the y equation and the
information provided about the tension.
Then, by using the definition of the speed
of the bob in its orbit and applying
Newton’s 2™ law as it describes circular

motion, we can find the period T of the

motion.
Apply z F = ma to the pendulum YF, = Fcos@=mv’/r
bob: and
XF, = Fsinf —mg=0

Using the given 1nformat10.n that 0 =sin" M8 _gint M8 _g 590
F = 6mg, solve the y equation for & F 6mg
With F' = 6mg, solve the x equation v =,/6rgcosd
for v:
Relate the period T of the motion to 7= 27r _ 27
the speed of the bob and the radius v \/ 6rgcosé
of the circle in which it moves:
From the diagram, one can see that: r =Lcosd
Substitute for » in the expression for L

: . T=2r|—
the period to obtain: 6g

Substitute numerical values and o9 0.5m 0.579
evaluate 7" i 6]9.81m/52 ) i >
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Picture the Problem The static friction
force f; is responsible for keeping the coin
from sliding on the turntable. Using
Newton’s 2™ law of motion, the definition
of the period of the coin’s motion, and the
definition of the maximum static friction
force, we can find the magnitude of the
friction force and the value of the
coefficient of static friction for the two
surfaces.

(a) Apply z F = ma to the coin:

If T is the period of the coin’s
motion, its speed is given by:

Substitute for v in the force equation
and simplify to obtain:

Substitute numerical values and
evaluate f;:

(b) Determine F, from the y
equation:

If the coin is about to slide at
r=16 cm, f;=fsmax- Solve for z in
terms of f; max and Fy:

Substitute numerical values and
evaluate u:

> <

n
s
X — €—0)
¥ mg
V2
F =f =m—
Z X s m 7
and
2 b =F-mg=0
27r
y=
T
Ar*mr
Ji= T2
7= 47t2((0.lkg2)(0.1m) _[0395N
(s)
F,=mg
4x*mr
— f:v,max — ]12 — 47[27’
Hs F, mg gT?
47*(0.16m)

H T ostms )(Is)
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Picture the Problem The forces acting on
the tetherball are shown superimposed on a
pictorial representation of the motion. The
horizontal component of T is the
centripetal force. Applying Newton’s 2"
law of motion and solving the resulting
equations will yield both the tension in the
cord and the speed of the ball.

(a) Apply Z F = ma to the tetherball:

Solve the y equation for 7:

Substitute numerical values and
evaluate 7"

(b) Eliminate T between the force
equations and solve for v:

Note from the diagram that:

Substitute for 7 in the expression for
v to obtain:

Substitute numerical values and

evaluate v:

*77 oo

Picture the Problem The diagram
includes a pictorial representation of the
earth in its orbit about the sun and a force
diagram showing the force on an object at
the equator that is due to the earth’s
rotation, IER , and the force on the object

due to the orbital motion of the earth about
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20°

i

2
ZFx = T'sin20° = m—
’

and
sz =Tc0s20°-mg =0

__mg
co0s20°

(0.25kg)(9.81m/s?)
cos 20°

v =4/rgtan20°

T= =| 2.6IN

r = Lsin20°

V= \/gL sin 20°tan 20°

v =/(9.81m/s? [1.2m )sin20° tan 20°
=|1.21m/s
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the sun, IEO. Because these are centripetal

forces, we can calculate the accelerations
they require from the speeds and radii
associated with the two circular motions.

Express the radial acceleration due
to the rotation of the earth:

Express the speed of the object on
the equator in terms of the radius of
the earth R and the period of the
earth’s rotation 7x:

Substitute for vk in the expression

for ag to obtain:

Express the radial acceleration due
to the orbital motion of the earth:

Express the speed of the object on
the equator in terms of the earth-sun
distance r and the period of the
earth’s motion about the sun 7,:

Substitute for v, in the expression
for a, to obtain:

Substitute numerical values and
evaluate a.:

2
1%
ag _ER
- 27R
R TR
L AR _ 47°(6370km)(1000 m/km)
R ™ 2 - 2
T,
R (241’1) 3600s
1h
=3.37x107 m/s’
=|3.44x107g
v
a, =—
r
2rr
Vv, =——
T,
Ar’r
a, = 2
T,

47°(1.5x10" m)

1d

o]

=5.95x10" m/s? =

6.07x10g
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Picture the Problem The most significant
force acting on the earth is the gravitational
force exerted by the sun. More distant or p
less massive objects exert forces on the
earth as well, but we can calculate the net
force by considering the radial acceleration
of the earth in its orbit. Similarly, we can
calculate the net force acting on the moon
by considering its radial acceleration in its
orbit about the earth.

(a) Apply ) F. =ma, to the earth: v
Z onearth — m—
r
Express the orbital speed of the 2rr
earth in terms of the time it takes to V= T

make one trip around the sun (i.e.,
its period) and its average distance
from the sun:

Substitute for v to obtain: ~ A7imr

Substitute numerical values and evaluate Fo, carh:

 47°(5.98x10* kg)(1.496x10" m)

Foy carn = —=|3.55x10”N
(365.24dxmx 36005)
d h
(b) Proceed as in (a) to obtain:
2 22 8
4 (7.35x10 kg)(3.844x12 M) oo TN
(27.32dx”:1hx 36005)

79 e

Picture the Problem The semicircular
wire of radius 10 cm limits the motion of
the bead in the same manner as would a
10-cm string attached to the bead and fixed
at the center of the semicircle. The
horizontal component of the normal force
the wire exerts on the bead is the

centripetal force. The application of
Newton’s 2™ law, the definition of the
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speed of the bead in its orbit, and the

relationship of the frequency of a circular
motion to its period will yield the angle at
which the bead will remain stationary

relative to the rotating wire.

Apply Z F = ma to the bead:

Eliminate F, from the force
equations to obtain:

The frequency of the motion is the
reciprocal of its period 7. Express
the speed of the bead as a function
of the radius of its path and its
period:

Using the diagram, relate » to L and
0:

Substitute for » and v in the
expression for tané and solve for

Substitute numerical values and
evaluate @

80 (1] ]
Picture the Problem Note that the
acceleration of the bead has two

components, the radial component
perpendicular toV, and a tangential

component due to friction that is opposite
toV. The application of Newton’s 2™ law
will result in a differential equation with
separable variables. Its integration will lead
to an expression for the speed of the bead

as a function of time.

2 F =F,
and

LE=F,

2
y
tand = —

r=Lsin@

6= cos’l{

gl
4L

(9.81m/s?)(0.55)

sin@ = mY—
-
cosd —mg =0

6= cosl[

47%(0.1m)

}

51.6°




Apply z F = ma to the bead in the

radial and tangential directions:

Express f; in terms of g4 and F;:

Substitute for F,, and f; in the
tangential equation to obtain the
differential equation:

Separate the variables to obtain:

Express the integral of this equation
with the limits of integration being
from vq to v on the left-hand side
and from O to ¢ on the right-hand
side:

Evaluate these integrals to obtain:

Solve this equation for v:

81 (1] ]
Picture the Problem Note that the
acceleration of the bead has two

components—the radial component
perpendicular toV, and a tangential

component due to friction that is opposite
to V. The application of Newton’s 2™ law
will result in a differential equation with
separable variables. Its integration will lead
to an expression for the speed of the bead

as a function of time.
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ZE:Fn:mv_
r
and
dv
F=—f =ma, =m—
Z t fk t dt
S =
av__ thp
dt r
D __H gy
V2 r
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(a) In Problem 81 it was shown that:

Express the centripetal acceleration
of the bead:

(b) Apply Newton’s 2™ law to the
bead:

Eliminate F, and f; to rewrite the
radial force equation and solve for
a

(c) Express the resultant
acceleration in terms of its radial
and tangential components:

Concepts of Centripetal Force

*82 o

Picture the Problem The diagram depicts
a seat at its highest and lowest points. Let
"t" denote the top of the loop and "b” the
bottom of the loop. Applying Newton’s 2™
law to the seat at the top of the loop will
establish the value of mv*/-; this can then
be used at the bottom of the loop to

determine F .

Apply ZF, =ma, to the seat at the
top of the loop:

Apply ZFr = ma, to the seat at the

1
v =y,
1+(’u“vojt
r
2
2
1
a, LA I
d d 1+('u"v°jt
r
V2
S E=F=m"
r
and
dv
S =ty =ma,=m %
V2
a, =—p,—=| - tha,
r
a=\a’+a? =\(-pa,) +a
=| a1+ 1
//1::.'::
}mﬁ
E,I,=m§

mg +Fy=2mg =ma, = mv/r

Foy—mg = mv/r
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bottom of the loop:

Solve for F,,;, and substitute for Fu»=3mg and

mv*/r to obtain:

83

Picture the Problem The speed of the
roller coaster is imbedded in the expression
for its radial acceleration. The radial
acceleration is determined by the net radial
force acting on the passenger. We can use
Newton’s 2™ law to relate the net force on
the passenger to the speed of the roller

coaster.

Apply ZEadial = MaA g giay to the

passenger:

Solve for v v=./l.4gr

Substitute numerical values and
evaluate v:

84 -

Picture the Problem The force F the
passenger exerts on the armrest of the car
door is the radial force required to maintain
the passenger’s speed around the curve and
is related to that speed through Newton’s
2" law of motion.

(d) s correct.

mg + 0.4mg = mv*/r

12.8m/s

Appl F_=ma_ to the forces v
pply D F, =ma, Fem?
acting on the passenger: 4
Solve this equation for v: rF
V=,—
m

Substitute numerical values and

Lo [Bom)220N) _ o
evaluate v: 70kg

v=1/1.4(9.81m/5>)(12.0m)

331
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and | (a)1is correct.

*85  eeo

Picture the Problem The forces acting on
the bicycle are shown in the force diagram.
The static friction force is the centripetal
force exerted by the surface on the bicycle
that allows it to move in a circular path.

IEn + fs makes an angle 6 with the vertical

direction. The application of Newton’s 2™
law will allow us to relate this angle to the

speed of the bicycle and the coefficient of
static friction.

(a) Apply Z F = ma to the bicycle:

Relate F, and f; to & mv?
- 2
tan@ = S r V.
n mg rg
Solve for v: v=,/rgtand
Substitute numerical values and V= \/ (20 m)(9.8 1m/s? )tanl 5°
evaluate v:
=|7.25m/s
(b) Relate f;to 4 and F)y: Jo =% fomax =T MG
Solve for 4 and substitute for f; to _2f 20
obtain: T mg - rg
Substitute numerical values and 2(7 25 m/s)2

=1 0.536

evaluate /i %= om)o.81mis?)



86 oo

Picture the Problem The diagram shows
the forces acting on the plane as it flies in a
horizontal circle of radius R. We can apply
Newton’s 2™ law to the plane and
eliminate the lift force in order to obtain an
expression for R as a function of v and 6.

Apply Z F = ma to the plane:

Eliminate Fj;; between these
equations to obtain:

Solve for R:

Substitute numerical values and
evaluate R:

87 -

Picture the Problem Under the conditions
described in the problem statement, the
only forces acting on the car are the normal
force exerted by the road and the
gravitational force exerted by the earth.
The horizontal component of the normal
force is the centripetal force. The
application of Newton’s 2™ law will allow
us to express € in terms of v, r, and g.

Apply z F = ma to the car:

Applications of Newton’s Laws
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Z:Fr = F,sinf = m>—
’ R

and
ZFy =F,cos0-mg=0

2

tanH:V—
Rg
R=_V
gtand
k i Y
48010,
h 3600

(9.81m/s? Jtan40°

2.16km

*mg

2
ZFX =F,sin@ = m—
r

and
sz =F cos@-mg=0
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2

Eliminate F, from the force Y
, , tand = —
equations to obtain: rg
Solve for 8: V7
0 =tan"| —
rg

Substitute numerical values and evaluate &

=|21.7°

[ [(90km/h)(1h /36005 )(1000 m/km)]?
g =t { (160m)(9.81m/s’) }

*88 oo

Picture the Problem Both the normal
force and the static friction force contribute
to the centripetal force in the situation
described in this problem. We can apply
Newton’s 2™ law to relate f; and F, and

then solve these equations simultaneously

to determine each of these quantities.

2

() Apply Y F =mato the car: > F, =F,sin0+ f,cos0 =m*-
r

and
sz =F, cos@—f sinf-mg=0

2

\
. . sin@cos@+ F sin* @ = m—sin @
the y equation by cosé to obtain: Js B 7

Multiply the x equation by sind and

and
F,cos’ 0 — f.sinfcos@ —mgcosd =0

2

F —mgcos@ = mY—sin@
r

Add these equations to eliminate f;:

2

Voo
F, =mgcos@+m—sin0
r

Solve for F:

2
= m(gcosHJrv—sinGJ
r

Substitute numerical values and evaluate F,:
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2 2 2
F, = (300kg)| (9.81m/s? }cos10°+ (85 km/h) (1000 m/km ) (1W3600s)"
150m
=| 8.25kN
(b) Solve the y equation for f;: f = F cos@—mg
' sin@

Substitute numerical values and evaluate f;:

_ (8.25kN)cos10° — (800kg)(9.81m/s?)

=|1.59kN
/. sin10°
(c) Express f4min in terms of f; and U= L
Fn: S, min F;]
Substitute numerical values and _1.59kN
/usmin =———=0.193
evaluate 4 min: ’ 8.25kN
89 e

Picture the Problem Both the normal

force and the static friction force contribute

to the centripetal force in the situation

described in this problem. We can apply —
Newton’s 2™ law to relate fsand F,, and

then solve these equations simultaneously

to determine each of these quantities. -

2

(a) Apply ZF = ma to the car: ZFx =F, sin0+fscosl9=mv—
r

ZFy =F, cos@— f, sin@ -mg=0

2

. v
sin@cos@+ F. sin> @ = m—sin 0
the y equation by cos@: /. " r

Multiply the x equation by siné and

F cos’ @ — f.sinfcos@ —mgcosd =0

2

F —mgcosf = mY—sin@
r

Add these equations to eliminate f;:
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2

Voo
F, =mgcosf+m—sin0
r

2
= m(gcos&’—i—v—sinﬁj

r

Solve for F,:

Substitute numerical values and evaluate F,:

2 2 2
P (800kg){(9.81m/s2)00810°+ (38km/h)’ (1000 m/km )’ (1b/3600s)" . | oo}

" 150m
=|7.832kN
(b) Solve the y equation for f;: I= F cos@—mg
’ sin @
=F, cotf— }‘ng
sin
Substitute numerical values and evaluate f;:
2
£ =(7.832kN)cot10° - (300ke)0.81ms*) 777N

sin10°

The negative sign tells us that f; points upward along the inclined plane rather than as

shown in the force diagram.

*Q() eee

Picture the Problem The free-body diagram to the left is for the car at rest. The static
friction force up the incline balances the downward component of the car’s weight and
prevents it from sliding. In the free-body diagram to the right, the static friction force
points in the opposite direction as the tendency of the moving car is to slide toward the
outside of the curve.




Apply z F = ma to the car that is

at rest:

Substitute f; = fimax = t:Fn in
equation (2) and solve for and
evaluate the maximum allowable
value of &

Apply Z F = ma to the car that is

moving with speed v:

Substitute f; = wF, in equations (3)
and (4) and simplify to obtain:

Substitute numerical values into (5)
and (6) to obtain:

Eliminate F, and solve for 7:

Substitute numerical values and
evaluate r:

91 (1 1]
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ZFy =F cos@+ f,sinf-mg=0 (1)
and

ZF;:Fnsinﬁ—fscosH:O 2)

O =tan"' yu =tan"' 0.08 =| 4.57°

ZFy =F, cosd— fsind-mg=0 (3)
2

ZF; :ﬂSin9+ﬂcos€:mv_ (4)
r

F.,(cos@ — u sin0)=mg (5)
2
F. (1.cos0 +sin@)= m (6)
r
0.9904F, = mg
and
V2
0.1595F, =m—
r
2
v
r=—
0.1610g

(60km/h x 1h/3600s x 1000 m/km )’
0.1610(9.81m/s”)

=

=|176m

Picture the Problem The free-body diagram to the left is for the car rounding the curve
at the minimum (nonsliding down the incline) speed. The static friction force up the

incline balances the downward component of the car’s weight and prevents it from

sliding. In the free-body diagram to the right, the static friction force points in the

opposite direction as the tendency of the car moving with the maximum safe speed is to

slide toward the outside of the curve. Application of Newton’s 2" law and the

simultaneous solution of the force equations will yield vy, and vyay.
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Y
I V= vl‘]'lﬂ.‘(
I
|
|
I
[

Yz

Apply Z F = md to a car traveling ZF R
around the curve when the r

and

ZFy =F cos@—-mg =0

coefficient of static friction is zero:

rg

tand = —or @ =tan™

Divide the first of these equations V2 V2
by the second to obtain: rg

Substitute numerical values and evaluate the banking angle:

[ (40km/h ¥ (1000 m/km ) (1h/36005?)

¢ =tan (30m)9.81m/s*)

}: 22.8°

2

ApplyZF:matothecar ZF;:F;Sinﬁ—fSCOSH:mvmm
r

traveling around the curve at
and
ZFy =F,cos@+ f,sinf-mg =0

minimum speed:

Substitute f; = fimax = tFy in the . v
Sk a F, (1, cos@ —sin @) = m—min

force equations and simplify to 7
obtain: and
F (cos@ + u sinf)=mg

2

Evaluate these equations for Vi
0.1102F,=m—%

0 =22.8°and u,=0.3: 7
and
1.038F, = mg
Eliminate F, between these two Vi =4/0.1067g

equations and solve for v,



Substitute numerical values and

evaluate vy

Apply z F = ma to the car

traveling around the curve at
maximum speed:

Substitute f; = f;max = UsFy In the
force equations and simplify to
obtain:

Evaluate these equations for
6@ =22.8°and u;=0.3:

Eliminate F, between these two
equations and solve for vyy:

Substitute numerical values and

evaluate vy,

Drag Forces

92 -
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Vo =4/0.106(30m)(9.81m/s?)
=|5.59m/s = 20.1km/h

2

ZF; :F;lsint9+fscosé’=mvmi
,

and
sz =F, cos@ — f.sind —mg =0

2

Fn(ﬂs cosd + siné?):  Ymax.
r

and
F,(cos@— u sin@)=mg

2

0.6641F,= m~max
r

and
0.8056F, = mg

Vo = 0.8243rg

Vow = 1/(0.8243)(30m)(9.81my/s? )
=[15.6m/s = 56.1km/h

Picture the Problem We can apply Newton’s 2™ law to the particle to obtain its

equation of motion. Applying terminal speed conditions will yield an expression for b

that we can evaluate using the given numerical values.

Apply sz = ma, to the particle:

When the particle reaches its
terminal speed v =w.and a, = 0:

Solve for b to obtain:

mg—bv=ma,

mg—bv, =0
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Substitute numerical values and
evaluate b:

93 -

(10’13kg)(9.81m/s2)
3x10™* m/s

3.27x107 kg/s

Picture the Problem We can apply Newton’s 2™ law to the Ping-Pong ball to obtain its
equation of motion. Applying terminal speed conditions will yield an expression for b

that we can evaluate using the given numerical values.

Apply sz = ma,, to the Ping-
Pong ball:

When the Ping-Pong ball reaches its
terminal speed v =w.and a, = 0:

Solve for b to obtain:

Substitute numerical values and
evaluate b:

*94

2 _
mg—bv" =ma,

mg—bv: =0
mg
h=1%
v2

2.3x107kg)|9.81m/s’

yo i )
(9m/s)’

2.79x107* kg/m

Picture the Problem Let the upward direction be the positive y direction and apply

Newton’s 2™ law to the sky diver.

(a) Apply ZFy = ma, to the sky

diver:

Substitute numerical values and
evaluate Fy:

b) Substitute Fy = hv?in equation
(b) . ineq
(1) to obtain:

Solve for b:

Fy—mg=ma,
or, because a, =0,
Fy=mg (D

F, = (60kg)(9.81m/s*)=[ 589N

bv} = mg



Substitute numerical values and
evaluate b:

95 e
Picture the Problem The free-body
diagram shows the forces acting on the car
as it descends the grade with its terminal
velocity. The application of Newton’s 2™
law with @ = 0 and Fy equal to the given
function will allow us to solve for the
terminal velocity of the car.

Apply ZFX = ma, to the car:

Substitute for F4 to obtain:

Solve for v;:

Substitute numerical values and

evaluate v

96 (1 1]
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589N

(25m/s)

0.942kg/m

mgsin@—F, =ma_

or, because v =v;and a, = 0,
mgsin@—F, =0

mgsin0—100N—(1.2N-s*/m* 2 =0

. mgsind—-100N
' 1.2N-s*/m’

. (800kg)(9.81m/s? Jsin 62— 100N
v 1.2N-s?/m?

88.2km/h

=245m/s =

Picture the Problem Let the upward direction be the positive y direction and apply
Newton’s 2™ law to the particle to obtain an equation from which we can find the

particle’s terminal speed.

(a) Apply D F, =ma,toa

pollution particle:

Solve for v, to obtain:

mg —6xnrv =ma,

or, because a, =0,
mg —6xnrv, =0

__mg
Y emnr

1%
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Express the mass of a sphere in
terms of its volume:

Substitute for m to obtain:

Substitute numerical values and

evaluate v

(b) Use distance equals average
speed times the fall time to find the
time to fall 100 m at 2.42 cm/s:

*97 (XY}

3
m:pV:p(47;r j

2r’ pg
Vt = T

2(10* m)*(2000kg/m* )(9.81m/s*)

Vv, =

t 9(1.8x10~ N-s/m?)
=|2.42cm/s
4
f=A0em 310 s=[1.15h
2.42cm/s

Picture the Problem The motion of the centrifuge will cause the pollution particles to

migrate to the end of the test tube. We can apply Newton’s 2™ law and Stokes’ law to

derive an expression for the terminal speed of the sedimentation particles. We can then

use this terminal speed to calculate the sedimentation time. We’ll use the 12 cm distance

from the center of the centrifuge as the average radius of the pollution particles as they

settle in the test tube. Let R represent the radius of a particle and 7 the radius of the

particle’s circular path in the centrifuge.

Express the sedimentation time in
terms of the sedimentation speed v;:

Apply ZF;adial = ma,,gia toa

pollution particle:

Express the mass of the particle in
terms of its radius R and density p:

Express the acceleration of the
pollution particles due to the motion
of the centrifuge in terms of their
orbital radius » and period T:

Substitute for m and a. and simplify
to obtain:

P

sediment

67nRv, = ma,

m:pV:§7rR3p

2wr ?
V2 T _ 47°r

2
C o r T

ar’r) 167°prR’
67”7th :?ﬂ-RSp[ T2 j: 372



Solve for v;:

Find the period 7 of the motion from
the number of revolutions the
centrifuge makes in 1 second:

Substitute numerical values and
evaluate v

Find the time it takes the particles to
move 8 cm as they settle in the test
tube:

In Problem 96 it was shown that the
rate of fall of the particles in air is
2.42 cm/s. Find the time required to
fall 8 cm in air under the influence
of gravity:

Find the ratio of the two times:

Euler’s Method

08 e

Picture the Problem The free-body
diagram shows the forces acting on the
baseball sometime after it has been thrown
downward but before it has reached its
terminal speed. In order to use Euler’s
method, we’ll need to determine how the
acceleration of the ball varies with its
speed. We can do this by applying
Newton’s 2™ law to the ball and using its
terminal speed to express the constant in
the acceleration equation in terms of the
ball’s terminal speed. We can then use

Vv, =V, +a,At to find the speed of the
ball at any given time.
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_87’prR’

oopr?

1

=————— =1.25x10"" min/rev
800rev/min

=1.25%10~ min/revx 60s/min
=75.0x107 s/rev

. _ 87°(2000kg/m’ J0.12m )10~ m)
9(1.8x10 N-s/m*)(75x107s)’
=2.08m/s

Ax 8cm
Atsediment e
v 208cm/s
=1 38.5ms
Ar, =S¢ Sem
v 2.42cm/s
=|331s
Atair/Atsediment = 100
A 2
Q
Ymg
|
X
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Apply Newton’s 2™ law to the ball 5 dv
to obtain: mg —bv" =m—
dt

Solve for dv/dt to obtain: dv b ,

dt & m
When the ball reaches its terminal 0 oo b 2o b g
speed: g i m oV
Substitute to obtain: dv - e

dt g v
Express the position of the ball to V.tV
obtain: X, =X, +—2 At
Letting a, be the acceleration of the v, =V, +aAt
ball at time #,, express its speed where

when t=1¢,+ 1:

2
a, = g(l —:—’;J
t

and At is an arbitrarily small interval of
time.

A spreadsheet solution is shown below. The formulas used to calculate the quantities in
the columns are as follows:

Cell Formula/Content Algebraic Form
Al0 B9+$BS$1 t+ At
B10 | B9+0.5*(C9+C10)*$B$1 V. 4V
X, =X, +—"“2 At
C10 C9+D9*$BS$1 Vpi1 = Vit a,At
D10 | $B$4*(1-C10"2/$B$5"2) vzj
a,=gl1-—+
vt
A B C D
1 At=10.5 s
2 x0=10 m
3 v0=|9.722 m/s
4 a0= | 9.81 m/s"2
5 vt= | 41.67 m/s
6
7 t X v a
8 (s) (m) (m/s) (m/s"2)
9 0.0 0 9.7 9.28
10 0.5 6 14.4 8.64
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11 1.0 14 18.7 7.84
12 1.5 25 22.6 6.92
28 9.5 317 413 0.17
29 10.0 337 414 0.13
30 10.5 358 41.5 0.10
38 14.5 524 41.6 0.01
39 15.0 545 41.7 0.01
40 15.5 566 41.7 0.01
41 16.0 587 41.7 0.01
42 16.5 608 41.7 0.00

From the table we can see that the speed of the ball after 10 s is

approximately| 41.4m/s. | We can estimate the uncertainty in this result by halving At

and recalculating the speed of the ball at = 10 s. Doing so yields
V(10 s) ~ 41.3 m/s, a difference of about | 0.02%.

The graph shows the velocity of the ball thrown straight down as a function of time.

Ball Thrown Straight Down

45

35 A
30 A
25 1

20
4

10

v (m/s)

L(s)

Reset Af to 0.5 s and set vy = 0. Ninety-nine percent of 41.67 m/s is approximately 41.3
m/s. Note that the ball will reach this speed in about| 10.5s | and that the distance it

travels in this time is about | 322 m. | The following graph shows the distance traveled by

the ball dropped from rest as a function of time.
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Ball Dropped From Rest

400
350 - /
300

250 - /

E 200 - /
=
150 ”
100 | /
507 /
0 :
0 2 4 6 8 10 12
1 (s)
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Picture the Problem The free-body
diagram shows the forces acting on the Y

baseball after it has left your hand. In order |
to use Euler’s method, we’ll need to
determine how the acceleration of the ball
varies with its speed. We can do this by

2
applying Newton’s 2™ law to the baseball. by
We can thenuse v,,, =v, +a,At and
X,.; =X, +v At to find the speed and i
position of the ball.

Apply ZFy =ma, to the baseball: dv

—bv|v|—mg = mE

where |v| = v for the upward part of the

flight of the ball and |v| = —v for the
downward part of the flight.

Solve for dv/dt: dv b
gLl
dt m
Under terminal speed conditions )
O=—-g+—v,
(|v| =-V,):
and
b _g
T2
m v
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av_ g oM
dr & vaM_ g{1+ vf]

Substitute to obtain:

Letting a, be the acceleration of the
ball at time #,, express its position
and speed when ¢t =¢,+ 1:

yn+l = yn +%(vn + Vn—l )At
and

V., =v,+ta,At

n+l

where

ValVa
a, =—g 1+v—2
t

and At is an arbitrarily small interval of
time.

A spreadsheet solution is shown below. The formulas used to calculate the quantities in
the columns are as follows:

Cell Formula/Content Algebraic Form
D11 D10+$B$6 t+ At
E10 41.7 Vo
Ell E10-$B$4* v =v +a At
(1+E10*ABS(E10)/($B$5"2))*$B$6

F10 0 Yo
F11 F10+0.5*(E10+E11)*$B$6 Vo=, +%(vn v )At
G10 0 Vo
Gll1 $E$10*D11-0.5¥*$B$4*D1112 vot—%gtz

A B C D E F G
4 | g=1]9.81 | m/s"2
5 | vt=1|41.7 | m/s
6 |At=|0.1 |s
7
8
9 t v y y no drag
10 0.0 41.70 0.00 0.00
11 0.1 39.74 4.07 4.12
12 0.2 37.87 7.95 8.14
40 3.0 3.01 60.13 81.00
41 3.1 2.03 60.39 82.18
42 3.2 1.05 60.54 83.26
43 3.3 0.07 60.60 84.25
44 3.4 -0.91 60.55 85.14
45 3.5 —-1.89 60.41 85.93
46 3.6 -2.87 60.17 86.62
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78 6.8 -28.34 6.26 56.98

79 6.9 —28.86 3.41 54.44

80 7.0 -29.37 0.49 51.80

81 7.1 -29.87 -2.47 49.06
From the table we can see that, after 3.5 s, the ball reaches a height of about| 60.4m.
reaches its peak a little earlier—at about | 3.3s, |and its height at = 3.3 s is| 60.6m.

The ball hits the ground at about ¢ =

going up.

7s

The solid curve on the following graph shows y(f) when there is no drag on the baseball
and the dotted curve shows y(#) under the conditions modeled in this problem.

90
80
70
60
= 50
~ 40
30
20
10

——_

= x with drag

X with no drag

100 e

Picture the Problem The pictorial representation shows the block in its initial position
against the compressed spring, later as the spring accelerates it to the right, and finally
when it has reached its maximum speed at x; = 0. In order to use Euler’s method, we’ll
need to determine how the acceleration of the block varies with its position. We can do

this by applying Newton’s 2™ law to the box. We can then use v, =v, +a,At and

xn+1
k
0000 =
_“0 = 0
ve=10
ag="*%m (0.3 m)

= x, +v,At to find the speed and position of the block.

=

Apply ZFX = ma, to the block:

=
I[]

Vn

a, = Kim (0.3 —.\‘n}

k(0.3m—-x, )= ma

x=03m
Vp=V

)
max

d'f'—O

n

It

—so it spends a little longer coming down than
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lve fq :
Solve for a, a, :£(0.3m—x,1)
m

Express the position and speed of X
the block when ¢t =¢,+ 1:

a1 =X, TV,At
and

V., =v +a,At
where

k
a, = —(O.3m—xn)

m
and At is an arbitrarily small interval of
time.

A spreadsheet solution is shown below. The formulas used to calculate the quantities in
the columns are as follows:

Cell Formula/Content Algebraic Form

Al0 A9+$B§1 1+ At

B10 B9+C10*$B§1 x, +v At

C10 C9+D9*$B§1 v, +a,At

D10 | ($B$4/$B$5)*(0.3-B10) k

~(03-x,)
m
A B C D

1 At= | 0.005 s
2 x0=10 m
3 vOo=10 m/s
4 k=150 N/m
5 m=|0.8 kg
6
7 t X v a
8 (s) (m) (m/s) (m/s"2)
9 0.000 0.00 0.00 18.75
10 0.005 0.00 0.09 18.72
11 0.010 0.00 0.19 18.69
12 0.015 0.00 0.28 18.63
45 0.180 0.25 241 2.85
46 0.185 0.27 242 2.10
47 0.190 0.28 243 1.34
48 0.195 0.29 2.44 0.58
49 0.200 0.30 2.44 —0.19

From the table we can see that it took about

0.200s

for the spring to push the block 30
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cm and that it was traveling about | 2.44m/s |at that time. We can estimate the

uncertainty in this result by halving Af and recalculating the speed of the ball at £ =10 s.
Doing so yields v(0.200 s) = 2.41 m/s, a difference of about | 1.2%.

General Problems

101 -
Picture the Problem The forces that act
on the block as it slides down the incline

ST <

are shown on the free-body diagram to the
right. The acceleration of the block can be -
determined from the distance-and-time

information given in the problem. The p \
application of Newton’s 2™ law to the 9)
block will lead to an expression for the

coefficient of kinetic friction as a function

of the block’s acceleration and the angle of
the incline.

Apply Y F =ma to the block: SF, = mgsind —f; = ma
and
XF,=F,-mg=0

Set fi = w4 F,, F, between the two _8 sind —a
equations, and solve for z: « gcosd

Using a constant-acceleration Ax = v At + %a(At)2 where v, =0
equation, relate the distance the
block slides to its sliding time:

Solve for a: 2Ax

Substitute numerical values and _ 2(2.4 m)
a=—7""3v
(5.25)
Find z4 for a = 0.1775 m/s* and B (9.81 sz)sin28° ~0.1775m/s’
0 =28°: H (9.81m/52) c0s28°
0.511

=0.1775m/s’

evaluate a:




Applications of Newton’s Laws 351
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Picture the Problem The free-body Jlf
diagram shows the forces acting on the A ;7»

model airplane. The speed of the plane can
be calculated from the data concerning the 7
radius of its path and the time it takes to O0—» —x
make one revolution. The application of

Newton’s 2" law will give us the tension F

in the string. 4 m?gb
(a) Express the speed of the airplane v 2_727’
in terms of the circumference of the T
circle in which it is flying and its
period:

Substitute numerical values and v 275(5-7 m) ~110 7 m/s
evaluate v i s

1.2

b) Apply ¥ F.=ma_to the model ?

(b) Apply ) F, , to the mode Feml

airplane: r

Substitute numerical values and 10.7m/s)

F=(04 kg)ﬂ =[8.03N

evaluate F: 57m

*103 e

Picture the Problem The free-body
diagram shows the forces acting on the
box. If the student is pushing with a force
of 200 N and the box is on the verge of
moving, the static friction force must be at

its maximum value. In part (), the motion

is impending up the incline; therefore the
direction of f; m.x is down the incline. mg

(a) Apply ZIE = ma to the box: ZFx =f.+F-mgsind=0
and
ZFy =F —mgcosf =0
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Substitute f; = fsmax = (Fn, eliminate
F, between the two equations, and
solve for z4:

Substitute numerical values and
evaluate f4:

(b) Find f; max from the x-direction
force equation:

Substitute numerical values and

evaluate f; nax:

If the block is on the verge of
sliding up the incline, f; y.x must act
down the incline. The x-direction
force equation becomes:

Solve the x-direction force equation
for F:

Substitute numerical values and
evaluate F:

104 -

F
U, =tanf —
mg cosé
ﬂs = tan 300_ﬂ
(800N )cos30°
=10.289

fsmlX =mgsinf - F

foma = (800N)sin30°— 200N
= 200N

~ fomx T —mgsin@d =0

F =mgsinf+ f,

s,max

F =(800N)sin30°+ 200N =

600N

Picture the Problem The path of the particle is a circle if 7 is a constant. Once we have
shown that it is, we can calculate its value from its components. The direction of the

particle’s motion can be determined by examining two positions of the particle at times

that are close to each other.

(a) and (b) Express the magnitude of
I in terms of its components:

Evaluate » with », =10 m cos ¢ and
ry =10 m sinat:

_ [2, 2
r=\r.tr,

r= \/[(—IOm)cos ot]? +[(10m)sin wr]?

J100(cos’wr +sin’ @ )m
=|10.0m




(c) Evaluate ryand r,at =0 s:

Evaluate r, and r, at t = At, where At
1s small:

(d) Differentiate I with respect to
time to obtain V :

Use the components of V to find its
speed:

(e) Relate the period of the particle’s
motion to the radius of its path and
its speed:

105 e

Picture the Problem The free-body
diagram shows the forces acting on the
crate of books. The kinetic friction force
opposes the motion of the crate up the
incline. Because the crate is moving at
constant speed in a straight line, its
acceleration is zero. We can determine F'
by applying Newton’s 2™ law to the crate,
substituting for fi, eliminating the normal
force, and solving for the required force.

Apply Z F = ma to the crate, with

both a, and a, equal to zero, to the
crate:

Applications of Newton’s Laws 353

r.= —(10m)cos0° =-10m

X

r, =(10m)sin0° =0

r, =—(10m)cos wA? ~ —(10m)cos 0°
=-10m
r,= (10m)sin wA?

= Ay where Ay is positive

and | the motion is clockwise

V =dr/dt

= [(10wsin wr)m] i+ [(10@cos wt )m] j

|2 2
V=4V,

\/[(1 0wsin ot )m|* +[(10@cos o )m]’
—(10m)w=(10m)2s")
20.0m/s

T 2m _ 27(10m) 1 rs

y 20m/s

Vo

ZFX =Fcosf— f, —mgsinf =0

and

ZFy =F, —Fsin@-mgcosd =0
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Substitute zF, for f; and eliminate F mg(sin 6 + 1, cos b))
F, to obtain: cos@ — u, sin@

Substitute numerical values and evaluate F:

1 _ (100kg)(9.81m/s” (sin30° +(0.5)c0s30°) _ YN

c0s30° —(0.5)sin30°
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Picture the Problem The free-body
diagram shows the forces acting on the
object as it slides down the inclined plane. >
We can calculate its speed at the bottom of =7 |\
the incline from its acceleration and / g \
displacement and find its acceleration from 0

Newton’s 2™ law. erg

Using a constant-acceleration V= vg + 2aAx

equation, relate the initial and final Because vy =0, v = J2aAx (1)
velocities of the object to its

acceleration and displacement: solve

for the final velocity:

Apply Z F = ma to the sliding ZFx =—f, +mgsin@ =ma

object: and
ZFy =F —mgcosf@ =0

Solve the y equation for ), and a= g(sin 6 — u, cos 49) 2
using fi = i F,, eliminate both F;

and f; from the x equation and solve

for a:

Substitute equation (2) in equation V= \/ 2 g(sin 6 — u, cos H)Ax
(1) and solve for v:

Substitute numerical values and evaluate v:

V= \/2(9.81m/s2)(sin 30°—(0.35)c0s30°)(72m) =16.7m/s and | (d) s correct.
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Picture the Problem The free-body
diagram shows the forces acting on the
brick as it slides down the inclined plane.
We’ll apply Newton’s 2™ law to the brick
when it is sliding down the incline with
constant speed to derive an expression for
L4 in terms of 6. We’ll apply Newton’s 2™
law a second time for & = 6, and solve the
equations simultaneously to obtain an
expression for a as a function of &, and 6.

Apply Z F = ma to the brick

when it is sliding with constant
speed:

Solve the y equation for F, and
using fi = F,, eliminate both F,
and fi from the x equation and solve
for 4:

Apply z F = ma to the brick when
0= 01:

Solve the y equation for F;, use

fx = k', to eliminate both F;, and f;
from the x equation, and use the
expression for z4 obtained above to
obtain:
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Y F, =—f +mgsinf, =0
and

ZFy =F —mgcosf, =0

u, =tané,

ZFx =—f, +mgsinf, =ma
and
sz =F —mgcosf, =0

a= g(sin 0, —tan g, cos 91)

Picture the Problem The fact that the object is in static equilibrium under the influence

of the three forces means that IE1 + IE2 + IE3 = 0. Drawing the corresponding force

triangle will allow us to relate the forces to the angles between them through the law of

sines and the law of cosines.
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(a) Using the fact that the object is
in static equilibrium, redraw the
force diagram connecting the forces
head-to-tail:

Apply the law of sines to the
triangle:

Use the trigonometric identity
sin(7 — @) = sina to obtain:

(b) Apply the law of cosines to the
triangle:

Use the trigonometric identity
cos(w— a) = —cosa to obtain:
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Picture the Problem We can calculate the
acceleration of the passenger from his/her
speed that, in turn, is a function of the
period of the motion. To determine the
longest period of the motion, we focus our
attention on the situation at the very top of
the ride when the seat belt is exerting no
force on the rider. We can use Newton’s
2" Jaw to relate the period of the motion to
the acceleration and speed of the rider.

(a) Because the motion is at
constant speed, the acceleration is
entirely radial and is given by:

Express the speed of the motion of
the ride as a function of the radius
of the circle and the period of its
motion:

sin(z - 6,,) B sin(z - 6,,) B sin(z - 6,,)

F__ F _ F
sind,, sinf, sinf,

F? = F} + F} =2F,F, cos(z - 0,,)

F’ =F] +F} +2F,F,cosf,

¥,

2
v
a, =—
B
2rr
y=—
T



Substitute in the expression for a. to
obtain:

Substitute numerical values and
evaluate a.:

(b) Apply D F =mdto the

passenger when he/she is at the top
of the circular path and solve for a.:

Relate the acceleration of the
motion to its radius and speed and
solve for v:

Express the period of the motion as
a function of the radius of the circle
and the speed of the passenger and
solve for T}

Substitute numerical values and
evaluate Ti:
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Ar’r
a. = T2
2
a, =l52m) =[49.3m/s’
(25)

ZFr =mg =ma,
and

a.=g

PR
r

4.49s

r o[ Sm
9.81m/s

Remarks: The rider is "weightless” under the conditions described in part (b).
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Picture the Problem The pictorial
representation to the right shows the cart
and its load on the inclined plane. The load
will not slip provided its maximum
acceleration is not exceeded. We can find
that maximum acceleration by applying
Newton’s 2™ law to the load. We can then
apply Newton’s 2™ law to the cart-plus-
load system to determine the tension in the
rope when the system is experiencing its
maximum acceleration.
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Draw the free-body diagram for the <
cart and its load:

st
-~
"'il.\
\
\
”

(m) + m)g

Apply ZFX = ma, to the cart plus T - (m1 +m, )g sinf = (m1 +m, )amax (1)
its load:
Draw the free-body diagram for the "
load of mass m, on top of the cart: ;‘n ’ - *
%
P ~
Jﬂz;{;
Apply z F = ma to the load on ZFX = fomax —M,8SINO =m,a,

top of the cart: and
ZFy =F,, —mygcost =0

Using fima = fFn2, eliminate ey = 811, cOSO —5in0) (2)
between the two equations and solve

for the maximum acceleration of the
load:

Substitute equation (2) in equation T = (m L+ m, )gﬂs cos@
(1) and solve for T':
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Picture the Problem The free-body
diagram for the sled while it is held
stationary by the static friction force is
shown to the right. We can solve this

problem by repeatedly applying Newton’s
2" law under the conditions specified in 9‘
each part of the problem. \

usd

my

(@) Apply Y | F, =ma, to the sled: F, —mgcosf =0



Solve for F,,;:

Substitute numerical values and

evaluate F), ;:

(b) Apply z F. =ma, to the sled:

Solve for f;:

Substitute numerical values and
evaluate f;:

(c) Draw the free-body diagram for

the sled when the child is pulling on
the rope:

Apply Z F = ma to the sled to

determine whether it moves:

Solve the y-direction equation for
F, nl:

Substitute numerical values and
evaluate F), ;:

Express fs max:

Use the x-direction force equation to
evaluate F:

Because the net force is negative,
the sled does not move:
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F,, =mgcost

F,, =(200N)cos15°=| 193N

f.—m,gsin@=0

f.=mgsind

f.=(200N)sin15°=| 51.8N

ZE‘C = Fnet

=Fcos30°—mgsinf— f .

and
D> F,=F, +Fsin30°—mgcosf =0

F

n,1

=—F'sin30°+m,gcosd

F,, =—(100N)sin30°+(200N)cos15°
=143N

f;,max = /uan,l = (05)(143 N)
=71.5N

Foe = (100 N)cos30° — (200 N)sin15°
~715N
=-36.7N

f 1s undetermined
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(d) Because the sled does not move: 4, is undetermined

(e) Draw the FBD for the child:

Express the net force F. exerted on F = | F2+f2 (1)
the child by the incline: ’
Noting that the child is stationary, Z F, = f, nax — £ €0830° —m,gsin15°
apply Z F = ma to the child: _

and

ZE =F,-m,gsin15°—Fsin30°=0

Solve the x equation for f;,,., and the Somax = £/ €0830°+m,gsinl5°
y equation for F: and

F, =m,gsin15°+ Fsin30°

n

Substitute numerical values and Somax = (5 00 N)COS 30°+ (1 00 N)sin 15°
evaluate F, and F: =459 N
and
F., =(100N)sin15°+ (500N )sin 30°
=276N
Substitute numerical values in F = \/ (276 N)2 + (459 N)Z -1 536N

equation (1) and evaluate F:
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Picture the Problem Let v represent the speed of rotation of the station, and r the
distance from the center of the station. Because the O’Neill colony is, presumably, in
deep space, the only acceleration one would experience in it would be that due to its
rotation.

(a) Express the acceleration of a=vir
anyone who is standing inside the
station:

This acceleration is directed toward the axis of rotation. If someone inside the station
drops an apple, the apple will not have any forces acting on it once released, but will
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move along a straight line at constant speed. However, from the point of view of our
observer inside the station, if he views himself as unmoving, the apple is perceived to
have an acceleration of mv*/r directed away from the axis of rotation (a "centrifugal"
force).

(b) Each deck must rotate the central 27r
axis with the same period 7. Relate V= T
the speed of a person on a particular

deck to his/her distance » from the

center:

Expr.ess the "a.cceleration of v 4Axir
gravity" perceived by someone a — =

2
distance r from the center: r r i
1.e., the "acceleration due to

gravity" decreases as r decreases.

(c) Relate the desired acceleration 4
to the radius of Babylon 5 and its a= 7’
period:
Solve for T - Ay

a
Substitute numerical values and 1.609km
evaluate T: A’ (0.3 mi x j

mi
T = 5
9.8m/s

=44.1s=0.735 min

Take the reciprocal of this time to 7 =
find the number of revolutions per

minute Babylon 5 has to make in

order to provide this "earth-like”

acceleration:

1.36rev/ min
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Picture the Problem The free-body
diagram shows the forces acting on the
child as she slides down the incline. We’ll
first use Newton’s 2™ law to derive an
expression for z in terms of her
acceleration and then use Newton’s 2™ law
to find her acceleration when riding the
frictionless cart. Using a constant-
acceleration equation, we’ll relate these
two accelerations to her descent times and
solve for her acceleration when sliding.
Finally, we can use this acceleration in the
expression for z4.

Apply Z F = ma to the child as

she slides down the incline:

Using fi = 4, eliminate fi and F,
between the two equations and solve
for z4:

Apply z F_=ma, to the child as

she rides the frictionless cart down
the incline and solve for her

acceleration a,:

Letting s represent the distance she
slides down the incline, use a
constant-acceleration equation to
relate her sliding times to her
accelerations and distance traveled
down the slide :

Equate these expressions, substitute
t, = 4t and solve for a;:

30°

ZFX =mgsin30°— f, =ma,

and
ZFy =F —mgcos30°=0

a,

M, =tan30° - (1)

gcos30°

mgsin30° = ma,

and
a, = gsin30°

=4.91m/s’
s =V, +Tat} where v, =0

and
- 1, 42 _
s =V, +5ya,t;, where v, =0

a,=1a, =1gsin30°=1.23m/s’
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Evaluate equation (1) with _ tan30°— 1.23m/s*

a, =123 m/s> Ha (9.81m/s2)cos30°
=| 0.433
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Picture the Problem The path of the particle is a circle if r is a constant. Once we have
shown that it is, we can calculate its value from its components and determine the
particle’s velocity and acceleration by differentiation. The direction of the net force
acting on the particle can be determined from the direction of its acceleration.

(a) Express the magnitude of I in = ’rxz + r;

terms of its components:

Evaluate r with r, = Rsin@t and p= \/[R sin a)t]2 + [R cos a)t]z
r, = Reosat:

= \/Rz(sinza)t+cos2 a)t) =R=40m

.".the path of the particleis a circle

centered at the origin.

(b) Differentiate I' with respect to V=dr/dt= [Ra)cosa)t] ]
time to obtain V :

~

+[- Rosinwt]

[(87 cos27z¢)m/s] i

—~[(87sin Zﬂt)m/s]j
.V 1%
Express the ratio —: —+ = M =—cotwt
v, v, —8msinwt
. Rcoswt
Express the ratio Y : EpA —-——=—cotwt
x x Rsinwt
Ve __ )
v, X
(c) Differentiate V with respect to a=dv/dt
time to obtain a : [(_ 1672 m/s> )sin a)t] P

+ [(—167rzm/sz)cosa)t]j
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Factor —477/s> from @ to obtain:

2

) Y
Find the ratio —:
r

(d) Apply Z F = ma to the particle:

Because the direction of |f is the

net

same as that of a:
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Picture the Problem The free-body
diagram showing the forces acting on a
rider being held in place by the maximum
static friction force is shown to the right.
The application of Newton’s 2" law and the
definition of the maximum static friction
force will be used to determine the period T’
of the motion. The reciprocal of the period
will give us the minimum number of
revolutions required per unit time to hold
the riders in place.

Apply z F = ma to the riders while

they are held in place by friction:

2
Using fs’max =uF and v = ;r ,

eliminate F,, between the force
equations and solve for the period of
the motion:

~

3= (_ 4t /sz)[(4sin a)t)f +(4cosa)t)J]
= (— 47 /sz)f

Because ais in the opposite direction from
I, it is directed toward the center of the

circle in which the particle is traveling.

v =M= 167°m/s* =a

r 4m
F,, =ma=(0.8kg)167> m/s*)
=|12.87° N
F,. is toward the center of the circle.
1
AN
E
o—>» —x
Vmg
v2
Y F =F, =m—
r
and

D F, = fim —mg=0
(0.4)4m)

T=27 2 2z .
g 9.81m/s

=2.54s =0.00423 min



The number of revolutions per
minute is the reciprocal of the period
in minutes:
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Picture the Problem The free-body
diagrams to the right show the forces
acting on the blocks whose masses are m;
and m,. The application of Newton’s 2"
law and the use of a constant-acceleration
equation will allow us to find a relationship
between the coefficient of kinetic friction
and m;. The repetition of this procedure
with the additional object on top of the
object whose mass is m; will lead us to a
second equation that, when solved
simultaneously with the former equation,
leads to a quadratic equation in ;. Finally,
its solution will allow us to substitute in an
expression for 4 and determine its value.

Using a constant-acceleration
equation, relate the displacement of
the system in its first configuration
as a function of its acceleration and
fall time:

Solve for a;:

Substitute numerical values and
evaluate a;:

Apply ZFX = ma, to the object

whose mass is m, and solve for T;:

Apply Z F = ma to the object

whose mass 1s m;:

Applications of Newton’s Laws

23.6rev/min

¥
|
A —
n, | -
15
il 7
<«—O)—» —x
VYmg myg

Ax = v, At +1a,(At)

or, because vy =0,

Ax=1a(Ar)

L2

1 (At)2

S (E1.J) PP
"o(0.82s)

mg =T, = mya,

and

I = mz(g - a)
— (2.5kg)(9.81m/s* — 4.46m/s*)
—13.375N

ZFx =T, - f, =maq,

and

365
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Using fi = w4 F,, eliminate F,
between the two equations to obtain:

Find the acceleration a, for the
second run:

Evaluate 75:

Apply ZFX =ma, to the 1.2-kg

object in place:

Solve equation (1) for z4:

Substitute for 4 in equation (2) and
simplify to obtain the quadratic
equation in m;:

Solve the quadratic equation to
obtain:

Substitute numerical values in
equation (3) and evaluate z4:
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Picture the Problem The diagram shows a
point on the surface of the earth at latitude
0. The distance R to the axis of rotation is

given by R = rcosf. We can use the
definition of centripetal acceleration to
express the centripetal acceleration of a

point on the surface of the earth due to the

rotation of the earth.

ZE =F,-mg=0

T, — pomg =ma, (1)

. 24 _2(1.5m)
*o(ae) (1.3s)

=1.775m/s*

T, =m, (g - a)
= (2.5kg)(9.81m/s2 —1.775m/s2)
=20.1N

T, _/uk(ml +1.2kg)g

2
= (m, +1.2kg)a, @
T —ma
py =" 3)
mg

2.685m? +9.947m, —16.05 =0

m, =(~1.85+3.07 kg = m, =|1.22kg

13.375N - (1.22kg)(4.66m/s?)
M T (1 22kg) 0.8 187

=|0.643




(a) Referring to the figure, express
a. for a point on the surface of the
earth at latitude 6:

Express the speed of the point due
to the rotation of the earth:

Substitute for v in the expression for
a. and simplify to obtain:

Substitute numerical values and
evaluate a.:

(b)
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2
a. = %where R =rcos@

C

_ 27R
T
where 7 is the time for one revolution.

1%

_4rx’rcos6
a, ==

B 47°(6370km)cos &

“ " T2an)3600sm)]"
(3 37 cm/s? )cos 6, toward the

earth's axis.

the stone is equal to ma

st, surf ?

A stone dropped from a hand at a location on earth. The effective weight of
where . is the acceleration of the falling stone
(neglecting air resistance) relative to the local surface of the earth. The
gravitational force on the stone is equal to ma
acceleration of the local surface of the earth relative to the inertial frame
(the acceleration of the surface due to the rotation of the earth). Multiplying
through this equation by m and rearranging gives ma
which relates the apparent weight to the acceleration due to gravity and the
acceleration due to the earth's rotation. A vector addition diagram can be used

to show that the magnitude of ma, , is slightly less than that of ma

st,iner 2 Where ast, iner 18 the

st,surf mast, iner m asurf, iner °

st, iner *

(c) At the equator, the gravitational
acceleration and the radial
acceleration are both directed
toward the center of the earth.
Therefore:

At latitude € the gravitational
acceleration points toward the
center of the earth whereas the
centripetal acceleration points
toward the axis of rotation. Use the

8=8x ta,
978cm/s” + (3.37 cm/s® )cosOO

=| 981.4cm/s*

gl =g’ +a’—2ga, cosf
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law of cosines to relate gefr, g, and

ac:

Substitute for 6, g.¢, and a. and
simplify to obtain the quadratic
equation:

Solve for the physically meaningful
(i.e., positive) root to obtain:
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Picture the Problem The diagram shows
the block in its initial position, an
intermediate position, and as it is
separating from the sphere. Because the
sphere is frictionless, the only forces acting
on the block are the normal and
gravitational forces. We’ll apply Newton’s
2™ Jaw and set F, equal to zero to
determine the angle &, at which the block
leaves the surface.

Taking the inward direction to be
positive, apply ZFr = ma, to the
block:

Apply the separation condition to
obtain:

Solve for cosé.:

Apply ZE = ma, to the block:

Multiply the left-hand side of the
equation by one in the form of
d@/d 6 and rearrange to obtain:

g —(4.75cm/s? g —962350cm*/s* =0

983cm/s?

v
mgcos@—F =m—
g n R

2

y
mgcostd. =m—
& ¢ R

2
\
cosl, =— €))
gR
mgsin@ = ma,
or
dv .
a,=—=gsind
dt
Note that a is not constant and, hence, we
cannot use constant-acceleration equations.

dv do )
——=gsinf
dt do

and
AOD _ ing



Relate the arc distance s the block

travels to the angle @ and the radius
R of the sphere:

Substitute to obtain:

Separate the variables and integrate
fromv' =0tovand 8=0to 6.

Substitute in equation (1) to obtain:

Solve for and evaluate 6.:

Applications of Newton’s Laws 369

6’2i and d—9=l§=l
R dt Rdt R
where v is the block’s instantaneous speed.
v dv .
——=gsinf
Rdo °©

O ey <

HC

vdv' = gR [ sin 60
0

or

v =2gR(1-cosé,)

2gR(1-cos6,)
gR
=2(1-cos#,)

cosd, =

0. =cos” (%) =| 48.2°
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