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Chapter 5 
Applications of Newton’s Laws 
 
Conceptual Problems 

 
1 •  
Determine the Concept Because the 
objects are speeding up (accelerating), 
there must be a net force acting on them. 
The forces acting on an object are the 
normal force exerted by the floor of the 
truck, the weight of the object, and the 
friction force; also exerted by the floor of 
the truck.  

 
Of these forces, the only one that acts in 
the direction of the acceleration (chosen 
to be to the right in the free-body 
diagram) is the friction force. .accelerate object to

 thecauses that force  thebemust 
 truck theoffloor   theandobject 

ebetween thfriction  of force The

 

 
*2 •  

Determine the Concept The forces acting 
on an object are the normal force exerted 
by the floor of the truck, the weight of the 
object, and the friction force; also exerted 
by the floor of the truck. Of these forces, 
the only one that acts in the direction of the 
acceleration (chosen to be to the right in 
the free-body diagram) is the friction force. 
Apply Newton’s 2nd law to the object to 
determine how the critical acceleration 
depends on its weight.  

 
Taking the positive x direction to be 
to the right, apply ΣFx = max and 
solve for ax:  
 

f  = µsw = µsmg = max 
and 
ax = µsg 
 

 

same.
  theare onsaccelerati critical  the

and  oft independen is  Because
w,

max
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3 •  
Determine the Concept The forces acting 
on the block are the normal force nF

r
 

exerted by the incline, the weight of the 
block g

r
m exerted by the earth, and the 

static friction force sf
r

 exerted by an 
external agent. We can use the definition of 
µs and the conditions for equilibrium to 
determine the relationship between µs and  
θ. 

 

 
Apply xx maF =∑ to the block:  fs − mgsinθ  = 0                (1) 

 
Apply yy maF =∑ in the y 

direction:  
 

Fn − mgcosθ  = 0              (2) 
 

Divide equation (1) by equation (2) 
to obtain: 
 

n

stan
F
f

=θ  

 
Substitute for fs (≤ µsFn): 

s
n

nstan µµθ =≤
F
F

 

and correct. is )(d  

 
*4 •  
Determine the Concept The block is in 
equilibrium under the influence of ,nF

r
,mg
r

 

and ;sf
r

 i.e.,  

nF
r

+ g
r

m + sf
r

= 0 

 
We can apply Newton’s 2nd law in the x 
direction to determine the relationship 
between fs and mg. 

 
  

Apply 0=∑ xF to the block:  fs − mgsinθ  = 0  
 

Solve for  fs: fs = mgsinθ  
and correct. is )(d  
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5  ••  
Picture the Problem The forces acting on 
the car as it rounds a curve of radius R at 
maximum speed are shown on the free-body 
diagram to the right. The centripetal force is 
the static friction force exerted by the 
roadway on the tires. We can apply 
Newton’s 2nd law to the car to derive an 
expression for its maximum speed and then 
compare the speeds under the two friction 
conditions described.  
 

Apply ∑ = aF rr
m to the car: ∑ ==

R
vmfFx

2
max

maxs,  

and 

∑ =−= 0n mgFFy  

 
From the y equation we have: Fn = mg 

 
Express fs,max in terms of Fn in the x 
equation and solve for vmax: 

gRv smax µ=  

or 

smax constant µ=v  

 
Express 'vmax for s2

1
s µµ =' :  

maxmax
s

max %71707.
2

constant vvv' ≈==
µ

and correct. is )(b  

 
*6 ••  
Picture the Problem The normal reaction 
force Fn provides the centripetal force and 
the force of static friction, µsFn, keeps the 
cycle from sliding down the wall. We can 
apply Newton’s 2nd law and the definition 
of fs,max to derive an expression for vmin. 

 
 
Apply ∑ = aF rr

m to the motorcycle: ∑ ==
R
vmFFx

2

n  

and 
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∑ =−= 0s mgfFy  

 
For the minimum speed:  fs  = fs,max = µsFn 

 
Substitute for fs, eliminate Fn 
between the force equations, and 
solve for vmin: 

s
min µ

Rgv =  

 
Assume that R = 6 m and µs = 0.8 
and solve for vmin: 

( )( )

km/h30.9m/s8.58
0.8

m/s9.81m6 2

min

==

=v
 

 
7 ••  
Determine the Concept As the spring is extended, the force exerted by the spring on the 
block increases.  Once that force is greater than the maximum value of the force of static 
friction on the block, the block will begin to move.  However, as it accelerates, it will 
shorten the length of the spring, decreasing the force that the spring exerts on the block.  
As this happens, the force of kinetic friction can then slow the block to a stop, which starts 
the cycle over again.  One interesting application of this to the real world is the bowing of 
a violin string:  The string under tension acts like the spring, while the bow acts as the 
block, so as the bow is dragged across the string, the string periodically sticks and frees 
itself from the bow. 
 
8 •  
True. The velocity of an object moving in a circle is continually changing independently 
of whether the object’s speed is changing. The change in the velocity vector and the 
acceleration vector and the net force acting on the object all point toward the center of 
circle. This center-pointing force is called a centripetal force.   
 
9  •  
Determine the Concept A particle traveling in a vertical circle experiences a downward 
gravitational force plus an additional force that constrains it to move along a circular path. 
Because the net force acting on the particle will vary with location along its trajectory, 
neither (b), (c), nor (d) can be correct. Because the velocity of a particle moving along a 
circular path is continually changing, (a) cannot be correct. correct. is )(e  

 
*10 •  
Determine the Concept We can analyze these demonstrations by drawing force diagrams 
for each situation. In both diagrams, h denotes ″hand″, g denotes ″gravitational″, m 
denotes ″magnetic″, and n denotes ″normal″. 
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(a) Demonstration 1: 

 

Demonstration 2: 
 

 

(b) Because the magnet doesn’t lift the iron in the first demonstration, the force exerted on 
the iron must be less than its (the iron’s) weight.  This is still true when the two are falling, 
but the motion of the iron is not restrained by the table, and the motion of the magnet is 
not restrained by the hand.  Looking at the second diagram, the net force pulling the 
magnet down is greater than its weight, implying that its acceleration is greater than g.  
The opposite is true for the iron:  the magnetic force acts upwards, slowing it down, so its 
acceleration will be less than g.  Because of this, the magnet will catch up to the iron piece 
as they fall. 
 
*11 •••  
Picture the Problem The free-body 
diagrams show the forces acting on the two 
objects some time after block 2 is dropped. 
Note that, while ,21 TT

rr
≠ T1 = T2.  

 
 

 
The only force pulling block 2 to the left is the horizontal component of the tension.  
Because this force is smaller than the magnitude of the tension, the acceleration of block 
1, which is identical to block 2, to the right (T1 = T2) will always be greater than the 
acceleration of block 2 to the left.  

 wall.the
 hits 2block  beforepulley  hit the  will1block   wall, the to2block  of distance

initial  theas same  theispulley   the to1block  from distance initial  theBecause
 

 
12 •  
True. The terminal speed of an object is given by ( ) ,1 n

t bmgv =  where b depends on the 

shape and area of the falling object as well as upon the properties of the medium in which 
the object is falling.   
 
13 •  
Determine the Concept The terminal speed of a sky diver is given by ( ) ,1 n

t bmgv =  

where b depends on the shape and area of the falling object as well as upon the properties 
of the medium in which the object is falling.  The sky diver’s orientation as she falls 
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determines the surface area she presents to the air molecules that must be pushed aside. 
correct. is )( d  

 
14 ••  
Determine the Concept In your frame of 
reference (the accelerating reference frame 
of the car), the direction of the force must 
point toward the center of the circular path 
along which you are traveling; that is, in 
the direction of the centripetal force that 
keeps you moving in a circle.  The friction 
between you and the seat you are sitting on 
supplies this force.  The reason you seem 
to be "pushed" to the outside of the curve is 
that your body’s inertia "wants" , in 
accordance with Newton’s law of inertia, 
to keep it moving in a straight line–that is, 
tangent to the curve.  

 

 

 
*15 •  
Determine the Concept The centripetal force that keeps the moon in its orbit around the 
earth is provided by the gravitational force the earth exerts on the moon. As described by 
Newton’s 3rd law, this force is equal in magnitude to the force the moon exerts on the 
earth.  correct. is )(d  

 
16 •   
Determine the Concept The only forces acting on the block are its weight and the force 
the surface exerts on it. Because the loop-the-loop surface is frictionless, the force it exerts 
on the block must be perpendicular to its surface. 
 
Point A: the weight is downward 
and the normal force is to the right. 
 

Free-body diagram 3 

Point B: the weight is downward, 
the normal force is upward, and the 
normal force is greater than the 
weight so that their difference is the 
centripetal force. 
 

Free-body diagram 4 

Point C: the weight is downward and 
the normal force is to the left. 
 

Free-body diagram 5 

Point D: both the weight and the 
normal forces are downward. 

Free-body diagram 2 
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17 ••  
Picture the Problem Assume that the drag force on an object is given by the Newtonian 
formula ,2

2
1

D vCAF ρ=  where A is the projected surface area, v is the object’s speed, ρ 
is the density of air, and C a dimensionless coefficient.   
 
Express the net force acting on the 
falling object: 
 

maFmgF =−= Dnet  

Substitute for FD under terminal 
speed conditions and solve for the 
terminal speed: 

02
T2

1 =− vCAmg ρ  
or 

ρCA
mgv 2

T =  

Thus, the terminal velocity depends on the 
ratio of the mass of the object to its surface 
area. 
 

For a rock, which has a relatively small surface area compared to its mass, the terminal 
speed will be relatively high; for a lightweight, spread-out object like a feather, the 
opposite is true.   
 
Another issue is that the higher the terminal velocity is, the longer it takes for a falling 
object to reach terminal velocity. From this, the feather will reach its terminal velocity 
quickly, and fall at an almost constant speed very soon after being dropped; a rock, if not 
dropped from a great height, will have almost the same acceleration as if it were in free-
fall for the duration of its fall, and thus be continually speeding up as it falls.   
 
An interesting point is that the average drag force acting on the rock will be larger than 
that acting on the feather precisely because the rock’s average speed is larger than the 
feather's, as the drag force increases as v2.  This is another reminder that force is not the 
same thing as acceleration. 
 
Estimation and Approximation  
 
*18 •  
Picture the Problem The free-body 
diagram shows the forces on the Tercel as it 
slows from 60 to 55 mph. We can use 
Newton’s 2nd law to calculate the average 
force from the rate at which the car’s speed 
decreases and the rolling force from its 
definition. The drag force can be inferred 
from the average and rolling friction forces 
and the drag coefficient from the defining 
equation for the drag force.  
 
(a) Apply∑ = xx maF to the car to relate 
the average force acting on it to its average 
velocity: 

t
vmmaF

∆
∆

== avav  
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Substitute numerical values and evaluate Fav: 
 

( ) N581
s3.92

km
m1000

s3600
h1

mi
km1.609

h
mi5

kg1020av =
×××

=F  

 
(b) Using its definition, express and 
evaluate the force of rolling friction: 

( )( )( )
N200

m/s9.81kg102002.0 2

rollingnrollingrolling

=

=

== mgFf µµ

 

 
Assuming that only two forces are 
acting on the car in the direction of 
its motion, express their relationship 
and solve for and evaluate the drag 
force:  

rollingdragav FFF +=  
 and 

N381N200N815

rollingavdrag

=−=

−= FFF
 

 
(c) Convert 57.5 mi/h to m/s: 
 

m/s7.25
km

m10
s3600

h1
mi

km1.609
h

mi57.5
h

mi5.57

3

=

××

×=

 

 
Using the definition of the drag 
force and its calculated value from 
(b) and the average speed of the car 
during this 5 mph interval, solve for 
C: 
 

2
2
1

drag AvCF ρ= ⇒ 2
drag2

Av
F

C
ρ

=  

Substitute numerical values and 
evaluate C: 

( )
( )( )( )

499.0

m/s7.25m1.91kg/m1.21
N3812

223

=

=C
 

 
19 •  
Picture the Problem We can use the dimensions of force and velocity to determine the 
dimensions of the constant b and the dimensions of ρ, r, and v to show that, for n = 2, 
Newton’s expression is consistent dimensionally with our result from part (b). In parts (d) 
and (e), we can apply Newton’s 2nd law under terminal velocity conditions to find the 
terminal velocity of the sky diver near the surface of the earth and at a height of 8 km. 
 
(a) Solve the drag force equation for 
b with n = 1: 
   

v
Fb d=  
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Substitute the dimensions of Fd and 
v and simplify to obtain: [ ]

T
M

T
L

T
ML

b ==
2

 

and the units of b are kg/s  

 
(b) Solve the drag force equation for 
b with n = 2: 
   

2
d

v
Fb =  

Substitute the dimensions of Fd and 
v and simplify to obtain: [ ]

L
M

T
L
T
ML

b =

⎟
⎠
⎞

⎜
⎝
⎛

= 2

2
 

and the units of b are kg/m  

 
(c) Express the dimensions of 
Newton’s expression: 
 

[ ] [ ] ( )

2

2
2

3
22

2
1

d

T
ML

T
LL

L
MvrF

=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛== ρπ

 

 
From part (b) we have: 
 [ ] [ ]

2

2
2

d

T
ML

T
L

L
MbvF

=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛==

 

 
(d) Letting the downward direction 
be the positive y direction, apply 

∑ = yy maF to the sky diver: 

 

022
2
1 =− tvrmg ρπ  

Solve for and evaluate vt: ( )( )
( )( )

m/s9.56

m0.3kg/m1.2
m/s9.81kg5622

23

2

2

=

==
πr

mgvt ρπ  

 
(e) Evaluate vt at a height of 8 km: ( )( )

( )( )
m/s9.86

m0.3kg/m514.0
m/s9.81kg562

23

2

=

=
π

vt
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20 ••   
Picture the Problem From Newton’s 2nd law, the equation describing the motion of 
falling raindrops and large hailstones is mg – Fd = ma where 222

2
1

d bvvrF == ρπ is the 

drag force. Under terminal speed conditions (a = 0), the drag force is equal to the weight 
of the falling object. Take the radius of a raindrop rr to be 0.5 mm and the radius of a 
golf-ball sized hailstone rh to be 2 cm. 
 
Using 2

2
1 rb πρ= , evaluate br and bh: ( )( )

kg/m1071.4

m105.0kg/m2.1
7

233
2
1

r

−

−

×=

×= πb
 

and 
( )( )

kg/m1054.7

m102kg/m2.1
4

223
2
1

h

−

−

×=

×= πb
 

 
Express the mass of a sphere in 
terms of its volume and density: 3

4 3ρπρ rVm ==  

 
Using ρr = 103 kg/m3 and ρh = 920 
kg/m3, evaluate mr and mh: 

( ) ( )

kg1024.5
3

kg/m10m105.04

7

3333

r

−

−

×=

×
=

πm  

and 
( ) ( )

kg1008.3
3

kg/m920m1024

2

332

h

−

−

×=

×
=

πm  

 
Express the relationship between vt 
and the weight of a falling object 
under terminal speed conditions and 
solve for vt: 
 

b
mgvmgbv =⇒= t

2
t  

 

Use numerical values to evaluate vt,r 
and vt,h: 

( )( )

m/s30.3

kg/m104.71
m/s9.81kg105.24

7

27

rt,

=

×
×

= −

−

v
 

and 
( )( )

m/s0.20

kg/m1054.7
m/s9.81kg1008.3

4

22

ht,

=

×
×

= −

−

v
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Friction 
 
*21 •  
Picture the Problem The block is in 
equilibrium under the influence of nF

r
, 

,mg
r

 and ;kf
r

 i.e.,  

nF
r

+ g
r

m + kf
r

= 0 

We can apply Newton’s 2nd law to 
determine the relationship between fk, θ, 
and mg.  

 
Using its definition, express the 
coefficient of kinetic friction: 

 
n

k
k F

f
=µ                          (1) 

Apply ∑ = xx maF to the block: fk − mgsinθ  = max = 0 because ax = 0 
 

Solve for  fk: fk = mgsinθ 
 

Apply ∑ = yy maF to the block: Fn − mgcosθ  = may = 0 because ay = 0 
 

Solve for Fn: Fn = mgcosθ 
 

Substitute in equation (1) to obtain: θ
θ
θµ tan

cos
sin

k ==
mg
mg

 

and correct. is )(b  

 
22 •  
Picture the Problem The block is in 
equilibrium under the influence of nF

r
, 

,mg
r

 ,appF
r

 and ;kf
r

 i.e.,  

nF
r

+ g
r

m + appF
r

+ kf
r

= 0 

We can apply Newton’s 2nd law to 
determine fk. 

 
  
Apply ∑ = xx maF to the block: Fapp − fk = max = 0 because ax = 0 

 
Solve for fk: fk = Fapp = 20 N 

and 
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correct. is )(e  

 
*23 •  

Picture the Problem Whether the friction 
force is that due to static friction or kinetic 
friction depends on whether the applied 
tension is greater than the maximum static 
friction force. We can apply the definition 
of the maximum static friction to decide 
whether fs,max or T is greater. 

 
 

Calculate the maximum static 
friction force: 
 

fs,max = µsFn = µsw = (0.8)(20 N) = 16 N 
 

(a) Because fs,max > T: f = fs = T  = N0.15  

 
(b) Because T > fs,max: f = fk = µkw = (0.6)(20 N)  = N0.12  

 
24 •  
Picture the Problem The block is in 
equilibrium under the influence of the 
forces ,T

r
 ,kf
r

 and ;g
r

m  i.e., 

T
r

+ kf
r

+ g
r

m  = 0 

We can apply Newton’s 2nd law to 
determine the relationship between T and 
fk. 

 
 
Apply ∑ = xx maF to the block: T cosθ − fk = max = 0 because ax = 0 

 
Solve for fk: fk = T cosθ  and correct. is )(b  
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25 •  
Picture the Problem Whether the friction 
force is that due to static friction or kinetic 
friction depends on whether the applied 
tension is greater than the maximum static 
friction force. 

 
 
Calculate the maximum static 
friction force: 

fs,max = µsFn = µsw  
        = (0.6)(100 kg)(9.81 m/s2)  
        = 589 N 
 

Because fs,max > Fapp, the box does 
not move and : 

Fapp = f s = N500  

 
26 •  
Picture the Problem Because the box is 
moving with constant velocity, its 
acceleration is zero and it is in equilibrium 
under the influence of ,appF

r
,nF

r
 ,w
r

 and 

;f
r

 i.e.,  

appF
r

+ nF
r

+ wr + f
r

= 0 

We can apply Newton’s 2nd law to 
determine the relationship between f and 
mg. 

 
 
The definition of µk is: 

n

k
k F

f
=µ  

 
Apply ∑ = yy maF to the box:  Fn – w = may = 0 because ay = 0 

 
Solve for Fn: Fn = w = 600 N 

 
Apply ∑ = xx maF to the box: ΣFx = Fapp – f = max = 0 because ax = 0 

 
Solve for fk: Fapp = fk = 250 N 

 
Substitute to obtain µk: µk = (250 N)/(600 N)  = 417.0  
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27 •   
Picture the Problem Assume that the car 
is traveling to the right and let the positive 
x direction also be to the right. We can use 
Newton’s 2nd law of motion and the 
definition of µs to determine the maximum 
acceleration of the car. Once we know the 
car’s maximum acceleration, we can use a 
constant-acceleration equation to determine 
the least stopping distance.  

 
(a) Apply∑ = xx maF to the car:  −fs,max = −µsFn = max                   (1) 

 
Apply∑ = yy maF to the car and 

solve for Fn: 

Fn − w = may = 0  
or, because ay = 0, 
Fn = mg                                       (2) 
 

Substitute (2) in (1) and solve for 
ax,max: 2

2
smaxx,

m/s5.89  =          

)m/s (0.6)(9.81   =    = 

−

ga µ
 

 
(b) Using a constant-acceleration 
equation, relate the stopping 
distance of the car to its initial 
velocity and its acceleration and 
solve for its displacement: 
 

xavv ∆+= 22
0

2  

or, because v = 0, 

a
vx

2

2
0−

=∆  

Substitute numerical values and 
evaluate ∆x: 

( )
( ) m4.76

m/s89.52
m/s30

2

2

=
−
−

=∆x  

 
*28  •  
Picture the Problem The free-body 
diagram shows the forces acting on the 
drive wheels, the ones we’re assuming 
support half the weight of the car. We can 
use the definition of acceleration and apply 
Newton’s 2nd law to the horizontal and 
vertical components of the forces to 
determine the minimum coefficient of 
friction between the road and the tires. 

 
 
(a) slip.not  do  wheels theifgreater  be  will , Because ks fµµ >  
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(b) Apply∑ = xx maF to the car: fs = µsFn = max                        (1) 
 

Apply∑ = yy maF to the car and 

solve for Fn: 

ymamgF =− 2
1

n  

 Because ay = 0, 
02

1
n =− mgF ⇒ mgF 2

1
n =  

                     
Find the acceleration of the car: ( )( )

2m/s08.2
s12

m/km1000km/h90

=

=
∆
∆

=
t
vax

 

 
Solve equation (1) for µs: 

g
a

mg
ma xx 2

2
1s ==µ  

 
Substitute numerical values and 
evaluate ax: 

( ) 424.0
m/s9.81
m/s2.082

2

2

s ==µ  

 
29 •  
Picture the Problem The block is in 
equilibrium under the influence of the 
forces shown on the free-body diagram. 
We can use Newton’s 2nd law and the 
definition of µs to solve for fs and Fn. 

 
(a) Apply∑ = yy maF to the block 

and solve for fs: 

ymamgf =−s  

or, because ay = 0, 
0s =− mgf  

                                          
Solve for and evaluate fs: 
 

( )( )
N1.49

m/s81.9kg5 2
s

=

== mgf
 

 
(b) Use the definition of µs to 
express Fn: s

maxs,
n µ

f
F =  

 
Substitute numerical values and 
evaluate Fn: 

N123
0.4

N1.49
n ==F  
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30 •  
Picture the Problem The free-body 
diagram shows the forces acting on the 
book. The normal force is the net force the 
student exerts in squeezing the book. Let 
the horizontal direction be the x direction 
and upward the y direction. Note that the 
normal force is the same on either side of 
the book because it is not accelerating in 
the horizontal direction. The book could be 
accelerating downward. We can apply 
Newton’s 2nd law to relate the minimum 
force required to hold the book in place to 
its mass and to the coefficients of static 
friction. In part (b), we can proceed 
similarly to relate the acceleration of the 
book to the coefficients of kinetic friction.  
 
(a) Apply ∑ = aF rr

m to the book: 

0
and

0

'
min,2s,2

'
min,11,s

min,1min,2

=−+=

=−=

∑

∑

mgFFF

FFF

y

x

µµ

 

 
Noting that ,min,2min,1

'' FF = solve the 
y equation for Fmin: 

( )( )

N208

0.160.32
m/s9.81kg10.2 2

s,21,
min

=

+
=

+
=

µµ
mgF

 

 
(b) Apply ∑ = yy maF with the 
book accelerating downward, to 
obtain: 
 

mamgFFF ky =−+=∑ k,21, µµ  

Solve for a to obtain: 
gF

m
a kk −

+
= 2,, µµ

 

 
Substitute numerical values and 
evaluate a: ( )

2

2

m/s27.4

m/s9.81N195
kg10.2
0.090.2

−=

−
+

=a
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31 •  
Picture the Problem A free-body diagram 
showing the forces acting on the car is 
shown to the right. The friction force that 
the ground exerts on the tires is the force fs 
shown acting up the incline. We can use 
the definition of the coefficient of static 
friction and Newton’s 2nd law to relate the 
angle of the incline to the forces acting on 
the car.  

 

 
Apply aF rr

m=∑ to the car: 0sins =−=∑ θmgfFx                (1) 

 and 
0cosn =−=∑ θmgFFy               (2) 

 
Solve equation (1) for fs and 
equation (2) for Fn: 

θsins mgf =  

 and 
θcosn mgF =  

 
Use the definition of µs to relate fs 
and Fn: 

θ
θ
θµ tan

cos
sin

n

s
s ===

mg
mg

F
f

 

 
Solve for and evaluate θ : ( ) °=== −− 57.408.0tantan 1

s
1 µθ  

 
*32  •  
Picture the Problem The free-body 
diagrams for the two methods are shown to 
the right. Method 1 results in the box being 
pushed into the floor, increasing the normal 
force and the static friction force. Method 2 
partially lifts the box,, reducing the normal 
force and the static friction force. We can 
apply Newton’s 2nd law to obtain 
expressions that relate the maximum static 
friction force to the applied force .F

r
 

 

 
  
(a) s.n  , thereforeand,  reducesit  as preferable is 2 Method fF  

 
(b) Apply ∑ = xx maF to the box: F cosθ − fs = Fcosθ − µsFn = 0  
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Method 1: Apply ∑ = yy maF to 

the block and solve for Fn: 
 

Fn – mg − Fsinθ  = 0 
∴ Fn = mg + Fsinθ  
 

Relate fs,max to Fn: fs,max =  µsFn = µs(mg + Fsinθ)       (1) 
 

Method 2: Apply ∑ = yy maF to 

the forces in the y direction and 
solve for Fn: 
 

Fn – mg + Fsinθ  = 0 
∴ Fn = mg − Fsinθ   
 

Relate fs,max to Fn: fs,max =  µsFn = µs(mg − Fsinθ)        (2) 
 

Express the condition that must be 
satisfied to move the box by either 
method: 
 

fs,max =  Fcosθ                                 (3) 

Method 1: Substitute (1) in (3) and 
solve for F: 
 

θµθ
µ

sincos s

s
1 −

=
mgF                        (4) 

Method 2: Substitute (2) in (3) and 
solve for F: θµθ

µ
sincos s

s
2 +

=
mgF                        (5) 

 
Evaluate (4) and (5) with θ = 30°: ( ) N520301 =°F  

( ) N252302 =°F  

 
Evaluate (4) and (5) with θ = 0°: ( ) ( ) N29400 s21 ==°=° mgFF µ  

 
33 •  
Picture the Problem Draw a free-body 
diagram for each object. In the absence of 
friction, the 3-kg box will move to the 
right, and the 2-kg box will move down. 
The friction force is indicated by f

r
without 

subscript; it is sf
r

for (a) and kf
r

for (b). For 
values of µs less than the value found in 
part (a) required for equilibrium, the system 
will accelerate and the fall time for a given 
distance can be found using a constant-
acceleration equation.  
  
(a) Apply ∑ = xx maF to the 3-kg T – fs =  0 because ax = 0                 (1) 
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box:  
 
Apply∑ = yy maF to the 3-kg box, 

solve for Fn,3, and substitute in (1): 
 

Fn,3 – m3g = 0 because ay = 0 
and 
T – µs m3g = 0                    (2) 
 

Apply∑ = xx maF to the 2-kg box: 

 

m2g – T = 0 because ax = 0     (3) 

Solve (2) and (3) simultaneously 
and solve for µs: 
 

667.0
3

2
s ==

m
mµ  

 
(b) The time of fall is related to the 
acceleration, which is constant: 

( )2
2
1

0 tatvx ∆+∆=∆  

or, because v0 =0, 
( )2

2
1 tax ∆=∆  

 
Solve for ∆t: 

a
xt ∆

=∆
2

 

 
Apply ∑ = xx maF  to each box: T – µk m3g = m3a                  (4) 

and 
m2g – T = m2a                        (5) 
 

Add equations (4) and (5) and solve 
for a: 

( )

( )[ ]( )

2

2
32

3k2

m/s16.2

kg3kg2
m/s9.81kg30.3kg2

=

+
−

=

+
−

=
mm

gmma µ

 

 
Substitute to obtain: ( ) s36.1

m/s2.16
m22

2 ==∆t  

  
34 ••   
Picture the Problem The application of Newton’s 2nd law to the block will allow us to 
express the coefficient of kinetic friction in terms of the acceleration of the block. We can 
then use a constant-acceleration equation to determine the block’s acceleration. The 
pictorial representation summarizes what we know about the motion. 
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A free-body diagram showing the 
forces acting on the block is shown 
to the right. 

 
Apply∑ = xx maF to the block: 

 

– fk = −µkFn =  ma                            (1) 

Apply∑ = yy maF to the block and 

solve for Fn: 
 

Fn – mg = 0 because ay = 0 
and 
Fn = mg                                              (2) 
 

Substitute (2) in (1) and solve for µk: 
 

µk = −a/g                                            (3) 

Using a constant-acceleration 
equation, relate the initial and final 
velocities of the block to its 
displacement and acceleration: 
 

 22
0

2
1 xavv ∆+=  

or, because v1 = 0, v0 = v, and ∆x = d, 
 20 2 adv +=  

 

Solve for a to obtain: 
 d

va
2

2−
=  

 
Substitute for a in equation (3) to 
obtain: gd

v
2

2

k =µ   
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*35 ••  
Picture the Problem We can find the 
speed of the system when it has moved a 
given distance by using a constant-
acceleration equation. Under the influence 
of the forces shown in the free-body 
diagrams, the blocks will have a common 
acceleration a. The application of 
Newton’s 2nd law to each block, followed 
by the elimination of the tension T and the 
use of the definition of fk, will allow us to 
determine the acceleration of the system.  

 

 

  
Using a constant-acceleration 
equation, relate the speed of the 
system to its acceleration and 
displacement; solve for its speed: 
 

 22
0

2 xavv ∆+=  

and, because v0 = 0, 
xav ∆= 2  

Apply aF rr
mt =ne to the block whose 

mass is m1: 
 

ΣFx = T – fk – m1gsin30° = m1a       (1) 
and 
ΣFy = Fn,1 – m1gcos30° = 0              (2) 
 

Using fk = µkFn, substitute (2) in (1) 
to obtain: 
 

T – µk m1g cos30° – m1gsin30° = m1a  

Apply∑ = xx maF to the block 

whose mass is m2: 
 

m2g – T = m2a                                         

Add the last two equations to 
eliminate T and solve for a to obtain: 
 
 

( )

2
21

11k2

m/s16.1

30sin30cos

=

+
°−°−

=
mm

gmmma µ
 

 
Substitute and evaluate a: ( )( ) m/s835.0m0.3m/s1.162 2 ==v  

and correct. is )(a  
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36 ••  
Picture the Problem Under the influence 
of the forces shown in the free-body 
diagrams, the blocks are in static 
equilibrium. While fs can be either up or 
down the incline, the free-body diagram 
shows the situation in which motion is 
impending up the incline. The application 
of Newton’s 2nd law to each block, 
followed by the elimination of the tension 
T and the use of the definition of fs, will 
allow us to determine the range of values 
for m2.  

 

 

  
(a) Apply aF rr

m=∑ to the block 

whose mass is m1: 
 

ΣFx = T ±  fs,max – m1gsin30° = 0             (1) 
and 
ΣFy = Fn,1  – m1gcos30° = 0                    (2) 
 

Using fs,max = µsFn, substitute (2) in 
(1) to obtain: 
 

amgm
gmT s

11

1

30sin
30cos

=°−
°± µ

            (3) 

 
Apply∑ = xx maF to the block 

whose mass is m2: 
 

m2g – T = 0                                              (4) 

Add equations (3) and (4) to 
eliminate T and solve for m2: 

( )
( ) ( )[ ]°+°±=

°+°±=
30sin30cos4.0kg4

30sin30coss12 µmm
  (5) 

 
Evaluate (5) denoting the value of 
m2 with the plus sign as m2,+ and the 
value of m2 with the minus sign as 
m2,- to determine the range of values 
of m2 for which the system is in 
static equilibrium: 
 

kg39.3kg614.0

kg614.0mandkg39.3

2

2,-,2

≤≤∴

==+

m

m
 

(b) With m2 = 1 kg, the impending 
motion is down the incline and the 
static friction force is up the incline. 
Apply∑ = xx maF to the block 

whose mass is m1: 
 

T + fs – m1gsin30° = 0                           (6) 

Apply∑ = xx maF to the block 

whose mass is m2: 

m2g – T = 0                                          (7) 
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Add equations (6) and (7) and solve 
for and evaluate  fs: 

fs = (m1sin30° – m2)g 
   = [(4 kg)sin30° – 1 kg](9.81 m/s2) 
   = N81.9  

 
37 ••  
Picture the Problem Under the influence 
of the forces shown in the free-body 
diagrams, the blocks will have a common 
acceleration a. The application of 
Newton’s 2nd law to each block, followed 
by the elimination of the tension T and the 
use of the definition of fk, will allow us to 
determine the acceleration of the system. 
Finally, we can substitute for the tension in 
either of the motion equations to determine 
the acceleration of the masses. 

 

 
 
Apply aF rr

m=∑ to the block 

whose mass is m1: 

ΣFx = T – fk – m1gsin30° = m1a       (1) 
and 
ΣFy = Fn,1 – m1gcos30° = 0              (2) 
 

Using fk = µkFn, substitute (2) in (1) 
to obtain: 
 

amgm
gmT

11

1k

30sin
30cos

=°−
°− µ

       (3) 

 
Apply∑ = xx maF to the block 

whose mass is m2: 
 

m2g – T = m2a                                   (4) 

Add equations (3) and (4) to 
eliminate T and solve for and 
evaluate a to obtain: 

( )

2

21

11k2

m/s36.2

30sin30cos

=

+
°−°−

=
mm

gmmma µ

 

 
Substitute for a in equation (3) to 
obtain: 

N3.37=T  
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*38 ••  
Picture the Problem The truck will stop in 
the shortest possible distance when its 
acceleration is a maximum. The maximum 
acceleration is, in turn, determined by the 
maximum value of the static friction force. 
The free-body diagram shows the forces 
acting on the box as the truck brakes to a 
stop. Assume that the truck is moving in 
the positive x direction and apply Newton’s 
2nd law and the definition of fs,max to find 
the shortest stopping distance. 

 
 
Using a constant-acceleration 
equation, relate the truck’s stopping 
distance to its acceleration and 
initial velocity; solve for the 
stopping distance: max

2
0

min

2
0

2

2

,0since or,
2

a
vx

v
xavv

−
=∆

=
∆+=

 

Apply aF
rr

mt =ne to the block: ΣFx = – fs,max = mamax              (1) 
and 
ΣFy = Fn – mg = 0                   (2) 
 

Using the definition of fs,max, solve 
equations (1) and (2) simultaneously 
for a: 

fs,max ≡ µsFn 
and 
amax = −µsg = − (0.3)(9.81 m/s2)  
       = −2.943 m/s2 

 
Substitute numerical values and evaluate ∆xmin: 
 

( ) ( ) ( )
( ) m16.9

m/s2.9432
sh/36001km/m1000km/h80

2

222

min =
−

−
=∆x  

 
39 ••  
Picture the Problem We can find the 
coefficient of friction by applying 
Newton’s 2nd law and determining the 
acceleration from the given values of 
displacement and initial velocity.  We can 
find the displacement and speed of the 
block by using constant-acceleration 
equations. During its motion up the incline, 
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the sum of the kinetic friction force and a 
component of the object’s weight will 
combine to bring the object to rest. When it 
is moving down the incline, the difference 
between the weight component and the 
friction force will be the net force. 
 
(a) Draw a free-body diagram for 
the block as it travels up the incline: 

 
Apply aF rr

m=∑ to the block: ΣFx = – fk – mgsin37°= ma              (1) 
and 
ΣFy = Fn – mg cos37° = 0                 (2) 
 

Substitute fk = µkFn and Fn from (2) 
in (1) and solve for µk: 

°
−°−=

°
−°−

=

37cos
37tan

37cos
37sin

k

g
a

g
agµ

                (3) 

 
Using a constant-acceleration 
equation, relate the final velocity of 
the block to its initial velocity, 
acceleration, and displacement; 
solve for and evaluate a:  

( ) ( )
( )

2

222
0

2
1

2
0

2
1

m/s6.10
m82

m/s14m/s5.2
2

2

−=

−
=

∆
−

=

∆+=

x
vva

xavv

 

 
Substitute for a in (3) to obtain: 

( )
599.0

cos37m/s9.81
m/s10.637tan 2

2

k

=

°
−

−°−=µ
 

 
(b) Use the same constant-
acceleration equation used above but 
with v1 = 0, solve for the 
displacement of the block as it slides 
to a stop: 

( )
( ) m25.9

m/s10.62
m/s14

2

and
0where2

2

22
0

1
2
0

2
1

=
−
−

=
−

=∆

=∆+=

a
vx

vxavv
 

 
(c) When the block slides down the 
incline, fk is in the positive x 
direction: 

ΣFx =  fk – mgsin37°= ma     
and 
ΣFy = Fn – mgcos37° = 0 
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Solve for a as in part (a): ( ) 2
k m/s21.137sin37cos −=°−°= µga  

 
Use the same constant-acceleration 
equation used in part (b) to obtain: 
 

xavv ∆+= 22
0

2  

Set v0 = 0 and solve for v: xav ∆= 2  

 
Substitute numerical values and 
evaluate v: 

( )( )
m/s73.4

m25.9m/s21.12 2

=

−−=v
 

 
40 ••  
Picture the Problem We can find the stopping distances by applying Newton’s 2nd law 
to the automobile and then using a constant-acceleration equation. The friction force the 
road exerts on the tires and the component of the car’s weight along the incline combine 
to provide the net force that stops the car. The pictorial representation summarizes what 
we know about the motion of the car. We can use Newton’s 2nd law to determine the 
acceleration of the car and a constant-acceleration equation to obtain its stopping 
distance. 
 

 
 
(a) Using a constant-acceleration 
equation, relate the final speed of 
the car to its initial speed, 
acceleration, and displacement; 
solve for its displacement: 
 

max

2
0

min

1

minmax
2
0

2
1

2

,0because or,
2

a
vx

v
xavv

−
=∆

=
∆+=
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Draw the free-body diagram for the 
car going up the incline: 

 
Apply ∑ = aF rr

m to the car: ΣFx = −fs,max – mgsin15° = ma          (1) 
and 
ΣFy = Fn – mgcos15° = 0                  (2) 
 

Substitute fs,max = µsFn and Fn from 
(2) in (1) and solve for a: 
 

( )
2

smax

m/s17.9

15sin15cos

−=

°+°−= µga
 

Substitute to obtain: ( )
( ) m1.49

m/s9.172
m/s30

2

2

min =
−
−

=∆x  

 
(b) Draw the free-body diagram for 
the car going down the incline: 

 
 

Apply ∑ = aF rr
m  to the car: ΣFx = fs,max – mgsin15° = ma     

and        
ΣFy = Fn – mgcos15° = 0  
 

Proceed as in (a) to obtain amax: ( ) 2
smax m/s09.415sin15cos =°−°= µga

 
 

Again, proceed as in (a) to obtain the 
displacement of the car: 

( )
( ) m110

m/s09.42
m/s30

2 2

2

max

2
0

min ==
−

=∆
a
vx

 
 
41 ••  
Picture the Problem The friction force the road exerts on the tires provides the net force 
that accelerates the car. The pictorial representation summarizes what we know about the 
motion of the car. We can use Newton’s 2nd law to determine the acceleration of the car 
and a constant-acceleration equation to calculate how long it takes it to reach 100 km/h. 
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(a) Because 40% of the car’s weight 
is on its two drive wheels and the 
accelerating friction forces act just 
on these wheels, the free-body 
diagram shows just the forces acting 
on the drive wheels.  

 
 

Apply ∑ = aF rr
m to the car: ΣFx = fs,max = ma                        (1) 

and 
ΣFy = Fn – 0.4mg = 0                 (2) 
 

Use the definition of fs,max in 
equation (1) and eliminate Fn 
between the two equations to obtain: 
 

( )( )
2

2
s

m/s75.2

m/s81.97.04.04.0

=

== ga µ
 

(b) Using a constant-acceleration 
equation, relate the initial and final 
velocities of the car to its 
acceleration and the elapsed time; 
solve for the time: 
 

tavv ∆+= 01  

or, because v0 = 0 and ∆t = t1, 

a
vt 1

1 =  

Substitute numerical values and evaluate t1: 
 

( )( )( ) s1.10
m/s2.75

m/km1000sh/36001km/h100
21 ==t  

 
*42 ••  
Picture the Problem To hold the box in 
place, the acceleration of the cart and box 
must be great enough so that the static 
friction force acting on the box will equal 
the weight of the box. We can use 
Newton’s 2nd law to determine the 
minimum acceleration required. 
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(a) Apply ∑ = aF rr
m to the box: 

 

ΣFx = Fn = mamin                           (1) 
and 
ΣFy = fs,max – mg = 0                      (2) 
 

Substitute µFn for fs,max in equation 
(2), eliminate Fn between the two 
equations and solve for and evaluate 
amin: 

µFn − mg = 0 , µ(mamin ) − mg = 0  
and 

2
2

s
min m/s4.16

0.6
m/s81.9

===
µ
ga  

 
(b) Solve equation (2) for fs,max, and 
substitute numerical values and 
evaluate fs,max: 

fs,max = mg  
         = (2 kg)(9.81 m/s2) = N6.19  

 
(c) If a is twice that required to hold 
the box in place, fs will still have its 
maximum value given by: 
 

fs,max = N6.19  

(d) . if fallnot  box will  the, is  Because smins µµ gaag ≥  

 
43 ••  
Picture the Problem The pictorial 
representation shows the orientation of the 
two blocks with a common acceleration on 
the inclined surface. Draw the free-body 
diagrams for each block and apply 
Newton’s 2nd law of motion and the 
definition of the kinetic friction force to 
each block to obtain simultaneous 
equations in a and T.  

 
Draw the free-body diagram for the 
lower block: 

 
Apply ∑ = aF rr

m to the lower 

block: 
 

ΣFx = fk,1 + T1 −  m1gsinθ  = m1a        (1) 
and 
ΣFy = Fn,1 – m1gcosθ  = 0                    (2) 
 

The relationship between fk,1 and Fn,1 
is: 

fk,1 = µk,1Fn,1                                          (3) 

Eliminate fk,1 and Fn,1 between (1), µk,1m1gcosθ + T1 −  m1gsinθ  = m1a     (4) 
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(2), and (3) to obtain: 
 
Draw the free-body diagram for the 
upper block: 

 
Apply ∑ = aF rr

m to the block: ΣFx =  fk,2 – T2 – m2gsinθ = m2a          (5) 
and 
ΣFy = Fn,2 – m2gcosθ  = 0                    (6) 
 

The relationship between fk,2 and Fn,2 
is: 
 

fk,2 = µk,2Fn,2                                          (7) 

Noting that T2 = T1, eliminate fk,2 
and Fn,2 between (5), (6), and (7) to 
obtain: 
 

µk,2m2gcosθ  – T2 – m2gsinθ   = m2a     (8) 

Add equations (4) and (8) to 
eliminate T and solve for a: ⎥

⎦

⎤
⎢
⎣

⎡
−

+
+

= θθ
µµ

sincos
21

2k,21k,1

mm
mm

ga  

 
Substitute numerical values and 
evaluate a to obtain: 
 

2m/s965.0=a  

(b) Eliminate a between equations 
(4) and (8) and solve for T = T1 = T2 
to obtain: 
 

( )
21

k,1k,221 cos
mm

gmm
T

+
−

=
θµµ

 

Substitute numerical values and 
evaluate T: 

N184.0=T  
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*44 ••  
Picture the Problem The free-body 
diagram shows the forces acting on the 
two blocks as they slide down the 
incline. Down the incline has been 
chosen as the positive x direction. T is 
the force transmitted by the stick; it can 
be either tensile (T > 0) or compressive 
(T < 0). By applying Newton’s 2nd law 
to these blocks, we can obtain equations 
in T and a from which we can eliminate 
either by solving them simultaneously. 
Once we have expressed T, the role of 
the stick will become apparent.  
 
(a) Apply ∑ = aF rr

m to block 1:  

∑

∑

=−=

=−+=

0cos
and

sin

1n,1

1k,111

θ

θ

gmFF

amfgmTF

y

x

 

 
Apply ∑ = aF rr

m to block 2: 

∑

∑

=−=

=−−=

0cos
and

sin

2n,2

2k,222

θ

θ

gmFF

amfTgmF

y

x

 

 
Letting T1 = T2 = T, use the 
definition of the kinetic friction 
force to eliminate fk,1 and Fn,1 
between the equations for block 1 
and fk,2 and Fn,1 between the 
equations for block 2 to obtain: 
 

θµθ cossin 1111 gmTgmam −+=        (1) 
and 

θµθ cossin 2222 gmTgmam −−=       (2) 

Add equations (1) and (2) to 
eliminate T  and solve for a: ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
+

−= θ
µµ

θ cossin
21

2211

mm
mmga  

 
(b) Rewrite equations (1) and (2) by 
dividing both sides of (1) by m1 and 
both sides of (2) by m2 to obtain. 

θµθ cossin 1
1

g
m
Tga −+=                  (3) 

and 

θµθ cossin 2
2

g
m
Tga −−=                (4) 

 
Subtracting (4) from (3) and 
rearranging yields: ( ) θµµ cos21

21

21 g
mm

mmT −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=  
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( )
block.either on  force noexert must stick   the, therefore this;change

tcan' embetween thstick  a Inserting .cossin ofon accelerati
 same  with theincline down the move blocks  theand 0   , If 21

θµθ
µµ

−
==

g
T

 

 
45 ••  
Picture the Problem The pictorial 
representation shows the orientation of the 
two blocks on the inclined surface. Draw 
the free-body diagrams for each block and 
apply Newton’s 2nd law of motion and the 
definition of the static friction force to each 
block to obtain simultaneous equations in 
θc and T.  
 
(a) Draw the free-body diagram for 
the lower block: 

 
Apply ∑ = aF rr

m to the block: ΣFx = m1gsinθc – fs,1 − T = 0             (1) 
and 
ΣFy = Fn,1 – m1gcosθc = 0                 (2) 
 

The relationship between fs,1 and Fn,1 
is: 
 

fs,1 = µs,1Fn,1                                       (3) 

Eliminate fs,1 and Fn,1 between (1), 
(2), and (3) to obtain: 
 

m1gsinθc − µs,1m1gcosθc − T = 0       (4) 

Draw the free-body diagram for the 
upper block: 

 
 

Apply ∑ = aF rr
m to the block: ΣFx =T + m2gsinθc – fs,2  = 0            (5) 

and 
ΣFy = Fn,2 – m2gcosθc = 0                 (6) 
 



                                                                  Applications of Newton’s Laws 
    

 

291

The relationship between fs,2 and Fn,2 
is: 
 

fs,2 = µs,2Fn,2                                       (7) 

Eliminate fs,2 and Fn,2 between (5), 
(6), and (7) to obtain: 
 

T + m2gsinθc – µs,2m2gcosθc = 0        (8) 

Add equations (4) and (8) to 
eliminate T and solve for θc: 

( )( ) ( )( )

°=

⎥
⎦

⎤
⎢
⎣

⎡
+
+

=

⎥
⎦

⎤
⎢
⎣

⎡
+
+

=

−

−

0.25

kg0.2kg0.1
kg0.10.6kg0.20.4tan

tan

1

21

2s,21s,11
c mm

mm µµ
θ

 

 
(b) Because θc is greater than the 
angle of repose (tan−1(µs,1) = 
tan−1(0.4) = 21.8°) for the lower 
block, it would slide if T = 0.  Solve 
equation (4) for T: 
 

( )Cs,1C1 cossin θµθ −= gmT  

Substitute numerical values and evaluate T: 
 

( )( ) ( )[ ] N118.0cos250.4sin25m/s9.81kg0.2 2 =°−°=T  

 
46 ••  
Picture the Problem The pictorial 
representation shows the orientation of the 
two blocks with a common acceleration on 
the inclined surface. Draw the free-body 
diagrams for each block and apply 
Newton’s 2nd law and the definition of the 
kinetic friction force to each block to 
obtain simultaneous equations in a and T. 

 
 

 
 
(a) Draw the free-body diagram for 
the lower block: 

 
Apply ∑ = aF rr

m to the lower 

block: 

ΣFx = m1gsin20° − fk,1 – T = m1a         (1) 
and 
ΣFy = Fn,1 − m1gcos20° = 0                  (2) 
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Express the relationship between fk,1 
and Fn,1: 
 

fk,1 = µk,1Fn,1                                         (3) 

Eliminate fk,1 and Fn,1 between (1), 
(2), and (3) to obtain: 
 

amT
gmgm

1

1k,11 20cos20sin
=−

°−° µ
           (4) 

 
Draw the free-body diagram for the 
upper block: 

 
Apply ∑ = aF rr

m to the upper 

block: 

ΣFx = T + m2gsin20° − fk,2 = m2a     (5) 
and 
ΣFy = Fn,2 – m2gcos20° = 0               (6) 
 

Express the relationship between fk,2 
and Fn,2 : 
 

fk,2 = µk,2Fn,2                                      (7) 

Eliminate fk,2 and Fn,2 between (5), 
(2), and (7) to obtain: 
 

am
gmgmT

2

2k,22 20cos20sin
=

°−°+ µ
     (8) 

 
Add equations (4) and (8) to 
eliminate T and solve for a: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
°

+
+

−°= 20cos20sin
21

2211

mm
mmga µµ

Substitute the given values and 
evaluate a: 
 

2m/s944.0=a  

(b) Substitute for a in either equation 
(4) or (8) to obtain: 

N426.0−=T ; i.e., the rod is under 

compression. 
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*47 ••  
Picture the Problem The vertical 
component of F

r
reduces the normal force; 

hence, the static friction force between the 
surface and the block. The horizontal 
component is responsible for any tendency 
to move and equals the static friction force 
until it exceeds its maximum value. We can 
apply Newton’s 2nd law to the box, under 
equilibrium conditions, to relate F to θ.  
 
(a) The static-frictional force opposes the motion of the object, and the maximum value 
of the static-frictional force is proportional to the normal force FN. The normal force is 
equal to the weight minus the vertical component FV of the force F. Keeping the 
magnitude F constant while increasing  θ from zero results in a decrease in FV and thus a 
corresponding decrease in the maximum static-frictional force fmax.  The object will begin 
to move if the horizontal component FH of the force F exceeds fmax. An increase in θ  
results in a decrease in FH. As θ  increases from 0, the decrease in FN is larger than the 
decrease in FH, so the object is more and more likely to slip. However, as θ  approaches 
90°, FH approaches zero and no movement will be initiated. If F is large enough and if θ  
increases from 0, then at some value of θ  the block will start to move. 
 
(b) Apply ∑ = aF rr

m to the block: 

 

ΣFx =Fcosθ – fs = 0                  (1) 
and 
ΣFy = Fn + Fsinθ – mg = 0       (2)  
 

Assuming that fs = fs,max, eliminate fs 
and Fn between equations (1) and 
(2) and solve for F: 
 

θµθ
µ

sincos s

s

+
=

mgF  

Use this function with mg = 240 N to generate the table shown below: 
 

θ (deg) 0 10 20 30 40 50 60 
F (N) 240 220 210 206 208 218 235  

 
The following graph of F(θ) was plotted using a spreadsheet program. 
 



              Chapter 5    
 

 

294 

205

210

215

220

225

230

235

240

0 10 20 30 40 50 60

theta (degrees)

F
 (N

)

 
 

From the graph, we can see that the minimum value for F occurs when θ  ≈ 32°. 
 
Remarks: An alternative to manually plotting F as a function of θ  or using a 
spreadsheet program is to use a graphing calculator to enter and graph the function. 
 
48 •••  
Picture the Problem The free-body 
diagram shows the forces acting on the 
block. We can apply Newton’s 2nd law, 
under equilibrium conditions, to relate F to 
θ  and then set its derivative with respect to 
θ  equal to zero to find the value of θ that 
minimizes F.  

 
(a) Apply ∑ = aF rr

m to the block: ΣFx =Fcosθ – fs = 0                  (1) 
and 
ΣFy = Fn + Fsinθ – mg = 0       (2)  
 

Assuming that fs = fs,max, eliminate fs 
and Fn between equations (1) and (2) 
and solve for F: 
 

θµθ
µ

sincos s

s

+
=

mgF                   (3) 

To find θmin, differentiate F with respect to θ and set the derivative equal to zero for 
extrema of the function: 
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( ) ( )
( )

( )
( )

( )
( )

extremafor  0
sincos

cossin
sincos

sincos

sincos

sincos

2
s

ss

2
s

ss

2
s

ss

=
+

+−
=

+

+
−

+

+
=

θµθ
θµθµ

θµθ

θµθ
θ

µ

θµθ

µ
θ

θµθ

θ
mg

d
dmgmg

d
d

d
dF

 

 
Solve for θmin to obtain: 

s
1

min tan µθ −=  

 
(b) Use the reference triangle shown below 
to substitute for cosθ and sinθ  in equation 
(3): 

mg

mg

mgF

2
s

s

2
s

2
s

s

2
s

s
s2

s

s
min

1

1
1

11
1

µ

µ

µ

µ
µ

µ

µµ
µ

µ

+
=

+

+
=

+
+

+

=

 

 
(c) 

decreased. becan  angle  theso decrease, will
friction oft coefficien  themoving isblock   theonce Therefore, .tan

bygiven  anglean at  applied be should movingblock   thekeep apply to should
 one force minimum  that theshows above one  the toidentical analysisAn 

 friction. static oft coefficien  than theless isfriction  kinetic oft coefficien The

k
1

min µθ −=

 

 
49 ••  
Picture the Problem The vertical component of F

r
increases the normal force and the 

static friction force between the surface and the block. The horizontal component is 
responsible for any tendency to move and equals the static friction force until it exceeds 
its maximum value. We can apply Newton’s 2nd law to the box, under equilibrium 
conditions, to relate F to θ. 
 
(a) As θ increases from zero, F 
increases the normal force exerted by 
the surface and the static friction force. 
As the horizontal component of F 
decreases with increasing θ, one would 
expect F to continue to increase. 
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(b) Apply ∑ = aF rr
m to the block: 

 

ΣFx =Fcosθ – fs = 0                   (1) 
and 
ΣFy = Fn – Fsinθ – mg = 0         (2)  
 

Assuming that fs = fs,max, eliminate fs 
and Fn between equations (1) and 
(2) and solve for F: 
 

θµθ
µ

sincos s

s

−
=

mgF                     (3) 

Use this function with mg = 240 N to generate the table shown below. 
 

θ (deg) 0 10 20 30 40 50 60 
F (N) 240 273 327 424 631 1310 very 

large 
 
The graph of F as a function of θ, plotted using a spreadsheet program, confirms our 
prediction that F continues to increase with θ.  
 

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50

theta (degrees)

F
 (N

)

 
 

(a) From the graph we see that: °= 0minθ  

 
(b) Evaluate equation (3) for θ = 0° 
to obtain: 

mgmgF s
s

s

0sin0cos
µ

µ
µ

=
°−°

=  

 
(c) .0at  angle  thekeep shouldYou °  

 
Remarks: An alternative to the use of a spreadsheet program is to use a graphing 
calculator to enter and graph the function. 
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50 ••  
Picture the Problem The forces acting on each of these masses are shown in the free-
body diagrams below. m1 represents the mass of the 20-kg mass and m2 that of the 100-kg 
mass. As described by Newton’s 3rd law, the normal reaction force Fn,1 and the friction 
force fk,1 (= fk,2) act on both masses but in opposite directions. Newton’s 2nd law and the 
definition of kinetic friction forces can be used to determine the various forces and the 
acceleration called for in this problem. 
 
(a) Draw a free-body diagram 
showing the forces acting on the  
20-kg mass:  

 
 

Apply ∑ = aF rr
m to this mass: ΣFx = fk,1  = m1a1                     (1) 

and 
ΣFy = Fn,1 – m1g = 0                (2) 
 

Solve equation (1) for fk,1: fk,1 = m1a1 = (20 kg)(4 m/s2) = N0.80  

 
(b) Draw a free-body diagram 
showing the forces acting on the  
100-kg mass: 

 
 

Apply ∑ = xx maF to the 100-kg 

object and evaluate Fnet: 
 

( )( ) N600m/s6kg100 2

22net

==

= amF
 

 
Express F in terms of Fnet and fk,2: F = Fnet + fk,2 = 600 N + 80 N = N680  

 
(c) When the 20-kg mass falls off, 
the 680-N force acts just on the  
100-kg mass and its acceleration is 
given by Newton’s 2nd law: 

2net m/s80.6
kg100
N680

===
m

Fa  
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51 ••  
Picture the Problem The forces acting on 
each of these blocks are shown in the free-
body diagrams to the right. m1 represents 
the mass of the 60-kg block and m2 that of 
the 100-kg block. As described by 
Newton’s 3rd law, the normal reaction force 
Fn,1 and the friction force fk,1 (= fk,2) act on 
both objects but in opposite directions. 
Newton’s 2nd law and the definition of 
kinetic friction forces can be used to 
determine the coefficient of kinetic friction 
and acceleration of the 100-kg block.

 
  

 
(a) Apply ∑ = aF rr

m to the 60-kg 

block: 

ΣFx = F −  fk,1  = m1a1                (1) 
and 
ΣFy = Fn,1 – m1g = 0                  (2) 
 

Apply ∑ = xx maF to the 100-kg 

block: 
 

 fk,2  = m2a2                                 (3) 
 

Using equation (2), express the 
relationship between the kinetic 
friction forces 1,kf

r
and 2,kf

r
: 

 

fk,1 = fk,2  = fk = µ kFn,1 = µ km1g  (4) 

Substitute equation (4) into equation 
(1) and solve for µ k: gm

amF

1

11
k

−
=µ  

 
Substitute numerical values and 
evaluate µ k: 

( )( )
( )( ) 238.0

m/s9.81kg60
m/s3kg60N320

2

2

k =
−

=µ  

 
(b) Substitute equation (4) into 
equation (3) and solve for a2: 
 

2

1k
2 m

gma µ
=  

Substitute numerical values and 
evaluate a2: 

( )( )( )

2

2

2

m/s40.1

kg100
m/s9.81kg600.238

=

=a
 

 



                                                                  Applications of Newton’s Laws 
    

 

299

*52 ••  
Picture the Problem The accelerations of 
the truck can be found by applying 
Newton’s 2nd law of motion. The free-body 
diagram for the truck climbing the incline 
with maximum acceleration is shown to the 
right. 

 
 
(a) Apply ∑ = aF rr

m to the truck 

when it is climbing the incline: 

ΣFx =  fs,max – mgsin12°  = ma          (1) 
and 
ΣFy = Fn – mgcos12° = 0                  (2) 
 

Solve equation (2) for Fn and use 
the definition of  fs,max to obtain: 
 

fs,max = µsmgcos12°                            (3) 

Substitute equation (3) into equation 
(1) and solve for a: 
 

( )°−°= 12sin12cossµga  

 

Substitute numerical values and 
evaluate a: 

( ) ( )[ ]
2

2

m/s12.6

12sin12cos85.0m/s81.9

=

°−°=a
 

 
(b) When the truck is descending the 
incline with maximum acceleration, 
the static friction force points down 
the incline; i.e., its direction is 
reversed on the FBD. Apply 

∑ = xx maF to the truck under 

these conditions: 
 

– fs,max – mgsin12°  = ma                  (4) 
 

Substitute equation (3) into equation 
(4) and solve for a: 
 

( )°+°−= 12sin12cossµga  

Substitute numerical values and 
evaluate a: 

( ) ( )[ ]
2

2

m/s2.10

12sin12cos85.0m/s81.9

−=

°+°−=a
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53 ••  
Picture the Problem The forces acting on 
each of the blocks are shown in the free-
body diagrams to the right. m1 represents 
the mass of the 2-kg block and m2 that of 
the 4-kg block. As described by Newton’s 
3rd law, the normal reaction force Fn,1 and 
the friction force fs,1 (= fs,2) act on both 
objects but in opposite directions. Newton’s 
2nd law and the definition of the maximum 
static friction force can be used to 
determine the maximum force acting on the 
4-kg block for which the 2-kg block does 
not slide. 

 

 

 
(a) Apply ∑ = aF rr

m to the 2-kg 

block: 

ΣFx =  fs,1,max  = m1amax                    (1) 
and 
ΣFy = Fn,1 – m1g = 0                       (2) 
 

Apply ∑ = aF rr
m to the 4-kg block: ΣFx =  F – fs,2,max  = m2amax             (3) 

and 
ΣFy = Fn,2 – Fn,1 -  m2g = 0             (4) 
 

Using equation (2), express the 
relationship between the static 
friction forces max,1,sf

r
and :max,2,sf

r
 

 

fs,1,max = fs,2,max = µs m1g                  (5) 

Substitute (5) in (1) and solve for 
amax: 
 

amax = µsg = (0.3)g = 2.94 m/s2        
 

Solve equation (3) for F = Fmax: gmamF 1smax2max µ+=  

 
Substitute numerical values and 
evaluate Fmax: 

( )( ) ( )( )
( )

N7.17

m/s9.81

kg20.3m/s2.94kg4
2

2
max

=

×

+=F

 

 
(b) Use Newton’s 2nd law to express 
the acceleration of the blocks 
moving as a unit:  
 

21 mm
Fa
+

=  

 

Substitute numerical values and 
evaluate a: 

( ) 22
1

m/s47.1
kg4kg2
N7.17

=
+

=a  
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Because the friction forces are an 
action-reaction pair, the friction 
force acting on each block is given 
by: 
 

fs = m1a = (2 kg)(1.47 m/s2)  
   = N94.2  

(c) If F = 2Fmax, then m1 slips on m2 
and the friction force (now kinetic) 
is given by: 
 

f = fk = µkm1g          

Use∑ = xx maF to relate the 

acceleration of the 2-kg block to the 
net force acting on it and solve for 
a1: 
 

fk  =  µkm1g =  m1a1    
and        
a1 = µkg = (0.2)g = 2m/s1.96  

 

Use∑ = xx maF to relate the 

acceleration of the 4-kg block to the 
net force acting on it and solve for 
a2: 

F − µkm1g = m2a2    

( ) ( )( )( )

2

2
2

1k
2

m/s87.7

kg4
m/s9.81kg20.2N17.72

=

−
=

−
=

m
gmFa µ

 

 
54 ••  
Picture the Problem Let the positive x 
direction be the direction of motion of 
these blocks. The forces acting on each of 
the blocks are shown, for the static friction 
case, on the free-body diagrams to the 
right. As described by Newton’s 3rd law, 
the normal reaction force Fn,1 and the 
friction force fs,1 (= fs,2) act on both objects 
but in opposite directions. Newton’s 2nd 
law and the definition of the maximum 
static friction force can be used to 
determine the maximum acceleration of the 
block whose mass is m1. 

 
 

 

 
(a) Apply ∑ = aF rr

m to the 2-kg 

block: 

ΣFx =  fs,1,max  = m1amax                         (1) 
and 
ΣFy = Fn,1 – m1g = 0                             (2) 
 

Apply ∑ = aF rr
m to the 4-kg 

block: 

ΣFx =  T – fs,2,max  = m2amax                   (3) 
and 
ΣFy = Fn,2 – Fn,1 –  m2g = 0                  (4) 
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Using equation (2), express the 
relationship between the static 
friction forces max,1,sf

r
and max,2,sf

r
: 

 

fs,1,max = fs,2,max = µs m1g                     (5) 

Substitute (5) in (1) and solve for 
amax: 

amax = µsg = (0.6)g = 2m/s89.5  

 
(b) Use ∑ = xx maF to express the 

acceleration of the blocks moving 
as a unit: 
  

T  = (m1 + m2) amax                             (6)  

Apply ∑ = xx maF to the object 

whose mass is m3: 
 

m3g – T  = m3 amax                              (7) 

Add equations (6) and (7) to 
eliminate T and then solve for and 
evaluate m3: 

( ) ( )( )

kg5.22

6.01
kg5kg106.0

1 s

21s
3

=

−
+

=
−

+
=

µ
µ mmm

 

 
(c) If m3 = 30 kg, then m1 will slide 
on m2 and the friction force (now 
kinetic) is given by: 
 

f = fk = µkm1g          

Use ∑ = xx maF to relate the 

acceleration of the 30-kg block to 
the net force acting on it: 
 

m3g – T  = m3a3                                 (8) 
 

Noting that a2 = a3 and that the 
friction force on the body whose 
mass is m2 is due to kinetic friction, 
add equations (3) and (8) and solve 
for and evaluate the common 
acceleration: 

( )

( ) ( )( )[ ]

2

2
32

1k3
32

m/s87.6

kg30kg10
kg50.4kg30m/s9.81

=

+
−

=

+
−

==
mm

mmgaa µ

 

 
With block 1 sliding on block 2, the 
friction force acting on each is 
kinetic and equations (1) and (3) 
become: 
 

fk  = µkm1g  = m1a1                           (1′) 
T – fk  =  T – µkm1g  = m2a2              (3′) 
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Solve equation (1′) for and evaluate 
a1: 

( )( )
2

2
k1

m/s92.3

m/s81.94.0

=

== ga µ
 

 
Solve equation (3′) for T: 
 

gmamT 1k22 µ+=  

Substitute numerical values and evaluate T: 
 

( )( ) ( )( )( ) N3.88m/s9.81kg50.4m/s6.87kg10 22 =+=T  

 
55 •  
Picture the Problem Let the direction of 
motion be the positive x direction. The 
free-body diagrams show the forces acting 
on both the block (M) and the 
counterweight (m). While ,21 TT

rr
≠  T1 = T2. 

By applying Newton’s 2nd law to these 
blocks, we can obtain equations in T and a 
from which we can eliminate the tension. 
Once we know the acceleration of the 
block, we can use constant-acceleration 
equations to determine how far it moves in 
coming to a momentary stop. 

 

 

  
(a) Apply ∑ = aF rr

m to the block 
on the incline:  

∑

∑

=−=

=−−=

0cos
and

sin

n

k1

θ

θ

MgFF

MafMgTF

y

x

 

 
Apply ∑ = aF rr

m to the 
counterweight: 
 

maTmgFx =−=∑ 2                        (1) 

Letting T1 = T2 = T and using the 
definition of the kinetic friction 
force, eliminate fk and Fn between 
the equations for the block on the 
incline to obtain: 
 

 MaMgMgT =−− θµθ cossin k      (2) 

Eliminate T from equations (1) and 
(2) by adding them and solve for a:  

( ) g
Mm

Mma k

+
+−

=
θµθ cossin

 

 
Substitute numerical values and evaluate a: 
 

( ) ( )( ) 22 m/s163.0m/s81.9
kg1600kg550

10cos15.010sinkg1600kg550
=

+
°+°−

=a  
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(b) Using a constant-acceleration 
equation, relate the speed of the 
block at the instant the rope breaks 
to its acceleration and displacement 
as it slides to a stop. Solve for its 
displacement: 
 

xavv ∆+= 22
i

2
f  

or, because vf = 0, 

a
vx

2

2
i−

=∆                                          (3) 

 

The block had been accelerating up 
the incline for 3 s before the rope 
broke, so it has an initial speed of : 
 

(0.163 m/s2)(3 s) = 0.489 m/s   

From equation (2) we can see that, 
when the rope breaks (T = 0) and: 

( )
( ) ( )[ ]

2

2

m/s15.3
10cos15.010sinm/s81.9

cossin

−=

°+°−=

+−= θµθ kga

 

where the minus sign indicates that the 
block is being accelerated down the incline, 
although it is still sliding up the incline. 
 

Substitute in equation (3) and 
evaluate ∆x: 

( )
( ) m0380.0

m/s15.32
m/s489.0

2

2

=
−

−
=∆x  

 
(c) When the block is sliding down 
the incline, the kinetic friction force 
will be up the incline. Express the  
block’s acceleration: 

( )
( ) ( )[ ]

2

2

m/s254.0

10cos15.010sinm/s81.9

cossin

−=

°−°−=

−−= θµθ kga

 

 
56 •••  
Picture the Problem If the 10-kg block is 
not to slide on the bracket, the maximum 
value for F

r
must be equal to the maximum 

value of  fs and will produce the maximum 
acceleration of this block and the bracket. 
We can apply Newton’s 2nd law and the 
definition of  fs,max to first calculate the 
maximum acceleration and then the 
maximum value of F.   
 
(a) and (b) Apply ∑ = aF rr

m to the 

10-kg block when it is experiencing 
its maximum acceleration: 
 

ΣFx = fs,max – F = m2a2,max    (1) 
and 
ΣFy = Fn,2 – m2g = 0             (2) 

Express the static friction force 
acting on the 10-kg block: 
 

fs,max = µsFn,2                          (3) 

Eliminate fs,max and Fn,2 from µsm2g – F = m2a2,max              (4) 
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equations (1), (2) and (3) to obtain: 
 
Apply ∑ = xx maF to the bracket 

to obtain:  
 

2F – µsm2g = m1a1,max             (5) 
 

Because a1,max = a2,max, denote this 
acceleration by amax. Eliminate F 
from equations (4) and (5) and solve 
for amax: 
 

21

2s
max 2mm

gma
+

=
µ

 

Substitute numerical values and 
evaluate amax: 

( )( )( )
( )

2

2

max

m/s57.1

kg102kg5
m/s9.81kg100.4

=

+
=a

 

 
Solve equation (4) for F = Fmax: ( )maxs2max22s agmamgmF −=−= µµ  

 
Substitute numerical values and 
evaluate F: 

( ) ( )( )[ ]
N5.23

m/s1.57m/s9.810.4kg10 22

=

−=F
 

 
*57 ••  
Picture the Problem The free-body 
diagram shows the forces acting on the 
block as it is moving up the incline. By 
applying Newton’s 2nd law, we can obtain 
expressions for the accelerations of the 
block up and down the incline. Adding and 
subtracting these equations, together with 
the data found in the notebook, will lead to 
values for gV and µk. 

 
 
Apply aF rr

m
i i =∑ to the block when 

it is moving up the incline: 

0cos
and

sin

Vn

upVk

=−=

=−−=

∑

∑

θ

θ

mgFF

mamgfF

y

x

 

 
Using the definition of  fk, eliminate 
Fn between the two equations to 
obtain: 
 

θθµ sincos VVkup gga −−=            (1)      
                      

When the block is moving down the 
incline, fk is in the positive x 
direction, and its acceleration is: 
 

θθµ sincos VVkdown gga −=            (2)     
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Add equations (1) and (2) to obtain: θsin2 Vdownup gaa −=+                    (3) 
 

Solve equation (3) for gV: 

θsin2
downup

V −

+
=

aa
g                                 (4) 

 
Determine θ  from the figure: 

°=⎥
⎦

⎤
⎢
⎣

⎡
= − 8.10

glapp3.82
glapp0.73tan 1θ  

 
Substitute the data from the notebook in equation (4) to obtain: 
 

2
22

V pglapp/plip41.8
8.10sin2

pglapp/plip1.42pglapp/plip73.1
−=

°−
+

=g  

 
Subtract equation (1) from equation 
(2) to obtain: 
 

θµ cos2 Vkupdown gaa =−  

Solve for µk: 

θ
µ

cos2 V

updown
k g

aa −
=  

 
Substitute numerical values and evaluate µk: 
 

( ) 191.0
8.10cospglapp/plip41.82

pglapp/plip1.73pglapp/plip1.42
2

22

k =
°−

−−
=µ  

 
*58 ••  
Picture the Problem The free-body 
diagram shows the block sliding down the 
incline under the influence of a friction 
force, its weight, and the normal force 
exerted on it by the inclined surface. We 
can find the range of values for m for the 
two situations described in the problem 
statement by applying Newton’s 2nd law of 
motion to, first, the conditions under which 
the block will not move or slide if pushed, 
and secondly, if pushed, the block will 
move up the incline. 

 
 
(a) Assume that the block is sliding 
down the incline with a constant 
velocity and with no hanging weight  
(m = 0) and apply aF rr

m=∑  to 
the block: 
 

∑

∑

=−=

=+−=

0cos
and

0sin

n

k

θ

θ

MgFF

MgfF

y

x

 

Using  fk = µkFn, eliminate Fn θθµ sincosknet MgMgF +−=  
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between the two equations and solve 
for the net force acting on the block: 
 
If the block is moving, this net force 
must be nonnegative and: 
 

( ) 0sincosk ≥+− Mgθθµ  

This condition requires that: 325.018tantank =°=≤ θµ  
 

Because µk = 0.2, this condition is 
satisfied and: 
 

0min =m  

To find the maximum value, note 
that the maximum possible value for 
the tension in the rope is mg.  For 
the block to move down the incline, 
the component of the block’s weight 
parallel to the incline minus the 
frictional force must be greater than 
or equal to the tension in the rope: 
 

Mgsinθ – µkMgcosθ  ≥ mg 

Solve for mmax: ( )θµθ cossin kmax −≤ Mm  
 

Substitute numerical values and 
evaluate mmax: 

( ) ( )[ ]
kg9.11

18cos2.018sinkg100max

=
°−°≤m

 

 
The range of values for m is: kg9.110 ≤≤ m  

 
(b) If the block is being dragged up 
the incline, the frictional force will 
point down the incline, and: 
 

Mg sinθ + µkMg cosθ < mg 

Solve for and evaluate mmin: mmin > M (sinθ + µk cosθ)  
        = (100 kg)[sin18° + (0.2)cos18°] 
        = kg9.49  
 

If the block is not to move unless 
pushed: 
 

Mg sinθ  + µs Mg cosθ  > mg 
 

Solve for and evaluate mmax: mmax < M (sinθ + µs cosθ)  
         = (100 kg)[sin18° + (0.4)cos18°] 
         = kg9.68  
 

The range of values for m is: kg9.68kg9.49 ≤≤ m  
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59 •••  
Picture the Problem The free-body 
diagram shows the forces acting on the 0.5 
kg block when the acceleration is a 
minimum. Note the choice of coordinate 
system is consistent with the direction of 
F
r

. Apply Newton’s 2nd law to the block 
and solve the resulting equations for amin 
and amax.  
 
(a) Apply ∑ = aF rr

m to the 0.5-kg 

block: 

ΣFx = Fnsinθ – fscosθ = ma               (1) 
and 
ΣFy = Fncosθ + fssinθ – mg = 0        (2) 
 

Under minimum acceleration, 
fs = fs,max. Express the relationship 
between fs,max and Fn: 
 

fs,max = µsFn                                        (3) 

Substitute fs,max for fs in equation (2) 
and solve for Fn: θµθ sincos s

n +
=

mgF  

 
Substitute for Fn in equation (1) and 
solve for a = amin: θµθ

θµθ
sincos
cossin

s

s
min +

−
= ga  

 
Substitute numerical values and 
evaluate amin: 

( ) ( )
( )

2

2
min

m/s627.0
sin350.8cos35
cos350.8sin35m/s9.81

−=

°+°
°−°

=a
 

Treat the block and incline as a 
single object to determine Fmin: 
 

Fmin = mtotamin = (2.5 kg)( –0.627 m/s2)  
       = N57.1−  

 
To find the maximum acceleration, 
reverse the direction of sf

r
and apply 

∑ = aF rr
m to the block: 

 

ΣFx = Fnsinθ + fscosθ = ma              (4) 
and 
ΣFy = Fncosθ – fssinθ – mg = 0         (5) 

Proceed as above to obtain: 
θµθ
θµθ

sincos
cossin

s

s
max −

+
= ga  

 
Substitute numerical values and 
evaluate amax: 

( ) ( )
( )

2

2
max

m/s5.33
sin350.8cos35
cos350.8sin35m/s9.81

=

°−°
°+°

=a
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Treat the block and incline as a single 
object to determine Fmax: 
 

Fmax = mtotamax = (2.5 kg)(33.5 m/s2)  
       = N8.83  

 
(b) Repeat (a) with µs = 0.4 to obtain: N5.37 andN75.5 maxmin == FF  

 
60 •  
Picture the Problem The kinetic friction 
force  fk is the product of the coefficient of 
sliding friction µk and the normal force Fn 
the surface exerts on the sliding object. By 
applying Newton’s 2nd law in the vertical 
direction, we can see that, on a horizontal 
surface, the normal force is the weight of 
the sliding object. Note that the 
acceleration of the block is opposite its 
direction of motion.  
 
(a) Relate the force of kinetic 
friction to µk and the normal force 
acting on the sliding wooden object: 
 

( ) mg
v

Ff 224nkk
103.21
11.0

−×+
== µ  

 
Substitute v = 10 m/s and evaluate 
fk: 

( )( )
( )( ) N103

m/s10103.21

m/s9.81kg10011.0
224

2

k =
×+

=
−

f

 
 

(b) Substitute v = 20 m/s and 
evaluate fk: 

( )( )
( )( )

N5.90

m/s20103.21

m/s9.81kg10011.0
224

2

k

=

×+
=

−
f

 

 
61 ••  
Picture the Problem The pictorial representation shows the block sliding from left to 
right and coming to rest when it has traveled a distance ∆x. Note that the direction of the 
motion is opposite that of the block’s acceleration. The acceleration and stopping 
distance of the blocks can be found from constant-acceleration equations. Let the 
direction of motion of the sliding blocks be the positive x direction. Because the surface 
is horizontal, the normal force acting on the sliding block is the block’s weight. 
 

 



              Chapter 5    
 

 

310 

(a) Using a constant-acceleration 
equation, relate the block’s stopping 
distance to its initial speed and 
acceleration; solve for the stopping 
distance: 

xavv ∆+= 22
0

2  
or, because v = 0, 

a
vx

2

2
0−

=∆                                     (1) 

 
Apply ∑ = xx maF to the sliding 
block, introduce Konecny’s 
empirical expression,  and solve for 
the block’s acceleration: 
 

( )
m
mg

m
F

m
f

m
F

a x

91.0

0.91
nknet,

4.0

4.0

−=

−=
−

==
 

 
Evaluate a with m = 10 kg: ( ) ( )( )[ ]

2

0.912

m/s60.2

kg10
m/s9.81kg100.4

−=

−=a
 

 
Substitute in equation (1) and 
evaluate the stopping distance when 
v0 = 10 m/s: 

( )
( ) m2.19

m/s2.602
m/s10

2

2

=
−
−

=∆x  

 
(b) Proceed as in (a) with  
m = 100 kg to obtain: 

( ) ( )( )[ ]

2

0.912

m/s11.2

kg100
m/s9.81kg1000.4

−=

−=a
 

 
Find the stopping distance as in (a): ( )

( ) m7.23
m/s2.112

m/s10
2

2

=
−
−

=∆x  

 
*62 •••  
Picture the Problem The kinetic friction force  fk is the product of the coefficient of 
sliding friction µk and the normal force Fn the surface exerts on the sliding object. By 
applying Newton’s 2nd law in the vertical direction, we can see that, on a horizontal 
surface, the normal force is the weight of the sliding object. We can apply Newton’s 2nd 
law in the horizontal (x) direction to relate the block’s acceleration to the net force acting 
on it. In the spreadsheet program, we’ll find the acceleration of the block from this net 
force (which is velocity dependent), calculate the increase in the block’s speed from its 
acceleration and the elapsed time and add this increase to its speed at end of the previous 
time interval, determine how far it has moved in this time interval, and add this distance 
to its previous position to find its current position. We’ll also calculate the position of the 
block x2, under the assumption that µk = 0.11, using a constant-acceleration equation. 
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The spreadsheet solution is shown below. The formulas used to calculate the quantities in 
the columns are as follows: 
 

Cell Formula/Content Algebraic Form 
C9 C8+$B$6 tt ∆+  
D9 D8+F9*$B$6 tav ∆+  
E9 $B$5−($B$3)*($B$2)*$B$5/ 

(1+$B$4*D9^2)^2 ( )224
k

1034.21 v
mgF

−×+
−

µ

F9 E10/$B$5 mF /net  
G9 G9+D10*$B$6 tvx ∆+  
K9 0.5*5.922*I10^2 2

2
1 at  

L9 J10-K10 
2xx −   

 
 

 A B C D E F G H I J 
1 g= 9.81 m/s^2        
2 Coeff1= 0.11         
3 Coeff2= 2.30E-

04 
       

4 Mass= 10 kg        
5 Applied 

Force= 
70 N        

6 Time 
step= 

0.05 s    
t x x2 x−x2

7           
8        
9 

t v 
Net 

force a x   mu=variable mu=constant  
10 0.00 0.00   0.00  0.00 0.00 0.00 0.00
11 0.05 0.30 59.22 5.92 0.01  0.05 0.01 0.01 0.01
12 0.10 0.59 59.22 5.92 0.04  0.10 0.04 0.03 0.01
13 0.15 0.89 59.22 5.92 0.09  0.15 0.09 0.07 0.02
14 0.20 1.18 59.22 5.92 0.15  0.20 0.15 0.12 0.03
15 0.25 1.48 59.23 5.92 0.22  0.25 0.22 0.19 0.04

        
205 9.75 61.06 66.84 6.68 292.37  9.75 292.37 281.48 10.89
206 9.80 61.40 66.88 6.69 295.44  9.80 295.44 284.37 11.07
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207 9.85 61.73 66.91 6.69 298.53  9.85 298.53 287.28 11.25
208 9.90 62.07 66.94 6.69 301.63  9.90 301.63 290.21 11.42
209 9.95 62.40 66.97 6.70 304.75  9.95 304.75 293.15 11.61
210 10.00 62.74 67.00 6.70 307.89 10.00 307.89 296.10 11.79
 
The displacement of the block as a function of time, for a constant coefficient of friction 
(µk = 0.11) is shown as a solid line on the graph and for a variable coefficient of friction, 
is shown as a dotted line. Because the coefficient of friction decreases with increasing 
particle speed, the particle travels slightly farther when the coefficient of friction is 
variable. 
 

0

50

100

150

200

250

300

0.00 2.00 4.00 6.00 8.00 10.00
t (s)

x 
(m

)

mu = variable
mu = constant

 
 

The velocity of the block, with variable coefficient of kinetic friction, is shown below. 
 

0
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20

30

40

50

60

70
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t  (s)

v 
 (m

/s
)
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63 ••  
Picture the Problem The free-body 
diagram shows the forces acting on the 
block as it moves to the right. The kinetic 
friction force will slow the block and, 
eventually, bring it to rest. We can relate 
the coefficient of kinetic friction to the 
stopping time and distance by applying 
Newton’s 2nd law and then using constant-
acceleration equations.  
 
(a) Apply ∑ = aF rr

m to the block 
of wood: 
 

0
and

n

k

=−=

=−=

∑

∑

mgFF

mafF

y

x

 

 
Using the definition of  fk, eliminate 
Fn between the two equations to 
obtain: 
 

ga kµ−=                                        (1) 
 

Use a constant-acceleration equation 
to relate the acceleration of the 
block to its displacement and its 
stopping time: 
 

( )2
2
1

0 tatvx ∆+∆=∆                      (2) 

Relate the initial speed of the block, 
v0, to its displacement and stopping 
distance: 

0.   since 
2

02
1

0
av

=∆=

∆
+

=∆=∆

vtv

tvvtvx
                  (3) 

 
Use this result to eliminate v0 in 
equation (2):  

( )2
2
1 tax ∆−=∆                                (4) 

 
Substitute equation (1) in equation 
(4) and solve for µk: ( )2

2
tg
x

k ∆
∆

=µ  

 
Substitute for ∆x = 1.37 m and  
∆t = 0.97 s to obtain: 

( )
( )( )

297.0
s0.97m/s9.81

m1.372
22 ==kµ  

 
(b) Use equation (3) to find v0: ( ) m/s82.2

s0.97
m1.3722

0 ==
∆
∆

=
t
xv  
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*64 ••  
Picture the Problem The free-body 
diagram shows the forces acting on the 
block as it slides down an incline. We can 
apply Newton’s 2nd law to these forces to 
obtain the acceleration of the block and 
then manipulate this expression 
algebraically to show that a graph of a/cosθ 
versus tanθ  will be linear with a slope 
equal to the acceleration due to gravity and 
an intercept whose absolute value is the 
coefficient of kinetic friction. 

 

 

 
(a) Apply ∑ = aF rr

m to the block 
as it slides down the incline: 

∑

∑

=−=

=−=

0cos
and

sin

n

k

θ

θ

mgFF

mafmgF

y

x

 

 
Substitute µkFn for fk and eliminate 
Fn between the two equations to 
obtain: 
 

( )θµθ cossin k−= ga  
 
 

Divide both sides of this equation by 
cosθ to obtain: ktan

cos
µθ

θ
gga

−=  

 
Note that this equation is of the form 
y = mx + b: 

Thus, if we graph a/cosθ  versus tanθ, we 
should get a straight line with slope g and 
y-intercept −gµk. 
 

(b) A spreadsheet solution is shown below. The formulas used to calculate the quantities 
in the columns are as follows: 
 

Cell Formula/Content Algebraic Form
C7 θ  
D7 a  
E7 TAN(C7*PI()/180) 

⎟
⎠
⎞

⎜
⎝
⎛ ×

180
tan πθ  

F7 D7/COS(C7*PI()/180) 

⎟
⎠
⎞

⎜
⎝
⎛ ×

180
cos πθ

a
 

 

 
 C D E F 

6 theta a tan(theta) a/cos(theta)
7 25 1.691 0.466 1.866 
8 27 2.104 0.510 2.362 
9 29 2.406 0.554 2.751 
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10 31 2.888 0.601 3.370 
11 33 3.175 0.649 3.786 
12 35 3.489 0.700 4.259 
13 37 3.781 0.754 4.735 
14 39 4.149 0.810 5.338 
15 41 4.326 0.869 5.732 
16 43 4.718 0.933 6.451 
17 45 5.106 1.000 7.220  

 
A graph of a/cosθ  versus tanθ  is shown below. From the curve fit (Excel’s Trendline 

was used), g = 9.77 m/s2 and .268.0
m/s9.77
m/s2.62

2

2

k ==µ   

The percentage error in g from the commonly accepted value of 9.81 m/s2 is 

%408.0
m/s81.9

m/s77.9m/s81.9100 2

22

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
 

 

y = 9.7681x - 2.6154
R2 = 0.9981

0
1
2
3
4

5
6
7
8

0.4 0.5 0.6 0.7 0.8 0.9 1.0

tan(theta)

a
/c

os
(th

et
a)

 
 
Motion Along a Curved Path 
 
65 •  
Picture the Problem The free-body 
diagram showing the forces acting on the 
stone is superimposed on a sketch of the 
stone rotating in a horizontal circle. The 
only forces acting on the stone are the 
tension in the string and the gravitational 
force. The centripetal force required to 
maintain the circular motion is a 
component of the tension. We’ll solve the 
problem for the general case in which the 
angle with the horizontal is θ by applying 
Newton’s 2nd law of motion to the forces 
acting on the stone.  
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Apply ∑ = aF rr
m to the stone: ΣFx = Tcosθ = mac = mv2/r     (1) 

and 
ΣFy= Tsinθ – mg = 0                (2) 
 

Use the right triangle in the diagram 
to relate r, L, and θ : 
 

r = Lcosθ                                  (3) 

Eliminate T and r between equations 
(1), (2) and (3) and solve for v2: 
 

θθ coscot2 gLv =                       (4) 

 

Express the velocity of the stone in 
terms of its period: 
 

rev1

2
t

rv π
=                                         (5) 

Eliminate v between equations (4) 
and (5) and solve for θ : L

gt
2

2
rev11

4
sin

π
θ −=  

 
Substitute numerical values and 
evaluate θ : 

( )( )
( ) °== − 8.25

m0.854π
s1.22m/s9.81sin 2

22
1θ  

and correct. is )(c  

 
66 •  
Picture the Problem The free-body 
diagram showing the forces acting on the 
stone is superimposed on a sketch of the 
stone rotating in a horizontal circle. The 
only forces acting on the stone are the 
tension in the string and the gravitational 
force. The centripetal force required to 
maintain the circular motion is a 
component of the tension. We’ll solve the 
problem for the general case in which the 
angle with the horizontal is θ  by applying 
Newton’s 2nd law of motion to the forces 
acting on the stone.  
 
Apply ∑ = aF rr

m to the stone: ΣFx = Tcosθ = mac = mv2/r      (1) 
and 
ΣFy= Tsinθ – mg = 0                 (2) 
 

Use the right triangle in the diagram 
to relate r, L, and θ: 
 

r = Lcosθ                                   (3) 
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Eliminate T and r between equations 
(1), (2), and (3) and solve for v: ( )( )

m/s50.4

20cos20cotm0.8m/s9.81

coscot
2

=

°°=

= θθgLv

 

 
67  •  
Picture the Problem The free-body 
diagram showing the forces acting on the 
stone is superimposed on a sketch of the 
stone rotating in a horizontal circle. The 
only forces acting on the stone are the 
tension in the string and the gravitational 
force. The centripetal force required to 
maintain the circular motion is a 
component of the tension. We’ll solve the 
problem for the general case in which the 
angle with the vertical is θ  by applying 
Newton’s 2nd law of motion to the forces 
acting on the stone.  
 
(a) Apply ∑ = aF rr

m to the stone: ΣFx = Tsinθ = mac = mv2/r       (1) 
and 
ΣFy= Tcosθ  – mg = 0               (2) 
 

Eliminate T between equations (1) 
and (2) and solve for v: 

θtanrgv =               

                    
Substitute numerical values and 
evaluate v: 

( )( )
m/s1.41

tan30m/s9.81m0.35 2

=

°=v
 

 
(b) Solve equation (2) for T: 

θcos
mgT =  

 
Substitute numerical values and 
evaluate T: 

( )( ) N50.8
cos30

m/s9.81kg0.75 2

=
°

=T  

 
*68 ••  
Picture the Problem The sketch shows the 
forces acting on the pilot when her plane is 
at the lowest point of its dive. nF

r
is the 

force the airplane seat exerts on her. We’ll 
apply Newton’s 2nd law for circular motion 
to determine Fn and the radius of the 
circular path followed by the airplane. 
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(a) Apply yy maF =∑  to the pilot:  

 

Fn − mg = mac 

Solve for and evaluate Fn: Fn = mg + mac = m(g + ac) 
     = m(g + 8.5g) = 9.5mg 
     = (9.5) (50 kg) (9.81 m/s2)  
     = kN66.4  

 
(b) Relate her acceleration to her 
velocity and the radius of the 
circular arc and solve for the radius: 
 

r
vac

2

=  ⇒ 
c

2

a
vr =  

Substitute numerical values and evaluate r : 
 

( )( )( )[ ]
( ) m110

m/s9.818.5
m/km1000sh/36001km/h345

2

2

==r  

 
69 ••  
Picture the Problem The diagram shows 
the forces acting on the pilot when her 
plane is at the lowest point of its dive. 

nF
r

is the force the airplane seat exerts on 
her. We’ll use the definitions of centripetal 
acceleration and centripetal force and apply 
Newton’s 2nd law to calculate these 
quantities and the normal force acting on 
her.  

 
(a) Her acceleration is centripetal 
and given by: 

upward ,
2

c r
va =  

 
Substitute numerical values and 
evaluate ac: 

( )( )( )[ ]

upward,m/s33.8

m300
/km10sh/36001km/h180

2

23

c

=

=a
 

 
(b) The net force acting on her at the 
bottom of the circle is the force 
responsible for her centripetal 
acceleration: 
 

( )( )
upward N,541

m/s33.8kg65 2
cnet

=

== maF
 

 
 

(c) Apply ∑ = yy maF to the pilot:  

 

Fn – mg = mac 
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Solve for Fn: Fn = mg + mac = m(g + ac) 
      

Substitute numerical values and 
evaluate Fn: 

Fn = (65 kg)(9.81 m/s2 + 8.33 m/s2)  
     = upwardkN,18.1  

 
70 ••  
Picture the Problem The free-body 
diagrams for the two objects are shown to 
the right. The hole in the table changes the 
direction the tension in the string (which 
provides the centripetal force required to 
keep the object moving in a circular path) 
acts. The application of Newton’s 2nd law 
and the definition of centripetal force will 
lead us to an expression for r as a function 
of m1, m2, and the time T for one 
revolution.  
  
Apply ∑ = xx maF to both objects 

and use the definition of centripetal 
acceleration to obtain: 
 

m2g – F2 = 0 
and 
F1 = m1ac = m1v2/r 

Because F1 = F2 we can eliminate 
both of them between these 
equations to obtain: 
 

0
2

12 =−
r
vmgm  

Express the speed v of the object in 
terms of the distance it travels each 
revolution and the time T for one 
revolution: 
 

T
rv π2

=  

Substitute to obtain: 
04

2

22

12 =−
rT

rmgm π
 

or 

04
2

2

12 =−
T

rmgm π
 

 
Solve for r: 

1
2

2
2

4 m
gTmr

π
=  
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*71 ••  
Picture the Problem The free-body 
diagrams show the forces acting on each 
block. We can use Newton’s 2nd law to 
relate these forces to each other and to the 
masses and accelerations of the blocks. 

 
 
Apply ∑ = xx maF to the block 

whose mass is m1: 1

2
1

121 L
vmTT =−  

 
Apply ∑ = xx maF to the block 

whose mass is m2: 21

2
2

22 LL
vmT
+

=  

 
Relate the speeds of each block to 
their common period and their 
distance from the center of the 
circle: 
 

( )
T

LLv
T
Lv 21

2
1

1
2and2 +

==
ππ

 

Solve the first force equation for T2, 
substitute for v2, and simplify to 
obtain: 

( )[ ]
2

2122
2

⎟
⎠
⎞

⎜
⎝
⎛+=

T
LLmT π

 

 
Substitute for T2 and v1 in the first 
force equation to obtain: ( )[ ]

2

112121
2

⎟
⎠
⎞

⎜
⎝
⎛++=

T
LmLLmT π

 

 
*72 ••  
Picture the Problem The path of the 
particle and its position at 1-s intervals are 
shown. The displacement vectors are also 
shown. The velocity vectors for the 
average velocities in the first and second 
intervals are along 01rr  and ,12r

r
respectively, 

and are shown in the lower diagram. 
∆ v
r

points toward the center of the circle. 
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Use the diagram to the right to find ∆r: 
 

 

 
∆r = 2rsin22.5°= 2(4 cm) sin22.5°  
      = 3.06 cm 
 

Find the average velocity of the 
particle along the chords: 
 

vav = ∆r/∆t = (3.06 cm)/(1 s)  
     = 3.06 cm/s 
 

Using the lower diagram and the 
fact that the angle between 

21 and vv
rr

is 45°, express ∆v in 

terms of v1 (= v2): 
 

∆v = 2v1sin22.5° 

Evaluate ∆v using vav as v1: ∆v = 2(3.06 cm/s)sin22.5° = 2.34 cm/s 
 

Now we can determine a = ∆v/∆t: 2cm/s34.2
s1
cm/s2.34

==a  

 
Find the speed v (= v1 = v2 …) of the 
particle along its circular path: 

( ) cm/s14.3
s8
cm42π2

===
T

rv π
 

 
Calculate the radial acceleration of 
the particle: 

( ) 2
22

c cm/s46.2
cm4
cm/s3.14

===
r
va  

 
Compare ac and a by taking their 
ratio: 

05.1
cm/s34.2
cm/s46.2

2

2
c ==

a
a

 

or 
aa 05.1c =  
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73  ••  
Picture the Problem The diagram to the 
right has the free-body diagram for the 
child superimposed on a pictorial 
representation of her motion. The force her 
father exerts is F

r
and the angle it makes 

with respect to the direction we’ve chosen 
as the positive y direction is θ. We can 
infer her speed from the given information 
concerning the radius of her path and the 
period of her motion. Applying Newton’s 
2nd law as it describes circular motion will 
allow us to find both the direction and 
magnitude of F

r
.  

  
Apply ∑ = aF rr

m to the child: ΣFx = Fsinθ = mv2/r 
and 
ΣFy = Fcosθ  − mg = 0 
 

Eliminate F between these equations 
and solve for θ : ⎥

⎦

⎤
⎢
⎣

⎡
= −

rg
v2

1tanθ  

 
Express v in terms of the radius and 
period of the child’s motion: T

rv π2
=  

 
Substitute for v in the expression for 
θ to obtain: ⎥

⎦

⎤
⎢
⎣

⎡
= −

2

2
1 4tan

gT
rπθ  

 
Substitute numerical values and 
evaluate θ : 

( )
( )( )

°=⎥
⎦

⎤
⎢
⎣

⎡
= − 3.53

s1.5m/s9.81
m0.754tan 22

2
1 πθ  

 
Solve the y equation for F: 

θcos
mgF =  

 
Substitute numerical values and 
evaluate F: 

( )( ) N410
cos53.3

m/s9.81kg25 2

=
°

=F  
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74 ••  
Picture the Problem The diagram to the 
right has the free-body diagram for the bob 
of the conical pendulum superimposed on a 
pictorial representation of its motion. The 
tension in the string is F

r
and the angle it 

makes with respect to the direction we’ve 
chosen as the positive x direction isθ. We 
can findθ from the y equation and the 
information provided about the tension. 
Then, by using the definition of the speed 
of the bob in its orbit and applying 
Newton’s 2nd law as it describes circular 
motion, we can find the period T of the 
motion. 

 

  
Apply ∑ = aF rr

m to the pendulum 

bob: 

ΣFx = Fcosθ = mv2/r 
and 
ΣFy = Fsinθ  − mg = 0 
 

Using the given information that  
F = 6mg, solve the y equation for θ: 

°=== −− 59.9
6

sinsin 11

mg
mg

F
mgθ  

 
With F = 6mg, solve the x equation 
for v: 

θcos6rgv =  

 
Relate the period T of the motion to 
the speed of the bob and the radius 
of the circle in which it moves: 
 

θ
ππ
cos6

22
rg

r
v

rT ==  

From the diagram, one can see that: 
 

r =Lcosθ 

Substitute for r in the expression for 
the period to obtain: g

LT
6

2π=  

 
Substitute numerical values and 
evaluate T: ( ) s579.0

m/s9.816
m0.52 2 == πT  
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75 ••  
Picture the Problem The static friction 
force fs is responsible for keeping the coin 
from sliding on the turntable. Using 
Newton’s 2nd law of motion, the definition 
of the period of the coin’s motion, and the 
definition of the maximum static friction 
force, we can find the magnitude of the 
friction force and the value of the 
coefficient of static friction for the two 
surfaces.  

 
(a) Apply ∑ = aF rr

m to the coin: ∑ ==
r
vmfF sx

2

 

and 

∑ =−= 0n mgFFy  

 
If T is the period of the coin’s 
motion, its speed is given by: T

rv π2
=  

 
Substitute for v in the force equation 
and simplify to obtain: 2

24
T

mrfs
π

=  

 
Substitute numerical values and 
evaluate fs: 

( )( )
( )

N395.0
s1

m0.1kg(0.14π
2

2

==sf  

 
(b) Determine Fn from the y 
equation: 
 

Fn = mg 
 

If the coin is about to slide at  
r = 16 cm,  fs = fs,max. Solve for µs in 
terms of fs,max and Fn: 

2

22

2

n

max,
s

4
4

gT
r

mg
T

mr

F
fs π

π

µ ===  

 
Substitute numerical values and 
evaluate µs: 

( )
( )( )

644.0
s1m/s9.81

m0.164π
22

2

s ==µ  
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76 ••  
Picture the Problem The forces acting on 
the tetherball are shown superimposed on a 
pictorial representation of the motion. The 
horizontal component of T

r
is the 

centripetal force. Applying Newton’s 2nd 
law of motion and solving the resulting 
equations will yield both the tension in the 
cord and the speed of the ball.  
 
(a) Apply ∑ = aF rr

m to the tetherball: ∑ =°=
r
vmTFx

2

20sin  

and 

∑ =−°= 020cos mgTFy  

 
Solve the y equation for T: 

°
=

20cos
mgT  

 
Substitute numerical values and 
evaluate T: 

( )( ) N61.2
20cos

m/s9.81kg0.25 2

=
°

=T  

 
(b) Eliminate T between the force 
equations and solve for v: 
 

°= 20tanrgv  

Note from the diagram that: r = Lsin20° 
 

Substitute for r in the expression for 
v to obtain: 
 

°°= 20tan20singLv  

Substitute numerical values and 
evaluate v: 

( )( )
m/s21.1

20tan20sinm1.2m/s9.81 2

=

°°=v
 

 
*77 ••  
Picture the Problem The diagram 
includes a pictorial representation of the 
earth in its orbit about the sun and a force 
diagram showing the force on an object at 
the equator that is due to the earth’s 
rotation, ,RF

r
 and the force on the object 

due to the orbital motion of the earth about  
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the sun, .oF
r

 Because these are centripetal 

forces, we can calculate the accelerations 
they require from the speeds and radii 
associated with the two circular motions. 
 
Express the radial acceleration due 
to the rotation of the earth: R

va
2
R

R =  

 
Express the speed of the object on 
the equator in terms of the radius of 
the earth R and the period of the 
earth’s rotation TR: 
 

R
R

2
T

Rv π
=  

Substitute for vR in the expression 
for aR to obtain: 

( )( )

( )

g

T
Ra

3

22

2

2

2
R

2

R

1044.3

m/s1037.3

h1
s3600h24

m/km1000km637044

−

−

×=

×=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

ππ

 
 

Express the radial acceleration due 
to the orbital motion of the earth: r

va
2
o

o =  

 
Express the speed of the object on 
the equator in terms of the earth-sun 
distance r and the period of the 
earth’s motion about the sun To: 
 

o
o

2
T

rv π
=  

Substitute for vo in the expression 
for ao to obtain: 2

o

2

o
4
T

ra π
=  

 
Substitute numerical values and 
evaluate ac: 

( )
( )

g

a

423

2

112

o

1007.6m/s1095.5

h1
s3600

d1
h24d365

m10.514

−− ×=×=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

×
=

π
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78 •  
Picture the Problem The most significant 
force acting on the earth is the gravitational 
force exerted by the sun. More distant or 
less massive objects exert forces on the 
earth as well, but we can calculate the net 
force by considering the radial acceleration 
of the earth in its orbit. Similarly, we can 
calculate the net force acting on the moon 
by considering its radial acceleration in its 
orbit about the earth.  
  
(a) Apply ∑ = rr maF to the earth: 
 r

vmF
2

earthon =  

 
Express the orbital speed of the 
earth in terms of the time it takes to 
make one trip around the sun (i.e., 
its period) and its average distance 
from the sun: 
 

T
rv π2

=  

Substitute for v to obtain: 
2

2

earthon
4

T
mrF π

=  

 
Substitute numerical values and evaluate Fon earth: 
 

( )( ) N1055.3

h
s3600

d
h24d24.365

m10496.1kg1098.54 22
2

11242

earthon ×=

⎟
⎠
⎞

⎜
⎝
⎛ ××

××
=

πF  

 
(b) Proceed as in (a) to obtain: 
 

( )( ) N1000.2

h
s3600

d
h24d32.27

m10844.3kg1035.74 20
2

8222

moonon ×=

⎟
⎠
⎞

⎜
⎝
⎛ ××

××
=

πF  

 
79 ••  
Picture the Problem The semicircular 
wire of radius 10 cm limits the motion of 
the bead in the same manner as would a 
10-cm string attached to the bead and fixed 
at the center of the semicircle. The 
horizontal component of the normal force 
the wire exerts on the bead is the 
centripetal force. The application of 
Newton’s 2nd law, the definition of the 
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speed of the bead in its orbit, and the 
relationship of the frequency of a circular 
motion to its period will yield the angle at 
which the bead will remain stationary 
relative to the rotating wire. 
  
Apply∑ = aF rr

m to the bead: ∑ ==
r
vmFFx

2

n sinθ  

and 

∑ =−= 0cosn mgFFy θ  

 
Eliminate Fn from the force 
equations to obtain: rg

v2

tan =θ  

 
The frequency of the motion is the 
reciprocal of its period T. Express 
the speed of the bead as a function 
of the radius of its path and its 
period: 
 

T
rv π2

=  

Using the diagram, relate r to L and 
θ : 
 

θsinLr =  

Substitute for r and v in the 
expression for tanθ and solve for θ : ⎥

⎦

⎤
⎢
⎣

⎡
= −

L
gT

2

2
1

4
cos

π
θ  

 
Substitute numerical values and 
evaluate θ : 

( )( )
( ) °=⎥

⎦

⎤
⎢
⎣

⎡
= − 6.51

m0.14π
s0.5m/s9.81cos 2

22
1θ  

 
80 •••  
Picture the Problem Note that the 
acceleration of the bead has two 
components, the radial component 
perpendicular to ,vr  and a tangential 
component due to friction that is opposite 
to .vr  The application of Newton’s 2nd law 
will result in a differential equation with 
separable variables. Its integration will lead 
to an expression for the speed of the bead 
as a function of time.  
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Apply ∑ = aF rr
m to the bead in the 

radial and tangential directions: 
∑ ==

r
vmFFr

2

n  

and 

∑ ==−=
dt
dvmmafF tt k  

 
Express fk in terms of µk and Fn:  
 

fk = µkFn 

Substitute for Fn and fk in the 
tangential equation to obtain the 
differential equation: 
 

2k v
rdt

dv µ
−=  

 

Separate the variables to obtain: dt
rv

dv k
2

µ
−=  

 
Express the integral of this equation 
with the limits of integration being 
from v0 to v on the left-hand side 
and from 0 to t on the right-hand 
side: 
 

∫∫ −=
tv

v

dt'
r

dv'
v' 0

k
2

0

1 µ
 

Evaluate these integrals to obtain: 
t

rvv
⎟
⎠
⎞

⎜
⎝
⎛−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−− k

0

11 µ
 

 
Solve this equation for v: 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛+

=
t

r
v

vv
0k

0

1

1
µ

 

 
81 •••  
Picture the Problem Note that the 
acceleration of the bead has two 
components−the radial component 
perpendicular to ,vr  and a tangential 
component due to friction that is opposite 
to .v
r

 The application of Newton’s 2nd law 
will result in a differential equation with 
separable variables. Its integration will lead 
to an expression for the speed of the bead 
as a function of time. 
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(a) In Problem 81 it was shown that: 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛+

=
t

r
v

vv
0k

0

1

1
µ

 

 
Express the centripetal acceleration 
of the bead: 

2

0

2
0

2

c

1

1

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛+

==
t

r
vr

v
r
va

kµ
 

 
(b) Apply Newton’s 2nd law to the 
bead: ∑ ==

r
vmFFr

2

n  

and 

∑ ==−=
dt
dvmmafF tt k  

 
Eliminate Fn and  fk to rewrite the 
radial force equation and solve for 
at: 

ck

2

k a
r
vat µµ −=−=  

 
(c) Express the resultant 
acceleration in terms of its radial 
and tangential components: 

( )
2
k

22
k

22

1 µ

µ

+=

+−=+=

c

ccct

a

aaaaa
 

 
Concepts of Centripetal Force 
 
*82 •  
Picture the Problem The diagram depicts 
a seat at its highest and lowest points. Let 
″t″ denote the top of the loop and ″b″ the 
bottom of the loop. Applying Newton’s 2nd 
law to the seat at the top of the loop will 
establish the value of mv2/r; this can then 
be used at the bottom of the loop to 
determine Fn,b.  
 
Apply ∑ = rr maF to the seat at the 

top of the loop: 
 

mg +Fn,t = 2mg = mar = mv2/r  
 

Apply ∑ = rr maF to the seat at the Fn,b – mg = mv2/r  
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bottom of the loop: 
 
Solve for Fn,b and substitute for 
mv2/r  to obtain: 

Fn,b = 3mg and correct. is )(d  

  
83 •  
Picture the Problem The speed of the 
roller coaster is imbedded in the expression 
for its radial acceleration. The radial 
acceleration is determined by the net radial 
force acting on the passenger. We can use 
Newton’s 2nd law to relate the net force on 
the passenger to the speed of the roller 
coaster.  
  
Apply ∑ = radialradial maF to the 

passenger: 
 

mg + 0.4mg = mv2/r 
  

Solve for v: grv 4.1=  

 
Substitute numerical values and 
evaluate v: 

( )( )
m/s8.12

m12.0m/s9.811.4 2

=

=v
 

 
84 •  
Picture the Problem The force F the 
passenger exerts on the armrest of the car 
door is the radial force required to maintain 
the passenger’s speed around the curve and 
is related to that speed through Newton’s 
2nd law of motion.  
 
Apply ∑ = xx maF to the forces 

acting on the passenger: r
vmF

2

=  

 
Solve this equation for v: 

m
rFv =  

 
Substitute numerical values and 
evaluate v: 

( )( ) m/s9.15
kg70

N220m80
==v   
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and correct. is )(a  

  
*85 •••  
Picture the Problem The forces acting on 
the bicycle are shown in the force diagram. 
The static friction force is the centripetal 
force exerted by the surface on the bicycle 
that allows it to move in a circular path. 

sn fF
rr

+ makes an angle θ  with the vertical 

direction. The application of Newton’s 2nd 
law will allow us to relate this angle to the 
speed of the bicycle and the coefficient of 
static friction. 

 

 
(a) Apply ∑ = aF rr

m to the bicycle: 
r

mvfFx

2

s ==∑  

and 
0n =−=∑ mgFFy  

 
Relate Fn and fs to θ : 

rg
v

mg
r

mv

F
f 2

2

n

stan ===θ  

 
Solve for v: θtanrgv =  

 
Substitute numerical values and 
evaluate v: 

( )( )
m/s7.25

tan15m/s9.81m20 2

=

°=v
 

 
(b) Relate  fs to µs and Fn: mgff s2

1
maxs,2

1
s µ==  

 
Solve for µs and substitute for fs to 
obtain: 
 

rg
v

mg
f 2

s
s

22
==µ  

Substitute numerical values and 
evaluate µs 

( )
( )( ) 536.0

m/s9.81m20
m/s7.252

2

2

s ==µ  
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86 ••  
Picture the Problem The diagram shows 
the forces acting on the plane as it flies in a 
horizontal circle of radius R. We can apply 
Newton’s 2nd law to the plane and 
eliminate the lift force in order to obtain an 
expression for R as a function of v and θ. 

 
 
Apply aF rr

m=∑ to the plane: 
R
vmFFx

2

lift sin ==∑ θ  

and 
0coslift =−=∑ mgFFy θ  

 
Eliminate Flift between these 
equations to obtain: 
 

Rg
v2

tan =θ  

Solve for R: 
θtan

2

g
vR =  

 
Substitute numerical values and 
evaluate R: 
 ( ) km2.16

tan40m/s9.81
s3600

h1
h

km480

2

2

=
°

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

=R  

 
87 •  
Picture the Problem Under the conditions 
described in the problem statement, the 
only forces acting on the car are the normal 
force exerted by the road and the 
gravitational force exerted by the earth. 
The horizontal component of the normal 
force is the centripetal force. The 
application of Newton’s 2nd law will allow 
us to express θ  in terms of v, r, and g.  

 
Apply ∑ = aF rr

m to the car: 

∑

∑

=−=

==

0cos
and

sin

n

2

n

mgFF

r
vmFF

y

x

θ

θ
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Eliminate Fn from the force 
equations to obtain: rg

v2

tan =θ  

 
Solve for θ : 

⎥
⎦

⎤
⎢
⎣

⎡
= −

rg
v2

1tanθ  

 
Substitute numerical values and evaluate θ: 
 

( )( )( )[ ]
( )( ) °=

⎭
⎬
⎫

⎩
⎨
⎧

= − 7.21
m/s9.81m160

m/km1000s3600h1km/h90tan 2

2
1θ  

 
*88  ••  
Picture the Problem Both the normal 
force and the static friction force contribute 
to the centripetal force in the situation 
described in this problem. We can apply 
Newton’s 2nd law to relate  fs and Fn and 
then solve these equations simultaneously 
to determine each of these quantities.  
  
(a) Apply ∑ = aF rr

m to the car: 

∑

∑

=−−=

=+=

0sincos
and

cossin

n

2

n

mgfFF

r
vmfFF

sy

sx

θθ

θθ

 

 
Multiply the x equation by sinθ  and 
the y equation by cosθ  to obtain:  

θθθθ sinsincossin
2

2
ns r

vmFf =+  

and 
0coscossincos s

2
n =−− θθθθ mgfF  

 
Add these equations to eliminate fs: θθ sincos

2

n r
vmmgF =−  

 
Solve for Fn: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

+=

θθ

θθ

sincos

sincos

2

2

n

r
vgm

r
vmmgF

 

 
Substitute numerical values and evaluate Fn: 
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( ) ( ) ( ) ( ) ( )

kN8.25

sin10
m150

sh/36001m/km1000km/h85cos10m/s9.81kg800
222

2
n

=

⎥
⎦

⎤
⎢
⎣

⎡
°+°=F

 

 
(b) Solve the y equation for fs: 

θ
θ

sin
cos mgFf n

s
−

=  

 
Substitute numerical values and evaluate fs: 
 

( ) ( )( ) kN59.1
sin10

m/s9.81kg800cos10kN8.25 2

=
°

−°
=sf  

 
(c) Express µs,min in terms of  fs and 
Fn: n

s
mins, F

f
=µ  

 
Substitute numerical values and 
evaluate µs,min: 

193.0
kN8.25
kN1.59

mins, ==µ  

 
89 ••  
Picture the Problem Both the normal 
force and the static friction force contribute 
to the centripetal force in the situation 
described in this problem. We can apply 
Newton’s 2nd law to relate fs and Fn and 
then solve these equations simultaneously 
to determine each of these quantities. 

 
 
(a) Apply ∑ = aF rr

m to the car: 

∑
∑

=−−=

=+=

0sincos

cossin

n

2

n

mgfFF
r
vmfFF

sy

sx

θθ

θθ
 

 
Multiply the x equation by sinθ  and 
the y equation by cosθ :  

θθθθ sinsincossin
2

2
ns r

vmFf =+  

0coscossincos s
2

n =−− θθθθ mgfF  

 
Add these equations to eliminate  fs: θθ sincos

2

n r
vmmgF =−  
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Solve for Fn: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

+=

θθ

θθ

sincos

sincos

2

2

n

r
vgm

r
vmmgF

 

 
Substitute numerical values and evaluate Fn: 
 

( ) ( ) ( ) ( ) ( )

kN832.7

sin10
m150

sh/36001m/km1000km/h38cos10m/s9.81kg800
222

2
n

=

⎥
⎦

⎤
⎢
⎣

⎡
°+°=F

 

 
(b) Solve the y equation for  fs: 

θ
θ

θ
θ

sin
cot

sin
cos

mgF

mgFf

n

n
s

−=

−
=

 

 
Substitute numerical values and evaluate fs: 
 

( ) ( )( ) N777
sin10

m/s9.81kg80010cotkN832.7
2

−=
°

−°=sf  

The negative sign tells us that  fs points upward along the inclined plane rather than as 
shown in the force diagram. 
 
*90 •••  
Picture the Problem The free-body diagram to the left is for the car at rest. The static 
friction force up the incline balances the downward component of the car’s weight and 
prevents it from sliding. In the free-body diagram to the right, the static friction force 
points in the opposite direction as the tendency of the moving car is to slide toward the 
outside of the curve. 
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Apply ∑ = aF rr
m to the car that is 

at rest: 

∑ =−+= 0sincos sny mgfFF θθ   (1) 

and 

∑ =−= 0cossin snx θθ fFF             (2) 

 
Substitute  fs = fs,max = µsFn in 
equation (2) and solve for and 
evaluate the maximum allowable 
value of θ: 
 

°=== −− 57.408.0tantan 1
s

1 µθ  

Apply∑ = aF rr
m to the car that is 

moving with speed v: 

∑ =−−= 0sincos sny mgfFF θθ    (3) 

∑ =+=
r
v

mfFF
2

snx cossin θθ       (4) 

 
Substitute fs = µsFn in equations (3) 
and (4) and simplify to obtain: 

( ) mgF =− θµθ sincos sn                     (5) 

( )
r
vmcF

2

sn sinos =+ θθµ                   (6) 

 
Substitute numerical values into (5) 
and (6) to obtain: 

0.9904Fn = mg 
and 

r
vmF

2

n1595.0 =  

 
Eliminate Fn and solve for r: 

g
vr

1610.0

2

=  

 
Substitute numerical values and 
evaluate r: 

( )
( )

m176

m/s9.810.1610
m/km 1000sh/36001km/h60

2

2

=

××
=r

 

 
91 •••  
Picture the Problem The free-body diagram to the left is for the car rounding the curve 
at the minimum (nonsliding down the incline) speed. The static friction force up the 
incline balances the downward component of the car’s weight and prevents it from 
sliding. In the free-body diagram to the right, the static friction force points in the 
opposite direction as the tendency of the car moving with the maximum safe speed is to 
slide toward the outside of the curve. Application of Newton’s 2nd law and the 
simultaneous solution of the force equations will yield vmin and vmax. 
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Apply ∑ = aF rr

m to a car traveling 

around the curve when the 
coefficient of static friction is zero: 

r
vmFF

2
min

nx sin∑ == θ  

and 
0cosny∑ =−= mgFF θ  

 
Divide the first of these equations 
by the second to obtain: 
 

rg
v2

tan =θ or ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

rg
v2

1tanθ  

Substitute numerical values and evaluate the banking angle: 
 

( ) ( ) ( )
( )( ) °=⎥

⎦

⎤
⎢
⎣

⎡
= − 8.22

m/s81.9m30
sh/36001m/km1000km/h40tan 2

222
1θ  

 
Apply∑ = aF rr

m to the car 

traveling around the curve at 
minimum speed: 

r
vmfFF

2
min

snx cossin∑ =−= θθ  

and 
0sincos sny∑ =−+= mgfFF θθ  

 
Substitute  fs = fs,max = µsFn in the 
force equations and simplify to 
obtain: 

( )
r

vmF
2
min

sn sincos =− θθµ  

and 
( ) mgF =+ θµθ sincos sn  

 
Evaluate these equations for  
θ  = 22.8° and µs = 0.3: 

0.1102Fn= r
vm

2
min  

and 
1.038Fn = mg 
 

Eliminate Fn between these two 
equations and solve for vmin: 

rgv 106.0min =  
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Substitute numerical values and 
evaluate vmin: 

( )( )
km/h20.1m/s59.5

m/s9.81m30106.0 2
min

==

=v
 

 
Apply∑ = aF rr

m to the car 

traveling around the curve at 
maximum speed: 

r
vmfFF

2
max

snx cossin∑ =+= θθ  

and 
0sincos sny∑ =−−= mgfFF θθ  

 
Substitute  fs = fs,max = µsFn in the 
force equations and simplify to 
obtain: 

( )
r

vmF
2
max

sn sincos =+ θθµ  

and 
( ) mgF =− θµθ sincos sn  

 
Evaluate these equations for 
θ  = 22.8° and µs = 0.3: 

0.6641Fn= r
vm

2
max  

and 
0.8056Fn = mg 
 

Eliminate Fn between these two 
equations and solve for vmax: 
 

rgv 8243.0max =  

Substitute numerical values and 
evaluate vmax: 

( )( )( )
km/h1.65m/s5.61

m/s81.9m308243.0 2
max

==

=v
 

 
Drag Forces 
 
92 •  
Picture the Problem We can apply Newton’s 2nd law to the particle to obtain its 
equation of motion. Applying terminal speed conditions will yield an expression for b 
that we can evaluate using the given numerical values. 
 
Apply yy maF =∑ to the particle: ymabvmg =−  

 
When the particle reaches its 
terminal speed v = vt and ay = 0: 
 

0t =− bvmg  

Solve for b to obtain: 

t

 
v

mgb =  
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Substitute numerical values and 
evaluate b: 

( )( )

kg/s1027.3

m/s103
m/s81.9kg10

9

4

213

−

−

−

×=

×
=b

 

 
93 •  
Picture the Problem We can apply Newton’s 2nd law to the Ping-Pong ball to obtain its 
equation of motion. Applying terminal speed conditions will yield an expression for b 
that we can evaluate using the given numerical values. 
 
Apply yy maF =∑ to the Ping-

Pong ball: 
 

ymabvmg =− 2  

When the Ping-Pong ball reaches its 
terminal speed v = vt and ay = 0: 
 

02
t =− bvmg  

 

Solve for b to obtain: 
2
t

 
v
mgb =  

 
Substitute numerical values and 
evaluate b: 

( )( )
( )

kg/m1079.2

m/s9
m/s9.81kg102.3

4

2

23

−

−

×=

×
=b

 

 
*94 •  
Picture the Problem Let the upward direction be the positive y direction and apply 
Newton’s 2nd law to the sky diver.  
 
(a) Apply yy maF =∑ to the sky 

diver: 

ymamgF =−d  
or, because ay = 0, 

mgF =d                                  (1) 
 

Substitute numerical values and 
evaluate Fd:  

( )( ) N589m/s81.9kg60 2
d ==F  

 
(b) Substitute Fd = b 2

tv in equation 

(1) to obtain:  
 

mgbv =2
t  

 

Solve for b: 
2
t

d
2
t v

F
v
mgb ==  
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Substitute numerical values and 
evaluate b: ( )

kg/m942.0
m/s25

N589
2 ==b  

 
95  ••  
Picture the Problem The free-body 
diagram shows the forces acting on the car 
as it descends the grade with its terminal 
velocity. The application of Newton’s 2nd 
law with a = 0 and Fd equal to the given 
function will allow us to solve for the 
terminal velocity of the car. 

 
 
Apply ∑ = xx maF to the car: 

 

xmaFmg =− dsinθ   

or, because v = vt and ax = 0, 
0sin d =− Fmg θ  

 
Substitute for Fd to obtain: ( ) 0m/sN1.2N100sin 2

t
22 =⋅−− vmg θ  

 
Solve for vt: 

22t m/sN1.2
N100sin

⋅
−

=
θmgv  

 
Substitute numerical values and 
evaluate vt: 

( )( )

km/h88.2m/s5.24

m/sN1.2
N1006sinm/s81.9kg800

22

2

t

==

⋅
−°

=v
 

 
96  •••   
Picture the Problem Let the upward direction be the positive y direction and apply 
Newton’s 2nd law to the particle to obtain an equation from which we can find the 
particle’s terminal speed. 
 
(a) Apply yy maF =∑ to a 

pollution particle: 

ymarvmg =− πη6  

or, because ay = 0, 
06 t =− rvmg πη  

 
Solve for vt to obtain: 
 r

mgv
πη6t =  
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Express the mass of a sphere in 
terms of its volume: ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==

3
4 3rVm πρρ  

 
Substitute for m to obtain: 

η
ρ

9
2 2

t
grv =  

 
Substitute numerical values and 
evaluate vt: 

( ) ( )( )
( )

cm/s42.2

s/mN101.89
m/s9.81kg/m2000m102

25

2325

t

=

⋅×
= −

−

v
 

 
(b) Use distance equals average 
speed times the fall time to find the 
time to fall 100 m at 2.42 cm/s: 

h15.1s1013.4
cm/s2.42
cm10 3

4

=×==t  

 
*97 •••  
Picture the Problem The motion of the centrifuge will cause the pollution particles to 
migrate to the end of the test tube. We can apply Newton’s 2nd law and Stokes’ law to 
derive an expression for the terminal speed of the sedimentation particles. We can then 
use this terminal speed to calculate the sedimentation time. We’ll use the 12 cm distance 
from the center of the centrifuge as the average radius of the pollution particles as they 
settle in the test tube.  Let R represent the radius of a particle and r the radius of the 
particle’s circular path in the centrifuge.  
 
Express the sedimentation time in 
terms of the sedimentation speed vt: t

sediment v
xt ∆

=∆  

 
Apply ∑ = radialradial maF to a 

pollution particle: 
 

ct6 maRv =πη  

Express the mass of the particle in 
terms of its radius R and density ρ: 
 

ρπρ 3
3
4 RVm ==  

Express the acceleration of the 
pollution particles due to the motion 
of the centrifuge in terms of their 
orbital radius r and period T:  
 

2

2

2

2

c
4

2

T
r

r
T

r

r
va π

π

=
⎟
⎠
⎞

⎜
⎝
⎛

==  

 

Substitute for m and ac and simplify 
to obtain: 2

33

2

2
3

3
4

t 3
1646

T
rR

T
rRRv ρππρππη =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  
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Solve for vt: 
2

22

t 9
8

T
rRv

η
ρπ

=  

 
Find the period T of the motion from 
the number of revolutions the 
centrifuge makes in 1 second: 
 s/rev1075.0

s/min60min/rev1025.1

min/rev1025.1
min/rev800

1

3-

3

3

×=

××=

×==

−

−T

 

 
Substitute numerical values and 
evaluate vt: 

( )( )( )
( )( )

m/s08.2
s1075s/mN101.89
m10m12.0kg/m20008

2325

2532

t

=
×⋅×

=
−−

−πv
 

 
Find the time it takes the particles to 
move 8 cm as they settle in the test 
tube: 
 

ms38.5

cm/s208
cm8

sediment

=

=
∆

=∆
v
xt

 

 
In Problem 96 it was shown that the 
rate of fall of the particles in air is 
2.42 cm/s. Find the time required to 
fall 8 cm in air under the influence 
of  gravity: 
 

s31.3

cm/s42.2
cm8

air

=

=
∆

=∆
v
xt

 

 

Find the ratio of the two times: ∆tair/∆tsediment ≈ 100  

 
Euler’s Method 
 
98 ••  
Picture the Problem The free-body 
diagram shows the forces acting on the 
baseball sometime after it has been thrown 
downward but before it has reached its 
terminal speed.  In order to use Euler’s 
method, we’ll need to determine how the 
acceleration of the ball varies with its 
speed.  We can do this by applying 
Newton’s 2nd law to the ball and using its 
terminal speed to express the constant in 
the acceleration equation in terms of the 
ball’s terminal speed. We can then use 

tavv nnn ∆+=+1  to find the speed of the 
ball at any given time. 
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Apply Newton’s 2nd law to the ball 
to obtain: 
 dt

dvmbvmg =− 2  

Solve for dv/dt to obtain: 
 

2v
m
bg

dt
dv

−=  

 
When the ball reaches its terminal 
speed: 
 

2
t0 v

m
bg −=  ⇒ 2

tv
g

m
b

=  

 
Substitute to obtain: 
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= 2

t

2

1
v
vg

dt
dv

 

 
Express the position of the ball to 
obtain: 
 

tvvxx nn
nn ∆

+
+= +

+ 2
1

1  

Letting an be the acceleration of the 
ball at time tn, express its speed 
when t = tn + 1:  

tavv nnn ∆+=+1  
where 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 2

t

2

1
v
vga n

n  

and ∆t is an arbitrarily small interval of 
time.  
 

A spreadsheet solution is shown below. The formulas used to calculate the quantities in 
the columns are as follows: 
 

Cell Formula/Content Algebraic Form 
A10 B9+$B$1 t + ∆t 
B10 B9+0.5*(C9+C10)*$B$1 

tvvxx nn
nn ∆

+
+= +

+ 2
1

1

C10 C9+D9*$B$1 vn+1 = vn+ an∆t 
D10 $B$4*(1−C10^2/$B$5^2)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 2

t

2

1
v
vga n

n  
 

 
 

 A B C D 
1 ∆t= 0.5 s  
2 x0= 0 m  
3 v0= 9.722 m/s  
4 a0= 9.81 m/s^2  
5 vt= 41.67 m/s  
6     
7 t x v a 
8 (s) (m) (m/s) (m/s^2) 
9 0.0 0 9.7 9.28 

10 0.5 6 14.4 8.64 
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11 1.0 14 18.7 7.84 
12 1.5 25 22.6 6.92 

     
28 9.5 317 41.3 0.17 
29 10.0 337 41.4 0.13 
30 10.5 358 41.5 0.10 

     
38 14.5 524 41.6 0.01 
39 15.0 545 41.7 0.01 
40 15.5 566 41.7 0.01 
41 16.0 587 41.7 0.01 
42 16.5 608 41.7 0.00  

 
From the table we can see that the speed of the ball after 10 s is 
approximately m/s.4.41  We can estimate the uncertainty in this result by halving ∆t 

and recalculating the speed of the ball at t = 10 s.  Doing so yields  
v(10 s) ≈ 41.3 m/s, a difference of about %.02.0  

 
The graph shows the velocity of the ball thrown straight down as a function of time. 
 

Ball Thrown Straight Down

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20

t  (s)

v  
(m

/s
)

 
 

Reset ∆t to 0.5 s and set v0 = 0. Ninety-nine percent of 41.67 m/s is approximately 41.3 
m/s. Note that the ball will reach this speed in about s5.10  and that the distance it 

travels in this time is about m.322 The following graph shows the distance traveled by 

the ball dropped from rest as a function of time.  
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Ball Dropped From Rest
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*99 •• 
Picture the Problem The free-body 
diagram shows the forces acting on the 
baseball after it has left your hand. In order 
to use Euler’s method, we’ll need to 
determine how the acceleration of the ball 
varies with its speed.  We can do this by 
applying Newton’s 2nd law to the baseball. 
We can then use tavv nnn ∆+=+1  and 

tvxx nnn ∆+=+1 to find the speed and 

position of the ball. 

 

 

 
Apply ∑ = yy maF to the baseball: 

dt
dvmmgvbv =−−  

where vv = for the upward part of the 

flight of the ball and vv −= for the 
downward part of the flight. 
 

Solve for dv/dt: 
vv

m
bg

dt
dv

−−=  

 
Under terminal speed conditions 
( tvv −= ): 

2
t0 v

m
bg +−=  

and 

2
tv

g
m
b

=  
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Substitute to obtain: 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=−−= 2

t
2
t

1
v
vv

gvv
v
gg

dt
dv

 

 
Letting an be the acceleration of the 
ball at time tn, express its position 
and speed when t = tn + 1:  

( ) tvvyy nnnn ∆++= −+ 12
1

1  
and 

tavv nnn ∆+=+1  
where 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= 2

t

1
v
vv

ga nn
n  

and ∆t is an arbitrarily small interval of 
time. 
 

 
A spreadsheet solution is shown below. The formulas used to calculate the quantities in 
the columns are as follows: 
 

Cell Formula/Content Algebraic Form 
D11 D10+$B$6 t + ∆t 
E10 41.7 v0 
E11 E10−$B$4* 

(1+E10*ABS(E10)/($B$5^2))*$B$6
tavv nnn ∆+=+1  

F10 0 y0 
F11 F10+0.5*(E10+E11)*$B$6 ( ) tvvyy nnnn ∆++= −+ 12

1
1  

G10 0 y0 
G11 $E$10*D11−0.5*$B$4*D11^2 2

2
1

0 gttv −   
 

 
 A B C D E F G 

4 g= 9.81 m/s^2     
5 vt= 41.7 m/s     
6 ∆t= 0.1 s     
7        
8        
9    t v y y no drag 
10    0.0 41.70 0.00 0.00 
11    0.1 39.74 4.07 4.12 
12    0.2 37.87 7.95 8.14 
        

40    3.0 3.01 60.13 81.00 
41    3.1 2.03 60.39 82.18 
42    3.2 1.05 60.54 83.26 
43    3.3 0.07 60.60 84.25 
44    3.4 −0.91 60.55 85.14 
45    3.5 −1.89 60.41 85.93 
46    3.6 −2.87 60.17 86.62 
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78    6.8 −28.34 6.26 56.98 
79    6.9 −28.86 3.41 54.44 
80    7.0 −29.37 0.49 51.80 
81    7.1 −29.87 −2.47 49.06  

 
From the table we can see that, after 3.5 s, the ball reaches a height of about m.4.60  It 

reaches its peak a little earlier−at about s,3.3 and its height at t = 3.3 s is m.6.60   

The ball hits the ground at about t = s7 −so it spends a little longer coming down than 

going up. 
 
The solid curve on the following graph shows y(t) when there is no drag on the baseball 
and the dotted curve shows y(t) under the conditions modeled in this problem. 
 

0
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100 ••   
Picture the Problem The pictorial representation shows the block in its initial position 
against the compressed spring, later as the spring accelerates it to the right, and finally 
when it has reached its maximum speed at xf = 0. In order to use Euler’s method, we’ll 
need to determine how the acceleration of the block varies with its position.  We can do 
this by applying Newton’s 2nd law to the box. We can then use tavv nnn ∆+=+1  and 

tvxx nnn ∆+=+1 to find the speed and position of the block. 
 

 
 
Apply ∑ = xx maF to the block: ( ) nn maxk =−m3.0  
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Solve for an: ( )nn x
m
ka −= m3.0  

 
Express the position and speed of 
the block when t = tn + 1:  

tvxx nnn ∆+=+1  
and 

tavv nnn ∆+=+1  
where 

( )nn x
m
ka −= m3.0  

and ∆t is an arbitrarily small interval of 
time. 
 

 
A spreadsheet solution is shown below. The formulas used to calculate the quantities in 
the columns are as follows: 
 

Cell Formula/Content Algebraic Form
A10 A9+$B$1 t + ∆t 
B10 B9+C10*$B$1 tvx nn ∆+  
C10 C9+D9*$B$1 tav nn ∆+  
D10 ($B$4/$B$5)*(0.3−B10) ( )nx

m
k

−3.0  
 

 
 

 A B C D 
1 ∆t= 0.005 s  
2 x0= 0 m  
3 v0= 0 m/s  
4 k = 50 N/m  
5 m = 0.8 kg  
6     
7 t x v a 
8 (s) (m) (m/s) (m/s^2) 
9 0.000 0.00 0.00 18.75 

10 0.005 0.00 0.09 18.72 
11 0.010 0.00 0.19 18.69 
12 0.015 0.00 0.28 18.63 

     
45 0.180 0.25 2.41 2.85 
46 0.185 0.27 2.42 2.10 
47 0.190 0.28 2.43 1.34 
48 0.195 0.29 2.44 0.58 
49 0.200 0.30 2.44 −0.19  

 
From the table we can see that it took about s200.0 for the spring to push the block 30 
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cm and that it was traveling about m/s44.2 at that time. We can estimate the 

uncertainty in this result by halving ∆t and recalculating the speed of the ball at t = 10 s.  
Doing so yields v(0.200 s) ≈ 2.41 m/s, a difference of about %.2.1  

 
General Problems 
 
101 •  
Picture the Problem The forces that act 
on the block as it slides down the incline 
are shown on the free-body diagram to the 
right. The acceleration of the block can be 
determined from the distance-and-time 
information given in the problem. The 
application of Newton’s 2nd law to the 
block will lead to an expression for the 
coefficient of kinetic friction as a function 
of the block’s acceleration and the angle of 
the incline.  

 
Apply ∑ = aF rr

m to the block: ΣFx = mgsinθ − fk = ma 
and 
ΣFy = Fn − mg = 0 
 

Set fk = µkFn, Fn between the two 
equations, and solve for µk: θ

θµ
cos

sin
k g

ag −
=  

 
Using a constant-acceleration 
equation, relate the distance the 
block slides to its sliding time: 

( ) 0where 0
2

2
1

0 =∆+∆=∆ vtatvx  

 
 
 

Solve for a: 
( )2
2

t
xa

∆
∆

=  

 
Substitute numerical values and 
evaluate a: 
 

( )
( )

2
2 m/s1775.0

s5.2
m2.42

==a  

Find µk for a = 0.1775 m/s2 and  
θ  = 28°: 

( )
( )

511.0

cos28m/s9.81
m/s0.1775sin28m/s9.81

2

22

k

=

°
−°

=µ
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102 •  
Picture the Problem The free-body 
diagram shows the forces acting on the 
model airplane. The speed of the plane can 
be calculated from the data concerning the 
radius of its path and the time it takes to 
make one revolution. The application of 
Newton’s 2nd law will give us the tension F 
in the string. 

 
 
(a) Express the speed of the airplane 
in terms of the circumference of the 
circle in which it is flying and its 
period: 
 

T
rv π2

=  

 

Substitute numerical values and 
evaluate v: 

( ) m/s10.7
s

1.2
4

m5.72π
==v  

 
(b) Apply ∑ = xx maF to the model 

airplane: 
 

r
vmF

2

=  

Substitute numerical values and 
evaluate  F: ( ) ( ) N8.03

m5.7
m/s10.7kg0.4

2

==F  

 
*103 ••  
Picture the Problem The free-body 
diagram shows the forces acting on the 
box. If the student is pushing with a force 
of 200 N and the box is on the verge of 
moving, the static friction force must be at 
its maximum value. In part (b), the motion 
is impending up the incline; therefore the 
direction of  fs,max is down the incline.  
 
(a) Apply ∑ = aF rr

m to the box: ∑ =−+= 0sins θmgFfFx  

and 

∑ =−= 0cosn θmgFFy  
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Substitute  fs = fs,max = µsFn, eliminate 
Fn between the two equations, and 
solve for µs: 
 

θ
θµ

cos
tans mg

F
−=  

 

Substitute numerical values and 
evaluate µs: ( )

289.0

cos30N800
N20030tans

=

°
−°=µ

 

 
(b) Find  fs,max from the x-direction 
force equation: 
 

Fmgf −= θsinmaxs,  

 

Substitute numerical values and 
evaluate fs,max: 

( )
N200

N200sin30N800maxs,

=

−°=f
 

 
If the block is on the verge of 
sliding up the incline, fs,max

 must act 
down the incline. The x-direction 
force equation becomes: 
 

0sinmaxs, =−+− θmgFf  

Solve the x-direction force equation 
for F: 

maxs,sin fmgF += θ  

 
Substitute numerical values and 
evaluate F: 

( ) N600N200sin30N800 =+°=F  

 
104 •  
Picture the Problem The path of the particle is a circle if r is a constant. Once we have 
shown that it is, we can calculate its value from its components. The direction of the 
particle’s motion can be determined by examining two positions of the particle at times 
that are close to each other.  
 
(a) and (b) Express the magnitude of 
r
r

in terms of its components: 
 

22
yx rrr +=  

Evaluate r with rx  = −10 m cos ωt and 
ry = 10 m sinωt: 

( )[ ] ( )[ ]
( )
m0.10

msincos100

sinm10cosm10
22

22

=

+=

+−=

tt

ttr

ωω

ωω
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(c) Evaluate rx and ry at t = 0 s: ( )
( ) 00sinm10

m100cosm10
=°=

−=°−=

y

x

r
r

 

 
Evaluate rx and ry at t = ∆t, where ∆t 
is small: 

( ) ( )

( )
positiveiswhere

sinm10
m10

0cosm10cosm10

yy

tr

tr

y

x

∆∆=

∆=
−=

°−≈∆−=

ω

ω

 

and clockwise ismotion  the  

 
(d) Differentiate rr with respect to 
time to obtain :vr  
 

[ ] ( )[ ] ji

rv
ˆcos10ˆ)sin10(

/

mtmt

dtd

ωωωω +=

=
rr

 

Use the components of vr to find its 
speed: 

( )[ ] ( )[ ]
( ) ( )( )

m/s0.20

s2m10m10

mcos10msin10
1

22

22

=

==

+=

+=

−ω

ωωωω tt

vvv yx

 
(e) Relate the period of the particle’s 
motion to the radius of its path and 
its speed: 

( ) s
m/s20

m1022 πππ
===

v
rT  

 
105 ••  
Picture the Problem The free-body 
diagram shows the forces acting on the 
crate of books. The kinetic friction force 
opposes the motion of the crate up the 
incline. Because the crate is moving at 
constant speed in a straight line, its 
acceleration is zero. We can determine F 
by applying Newton’s 2nd law to the crate, 
substituting for  fk, eliminating the normal 
force, and solving for the required force. 

 

 
Apply∑ = aF rr

m to the crate, with 

both ax and ay equal to zero, to the 
crate: 

∑ =−−= 0sincos θθ mgfFF kx  

and 

∑ =−−= 0cossin θθ mgFFF ny  
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Substitute µsFn for fk and eliminate 
Fn to obtain: 

( )
θµθ

θµθ
sincos

cossin

k

k

−
+

=
mgF  

 
Substitute numerical values and evaluate F: 
 

( )( ) ( )( )
( ) kN49.1

sin300.5cos30
cos300.5sin30m/s9.81kg100 2

=
°−°

°+°
=F  

 
106 ••   
Picture the Problem The free-body 
diagram shows the forces acting on the 
object as it slides down the inclined plane. 
We can calculate its speed at the bottom of 
the incline from its acceleration and 
displacement and find its acceleration from 
Newton’s 2nd law.  
 
Using a constant-acceleration 
equation, relate the initial and final 
velocities of the object to its 
acceleration and displacement: solve 
for the final velocity: 
 

xavv ∆+= 22
0

2  

Because v0 = 0, xav ∆= 2            (1) 

Apply ∑ = aF rr
m to the sliding 

object: 

∑ =+−= mamgfFx θsink  

and 

∑ =−= 0cosn θmgFFy  

 
Solve the y equation for Fn and 
using  fk = µkFn, eliminate both Fn 
and  fk from the x equation and solve 
for a: 
 

( )θµθ cossin k−= ga               (2) 

Substitute equation (2) in equation 
(1) and solve for v: 
 

( ) xgv ∆−= θµθ cossin2 k   

Substitute numerical values and evaluate v: 
 

( ) ( )( )( ) m/s7.16m7230cos35.030sinm/s9.812 2 =°−°=v  and correct. is )(d  
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*107 ••   
Picture the Problem The free-body 
diagram shows the forces acting on the 
brick as it slides down the inclined plane. 
We’ll apply Newton’s 2nd law to the brick 
when it is sliding down the incline with 
constant speed to derive an expression for 
µk in terms of θ0. We’ll apply Newton’s 2nd 
law a second time for θ = θ1 and solve the 
equations simultaneously to obtain an 
expression for a as a function of θ0 and θ1. 

 

 
Apply ∑ = aF rr

m  to the brick 

when it is sliding with constant 
speed: 

∑ =+−= 0sin 0k θmgfFx  

and 

∑ =−= 0cos 0n θmgFFy  

 
Solve the y equation for Fn and 
using  fk = µkFn, eliminate both Fn 
and  fk from the x equation and solve 
for µk: 
 

0k tanθµ =  

Apply ∑ = aF rr
m to the brick when  

θ = θ1: 

∑ =+−= mamgfFx 1k sinθ  

and 

∑ =−= 0cos 1n θmgFFy  

 
Solve the y equation for Fn, use  
fk = µkFn to eliminate both Fn and fk 
from the x equation, and use the 
expression for µk obtained above to 
obtain: 

( )101 costansin θθθ −= ga  

 
108 ••  
Picture the Problem The fact that the object is in static equilibrium under the influence 
of the three forces means that .0321 =++ FFF

rrr
 Drawing the corresponding force 

triangle will allow us to relate the forces to the angles between them through the law of 
sines and the law of cosines.  
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(a) Using the fact that the object is 
in static equilibrium, redraw the 
force diagram connecting the forces 
head-to-tail:   

 
 

Apply the law of sines to the 
triangle: ( ) ( ) ( )12

3

13

2

23

1

sinsinsin θπθπθπ −
=

−
=

−
FFF

 
 

Use the trigonometric identity  
sin(π − α) = sinα  to obtain: 

12

3

13

2

23

1

sinsinsin θθθ
FFF

==  

 
(b) Apply the law of cosines to the 
triangle: 

( )2332
2

3
2

2
2

1 cos2 θπ −−+= FFFFF  
 

Use the trigonometric identity  
cos(π − α) = −cosα to obtain: 2332

2
3

2
2

2
1 cos2 θFFFFF ++=  

 
 
109 ••   
Picture the Problem We can calculate the 
acceleration of the passenger from his/her 
speed that, in turn, is a function of the 
period of the motion. To determine the 
longest period of the motion, we focus our 
attention on the situation at the very top of 
the ride when the seat belt is exerting no 
force on the rider. We can use Newton’s 
2nd law to relate the period of the motion to 
the acceleration and speed of the rider. 

 

 

 
(a) Because the motion is at 
constant speed, the acceleration is 
entirely radial and is given by: 
 

r
va

2

c =  

Express the speed of the motion of 
the ride as a function of the radius 
of the circle and the period of its 
motion: 
 

T
rv π2

=  
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Substitute in the expression for ac to 
obtain: 2

2

c
4
T

ra π
=  

 
Substitute numerical values and 
evaluate ac: 

( )
( )

2
2

2

c m/s3.49
s2

m54
==

πa  

 
(b) Apply ∑ = aF rr

m to the 

passenger when he/she is at the top 
of  the circular path and solve for ac: 
 

∑ == cr mamgF  

and 
ac = g 
 

Relate the acceleration of the 
motion to its radius and speed and 
solve for v: 
 

grv
r

vg =⇒=
2

 

Express the period of the motion as 
a function of the radius of the circle 
and the speed of the passenger and 
solve for Tm: 
 

g
r

v
rT ππ 22

m ==  

 

Substitute numerical values and 
evaluate Tm: s49.4

m/s9.81
m52 2m == πT  

 
Remarks: The rider is ″weightless″ under the conditions described in part (b). 
 
*110  ••   
Picture the Problem The pictorial 
representation to the right shows the cart 
and its load on the inclined plane. The load 
will not slip provided its maximum 
acceleration is not exceeded. We can find 
that maximum acceleration by applying 
Newton’s 2nd law to the load. We can then 
apply Newton’s 2nd law to the cart-plus-
load system to determine the tension in the 
rope when the system is experiencing its 
maximum acceleration. 
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Draw the free-body diagram for the 
cart and its load: 

 
Apply ∑ = xx maF to the cart plus 

its load: 
 

( ) ( ) max2121 sin ammgmmT +=+− θ  (1) 

Draw the free-body diagram for the 
load of mass m2 on top of the cart: 

 
Apply ∑ = aF rr

m  to the load on 

top of the cart: 

∑ =−= max22maxs, sin amgmfFx θ  

and 
0cos22,n =−=∑ θgmFFy  

 
Using  fs,max = µsFn,2, eliminate Fn,2 
between the two equations and solve 
for the maximum acceleration of the 
load: 
 

( )θθµ sincossmax −= ga                 (2) 

Substitute equation (2) in equation 
(1) and solve for T : 

( ) θµ coss21 gmmT +=  

 
111 ••   
Picture the Problem The free-body 
diagram for the sled while it is held 
stationary by the static friction force is 
shown to the right. We can solve this 
problem by repeatedly applying Newton’s 
2nd law under the conditions specified in 
each part of the problem. 

 
 
(a) Apply∑ = yy maF to the sled: 0cos1n,1 =− θgmF  
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Solve for Fn,1: 
 

θcos1n,1 gmF =  

Substitute numerical values and 
evaluate Fn,1: 
 

( ) N19315cosN200n,1 =°=F  

(b) Apply∑ = xx maF to the sled: 0sin1s =− θgmf  

 
 

Solve for fs: 
 

θsin1s gmf =  

Substitute numerical values and 
evaluate fs: 
 

( ) N8.5115sinN200s =°=f  

(c) Draw the free-body diagram for 
the sled when the child is pulling on 
the rope:  

 
Apply∑ = aF rr

m to the sled to 

determine whether it moves: maxs,1

net

sin30cos fgmF
FFx

−−°=

=∑
θ

 

and 

∑ =−°+= 0cos30sin 1n,1 θgmFFFy  

 
Solve the y-direction equation for 
Fn,1: 
 

θcos30sin 1n,1 gmFF +°−=  

 

Substitute numerical values and 
evaluate Fn,1: 

( ) ( )
N143

15cosN20030sinN100n,1

=

°+°−=F
 

 
Express fs,max: fs,max = µsFn,1 = (0.5)(143 N)  

         = 71.5 N 
 

Use the x-direction force equation to 
evaluate Fnet: 

Fnet = (100 N)cos30° − (200 N)sin15° 
             − 71.5 N  
       = −36.7 N 
 

Because the net force is negative, 
the sled does not move: 

edundetermin is kf  
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(d) Because the sled does not move: edundetermin is kµ  

 
(e) Draw the FBD for the child: 
  

 
Express the net force Fc exerted on 
the child by the incline: 
 

2
maxs,

2
n2c fFF +=                           (1) 

Noting that the child is stationary, 
apply∑ = aF rr

m to the child: 

 
0

15sin30cos 2maxs,

=

°−°−=∑ gmFfFx  

and 
030sin15sin2n2 =°−°−=∑ FgmFFy  

 
Solve the x equation for fs,max and the 
y equation for Fn2: 

°+°= 15sin30cos 2maxs, gmFf  

and 
°+°= 30sin15sin2n2 FgmF  

 
Substitute numerical values and 
evaluate Fx and Fn2: 

( ) ( )
N459

15sinN10030cosN500maxs,

=

°+°=f
 

and 
( ) ( )

N276
30sinN50015sinN100n2

=
°+°=F

 

 
Substitute numerical values in 
equation (1) and evaluate F: 

( ) ( ) N536N459N276 22
c =+=F  

 
112 •  
Picture the Problem Let v represent the speed of rotation of the station, and r the 
distance from the center of the station. Because the O’Neill colony is, presumably, in 
deep space, the only acceleration one would experience in it would be that due to its 
rotation. 
 
(a) Express the acceleration of 
anyone who is standing inside the 
station: 
 

a = v2/r  
 

This acceleration is directed toward the axis of rotation.  If someone inside the station 
drops an apple, the apple will not have any forces acting on it once released, but will 
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move along a straight line at constant speed.  However, from the point of view of our 
observer inside the station, if he views himself as unmoving, the apple is perceived to 
have an acceleration of mv2/r directed away from the axis of rotation (a "centrifugal" 
force). 
 
(b) Each deck must rotate the central 
axis with the same period T. Relate 
the speed of a person on a particular 
deck to his/her distance r from the 
center:  
 

T
rv π2

=  

 

Express the "acceleration of 
gravity" perceived by someone a 
distance r from the center:  

2

22 4
T

r
r

v π
=  

decreases.  as decreases gravity"
  todueon accelerati"   thei.e.,

r
 

 
(c) Relate the desired acceleration 
to the radius of Babylon 5 and its 
period: 

2

24
T

ra π
=  

 
Solve for T: 

a
rT

24π
=  

 
Substitute numerical values and 
evaluate T: 

min 0.735  s1.44
m/s8.9

mi
km1.609mi3.04

2

2

==

⎟
⎠
⎞

⎜
⎝
⎛ ×

=
π

T  

 
Take the reciprocal of this time to 
find the number of revolutions per 
minute Babylon 5 has to make in 
order to provide this ″earth-like″ 
acceleration: 

min/rev36.11 =−T  
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113 ••   
Picture the Problem The free-body 
diagram shows the forces acting on the 
child as she slides down the incline. We’ll 
first use Newton’s 2nd law to derive an 
expression for µk in terms of her 
acceleration and then use Newton’s 2nd law 
to find her acceleration when riding the 
frictionless cart. Using a constant-
acceleration equation, we’ll relate these 
two accelerations to her descent times and 
solve for her acceleration when sliding. 
Finally, we can use this acceleration in the 
expression for µk. 

 
 

 

 
Apply ∑ = aF rr

m to the child as 

she slides down the incline: 

∑ =−°= 1k30sin mafmgFx  

and 

∑ =°−= 030cosn mgFFy  

 
Using  fk = µkFn, eliminate fk and Fn 
between the two equations and solve 
for µk: 
 

°
−°=

30cos
30tan 1

k g
a

µ               (1) 

 

Apply∑ = xx maF to the child as 

she rides the frictionless cart down 
the incline and solve for her 
acceleration a2: 
 

230sin mamg =°  

and 

2
2

m/s91.4

30sin

=

°= ga
 

 
Letting s represent the distance she 
slides down the incline, use a 
constant-acceleration equation to 
relate her sliding times to her 
accelerations and distance traveled 
down the slide : 
 

0where 0
2
112

1
10 =+= vtatvs  

and 
0where 0

2
222

1
20 =+= vtatvs  

Equate these expressions, substitute  
t2 = 2

1 t1 and solve for a1: 

 

2
4
1

24
1

1 m/s23.130sin =°== gaa  

 



                                                                  Applications of Newton’s Laws 
    

 

363

Evaluate equation (1) with  
a1 = 1.23 m/s2: ( )

433.0

30cosm/s81.9
m/s23.130tan 2

2

k

=

°
−°=µ

 

 
*114 ••   
Picture the Problem The path of the particle is a circle if r is a constant. Once we have 
shown that it is, we can calculate its value from its components and determine the 
particle’s velocity and acceleration by differentiation. The direction of the net force 
acting on the particle can be determined from the direction of its acceleration.  
 

(a) Express the magnitude of r
r

in 
terms of its components: 

 

22
yx rrr +=  

Evaluate r with rx  = Rsinωt and  
ry = Rcosωt: 

[ ] [ ]
( ) m0.4cossin

cossin
222

22

==+=

+=

RttR

tRtRr

ωω

ωω
 

origin. at the centered
 circle a is particle  theofpath  the∴

 

 
(b) Differentiate rr with respect to 
time to obtain :v

r
 

[ ]
[ ]

( )[ ]
( )[ ] j

i

j

irv

ˆm/s2sin8

ˆm/s2cos8

ˆsin

ˆcos/

t

t

tR

tRdtd

ππ

ππ

ωω

ωω

−
=

−+

==
rr

 

 

Express the ratio :
y

x

v
v

 t
t

t
v
v

y

x ω
ωπ

ωπ cot
sin8

cos8
−=

−
=  

 

Express the ratio :
x
y

−  t
tR
tR

x
y ω

ω
ω cot

sin
cos

−=−=−  

 
 

x
y

v
v

y

x −=∴  

 
(c) Differentiate vr  with respect to 
time to obtain :a

r
 

 
( )[ ]

( )[ ]j

i

va

ˆcosm/s16

ˆsinm/s16

/

22

22

t

t

dtd

ωπ

ωπ

−+

−
=

=
rr
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Factor −4π2/s2 from ar  to obtain: ( ) ( ) ( )[ ]
( )r

jia
r

r

22

22

s/4

ˆcos4ˆsin4s/4

π

ωωπ

−=

+−= tt
 

Because a
r

is in the opposite direction from 
,rr  it is directed toward the center of the 

circle in which the particle is traveling. 
 

Find the ratio 
r

v 2

: ( ) a
r
v

=== 22
22

m/s16
m4
m/s8 ππ

 

 
(d) Apply∑ = aF rr

m to the particle: 

 

( )( )
N8.12

m/s16kg8.0
2

22
net

π

π

=

== maF
 

 
Because the direction of netF

r
is the 

same as that of a
r

: 
circle.  theofcenter   the towardis netF

r
 

 
115 ••  
Picture the Problem The free-body 
diagram showing the forces acting on a 
rider being held in place by the maximum 
static friction force is shown to the right. 
The application of Newton’s 2nd law and the 
definition of the maximum static friction 
force will be used to determine the period T 
of the motion. The reciprocal of the period 
will give us the minimum number of 
revolutions required per unit time to hold 
the riders in place. 

 

 

 
Apply ∑ = aF rr

m to the riders while 

they are held in place by friction: 
∑ ==

r
vmFFx

2

n  

and 

∑ =−= 0maxs, mgfFy  

 

Using nsmaxs, Ff µ= and ,2
T

rv π
=  

eliminate Fn between the force 
equations and solve for the period of 
the motion: 
 

( )( )

min0.00423s54.2
m/s9.81

m40.422 2
s

==

== πµπ
g
rT
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The number of revolutions per 
minute is the reciprocal of the period 
in minutes: 

rev/min6.23  

 
116 ••   
Picture the Problem The free-body 
diagrams to the right show the forces 
acting on the blocks whose masses are m1 
and m2. The application of Newton’s 2nd 
law and the use of a constant-acceleration 
equation will allow us to find a relationship 
between the coefficient of kinetic friction 
and m1. The repetition of this procedure 
with the additional object on top of the 
object whose mass is m1 will lead us to a 
second equation that, when solved 
simultaneously with the former equation, 
leads to a quadratic equation in m1. Finally, 
its solution will allow us to substitute in an 
expression for µk and determine its value. 

 
 

 

 
Using a constant-acceleration 
equation, relate the displacement of 
the system in its first configuration 
as a function of its acceleration and 
fall time: 
 

( )2
12

1
0 tatvx ∆+∆=∆  

or, because v0 = 0,  
( )2

12
1 tax ∆=∆  

 

Solve for a1: 
( )21
2

t
xa

∆
∆

=  

 
Substitute numerical values and 
evaluate a1: 
 

( )
( )

2
21 m/s46.4

s82.0
m5.12

==a  

Apply ∑ = xx maF to the object 

whose mass is m2 and solve for T1: 
 

1212 amTgm =−  

and 
( )

( )( )
N375.13

m/s46.4m/s81.9kg5.2 22
21

=
−=

−= agmT

 

 
Apply ∑ = aF rr

m to the object 

whose mass is m1: 

∑ =−= 11k1 amfTFx  

and 
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∑ =−= 01n,1 gmFFy  

 
Using fk = µkFn, eliminate Fn 
between the two equations to obtain: 
 

111k1 amgmT =− µ                         (1) 

Find the acceleration a2 for the 
second run: ( )

( )
( )

2
222 m/s775.1

s3.1
m5.122

==
∆
∆

=
t
xa  

 
Evaluate T2: ( )

( )( )
N1.20

m/s775.1m/s81.9kg5.2 22
22

=
−=

−= agmT

 

 
Apply ∑ = xx maF to the 1.2-kg 

object in place: 
 

( )
( ) 21

1k2

kg2.1
kg2.1

am
gmT

+=
+− µ

        (2) 

 
Solve equation (1) for µk: 

gm
amT

1

111
k

−
=µ                           (3) 

 
Substitute for µk in equation (2) and 
simplify to obtain the quadratic 
equation in m1: 
 

005.16947.9685.2 1
2
1 =−+ mm  

Solve the quadratic equation to 
obtain: 

( ) kg22.1kg07.385.1 11 =⇒±−= mm

 
 

Substitute numerical values in 
equation (3) and evaluate µk: 

( )( )
( )( )

643.0

m/s81.9kg1.22
m/s66.4kg 1.22N375.13

2

2

k

=

−
=µ

 

 
*117 •••   
Picture the Problem The diagram shows a 
point on the surface of the earth at latitude 
θ. The distance R to the axis of rotation is 
given by R = rcosθ. We can use the 
definition of centripetal acceleration to 
express the centripetal acceleration of a 
point on the surface of the earth due to the 
rotation of the earth. 
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(a) Referring to the figure, express 
ac for a point on the surface of the 
earth at latitude θ : 
 

θcos where
2

c rR
R
va ==  

Express the speed of the point due 
to the rotation of the earth: 
 .revolution onefor timetheiswhere

 2

T
T

Rv π
=  

 
Substitute for v in the expression for 
ac and simplify to obtain: 2

2

c
cos4

T
ra θπ

=  

 
Substitute numerical values and 
evaluate ac: 

( )
( )( )[ ]
( )

axis. searth'
  the toward,coscm/s37.3

s/h3600h24
coskm63704

2

2

2

c

θ

θπ

=

=a

 

 
(b) 

. of  than thatlessslightly  is  of magnitude  that theshow to
 used becan  diagramaddition A vector  rotation. searth'  the todueon accelerati

  theandgravity   todueon accelerati  theeight toapparent w  therelateswhich 
 ,     gives grearrangin and by equation  isthrough th

 gMultiplyin earth).  theofrotation   the todue surface  theofon accelerati (the
 frame inertial  the torelativeearth   theof surface local  theofon accelerati

  theis   where,  toequal is stone on the force nalgravitatio
 The earth.  theof surface local  the torelative )resistanceair  g(neglectin

stone falling  theofon accelerati  theis   where,  toequal is stone the
of weight effective The earth.on location  aat  hand a from dropped stoneA 

iner st,surf st,

iner surf,iner st,surf st,

iner st,inerst,

surf st,surf st,

aa

aaa

aa

aa

rr

rrr

rr

rr

mm

mmmm

m

m

−=

 

 
(c) At the equator, the gravitational 
acceleration and the radial 
acceleration are both directed 
toward the center of the earth. 
Therefore: 
 

( )
2

22
ceff

cm/s4.981

cos0cm/s3.37cm/s978

=

°+=

+= agg

 

 

At latitude θ  the gravitational 
acceleration points toward the 
center of the earth whereas the 
centripetal acceleration points 
toward the axis of rotation. Use the 

θcos2 c
2
c

22
eff gaagg −+=  
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law of cosines to relate geff, g, and 
ac: 
 
Substitute for θ, geff, and ac and 
simplify to obtain the quadratic 
equation: 
 

( ) 0/scm962350cm/s75.4 4222 =−− gg  

 

Solve for the physically meaningful 
(i.e., positive) root to obtain: 

2cm/s983=g  

 
*118 •••  
Picture the Problem The diagram shows 
the block in its initial position, an 
intermediate position, and as it is 
separating from the sphere. Because the 
sphere is frictionless, the only forces acting 
on the block are the normal and 
gravitational forces. We’ll apply Newton’s 
2nd law and set Fn equal to zero to 
determine the angle θc at which the block 
leaves the surface.  

 
Taking the inward direction to be 
positive, apply rr maF =∑ to the 
block: 
 

R
vmFmg

2

ncos =−θ  

Apply the separation condition to 
obtain: 
 R

vmmg
2

ccos =θ  

Solve for cosθc: 

gR
v2

ccos =θ                       (1) 

 
Apply tt maF =∑ to the block: tsin mamg =θ  

or 

θsint g
dt
dva ==  

Note that a is not constant and, hence, we 
cannot use constant-acceleration equations. 
 

Multiply the left-hand side of the 
equation by one in the form of 
dθ/dθ and rearrange to obtain: 
 

θ
θ
θ sing

d
d

dt
dv

=  

and 

θ
θ

θ sing
d
dv

dt
d

=  
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Relate the arc distance s the block 
travels to the angle θ  and the radius 
R of the sphere: 
 

R
s

=θ  and 
R
v

dt
ds

Rdt
d

==
1θ

 

where v is the block’s instantaneous speed. 
 

Substitute to obtain: 
θ

θ
sing

d
dv

R
v

=  

 
Separate the variables and integrate 
from v′ = 0 to v and θ = 0 to θc: 
 

∫∫ =
c

00

sin
θ

θθdgRv'dv'
v

 

or 
( )c

2 cos12 θ−= gRv  
 

Substitute in equation (1) to obtain: ( )

( )c

c
c

cos12

cos12cos

θ

θθ

−=

−
=

gR
gR

 

 
Solve for and evaluate θc: 
 °=⎟

⎠
⎞

⎜
⎝
⎛= − 2.48

3
2cos 1

cθ  
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