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Chapter 6 
Work and Energy 
 
Conceptual Problems 

 
*1 •  
Determine the Concept A force does work on an object when its point of application 
moves through some distance and there is a component of the force along the line of 
motion. 
 
(a) False. The net force acting on an object is the vector sum of all the forces acting on 
the object and is responsible for displacing the object. Any or all of the forces 
contributing to the net force may do work. 
 
(b) True. The object could be at rest in one reference frame and moving in another. If we 
consider only the frame in which the object is at rest, then, because it must undergo a 
displacement in order for work to be done on it, we would conclude that the statement is 
true. 
 
(c) True. A force that is always perpendicular to the velocity of a particle changes neither 
it’s kinetic nor potential energy and, hence, does no work on the particle. 

 
2 •  
Determine the Concept If we ignore the work that you do in initiating the horizontal 
motion of the box and the work that you do in bringing it to rest when you reach the 
second table, then neither the kinetic nor the potential energy of the system changed as 
you moved the box across the room. Neither did any forces acting on the box produce 
displacements. Hence, we must conclude that the minimum work you did on the box is 
zero. 

 
3 •  
False. While it is true that the person’s kinetic energy is not changing due to the fact that 
she is moving at a constant speed, her gravitational potential energy is continuously 
changing and so we must conclude that the force exerted by the seat on which she is 
sitting is doing work on her. 
 
*4 • 
Determine the Concept The kinetic energy of any object is proportional to the square of 
its speed. Because ,2

2
1 mvK =  replacing v by 2v yields 

( ) ( ) .442 2
2
12

2
1 KmvvmK' ===  Thus doubling the speed of a car quadruples its kinetic 

energy. 
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5 •  
Determine the Concept No. The work done on any object by any force F

r
 is defined as 

rF rr
ddW ⋅= . The direction of netF

r
 is toward the center of the circle in which the object 

is traveling and rrd is tangent to the circle. No work is done by the net force because 

netF
r

and rrd are perpendicular so the dot product is zero. 

 
6 •  
Determine the Concept The kinetic energy of any object is proportional to the square of 
its speed and is always positive. Because ,2

2
1 mvK =  replacing v by 3v yields 

( ) ( ) .993 2
2
12

2
1 KmvvmK' === Hence tripling the speed of an object increases its 

kinetic energy by a factor of 9 and correct. is )(d  

 
*7 •  
Determine the Concept The work required to stretch or compress a spring a distance x is 
given by 2

2
1 kxW = where k is the spring’s stiffness constant. Because W ∝ x2, doubling 

the distance the spring is stretched will require four times as much work. 
 
8 •  
Determine the Concept No. We know that if a net force is acting on a particle, the 
particle must be accelerated. If the net force does no work on the particle, then we must 
conclude that the kinetic energy of the particle is constant and that the net force is acting 
perpendicular to the direction of the motion and will cause a departure from straight-line 
motion. 
 
9 •  
Determine the Concept We can use the definition of power as the scalar product of 
force and velocity to express the dimension of power. 
 
Power is defined as: P ≡ F

r
⋅ vr  

 
Express the dimension of force: [M][L/T 2] 

 
Express the dimension of velocity: [L/T] 

 
Express the dimension of power in 
terms of those of force and velocity: 

[M][L/T 2][L/T] = [M][L]2/[T]3 

and correct. is )(d  
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10 • 
Determine the Concept The change in gravitational potential energy, over elevation 
changes that are small enough so that the gravitational field can be considered constant, is 
mg∆h, where ∆h is the elevation change. Because ∆h is the same for both Sal and Joe, 
their gains in gravitational potential energy are the same. correct. is )(c  

 
11 •  
(a) False. The definition of work is not limited to displacements caused by conservative 
forces. 
 
(b) False. Consider the work done by the gravitational force on an object in freefall. 
 
(c) True. This is the definition of work done by a conservative force. 
 
*12 ••  
Picture the Problem Fx is defined to be the negative of the derivative of the potential 
function with respect to x; i.e., dxdUFx −= . 

 
(a) Examine the slopes of the curve at 
each of the lettered points, remembering 
that Fx is the negative of the slope of the 
potential energy graph, to complete the 
table:  

Point dU/dx Fx

A + − 
B 0 0 
C − + 
D 0 0 
E + − 
F 0 0  

(b) Find the point where the slope is 
steepest: 

 

greatest. is  point At xFC  

 
(c) If d2U/dx2 < 0, then the curve is 
concave downward and the 
equilibrium is unstable.  

unstable. is mequilibriu  thepoint At B  

 
 

If d2U/dx2 > 0, then the curve is 
concave upward and the equilibrium 
is stable. 
 

stable. is mequilibriu  thepoint At D  

 

Remarks: At point F, d2U/dx2 = 0 and the equilibrium is neither stable nor unstable; 
it is said to be neutral. 
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13 •  
(a) False. Any force acting on an object may do work depending on whether the force 
produces a displacement … or is displaced as a consequence of the object’s motion.  
 
(b) False. Consider an element of area under a force-versus-time graph. Its units are N⋅s 
whereas the units of work are N⋅m. 
 
14 •  
Determine the Concept Work ( )sF

rr
ddW ⋅=  is done when a force F

r
 produces a 

displacement .srd  Because ( )ds,FFdsd θθ coscos =≡⋅ sF
rr

 W will be negative if the 

value of θ is such that Fcosθ is negative. correct. is )(d  

 
Estimation and Approximation  
 
*15 ••  
Picture the Problem The diagram depicts the situation when the tightrope walker is at 
the center of rope. M represents her mass and the vertical components of tensions 

1T
r

and ,2T
r

 equal in magnitude, support her weight. We can apply a condition for static 
equilibrium in the vertical direction to relate the tension in the rope to the angle θ and use 
trigonometry to find s as a function of θ. 
 

 
 
(a) Use trigonometry to relate the 
sag s in the rope to its length L and 
θ : 
 

L
s

2
1

tan =θ and θtan
2
Ls =  

 

Apply 0=∑ yF to the tightrope 
walker when she is at the center of 
the rope to obtain: 
 

0sin2 =− MgT θ where T is the 

magnitude of 1T
r

and 2T
r

. 

Solve for θ to obtain: 
 ⎟

⎠
⎞

⎜
⎝
⎛= −

T
Mg
2

sin 1θ  

 
Substitute numerical values and 
evaluate θ : 
 

( )( )
( ) °=⎥

⎦

⎤
⎢
⎣

⎡
= − 81.2

N50002
m/s9.81kg05sin

2
1θ  
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Substitute to obtain: 
 m0.24581.2tan

2
m10

=°=s  

 
(b) Express the change in the 
tightrope walker’s gravitational 
potential energy as the rope sags: 
 

yMgUUU ∆=−=∆ endcenterat  

Substitute numerical values and 
evaluate ∆U: 

( )( )( )
J120

m0.245m/s9.81kg50 2

−=

−=∆U
 

 
16 •  
Picture the Problem You can estimate your change in potential energy due to this 
change in elevation from the definition of ∆U. You’ll also need to estimate the height of 
one story of the Empire State building. We’ll assume your mass is 70 kg and the height of 
one story to be 3.5 m. This approximation gives us a height of 1170 ft (357 m), a height 
that agrees to within 7% with the actual height of 1250 ft from the ground floor to the 
observation deck. We’ll also assume that it takes 3 min to ride non-stop to the top floor in 
one of the high-speed elevators. 
 
(a) Express the change in your 
gravitational potential energy as you 
ride the elevator to the 102nd floor: 
 

hmgU ∆=∆  

Substitute numerical values and 
evaluate ∆U: 

( )( )( )
kJ452

m357m/s9.81kg70 2

=

=∆U
 

 
(b) Ignoring the acceleration 
intervals at the beginning and the 
end of your ride, express the work 
done on you by the elevator in terms 
of the change in your gravitational 
potential energy: 
 

UFhW ∆==  

Solve for and evaluate F: 
N686

m357
kJ452

==
∆

=
h
UF  

 
(c) Assuming a 3 minute ride to the 
top, express and evaluate the 
average power delivered to the 
elevator: 

( )( )
kW36.1

s/min60min3
kJ452

=

=
∆

∆
=

t
UP
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17  •  
Picture the Problem We can find the kinetic energy K of the spacecraft from its 
definition and compare its energy to the annual consumption in the U.S. W by examining 
the ratio K/W. 
 
Using its definition, express and 
evaluate the kinetic energy of the 
spacecraft: 
 

( )( )
J104.50

m/s103kg10000
18

27
2
12

2
1

×=

×== mvK
 

 
Express this amount of energy as a 
percentage of the annual 
consumption in the United States: 

%1
J105

J104.50
20

18

≈
×

×
≈

E
K

 

 
*18 ••  
Picture the Problem We can find the orbital speed of the Shuttle from the radius of its 
orbit and its period and its kinetic energy from .2

2
1 mvK = We’ll ignore the variation in 

the acceleration due to gravity to estimate the change in the potential energy of the orbiter 
between its value at the surface of the earth and its orbital value. 

 
(a) Express the kinetic energy of the 
orbiter: 
 

2
2
1 mvK =  

Relate the orbital speed of the 
orbiter to its radius r and period T: 
 

T
rv π2

=  

Substitute and simplify to obtain: 
2

222

2
1 22

T
mr

T
rmK ππ

=⎟
⎠
⎞

⎜
⎝
⎛=  

 
Substitute numerical values and evaluate K: 
 

( ) ( )( )[ ]
( )( )[ ]

TJ43.2
min/s60min90

km/mi1.609mi3960mi200kg1082
2

242

=
+×

=
πK  

 
(b) Assuming the acceleration due 
to gravity to be constant over the 
200 mi and equal to its value at the 
surface of the earth (actually, it is 
closer to 9 m/s2 at an elevation of 
200 mi), express the change in 
gravitational potential energy of the 
orbiter, relative to the surface of the 
earth, as the Shuttle goes into orbit: 
 

mghU =∆  
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Substitute numerical values and 
evaluate ∆U: 

( )( )
( )( )

TJ253.0

km/mi1.609mi200
m/s9.81kg108 24

=

×
×=∆U

 

 

(c)

energy. potentialin  change actual  thefind  toshuttle  theof weight under the
n deformatio itsin earth  of surface  theofenergy  potentialin  change the

ionconsiderat into  take toneed  would Weit.on  upward exertsearth  the
force normal by thegravity  of force eagainst th supported isit  earth, the
of surface on the resting is shuttle  When thehere.consider  gravity to

of force just the than more is  therebecause equal bet shouldn' they No,

 

 
19 •   
Picture the Problem Let’s assume that the width of the driveway is 18 ft. We’ll also 
assume that you lift each shovel full of snow to a height of 1 m, carry it to the edge of the 
driveway, and drop it. We’ll ignore the fact that you must slightly accelerate each shovel 
full as you pick it up and as you carry it to the edge of the driveway. While the density of 
snow depends on the extent to which it has been compacted, one liter of freshly fallen 
snow is approximately equivalent to 100 mL of water. 
 
Express the work you do in lifting 
the snow a distance h: 
 

ghVmghUW snowsnowρ==∆=  
where ρ is the density of the snow. 

Using its definition, express the 
densities of water and snow: 
 snow

snow
snow V

m
=ρ  and 

water

water
water V

m
=ρ  

Divide the first of these equations 
by the second to obtain: 
 snow

water

water

snow

V
V

=
ρ
ρ

 or 
snow

water
watersnow V

Vρρ =  

Substitute and evaluate the ρsnow: ( ) 333
snow kg/m100

L
mL100kg/m10 ==ρ  

 
Calculate the volume of snow 
covering the driveway: 
 

( )( )

3

33

3
3

snow

m2.21
L

m10
ft

L32.28ft750

ft
12
10ft18ft50

=

××=

⎟
⎠
⎞

⎜
⎝
⎛=

−

V

 

 
Substitute numerical values in the 
expression for W to obtain an 
estimate (a lower bound) for the 
work you would do on the snow in 
removing it: 

( )( )( )( )
kJ8.20

m1m/s81.9m2.21kg/m100 233

=

=W
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Work and Kinetic Energy 
 
*20 •  
Picture the Problem We can use 2

2
1 mv to find the kinetic energy of the bullet. 

 
(a) Use the definition of K: 

( )( )
kJ8.10

m/s101.2kg0.015 23
2
1

2
2
1

=

×=

= mvK

 

 
(b) Because K ∝ v2: kJ70.24

1 == KK'  

 
(c) Because K ∝ v2: kJ2.434 == KK'  

 
21 •  
Picture the Problem We can use 2

2
1 mv to find the kinetic energy of the baseball and the 

jogger. 
 
(a) Use the definition of K: ( )( )

J147

m/s45kg0.145 2
2
12

2
1

=

== mvK
 

 
(b) Convert the jogger’s pace of  
9 min/mi into a speed: 

m/s98.2
mi1

m1609
s60

min1
min9
mi1

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=v

 

 
Use the definition of K: ( )( )

J266

m/s98.2kg60 2
2
12

2
1

=

== mvK
 

 
22 •  
Picture the Problem The work done in raising an object a given distance is the product 
of the force producing the displacement and the displacement of the object. Because the 
weight of an object is the gravitational force acting on it and this force acts downward, 
the work done by gravity is the negative of the weight of the object multiplied by its 
displacement. The change in kinetic energy of an object is equal to the work done by the 
net force acting on it. 
 
(a) Use the definition of W: yF

rr
∆⋅=W  = F∆y  
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     = (80 N)(3 m) = J240  

 
(b) Use the definition of W: yF rr

∆⋅=W  = −mg∆y, because F
r

and 
y
r

∆ are in opposite directions. 

∴ W = − (6 kg)(9.81 m/s2)(3 m)  
         = J177−  

 
(c) According to the work-kinetic 
energy theorem: 

K = W + Wg = 240 J + (−177 J)  
    = J0.63  

 
23 • 
Picture the Problem The constant force of 80 N is the net force acting on the box and 
the work it does is equal to the change in the kinetic energy of the box. 
 
Using the work-kinetic energy 
theorem, relate the work done by the 
constant force to the change in the 
kinetic energy of the box: 
 

( )2
i

2
f2

1
if vvmKKW −=−=  

 

Substitute numerical values and 
evaluate W: 

( ) ( ) ( )[ ]
kJ6.10

m/s20m/s68kg5 22
2
1

=

−=W
 

 
*24 ••  
Picture the Problem We can use the definition of kinetic energy to find the mass of your 
friend. 
 
Using the definition of kinetic 
energy and letting ″1″ denote your 
mass and speed and ″2″ your 
girlfriend’s, express the equality of 
your kinetic energies and solve for 
your girlfriend’s mass as a function 
of both your masses and speeds: 
 

2
222

12
112

1 vmvm =
   

and 
2

2

1
12 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

v
vmm                                 (1) 

 

Express the condition on your speed 
that enables you to run at the same 
speed as your girlfriend: 
 

v2 = 1.25v1                                      (2) 
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Substitute equation (2) in equation 
(1) to obtain: ( )

kg4.54

25.1
1kg85

22

2

1
12

=

⎟
⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

v
vmm

 

 
Work Done by a Variable Force 
 
25 ••  
Picture the Problem The pictorial representation shows the particle as it moves along 
the positive x axis. The particle’s kinetic energy increases because work is done on it. We 
can calculate the work done on it from the graph of Fx vs. x and relate its kinetic energy 
when it is at x = 4 m to its kinetic energy when it was at the origin and the work done on 
it by using the work-kinetic energy theorem. 
 

 
 
(a) Calculate the kinetic energy of 
the particle when it is at x = 0:  

( )
J00.6

)m/s(2kg3 2
2
12

2
1

0

=

== mvK
 

 
(b) Because the force and 
displacement are parallel, the work 
done is the area under the curve. 
Use the formula for the area of a 
triangle to calculate the area under 
the F as a function of x graph: 
 

( )( )
( )( )

J0.12

N6m4
altitudebase

2
1
2
1

40

=

=
=→W

 

 

(c) Express the kinetic energy of the 
particle at x = 4 m in terms of its 
speed and mass and solve for its 
speed: 
 

m
K

v 4
4

2
=                               (1) 

Using the work-kinetic energy 
theorem, relate the work done on the 
particle to its change in kinetic 
energy and solve for the particle’s 
kinetic energy at x = 4 m: 

W0→4 = K4 – K0 

J18.0
J12.0J00.64004

=
+=+= →WKK
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Substitute numerical values in 
equation (1) and evaluate v4: 

( ) m/s46.3
kg3

J18.02
4 ==v  

 
*26 ••  
Picture the Problem The work done by this force as it displaces the particle is the area 
under the curve of F as a function of x. Note that the constant C has units of N/m3. 
 
Because F varies with position non-
linearly, express the work it does as 
an integral and evaluate the integral 
between the limits x = 1.5 m and  
x = 3 m: 

( )

( ) [ ]
( ) ( ) ( )[ ]

J19

m5.1m3
4

N/m

'N/m

''N/m

44
3

m3
m5.1

4
4
13

m3

m5.1

33

C

C

xC

dxxCW

=

−=

=

= ∫

 

 
27 ••  
Picture the Problem The work done on the dog by the leash as it stretches is the area 
under the curve of F as a function of x. We can find this area (the work Lou does holding 
the leash) by integrating the force function. 
 
Because F varies with position non-
linearly, express the work it does as 
an integral and evaluate the integral 
between the limits x = 0 and x = x1: 

( )

[ ]
3
13

12
12

1

0
3

3
12

2
1

0

2

1

1

''

'''

axkx

axkx

dxaxkxW

x

x

−−=

−−=

−−= ∫

 

 
28 ••  
Picture the Problem The work done on an object can be determined by finding the area 
bounded by its graph of Fx as a function of x and the x axis. We can find the kinetic 
energy and the speed of the particle at any point by using the work-kinetic energy 
theorem. 
 
(a) Express W, the area under the 
curve, in terms of the area of one 
square, Asquare, and the number of 
squares n: 
 

W = n Asquare 

Determine the work equivalent of 
one square: 
 

W = (0.5 N)(0.25 m) = 0.125 J 
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Estimate the number of squares 
under the curve between x = 0 and  
x = 2 m: 
 

n ≈ 22 

Substitute to determine W: W = 22(0.125 J)  = J75.2  

 
(b) Relate the kinetic energy of the 
object at x = 2 m, K2, to its initial 
kinetic energy, K0, and the work that 
was done on it between x = 0 and  
x = 2 m: 
 

( )( )
J4.11

J2.75m/s2.40kg3 2
2
1

2002

=

+=

+= →WKK

 

 

(c) Calculate the speed of the object 
at x = 2 m from its kinetic energy at 
the same location: 
 

( ) m/s2.76
kg3

J11.422 2 ===
m
Kv  

 

(d) Estimate the number of squares 
under the curve between x = 0 and  
x = 4 m: 
 

n ≈ 26 

Substitute to determine W: ( ) J25.3J125.026 ==W  

 
(e) Relate the kinetic energy of the 
object at x = 4 m, K4, to its initial 
kinetic energy, K0, and the work that 
was done on it between x = 0 and  
x = 4 m: 
 

( )( )
J9.11

J25.3m/s2.40kg3 2
2
1

4004

=

+=

+= →WKK

 

 

Calculate the speed of the object at  
x = 4 m from its kinetic energy at 
the same location: 

( ) m/s82.2
kg3

J.91122 4 ===
m
Kv  

 
*29 ••  
Picture the Problem We can express the mass of the water in Margaret’s bucket as the 
difference between its initial mass and the product of the rate at which it loses water and 
her position during her climb. Because Margaret must do work against gravity in lifting 
and carrying the bucket, the work she does is the integral of the product of the 
gravitational field and the mass of the bucket as a function of its position. 
 
(a) Express the mass of the bucket 
and the water in it as a function of 

( ) ryym −= kg40  
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its initial mass, the rate at which it is 
losing water, and Margaret’s 
position, y, during her climb: 
 

         

Find the rate, 
y
mr

∆
∆

= , at which 

Margaret’s bucket loses water: 
 

kg/m1
m20
kg20

==
∆
∆

=
y
mr  

 

Substitute to obtain: 
 

( ) yryym
m
kg1kg40kg40 −=−=        

 

 
(b) Integrate the force Margaret exerts on the bucket, m(y)g, between the limits of y = 0 
and y = 20 m: 
 

( ) ( ) ( )[ ] kJ89.5'kg/m1'kg40m/s81.9''
m
kg1kg40 m20

0
2

2
12

m20

0

=−=⎟
⎠
⎞

⎜
⎝
⎛ −= ∫ yydyygW

 
Remarks: We could also find the work Margaret did on the bucket, at least 
approximately, by plotting a graph of m(y)g and finding the area under this curve 
between y = 0 and y = 20 m. 
 
Work, Energy, and Simple Machines 
 
30 •  
Picture the Problem The free-body 
diagram shows the forces that act on the 
block as it slides down the frictionless 
incline. We can find the work done by 
these forces as the block slides 2 m by 
finding their components in the direction 
of, or opposite to, the motion. When we 
have determined the work done on the 
block, we can use the work-kinetic energy 
theorem or a constant-acceleration equation 
to calculate its kinetic energy and its speed 
at any given location. 
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(a) 
incline.  thelarly toperpendicu exerts

 incline  that theforce normal  theand downward acts that force nalgravitatio a
 areblock  on the acting forces  that thesee  wediagram,body -free  theFrom

 

 
Identify the component of mg that 
acts down the incline and calculate 
the work done by it: 
 

Fx = mg sin 60° 

Express the work done by this force: °∆=∆= 60sinx xmgxFW  

 
Substitute numerical values and 
evaluate W: 

( )( ) ( )
J102

60sinm2m/s9.81kg6 2

=

°=W
 

 
Remarks: Fn and mgcos60°, being 
perpendicular to the motion, do no 
work on the block 
 

 

(b) The total work done on the block 
is the work done by the net force: ( )( )( )

J102

60sinm2m/s9.81kg6

60sin
2

net

=

°=

°∆=∆= xmgxFW

 

 
(c) Express the change in the kinetic 
energy of the block in terms of the 
distance, ∆x, it has moved down the 
incline: 
 

∆K = Kf – Ki  = W  = (mgsin60°)∆x 
or, because Ki = 0, 
Kf   = W = (mgsin60°)∆x 
 

Relate the speed of the block when it 
has moved a distance ∆x down the 
incline to its kinetic energy at that 
location: 
 

°∆=

°∆
==

60sin2

60sin22

xg
m
xmg

m
Kv

 

 

Determine this speed when  
∆x = 1.5 m: 

( )( )
m/s05.5

60sinm1.5m/s9.812 2

=

°=v
 

 
(d) As in part (c), express the 
change in the kinetic energy of the 
block in terms of the distance, ∆x, it 
has moved down the incline and 

∆K = Kf – Ki  
      = W  
      = (mg sin 60°)∆x 
and 
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solve for Kf: 
 

Kf   = (mg sin 60°)∆x + Ki 
 

Substitute for the kinetic energy 
terms and solve for vf to obtain: 

2
f 60sin2 ivxgv +∆°=  

 
Substitute numerical values and evaluate vf: 
 

( )( ) ( ) m/s43.5m/s2sin60m1.5m/s9.812 22
f =+°=v  

 
31 •  
Picture the Problem The free-body 
diagram shows the forces acting on the 
object as in moves along its circular path 
on a frictionless horizontal surface. We can 
use Newton’s 2nd law to obtain an 
expression for the tension in the string and 
the definition of work to determine the 
amount of work done by each force during 
one revolution. 

 

 
(a) Apply ∑ = rr maF to the 2-kg 

object and solve for the tension: 
( ) ( )

N17.4

m3
m/s2.5kg2

22

=

==
r
vmT

 

 
(b) From the FBD we can see that the 
forces acting on the object are: 
 

ng  and ,, FFT
rrr

 

 

 

any work. do  themof
 none object,  theofmotion  of

direction  thelarly toperpendicu
act forces  theseof all Because
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*32 •  
Picture the Problem The free-body 
diagram, with F

r
representing the force 

required to move the block at constant 
speed, shows the forces acting on the 
block. We can apply Newton’s 2nd law to 
the block to relate F to its weight w and 
then use the definition of the mechanical 
advantage of an inclined plane. In the 
second part of the problem we’ll use the 
definition of work.  
 
(a) Express the mechanical 
advantage M of the inclined plane: 
 F

wM =  

Apply ∑ = xx maF to the block: 0sin =− θwF  because ax = 0. 
 

Solve for F and substitute to obtain: 
 θθ sin

1
sin

==
w

wM  

 
Refer to the figure to obtain: 
 L

H
=θsin  

 
Substitute to obtain: 
 H

LM ==
θsin

1
 

 
(b) Express the work done pushing 
the block up the ramp: 
 

θsinramp mgLFLW ==  

Express the work done lifting the 
block into the truck: 
 

θsinlifting mgLmgHW ==  
and 

liftingramp WW =  

 
33 •  
Picture the Problem We can find the work done per revolution in lifting the weight and 
the work done in each revolution of the handle and then use the definition of mechanical 
advantage. 
 
Express the mechanical advantage of 
the jack: 
 F

WM =  

Express the work done by the jack in 
one complete revolution (the weight 
W is raised a distance p): 
 

WpW =lifting  

Express the work done by the force 
F in one complete revolution: 
 

RFW π2turning =  
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Equate these expressions to obtain: 
 

RFWp π2=  

Solve for the ratio of W to F: 

p
R

F
WM π2

==  

Remarks: One does the same amount of work turning as lifting; exerting a smaller 
force over a greater distance. 
 
34  •  
Picture the Problem The object whose weight is w

r
is supported by two portions of the 

rope resulting in what is known as a mechanical advantage of 2. The work that is done 
in each instance is the product of the force doing the work and the displacement of the 
object on which it does the work. 
 
(a) If w moves through a distance h: hF 2 distance a moves  

 
(b) Assuming that the kinetic energy 
of the weight does not change, relate 
the work done on the object to the 
change in its potential energy to 
obtain: 
 

whwhUW ==∆= θcos  

(c) Because the force you exert on the 
rope and its displacement are in the 
same direction: 
 

( ) ( )hFhFW 2cos2 == θ  

Determine the tension in the ropes 
supporting the object: 

02vertical =−=∑ wFF  
and 

wF 2
1=  

 
Substitute for F: ( ) ( ) whhwhFW === 22 2

1  

 
(d) The mechanical advantage of the 
inclined plane is the ratio of the 
weight that is lifted to the force 
required to lift it, i.e.: 
 

2
2
1

===
w

w
F
wM  

Remarks: Note that the mechanical advantage is also equal to the number of ropes 
supporting the load. 
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Dot Products 
 
*35 •  
Picture the Problem Because θcosAB≡⋅ BA

rr
 we can solve for cosθ and use the fact 

that AB−=⋅ BA
rr

to find θ.  
  
Solve for θ : 

AB
BA
rr

⋅
= −1cosθ  

 
Substitute for BA

rr
⋅ and evaluate θ : ( ) °=−= − 1801cos 1θ  

 
36 •  
Picture the Problem We can use its definition to evaluate BA

rr
⋅ . 

 
Express the definition of BA

rr
⋅ : θcosAB=⋅ BA

rr
 

 
Substitute numerical values and 
evaluate BA

rr
⋅ : 

( )( )
2m0.18

60cosm6m6

=

°=⋅ BA
rr

 

 
37  •  
Picture the Problem The scalar product of two-dimensional vectors A

r
and B

r
is  AxBx + 

AyBy. 
 
(a) For  A

r
= 3 î − 6 ĵ  and  

B
r

= −4 î + 2 ĵ :   

 

A
r

⋅ B
r

= (3)( −4) + (−6)(2) = 24−  

 

(b) For A
r

= 5 î  + 5 ĵ  and  

B
r

= 2 î −4 ĵ : 

 

A
r

⋅ B
r

= (5)(2) + (5)( −4) = 10−  

 

(c) For A
r

= 6 î  + 4 ĵ and B
r

= 4 î − 6 ĵ : A
r

⋅ B
r

= (6)(4) + (4)( −6) = 0  

 



Work and Energy 
 

 

389

38 •  
Picture the Problem The scalar product of two-dimensional vectors A

r
and B

r
is AB cos θ 

= AxBx + AyBy. Hence the angle between vectors A
r

and B
r

is given by 

.cos 1

AB
BABA yyxx +

= −θ  

 
(a) For  A

r
= 3 î − 6 ĵ  and  

B
r

= −4 î + 2 ĵ :   

A
r

⋅ B
r

= (3)( −4) + (−6)(2) = −24 

( ) ( )
( ) ( ) 2024

4563
22

22

=+−=

=−+=

B

A
 

and 

°=
−

= − 143
2045

24cos 1θ  

 
(b) For A

r
= 5 î  + 5 ĵ  and 

B
r

= 2 î − 4 ĵ : 

A
r

⋅ B
r

= (5)(2) + (5)(−4) = -10 

( ) ( )
( ) ( ) 2042

5055
22

22

=−+=

=+=

B

A
 

and 

°=
−

= − 108
2050

10cos 1θ  

 
(c) For A

r
= 6 î  + 4 ĵ and B

r
= 4 î − 6 ĵ : A

r
⋅ B
r

= (6)(4) + (4)( −6)  
         = 0  

( ) ( )
( ) ( ) 5264

5246
22

22

=−+=

=+=

B

A
 

and 

°== − 0.90
5252

0cos 1θ  

 
39 •  
Picture the Problem The work W done by a force F

r
during a displacement ∆ sr for 

which it is responsible is given by F
r

⋅∆ .s
r
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(a) Using the definitions of work and 
the scalar product, calculate the work 
done by the given force during the 
specified displacement: 

( )
( )

( )( ) ( )( ) ( ) ( )[ ]
J00.1

mN213132

ˆm2ˆm3ˆm3

ˆN1ˆN1ˆN2

=

⋅−+−+=
−+⋅

+−=

∆⋅=

kji

kji

sF rr
W

 

 
(b) Using the definition of work that 
includes the angle between the force 
and displacement vectors, solve for 
the component of F

r
in the direction 

of ∆ :s
r

 
 

( ) sFsFW ∆=∆= θθ coscos  

and 

s
WF
∆

=θcos  

Substitute numerical values and 
evaluate Fcosθ : ( ) ( ) ( )

N213.0

m2m3m3

J1cos
222

=

−++
=θF

 

 
40 ••  
Picture the Problem The component of a vector that is along another vector is the scalar 
product of the former vector and a unit vector that is parallel to the latter vector. 
 
(a) By definition, the unit vector 
that is parallel to the vector A

r
 is: 222

ˆˆˆ
ˆ

zyx

zyx
A

AAA

AAA
A ++

++
==

kjiAu
r

 

 
(b) Find the unit vector parallel to :B

r
 

( ) ( )
jijiBu ˆ

5
4ˆ

5
3

43

ˆ4ˆ3ˆ
22

+=
+

+
==

BB

r

 

 
The component of A

r
 along B

r
is: ( )

( ) ( ) ( )( )

400.0

01
5
41

5
32

ˆ
5
4ˆ

5
3ˆˆˆ2ˆ

=

−+⎟
⎠
⎞

⎜
⎝
⎛−+⎟

⎠
⎞

⎜
⎝
⎛=

⎟
⎠
⎞

⎜
⎝
⎛ +⋅−−=⋅ jikjiuA B

r

 

 
*41 ••  
Picture the Problem We can use the definitions of the magnitude of a vector and the dot 
product to show that if BABA

vrvr
−=+ , then BA

rr
⊥ . 
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Express 
2

BA
rr

+ : ( )22
BABA
rrrr

+=+
 

 
Express BA

vr
− : 

 
( )22

BABA
rrrr

−=−  

Equate these expressions to obtain: 
 ( ) ( )22

BABA
vrvr

−=+  

Expand both sides of the equation to 
obtain: 
 

2222 22 BABA +⋅−=+⋅+ BABA
rrrr

 

Simplify to obtain: 04 =⋅ BA
rr

 
or 

0=⋅ BA
rr

 
 

From the definition of the dot 
product we have: 
 

θcosAB=⋅ BA
rr

 
where θ is the angle between A

r
and .B

v
 

Because neither A
r

nor B
v

is the zero 
vector: 

0cos =θ  ⇒ °= 90θ  and .BA
rr

⊥  

 
42 ••  
Picture the Problem The diagram shows 
the unit vectors BA ˆandˆ  arbitrarily 
located in the 1st quadrant. We can express 
these vectors in terms of the unit vectors 
î and ĵ and their x and y components. We 
can then form the dot product of 
Âand B̂ to show that  
cos(θ1 − θ2) = cosθ1cosθ2 + sinθ1sinθ2.  
 
(a) Express Â in terms of the unit 
vectors î and ĵ : 

jiA ˆˆˆ
yx AA +=  

where 

1cosθ=xA  and 1sinθ=yA  

 
Proceed as above to obtain: 
 

jiB ˆˆˆ
yx BB +=  

where 

2cosθ=xB  and 2sinθ=yB  

 
(b) Evaluate BA ˆˆ ⋅ : 
 

( )
( )

2121

22

11

sinsincoscos

ˆsinˆcos

ˆsinˆcosˆˆ

θθθθ
θθ

θθ

+=
+⋅

+=⋅

ji

jiBA

 

 
From the diagram we note that: ( )21cosˆˆ θθ −=⋅ BA  
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Substitute to obtain: ( )
21

2121

sinsin
coscoscos

θθ
θθθθ

+
=−

 

 
43 •  
Picture the Problem In (a) we’ll show that it does not follow that CB

rr
= by giving a 

counterexample.  
 
Let iA ˆ=

r
, jiB ˆ4ˆ3 +=
r

 and 

.ˆ4ˆ3 jiC −=
r

 Form BA
rr

⋅ and :CA
rr

⋅  
 

( ) 3ˆ4ˆ3ˆ =+⋅=⋅ jiiBA
rr

 and 
( ) 3ˆ4ˆ3ˆ =−⋅=⋅ jiiCA

rr
 

 
 

.  toequal

ynecessarilnot  is  that example

-counter aby shown  ve We'No.

C

B
r

r
 

 
44 ••  
Picture the Problem We can form the dot product of A

r
and r

r
and require that  

1=⋅ rA
rr

 to show that the points at the head of all such vectors rr  lie on a straight line. 
We can use the equation of this line and the components of A

r
to find the slope and 

intercept of the line. 
 
(a) Let jiA ˆˆ

yx aa +=
r

. Then: ( ) ( )
1

ˆˆˆˆ

=+=

+⋅+=⋅

yaxa
yxaa

yx

yx jijirA
rr

 

 
Solve for y to obtain: 

yy

x

a
x

a
ay 1

+−=  

which is of the form bmxy +=  
and hence is the equation of a line. 
 

(b) Given that jiA ˆ3ˆ2 −=
r

: 
3
2

3
2

=
−

−=−=
y

x

a
am  

and 

3
1

3
11

−=
−

==
ya

b  
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(c) The equation we obtained in (a) 
specifies all vectors whose component 
parallel to A

r
 has constant magnitude; 

therefore, we can write such a vector as 

B
A

Ar
r

r

r
r

+= 2 , where B
r

 is any vector 

perpendicular to .A
r

 This is shown 
graphically to the right. 

 
 Because all possible vectors B

r
 lie in a 

plane, the resultant r
r

 must lie in a plane as 
well, as is shown above. 

 
*45  ••  
Picture the Problem The rules for the differentiation of vectors are the same as those for 
the differentiation of scalars and scalar multiplication is commutative. 
 
(a) Differentiate rr ⋅ rr = r2 = constant: ( )

( ) 0constant

2

==

⋅=⋅+⋅=⋅

dt
d

dt
d

dt
d

dt
d rvrrrrrr rrr

rr
rrr

 

 
Because :0=⋅ rv rr

 rv rr
⊥  

 
(b) Differentiate v

r
⋅ v
r

 = v2 = constant 
with respect to time: 

( )

( ) 0constant

2

==

⋅=⋅+⋅=⋅

dt
d

dt
d

dt
d

dt
d vavvvvvv rrr

rr
rrr

 

 
Because :0=⋅va rr

 va rr
⊥  

 
 

.   toel)antiparall(or  parallel
 and and   lar toperpendicu is 
 that us  tell)( and )( of results The

r
ra

r

rr
ba

 

 
(c) Differentiate vr ⋅ r

r
 = 0 with 

respect to time: 
( )

( ) 002 ==⋅+=

⋅+⋅=⋅

dt
dv

dt
d

dt
d

dt
d

ar

vrrvrv

rr

r
r

r
rrr
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Because 02 =⋅+ ar rrv : 2v−=⋅ ar rr
                      (1) 

 
Express ar in terms of θ, where θ is 
the angle between rr and ar : 
 

θcosr aa =  

 

Express ar rr
⋅ : rcos rara ==⋅ θar rr

 

 
Substitute in equation (1) to obtain: 2

r vra −=  

 
Solve for ar: 

r
va

2

r −=  

 
Power 
 
46 ••  
Picture the Problem The power delivered by a force is defined as the rate at which the 

force does work; i.e., .
dt

dWP =  

 
Calculate the rate at which force A 
does work: 

W0.5
s10
J5

==AP  

 
Calculate the rate at which force B 
does work: 

W0.6
s5
J3

==BP and AB PP >  

 
47 •  
Picture the Problem The power delivered by a force is defined as the rate at which the 

force does work; i.e., .vF rr
⋅==

dt
dWP  

 
(a) If the box moves upward with a 
constant velocity, the net force 
acting it must be zero and the force 
that is doing work on the box is: 
 

F = mg 

The power input of the force is: mgvFvP ==   

     
Substitute numerical values and 
evaluate P: 

( )( )( ) W1.98m/s2m/s81.9kg5 2 ==P  
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(b) Express the work done by the 
force in terms of the rate at which 
energy is delivered: 

W = Pt = (98.1 W) (4 s) = J392  

 
48 •  
Picture the Problem The power delivered by a force is defined as the rate at which the 

force does work; i.e., .vF rr
⋅==

dt
dWP  

 
(a) Using the definition of power, 
express Fluffy’s speed in terms of the 
rate at which he does work and the 
force he exerts in doing the work: 
 

m/s2
N3
W6

===
F
Pv  

 

(b) Express the work done by the 
force in terms of the rate at which 
energy is delivered: 

W = Pt = (6 W) (4 s) = J0.24  

 
49 •  
Picture the Problem We can use Newton’s 2nd law and the definition of acceleration to 
express the velocity of this object as a function of time. The power input of the force 
accelerating the object is defined to be the rate at which it does work; i.e., 

.vF rr
⋅== dtdWP  

 
(a) Express the velocity of the object 
as a function of its acceleration and 
time: 
 

v = at 

Apply aF rr
m=∑ to the object: 

 

a = F/m 

Substitute for a in the expression for 
v: 

( )ttt
m
Fv 2

8
5 m/s

kg8
N5

===  

 
(b) Express the power input as a 
function of F and v and evaluate P: 

( )( ) W/s13.3m/sN5 2
8
5 ttFvP ===  

 
(c) Substitute t = 3 s: ( )( ) W38.9s3W/s13.3 ==P  
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50 • 
Picture the Problem The power delivered by a force is defined as the rate at which the 

force does work; i.e., .vF rr
⋅==

dt
dWP  

  
(a) For F

r
=  4 N î + 3 N k̂  and  

vr  = 6 m/s î : 
( ) ( )

W24.0

ˆm/s6ˆN3ˆN4

=

⋅+=⋅= ikivF rr
P

 

 
(b) For F

r
 = 6 N î  − 5 N ĵ  and  

vr  = − 5 m/s î + 4 m/s ĵ : ( ) ( )
W0.50

ˆm/s4ˆm/s5ˆN5ˆN6

−=

+−⋅−=

⋅=

jiji

vF rr
P

 

 
(c) For F

r
= 3 N î  + 6 N ĵ  

and vr  = 2 m/s î + 3 m/s ĵ : ( ) ( )
W0.24

ˆm/s3ˆm/s2ˆN6ˆN3

=

+⋅+=

⋅=

jiji

vF rr
P

 

 
*51 •  
Picture the Problem Choose a coordinate system in which upward is the positive y 
direction. We can find inP from the given information that .27.0 inout PP =  We can express 

outP  as the product of the tension in the cable T and the constant speed v of the 
dumbwaiter. We can apply Newton’s 2nd law to the dumbwaiter to express T in terms of 
its mass m and the gravitational field g. 
 
Express the relationship between the 
motor’s input and output power: 
 

inout 27.0 PP =  
or 

outin 7.3 PP =  
 

Express the power required to move 
the dumbwaiter at a constant speed 
v: 

TvP =out  
 
 

Apply ∑ = yy maF to the 
dumbwaiter: 

ymamgT =−  
or, because ay = 0, 

mgT =  
 

Substitute to obtain: mgvTvP 7.37.3in ==  
 

Substitute numerical values and 
evaluate Pin: 

( )( ) ( )
W454

m/s0.35m/s9.81kg357.3 2
in

=

=P
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52 ••  
Picture the Problem Choose a coordinate system in which upward is the positive y 
direction. We can express Pdrag as the product of the drag force Fdrag acting on the 
skydiver and her terminal velocity vt. We can apply Newton’s 2nd law to the skydiver to 
express Fdrag in terms of her mass m and the gravitational field g. 
 
(a) Express the power due to drag 
force acting on the skydiver as she 
falls at her terminal velocity vt: 
 

tdragdrag vFP rrr
⋅=  

or, because dragF
r

and tvr are antiparallel, 

tdragdrag vFP −=  
 

Apply ∑ = yy maF to the skydiver: ymamgF =−drag  
or, because ay = 0, 

mgF =drag  
 

Substitute to obtain, for the 
magnitude of Pdrag: 

tdrag mgvP −=                                 (1) 
 

Substitute numerical values and evaluate P: 
 

W1089.2)
mi

km1.609
s3600

h1
h

mi 120()m/s (9.81kg) (55 42
drag ×=××−=P  

 
(b) Evaluate equation (1) with v = 15 mi/h: 
 

( ) kW62.3)
mi

km1.609
s3600

h1
h

mi15)m/s (9.81kg55 2
drag =××⎟

⎠
⎞

⎜
⎝
⎛−=P  

 
*53 ••   
Picture the Problem Because, in the absence of air resistance, the acceleration of the 
cannonball is constant, we can use a constant-acceleration equation to relate its velocity 
to the time it has been in flight. We can apply Newton’s 2nd law to the cannonball to find 
the net force acting on it and then form the dot product of F

r
and vr to express the rate at 

which the gravitational field does work on the cannonball. Integrating this expression 
over the time-of-flight T of the ball will yield the desired result. 
 
Express the velocity of the 
cannonball as a function of time 
while it is in the air: 
 

( ) jiv ˆˆ0)( 0 gtvt −+=
r

 

Apply ∑ = aF rr
m to the 

cannonball to express the force 
acting on it while it is in the air: 
 

jF ˆmg−=
r

 

Evaluate vF rr
⋅ : ( )

tmgmgv

gtvmg
2

0

0
ˆˆ

+−=

−⋅−=⋅ jjvF rr
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Relate vF rr

⋅ to the rate at which 
work is being done on the 
cannonball: 
 

tmgmgv
dt

dW 2
0 +−=⋅= vF rr

 

 

Separate the variables and integrate 
over the time T that the cannonball 
is in the air: 
 

( )

TmgvTmg

dttmgmgvW
T

0
22

2
1

0

2
0

−=

+−= ∫              (1) 

 
Using a constant-acceleration 
equation, relate the speed v of the 
cannonball when it lands at the 
bottom of the cliff to its initial speed 
v0 and the height of the cliff H: 
 

yavv ∆+= 22
0

2  
or, because a = g and ∆y = H, 

gHvv 22
0

2 +=  

Solve for v to obtain: 
 gHvv 22

0 +=  

 
Using a constant-acceleration 
equation, relate the time-of-flight T 
to the initial and impact speeds of 
the cannonball: 
 

gTvv −= 0  
 

Solve for T to obtain: 
 g

vvT −
= 0  

 
Substitute for T in equation (1) and 
simplify to evaluate W: 

Kmvmv

g
vvmgv

g
vvvv

mgW

∆=−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

+−
=

2
02

12
2
1

0
0

2

2
0

2
2

2
1

2
0

 

 
54 ••  
Picture the Problem If the particle is acted on by a single force, that force is the net 
force acting on the particle and is responsible for its acceleration. The rate at which 
energy is delivered by the force is .vF rr

⋅=P  
 
Express the rate at which this force 
does work in terms of vF rr

and : 

 

vF rr
⋅=P  

The velocity of the particle, in terms 
of its acceleration and the time that 
the force has acted is: 

tav rr
=  
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Using Newton’s 2nd law, substitute 
for a

r
: t

m
Fv
r

r
=  

 
Substitute for v

r
 in the expression 

for P and simplify to obtain: t
m
Ft

m
t

m
P

2

=
⋅

=⋅=
FFFF
rrr

r
 

 
Potential Energy 
 
55 •  
Picture the Problem The change in the gravitational potential energy of the earth-man 
system, near the surface of the earth, is given by ∆U = mg∆h, where ∆h is measured 
relative to an arbitrarily chosen reference position. 
 
Express the change in the man’s 
gravitational potential energy in 
terms of his change in elevation: 
 

∆U = mg∆h 

Substitute for m, g and ∆h and 
evaluate ∆U: 

( )( ) ( )
kJ4.71

m6m/s9.81kg80 2

=

=∆U
 

 
56  •  
Picture the Problem The water going over the falls has gravitational potential energy 
relative to the base of the falls. As the water falls, the falling water acquires kinetic 
energy until, at the base of the falls; its energy is entirely kinetic. The rate at which 
energy is delivered to the base of the falls is given by .// dtdUdtdWP −==  
 
Express the rate at which energy is 
being delivered to the base of the 
falls; remembering that half the 
potential energy of the water is 
converted to electric energy: 
 

( )
dt
dmghmgh

dt
d

dt
dU

dt
dWP

2
1

2
1 −=−=

−==
 

Substitute numerical values and 
evaluate P: 

( )( )
( )

MW879

kg/s101.4

m128m/s9.81
6

2
2
1

=

××

−−=P
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57 •  
Picture the Problem In the absence of 
friction, the sum of the potential and kinetic 
energies of the box remains constant as it 
slides down the incline. We can use the 
conservation of the mechanical energy of 
the system to calculate where the box will 
be and how fast it will be moving at any 
given time. We can also use Newton’s 2nd 
law to show that the acceleration of the box 
is constant and constant-acceleration 
equations to calculate where the box will be 
and how fast it will be moving at any given 
time.   

 

 

 
(a) Express and evaluate the 
gravitational potential energy of the 
box, relative to the ground, at the top 
of the incline: 
 

Ui = mgh  = (2 kg) (9.81 m/s2) (20 m) 
     = J392  

 

(b) Using a constant-acceleration 
equation, relate the displacement of 
the box to its initial speed, 
acceleration and time-of-travel: 
 

( )2
2
1

0 tatvx ∆+∆=∆  

or, because v0 = 0, 
( )2

2
1 tax ∆=∆  

Apply ∑ = xx maF to the box as it 

slides down the incline and solve for 
its acceleration: 
 

θθ sinsin gamamg =⇒=  

Substitute for a and evaluate  
∆x(t = 1 s): 

( ) ( )( )
( )( )( )

m45.2

s1sin30m/s9.81

sins1
22

2
1

2
2
1

=

°=

∆=∆ tgx θ

 

 
Using a constant-acceleration 
equation, relate the speed of the box 
at any time to its initial speed and 
acceleration and solve for its speed 
when t = 1 s: 

0where 00 =+= vatvv  

and 
( ) ( )

( ) ( )( )
m/s91.4

s130sinm/s81.9
sins1
2

=

°=

∆=∆= tgtav θ
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(c) Calculate the kinetic energy of 
the box when it has traveled for 1 s: 

( )( )
J1.24

m/s4.91kg2 2
2
12

2
1

=

== mvK
 

 
Express the potential energy of the 
box after it has traveled for 1 s in 
terms of its initial potential energy 
and its kinetic energy: 
 

J368

J24.1J923i

=

−=−= KUU
 

(d) Express the kinetic energy of the 
box at the bottom of the incline in 
terms of its initial potential energy 
and solve for its speed at the bottom 
of the incline: 

J3922
2
1 === mvUK i  

and 

m
Uv i2

=  

 
Substitute numerical values and 
evaluate v: 

( ) m/s19.8
kg2

J3922
==v  

 
58 •  
Picture the Problem The potential energy function U (x)  is defined by the equation 

( ) ( ) ∫−=−
x

x

FdxxUxU
0

.0  We can use the given force function to determine U(x) and then 

the conditions on U to determine the potential functions that satisfy the given conditions. 
 

(a) Use the definition of the potential 
energy function to find the potential 
energy function associated with Fx: 

( ) ( )

( ) ( )

( )( )0

0

0

N6

'N6
0

0

xx

dxxU

dxFxUxU

x

x

x

x
x

−−=

−=

−=

∫

∫

 

because U(x0) = 0. 
 

(b) Use the result obtained in (a) to 
find U (x)  that satisfies the condition 
that U(4 m) = 0: 

( ) ( )( )
m40

m4N6m4

0

0

=⇒=
−−=

x
xU

 

and 
( ) ( )( )

( )x
xxU

N6J42

m4N6

−=

−−=
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(c) Use the result obtained in (a) to 
find U that satisfies the condition that  
U(6 m) = 14 J: 

( ) ( )( )
m50J14

m6N6m6

0

0

=⇒=
−−=

x
xU

 

and 

( ) ( )

( )x

xxU

N6J50

m
3
25N6

−=

⎟
⎠
⎞

⎜
⎝
⎛ −−=

 

 
59 •  
Picture the Problem The potential energy of a stretched or compressed ideal spring Us is 
related to its force (stiffness) constant k and stretch or compression ∆x by .2

2
1

s kxU =  

 
(a) Relate the potential energy stored 
in the spring to the distance it has 
been stretched: 
 

2
2
1

s kxU =  

Solve for x: 

k
Ux s2

=  

 
Substitute numerical values and 
evaluate x: 

( ) m100.0
N/m10

J502
4 ==x  

 
(b) Proceed as in (a) with Us = 100 J: ( ) m141.0

N/m10
J1002

4 ==x  

 
*60 •• 
Picture the Problem In a simple Atwood’s machine, the only effect of the pulley is to 
connect the motions of the two objects on either side of it; i.e., it could be replaced by a 
piece of polished pipe. We can relate the kinetic energy of the rising and falling objects to 
the mass of the system and to their common speed and relate their accelerations to the 
sum and difference of their masses … leading to simultaneous equations in m1 and m2.  

 
Use the definition of the kinetic 
energy of the system to determine 
the total mass being accelerated: 

( ) 2
212

1 vmmK +=       

and 
( )

( )
kg0.10

m/s4
J8022

2221 ===+
v
Kmm  (1) 

 
In Chapter 4, the acceleration of the 
masses was shown to be: 

g
mm
mma

21

21

+
−

=  
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Because v(t) = at, we can eliminate 
a in the previous equation to obtain: 
 

( ) gt
mm
mmtv

21

21

+
−

=  

Solve for 21 mm − : ( ) ( )
gt

tvmmmm 21
21

+
=−    

 
Substitute numerical values and 
evaluate 21 mm − : 

( )( )
( )( ) kg36.1

s3m/s9.81
m/s4kg10

221 ==− mm   (2) 

 
Solve equations (1) and (2) 
simultaneously to obtain: 

kg68.51 =m and kg32.42 =m  

 
61 ••  

Picture the Problem The gravitational potential energy of this system of two objects is the 
sum of their individual potential energies and is dependent on an arbitrary choice of where, 
or under what condition(s), the gravitational potential energy is zero. The best choice is 
one that simplifies the mathematical details of the expression of U. In this problem let’s 
choose U = 0 where θ = 0. 
 

(a) Express U for the 2-object system 
as the sum of their gravitational 
potential energies; noting that 
because the object whose mass is m2 
is above the position we have chosen 
for U = 0, its potential energy is 
positive while that of the object 
whose mass is m1 is negative: 
 

( )

( ) θ

θθ
θ

sin

sinsin

1122

1122

21

gmm

gmgm
UUU

ll

ll

−=

−=
+=

 

(b) Differentiate U with respect toθ 
and set this derivative equal to zero 
to identify extreme values: 
 

( ) 0cos1122 =−= θ
θ

gmm
d
dU

ll  

from which we can conclude that  
cosθ = 0 and θ = cos−10. 
 

To be physically meaningful, 
:22 πθπ ≤≤−  

 

2πθ ±=∴  

Express the 2nd derivative of U with 
respect to θ and evaluate this 
derivative at :2πθ ±=  

 

( ) θ
θ

sin11222

2

gmm
d

Ud
ll −−=  

 



Chapter 6 
 

 

404 

If we assume, in the expression for U 
that we derived in (a), that  
m2l2 – m1l1 >0, then U(θ) is a sine 
function and, in the interval of 
interest, 22 πθπ ≤≤− , takes on 

its minimum value when θ  = −π/2: 

0
2

2

2

>
−πθd

Ud
 

and 2atminimumais πθ −=U  

0
2

2

2

<
πθd

Ud
 

and 2atmaximumais πθ =U  

 
(c) If m1l1 = m2l2, then (m2l2 − m1l1) = 0  

and . oftly independen 0 θ=U  

 
Remarks: An alternative approach to establishing the U is a maximum at  
θ = π/2 is to plot its graph and note that, in the interval of interest, U is concave 
downward with its maximum value at θ = π/2. 
 
Force, Potential Energy, and Equilibrium 
 
62 •  
Picture the Problem Fx is defined to be the negative of the derivative of the potential 
function with respect to x, that is, dxdUFx −= . Consequently, given U as a function of 

x, we can find Fx by differentiating U with respect to x. 
 

(a) Evaluate :
dx
dUFx −=  ( ) 34 4AxAx

dx
dFx −=−=  

 
(b) Set Fx = 0 and solve for x: 00 =⇒= xFx  

 
63 ••  
Picture the Problem Fx is defined to be the negative of the derivative of the potential 
function with respect to x, that is dxdUFx −= . Consequently, given U as a function of 

x, we can find Fx by differentiating U with respect to x. 
 

(a) Evaluate :
dx
dUFx −=  

2x
C

x
C

dx
dFx =⎟

⎠
⎞

⎜
⎝
⎛−=  

 
(b) Because C > 0: 

.originthefromawaydirected is

  thereforeand 0for  positive is 

F
r

≠xFx  
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(c) Because U is inversely 
proportional to x and C > 0: 

( ) .increasingwithdecreases xxU  

 
(d) With C < 0: 

.origin  thefrom  towarddirected is

  thereforeand 0for  negative is 

F
r

≠xFx

 
Because U is inversely proportional to 
x and C < 0, U(x) becomes less 
negative as x increases: 

( ) .increasingwithincreases xxU  

 
*64 ••  
Picture the Problem Fy is defined to be the negative of the derivative of the potential 
function with respect to y, i.e. dydUFy −= . Consequently, we can obtain Fy by 

examining the slopes of the graph of U as a function of y. 
 

The table to the right summarizes 
the information we can obtain from 
Figure 6-40: 
 

 Slope Fy 
Interval (N) (N) 
A→B −2 2 
B→C transitional −2 → 1.4 
C→D 1.4 −1.4  

  
The graph of F as a function of y is 
shown to the right: 

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5 6

y  (m)

F
 (N

)

 
 

65 ••  
Picture the Problem Fx is defined to be the negative of the derivative of the potential 
function with respect to x, i.e. dxdUFx −= . Consequently, given F as a function of x, 

we can find U by integrating Fx with respect to x. 
 
Evaluate the integral of Fx with 
respect to x: 

( ) ( )

0

2

U
x
a

dx
x
adxxFxU

+=

−=−= ∫∫
 

where U0 is a constant determined by 
whatever conditions apply to U. 
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66 ••  
Picture the Problem Fx is defined to be the negative of the derivative of the potential 
function with respect to x, that is, dxdUFx −= . Consequently, given U as a function 

of x, we can find Fx by differentiating U with respect to x. To determine whether the 
object is in stable or unstable equilibrium at a given point, we’ll evaluate 22 dxUd at 

the point of interest. 
 

(a) Evaluate :
dx
dUFx −=  ( ) ( )1623 32 −=−−= xxxx

dx
dFx  

 
(b) We know that, at equilibrium,  
Fx = 0: 

When Fx =0, 6x(x – 1) = 0. Therefore, the 
object is in equilibrium 
at m.1and0 == xx  

 
(c) To decide whether the 
equilibrium at a particular point is 
stable or unstable, evaluate the 2nd 
derivative of the potential energy 
function at the point of interest: 
 

( ) 232 6623 xxxx
dx
d

dx
dU

−=−=  

and 

x
dx

Ud 1262

2

−=  

Evaluate 2

2

dx
Ud

at x = 0: 

0atmequilibriustable

06
0

2

2

=⇒

>=
=

x

dx
Ud

x  

 

Evaluate 2

2

dx
Ud

at x = 1 m: 

m1atmequilibriuunstable

0126
m1

2

2

=⇒

<−=
=

x

dx
Ud

x

 
 
67 ••  
Picture the Problem Fx is defined to be the negative of the derivative of the potential 
function with respect to x, i.e. dxdUFx −= . Consequently, given U as a function of x, 

we can find Fx by differentiating U with respect to x. To determine whether the object is 
in stable or unstable equilibrium at a given point, we’ll evaluate 22 dxUd at the point of 

interest. 
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(a) Evaluate the negative of the 
derivative of U with respect to x: 

( )
( )( )224

1648 342

−+=

−=−−=

−=

xxx

xxxx
dx
d
dx
dUFx

 

 
(b) The object is in equilibrium 
wherever Fnet = Fx = 0: 

( )( )
.m2and,0,m2arepoints

mequilibriuthe0224

−=

⇒=−+

x

xxx

 
(c) To decide whether the 
equilibrium at a particular point is 
stable or unstable, evaluate the 2nd 
derivative of the potential energy 
function at the point of interest: 
 

( ) 23
2

2

1216416 xxx
dx
d

dx
Ud

−=−=  

Evaluate 2

2

dx
Ud

at x = −2 m: 

m2at
mequilibriuunstable

032
m2

2

2

−=
⇒

<−=
−=

x

dx
Ud

x  

 

Evaluate 2

2

dx
Ud

at x = 0: 

0atmequilibriustable

016
0

2

2

=⇒

>=
=

x

dx
Ud

x  

 

Evaluate 2

2

dx
Ud

at x = 2 m: 

m2at
mequilibriuunstable

032
m2

2

2

=
⇒

<−=
=

x

dx
Ud

x  

Remarks: You could also decide whether the equilibrium positions are stable or 
unstable by plotting F(x) and examining the curve at the equilibrium positions. 
 
68 ••  
Picture the Problem Fx is defined to be the negative of the derivative of the potential 
function with respect to x, i.e. dxdUFx −= . Consequently, given F as a function of x, 

we can find U by integrating Fx with respect to x. Examination of 22 dxUd at extreme 

points will determine the nature of the stability at these locations. 
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Determine the equilibrium locations 
by setting Fnet = F(x) = 0: 

F(x) = x3 – 4x = x(x2 – 4) = 0  
∴ the positions of stable and unstable 
equilibrium are at 2and0,2−=x . 

 
Evaluate the negative of the integral 
of F(x) with respect to x: 

( ) ( )
( )

0
2

4

3

2
4

4

Uxx

dxxx

xFxU

++−=

−−=

−=

∫
∫

 

where U0 is a constant whose value is 
determined by conditions on U(x). 
 

Differentiate U(x) twice: xxF
dx
dU

x 43 +−=−=  

and 

43 2
2

2

+−= x
dx

Ud
 

 

Evaluate 2

2

dx
Ud

at x = −2: 

2  at  unstable is mequilibriu the

08
2

2

2

−=∴

<−=
−=

x

dx
Ud

x

 

Evaluate 2

2

dx
Ud

at x = 0: 

0  at  stable is mequilibriu the

04
0

2

2

=∴

>=
=

x

dx
Ud

x  

 

Evaluate 2

2

dx
Ud

at x = 2: 

2  at  unstable is mequilibriu the

08
2

2

2

=∴

<−=
=

x

dx
Ud

x  

 
 Thus U(x) has a local minimum at x = 0 and 

local maxima at x = ±2. 
 
69 ••  
Picture the Problem Fx is defined to be the negative of the derivative of the potential 
function with respect to x, i.e. dxdUFx −= . Consequently, given U as a function of x, 

we can find Fx by differentiating U with respect to x. To determine whether the object is 
in stable or unstable equilibrium at a given point, we can examine the graph of U. 
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(a) Evaluate 
dx
dUFx −= for x ≤ 3 m: ( ) ( )xxxx

dx
dFx −=−−= 233 32  

 
Set Fx = 0 to identify those values of 
x for which the 4-kg object is in 
equilibrium: 

When Fx = 0, 3x(2 – x) = 0.  
Therefore, the object is in equilibrium 
at m.2and0 == xx  

 

Evaluate 
dx
dUFx −= for x > 3 m: 0=xF  

because U = 0. 
 

 

m. 3  for  mequilibriu neutral
in  isobject   theTherefore,

>x
 

 
(b) A graph of U(x) in the interval 
 –1 m ≤ x ≤ 3 m is shown to the 
right: 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

x  (m)

U
 (J

)

 
(c) From the graph, U(x) is a 
minimum at x = 0: 

0atmequilibriustable =∴ x  

 
 

From the graph, U(x) is a maximum 
at x = 2 m: 

m2atmequilibriuunstable =∴ x  

 
(d) Relate the kinetic energy of the 
object to its total energy and its 
potential energy: 
 

UEmvK −== 2
2
1  

 
 

Solve for v: ( )
m

UEv −
=

2
 

 
Evaluate U(x = 2 m): ( ) ( ) ( ) J4223m 2  32 =−==xU  

 
Substitute in the equation for v to 
obtain: 

( ) m/s00.2
kg4

J4J122
=

−
=v  
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70 ••  
Picture the Problem Fx is defined to be the negative of the derivative of the potential 
function with respect to x, that is dxdUFx −= . Consequently, given F as a function of 

x, we can find U by integrating Fx with respect to x. 
 
(a) Evaluate the negative of the 
integral of F(x) with respect to x: 

( ) ( )

02

3

2
1 U

x
A

dxAxxFxU

+=

−=−= ∫∫ −

 

where U0 is a constant whose value is 
determined by conditions on U(x). 
 

For x > 0: increases  as decreases xU  

 

(b) As x → ∞, 22
1

x
A

→ 0: ∴ U0 = 0  
and  

( ) 3
22

3

2 mN4mN8
2
1

2
1

⋅=
⋅

==
xxx

AxU

 
(c) The graph of U(x) is shown to the 
right: 

0

50

100

150

200

250

300

350

400

0.0 0.5 1.0 1.5 2.0

x  ( m )

 
 
*71 •••  
Picture the Problem Let L be the total length of one cable and the zero of gravitational 
potential energy be at the top of the pulleys. We can find the value of y for which the 
potential energy of the system is an extremum by differentiating U(y) with respect to y 
and setting this derivative equal to zero. We can establish that this value corresponds to a 
minimum by evaluating the second derivative of U(y) at the point identified by the first 
derivative. We can apply Newton’s 2nd law to the clock to confirm the result we obtain by 
examining the derivatives of U(y). 
 
(a) Express the potential energy of 
the system as the sum of the 
potential energies of the clock and 
counterweights: 
 

( ) ( ) ( )yUyUyU weightsclock +=  

Substitute to obtain: ( )222)( dyLMgmgyyU +−−−=  
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(b) Differentiate U(y) with respect 
to y: 
 

( )[ ]

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−−=

+−+−=

22

22

2

2)(

dy
yMgmg

dyLMgmgy
dy
d

dy
ydU

 
or 

extremafor  02
22

=
+

−
dy'

y'Mgmg  

 
Solve for y′ to obtain: 
 22

2

4 mM
mdy'

−
=

 
 

Find 
( )
2

2

dy
yUd

: 

( ) 2322

2

222

2

2

2)(

dy
Mgd

dy
yMgmg

dy
d

dy
yUd

+
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−−=

 

 

Evaluate 
( )
2

2

dy
yUd

at y = y′: ( )
( )

0

1
4

2

2

23

22

2

2322

2

2

2

>

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−

=

+
=

mM
m

Mgd

dy
Mgd

dy
yUd

y'y'

 

and the potential energy is a minimum at 

22

2

4 mM
mdy

−
=  

 
(c) The FBD for the clock is shown to 
the right: 
 

 
Apply ∑ = 0yF to the clock: 0sin2 =− mgMg θ  

and 

M
m

2
sin =θ  

 



Chapter 6 
 

 

412 

Express sinθ in terms of y and d: 
22

sin
dy

y
+

=θ  

 
Substitute to obtain: 
 222 dy

y
M
m

+
=  

which is equivalent to the first equation in 
part (b). 
 

it. fromaway  displaced isit  ifpoint 
mequilibriu  thedback towar pulled be clock will  the this,of Because

decreases. cables  thefrom forcenet   theupward, displaced isclock 
 theif Similarly, clock. on the force upwardlarger  a  toleading increases,

 downward, displaced isclock  Ifthe m.equilibriu stable ofpoint  a is This θ

 

 
Remarks: Because we’ve shown that the potential energy of the system is a 
minimum at y = y′ (i.e., U(y) is concave upward at that point), we can conclude that 
this point is one of stable equilibrium. 
 
General Problems 
 
*72 •  
Picture the Problem 25 percent of the electrical energy generated is to be diverted to do 
the work required to change the potential energy of the American people. We can 
calculate the height to which they can be lifted by equating the change in potential energy 
to the available energy.  
 
Express the change in potential 
energy of the population of the 
United States in this process: 
 

∆U = Nmgh 

Letting E represent the total energy 
generated in February 2002, relate 
the change in potential to the energy 
available to operate the elevator: 
 

Nmgh = 0.25E 

Solve for h: 

Nmg
Eh 25.0

=  
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Substitute numerical values and 
evaluate h: ( )( )

( )( )( )
km323

m/s9.81kg6010287
h1

s3600hkW107.6025.0

26

9

=

×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅×

=h  

 
73 •  
Picture the Problem We can use the definition of the work done in changing the 
potential energy of a system and the definition of power to solve this problem. 
 
(a) Find the work done by the crane 
in changing the potential energy of 
its load: 

W = mgh 
    = (6×106 kg) (9.81 m/s2) (12 m) 
     = MJ706  

 
(b) Use the definition of power to 
find the power developed by the 
crane: 

MW8.11
s60
MJ706

==≡
dt

dWP  

 
74 •  
Picture the Problem The power P of the engine needed to operate this ski lift is related 
to the rate at which it changes the potential energy U of the cargo of the gondolas 
according to P = ∆U/∆t. Because as many empty gondolas are descending as are 
ascending, we do not need to know their mass. 
 
Express the rate at which work is 
done as the cars are lifted: 
 

t
UP

∆
∆

=  

Letting N represent the number of 
gondola cars and M the mass of 
each, express the change in U as 
they are lifted a vertical 
displacement ∆h: 
 

∆U = NMg∆h 

Substitute to obtain: 
 t

hNMg
t

UP
∆

∆
=

∆
∆

≡  

 
Relate ∆h to the angle of ascent θ 
and the length L of the ski lift: 
 

∆h = Lsinθ 

Substitute for ∆h in the expression 
for P: t

NMgLP
∆

=
θsin
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Substitute numerical values and evaluate P: 
 

( )( )( )
( )( ) kW4.50

s/min60min60
sin30km5.6m/s9.81kg55012 2

=
°

=P  

 
75  •  
Picture the Problem The application of 
Newton’s 2nd law to the forces shown in 
the free-body diagram will allow us to 
relate R to T. The unknown mass and 
speed of the object can be eliminated by 
introducing its kinetic energy.  

 
 
Apply ∑ = radialradial maF the object 

and solve for R: R
mvT

2

=  and 
T

mvR
2

=  

 
Express the kinetic energy of the 
object: 

2
2
1 mvK =  

 
Eliminate mv2 between the two 
equations to obtain: T

KR 2
=  

 
Substitute numerical values and 
evaluate R: 

( ) m0.500
N360
J902

==R  

 
*76 •  
Picture the Problem We can solve this problem by equating the expression for the 
gravitational potential energy of the elevated car and its kinetic energy when it hits the 
ground. 
 
Express the gravitational potential 
energy of the car when it is at a 
distance h above the ground: 
 

U = mgh 

Express the kinetic energy of the car 
when it is about to hit the ground:  
 

2
2
1 mvK =  

Equate these two expressions 
(because at impact, all the potential 
energy has been converted to kinetic 
energy) and solve for h: 

g
vh
2

2

=  
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Substitute numerical values and 
evaluate h: 

( )( )[ ]
( ) m3.39

m/s9.812
sh/36001km/h100

2

2

==h

 
77 •••  
Picture the Problem The free-body 
diagram shows the forces acting on one of 
the strings at the bridge. The force whose 
magnitude is F is one-fourth of the force 
(103 N) the bridge exerts on the strings. 
We can apply the condition for equilibrium 
in the y direction to find the tension in each 
string. Repeating this procedure at the site 
of the plucking will yield the restoring 
force acting on the string. We can find the 
work done on the string as it returns to 
equilibrium from the product of the 
average force acting on it and its 
displacement. 

 
 
 

 

 
(a) Noting that, due to symmetry,  
T′ = T, apply 0=∑ yF to the string 

at the point of contact with the 
bridge: 
 

018sin2 =°− TF  

Solve for and evaluate T: ( ) N7.41
18sin2
N103

18sin2
4
1

=
°

=
°

=
FT  

 
(b) A free-body diagram showing 
the forces restoring the string to its 
equilibrium position just after it has 
been plucked is shown to the right: 
  

Express the net force acting on the 
string immediately after it is 
released: 
 

θcos2net TF =  

Use trigonometry to find θ: 
°=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×= − 6.88

cm
mm10

mm4
cm16.3tan 1θ  

 
Substitute and evaluate Fnet: ( ) N68.1cos88.6N4.432net =°=F  
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(c) Express the work done on the 
string in displacing it a distance dx′: 
 

'FdxdW =  

If we pull the string out a distance 
x′, the magnitude of the force 
pulling it down is approximately: 
 

( ) '4
2
'2 x

L
T

L
xTF ==  

Substitute to obtain: 
 

''4 dxx
L
TdW =  

 
Integrate to obtain: 2

0

2''4 x
L
Tdxx

L
TW

x

== ∫  

where x is the final displacement of the 
string. 
 

Substitute numerical values to obtain: ( ) ( )

mJ09.4

m104
m106.32

N7.412 23
2

=

×
×

= −
−W

 

 
78 ••  
Picture the Problem Fx is defined to be the negative of the derivative of the potential 
function with respect to x, that is dxdUFx −= . Consequently, given F as a function of 

x, we can find U by integrating Fx with respect to x. 
 
Evaluate the integral of Fx with 
respect to x: 

( ) ( ) ( )
0

3
3
1

2

Uax

dxaxdxxFxU

+=

−−=−= ∫∫  

 
Apply the condition that U(0) = 0 to 
determine U0: 

U(0) = 0 + U0 = 0 ⇒ U0 = 0 
( ) 3

3
1 axxU =∴  

 
The graph of U(x) is shown to the right: 

-3

-2

-1

0

1

2

3

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

x  (m)

U
 (J

)
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*79 ••  
Picture the Problem We can use the definition of work to obtain an expression for the 
position-dependent force acting on the cart. The work done on the cart can be calculated 
from its change in kinetic energy. 
 
(a) Express the force acting on the 
cart in terms of the work done on it: 
 

( )
dx

dWxF =  

Because U is constant: ( ) ( ) ( )[ ]
xmC

Cxm
dx
dmv

dx
dxF

2

2
2
12

2
1

=

==
 

 
(b) The work done by this force 
changes the kinetic energy of the 
cart: 

( )
2
1

2
2
1

2
12

12
12

1

2
02

12
12

1

0

xmC

Cxmmv

mvmvKW

=

=−=

−=∆=

 

 
80 ••  
Picture the Problem The work done by F

r
depends on whether it causes a displacement 

in the direction it acts.   
 
(a) Because F

r
 is along x-axis and 

the displacement is along y-axis: 
 

W = ∫ F
r

⋅ srd  = 0  

(b) Calculate the work done by 
F
r

during the displacement from  
x = 2 m to 5 m: 

( )

( ) J0.78
3

N/m2

N/m2

m5

m2

3
2

m5

m2

22

=⎥
⎦

⎤
⎢
⎣

⎡
=

=⋅= ∫∫

x

dxxdW sF rr

 

 
81 ••  
Picture the Problem The velocity and acceleration of the particle can be found by 
differentiation. The power delivered to the particle can be expressed as the product of its 
velocity and the net force acting on it, and the work done by the force and can be found 
from the change in kinetic energy this work causes. 
 
In the following, if t is in seconds and m is in kilograms, then v is in m/s, a is in m/s2, P is 
in W, and W is in J. 
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(a) The velocity of the particle is 
given by: 

( )
( )tt

tt
dt
d

dt
dxv

86

42

2

23

−=

−==
 

The acceleration of the particle is 
given by: 

( )
( )812

86 2

−=

−==

t

tt
dt
d

dt
dva

 

 
(b) Express and evaluate the rate at 
which energy is delivered to this 
particle as it accelerates: 

( )( )
( )81898

86812
2

2

+−=

−−=

==

ttmt

tttm
mavFv P 

 

 
(c) Because the particle is moving in 
such a way that its potential energy 
is not changing, the work done by 
the force acting on the particle 
equals the change in its kinetic 
energy: 

( )( ) ( )( )[ ]
( )[ ]

( )2
1

2
1

2
1

2
12

1

22
12

1

01

432

086

0

−=

−−=

−=

−=∆=

tmt

ttm

vtvm

KKKW

 

 
Remarks: We could also find W by integrating P(t) with respect to time. 
 
82  ••  
Picture the Problem We can calculate the work done by the given force from its 
definition. The power can be determined from vF rr

⋅=P and v from the change in kinetic 
energy of the particle produced by the work done on it. 
 
(a) Calculate the work done from its 
definition: ( )

J00.9
3

3
2

46

346

m3

0

32

m3

0

2

=⎥
⎦

⎤
⎢
⎣

⎡
−+=

−+=⋅= ∫∫

xxx

dxxxdW sF rr

 

 
(b) Express the power delivered to 
the particle in terms of Fx=3 m and its 
velocity: 
 

vFP x m3==⋅= vF rr
 

Relate the work done on the particle 
to its kinetic energy and solve for its 
velocity: 
 

0since 0
2

2
1

final ===∆= vmvKKW  
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Solve for and evaluate v: 
 

( ) m/s45.2
kg3

J922
===

m
Kv  

 
Evaluate Fx=3 m:  ( ) ( ) N933346 2

m3 −=−+==xF  

Substitute for Fx=3 m and v: ( )( ) W1.22m/s2.45N9 −=−=P  

 
*83 ••  
Picture the Problem We’ll assume that the firing height is negligible and that the bullet 
lands at the same elevation from which it was fired. We can use the equation 

( ) θ2sin2
0 gvR =  to find the range of the bullet and constant-acceleration equations to 

find its maximum height. The bullet’s initial speed can be determined from its initial 
kinetic energy. 
 
Express the range of the bullet as a 
function of its firing speed and angle 
of firing: 
 

θ2sin
2
0

g
vR =  

Rewrite the range equation using the 
trigonometric identity  
sin2θ = 2sinθ cosθ: 
 

g
v

g
vR θθθ cossin22sin 2

0
2
0 ==  

 
Express the position coordinates of 
the projectile along its flight path in 
terms of the parameter t: 
 

( )tvx θcos0=  

and 
( ) 2

2
1

0 sin gttvy −= θ  

 
Eliminate the parameter t and make 
use of the fact that the maximum 
height occurs when the projectile is 
at half the range to obtain: 
 

( )
g

vh
2
sin 2

0 θ
=  

Equate R and h and solve the 
resulting equation for θ: 
 

4tan =θ ⇒ °== − 0.764tan 1θ  
 

Relate the bullet’s kinetic energy to 
its mass and speed and solve for the 
square of its speed: 
 

m
KvmvK 2 and 2

0
2
02

1 ==  

Substitute for 2
0v and θ and evaluate 

R: 

( )
( )( ) ( )

km5.74

76sin2
m/s9.81kg0.02

J12002
2

=

°=R
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84 ••  
Picture the Problem The work done on the particle is the area under the force-versus-
displacement curve. Note that for negative displacements, F is positive, so W is negative 
for x < 0. 
 
(a) Use either the formulas for the 
areas of simple geometric figures or 
counting squares and multiplying by 
the work represented by one square 
to complete the table to the right: 
 
 
 
 
 
 

x W 
(m) (J) 
−4 −11
−3 −10
−2 −7 
−1 −3 
0 0 
1 1 
2 0 
3 −2 
4 −3  

  

(b) Choosing U(0) = 0, and using 
the definition of ∆U = −W, complete 
the third column of the table to the 
right: 
 
 
 
 
 
 
 

x W ∆U 
(m) (J) (J) 
−4 −11 11 
−3 −10 10 
−2 −7 7 
−1 −3 3 
0 0 0 
1 1 −1 
2 0 0 
3 −2 2 
4 −3 3  

  

 
 
 
The graph of U as a function of x is 
shown to the right: 
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85 ••  
Picture the Problem The work done on the particle is the area under the force-versus-
displacement curve. Note that for negative displacements, F is negative, so W is positive 
for x < 0. 
 
(a) Use either the formulas for the 
areas of simple geometric figures or 
counting squares and multiplying by 
the work represented by one square 
to complete the table to the right: 
 
 
 
 
 
 

x W 
(m) (J) 
−4 6 
−3 4 
−2 2 
−1 0.5 
0 0 
1 0.5 
2 1.5 
3 2.5 
4 3  

  

(b) Choosing U(0) = 0, and using 
the definition of ∆U = −W, complete 
the third column of the table to the 
right: 
 
 
 
 
 
 
 

x W ∆U 
(m) (J) (J) 
−4 6 −6 
−3 4 −4 
−2 2 −2 
−1 0.5 −0.5 
0 0 0 
1 0.5 −0.5 
2 1.5 −1.5 
3 2.5 −2.5 
4 3 −3  

  

 
 
 
The graph of U as a function of x is 
shown to the right: 
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86 ••  
Picture the Problem The pictorial 
representation shows the box at its initial 
position 0 at the bottom of the inclined 
plane and later at position 1. We’ll assume 
that the block is at position 0. Because the 
surface is frictionless, the work done by the 
tension will change both the potential and 
kinetic energy of the block. We’ll use 
Newton’s 2nd law to find the acceleration of 
the block up the incline and a constant-
acceleration equation to express v in terms 
of T, x, M, and θ. Finally, we can express 
the power produced by the tension in terms 
of the tension and the speed of the box. 

 

 

  
(a) Use the definition of work to 
express the work the tension T does 
moving the box a distance x up the 
incline: 
 

TxW =  

(b) Apply xx MaF =∑ to the box: xMaMgT =− θsin  

 
Solve for ax: 
 

θθ sinsin g
M
T

M
MgTax −=

−
=  

 
Using a constant-acceleration 
equation, express the speed of the 
box in terms of its acceleration and 
the distance x it has moved up the 
incline: 
 

xavv x22
0

2 +=  

or, because v0 = 0, 
xav x2=  

Substitute for ax to obtain: 
 xg

M
Tv ⎟

⎠
⎞

⎜
⎝
⎛ −= θsin2  

 
(c) The power produced by the 
tension in the string is given by: xg

M
TTTvP ⎟

⎠
⎞

⎜
⎝
⎛ −== θsin2  
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87 •••  
Picture the Problem We can use the definition of the magnitude of vector to show that 
the magnitude of F

r
is F0 and the definition of the scalar product to show that its direction 

is perpendicular to r
r

. The work done as the particle moves in a circular path can be found 
from its definition. 
 

(a) Express the magnitude of F
r

: 

220

2
0

2
0

22

yx
r
F

x
r
Fy

r
F

FF yx

+=

⎟
⎠
⎞

⎜
⎝
⎛−+⎟

⎠
⎞

⎜
⎝
⎛=

+=F
r

 

 

Because 22 yxr += : 
0

0220 Fr
r
F

yx
r
F

==+=F
r

 

 
Form the scalar product of F

r
and rr : ( ) ( )

( ) 0

ˆˆˆˆ

0

0

=−⎟
⎠
⎞

⎜
⎝
⎛=

+⋅−⎟
⎠
⎞

⎜
⎝
⎛=⋅

xyxy
r
F

yxxy
r
F jijirF

rr

 

 
 Because F

r
⋅ r
r

 = 0, rF rr
⊥  

 
(b) Because F

r
⊥ r
r

, F
r

is tangential 
to the circle and constant. At (5 m, 
0), F

r
 points in the ĵ− direction. If 

srd is in the ĵ−  direction, dW > 0. 

The work it does in one revolution is: 
 

( ) ( )
( )
clockwise is

rotation   theif m10
m522

0

00

F
FrFW

π
ππ

=
==

 

and 
( )

ckwise.counterclo
 isrotation   theif m10 0FW π−=
 

 

ve.conservatinot  is  circuit, complete afor  0  Because ckwise.counterclo

 isrotation   theifm)(10 clockwise, isrotation   theif m)(10 00

F
r

≠

−=

W

FFW ππ
 

 
*88 •••  
Picture the Problem We can substitute for r and ji ˆˆ yx + in F

r
to show that the 

magnitude of the force varies as the inverse of the square of the distance to the origin, and 
that its direction is opposite to the radius vector. We can find the work done by this force 
by evaluating the integral of F with respect to x from an initial position x = 2 m, y = 0 m 
to a final position x = 5 m, y = 0 m. Finally, we can apply Newton’s 2nd law to the particle 
to relate its speed to its radius, mass, and the constant b. 
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(a) Substitute for r and  
ji ˆˆ yx + in F

r
to obtain:  ( ) rF ˆ22

2322
yx

yx
b

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−=

r
 

where r̂ is a unit vector pointing from the 
origin toward the point of application of 
F
r

. 
 

Simplify to obtain: 
rrF ˆˆ1

222 r
b

yx
b −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−=
r

 

i.e., the magnitude of the force varies as the 
inverse of the square of the distance to the 
origin, and its direction is antiparallel 
(opposite) to the radius vector .ˆˆ jir yx +=

r
 

 
(b) Find the work done by this force 
by evaluating the integral of F with 
respect to x from an initial position  
x = 2 m, y = 0 m to a final position  
x = 5 m, y = 0 m:  
 

J 900.0
m 2
1

m 5
1mN 3

'
1'

'

2

m5

m2

m5

m2
2

−=⎟
⎠
⎞

⎜
⎝
⎛ −⋅=

⎥⎦
⎤

⎢⎣
⎡=−= ∫ x

bdx
x
bW

 

 
(c)  velocity. thelar toperpendicu is force  theas done is work No  

 
(d) Because the particle is moving in 
a circle, the force on the particle 
must be supplying the centripetal 
acceleration keeping it moving in 
the circle.  Apply ∑ = cr maF  to 
the particle: 
 

r
vm

r
b 2

2 =  

Solve for v: 

mr
bv =  

 
Substitute numerical values and 
evaluate v: ( )( ) m/s 463.0

m7kg2
mN3 2

=
⋅

=v  

 
89 •••  
Picture the Problem A spreadsheet program to calculate the potential is shown below. 
The constants used in the potential function and the formula used to calculate the ″6-12″ 
potential are as follows: 
 

Cell Content/Formula Algebraic Form
B2 1.09×10−7 a 
B3 6.84×10−5 b 
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D8 $B$2/C8^12−$B$3/C8^6
612 r

b
r
a

−  

C9 C8+0.1 rr ∆+   
 
(a)  

 
 A B C D 
1     
2 a = 1.09E-07   
3 b = 6.84E-05   
4     
5     
6     
7   r U 
8   3.00E-01 1.11E-01 
9   3.10E-01 6.13E-02 
10   3.20E-01 3.08E-02 
11   3.30E-01 1.24E-02 
12   3.40E-01 1.40E-03 
13   3.50E-01 −4.95E-03
     

45   6.70E-01 −7.43E-04
46   6.80E-01 −6.81E-04
47   6.90E-01 −6.24E-04
48   7.00E-01 −5.74E-04 

 
The graph shown below was generated from the data in the table shown above. Because 
the force between the atomic nuclei is given by ( )drdUF −= , we can conclude that the 
shape of the potential energy function supports Feynman’s claim. 
 

"6-12" Potential

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

r  (nm)

U
 (e

V
)

 
 

(b) The minimum value is about −0.0107 eV, occurring at a separation of approximately 
0.380 nm.  Because the function is concave upward (a potential ″well″) at this separation, 
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this separation is one of stable equilibrium, although very shallow. 
 
(c) Relate the force of attraction 
between two argon atoms to the 
slope of the potential energy 
function: 
 713

612

612
r
b

r
a

r
b

r
a

dr
d

dr
dUF

−=

⎥⎦
⎤

⎢⎣
⎡ −−=−=

 

 
Substitute numerical values and evaluate F(5 Å): 
 

( )
( )

( )
( )

N1069.6

m10
nm1

eV
J101.6

nm
eV1018.4

nm5.0
1084.66

nm5.0
1009.112

12

9

19
2

7

5

13

7

−

−

−
−

−−

×−=

×
×

××−=
×

−
×

=F
 

where the minus sign means that the force is attractive. 
 

Substitute numerical values and evaluate F(3.5 Å): 
 

( )
( )

( )
( )

N1049.7

m10
nm1

eV
J101.6

nm
eV1068.4

nm35.0
1084.66

nm35.0
1009.112

11

9

19
1

7

5

13

7

−

−

−
−

−−

×=

×
×

××=
×

−
×

=F
 

where the plus sign means that the force is repulsive. 
 
*90 •••  
Picture the Problem A spreadsheet program to plot the Yukawa potential is shown 
below. The constants used in the potential function and the formula used to calculate the 
Yukawa potential are as follows: 
 
 

Cell Content/Formula Algebraic Form
B1 4 U0 
B2 2.5 a 
D8 −$B$1*($B$2/C9)*EXP(−C9/$B$2) are

r
aU /

0
−⎟

⎠
⎞

⎜
⎝
⎛−  

C10 C9+0.1 rr ∆+   
 
(a)  

 
 A B C D 

1 U0= 4 pJ  
2 a= 2.5 fm  
3     
     

7     
8   r U 
9   0.5 −16.37 

10   0.6 −13.11 
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11   0.7 −10.80 
12   0.8 −9.08 
13   0.9 −7.75 
14   1 −6.70 

     
64   6 −0.15 
65   6.1 −0.14 
66   6.2 −0.14 
67   6.3 −0.13 
68   6.4 −0.12 
69   6.5 −0.11 
70   6.6 −0.11  

 
U as a function of r is shown below.  

-18

-16

-14

-12

-10

-8

-6

-4

-2

0
0 1 2 3 4 5 6 7

r  (fm)

U
 (p

J)

 
 

(b) Relate the force between the 
nucleons to the slope of the potential 
energy function: 
 

( ) ( )

⎟
⎠
⎞

⎜
⎝
⎛ +−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−−=

−=

−

−

rr
aeU

e
r
aU

dr
d

dr
rdUrF

ar

ar

1
2

/
0

0  

 
(c) Evaluate F(2a): 
  ( )

( )

⎟
⎠
⎞

⎜
⎝
⎛−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

−

−

a
eU

aa
aeUaF aa

4
3

2
1

2
2

2
0

2
/2

0
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Evaluate F(a): 
  ( )

( )

⎟
⎠
⎞

⎜
⎝
⎛−=⎟

⎠
⎞

⎜
⎝
⎛ +−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

−−

−

a
eU

aa
eU

aa
aeUaF aa

211

1

1
0

1
0

2
/

0

 

 
Express the ratio F(2a)/F(a): 

( )
( )

138.0

8
3

2
4
3

2 1

1
0

2
0

=

=
⎟
⎠
⎞

⎜
⎝
⎛−

⎟
⎠
⎞

⎜
⎝
⎛−

= −

−

−

e

a
eU

a
eU

aF
aF

 

 
(d) Evaluate F(5a): 
  ( )

( )

⎟
⎠
⎞

⎜
⎝
⎛−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

−

−

a
eU

aa
aeUaF aa

25
6

5
1

5
5

5
0

2
/5

0

 

 
Express the ratio F(5a)/F(a): 

( )
( )

3

4

1
0

5
0

1020.2

25
3

2
25

6
5

−

−

−

−

×=

=
⎟
⎠
⎞

⎜
⎝
⎛−

⎟
⎠
⎞

⎜
⎝
⎛−

= e

a
eU

a
eU

aF
aF

 

 
 
 


