Chapter 6
Work and Energy

Conceptual Problems

*1 °

Determine the Concept A force does work on an object when its point of application
moves through some distance and there is a component of the force along the line of
motion.

(a) False. The net force acting on an object is the vector sum of all the forces acting on
the object and is responsible for displacing the object. Any or all of the forces
contributing to the net force may do work.

(b) True. The object could be at rest in one reference frame and moving in another. If we
consider only the frame in which the object is at rest, then, because it must undergo a
displacement in order for work to be done on it, we would conclude that the statement is
true.

(c) True. A force that is always perpendicular to the velocity of a particle changes neither
it’s Kinetic nor potential energy and, hence, does no work on the particle.

2 .
Determine the Concept If we ignore the work that you do in initiating the horizontal
motion of the box and the work that you do in bringing it to rest when you reach the
second table, then neither the kinetic nor the potential energy of the system changed as
you moved the box across the room. Neither did any forces acting on the box produce
displacements. Hence, we must conclude that the minimum work you did on the box is
zero.

3 .
False. While it is true that the person’s kinetic energy is not changing due to the fact that
she is moving at a constant speed, her gravitational potential energy is continuously
changing and so we must conclude that the force exerted by the seat on which she is
sitting is doing work on her.

*4 .
Determine the Concept The kinetic energy of any object is proportional to the square of
its speed. Because K = %mvz, replacing v by 2v yields

K'= %m(Zv)2 = 4(% mvz): 4K. Thus doubling the speed of a car quadruples its kinetic

energy.
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5 .
Determine the Concept No. The work done on any object by any force F is defined as
dW = F -dr . The direction of F

net
is traveling and dr is tangent to the circle. No work is done by the net force because
F_. anddF are perpendicular so the dot product is zero.

net

is toward the center of the circle in which the object

6 .
Determine the Concept The kinetic energy of any object is proportional to the square of
its speed and is always positive. Because K =1 mv?, replacing v by 3v yields

K'=im(3v) = 9(% mvz): 9K. Hence tripling the speed of an object increases its

kinetic energy by a factor of 9 and | (d) is correct.

*7 °
Determine the Concept The work required to stretch or compress a spring a distance x is
given by W = % kx?where k is the spring’s stiffness constant. Because W oc X2, doubling

the distance the spring is stretched will require four times as much work.

8 .
Determine the Concept No. We know that if a net force is acting on a particle, the
particle must be accelerated. If the net force does no work on the particle, then we must
conclude that the Kkinetic energy of the particle is constant and that the net force is acting
perpendicular to the direction of the motion and will cause a departure from straight-line
motion.

9 °
Determine the Concept We can use the definition of power as the scalar product of
force and velocity to express the dimension of power.

Power is defined as: P=F.v

Express the dimension of force: [M][L/T?]

Express the dimension of velocity: [L/T]

Express the dimension of power in [M][L/T ?J[L/T] = [M][LIYTP

terms of those of force and velocity: and | (d)is correct.
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10 -

Determine the Concept The change in gravitational potential energy, over elevation
changes that are small enough so that the gravitational field can be considered constant, is
mgAh, where Ah is the elevation change. Because Ah is the same for both Sal and Joe,

their gains in gravitational potential energy are the same. | (C) is correct.

1 -
(a) False. The definition of work is not limited to displacements caused by conservative
forces.

(b) False. Consider the work done by the gravitational force on an object in freefall.
(c) True. This is the definition of work done by a conservative force.
*12 oo

Picture the Problem F, is defined to be the negative of the derivative of the potential
function with respect to x; i.e., F, = —dU/dx.

(a) Examine the slopes of the curve at Point | dU/dx | Fy
each of the lettered points, remembering A + -
that Fy is the negative of the slope of the B 0 0
potential energy graph, to complete the C _ +
table: D 0 0
E + —
F 0 0
(b) Find the point where the slope is
steepest: At point C |F, | is greatest.
(c) If d?U/dx’ <0, then the curve is At point B the equilibrium is unstable.
concave downward and the
equilibrium is unstable.
If d°U/dx* > 0, then the curve is At point D the equilibrium is stable.
concave upward and the equilibrium
is stable.

Remarks: At point F, d?U/dx? = 0 and the equilibrium is neither stable nor unstable;
it is said to be neutral.
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13 -
(a) False. Any force acting on an object may do work depending on whether the force
produces a displacement ... or is displaced as a consequence of the object’s motion.

(b) False. Consider an element of area under a force-versus-time graph. Its units are N-s
whereas the units of work are N-m.

14 -
Determine the Concept Work dW (: F ~d§) is done when a force F produces a

displacement dS. Because F - dS = Fdscos @ = (F cos&)ds, W will be negative if the

value of @is such that Fcos@is negative. | (d) is correct.

Estimation and Approximation

*15 oo
Picture the Problem The diagram depicts the situation when the tightrope walker is at
the center of rope. M represents her mass and the vertical components of tensions

ﬂand 'I:Z, equal in magnitude, support her weight. We can apply a condition for static

equilibrium in the vertical direction to relate the tension in the rope to the angle #and use
trigonometry to find s as a function of 6.

(a) Use trigonometry to relate the S
sag s in the rope to its length L and tan 6 = T and s =—tan¢
0: 2
Apply Z F, = 0to the tightrope 2T sin @ — Mg = O where T is the
walker when she is at the center of magnitude of 'I:land 'I:Z :
the rope to obtain:
Solve for #to obtain:
0 =sin™ mj
2T
Substitute numerical values and [ (50ka)(9.81m/s?
evaluate 4: 0 =sin™ ( g)( ) =2.81°
2(5000N)




Substitute to obtain:

(b) Express the change in the
tightrope walker’s gravitational
potential energy as the rope sags:

Substitute numerical values and
evaluate AU:

16 -
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S= 10Tmtan 2.81° =] 0.245m

AU =U -U,.« = MgAy

— “atcenter

AU = (50kg)(9.81m/s?)(—0.245m)
=[-120J

Picture the Problem You can estimate your change in potential energy due to this
change in elevation from the definition of AU. You’ll also need to estimate the height of
one story of the Empire State building. We’ll assume your mass is 70 kg and the height of
one story to be 3.5 m. This approximation gives us a height of 1170 ft (357 m), a height
that agrees to within 7% with the actual height of 1250 ft from the ground floor to the
observation deck. We’ll also assume that it takes 3 min to ride non-stop to the top floor in

one of the high-speed elevators.

(a) Express the change in your
gravitational potential energy as you
ride the elevator to the 102™ floor:

Substitute numerical values and
evaluate AU:

(b) Ignoring the acceleration
intervals at the beginning and the
end of your ride, express the work
done on you by the elevator in terms
of the change in your gravitational
potential energy:

Solve for and evaluate F:

(c) Assuming a 3 minute ride to the
top, express and evaluate the
average power delivered to the
elevator:

AU = mgAh

AU = (70kg)(9.81m/s?)(357m)

=| 245kJ
W =Fh=AU
:£:_245kJ =| 686 N
h 357m
AU 245KkJ

p-2- _
At (3min)(60s/min)

=|1.36kW
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17 -

Picture the Problem We can find the kinetic energy K of the spacecraft from its
definition and compare its energy to the annual consumption in the U.S. W by examining
the ratio K/W.

Using its definition, express and 1y — 1 7 2
evaluate the kinetic energy of the K=3mv=2 (10000 kg)(3><10 m/s)
spacecraft: =4.50x10%J

Express this amount of energy as a K  450x10%J
percentage of the annual £ ~ T5x1007 ~| 1%
consumption in the United States: x

*18 oo

Picture the Problem We can find the orbital speed of the Shuttle from the radius of its
orbit and its period and its kinetic energy fromK = %mvz. We’ll ignore the variation in
the acceleration due to gravity to estimate the change in the potential energy of the orbiter
between its value at the surface of the earth and its orbital value.

(a) Express the kinetic energy of the K =1mv’

orbiter:

Relate the orbital speed of the V= 2rr

orbiter to its radius r and period T: T

Substitute and simplify to obtain: 27t Y 27%mr?

Substitute numerical values and evaluate K:

_ 272(8x10" kg)[(200 mi + 3960 mi ) (L.609 km/mi)]* _

« [(90 min)(60s/ min)]?

2.43TJ

(b) Assuming the acceleration due AU =mgh
to gravity to be constant over the

200 mi and equal to its value at the

surface of the earth (actually, it is

closer to 9 m/s” at an elevation of

200 mi), express the change in

gravitational potential energy of the

orbiter, relative to the surface of the

earth, as the Shuttle goes into orbit:



Substitute numerical values and
evaluate AU:
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(8x10*kg)(9.81m/s?)
x(200mi)(1.609 km/mi)

=1 0.253TJ

AU

(©)

No, they shouldn't be equal because there is more than just the force of
gravity to consider here. When the shuttle is resting on the surface of

the earth, it is supported against the force of gravity by the normal force

the earth exerts upward on it. We would need to take into consideration

the change in potential energy of the surface of earth in its deformation
under the weight of the shuttle to find the actual change in potential energy.

9 -

Picture the Problem Let’s assume that the width of the driveway is 18 ft. We’ll also
assume that you lift each shovel full of snow to a height of 1 m, carry it to the edge of the
driveway, and drop it. We’ll ignore the fact that you must slightly accelerate each shovel
full as you pick it up and as you carry it to the edge of the driveway. While the density of
snow depends on the extent to which it has been compacted, one liter of freshly fallen
snow is approximately equivalent to 100 mL of water.

Express the work you do in lifting
the snow a distance h:

Using its definition, express the
densities of water and snow:

Divide the first of these equations
by the second to obtain:

Substitute and evaluate the psnow:

Calculate the volume of snow
covering the driveway:

Substitute numerical values in the
expression for W to obtain an
estimate (a lower bound) for the
work you would do on the snow in
removing it:

W =AU =mgh = .5, V0,
where p is the density of the snow.

_ msnow and _ mwater
p snow Vsnow p water VWEJlter
psnow — Vwater or psnow — pwater Vwater
p water Vsnow Vsnow
Paow = (10° kg/m3)1OOLmL ~100kg/m’®

snow

V,oow = (50ft)(18ft)(£ftj

28.32L y 1023 m3

= 7501t x 5
ft L

=212m?

W = (100kg/m?)(21.2m?)(9.81m/s? )(1m)
—[20.8kJ
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Work and Kinetic Energy

*20 -
Picture the Problem We can use %mv2 to find the Kkinetic energy of the bullet.

(a) Use the definition of K: K =2mv?
= 1(0.015kg)(1.2x10° m/s)’”
=|10.8kJ

(b) Because K oc V2 K'=1K ={ 2.70kJ

(c) Because K oc v*: K'=4K =| 43.2kJ

21 .

Picture the Problem We can use %mv2 to find the kinetic energy of the baseball and the

jogger.

(a) Use the definition of K: K =1mv’ = 1(0.145kg)(45m/s)’
=147
(b) Convert the jogger’s pace of ~( Imi }{ 1min }{1609m
9 min/mi into a speed: V= 9min )| 60s 1mi
=2.98m/s
Use the definition of K: K =1mv?® = 1(60kg)(2.98 m/s)’
=| 266J

22 .

Picture the Problem The work done in raising an object a given distance is the product
of the force producing the displacement and the displacement of the object. Because the
weight of an object is the gravitational force acting on it and this force acts downward,
the work done by gravity is the negative of the weight of the object multiplied by its
displacement. The change in Kinetic energy of an object is equal to the work done by the
net force acting on it.

(a) Use the definition of W: W = F - Ay =FAy
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= (80 N)3m) = | 240J

(b) Use the definition of W: W=F - Ay =-mgAy, because F and
Ay are in opposite directions.
- W = — (6 kg)(9.81 m/s?)(3 m)

=| =177
(c) According to the work-kinetic K=W+Wy;=240J+ (-177J)
energy theorem: =163.0J

23 -
Picture the Problem The constant force of 80 N is the net force acting on the box and
the work it does is equal to the change in the kinetic energy of the box.

Using the work-kinetic energy W =K, -K, = %m(vf2 —vf)
theorem, relate the work done by the

constant force to the change in the

kinetic energy of the box:

Substitute numerical values and W =1(5 kg)[(68 m/s) —(20 m/s)z]
evaluate W: —1106kJ
24 e

Picture the Problem We can use the definition of kinetic energy to find the mass of your
friend.

Using the definition of kinetic imyv} =1m,V;
energy and letting 1" denote your
mass and speed and "2" your
girlfriend’s, express the equality of 2

your kinetic energies and solve for m, = m{ﬁj (1)
your girlfriend’s mass as a function

of both your masses and speeds:

Express the condition on your speed vy = 1.25v; 2
that enables you to run at the same
speed as your girlfriend:
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Substitute equation (2) in equation
(1) to obtain:

2 2
v 1
m, = ml(v_lj =(85 kg)(m)
) .

=| 54.4kg

Work Done by a Variable Force

25 e
Picture the Problem The pictorial representation shows the particle as it moves along
the positive x axis. The particle’s kinetic energy increases because work is done on it. We
can calculate the work done on it from the graph of F, vs. x and relate its kinetic energy
when it is at x =4 m to its kinetic energy when it was at the origin and the work done on
it by using the work-kinetic energy theorem.

=J —J .

0 4

Xn:{) _\'4:41'[1

‘;n = Il'I'f'S V= ?

(a) Calculate the kinetic energy of
the particle when itisat x = 0:

=|6.00J
(b) Because the force and W, = £ (base)(altitude)
displacement are parallel, the work = %(4 m)(6 N)
done is the area under the curve. _[1203
Use the formula for the area of a
triangle to calculate the area under
the F as a function of x graph:
(c) Express the kinetic energy of the 2K,
particle at x = 4 m in terms of its Va = m 1)
speed and mass and solve for its
speed:
Using the work-kinetic energy Wooa = Ks— Ky
theorem, relate the work done on the K,=K,+W,,, =6.00J+12.0J
particle to its change in Kinetic =18.0J

energy and solve for the particle’s
kinetic energy at x =4 m:
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Substitute numerical values in 2(18.0J)

. vV, = |——= =|3.46m/s
equation (1) and evaluate vy: 4 3kg
*06 oo

Picture the Problem The work done by this force as it displaces the particle is the area
under the curve of F as a function of x. Note that the constant C has units of N/m?,

Because F varies with position non-
linearly, express the work it does as
an integral and evaluate the integral
between the limits x = 1.5 m and = (C N/mg) [%Xm]

o B

=|19CJ

w=(C N/ms)s.[mx'3 dx’
15m

3m
1.5m

27 e
Picture the Problem The work done on the dog by the leash as it stretches is the area
under the curve of F as a function of x. We can find this area (the work Lou does holding
the leash) by integrating the force function.

W = T(— kd—ax? )dx’

0

Because F varies with position non-
linearly, express the work it does as
an integral and evaluate the integral
between the limits x =0 and x = x;:

1 2 1 3%
[_Ekx —3zaX" [,

_ 1ly2 _1ay3
- _ikxl —3aX

28 e
Picture the Problem The work done on an object can be determined by finding the area
bounded by its graph of F, as a function of x and the x axis. We can find the kinetic
energy and the speed of the particle at any point by using the work-kinetic energy
theorem.

(a) Express W, the area under the W = n Agquare
curve, in terms of the area of one

square, Asquare, and the number of

squares n:

Determine the work equivalent of W = (0.5N)(0.25m) =0.125 ]
one square:
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Estimate the number of squares n=22
under the curve between x = 0 and
X=2m:
Substitute to determine W: W =22(0.125J) = | 2.75]
(b) Relate the kinetic energy of the K, =Ky +W,.,,
object at x = 2 m, K;, to its initial - %(3 kg)(2.40 m/s)2 +2.75]
Kinetic energy, Ko, and the work that 114
was done on it between x =0 and B i
X=2m:

Calculate th d of the object
(c) Calculate ¢ speed of the objec . 2K, _ 2(11.4J): 2 76m/s
at x =2 m from its kinetic energy at m 3kg
the same location:
(d) Estimate the number of squares n=26
under the curve between x =0 and
X=4m:
Substitute to determine W: W = 26(0.125J) =1 3.25]
(e) Relate the kinetic energy of the Ky =Ko +Wo_,,
object at x =4 m, Ky, to its initial = %(3 kg)(2.40 m/s)2 +3.25]
kinetic energy, Ko, and the work that ~11.9]
was done on it between x = 0 and '
X=4m:
Calculate th d of the object at

ulate etc,pee_ o_ e object a . 2K, _ 2(11,9J): T

X =4 m from its kinetic energy at m 3kg

the same location:

*20 oo
Picture the Problem We can express the mass of the water in Margaret’s bucket as the
difference between its initial mass and the product of the rate at which it loses water and
her position during her climb. Because Margaret must do work against gravity in lifting
and carrying the bucket, the work she does is the integral of the product of the
gravitational field and the mass of the bucket as a function of its position.

(a) Express the mass of the bucket m(y) =40kg —ry
and the water in it as a function of



its initial mass, the rate at which it is
losing water, and Margaret’s
position, y, during her climb:

Find the rate, r = A_m at which
Ay

Margaret’s bucket loses water:

Substitute to obtain:
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r:A—m:mzlkg/m
Ay 20m

1kg

m(y)=40kg—ry = 40kg—Fy

(b) Integrate the force Margaret exerts on the bucket, m(y)g, between the limits of y =0

andy=20m:

20m

1
m

W =g I (40 kg _1kg y')dy' = (9.81m/sz)[(40 kg)y'—%(lkg/m)y'z]0
0

20m

=| 5.89kJ

Remarks: We could also find the work Margaret did on the bucket, at least
approximately, by plotting a graph of m(y)g and finding the area under this curve

betweeny =0andy =20 m.

Work, Energy, and Simple Machines

30 -

Picture the Problem The free-body
diagram shows the forces that act on the
block as it slides down the frictionless
incline. We can find the work done by
these forces as the block slides 2 m by
finding their components in the direction
of, or opposite to, the motion. When we
have determined the work done on the
block, we can use the work-kinetic energy
theorem or a constant-acceleration equation
to calculate its kinetic energy and its speed
at any given location.

60°
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From the free - body diagram, we see that the forces acting on the block are
(a) | a gravitational force that acts downward and the normal force that the incline
exerts perpendicularly to the incline.

Identify the component of mg that F« = mg sin 60°
acts down the incline and calculate
the work done by it:

Express the work done by this force: W = F, AXx = mgAxsin 60°
Substitute numerical values and W =(6 kg)(9.81m/sz) (2m)sin60°
evaluate W: _[1023

Remarks: F, and mgcos60°, being
perpendicular to the motion, do no
work on the block

(b) The total work done on the block W = F,AX = mgAxsin 60°
is the work done by the net force: = (6 kg)(9.81m/82)(2 m)sin 60°
=102
(c) Express the change in the kinetic AK = Ki= K; =W = (mgsin60°)Ax
energy of the block in terms of the or, because K; =0,
distance, Ax, it has moved down the K¢ =W = (mgsin60°)Ax
incline:
Relate the speed of the block when it _[2K _ |2mgAxsin 60°
has moved a distance Ax down the V= m m
incline to its Kinetic energy at that = J2gAxsin 60°
location:
Determine this speed when V= \/2(9.81m/32)(1.5 m )sin 60°
AX=15m:
=| 5.05m/s
(d) As in part (c), express the AK = K¢=K;
change in the kinetic energy of the =W
block in terms of the distance, A, it = (mg sin 60°)Ax

has moved down the incline and and
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solve for Ks: K¢ = (mg sin 60°)Ax + K;

Substitute for the kinetic energy v, = \/Zg Sin 60°AX + V2
terms and solve for v; to obtain:

Substitute numerical values and evaluate vs:

v, =4/2(9.81m/s?)(L.5m)sin60°+ (2m/s)’ =[ 5.43m/s

31 -

Picture the Problem The free-body A
diagram shows the forces acting on the

object as in moves along its circular path j_f
on a frictionless horizontal surface. We can 1,/'.\

use Newton’s 2" law to obtain an

expression for the tension in the string and

the definition of work to determine the VJ':: -
amount of work done by each force during g
one revolution.

ST

a) Appl F =ma, to the 2-k 2 . ?

() Apply > F, =ma, g .I.:mv_:(Zkg)(25m/s)

object and solve for the tension: r 3m
=|4.17N

(b) From the FBD we can see that the T, |Eg ,and F,

forces acting on the object are:

Because all of these forces act
perpendicularly to the direction
of motion of the object, none

of them do any work.
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*32

Picture the Problem The free-body
diagram, with F representing the force
required to move the block at constant
speed, shows the forces acting on the
block. We can apply Newton’s 2™ law to
the block to relate F to its weight w and
then use the definition of the mechanical
advantage of an inclined plane. In the
second part of the problem we’ll use the
definition of work.

(a) Express the mechanical W
advantage M of the inclined plane: M= E
Apply z F, =ma, to the block: F —wsin & =0 because a,= 0.
Solve for F and substitute to obtain: M = w1
~wsind siné
Refer to the figure to obtain: . H
sinf =—
L
Substitute to obtain: 1 L
M = — = —
sind H
(b) Express the work done pushing W, = FL =mgLsin @
the block up the ramp:
Express the work done lifting the Wiiting = MgH = mgLsin &
block into the truck:
and
Wramp =Wlifting

33 -

Picture the Problem We can find the work done per revolution in lifting the weight and
the work done in each revolution of the handle and then use the definition of mechanical
advantage.

Express the mechanical advantage of w
the jack: M = =
Express the work done by the jack in Wlifting =Wp

one complete revolution (the weight
W is raised a distance p):

Express the work done by the force W

. . turning = ZﬁRF
F in one complete revolution:
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Equate these expressions to obtain: Wp =27 RF
Solve for the ratio of W to F: M W 27R
=== T

Remarks: One does the same amount of work turning as lifting; exerting a smaller
force over a greater distance.

34 .

Picture the Problem The object whose weight is W is supported by two portions of the
rope resulting in what is known as a mechanical advantage of 2. The work that is done
in each instance is the product of the force doing the work and the displacement of the
object on which it does the work.

(a) If w moves through a distance h: F movesa distance| 2h

(b) Assuming that the kinetic energy W =AU =whcos@ =| wh
of the weight does not change, relate

the work done on the object to the
change in its potential energy to
obtain:

(c) Because the force you exert on the W = F(2h)cosé = F(2h)
rope and its displacement are in the

same direction:

Determine the tension in the ropes FE =2F-w=0
supporting the object: Z verted

and

F=3w
Substitute for F: W = F(2h)=4w(2h)=| wh

(d) The mechanical advantage of the W W
inclined plane is the ratio of the M = E = Ty =2
weight that is lifted to the force 2
required to lift it, i.e.:

Remarks: Note that the mechanical advantage is also equal to the number of ropes
supporting the load.
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Dot Products

*35 o
Picture the Problem Because A-B = AB cos@ we can solve for cos@and use the fact
that A-B =—AB to find &

-

Solve for 4: 4 A-B
0 =cos” ——
AB
Substitute for A-B and evaluate 6 6 =cos™(-1)=| 180°
36 -

Picture the Problem We can use its definition to evaluate A- B .

Express the definition of A-B: A-B = ABcosd
Substitute numerical values and A-B =(6m)(6m)cos60°
evaluate A- B : —[180m?

37 e

Picture the Problem The scalar product of two-dimensional vectors Aand B is ABy +
A/B,.

(a) For A=3f—6]and A.éz(g)(_4)+(_6)(2)= -24
I§=—4f+2j:
(b) For A=5f+5jand A.B=(5)(z)+(5)(_4)= -10
B=2i-4j:

(ForA=6i +4jandB=4i-6j:  A-B=()4)+@)(-6)=[0]
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38 -
Picture the Problem The scalar product of two-dimensional vectors Aand B is AB cos @
= ABx + A/B,. Hence the angle between vectors AandB is given by
. AB,+AB,
AB

6 =cos™

(a)For A=3i-6] and A.B = (3)(-4) + (-6)(2) = —24

B=-4i+2]: A=+(3) +(-6)* =+/45
B=+(-4) +(2)* =20
and

-24
@=cost—— =|143°
\454/20
(b) For A=5i +5j and A -B=(5)(2) + (5)(-4) =-10

B=2i-4]: A=) +(5) =50
B=1(2)+(-4) =20
and

-10
0 =cos™ ——=|108°
v50+/20
(c)ForA=6f+4jandI§=4f—6i: A-B = (6)(4) + (4)(-6)

=0
A=(6)" +(4)° =52
B=+(4) +(-6) =52
and

6 =cos™ 0 _ 90.0°

V52+/52

39 -
Picture the Problem The work W done by a force F during a displacement A S for
which it is responsible is given by F -AS.



390 Chapter 6

(a) Using the definitions of work and W =F -AS

the scalar product, calculate the work _ (2 Ni—1N j+1N IZ)
done by the given force during the ~ A A
specified displacement: -(3m| +3m | _ka)

(2)@)+(-1)@)+1) (-2)]N-m

={1.00J

(b) Using the definition of work that W = FAscos@ = (F cos@)As
includes the angle between the force and
and displacement vectors, solve for W

~ o Fcosd=—
the component of F in the direction AS
of AS:
Substitute numerical values and E cosd — 1]
evaluate Fcos6: \/(3m)2 +(3mY +(=2m}

=|0.213N
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Picture the Problem The component of a vector that is along another vector is the scalar
product of the former vector and a unit vector that is parallel to the latter vector.

(a) By definition, the unit veE:tor A A Axf + Ay I N AZIZ
that is parallel to the vector A is: U, = X = - = -
AL+A A

(b) Find the unit vector parallel to B:

The component of A along B is: A —(2? A R)
g =

I
~—
N
N—
7\
| oo
N—
+
|
=
N—
7~ N\ 7\
gald galw
N— .
+
[
H
=
o
N—

*41 e
Picture the Problem We can use the definitions of the magnitude of a vector and the dot

product to show that if ‘A+ B‘ = ‘A— B‘ thenA L B.



. _.‘2

Express ‘A+ B| :
Express ‘A— B‘ :

Equate these expressions to obtain:

Expand both sides of the equation to
obtain:

Simplify to obtain:

From the definition of the dot
product we have:

Because neither A nor B is the zero
Vector:
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Picture the Problem The diagram shows

the unit vectors Aand B arbitrarily

located in the 1* quadrant. We can express
these vectors in terms of the unit vectors

i and ] and their x and y components. We
can then form the dot product of

Aand I_3> to show that
cos(6,— &) = coséicosé + sindsiné.

(a) Express A in terms of the unit
vectors i and | :

Proceed as above to obtain:

(b) Evaluate A-B:

From the diagram we note that:
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A-8[ =(A-B)

(A+Bf =(A-8)
A?+2A-B+B?=A?-2A-B+B?
4A-B=0

or

A-B=0

A-B = ABcos®

where dis the angle between A and B.

cosf=0 = #=90° and A L B.

AJ' ______ |A:
I
|
I "
B/ _L__ B
” | |
% AN |
A\ B.\’ !
A=Ai+A]
where
A =|cosd, | and A =|sing,
B=B,i+B,j
where
B, =|cosd, | and B, =| sind,

A A

A-B= (coself +sin Qli)
-(cos 6,i +5sin 6, ])
=C0s 6, cosb, +sin g, sin b,

~ ~

A-B=cos(6,-6,)
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Substitute to obtain: cos(6, —8,)=cos b, cos b,
+sinég;sin 6,

43

Picture the Problem In (a) we’ll show that it does not follow that B=C by giving a
counterexample.

LetA=i,B=3{+4] and A-B=i-(3+4])=3
C=3i-4j. Form A-Band A-C : and
A-C=i-(3-4]j)=3
No. We've shown by a counter -
example that B is not necessarily
equal to C.
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Picture the Problem We can form the dot product of Aand F and require that
A-T =1 to show that the points at the head of all such vectors r lie on a straight line.

We can use the equation of this line and the components of A to find the slope and
intercept of the line.

(@) LetA=a,i +a,] . Then: A-F:(axf+ayi)-(xf+yj)
=a,x+ay=1
Solve for y to obtain:
o B
ay ay

which is of the form y =mx+b
and hence is the equation of a line.

(b) Given that A=2i —3j: oo a2 [2
a, -3
and
pot_1_|_1
a, -3 3



(c) The equation we obtained in (a)
specifies all vectors whose component

parallel to A has constant magnitude;
therefore, we can write such a vector as

N =
F=—-+ B, where B is any vector

—

A

perpendicular to A. This is shown
graphically to the right.

*45 e
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/ i
Because all possible vectors B lieina
plane, the resultant r must lie in a plane as

well, as is shown above.

Picture the Problem The rules for the differentiation of vectors are the same as those for
the differentiation of scalars and scalar multiplication is commutative.

(a) Differentiate T - T = r = constant:

Because V-7 =0

(b) Differentiate V -V = v® = constant
with respect to time:

Because a-vV =0:

(c) Differentiate V- =0 with
respect to time:

drr=r I 9 r_ogr
dt dt dt

= %(constant) =0
Vlir
i(v.v)z*.ﬂ ﬂ.vzzg.v
dt dt dt

= %(constant) =0
alv

The results of (a) and (b) tell us that
ais perpendicular to r and and
parallel (or antiparallel) to r.

dt dt

|Q_
—
]
=

2 —_  — d
a=2(0)=0
vi+rF-a dt()
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Because V° +7-d=0: P d—_\2 1)

Express a, in terms of 6, where @is a, =acosd
the angle between rand a:

Express r-a: r-a=racosé =ra,
Substitute in equation (1) to obtain: ra, =-v’
Solve for a;: V&
a=|——
r
Power
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Picture the Problem The power delivered by a force is defined as the rate at which the
force does work; i.e., P = d—W
dt

i 5]
Calculate the rate at which force A P, =2 =05W
does work: 10s

i 3J
Calculate the rate at which force B P, =>"=06Wand [P, > P,
does work: 5s
47
Picture the Problem The power delivered by a force is defined as the rate at which the
force does work; i.e., P = dd_Vt\/ =F V.
(a) If the box moves upward with a F=mg
constant velocity, the net force
acting it must be zero and the force
that is doing work on the box is:
The power input of the force is: P =Fv=mgv
Substitute numerical values and P= (5 kg)(9.81m/32)(2 m/s) -1 98.1W

evaluate P:
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(b) Express the work done by the W =Pt=(98.1W) (45s)=|392]
force in terms of the rate at which

energy is delivered:

48 -

Picture the Problem The power delivered by a force is defined as the rate at which the
force does work; i.e., P = dd_Vt\/ =F.V.

(a) Using the definition of power, Ve P_6W_ > ms

express Fluffy’s speed in terms of the F 3N
rate at which he does work and the
force he exerts in doing the work:

(b) Express the work done by the W=Pt=(6W)(4s)=|24.0J
force in terms of the rate at which

energy is delivered:
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Picture the Problem We can use Newton’s 2" law and the definition of acceleration to
express the velocity of this object as a function of time. The power input of the force
accelerating the object is defined to be the rate at which it does work; i.e.,
P=dW/dt=F V.

(a) Express the velocity of the object v=at

as a function of its acceleration and

time:

Apply Z F = ma to the object: a=F/m

Substitute for a in the expression for vel oSN, Emis )

v m  8kg

(b) Express the power input as a P=Fv=_(5 N)(% m/sz)t =1 3.13t W/s

function of F and v and evaluate P:

(c) Substitute t =3 s P =(3.13W/s)(3s)=| 9.38W




396 Chapter 6

50 o

Picture the Problem The power delivered by a force is defined as the rate at which the

force does work; i.e., P =dd_Vt\/ =F.V.

(@)ForF = 4N +3NK and P=F.v=(4Ni+3NK)-(6misi)

V=6mlsi: _[ 240w

(b) ForF =6Ni —5N j and P=F.v

V =-5m/s f+4m/s]: :(GNf—SNj)-(—5m/sf+4m/sj)
=| -50.0W

(c)For F=3Ni +6Nj P=F.V

and\7=2m/siA+3m/sj: :(3Nf+6Nj)~(2m/sf+3m/sj)
=| 24.0W
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Picture the Problem Choose a coordinate system in which upward is the positive y
direction. We can find P,, from the given information that P, , = 0.27P,,. We can express

out
P..: as the product of the tension in the cable T and the constant speed v of the

dumbwaiter. We can apply Newton’s 2" law to the dumbwaiter to express T in terms of
its mass m and the gravitational field g.

Express the relationship between the P, =0.27P,
motor’s input and output power: or
Pin = 3'7P0ut
Express the power required to move P.=Tv
the dumbwaiter at a constant speed
V:
Apply D F, =ma, to the T-mg=ma,
dumbwaiter: or, because a, = 0,
T=mg
Substitute to obtain: P, =3.7Tv =3.7mgv
S\l;:lzt:tlét; numerical values and P, =3.7(35kg)(9.81m/s?) (0.35m/s)
in-

=| 445W
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Picture the Problem Choose a coordinate system in which upward is the positive y
direction. We can express Py as the product of the drag force Fy.q acting on the
skydiver and her terminal velocity v;. We can apply Newton’s 2™ law to the skydiver to
express Fgng in terms of her mass m and the gravitational field g.

(a) Express the power due to drag P —FE. .V

force acting on the skydiver as she dreg T drag Tt

falls at her terminal velocity v;: or, because F,, and V, are antiparallel,
I:>drag = _Fdragvt

Apply D" F, =ma, to the skydiver: Foag —Mg = Ma,
or, because a, = 0,
Fdrag = mg

Substitute to obtain, for the Pieg = |_ mth| (1)

magnitude of Py

Substitute numerical values and evaluate P:

mi  1h 1.609km
P,.. =|—(55kg)(9.81m/s?) (120 — =| 2.89x10*W
drag ‘ ( g)( )( h X36OOSX ml ) X
(b) Evaluate equation (1) with v = 15 mi/h:
mi 1h  1.609km
P,.. =|—(55kg)(9.81m/s*)| 15— =| 3.62kw
drag ‘ ( g)( )( h jx36005x ml )

*53 L 1]

Picture the Problem Because, in the absence of air resistance, the acceleration of the
cannonball is constant, we can use a constant-acceleration equation to relate its velocity
to the time it has been in flight. We can apply Newton’s 2™ law to the cannonball to find

the net force acting on it and then form the dot product of F and V to express the rate at
which the gravitational field does work on the cannonball. Integrating this expression
over the time-of-flight T of the ball will yield the desired result.
Express the velocity of the V(t) = i + (Vo _ gt)i
cannonball as a function of time

while it is in the air:

Apply D' F =ma to the F=-mgj

cannonball to express the force
acting on it while it is in the air:

Evaluate F -V : F-V=-mgj-(v,—gt)]

A

= —mgV, +mg*t
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Relate F -V to the rate at which W _ = _mgv, +mg’t

work is being done on the t 0

cannonball:

Separate the variables and integrate T

over the time T that the cannonball W = j(— magv, + mg 2t) dt

is in the air: 0 1
=1mg’T? —mgy,T

Using a constant-acceleration ve = vg +2aAy

equation, relate the speed v of the
cannonball when it lands at the .,
bottom of the cliff to its initial speed Ve =V, +2gH
Vo and the height of the cliff H:

Solve for v to obtain:
V=|/v,” +2gH

Using a constant-acceleration v=v,—gT
equation, relate the time-of-flight T

to the initial and impact speeds of

the cannonball:

or, because a = g and Ay = H,

Solve for T to obtain: - V, —V

g
Substitute for T in equation (1) and v2— 2w, +v2
simplify to evaluate W: W =1mg® -2 -

—1lmy2_1imy? =
=smv°—smyy =| AK
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Picture the Problem If the particle is acted on by a single force, that force is the net
force acting on the particle and is responsible for its acceleration. The rate at which

energy is delivered by the force is P = F-V.

Express the rate at which this force P=F-v
does work in terms of F and V :

The velocity of the particle, in terms vV =at
of its acceleration and the time that
the force has acted is:
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Using Newton’s 2™ law, substitute

for @: V= Ht
Substitute for V in the expression . E E.E =
for P and simplify to obtain: P=F Et:Tt: Ft

Potential Energy

55

Picture the Problem The change in the gravitational potential energy of the earth-man
system, near the surface of the earth, is given by AU = mgAh, where Ah is measured
relative to an arbitrarily chosen reference position.

Express the change in the man’s AU = mgAh
gravitational potential energy in
terms of his change in elevation:

Substitute for m, g and Ah and AU = (80kg)(9.81m/s?) (6m)
evaluate AU: 271k
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Picture the Problem The water going over the falls has gravitational potential energy
relative to the base of the falls. As the water falls, the falling water acquires kinetic
energy until, at the base of the falls; its energy is entirely kinetic. The rate at which
energy is delivered to the base of the falls is given by P = dW /dt =—dU /dt.

Express the rate at which energy is p_ aw _ du

being delivered to the base of the dt dt

falls; remembering that half the d dm
| . - =—4—(mgh)=—$gh—=

potential energy of the water is dt dt

converted to electric energy:

Substitute numerical values and P= —%(9.81m/52)(—128m)

evaluate P: x(1.4><106 kg/s)

=| 879MW




400 Chapter 6

57

Picture the Problem In the absence of
friction, the sum of the potential and kinetic
energies of the box remains constant as it
slides down the incline. We can use the
conservation of the mechanical energy of
the system to calculate where the box will
be and how fast it will be moving at any
given time. We can also use Newton’s 2™
law to show that the acceleration of the box
is constant and constant-acceleration
equations to calculate where the box will be
and how fast it will be moving at any given
time.

(a) Express and evaluate the
gravitational potential energy of the
box, relative to the ground, at the top
of the incline:

(b) Using a constant-acceleration
equation, relate the displacement of
the box to its initial speed,
acceleration and time-of-travel:

Apply D' F, =ma, to the box as it

slides down the incline and solve for
its acceleration:

Substitute for a and evaluate
Ax(t=159):

Using a constant-acceleration
equation, relate the speed of the box
at any time to its initial speed and
acceleration and solve for its speed
whent=1s:

4N
n\
V4
2 N
Y V)
x \
mg

Ui =mgh = (2 kg) (9.81 m/s?) (20 m)
=392

AX =V, At +La(At)
or, because vy = 0,
Ax = La(At)

mgsind =ma—=a=gsind

Ax(1s) = 1(gsin 0)(At)
= 1(9.81m/s? )(sin30°)(Ls)?
=|2.45m

V=V, +at wherev, =0

and
v(ls) = aAt = (gsin 9)At

(9.81m/s?) (sin30°)(1s)
=1 4.91m/s
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(c) Calculate the kinetic energy of K =1mv® = 3(2kg)(4.91m/s)
the box when it has traveled for 1 s: _[2213
Express the potential energy of the U=U,-K=392J]-24.1J
box after it has traveled for 1 s in —[ 368
terms of its initial potential energy
and its kinetic energy:
(d) Express the kinetic energy of the K=U, =1 mv? =| 392
box at the bottom of the incline in and
terms of its initial potential energy 20
and solve for its speed at the bottom v=_[|—%
of the incline: m
Substitute numerical values and 2(3921]
) V= =119.8m/s
evaluate v: 2kg
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Picture the Problem The potential energy function U (x) is defined by the equation

X
U(x)-U(x,)= —.[ Fdx. We can use the given force function to determine U(x) and then

Xo

the conditions on U to determine the potential functions that satisfy the given conditions.

(a) Use the definition of the potential
energy function to find the potential
energy function associated with Fy:

U(x)=U(x,)- j. F dx

X

=U(x)- [(6N)dx

Xo

= _(6N)(X_Xo)
because U(xo) = 0.

(b) Use the result obtained in (a) to U(4m)=—(6N)(4m-x,)
find U (x) that satisfies the condition =0=X,=4m

that U(4 m) = 0: and
U(x)=—(6N)(x—4m)

=| 24J-(6N)x
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(c) Use the result obtained in (a) to U@em)=—(6N)(Em-—x,)
find U that satisfies the condition that =14J = x, =50m
U6 m) = 14 J: and
U(x)=—(6 N)(x—%mj
={50J—(6N)x
59 .

Picture the Problem The potential energy of a stretched or compressed ideal spring Us is
related to its force (stiffness) constant k and stretch or compression Ax by U, = %kxz.

H 2
(a) Relate the potential energy stored U, =3kx
in the spring to the distance it has
been stretched:

Solve for x: ‘= 2U,
VK
Substitute numerical values and
. = M: 0.100m
evaluate x: 10* N/m
b) Proceed as in (a) with U; =100 J:
(b) (a) _ 2(}00\]) _lotaim
10" N/m
*60 oo

Picture the Problem In a simple Atwood’s machine, the only effect of the pulley is to
connect the motions of the two objects on either side of it; i.e., it could be replaced by a
piece of polished pipe. We can relate the kinetic energy of the rising and falling objects to
the mass of the system and to their common speed and relate their accelerations to the
sum and difference of their masses ... leading to simultaneous equations in m; and m,.

Use the definition of the kinetic K =1(m, +m,)v?
energy of the system to determine and
the total mass being accelerated: 2K 2
J m+m,=—-= (80‘])2 =10.0kg (1)
v (4mis)
In Chapter 4, the acceleration of the a= m, —m,

masses was shown to be: m, +m,
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Because v(t) = at, we can eliminate v(t): m, —m, ot
a in the previous equation to obtain: m, +m,
Solve for m, —m, nm - (m, +m,)v(t)

1 2 = L

ot

Substitute numerical values and m, —m, = (L0 kg)(42m/s) ~1.36kg ()
evaluate m, —m,: (9.81m/s i(BS)
Solve equations (1) and (2) m, = | 5.68kg |and m, =| 4.32kg

simultaneously to obtain:
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Picture the Problem The gravitational potential energy of this system of two objects is the
sum of their individual potential energies and is dependent on an arbitrary choice of where,
or under what condition(s), the gravitational potential energy is zero. The best choice is
one that simplifies the mathematical details of the expression of U. In this problem let’s
choose U =0 where = 0.

(a) Express U for the 2-object system u(@)=U,+U,

as the sum of their gravitational =m,g/,sind—-m,g/,sind
potential energies; noting that
because the object whose mass is m,
is above the position we have chosen
for U = 0, its potential energy is
positive while that of the object
whose mass is m; is negative:

=| (m,¢,—m/,)gsin@

i i i du
(b) leferfentlat_e U-Wlth respect tod av _ (ngz _ mlgl)g c0sf =0
and set this derivative equal to zero do
to identify extreme values: from which we can conclude that

cos@d=0and &= cos 0.

To be physically meaningful, 0=%7/2
-7/2<0<72:
Express the 2™ derivative of U with d°u

= —(m,¢,—my,)gsiné

respect to #and evaluate this do?
derivative at 6 =+7/2:
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If we assume, in the expression for U du
that we derived in (a), that do?
myl, —myly >0, then U(6) is a sine
function and, in the interval of

interest, —77/2 <6 < /2, takes on d2U

>0

-7/2

and | U is a minimum até = — /2

<0

7/2

its minimum value when 6 = —/2: do 2

and | U is a maximum até = /2

(C) If Myl = Myly, then (m2€2 - mlfl) =0
and | U = 0independently of 6.

Remarks: An alternative approach to establishing the U is a maximum at
0= 2 is to plot its graph and note that, in the interval of interest, U is concave
downward with its maximum value at = 2.

Force, Potential Energy, and Equilibrium
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Picture the Problem F, is defined to be the negative of the derivative of the potential
function with respect to x, that is, F, = —dU/dx . Consequently, given U as a function of

X, we can find F, by differentiating U with respect to x.

(a) Evaluate F, = —d—U: F = —i(AX4): —4AX3
dx dx

(b) Set F, = 0 and solve for x: F,=0=|x=0

63 e

Picture the Problem F is defined to be the negative of the derivative of the potential
function with respect to x, that is F, = —dU/dx . Consequently, given U as a function of

X, we can find F, by differentiating U with respect to x.

(a) Evaluate F, :—d—U: F :_i < - c
dx *dx\ x X2
(b) Because C > 0: F, is positive for x = 0 and therefore

F is directed away from the origin.




(c) Because U is inversely
proportional to x and C > 0:

(d) With C <0:

Because U is inversely proportional to
x and C < 0, U(x) becomes less
negative as x increases:

64 oo
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U (x) decreases with increasing x.

F, is negative for x = 0 and therefore

F is directed toward from the origin.

U (x) increases with increasing x.

Picture the Problem F, is defined to be the negative of the derivative of the potential
function with respecttoy, i.e. F, = —dU/dy. Consequently, we can obtain F, by

examining the slopes of the graph of U as a function of y.

The table to the right summarizes
the information we can obtain from
Figure 6-40:

The graph of F as a function of y is
shown to the right:
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Slope Fy
Interval (N) (N)
A—B -2 2
B—C | transitional | -2 —» 1.4
C-D 14 ~1.4
. \\
. \
0 \
15 =

Picture the Problem F, is defined to be the negative of the derivative of the potential
function with respect to x, i.e. F, = —dU/dx . Consequently, given F as a function of x,

we can find U by integrating F4 with respect to x.

Evaluate the integral of F, with
respect to x:

U(x)= —.[F(x)dx=—.[%dx

a
= —+U,
X

where Uy is a constant determined by
whatever conditions apply to U.
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Picture the Problem F is defined to be the negative of the derivative of the potential

function with respect to x, that is, F,

—dU/dx. Consequently, given U as a function

of x, we can find F by differentiating U with respect to x. To determine whether the
object is in stable or unstable equilibrium at a given point, we’ll evaluate d 2U/dx2 at

the point of interest.

du.

(a) Evaluate F, =—
dx

(b) We know that, at equilibrium,
F,=0:

__4d
X dx

F (3x? —2x*)=[ 6x(x—1)

When F, =0, 6x(x — 1) = 0. Therefore, the
object is in equilibrium
at| x=0and x=1m.

() To decide whether the d_U:i(gxz 2% )= 6x—6x2
equilibrium at a particular point is dx dx
stable or unstable, evaluate the 2™ and
derivative of the potential energy d°u
. i . =6-12x
function at the point of interest: dx?
2, 2
Evaluate —-atx = 0: d'v =6>0
X dx?
x=0
= | stable equilibriumat x =0
2, 2
Evaluate —-atx=1m: d’v =6-12<0
X dx?
x=1lm
= | unstable equilibriumat x =1m
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Picture the Problem F, is defined to be the negative of the derivative of the potential
function with respect to x, i.e. F, = —dU/dx . Consequently, given U as a function of x,

we can find F, by differentiating U with respect to x. To determine whether the object is
in stable or unstable equilibrium at a given point, we’ll evaluate d 2U/dx2 at the point of

interest.



(a) Evaluate the negative of the
derivative of U with respect to x:

(b) The object is in equilibrium
wherever Fpe = Fx = 0:

(c) To decide whether the
equilibrium at a particular point is
stable or unstable, evaluate the 2™
derivative of the potential energy
function at the point of interest:

2

Evaluate -atx = -2m;
X
2

Evaluate -atx = 0:
X
2

Evaluate -atx=2m:
X

Work and Energy 407

_du
X dx
d

—&(8 2~ x“)z 4x° —-16x

=| 4x(x+2)(x-2)

4x(x+2)(x—2)=0 = the equilibrium

points are | x =—-2m,0,and2m.

d?U

) _ 9 flox—ax)=16-12x"
dx dx
2
d g =-32<0
dX X=—2m
unstable equilibrium
=
at x=-2m
2
d LZJ =16>0
dx” |
= | stable equilibriumat x =0
2,
d Lﬁ =-32<0
dX x=2m
unstable equilibrium
=
atx=2m

Remarks: You could also decide whether the equilibrium positions are stable or
unstable by plotting F(x) and examining the curve at the equilibrium positions.
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Picture the Problem F, is defined to be the negative of the derivative of the potential
function with respect to x, i.e. F, = —dU/dx . Consequently, given F as a function of x,

we can find U by integrating F, with respect to x. Examination of d?U /dx? at extreme

points will determine the nature of the stability at these locations.
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Determine the equilibrium locations F(X) =X —4x=x(¢-4) =0

by setting Fre = F(x) = 0: .. the positions of stable and unstable

equilibriumare at | x=-2,0 and 2 |.

Evaluate the negative of the integral U(x)= —J. F(x)
of F(x) with respect to x: 3 I(XS 4x) dx

4
:—XI+2x2 +U,

where Uy is a constant whose value is
determined by conditions on U(x).

Differentiate U(x) twice: d_U —_F
dx
and
d?U
dx?

=—x* +4x

. —

=-3x*+4

2 2
dUatx=—2: dV

=-8<0
dx? dx?

Evaluate

X=—2

.| the equilibrium is unstableat x =—2

d’u 2
Evaluate —-atx = 0: d LZJ =4>0
dx dx” |
.| the equilibrium is stableat x=0
d’u 2
Evaluate —-atx = 2: d LZJ =-8<0
dx dx*| ,
.| the equilibriumis unstable at x =2
Thus U(x) has a local minimum at x = 0 and
local maxima at x = +2.
69 oo

Picture the Problem F is defined to be the negative of the derivative of the potential
function with respect to x, i.e. F, = —dU /dx . Consequently, given U as a function of x,

we can find F, by differentiating U with respect to x. To determine whether the object is
in stable or unstable equilibrium at a given point, we can examine the graph of U.
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(a) Evaluate F, = Y o x<am: F, = —i(3x2 — x3): 3x(2-x)
dx dx
Set F, = 0 to identify those values of When F, =0, 3x(2 -x) = 0.
x for which the 4-kg object is in Therefore, the object is in equilibrium
equilibrium: at| x=0and x=2m.
Evaluate F, = _v forx >3 m: F=0
dx because U = 0.

Therefore, the object isin
neutral equilibrium for x >3 m.

(b) A graph of U(x) in the interval
-1 m<x<3misshown to the \ o / \
right: ) \\ o // \
= [\ / \
/ \
/ \
-1.0 -0.5 0.0 0.5 Xl(.:|) 15 2.0 25 3.0
(c) From the graph, U(x) is a .| stable equilibriumat x =0
minimum at x = 0:
From the graph, U(x) is @ maximum .| unstable equilibriumat x =2m
atx=2m:
(d) Relate the kinetic energy of the K= %mv2 =E-U
object to its total energy and its
potential energy:
Solve for v: 2(E-U
V=, |———+F
m
Evaluate U(x = 2 m): U(>(:2m):3(2)2 _(2)3 =4]
Substitute in the equation for v to -
q V= M =1 2.00m/s

obtain: 4kg



410 Chapter 6

70 e
Picture the Problem F is defined to be the negative of the derivative of the potential
function with respect to x, that is F, = —dU/dx . Consequently, given F as a function of

X, we can find U by integrating F, with respect to x.

(a) Evaluate the negative of the U(x)=— J' F(x)= _'[ Ax3dx
integral of F(x) with respect to x: 1A
"2t

where Uy is a constant whose value is
determined by conditions on U(X).

For x> 0: U decreases as x increases

(b)ASX—>oo,£A2—>O: +Uo=0
2 X and
1A 18N-m 4
Ux)==2== =| 2 N-m?
(x) 2x2 2 X x?

(c) The graph of U(x) is shown to the -
right: 30 \

250
I 200

150 \
100
50
Pm——

x (m)

*7] oeee

Picture the Problem Let L be the total length of one cable and the zero of gravitational
potential energy be at the top of the pulleys. We can find the value of y for which the
potential energy of the system is an extremum by differentiating U(y) with respect to y
and setting this derivative equal to zero. We can establish that this value corresponds to a
minimum by evaluating the second derivative of U(y) at the point identified by the first
derivative. We can apply Newton’s 2" law to the clock to confirm the result we obtain by
examining the derivatives of U(y).

(a) Express the potential energy of U(y)=U o (y)+U Weights(y)
the system as the sum of the

potential energies of the clock and
counterweights:

Substitute to obtain:
U(y) = —mgy—2Mg(L—1/y2 +d2)




(b) Differentiate U(y) with respect
toy:

Solve for y’ to obtain:

2
Find d U(y):
dy?

2,
Evaluate d (;J(y) aty=y"

(c) The FBD for the clock is shown to
the right:

Apply D" F, =0to the clock:
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M:_diy[mgyﬂl\/lg(l-—m)]

dy

y
=—{mg -2Mg ———
[ Jy2+d2}

or
yl
mg —2Mg ——— = 0 for extrema
[y|2+d2
m2
l:d
y AM?* —m®

dy? y y? +d?
_ 2Mgd?®
_(y2+d2)3/2

d?U(y) _ 2Mgd®

dy” |, (y2+a?))
3 2Mgd
- m? 32

(4M2—m2+1J

>0

and the potential energy is a minimum at

m2
= d —_—
Y \/4|\/|2 —-m?

2Mgsind-mg =0
and

sinH:i
2M
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Express sin@in terms of y and d: ]
P y sin@ = L
ly2 + d 2
Substitute to obtain: m y

2M - Jy? +d?

which is equivalent to the first equation in
part (b).

This is a point of stable equilibrium. Ifthe clock is displaced downward, &
increases, leading to a larger upward force on the clock.Similarly,if the
clock is displaced upward, the net force from the cables decreases.
Because of this, the clock will be pulled back toward the equilibrium
point if it is displaced away fromiit.

Remarks: Because we’ve shown that the potential energy of the system is a
minimum aty =y’(i.e., U(y) is concave upward at that point), we can conclude that
this point is one of stable equilibrium.

General Problems

*72 o

Picture the Problem 25 percent of the electrical energy generated is to be diverted to do
the work required to change the potential energy of the American people. We can
calculate the height to which they can be lifted by equating the change in potential energy
to the available energy.

Express the change in potential AU = Nmgh
energy of the population of the
United States in this process:

Letting E represent the total energy Nmgh = 0.25E
generated in February 2002, relate

the change in potential to the energy

available to operate the elevator:

Solve for h: ~ 0.25E
" Nmg
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Substitute numerical values and

evaluate h: (0.25)(60_7”09 kW-h)(Siohosj
" (287x10°)(60kg)(0.81m/s?)
=|323km

73 e

Picture the Problem We can use the definition of the work done in changing the
potential energy of a system and the definition of power to solve this problem.

(a) Find the work done by the crane W = mgh

in changing the potential energy of = (6x10° kg) (9.81 m/s?) (12 m)
its load: =| 706 MJ

(b) Use the definition of power to p- AW _706MJ oy
find the power developed by the dt 60s

crane:

74 .

Picture the Problem The power P of the engine needed to operate this ski lift is related
to the rate at which it changes the potential energy U of the cargo of the gondolas
according to P = AU/At. Because as many empty gondolas are descending as are
ascending, we do not need to know their mass.

Express the rate at which work is p_AU
done as the cars are lifted: At
Letting N represent the number of AU = NMgAh

gondola cars and M the mass of
each, express the change in U as
they are lifted a vertical
displacement Ah:

Substitute to obtain: P AU _ NMgAh
At At

Relate Ah to the angle of ascent & Ah = Lsing

and the length L of the ski lift:

Substitute for Ah in the expression p_ NMgLsin g

for P: At
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Substitute numerical values and evaluate P:

_ 12(550kg)(9.81m/s? (5.6 km)sin30° _

i (60min)(60s/min)

50.4kW

75 e

Picture the Problem The application of
Newton’s 2" law to the forces shown in
the free-body diagram will allow us to
relate R to T. The unknown mass and
speed of the object can be eliminated by
introducing its kinetic energy.

Ynig
Apply Z I:radial = maradial the ObjeCt T= mVZ and R = sz
and solve for R:
Express the kinetic energy of the K =imy?
object:
Eliminate mv’ between the two r_2K
equations to obtain: T
Substitute numerical values and R 2(90J) _To500m
evaluate R: 360N
*76 e

Picture the Problem We can solve this problem by equating the expression for the
gravitational potential energy of the elevated car and its kinetic energy when it hits the
ground.

Express the gravitational potential U =mgh
energy of the car when itis at a
distance h above the ground:

Express the kinetic energy of the car K=Zmv
when it is about to hit the ground:

Equate these two expressions V2
(because at impact, all the potential 29
energy has been converted to kinetic

energy) and solve for h:



Substitute numerical values and
evaluate h:

77 eoo

Picture the Problem The free-body
diagram shows the forces acting on one of
the strings at the bridge. The force whose
magnitude is F is one-fourth of the force
(103 N) the bridge exerts on the strings.
We can apply the condition for equilibrium
in the y direction to find the tension in each
string. Repeating this procedure at the site
of the plucking will yield the restoring
force acting on the string. We can find the
work done on the string as it returns to
equilibrium from the product of the
average force acting on it and its
displacement.

(a) Noting that, due to symmetry,
T =T, apply Z F, = 0'to the string

at the point of contact with the
bridge:

Solve for and evaluate T:

(b) A free-body diagram showing
the forces restoring the string to its
equilibrium position just after it has
been plucked is shown to the right:

Express the net force acting on the
string immediately after it is

released:

Use trigonometry to find &

Substitute and evaluate Fpe:
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2
h=[(100km/h)(1h/36005)] _393m

2(9.81m/s?)

F-2Tsin18°=0
1
= _F =4(1_03N)= 41.7N
2sin18°  2sin18°

Ft = 2T CcOs@

0= tan‘l(la'3Cm X 10mmJ =88.6°
4mm cm

F.. =2(34.4N)cos88.6° = | 1.68 N
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(c) Express the work done on the dwW = Fdx'
string in displacing it a distance dx':

If we pull the string out a distance F (2T) X' AT X
X', the magnitude of the force L/2 L

pulling it down is approximately:

Substitute to obtain: aw = 2T sy

Integrate to obtain: X
g Wzﬂjx'dx':z—sz
L3 L

where x is the final displacement of the

string.
Substitute numerical values to obtain: W= 2(41.7 E) (4><10*3 m)2
32.6x10™“m
=|4.09mJ

78 oo
Picture the Problem F is defined to be the negative of the derivative of the potential
function with respect to x, that is F, = —dU /dx . Consequently, given F as a function of

X, we can find U by integrating F, with respect to x.

Evaluate the integral of F, with U(x)=—[F(x)dx =] (~ax?)dx
respect to x:

=lax’+U,
Apply the condition that U(0) = 0 to U@0)=0+Uy=0=>U=0
determine Uo: ~U(x)=| Lax®

The graph of U(x) is shown to the right:

Re)
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*70 oo

Picture the Problem We can use the definition of work to obtain an expression for the
position-dependent force acting on the cart. The work done on the cart can be calculated
from its change in Kinetic energy.

(a) Express the force acting on the dw
cart in terms of the work done on it: F(X) = W
Because U is constant: F(x) _ i(% mvz): i[% m(CX)Z]
dx dx
=| mC?x

(b) The work done by this force W =AK =1my} —imv?
changes the kinetic energy of the =%mvf ~0 =%m(Cx1)2
cart: —

=| $mC"X;
80 oo

Picture the Problem The work done by F depends on whether it causes a displacement
in the direction it acts.

(a) Because F is along x-axis and W=/ F.ds =10
the displacement is along y-axis:

(b) Calculate the work done by e e 5m N\
F during the displacement from W= J- F.ds= Z.L(Z N/m )X dx
x=2mto5m: -
X3
~(2 N/mz){—} =[78.03
3 2m

81 oo

Picture the Problem The velocity and acceleration of the particle can be found by
differentiation. The power delivered to the particle can be expressed as the product of its
velocity and the net force acting on it, and the work done by the force and can be found
from the change in kinetic energy this work causes.

In the following, if t is in seconds and m is in kilograms, then v is in m/s, a is in m/s?, P is
inW,and WisinJ.
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(a) The velocity of the particle is
given by:

The acceleration of the particle is
given by:

(b) Express and evaluate the rate at
which energy is delivered to this
particle as it accelerates:

(c) Because the particle is moving in
such a way that its potential energy
is not changing, the work done by
the force acting on the particle
equals the change in its Kinetic
energy:

_dx _d
T dt dt

= (2t -at?)

(6> —8t)

dv_d
dt dt

a=

= (6t> —s8t)

(12t-8)

=
I

= Fv = mav

m(12t -8)6t* - 8t)
8mt(9t? —18t +8)

AK =K, -K,
smfoe)f - O)F)
1m [(6t? sg)]z—o
2mt?(3t, — 4)

Remarks: We could also find W by integrating P(t) with respect to time.

82 oo

Picture the Problem We can calculate the work done by the given force from its
definition. The power can be determined from P = F -V and v from the change in kinetic
energy of the particle produced by the work done on it.

(a) Calculate the work done from its
definition:

(b) Express the power delivered to
the particle in terms of Fy=3 nand its
velocity:

Relate the work done on the particle
to its kinetic energy and solve for its
velocity:

W

3
6x+——3i} ~[9.00J
0

2 3
FV=F_,V
=AK =K mv since v, =0

final —



Solve for and evaluate v:

Evaluate Fy=3 m:

Substitute for Fy—3 mand v:

*83 oo
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v:‘/%: M:2.45m/s
m \/ 3kg

F,am =6+4(3)-3(3) =-9N
P =(-9N)(2.45m/s)=| —22.1W

Picture the Problem We’ll assume that the firing height is negligible and that the bullet
lands at the same elevation from which it was fired. We can use the equation
R= (v§ / g)sin 26 to find the range of the bullet and constant-acceleration equations to

find its maximum height. The bullet’s initial speed can be determined from its initial

Kinetic energy.

Express the range of the bullet as a
function of its firing speed and angle
of firing:

Rewrite the range equation using the
trigonometric identity
sin20 = 2sin@ cosé.

Express the position coordinates of
the projectile along its flight path in
terms of the parameter t:

Eliminate the parameter t and make
use of the fact that the maximum
height occurs when the projectile is
at half the range to obtain:

Equate R and h and solve the
resulting equation for &

Relate the bullet’s kinetic energy to
its mass and speed and solve for the
square of its speed:

Substitute for v¢ and @and evaluate
R:

2
R =0 sin20
g

_v5sin26  2v;sin@cosé
9 9

R

x = (v, cosO)t
and
y = (v,sin@)t—1gt?

(v, sin @Y’
29

h:

tand=4= O =tan*4=76.0°

2K
K=1mvandv; =—
m

2(1200J)
(0.02kg)(9.81m/s?)

=| 5.74km

sin2(76°)
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84 oo

Picture the Problem The work done on the particle is the area under the force-versus-
displacement curve. Note that for negative displacements, F is positive, so W is negative
for x < 0.

(a) Use either the formulas for the x | W
areas of simple geometric figures or (m | ()
counting squares and multiplying by -4 |11
the work represented by one square -3 | -10
to complete the table to the right: -2 | -7
-1 | -3
0 0
1 1
2 0
3 | -2
4 | -3
(b) Choosing U(0) = 0, and using X |W AU
the definition of AU = -W, complete m| QO
the third column of the table to the -4 |-11] 11
right: -3 |-10| 10
-2 | =7 7
-1 | -3 3
0 0 0
1 1 -1
2 0 0
3 -2 2
4 -3
The graph of U as a function of x is N\
shown to the right: = \

x (m)
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85 oo

Picture the Problem The work done on the particle is the area under the force-versus-
displacement curve. Note that for negative displacements, F is negative, so W is positive
for x < 0.

(a) Use either the formulas for the x |W
areas of simple geometric figures or (m | Q)
counting squares and multiplying by -4 1 6
the work represented by one square -3 | 4
to complete the table to the right: -2 | 2
-1 |05
0 0
1 105
2 |15
3 |25
4 3
(b) Choosing U(0) = 0, and using X |W AU
the definition of AU = -W, complete m | Q| O
the third column of the table to the -4 1 6 -6
right: -3 | 4 —4
-2 2 -2
-1 /05| -05
0 0 0
1 |05|-05
2 15| -15
3 |25|-25
4 3 -3
T TN

The graph of U as a function of x is / 2 \

shown to the right:

u Q)

x (m)
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86 oo
Picture the Problem The pictorial
representation shows the box at its initial
position 0 at the bottom of the inclined
plane and later at position 1. We’ll assume
that the block is at position 0. Because the
surface is frictionless, the work done by the
tension will change both the potential and
kinetic energy of the block. We’ll use
Newton’s 2™ law to find the acceleration of
the block up the incline and a constant-
acceleration equation to express v in terms
of T, x, M, and é. Finally, we can express
the power produced by the tension in terms
of the tension and the speed of the box.

(a) Use the definition of work to
express the work the tension T does
moving the box a distance x up the
incline:

(b) Apply D" F, = Ma,to the box:

Solve for ay:

Using a constant-acceleration
equation, express the speed of the
box in terms of its acceleration and
the distance x it has moved up the
incline:

Substitute for a, to obtain:

(c) The power produced by the
tension in the string is given by:

5‘/\‘:

S~

oy
R

T —Mgsinéd = Ma,

axzwzl_gsing
M M

V2 =V. +2a X
or, because v = 0,
vV =,/2ax

V= \/Z(l—gsine]x
M
T .
P=Tv= T\/Z(——gsm&’jx
M
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Picture the Problem We can use the definition of the magnitude of vector to show that
the magnitude of F is Fy and the definition of the scalar product to show that its direction
is perpendicular to I . The work done as the particle moves in a circular path can be found

from its definition.

(a) Express the magnitude of F:

Because I =+/X* +y° :

Form the scalar product of Fand F:

(b) Because F LT, F is tangential
to the circle and constant. At (5 m,
0), F points in the — jdirection. If
ds isinthe — I direction, dW > 0.
The work it does in one revolution is:

=0 [x? 4 y?
L F F
‘F‘:—O x> +y?=-"Lr=|F,

r r

Because F-F =0, | F LT

W =F,(27z1)=27(5m)F,
= (107 m)F, if the rotation

is clockwise

and
W = (~10zm)F, if the rotation is

counterclockwise.

W = (107 m)F, if the rotation is clockwise, — (107 m)F,if the rotation is

counterclockwise. BecauseW = 0 for a complete circuit, F is not conservative.

*88 (X1

Picture the Problem We can substitute for r and xi + yj in F to show that the
magnitude of the force varies as the inverse of the square of the distance to the origin, and
that its direction is opposite to the radius vector. We can find the work done by this force
by evaluating the integral of F with respect to x from an initial positionx=2m,y=0m
to a final position x =5 m, y = 0 m. Finally, we can apply Newton’s 2" law to the particle
to relate its speed to its radius, mass, and the constant b.
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(a) Substitute for r and
Xi + Yy jinF to obtain:

Simplify to obtain:

(b) Find the work done by this force
by evaluating the integral of F with
respect to x from an initial position
x=2m,y=0m to a final position
X=5m,y=0m:

= b .
F :—[m} X2+ y2f

where T is a unit vector pointing from the
origin toward the point of application of

T

If=—b[ 1 2}?: by
r

i.e., the magnitude of the force varies as the
inverse of the square of the distance to the
origin, and its direction is antiparallel

(opposite) to the radius vector F = Xi + ij.

W = —T Ldx'z b[i}sm

2m

=3 N'mz[%_%j =| -0.900J

(c) | No work is done as the force is perpendicular to the velocity.

(d) Because the particle is moving in
a circle, the force on the particle
must be supplying the centripetal
acceleration keeping it moving in

the circle. Apply > F, =ma, to
the particle:

Solve for v:

Substitute numerical values and
evaluate v:

89 00

b 2
— =m—
r? r
b
V= |—
mr

2
v= | SN roae3mis
| (2kg)(7m)

Picture the Problem A spreadsheet program to calculate the potential is shown below.
The constants used in the potential function and the formula used to calculate the "6-12"

potential are as follows:

Cell Content/Formula

Algebraic Form

B2 1.09x10°’

B3 6.84x107°
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D8 | $B$2/C8"12-$B$3/C8"6 a b
r12 re

C9 C8+0.1 r+Ar

(€Y
A B C D

1

2 | a=| 1.09e-07

3 | b= 6.84E-05

4

5

6

7 r U

8 3.00E-01 | 1.11E-01

9 3.10E-01 | 6.13E-02

10 3.20E-01 | 3.08E-02

11 3.30E-01 | 1.24E-02

12 3.40E-01 | 1.40E-03

13 3.50E-01 | —4.95E-03

45 6.70E-01 | —7.43E-04

46 6.80E-01 | —6.81E-04

47 6.90E-01 | —6.24E-04

48 7.00E-01 | -5.74E-04

The graph shown below was generated from the data in the table shown above. Because
the force between the atomic nuclei is given by F = —(dU/dr), we can conclude that the
shape of the potential energy function supports Feynman’s claim.

"'6-12" Potential

0.12

0.10

0.08
0.06 - \
0.04
0.02 \
0.00 \

0 020. B0 035020 045 050 055 060 065 0.0

U (eV)

r (nm)

(b) The minimum value is about —0.0107 eV, occurring at a separation of approximately
0.380 nm. Because the function is concave upward (a potential "well”) at this separation,
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this separation is one of stable equilibrium, although very shallow.

(c) Relate the force of attraction du dla b
between two argon atoms to the = dr = —a{ﬁ - r_e:l
slope of the potential energy
function: _12a 6b

r.13 r7

Substitute numerical values and evaluate F(5 A):
-7 -5 -19
_ 12(1.09><103 ) 6(6.84><107 ) 4181028V, 16x1070 Lnm
(0.5nmY' (0.5nm) nm eV 10°m

=| -6.69x10™"* N
where the minus sign means that the force is attractive.

F

Substitute numerical values and evaluate F(3.5 A):

-7 -5 -19
- 12(1.09><103 )_6(6.84><107 ) 4 egu10r €Y LEX107T Lnm
(0.35nm} (0.35nm) nm eV 10°m
=[7.49x10" N

where the plus sign means that the force is repulsive.

*90 (1 1]

Picture the Problem A spreadsheet program to plot the Yukawa potential is shown
below. The constants used in the potential function and the formula used to calculate the
Yukawa potential are as follows:

Cell Content/Formula Algebraic Form
Bl 4 Uo
B2 25 a
D8 | —$B$1*($B$2/C9)*EXP(—C9/$B$2) U (aj a
-U, — e
r
C10 C9+0.1 r+Ar
(@)
A B C D
1 uo=| 4 pJ
2 a=|25 fm
3
7
8 r U
9 0.5 -16.37
10 0.6 -13.11
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11 0.7 -10.80
12 0.8 —-9.08
13 0.9 —1.75
14 1 —6.70
64 6 -0.15
65 6.1 -0.14
66 6.2 —0.14
67 6.3 -0.13
68 6.4 -0.12
69 6.5 -0.11
70 6.6 -0.11
U as a function of r is shown below.
0 —
2 L 23 4 5 6 [
.4 4
.6 i
3 8 /
Sl f
-12
14 -
-16 !
-18
r (fm)
(b) Relate the force between the du (r)
nucleons to the slope of the potential F(r) = dr
energy function: d
o[l
r r
a 1
— U e—r/a Z 4=
i)
(c) Evaluate F(2a):
F(2a)=—Ue2 2 1
(2a) 2a
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Evaluate F(a):

Express the ratio F(2a)/F(a):

(d) Evaluate F(5a):

Express the ratio F(5a)/F(a):

=[220x107




