Chapter 7
Conservation of Energy

Conceptual Problems

*1 °
Determine the Concept Because the peg is frictionless, mechanical energy is conserved
as this system evolves from one state to another. The system moves and so we know that

AK > 0. Because AK + AU = constant, AU < 0. | (&) is correct.

2 .
Determine the Concept Choose the zero of gravitational potential energy to be at ground
level. The two stones have the same initial energy because they are thrown from the same
height with the same initial speeds. Therefore, they will have the same total energy at all
times during their fall. When they strike the ground, their gravitational potential energies
will be zero and their kinetic energies will be equal. Thus, their speeds at impact will be
equal. The stone that is thrown at an angle of 30° above the horizontal has a longer flight
time due to its initial upward velocity and so they do not strike the ground at the same

time.| (c)iscorrect.

3 .
(a) False. Forces that are external to a system can do work on the system to change its
energy.

(b) False. In order for some object to do work, it must exert a force over some distance.
The chemical energy stored in the muscles of your legs allows your muscles to do the
work that launches you into the air.

4 .
Determine the Concept Your Kinetic energy increases at the expense of chemical
energy.

*5 °

Determine the Concept As she starts pedaling, chemical energy inside her body is
converted into kinetic energy as the bike picks up speed. As she rides it up the hill,
chemical energy is converted into gravitational potential and thermal energy. While
freewheeling down the hill, potential energy is converted to kinetic energy, and while
braking to a stop, kinetic energy is converted into thermal energy (a more random form of
kinetic energy) by the frictional forces acting on the bike.

*6 °

Determine the Concept If we define the system to include the falling body and the earth,
then no work is done by an external agent and AK + AUy + AEem= 0. Solving for the
change in the gravitational potential energy we find AUy = —(AK + friction energy).
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(b) is correct.

7 oo

Picture the Problem Because the constant friction force is responsible for a constant
acceleration, we can apply the constant-acceleration equations to the analysis of these
statements. We can also apply the work-energy theorem with friction to obtain
expressions for the kinetic energy of the car and the rate at which it is changing. Choose
the system to include the earth and car and assume that the car is moving on a horizontal
surface so that AU = 0.

(a) A constant frictional force v? =V +2aAs wherev =0.
causes a constant acceleration. The _ Vg
stopping distance of the car is SAS = oa wherea <0.

related to its speed before the brakes
were applied through a constant-
acceleration equation.

Thus, As o vg and statement (a) is false.

(b) Apply the work-energy theorem AK =W, = -y, mgAs
with friction to obtain:

Express the rate at which K is AK As
It

= m
dissipated: At

Thus, % oc V and therefore not constant.

Statement (b) is false.

(c) In part (b) we saw that: Ko AS

Because As o« At: K oc At and statement (c) is false.
Because none of the above are correct: (d) is correct.

8 .

Picture the Problem We’ll let the zero of potential energy be at the bottom of each ramp
and the mass of the block be m. We can use conservation of energy to predict the speed
of the block at the foot of each ramp. We’ll consider the distance the block travels on
each ramp, as well as its speed at the foot of the ramp, in deciding its descent times.

Use conservation of energy to find AK +AU =0
the speed of the blocks at the bottom or
of each ramp: Koot = Kigp Ut =Upgp =0
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Because Kiop = Upot = 0: Koot ~Uiop =0

Substitute to obtain: %mVsot -mgH =0

Solve for Vi Vior =+/20H independently of the shape of
the ramp.

Because the block sliding down the circular
arc travels a greater distance (an arc length
is greater than the length of the chord it
defines) but arrives at the bottom of the
ramp with the same speed that it had at the
bottom of the inclined plane, it will require
more time to arrive at the bottom of the arc.

(b) is correct.

9 oo

Determine the Concept No. From the work-kinetic energy theorem, no total work is
being done on the rock, as its kinetic energy is constant. However, the rod must exert a
tangential force on the rock to keep the speed constant. The effect of this force is to
cancel the component of the force of gravity that is tangential to the trajectory of the
rock.

Estimation and Approximation

*10 o0

Picture the Problem We’ll use the data for the “typical male" described above and
assume that he spends 8 hours per day sleeping, 2 hours walking, 8 hours sitting, 1 hour
in aerobic exercise, and 5 hours doing moderate physical activity. We can approximate

his energy utilization using E AP, . . At where A is the surface area of his

activity
body, Pacivity IS the rate of energy consumption in a given activity, and Atuivity iS the time
spent in the given activity. His total energy consumption will be the sum of the five terms
corresponding to his daily activities.

activity = activity !

(a) Express the energy consumption E = Eqeeping + Ewatking T Esitting
of the hypothetical male:
+ Emod.act. + Eaerobicact.
Evaluate Esleeping: Esleeping = APsIeepingAtsleeping
= (2m?)(40W/m?)(8h)(3600s/h)
=2.30x10°J
Evaluate Ewalking: Ewalking = APwaIkingAtwalking

— (2m?)(160W/m? )(2h)(3600s/h)
=2.30x10°J
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Evaluate Esiting:

Evaluate Enoq. act:

EVaI Uate Eaerobic act. .

Substitute to obtain:

Express the average metabolic rate
represented by this energy
consumption:

(b) Express his average energy
consumption in terms of kcal/day:

(©)

1 -

E = AP, At

sitting sitting — “sitting

— (2m?)(60W/m? )(8h)(3600s/h)
=3.46x10°J

E AP

mod.act. — mod. act.At

— (2m? )75 Wim? )(5h)(3600s/h)
=6.30x10°]

mod. act.

E = AP

aerobic act.At

= (2m?)(300W/m? )(1h)(3600s/h)
=2.16x10°J

aerobicact. aerobicact.

E=230x10°J+2.30x10°J) +3.46x10°%)J
+6.30x10°J +2.16x10°J

=|16.5x10°%)

6
P _E_ 165x10°) oy
At (24h)(3600s/h)

or about twice that of a 100 W light bulb.

E- 16.5x10° J/day
4190J/kcal

3940kcal/day

3940kcal
1751b

estimate given in the statement of the
problem. However, by adjusting the day's
activities, the metabolic rate can vary by
more than a factor of 2.

= 22.5kcal/lb is higher than the

Picture the Problem The rate at which you expend energy, i.e., do work, is defined as
power and is the ratio of the work done to the time required to do the work.

Relate the rate at which you can
expend energy to the work done in

running up the four flights of stairs

and solve for your running time:

AW AW
= = At=——

p=2
At P
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Express the work done in climbing AW =mgh
the stairs:
Substitute for AW to obtain: At = mgh

P
Assuming that your weight is 600 Af = (BOON)(4x3.5m) _336s
N, evaluate At: 250 W :
12 -

Picture the Problem The intrinsic rest energy in matter is related to the mass of matter
through Einstein’s equation E, = mc?.

(a) Relate the rest mass consumed to E, = me? = m = 5 )

the energy produced and solve for c

and evaluate m: M 1J __[1.11x10 " kg
(2.998x10° m/s)

(b) Express the energy required as a E =3Pt

function of the power of the light = 3(100W)(10y)

bulb and evaluate E: § 365.24d (24hj(36005j

y d h
=9.47x10"J

Substitute in equation (1) to obtain: o 947 x10"J __[105.g

(2.998x10° m/s)

*13 .

Picture the Problem There are about 3x10° people in the United States. On the
assumption that the average family has 4 people in it and that they own two cars, we have
a total of 1.5x10° automobiles on the road (excluding those used for industry). We’ll
assume that each car uses about 15 gal of fuel per week.

Calculate, based on the assumptions identified above, the total annual consumption of
energy derived from gasoline:

(1.5x10° auto)[ng—alj [52 weeks ][2.6 x10° ij ~[3.04x10% iy

auto - week y gal
Express this rate of energy use as a 3.04x10" Jly
fraction of the total annual energy use by —— - ~| 6%

20
the US: 5x107Jly
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Remarks: This is an average power expenditure of roughly 9x10' watt, and a total
cost (assuming $1.15 per gallon) of about 140 billion dollars per year.

14 -

Picture the Problem The energy consumption of the U.S. works out to an average power
consumption of about 1.6x10™ watt. The solar constant is roughly 10° W/m? (reaching
the ground), or about 120 W/m? of useful power with a 12% conversion efficiency.
Letting P represent the daily rate of energy consumption, we can relate the power
available at the surface of the earth to the required area of the solar panels using P = IA.

Relate the required area to the P=IA
electrical energy to be generated by where | is the solar intensity that reaches the
the solar panels: surface of the Earth.
Solve for and evaluate A: = 2(1.6 %10 W)
1 120Wim?
=2.67x10" m?

where the factor of 2 comes from the fact that
the sun is only up for roughly half the day.

Find the side of a square with this s=267x10"m? = 516 km

area:

Remarks: A more realistic estimate that would include the variation of sunlight over
the day and account for latitude and weather variations might very well increase the
area required by an order of magnitude.

15 -

Picture the Problem We can relate the energy available from the water in terms of its
mass, the vertical distance it has fallen, and the efficiency of the process. Differentiation
of this expression with respect to time will yield the rate at which water must pass
through its turbines to generate Hoover Dam’s annual energy output.

Assuming a total efficiency#, use E =nymgh
the definition of gravitational

potential energy to express the

energy available from the water

when it has fallen a distance h:

Differentiate this expression with d dm dav
respect to time to obtain: P= a[ﬂmgh] = Ugha = Upgha
Solve for dV/dt: dav P O

dt  7pgh
Using its definition, relate the dam’s AE
annual power output to the energy = At

produced:
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Substitute numerical values to 4x10° kW -h

- - =457x10° W
obtain: (365.24d)(24h/d)
Sublstitut((aj\i/?deguation (1) and d_V B 457x108 W
evaluate dvidt: dt  0.2(1kg/L)(9.81m/s?)(211m)

={1.10x10°L/s

The Conservation of Mechanical Energy

16 -

Picture the Problem The work done in compressing the spring is stored in the spring as
potential energy. When the block is released, the energy stored in the spring is
transformed into the kinetic energy of the block. Equating these energies will give us a
relationship between the compressions of the spring and the speeds of the blocks.

Let the numeral 1 refer to the first 1k =1m,v]

case and the numeral 2 to the second 2
. = %(4ml)(3vl)

case. Relate the compression of the )

spring in the second case to its =18m,v;

potential energy, which equals its

initial kinetic energy when released:

Relate the compression of the spring 1k} =1myv?

in the first case to its potential or

energy, which equals its initial mVv? = kx?

Kinetic energy when released:

Substitute to obtain: 1kxZ =18kx?

Solve for x,: X, =| 6%

17 -

Picture the Problem Choose the zero of gravitational potential energy to be at the foot of

the hill. Then the kinetic energy of the woman on her bicycle at the foot of the hill is equal

to her gravitational potential energy when she has reached her highest point on the hill.
L 2

E_quate the kinetic ener_gy 9f the %mvz —mgh= h= Vo

rider at the foot of the incline and 29

her gravitational potential energy

when she has reached her highest
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point on the hill and solve for h:
Relate her displacement along the
incline d to h and the angle of the

incline:

Substitute for h to obtain:

Solve for d:

Substitute numerical values and
evaluate d:

*18 -
Picture the Problem The diagram shows
the pendulum bob in its initial position. Let

the zero of gravitational potential energy be

at the low point of the pendulum’s swing,
the equilibrium position. We can find the
speed of the bob at it passes through the
equilibrium position by equating its initial
potential energy to its kinetic energy as it
passes through its lowest point.

Equate the initial gravitational
potential energy and the Kinetic
energy of the bob as it passes
through its lowest point and solve
for v:

Express Ah in terms of the length L
of the

pendulum:

Substitute and simplify:

d = h/sing
2
dsing _v
29
V2
- 2gsiné
(10m/s)®

=97.4m

~ 2(0.81m/s? )sin3°

and | (c)iscorrect.
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19 -

Picture the Problem Choose the zero of gravitational potential energy to be at the foot
of the ramp. Let the system consist of the block, the earth, and the ramp. Then there are
no external forces acting on the system to change its energy and the kinetic energy of the
block at the foot of the ramp is equal to its gravitational potential energy when it has
reached its highest point.

Relate the gravitational potential mgh = %mv2
energy of the block when it has

reached h, its highest point on the

ramp, to its kinetic energy at the foot

of the ramp:
Solve for h: he v
29
Relate the displacement d of the d =h/sin@
block along the ramp to h and the
angle the ramp makes with the
horizontal:
Substitute for h: . 2
dsing=——
29
Solve for d: Ve
2gsiné
Substitute numerical values and 7m/s)?
| __ ’f) ____[389m
evaluate d: 2(9.81m/s?) sin40°
20 -

Picture the Problem Let the system consist of the earth, the block, and the spring. With
this choice there are no external forces doing work to change the energy of the system. Let
U, = 0 at the elevation of the spring. Then the initial gravitational potential energy of the
3-kg object is transformed into Kinetic energy as it slides down the ramp and then, as it
compresses the spring, into potential energy stored in the spring.

(a) Apply conservation of energy to W, =AK+AU =0
relate the distance the spring is and, because AK =0,
compressed to the initial potential —mgh +%kx2 =0

energy of the block:
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Solve for x: ‘o 2mgh
\
Substitute numerical values and 23 kg)(9.81m/52)(5 m)
evaluate x: X= 200 N/m
=10.858m
(b) The energy stored in the The block will retrace its path,
compressed spring will accelerate rising to a height of 5m.
the block, launching it back up the
incline:
21 -

Picture the Problem With U, chosen to be zero at the uncompressed level of the spring,
the ball’s initial gravitational potential energy is negative. The difference between the
initial potential energy of the spring and the gravitational potential energy of the ball is
first converted into the kinetic energy of the ball and then into gravitational potential
energy as the ball rises and slows ... eventually coming momentarily to rest.

Apply the conservation of energy to —mgx +1kx* = mgh
the system as it evolves from its
initial to its final state:

Solve for h: he kx*
- 2mg
Substitute numerical values and he (600N/m)(0.05m)* 0.05m
evaluate h: - 2(0.015kg)(9.81m/s?)
=|5.05m
22 -

Picture the Problem Let the system include the earth and the container. Then the work
done by the crane is done by an external force and this work changes the energy of the
system. Because the initial and final speeds of the container are zero, the initial and final
Kinetic energies are zero and the work done by the crane equals the change in the
gravitational potential energy of the container. Choose Uy = 0 to be at the level of the
deck of the freighter.

Apply conservation of energy to the W« =AEy =AK + AU
system:



Because AK =0:

Evaluate the work done by the crane:

23 e

Picture the Problem Let the system
consist of the earth and the child. Then Wey
= 0. Choose Uy = 0 at the child’s lowest
point as shown in the diagram to the right.
Then the child’s initial energy is entirely
kinetic and its energy when it is at its
highest point is entirely gravitational
potential. We can determine h from energy
conservation and then use trigonometry to
determine 6.

Using the diagram, relate #to h and
L:

Apply conservation of energy to the
system to obtain:

Solve for h:

Substitute to obtain:

Substitute numerical values and
evaluate @

*04 e
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W,,, = AU =mgAh

W,,, = mgAh
= (4000kg)(9.81m/s?)(—8m)
=| —314KkJ
| , |
//@
L/ L-h
Ly

0=cost——= cosl(l—ﬂj
L
imv’ -mgh=0
2
h=Ji
29
2
0 =cos ™ 1-—1
2gL
2
0 =cos|1- (3.4m/23)
2(9.81m/s?)(6m)
=| 25.6°

Picture the Problem Let the system include the two objects and the earth. Then Wy = 0.
Choose Ug = 0 at the elevation at which the two objects meet. With this choice, the initial
potential energy of the 3-kg object is positive and that of the 2-kg object is negative.

Their sum, however, is positive. Given our choice for Ug = 0, this initial potential energy

is transformed entirely into kinetic energy.
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Apply conservation of energy: W, =AK+AU, =0
or, because Wey = 0,
Substitute for AK and solve for v; imyy —1imy’ = -AU,
noting that m represents the sum of or, because v; = 0
the masses of the objects as they are oAU
both moving in the final state: Vi = - 2
Express and evaluate AU: AU, =U  -U;
=0-(3kg—2kg)0.5m)
x (9.81 m/sz)
=-491)
Substitute and evaluate v¢: —2(—
f v = |[Z2EA9Y) s
5kg
25 oo

Picture the Problem The free-body
diagram shows the forces acting on the
block when it is about to move. Fy, is the
force exerted by the spring and, because
the block is on the verge of sliding, f; =
fsmax- VWe can use Newton’s 2" law, under
equilibrium conditions, to express the
elongation of the spring as a function of m,
k and @ and then substitute in the
expression for the potential energy stored
in a stretched or compressed spring.

Express the potential energy of the Uu=1 kx?

spring when the block is about to

move:

Apply Z F = ma,under equilibrium Z F.=F,— fimx—mgsing =0
conditions, to the block: and

D> F,=F,-mgcosd =0
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Using fsmax = 4Fn and Fg, = kX, . = mg(sin 0+ u, cos 9)

eliminate fsmax and Fg, from the x k
equation and solve for x:

Substitute for x in the expression U1k mg(sin 0+ p1, COS 6?)_2
for U: 2 k
| [mg(sin &+, cos8)]’*
2Kk
26 e
Picture the Problem The mechanical
energy of the system, consisting of the n J
block, the spring, and the earth, is initially
entirely gravitational potential energy. Let ‘[

Uy = 0 where the spring is compressed 15
cm. Then the mechanical energy when the
compression of the spring is 15 cm will be
partially kinetic and partially stored in the _L ||

spring. We can use conservation of energy s
to relate the initial potential energy of the x=1ocm

h=5m

system to the energy stored in the spring T — Ug=0
and the kinetic energy of block when it has
compressed the spring 15 cm.

Apply conservation of energy to AU +AK =0

the system: or
Ugr —Ugi U —Ug + K =K =0

Because Uqy¢ = U, = K; = 0: —Ug; +U; +K; =0
Substitute to obtain: ~mg(h+x)+1kx® +imv® =0
Solve for v: 2

v :\/Zg(h+x)—%

Substitute numerical values and evaluate v:

2
v= \/2(9.81m/sz)(5m+0.15m)—(3955N/m)(0'15m) =[8.00m/s

2.4kg
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*27 oo
Picture the Problem The diagram
represents the ball traveling in a circular
path with constant energy. Uy has been
chosen to be zero at the lowest point on the
circle and the superimposed free-body
diagrams show the forces acting on the ball
at the top and bottom of the circular path.
We’ll apply Newton’s 2™ law to the ball at
the top and bottom of its path to obtain a
relationship between T+ and Tg and the
conservation of mechanical energy to
relate the speeds of the ball at these two
locations.

Apply Z I:radial = maradial to the ball TB _ mg — mﬁ
at the bottom of the circle and solve
for Tg: and
V2

T, =mg+ mEB )
Apply Z I:radial = maradial to the ball TT + mg = mﬁ
at the top of the circle and solve for R
Tr: and

V2
T, =-mg+ mET (2)

2

. . v
Subtract equation (2) from equation T,—T, =mg + mEB

(1) to obtain:
2
Vy
—|—-mg+m—
2 2
Vg Vi
=m—=-m—+2m 3
R R g @
Using conservation of energy, relate 1mvZ = 1mvZ + mg(2R)
the mechanical energy of the ball at vé $
the bottom of its path to its me~—Mp= 4mg
mechanical energy at the top of the

V2 v2
circle and solve for mEB — mET :

Substitute in equation (3) to obtain: T, -T, =| 6mg
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Picture the Problem Let Uy = 0 at the
lowest point in the girl’s swing. Then we
can equate her initial potential energy to
her Kkinetic energy as she passes through
the low point on her swing to relate her
speed v to R. The FBD show the forces
acting on the girl at the low point of her
swing. Applying Newton’s 2" law to her
will allow us to establish the relationship
between the tension T and her speed.

Apply Z Fragia = M, to the girl
at her lowest point and solve for T:

Equate the girl’s initial potential
energy to her final kinetic energy
2

Vv
and solve for —:
R

Substitute for v?/R? and simplify to
obtain:

20 e
Picture the Problem The free-body
diagram shows the forces acting on the car
when it is upside down at the top of the
loop. Choose Uy = 0 at the bottom of the
loop. We can express F, in terms of v and
R by apply Newton’s 2" law to the car and
then obtain a second expression in these
same variables by applying the
conservation of mechanical energy. The
simultaneous solution of these equations
will yield an expression for F, in terms of
known quantities.

Apply z I:radial = r‘naradiall to the car

at the top of the circle and solve for
Fn:
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v
T-mg=m—
J R
and
2
T:mg+mv—
V2
mg—=4imv’ = —=
g 2 R g
T=mg+mg =|2mg
)
'Fn
¥ mg
2
F,+mg=m—
and

v
F=m—-m 1
r M9 @)
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Using conservation of energy, relate mgH =1 mv* + mg(ZR)
the energy of the car at the

beginning of its motion to its energy

when it is at the top of the loop:

2 2
Solve for mV—: mv—=2mg ﬂ—2 2
R R R

Substitute equation (2) in equation
(1) to obtain:

2H
=mg| —-5
g[ R j

Substitute numerical values and evaluate F,:

F, = (1500kg) (9.81m/32){@—5} ~1.67x10* N and | (c) s correct.

bLm
30 -
Picture the Problem Let the system 1

include the roller coaster, the track, and the
earth and denote the starting position with

the numeral 0 and the top of the second hill 2 95m
with the numeral 1. We can use the work- T

energy theorem to relate the energies of the hy=5m

coaster at its initial and final positions. ¢ U=0

(a) Use conservation of energy to W, = AEsys =AK + AU

relate the work done by external
forces to the change in the energy of

the system:
Because the track is frictionless, AK + AU =0
Wext = O: and
K -K,+U,-U,=0
Substitute to obtain: Lmv? —2mv2 + mgh, —mgh, =0
Solve for vq: _ \/ 2 9 h
Vo =yV1 + g(hl_ 0)

If the coaster just makes it to the top v, = /Zg(hl _ ho)

of the second hill, v; = 0 and:
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Substitute numerical values and _ 2 _

valuate v Vo = /2(9.81m/s?)(9.5m —5m)
=|9.40m/s

(b) No. Note that the required speed

depends only on the difference
in the heights of the two hills.

31 e
Picture the Problem Let the radius of the
loop be R and the mass of one of the riders
be m. At the top of the loop, the centripetal
force on her is her weight (the force of
gravity). The two forces acting on her at
the bottom of the loop are the normal force
exerted by the seat of the car, pushing up,
and the force of gravity, pulling down. We
can apply Newton’s 2™ law to her at both
the top and bottom of the loop to relate the
speeds at those locations to m and R and, at
b, to F, and then use conservation of
energy to relate v; and v,

Apply z Fradial = ma‘radial to the F - mg = mﬁ

rider at the bottom of the circular

arc:

Solve for F to obtain: v2

F=mg+m-2 1)

R

Apply Z I:radial = maradial to the mg = mv_tz

rider at the top of the circular arc: R

Solve for v/ : v/ =gR

Use conservation of energy to relate K,-K,+U,-U,=0

the energies of the rider at the top

and bottom of the arc: or, because U =0,

K,-K,-U,=0
Substitute to obtain: %mvg —%mvf —2mgR =0
Solve for v;: v =50R
Substitute in equation (1) to obtain: S5gR

F=mg+m——=| 6m
g R g

i.e., the rider will feel six times heavier
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*30  ee
Picture the Problem Let the system
consist of the stone and the earth and
ignore the influence of air resistance. Then
Wey: = 0. Choose Uy = 0 as shown in the
figure. Apply the law of the conservation
of mechanical energy to describe the
energy transformations as the stone rises to
the highest point of its trajectory.

Apply conservation of energy:

Because Uy=0:

Substitute to obtain:

In the absence of air resistance, the
horizontal component of V is
constant and equal to v, = vcosé.

Hence:

Solve for v:

Substitute numerical values and
evaluate v:

than her normal weight.

Wext

and

=AK +AU =0

K,—K,+U,-U, =0

K,—-Ky+U, =0

1 2_1 2 —
smvy —3mv°+mgH =0

im(vecosd) —imv? +mgH =0

_20H
1-cos? 6

\/ 2(9.81m/s?)(24m)

1-c0s°53°

27.2m/s
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33 e
Picture the Problem Let the system y

consist of the ball and the earth. Then .

Wex: = 0. The figure shows the ball being K
thrown from the roof of a building. Choose 0N _

Uy = 0 at ground level. We can use the
conservation of mechanical energy to

determine the maximum height of the ball hy=H
and its speed at impact with the ground. hy=12m
We can use the definition of the work done
by gravity to calculate how much work was
done by gravity as the ball rose to its U,=0
maximum height. -

(a) Apply conservation of energy: W, =AK+AU =0

or
K,-K,+U,-U, =0

Substitute for the energies to obtain: imv; —imv? +mgh, —mgh, =0

Note that, at point 2, the ball is VvV, =V, coséd
moving horizontally and:

Substitute for v, and hy: 1m(v, cos@) —1mv} +mgH

. 2
Solve for H: H=h —V—(0052 9_1)

29
Substitute rlumerical values and H—12m— (30m/s)’ (0032 40° —l)
evaluate H: 2(9.81m/s?)
=131.0m

(b) Using its definition, express the W, =-AU = —(U w Uy )
work done by gravity: = —(mgH —mgh,)=-mg(H —h,)
Substitute numerical values and W, = —(0.17 kg)(9.8lm/sz)(31m ~12m)
evaluate Wy _[—31.7J

(c) Relate the initial mechanical 1mv? +mgh, =1 my}
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energy of the ball to its just-before-
impact energy:

Solve for v¢:

Substitute numerical values and
evaluate v¢

34 e

Picture the Problem The figure shows the
pendulum bob in its release position and in

the two positions in which it is in motion
with the given speeds. Choose Uy = 0 at
the low point of the swing. We can apply
the conservation of mechanical energy to
relate the two angles of interest to the
speeds of the bob at the intermediate and
low points of its trajectory.

(a) Apply conservation of energy:

Express U;:
Substitute for K and U;:

Solve for &:

Substitute numerical values and
evaluate &:

(b) Letting primed quantities
describe the indicated location, use
the law of the conservation of
mechanical energy to relate the

V; =4V +2gh

J(Bomss)? +2(9.81m/s? )(12m)
=|33.7m/s

Vi

PN
L00590:§A90 /
Lcos@ _l_ S N

W, =AK+AU =0

or

K -K;+U;-U; =0

where U; and K, equal zero.
~Ki-U; =0

U, = mgh = mgL(1- cosé,)

L mv? —mgL(l-cosé,)=0

2
g, = cos™| 1- )
29L

B 2
6, =cos | 1- (2'8”;/3)
2(9.81m/s?)(0.8m)

=| 60.0°

K -K,+U{-U; =0
where K, =0.
~ K +U/ -U, =0



speed of the bob at this point to 4:
Express U, :

Substitute for K", U, and U, :

Solve for &:

Substitute numerical values and
evaluate 0
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Picture the Problem Choose Uy = 0 at
the bridge, and let the system be the earth,
the jumper and the bungee cord. Then
Wex = 0. Use the conservation of
mechanical energy to relate to relate her
initial and final gravitational potential
energies to the energy stored in the
stretched bungee, Us cord. In part (b),
we’ll use a similar strategy but include a
Kinetic energy term because we are
interested in finding her maximum speed.

(a) Express her final height h above
the water in terms of L, d and the
distance x the bungee cord has
stretched:

Use the conservation of mechanical
energy to relate her gravitational
potential energy as she just touches
the water to the energy stored in the
stretched bungee cord:

Solve for k:
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U, = mgh = mgL(1-cos®)

1m(v,' ) +mgL(L-cos6)
—mgL(1-cosd,)=0

(., \2
0 =cos™ M+c056’0}

| 2gL
i 2
0 =cos™ (1.4m2/s) +€0s60°
| 2(9.81m/s)(0.8m)
=|51.3°
7
£l
h=L-d-x @)

W, =AK+AU =0

Because AK = 0 and AU = AUgq + AU,
—mgL +4kx* =0,

where x is the maximum distance the
bungee cord has stretched.

_ 2mgL

X2

k
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Find the maximum distance the
bungee cord stretches:

Evaluate k:

Express the relationship between the
forces acting on her when she has
finally come to rest and solve for x:

Evaluate x:

Substitute in equation (1) and
evaluate h:

(b) Using conservation of energy,
express her total energy E:

Because v is a maximum when K is
a maximum, solve for K and set its
derivative with respect to x equal to

Zero:

Solve for and evaluate x:

From equation (1) we have:

Solve for v to obtain:

Xx=310m-50 m=260 m.

2(60kg)(9.81m/s?)(310m)
(260m)°
= 5.40N/m

k =

F.t =kx—mg =0

and
x =19
k
2
_ (60kg)(9.81m/s ):109m

5.40N/m

h=310m-50m-109m =| 151m

E:K+Ug+U5:Ei:O

K =-U, -U,
) @)
=mg(d +x)—1kx

dK

—— =mg — kx = 0 for extreme values

dx
mg _ (60kg)(9.81m/s?)

X=—"—= :109m

K 5.40N/m

2 2

1mv? =mg(d + x)— L kx

2

V= \/29(d + x)—%

Substitute numerical values and evaluate v for x = 109 m:

V= \/2(9.81m/52)(50 m+109m)-

(5.4N/m)(109mY
60kg

=|45.3m/s




Because =-k<0:

XZ
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Picture the Problem Let the system be the
earth and pendulum bob. Then

Wex = 0. Choose Uy = 0 at the low point of
the bob’s swing and apply the law of the
conservation of mechanical energy to its
motion. When the bob reaches the 30°
position its energy will be partially kinetic
and partially potential. When it reaches its
maximum height, its energy will be
entirely potential. Applying Newton’s 2™
law will allow us to express the tension in
the string as a function of the bob’s speed
and its angular position.

(a) Apply conservation of energy to

relate the energies of the bob at
points 1 and 2:

Express U,:
Substitute for U, to obtain:

Solve for v,:

Substitute numerical values and evaluate vs:
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x =109 m corresponds to Ky and so v is a
maximum.

W, =AK+AU =0
or

K,-K,+U,-U, =0
Because U; =0,
Imvi-imv?+U, =0

U, = mgL(1-cos@d)

1mvZ —imv? + mgL(1-cos@)=0

v, = V2 —2gL(1-cos6)

v, = /(4.5m/s) —2(9.81m/s? )(3m)(L- cos30°) =

(b) Use the definition of gravitational
potential energy to obtain:

Substitute numerical values and
evaluate U,:

(©) Apply D" F i = Ma,4, to the bob to

obtain:

3.52m/s

U, =mgL(1-cos@)

U, = (2kg)(9.81m/s?)(3m)(1-cos30°)
=| 7.89J

VZ
T-mgcosd = mf
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Solve for T: V2
T=mg cos«9+T2

Substitute numerical values and evaluate T:

25.3N

2
T=(2 kg){(9.81m/52)c0330° +(35§—$/S)} _

(d) When the bob reaches its greatest U=U,, =mgL(l-cosb,,)
height: and

Ki+U, =0

Substitute for K; and Uy —1mv? +mgL(l-cos6,, )=0

Solve for Gy 2
0, = COS™| 1— Y
29L

Substitute numerical values and 1_ (4.5m/s)?
luate (. Oppax =€0S ™| 1— >
evaluate omax. 2(981m/5 )(3 m)

=(49.0°
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Picture the Problem Let the system
consist of the earth and pendulum bob. N
Then Wy = 0. Choose U = 0 at the bottom mg
of the circle and let points 1, 2 and 3
represent the bob’s initial point, lowest
point and highest point, respectively. The
bob will gain speed and kinetic energy
until it reaches point 2 and slow down until
it reaches point 3; so it has its maximum
kinetic energy when it is at point 2. We can
use Newton’s 2" law at points 2 and 3 in
conjunction with the law of the
conservation of mechanical energy to find
the maximum kinetic energy of the bob and
the tension in the string when the bob has
its maximum kinetic energy.

(a) Apply Z I:radial = maradial to the
bob at the top of the circle and solve L
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for v3: and
vZ =gl
Use conservation of energy to K,-K,+U;-U,=0whereU, =0
express the relationship between Ko, Therefore,
K3 and Uz and solve for Kj: K, =K, =K;+U,
=1mvZ +mg(2L)
Substitute for vZ and simplify to K. =+m(gL)+2mgL =| $mgL
obtain:
b) Appl F_ gy =Ma_,. tothe 2
( ) pply Z radial tadlal Fnet :Tz -mg = mV_2
bob at the bottom of the circle and L
solve for Ts: and
v
T,=mg+m-—= (1)
L
Use conservation of energy to relate K;-K,+U;-U, =0 whereU, =0
the energies of the bob at points 2 K, =K;+U,

and 3 and solve for K,:
2 =4mvZ +mg(2L)

Substitute for v; and K, and solve imvZ =1m(gL)+mg(2L)

for v7: and
v =5gL

Substitute in equation (1) to obtain: T, =| 6mg
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Picture the Problem Let the system

consist of the earth and child. Then Bl
Wex = 0. In the figure, the child’s initial
position is designated with the numeral 1;
the point at which the child releases the | n

rope and begins to fall with a 2, and its &« ———-

poFi)nt of impgact with the water is identified i
with a 3. Choose Ug = 0 at the water level. 2

While one could use the law of the . _ ) \\,
conservation of energy between points 1 3
and 2 and then between points 2 and 3, it is

more direct to consider the energy

transformations between points 1 and 3.

Given our choice of the zero of

T
h
v
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gravitational potential energy, the initial
potential energy at point 1 is transformed
into Kinetic energy at point 3.

Apply conservation of energy to the
energy transformations between

points 1 and 3:

Substitute for K; and Uq;

Solve for vs;

Substitute numerical values and evaluate vs:

W, =AK+AU =0
K,-K,+U,-U, =0
where U, and K are zero.

Lmv2 —mglh + L(L-cosd)]=0

V, =+/2g[h+ L(L-cos@)|

v, =/2(9.81m/s?)[3.2m +(10.6m)(1- cos23°)] =| 8.91mVs

*30 oo
Picture the Problem Let the system
consist of you and the earth. Then there are
no external forces to do work on the system
and Wy = 0. In the figure, your initial
position is designated with the numeral 1,
the point at which you release the rope and
begin to fall with a 2, and your point of
impact with the water is identified with a 3.
Choose

U, = 0 at the water level. We can apply
Newton’s 2" law to the forces acting on
you at point 2 and apply conservation of
energy between points 1 and 2 to determine
the maximum angle at which you can begin
your swing and then between points 1 and
3 to determine the speed with which you
will hit the water.

(a) Use conservation of energy to
relate your speed at point 2 to your
potential energy there and at point
1:

Solve this equation for &:

0l
L

|
|
.
1¥2 L(1-cos8)
1 - T
mg

h
. NS
Uy=0 ~ B

W, =AK+AU =0

K,-K, +U,-U, =0

Because K; =0,

1mvZ +mgh
—[mgL(1-cos@)+mgh]=0

2
0 = cosl{l— ZV(;J (1)
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Apply Z I:radiall = maradial yOUI’SG'f T-— mg = mﬁ
at point 2 and solve for T: L
and
V2
T=mg+m-%
L
, . 2
Becaus_e you’ve e.stlmated that t'he. m vy _ 80N
rope might break if the tension in it L
exceeds your weight by 80 N, it or
must be that: . (80 N)L
? m
Let’s assume yOl-JI’ weight is 650 N. - (80 N)(4.6 m) 5 55m?/s?
Then your mass is 66.3 kg and: 66.3kg
Substitute numerical values in 4 5.55m?/s?
. . @ =cos|1- >
equation (1) to obtain: 2(9.81m/s )(4.6 m)
=| 20.2°

(b) Apply conservation of energy to W, =AK+AU =0
the energy transformations between K, - K, +U,—-U, =0 where U, and
points 1 and 3: K,are zero
Substitute for K; and U, to obtain: 1mvZ —mg[h+ L(L-cos@)]=0
Solve for vs: v, =4/2g[h + L({L-cosd)|

Substitute numerical values and evaluate vs:

V, = /2(9.81m/s? )[L.8m + (4.6 m)(1—c0s20.2°)] = [ 6.39m/s
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Picture the Problem Choose Uy = 0 at
point 2, the lowest point of the bob’s
trajectory and let the system consist of the
bob and the earth. Given this choice, there
are no external forces doing work on the
system. Because << 1, we can use the
trigonometric series for the sine and cosine
functions to approximate these functions.
The bob’s initial energy is partially
gravitational potential and partially
potential energy stored in the stretched
spring. As the bob swings down to point 2
this energy is transformed into kinetic
energy. By equating these energies, we can
derive an expression for the speed of the
bob at point 2.

Apply conservation of energy to the ImvZ = 1kx® + mgL(1-cos@)
system as the pendulum bob swings
from point 1 to point 2:

Note, from the figure, that x ~ Lsin& 1mvZ =1k(Lsing)* +mgL(l-cosd)
when #<< 1.
Also, when #<< 1: sin@ ~ 6 and cosf ~1-16?

Substitute, simplify and solve for v;: k g
V2 =| LG, —+ I
m
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Picture the Problem Choose Uy = 0 at
point 2, the lowest point of the bob’s
trajectory and let the system consist of the
earth, ceiling, spring, and pendulum bob.
Given this choice, there are no external
forces doing work to change the energy of
the system. Because #<< 1, we can use the
trigonometric series for the secant and
cosine functions to approximate these
functions. The bob’s initial energy is
partially gravitational potential and
partially potential energy stored in the
stretched spring. As the bob swings down
to point 2 this energy is transformed into
kinetic energy. By equating these energies,
we can derive an expression for the speed
of the bob at point 2.

Apply conservation of energy to the
system as the pendulum bob swings

from point 1 to point 2:

Note, from the figure, that
L
X = 2 (sec@ —1)and that,

for 6<< 1, x = Lsin@:
Also, when << 1:

Substitute, simplify and solve for v;:

The Conservation of Energy

42 .
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1mv; =1kx® + mgL(l-cos®)

L 2
imv? =1 k{E (seco —1)}

+mgL(1-cos@)

sec20 ~1+26%and cosd ~1-16°

vV, = Le\/%+%¢92

Picture the Problem The energy of the eruption is initially in the form of the kinetic
energy of the material it thrusts into the air. This energy is then transformed into
gravitational potential energy as the material rises.

(a) Express the energy of the

E = mgAh
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eruption in terms of the height Ah to
which the debris rises:

Relate the density of the material to
its mass and volume:

Substitute for m to obtain:

Substitute numerical values and
evaluate E:

(b) Convert 3.13x10"° J to megatons
of TNT:

43 e

p:

E=

E=

m
Vv
PVgAh

(1600kg/m®)(4 km? )(9.81m/s? )
X (500 m)

3.14x10' J

3.14x10" J=3.14x10"J

IMton TNT
X—
4.2x10% ]

=| 7.48Mton TNT

Picture the Problem The work done by the student equals the change in his/her
gravitational potential energy and is done as a result of the transformation of metabolic

energy in the climber’s muscles.

(a) The increase in gravitational
potential energy is:

(b)

(c) Relate the chemical energy
expended by the student to the
change in his/her potential energy
and solve for E:

AU = mgAh

(80kg)(9.81m/s?)(120m)
=[94.2k

The energy required to do
this work comes from chemical
energy stored in the body.

0.2E =AU

and

E=

5AU =5(94.2k])=| 471kJ




Kinetic Friction

44
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Picture the Problem As the car skids to a stop on a horizontal road, its Kinetic energy is
transformed into internal (i.e., thermal) energy. Knowing that energy is transformed into
heat by friction, we can use the definition of the coefficient of kinetic friction to calculate

its value.

(a) Relate the energy dissipated by
friction to the change in kinetic
energy of the car:

Because Kz = 0, the friction force
will transform all the car’s initial
Kinetic energy:

(b) Relate the kinetic friction force
to the coefficient of kinetic friction
and the weight of the car and solve
for the coefficient of kinetic
friction:

Express the relationship between
the work done by friction and the

kinetic friction force and solve f,:

Substitute to obtain:

Substitute numerical values and
evaluate z4:

W, = K; =4my/

= 1(2000kg)(25m/s)* =| 625k

f
f,=umg= 1 =—5
k = #Mmg Hy m

W, = f,As = f,_ =t

— Wf
MQAS

_ 625kJ
(2000kg)(9.81m/s? (60m)

=|0.531
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Picture the Problem The free-body

diagram shows the forces acting on the sled

as it is pulled along a horizontal road. The
work done by the applied force can be

found using the definition of work. To find

the energy dissipated by friction, we’ll use
Newton’s 2" law to determine f, and then

use it in the definition of work. The change

in the Kinetic energy of the sled is equal to
the net work done on it. Finally, knowing
the kinetic energy of the sled after it has
traveled 3 m will allow us to solve for its
speed at that location.

(a) Use the definition of work to
calculate the work done by the
applied force:

(b) Express the energy dissipated by
friction as the sled is dragged along
the surface:

Apply > F, =ma, to the sled and
solve for F,;:

Substitute to obtain:

Substitute numerical values and
evaluate W

(c) Because AU = 0:

(d) Because K; = 0:

W =F -5 = Fscoséd
= (40N)(3m)cos30° =

104J

W, = u, F AX

F,+Fsind-mg=0
and
F,=mg-Fsing

W, = 4 Ax(mg — Fsing)

W, =(0.4)(3m)|(8kg)(0.81m/s?)
—(40N)sin30°]
70.2]

AK =W -W, =104J-70.2J
=|33.8J

K, = AK =1my?

2



Solve for v:

Substitute numerical values and
evaluate v:

*46 o

Picture the Problem Choose U, = 0 at the
foot of the ramp and let the system consist
of the block, ramp, and the earth. Then the
kinetic energy of the block at the foot of
the ramp is equal to its initial kinetic
energy less the energy dissipated by
friction. The block’s kinetic energy at the
foot of the incline is partially converted to
gravitational potential energy and partially
dissipated by friction as the block slides up
the incline. The free-body diagram shows
the forces acting on the block as it slides up
the incline. Applying Newton’s 2™ law to
the block will allow us to determine f, and
express the energy dissipated by friction.

(a) Apply conservation of energy to
the system while the block is
moving horizontally:

Solve for Ks:

Express the work done by the
friction force:

Substitute for W,y to obtain:

Solve for vy

Substitute numerical values and
evaluate v

(b) Relate the initial kinetic energy
of the block to its final potential
energy and the energy dissipated by
friction:
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2.91m/s

W, = AK + AU

or, because AU =0,
W, = AK = K; =K,

=F -5 = f AX = — i mgAX

ext

1 mv? — 1 my?
imvi =1imv — 1, mgAx

Ve =V —244,9AX

v = /(7mis) - 2(0.3)(9.81m/s?)(2m)
=16.10m/s

Ki = Uf +Wext
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Apply D" F, =ma, to the block:
Express Wyt

Express the final potential energy
of the block:

Substitute for Us and W,y to obtain:

Solve for L:

Substitute numerical values and
evaluate L:

47

F,—-mgcosd=0= F,=mgcosé
W, = f,.L= 2 F L= mglLcoséd

U; =mgLsinéd

K; =mgLsin &+ x,mgL cos &

Ky

L=—
mg(sin @ + z, cos @)

L 1(6.10m/s)’?
(9.81m/s? )(sin40° + (0.3)cos40°)

=|2.17m

Picture the Problem Let the system include the block, the ramp and horizontal surface,
and the earth. Given this choice, there are no external forces acting that will change the
energy of the system. Because the curved ramp is frictionless, mechanical energy is
conserved as the block slides down it. We can calculate its speed at the bottom of the
ramp by using the law of the conservation of energy. The potential energy of the block at
the top of the ramp or, equivalently, its kinetic energy at the bottom of the ramp is
converted into thermal energy during its slide along the horizontal surface.

(a) Choosing Uy = 0 at point 2 and
letting the numeral 1 designate the
initial position of the block and the
numeral 2 its position at the foot of
the ramp, use conservation of energy
to relate the block’s potential energy
at the top of the ramp to its kinetic
energy at the bottom:

Solve for v,:

Substitute numerical values and
evaluate v,:

(b) The energy dissipated by friction

1mvi -mgAh =0

V, =4/2gAh

v, = /2(9.81m/s?)(3m) =[ 7.67mis

W; + AK + AU = AE, .. +AK +AU =0

therm



is responsible for changing the
thermal energy of the system:

Because AK = 0 for the slide:

Substitute numerical values and
evaluate Wy

(c) Express the energy dissipated by
friction in terms of the distance over
which it acts, the normal force
acting on the block, and the
coefficient of kinetic friction:

Solve for g4:

Substitute numerical values and
evaluate z4:
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Picture the Problem Let the system
consist of the earth, the girl, and the slide.
Given this choice, there are no external
forces doing work that changes the energy
of the system. By the time she reaches the
bottom of the slide, her potential energy at
the top of the slide has been converted into
kinetic and thermal energy. Choose Uy =0
at the bottom of the slide and denote the
top and bottom of the slide as shown in the
figure. We’ll use the work-energy theorem
with friction to relate these quantities and
the forces acting on her during her slide to
determine the friction force that transforms
some of her initial potential energy into
thermal energy.

(a) Express the work-energy
theorem:
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W, =-AU = (U, -U,)=U, = mgAh

W, = (2kg)(9.81m/s?)(3m)=[58.9J
W, = f, AX = 1, mgAX
_ Wf
e hgax
58.9]
_ ~[0.333
= (2kg)(0.81m/s?)(9m)

W,,, =AK + AU + fAs =0
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Because U, = K; = 0:

Substitute numerical values and
evaluate Wy

(b) Relate the energy dissipated by
friction to the kinetic friction force
and the distance over which this
force acts and solve for z4:

Apply > F, =ma, to the girl and

solve for F,:

Referring to the figure, relate Ah to
Asand 9:

Substitute for As and F, to obtain:

Substitute numerical values and
evaluate z4:

49 e

K,—-U,+ fAs=0
or
W, =U, - K,

= mgAh—1mv;

W, = (20kg)(9.81m/s)(3.2m)

—1(20kg)(1.3m/sy
=|611J
W, = f As = 1, F As
and
_ W
M7 As
F,—mgcosd=0
and
F, =mgcosé
po=
sing
1 = W, _ W, tano
= =
mg _A—hcosﬁ mgAh
sing
B (611J)tan20° B
#~ (20kg)(0.81m/s?)(3.2m)

0.354

Picture the Problem Let the system consist of the two blocks, the shelf, and the earth.
Given this choice, there are no external forces doing work to change the energy of the
system. Due to the friction between the 4-kg block and the surface on which it slides, not
all of the energy transformed during the fall of the 2-kg block is realized in the form of
Kinetic energy. We can find the work done by friction (energy transformed into Egerm)
from its definition and then use this result in the calculation of the speed of the system

when it has moved a given distance.

(a) Express the energy dissipated by
friction in terms of the coefficient of

W, = f As = g, m gAs
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kinetic friction, the mass of the
sliding block, and the displacement
of the block (As =y):

Substitute numerical values and W, =(0.35)(4 kg)(9.81m/52)y
evaluate W _ (13_7 N)y
(b) Express the total mechanical E, .ch =AE=-W, =| - (13,7 N)y

energy of the system:

(c) Express the total mechanical %(m1 +m, )V2 =m,gy -W,
energy of the system:

Solve for v to obtain: Ve 2(m, gy W, ) (1)
m, +m,

Substitute numerical values and evaluate v:

2[(2 kg)(9.81m/52j (2m)-(13.73N)(2 m)}

V= 4kg +2kg :
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Picture the Problem Let the system consist of the particle and the earth. Then the
friction force is external to the system and does work to change the energy of the system.
The energy dissipated by friction during one revolution is the work done by the friction
force.

(a) Relate the work done by friction W, =W; = AK + AU

to the change in energy of the =K, —K,, since AU =0

system:

Substitute for K¢ and K; and simplify W, =Imv/ —1imv?

to obtain: 2 2
=zm %VO) _%m(vo)
=| 2mv;

(b) Relate the work done by friction W; = u,mgAs

to the distance traveled and the = 41,Mg (zﬂr)

coefficient of kinetic friction and
solve for the latter:
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W, imyy | 3
2rmgr  2zmgr | 16xgr

Hy

(©)

Because in one revolution it lost 2 K;, it will only require another1/3
revolution to lose the remaining 4 K.

51 oo

Picture the Problem The box will slow
down and stop due to the work the friction
force does on it. Let the system be the
earth, the box, and the inclined plane and
apply the work-energy theorem with
friction. With this choice of the system,
there are no external forces doing work to
change the energy of the system. The free-
body diagram shows the forces acting on
the box when it is moving up the incline.

Apply the work-energy theorem
with friction to the system:

Substitute to obtain:

Express the work done by friction as
the box moves a distance L up the
incline:

Referring to the FBD, relate the
normal force to the weight of the
box and the angle of the incline:

Substitute in the expression for W
to obtain:

Relate Ah to the distance L along the
incline:

Substitute for Wr and Ah in equation
(1) to obtain:

W, =AE,,, =AK + AU +W, =0

~W, +3mv/ —imvg + mgAah =0

W, = f,L=uF,L

F, =mgcosd

W; = »,mgL cosé

Ah=Lsin@

w,mgL cos @ +1mv/ —imy?
+mgLsind =0

)

)
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2

Solve equation (2) for L to obtain: L— V,
29(z, cos@+sinH)

Substitute numerical values and L= (3.8m/s)’
evaluate L: 2(9.81m/s? )[(0.3)cos37° +sin37°]

=|0.875m
Let v represent the box’s speed as it u,mgLcosd +1mv; —1imy;
passes its starting point on the way —mgLsing=0
down the incline. For the block’s
descent, equation (2) becomes:
Set v; = 0 (the block starts from rest Vv, = \/ ZgL(Sin 0 — u, COS 6’)
at the top of the incline) and solve
for v;

Substitute numerical values and evaluate vs:

V; =+/2(9.81m/s? )(0.875m)[sin37° - (0.3)cos37°]| =| 2.49m/s

52  eee
Picture the Problem Let the system
consist of the earth, the block, the incline,
and the spring. With this choice of the
system, there are no external forces doing
work to change the energy of the system.
The free-body diagram shows the forces
acting on the block just before it begins to
move. We can apply Newton’s 2™ law to
the block to obtain an expression for the
extension of the spring at this instant. We’ll
apply the work-energy theorem with
friction to the second part of the problem.

-

spring

(a) Apply z F = ma to the block Z Fy = Foring = fomex —M@siné =0

when it is on the verge of sliding: and
> F,=F,-mgcosf =0

Eliminate F, fsmax, and Fepring kd — u;mg cos@ —mgsind =0
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between the two equations to obtain:

Solve for and evaluate d:

(b) Begin with the work-energy
theorem for problems with friction
and no work being done by an
external force:

Because the block is at rest in both
its initial and final states, AK =0

and:

Let Uy = 0 at the initial position of
the block. Then:

Express the change in the energy
stored in the spring as it relaxes to its
unstretched length:

Express Wk

Substitute in equation (1) to obtain:

Finally, solve for z:

Mass and Energy

53 e

d= %(SinﬁJr,us cos6)

AE, =AK+AU  +AU  +W; =0

AU, + AU, +W; =0 (1)

AUg = Ug,finall _Ug,initial = mgh -0
=mgdsinéd

AUS = Us,final _Us,initial =0 _%kd ?
— —1kd?

W, = fAs = —f d = —y, F,d

= —u,mgd cosd

mgd sin & —1kd?* — 4, mgd cos @ = 0

Hy = %(tane_:us)

Picture the Problem The intrinsic rest energy in matter is related to the mass of matter

through Einstein’s equation E, = mc?.

(a) Relate the rest mass consumed
to the energy produced and solve
for and evaluate m:

E, = mc?
= (1x10°° kg)(3x10° m/s)*
=|9.00x10%J
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(b) Express KW-h in joules: 1kW-h = (1><103 J/S)(lh)(36005/h)
=3.60x10°J
13 h _
Convert 9x10™ J to kW-h: 9x10% ] — (9><1013J) 1kW h6
3.60%x10°J

=2.50x10" kW -h

Determine the price of the electrical Price — (2.50><107 KW - h)( $0.10 )
energy: KW -h
=| $2.5x10°
(c) Relate the energy consumed to E =Pt
its rate of consumption and the time and
and solve for the latter: (E_ 9x10"J
P 100W
=| 9x10"s = 28,500y
54 e

Picture the Problem We can use the equation expressing the equivalence of energy and
matter, E = mc?, to find the mass equivalent of the energy from the explosion.

Solve E = mc? for m: E
m= -
C
Substitute numerical values and 5x10% J
evaluate m: = 8 2
(2.998x10° m/s)
=|5.56x10"° kg
55 .

Picture the Problem The intrinsic rest energy in matter is related to the mass of matter
through Einstein’s equation E;, = mc?.

Relate the rest mass of a muon to its m. = E
rest energy: ¢ c?

Express 1 MeV in joules: 1 MeV = 1.6x10%%)
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Substitute numerical values and . (105.7 MeV)(1.6><10’13 J/MeV)
evaluate mo: (3 %108 m/s)z

~[1.88x10 kg

*56 o
Picture the Problem We can differentiate the mass-energy equation to obtain an
expression for the rate at which the black hole gains energy.

Using the mass-energy relationship, E =0.01mc?
express the energy radiated by the
black hole:
Differentiate this expression to de d ) , dm
obtain an expression for the rate at o E[O.Olmc ]= 0.01c” —=
which the black hole is radiating
energy:
Solve for dm/dt: dm dE/dt
dt  0.01c?
Substitute numerical values and dm 4 x10% watt
evaluate dm/dt: at (0.01)(2.998><108 m/s)2

=| 4.45x10" kg/s

57

Picture the Problem The number of reactions per second is given by the ratio of the
power generated to the energy released per reaction. The number of reactions that must
take place to produce a given amount of energy is the ratio of the energy per second
(power) to the energy released per second.

In Example 7-15 it is shown that the 17.59MeV = (17.59 MeV)
energy per reaction is 17.59 MeV. X (1.6 %107 J/eV)
Convert this energy to joules: —281x10722 ]

The number of reactions per second is: 1000J/s

28.1x107" J/reaction

=1 3.56 x10™ reactions/s

58 -
Picture the Problem The energy required for this reaction is the difference between the
rest energy of *He and the sum of the rest energies of ®He and a neutron.



Express the reaction:

The rest energy of a neutron
(Table 7-1) is:

The rest energy of “He
(Example 7-15) is:

The rest energy of *He is:

Conservation of Energy 471
‘He—°He+n

939.573 MeV

3727.409 MeV

2808.432 MeV

Substitute numerical values to find the difference in the rest energy of “He and the sum of

the rest energies of *He and n:

E =[3727.409 - (2808.41+939.573)] MeV = 20.574MeV

59

Picture the Problem The energy required for this reaction is the difference between the
rest energy of a neutron and the sum of the rest energies of a proton and an electron.

The rest energy of a proton (Table
7-1) is:

The rest energy of an electron
(Table 7-1) is:

The rest energy of a neutron (Table
7-1) is:

Substitute numerical values to find
the difference in the rest energy of a
neutron and the sum of the rest
energies of a positron and an
electron:

60 oo

938.280 MeV

0.511 MeV

939.573 MeV

m
Il

[939.573-(938.280+ 0.511)] MeV
=| 0.782MeV

Picture the Problem The reaction is>H+°H—"He + E . The energy released in this
reaction is the difference between twice the rest energy of ?H and the rest energy of “He.
The number of reactions that must take place to produce a given amount of energy is the
ratio of the energy per second (power) to the energy released per reaction.

(a) The rest energy of *“He
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(Example 7-14) is:

The rest energy of a deuteron, ’H,
(Table 7-1) is:

The energy released in the reaction

IS:

(b) The number of reactions per
second is:

6L oo

3727.409 MeV

1875.628 MeV

E =[2(1875.628)-3727.409] MeV
=| 23.847MeV =3.816x107

1000J/s
3.816 x107** J/reaction

=| 2.62x10" reactions/s

Picture the Problem The annual consumption of matter by the fission plant is the ratio
of its annual energy output to the square of the speed of light. The annual consumption
of coal in a coal-burning power plant is the ratio of its annual energy output to energy

per unit mass of the coal.

(a) Express m in terms of E:

Assuming an efficiency of 33
percent, find the energy produced
annually:

Substitute to obtain:

(b) Assuming an efficiency of 38
percent, express the mass of coal
required in terms of the annual
energy production and the energy
released per kilogram:

E = 3PAt = 3(3x10° J/s)(Ly)

= 3(3x10° J/s)(3600s/h)
x (24h/d)(365.24d)
=2.84x10" )
17
o 2:84x10 JZ _[3.16kg
(3x10° mis)
E. ol 9.47x10%J
mcoal = = 7
0.38(E/m) 0.38(3.1x10" J/kg)
=|8.04x10° kg
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General Problems

*02 oo

Picture the Problem Let the system
consist of the block, the earth, and the
incline. Then the tension in the string is an
external force that will do work to change
the energy of the system. Because the
incline is frictionless; the work done by
the tension in the string as it displaces the
block on the incline is equal to the sum of
the changes in the kinetic and
gravitational potential energies.

Relate the work done by the tension Wiension force = Weye = AU +AK
force to the changes in the kinetic

and gravitational potential energies

of the block:

Referring to the figure, express the AU =mgAh = mgLsin &
change in the potential energy of the
block as it moves from position 1 to

position 2:

Because the block starts from rest: AK =K, =1mv?

Substitute to obtain: W ognsion force = ML SIN G + 1 mv?
and| (c)iscorrect.

63 oo

Picture the Problem Let the system
include the earth, the block, and the
inclined plane. Then there are no external
forces to do work on the system and Wey =
0. Apply the work-energy theorem with
friction to find an expression for the energy
dissipated by friction.

Express the work-energy theorem W, =AK +AU +W, =0
with friction:
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Because the velocity of the block is W, =-AU

constant, AK = 0 and: =—mgAh

In time At the block slides a Ah =VAtsin @

distance VAt . From the figure:

Substitute to obtain: W, = —mgvAtsin @
and | (b)is correct.

64

Picture the Problem Let the system include the earth and the box. Then the applied
force is external to the system and does work on the system in compressing the spring.
This work is stored in the spring as potential energy.

Express the work-energy theorem: W, = AK + AU + AU, + AE

therm

Because AK =AU, = AE,, =0: W,,, = AU,
Substitute for Wey and AU Fx = 1kx?
Solve for x: - 2F
k
Substitute numerical values and evaluate x: _ 2(70N) _[2.06cm
6800 N/m

*65 e

Picture the Problem The solar constant is the average energy per unit area and per unit
time reaching the upper atmosphere. This physical quantity can be thought of as the
power per unit area and is known as intensity.

P _AE/At

Letting lsurrace represent the intensity I _
A

of the solar radiation at the surface
of the earth, express lgyace as a
function of power and the area on
which this energy is incident:

surface —

>

Solve for AE: AE = |, AAL



Substitute numerical values and
evaluate AE:

66 oo
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AE = (1kW/m?)(2m?)(8h)(3600s/h)
—[57.6MJ

Picture the Problem The luminosity of the sun (or of any other object) is the product of
the power it radiates per unit area and its surface area. If we let L represent the sun’s
luminosity, | the power it radiates per unit area (also known as the solar constant or the
intensity of its radiation), and A its surface area, then

L = IA. We can estimate the solar lifetime by dividing the number of hydrogen nuclei in
the sun by the rate at which they are being transformed into energy.

(a) Express the total energy the sun
radiates every second in terms of the
solar constant:

Letting R represent its radius,
express the surface area of the sun:

Substitute to obtain:

Substitute numerical values and
evaluate L:

(b) Express the solar lifetime in
terms of the mass of the sun and the
rate at which its mass is being
converted to energy:

Substitute numerical values to obtain:

For each reaction, 4 hydrogen
nuclei are "used up"; so:

L=1A
A=47R?
L =47R%|

L = 47(L5x10" m)*(L.35kW/m?)
=| 3.82x10% watt

Note that this result is in good agreement
with the value given in the text of 3.9x10%
watt.

t — NHnucIei — M/m
9 AN/At An/At
where M is the mass of the sun, m the mass

of a hydrogen nucleus, and n is the number
of nuclei used up.

1.99x10%° kg
_ 1.67x107" kg/H nucleus
solar An/At

~ 1.19x10° Hnuclei
An/At

t

An _ 4(3.82x10% Js)
At 427x107%)

=357x10%s™
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Because we’ve assumed that the sun
will continue burning until roughly
10% of its hydrogen fuel is used up,
the total solar lifetime should be:

67 -

1.19x10°" Hnuclei
tsolar = 0 38 -1
3.57x10*s

=3.33x10"s =] 1.06x10" y

Picture the Problem Let the system include the earth and the Spirit of America. Then
there are no external forces to do work on the car and W,,; = 0. We can use the work-
energy theorem to relate the coefficient of kinetic friction to the given information. A
constant-acceleration equation will yield the car’s velocity when 60 s have elapsed.

(a) Apply the work-energy theorem
with friction to relate the coefficient
of kinetic friction z to the initial

and final Kinetic energies of the car:

Solve for z4:

Substitute numerical values and
evaluate z4:

(b) Express the kinetic energy of the
car:

Using a constant-acceleration
equation, relate the speed of the car
to its acceleration, initial speed, and

the elapsed time:

Express the braking force acting on
the car:

Solve for a:

Substitute for a to obtain:

Substitute in equation (1) to obtain:

Substitute numerical values and evaluate K:

2 2
Fmve —imvy + 1, mgAs =0
or, because v =0,
2
—$mvy + 1, MgAs =0

2

_ \"
M= gns
[(708km/h)(1h/3600s)]?
He = 2 =
2(9.81m/s?)(9.5km)
K =imv? 1)
V=V, +aAt
I:net == fk =—-#,mg =ma
a=-u9
V=V, — 14, gAt

=|0.208
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K = 1(1250kg)[708x10° m/h—(0.208)(9.81m/s? )(60s)| * =] 3.45MJ

68 oo

Picture the Problem The free-body
diagram shows the forces acting on the
skiers as they are towed up the slope at
constant speed. Because the power
required to move them is F -V, we need to
find F as a function of myy, 6, and 4. We
can apply Newton’s 2" law to obtain such
a function.

R IAN

Express the power required as a P=Fv (1)
function of force on the skiers and
their speed:

Apply Z F = ma to the skiers: z F,=F-f —-m,gsind=0
and
> F,=F,—-mg,gcosd =0

Eliminate f, = z4F, and F, between F=m,gsiné+ xm,gcosé
the two equations and solve for F:

Substitute in equation (1) to obtain: P= (mmg siné + x,m,, g cos 9)v
= m,, gv(sin @ + 4, cosH)

Substitute numerical values and evaluate P:

P =80(75kg)(9.81m/s? )(2.5m/s)[sin15° + (0.06)cos15°] = 46.6 kW
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Picture the Problem The pictorial
representation has the free-body diagram
for the box superimposed on it. The work
done by friction slows and momentarily
stops the box as it slides up the incline.
The box’s speed when it returns to bottom
of the incline will be less than its speed
when it started up the incline due to the
energy dissipated by friction while it was
in motion. Let the system include the box,
the earth, and the incline. Then W, = 0.
We can use the work-energy theorem with
friction to solve the several parts of this
problem.

X
2 /
Y F, Wx=Ax
/ v2=0 x
/
6
i Mo Ah
I 0 i Ug:0 A4
)C1:0
V1:3m/s

From the FBD we can see that the forces acting on the box are the
(a) | normal force exerted by the inclined plane, a kinetic friction force, and
the gravitational force (the weight of the box) exerted by the earth.

(b) Apply the work-energy theorem
with friction to relate the distance
Ax the box slides up the incline to its
initial kinetic energy, its final
potential energy, and the work done
against friction:

Referring to the figure, relate Ah to
AX to obtain:

Substitute for Ah to obtain:

Solve for Ax:

Substitute numerical values and
evaluate Ax:

—1mv; + mgAh + 4, mgAx cos @ =0

Ah = Axsin @

—1imv} + mgAxsin @

+ 1, mgAxcoséd =0
v

29(sin @+ u, cos6)

AX =

(3mi/sy
AX = -
2(9.81m/s? )[sin60° + (0.3)cos60°]

=| 0.451m
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(c) Express the energy dissipated by W, = f,AX = g,mgAxcosd

friction:

Substitute numerical values and W, =(0.3)(2 kg)(9.81m/32)

evaluate Wy: x (0.451m)cos60°
=11.33J]

(d) Use the work-energy theorem W, =AK+AU +W; =0

with friction: or

K,—K,+U,—U, +W, =0

Because K, = U; = 0 we have: K,-U,+W,; =0
or
L mv? —mgAxsin @
+ #,mgAxcoséd =0

Solve for v;: v, = /20AX(sin 6 — 14, cos 0)

Substitute numerical values and evaluate v;:

v, = /2(9.81m/s?)(0.451m)[sin60° — (0.3)cos60°] = | 2.52m/s

*70
Picture the Problem The power provided by a motor that is delivering sufficient energy
to exert a force F on a load which it is moving at a speed v is Fv.

The power provided by the motor is P=Fv
given by:
Because the elevator is ascending F= (me|ev + Mg )g

with constant speed, the tension in
the support cable(s) is:

Substitute for F to obtain: P= ( elev T Migag )QV

Substitute numerical values and P = (2000 kg)(9.81m/32)(2.3 m/s)
evaluate P: —[45.1kW
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Picture the Problem The power a motor must provide to exert a force F on a load that it
is moving at a speed v is Fv. The counterweight does negative work and the power of the
motor is reduced from that required with no counterbalance.

The power provided by the motor is P=Fv
given by:
Because the elevator is F = (Mg, + Mg — My, )9

counterbalanced and ascending with
constant speed, the tension in the
support cable(s) is:

Substitute and evaluate P: P = (M + Mgy — M, JOV
Substitute numerical values and P = (500 kg)(9.81m/82)(2.3 m/s)
evaluate P: —[11.3kwW
Without a load: F = (my,, —m,, )g

and

P= (melev —Mg, )gV
— (—300kg)(9.81m/s? )(2.3m/s)
=[—6.77kW
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Picture the Problem We can use the work-energy theorem with friction to describe the
energy transformation within the dart-spring-air-earth system. With this choice of the
system, there are no external forces to do work on the system, i.e., Wey = 0. Choose Ug =
0 at the elevation of the dart on the compressed spring. The energy initially stored in the
spring is transformed into gravitational potential energy and thermal energy. During the
dart’s descent, its gravitational potential energy is transformed into kinetic energy and
thermal energy.

Apply conservation of energy W, =AK +AU +W, =0
during the dart’s ascent: or
Uge —Ug +Ug —Ug +W, =0
because AK =0

Because U ; =U; =0: Uy —Ug +W, =0
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Substitute for Ug; and Us¢ and solve W, =U, -U,, = 1kx* —mgh
for We:
Substitute numerical values and W, =1(5000N/m)(0.03mY’
evaluate Wr. —(0.007kg)(9.81m/s? )(24m)
=10.602J
Apply conservation of energy W, =AK +AU +W, =0
during the dart’s descent: or, because K; = Ugs =0,
K =Ug; +W, =0
Substitute for K¢ and Uy, to obtain: 1mv; —mgh+W, =0
Solve for v v = 2(mgh-W, )

m

Substitute numerical values and evaluate vs;

=|17.3m/s

. _ |2[(0.007 kg)(9.81m/s?)(24m)-0.602J
f 0.007 kg
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Picture the Problem Let the system consist of the earth, rock, and air. Given this choice,
there are no external forces to do work on the system and We,: = 0. Choose Uy = 0 to be
where the rock begins its upward motion. The initial kinetic energy of the rock is partially
transformed into potential energy and partially dissipated by air resistance as the rock
ascends. During its descent, its potential energy is partially transformed into kinetic
energy and partially dissipated by air resistance.

() Using the definition of kinetic K, =4imv? = 1(2kg)(40m/s)’
energy, calculate the initial kinetic _[160K]

energy of the rock:

(b) Apply the work-energy theorem AK +AU +W; =0

with friction to relate the energies of

the system as the rock ascends:

Because K¢= 0: -K, +AU +W, =0

and
W; =K, -AU
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Substitute numerical values and
evaluate Wy

(c) Apply the work-energy theorem
with friction to relate the energies of
the system as the rock descends:

Because K;= U = 0:

Substitute for the energies to obtain:

Solve for v¢;

Substitute numerical values and
evaluate v

74 e

1600J - (2kg)(9.81m/s?)(50m)
=[619J

=
I

AK +AU +W; =0

K, -U, +W, =0
where W, = 0.7, .

imvi —mgh+0.7W, =0

v o /Zgh B 1.zr1nwf

v = \/2(9.81m/32)(50 m)-

(1.4)(619J)
2kg

=| 23.4m/s

Picture the Problem Let the distance the block slides before striking the spring be L.
The pictorial representation shows the block at the top of the incline (1), just as it strikes
the spring (2), and the block against the fully compressed spring (3). Let the block,
spring, and the earth comprise the system. Then W, = 0. Let

U, = 0 where the spring is at maximum compression. We can apply the work-energy
theorem to relate the energies of the system as it evolves from state 1 to state 3.

X1 = 0
hy = (L +x)sinf

Express the work-energy theorem:

AK+AU, +AU, =0

or
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AK+U ;-U,, +U,;-U =0
Because AK = Uy = Us; = 0: -U,,+U,; =0

Substitute for each of these energy —mgh, +3 kx? =0
terms to obtain:

Substitute for h; and h;: - mg(L + x)sin 0+ kx> =0
Rewrite this equation explicitly as a 2 2mgsing _2mglLsing _
quadratic equation: k k

Solve this quadratic equation to obtain;

2
x=| Wsing+ || M9 sin29+2mgLsin9
k k k

Note that the negative sign between the two terms leads to a non-physical solution.

*75
Picture the Problem We can find the work done by the girder on the slab by calculating
the change in the potential energy of the slab.

(a) Relate the work the girder does W = AU = mgAh
on the slab to the change in
potential energy of the slab:

Substitute numerical values and W = (1.5><104 kg)(9.81m/32 )(0.001m)
evaluate W: 273

The energy is transferred to the girder from its surroundings, which are
warmer than the girder. As the temperature of the girder rises, the atoms
in the girder vibrate with a greater average kinetic energy, leading to a
larger average separation, which causes the girder's expansion.

(b)
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Picture the Problem The average power delivered by the car’s engine is the rate at
which it changes the car’s energy. Because the car is slowing down as it climbs the hill,
its potential energy increases and its kinetic energy decreases.

Express the average power delivered P — A_E
by the car’s engine: YAt
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Express the increase in the car’s AE = AK +AU

mechanical energy: = Kigp = Kpot T 10p Ut
=Limvg —+mvp, +mgAh
=1 m(vfOp —V, + ZgAh)

Substitute numerical values and evaluate AE:

AE = 1(1500kg)|(10m/s) — (24 m/s) +2(9.81m/s?)(120m)|=1.41MJ

Assuming that the acceleration of Viep T Voot

. s o =———=17m/s
the car is constant, find its average
speed during this climb:
Using the vay, find the time it takes At=As _2000m .00
the car to climb the hill: v, 17m/s
Substitute to determine Pyy: P - 1.41IMJ _ 11.9kW

118s
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Picture the Problem Given the potential energy function as a function of y, we can find
the net force acting on a given system from F = —dU / dy . The maximum extension of
the spring; i.e., the lowest position of the mass on its end, can be found by applying the
work-energy theorem. The equilibrium position of the system can be found by applying
the work-energy theorem with friction ... as can the amount of thermal energy produced
as the system oscillates to its equilibrium position.

(a) The graph of U as a function of 3

y is shown to the right. Because k 0:5 /
and m are not specified, k has been 0s /
set equal to 2 and mg to 1. The E o4 //
spring is unstretched when *

Y = Yo = 0. Note that the minimum Z:oo os o o e 1
value of U (a position of stable 04

equilibrium) occurs neary = 0.5 m. v m

(b) Evaluate the negative of the F__du__d (% ky? mgy)
derivative of U with respect to dy dy

y: =| —ky +mg




(c) Apply conservation of
energy to the movement of the
mass fromy =010y = Ymax:

Because AK = 0 (the object
starts from rest and is
momentarily at rest at y = Ymax)
and W= 0 (no friction), it
follows that:

Because U(0) = 0, it follows
that:

Solve for Ymax:

(d) Express the condition of F at
equilibrium and solve for yeq:

(e) Apply the conservation of
energy to the movement of the mass
fromy=0toy = ye and solve for
Ws:

Because U, =U(0)=0:

Substitute for y.q and simplify to
obtain:

78 e
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AK +AU +W,; =0

AU = U(Ymax) — U(0) = 0

U(ymax) = 0 = %kyriax - mgymax = O

Yimax = K

AK +AU +W,; =0

or, because AK =0,
W, =-AU =U, -U,

W, =-U, =—(1kyZ —mgy,,)

mZgZ

2k

W, =

Picture the Problem The energy stored in the compressed spring is initially transformed
into the kinetic energy of the signal flare and then into gravitational potential energy and
thermal energy as the flare climbs to its maximum height. Let the system contain the
earth, the air, and the flare so that W,,; = 0. We can use the work-energy theorem with
friction in the analysis of the energy transformations during the motion of the flare.

(a) The work done on the spring in
compressing it is equal to the kinetic
energy of the flare at launch.

W, =K

s i,flare —

1 2
2 MYy
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Therefore:

(b) Ignoring changes in gravitational
potential energy (i.e., assume that
the compression of the spring is
small compared to the maximum
elevation of the flare), apply the
conservation of energy to the
transformation that takes place as
the spring decompresses and gives
the flare its launch speed:

Because K; = AUg = Uss:

Substitute for K, and U;:

Solve for k to obtain:

(c) Apply conservation of energy to
the upward trajectory of the flare:

Solve for Ws:

Because Kf= U; = 0:

AK+AU, =0
or
K =K +U, -U,; =0
K -U;; =0
imv; —1kd? =0
K= mv;

d2
AK+AU, +W; =0
W, =-AK -AU,

=K, -K; +U; -U;

W, =| imv; —mgh
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Picture the Problem Let Up = 0. Choose
the system to include the earth, the track,
and the car. Then there are no external
forces to do work on the system and
change its energy and we can use
Newton’s 2™ law and the work-energy
theorem to describe the system’s energy
transformations to point G ... and then the
work-energy theorem with friction to
determine the braking force that brings the
car to a stop. The free-body diagram for
point C is shown to the right.

The free-body diagram for point D is
shown to the right.

The free-body diagram for point
F is shown to the right.

(a) Apply the work-energy theorem
to the system’s energy
transformations between A and B:

If we assume that the car arrives at
point B with vg = 0, then:

Solve for and evaluate Ah:

Substitute numerical values and
evaluate Ah:

Conservation of Energy
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A%,
D
— i —— X
¥ nig
Vv
i
AFE,
F
X— —— — ——
F
¥ nig
AK +AU =0
or

Ky —K,+Ug—U, =0

—imvZ +mgAh =0
where Ah is the difference in elevation
between A and B.

(12m/s)

Ah = =7.34m
2(9.81m/s?)



488 Chapter 7

Express the height above the ground:

(b) If the car just makes it to point
B, i.e., if it gets there with vg = 0,

then the force exerted by the track
on the car will be the normal force:

() Apply D" F, =ma, to the car at

point C (see the FBD) and solve for
and evaluate a:

(d) Apply > F, =ma, to the car at

point D (see the FBD) and solve for
Fn:

Apply the work-energy theorem to
the system’s energy transformations
between B and D:

Because Kg = Up = 0:

Substitute to obtain:
Solve for v3:

Substitute to find F;

Substitute numerical values and
evaluate F;

h+Ah=10m+7.34m=|17.3m

Firack on car = Fy = MY
= (500kg)(9.81m/s?)
=| 4.91kN
mg sin & =ma
and
a = gsind = (9.81m/s? Jsin30°
=| 4.91m/s?

V2
F -mg=m-2
n—Mg R

and
2

v
F, =mg+m-=2
n=mg+mo

AK +AU =0

or

Kp —Kg+Uy,-U; =0
K,-U, =0

1mvZ —mg(h+Ah)=0

v2 =2g(h+aAh)

2
F, :mg+mv—D
R

~mg4m 2g(h+Ah)
R
_ mg[“ 2(h+Ah)}
R
F, = (500kg)(0.81m/s?) ., 207:3m)
! 20m

=|13.4kN, directed upward.




(e) F has two components at point F;
one horizontal (the inward force that
the track exerts) and the other
vertical (the normal force). Apply
> F =mato the car at point F:

Express the resultant of these two
forces:

Substitute numerical values and
evaluate F:

Express the angle the resultant
makes with the x axis:

Substitute numerical values and
evaluate 4

() Apply the work-energy theorem
with friction to the system’s energy
transformations between F and the

car’s stopping position:

The work done by friction is also
given by:

Equate the two expressions for Ws:

Solve for Fyrace

Substitute numerical values and
evaluate Fpraxe
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>F,=F,-mg=0=F, =mg
and

e Ve
ZR—E—mR

4
F = (500 kg)\/M+ (0.81m/s?)?

(30mY

=| 5.46kN

6 =tan™ 5} = tan‘l[g}
F. Vi

f=tan 63.9°

[ (9.81m/s?)(30 m)} B
(12m/s) -

-Kg +W; =0
and
W, = K =1mv3

Wf = I:braked

where d is the stopping distance.

mv;?
I:brake = 2d

_ (500kg)@2m/s)

= =|1.44kN
brake 2(25m)
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*80 -

Picture the Problem The rate of
conversion of mechanical energy can be
determined from P = F -V. The pictorial
representation shows the elevator moving
downward just as it goes into freefall as
state 1. In state 2 the elevator is moving
faster and is about to strike the relaxed
spring. The momentarily at rest elevator on
the compressed spring is shown as state 3.
Let Uy = 0 where the spring has its
maximum compression and the system
consist of the earth, the elevator, and the
spring. Then W,y = 0 and we can apply the
conservation of mechanical energy to the
analysis of the falling elevator and
compressing spring.

(a) Express the rate of conversion of
mechanical energy to thermal
energy as a function of the speed of
the elevator and braking force
acting on it:

Because the elevator is moving with
constant speed, the net force acting
on it is zero and:

Substitute for Fyaxing and evaluate P:

(b) Apply the conservation of
energy to the falling elevator and
compressing spring:

Because K3 = Ug3= U1 = 0:
Rewrite this equation as a quadratic

equation in Ay, the maximum compression
of the spring:

M
il
L@,
Ay M
T —_ Ug =0
1 2 3
P = Fbrakingvo
I:braking = Mg
P = Mgy,
= (2000kg)(9.81m/s?)(L5m/s)
=| 29.4kW

AK+AU, +AU, =0

or
K;—K,+U,,-U,,+U,-U,, =0

~1MvZ —Mg(d +Ay)+ 1k(Ay) =0

2M M
(a9 [ 509y~ (oga )0
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Solve for Ay to obtain: 2.2
’ Ay=%i\/Mkzg +%(29d +v2)

Substitute numerical values and evaluate Ay:

(2000kg)(9.81m/s?)
1.5x10* N/m

2000kg)?(9.81m/s’f  2000kg
- +
(15x10°N/mf  15x10°N/m

[2(0.81m/s?Y5m)+ (L5m/sY |

=|5.19m

81 -

Picture the Problem We can use Newton’s 2" law to determine the force of friction as a
function of the angle of the hill for a given constant speed. The power output of the
engine is given by P = Iff V.

FBD for (a): FBD for (b):

(a) Apply D" F, =ma, to the car: mgsind—F, =0= F, =mgsiné
Evaluate Ffor the two speeds: F,, = (1000 kg)(9.81m/82)sin2.87°
=] 491N
and
F,, = (1000kg)(9.81m/s? )sin5.74°
=| 981N
(b) Express the power an engine P=Fv
must deliver on a level road in order P, = (491N)(20 m/s) _[9.82kW

to overcome friction loss and

evaluate this expression for and
v =20 m/s and 30 m/s: P,, = (981N)(30m/s)=| 29.4kW




492 Chapter 7

() Apply D" F, =ma, to the car:

Relate F to the power output of the
engine and the speed of the car:

Substitute for F and solve for @

Substitute numerical values and
evaluate 9

(d) Express the equivalence of the
work done by the engine in driving
the car at the two speeds:

Let AV represent the volume of fuel
consumed by the engine driving the
car on a level road and divide both
sides of the work equation by AV to
obtain:

Solve for

(As)y,
AV

Substitute numerical values and

(As)y,
AV

evaluate

82  ee
Picture the Problem Let the system
include the earth, block, spring, and

incline. Then W,y = 0. The top pictorial
representation shows the block sliding
down the incline and compressing the
spring. Choose Uy = 0 at the elevation at
which the spring is fully compressed. We
can use the conservation of mechanical

> F =F-mgsind-F, =0
Since P=Fv, F :E
v

P

——F
f=sintV "
mg
40KW 400\
0 = sin- 20m/s
(1000kg)(9.81m/s?)

Wengine =Fy (As)zo =Fy (AS)30

(AS)SO _ FZO (AS)ZO

AV F, AV

(8s), _ 491N (12.7kmi/L)

AV 981N
—[6.36km/L

=1 8.85°
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energy to determine the maximum
compression of the spring.

The pictorial representation to the right
shows the block sliding up the rough
incline after being accelerated by the fully
compressed spring. We can use the work-
energy theorem with friction to determine
how far up the incline the block slides
before stopping.

(a) Apply conservation of AK+AU, +AU =0

mechanical energy to the system as or

it evolves from state 1 to state 3: K;—K, +Ug;-U,,
+Us,3 _Us,l =0

Because -U,,+U,; =0

K3:Kl:Ug,3:US,l:0: or

—mgAh+1ikx* =0

Relate Ahto L + x and @ and Ah = (L +x)sin@
substitute to obtain: ~2kx?* —mg(L +x)sin@ = 0
Rewrite this equation in the form of 1kx® —(mgsin@)x —mgLsind =0

an explicit quadratic equation:

Subs_tltute fork, m, g, 6, and L to [5OEJX2 _ (9.81N)x -3924]1=0
obtain: m
Solve for the physically meaningful X =| 0.989m

(i.e., positive) root:

(b) Proceed as in (a) but include -U, +U,+W, =0
work done by friction:

Express the mechanical energy W, =F(L+x) =uF,(L+x)
transformed to thermal energy: = g, Mg coS 9(|_ + x)
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Substitute for Ah and W; to obtain:

Substitute for k, m, g, 6, u, and L to
obtain:

Solve for the positive root:
(c) Apply the work-energy theorem
with friction to the system as it

evolves from state 3 to state 4:

Because
K, =K, :Ug’3 ZU5,4 =0:

Substitute for Ah’ and W;s to obtain:

Solve for L' with x =0.783 m:

83 oo

—mg(L + x)sin @ + L kx?
+ 1,mgcosO(L+x)=0

(50%}(2 —(6.41N)x—25.65J =0

x=10.783m

K,-K, +Ug’4 —Ug,3
+US’4 —US’3 +W, =0
U

or
—mgAh+1kx? +W, =0

-Ug,; +W, =0

94

—mg(L"+x)sin @ + L1 kx?
+ 1,mg cosO(L'+x)=0

L'=]1.54m

Picture the Problem The work done by the engines maintains the kinetic energy of the
cars and overcomes the work done by frictional forces. Let the system include the earth,
track, and the cars but not the engines. Then the engines will do external work on the
system and we can use this work to find the power output of the train’s engines.

(a) Use the definition of kinetic
energy to evaluate K:

(b) Use the definition of potential
energy to express and evaluate the
change in potential energy of the
train:

(c) Express the energy dissipated by
Kinetic friction:

2

K=%imv

2
km 1h
- 1(2x10° kg 15
e g)( h ><36005j

Il
[T

=117.4MJ

AU = mgAh
= (2x10° kg)(9.81m/s?)(707 m)
=11.39x10"J

W; = FAs



Express the frictional force:

Substitute for F; and evaluate Ws:

(d) Express the power output of the
train’s engines in terms of the work
done by them:

Use the work-energy theorem with
friction to find the work done by the
train’s engines:

Find the time during which the
engines do this work:

Substitute in the expression for P to
obtain:

Substitute numerical values and evaluate P:

P=

(1.39x10% 1 +9.73x10° J)(
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F; =0.008mg
W; =0.008mgAs
= 0.008(2x10° kg)
x(9.81m/s?)(62km)
=|9.73x10°]
p- AW
At

W, = AK + AU +W;
=AU +W,, since AK =0.

at=28
Vv

(AU +W, )v
As

15— x
h 3600s

km 1hj
- 1.59 MW

62km

*84 e

Picture the Problem While on a horizontal surface, the work done by an automobile
engine changes the kinetic energy of the car and does work against friction. These

energy transformations are described by the work-energy theorem with friction. Let the

system include the earth, the roadway, and the car but not the car’s engine.

(a) The required energy equals the
change in the kinetic energy of the
car:

(b) The required energy equals the
work done against friction:

AK =1mv?
2
— 1(1200 kg){SOkme . 61(;]05J
~[116kJ
W, = K As
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Substitute numerical values and W, =(300N)(300m)=| 90.0kJ
evaluate Wy

(c) Apply the work-energy theorem E'=W,, =AK +W;

with friction to express the required =AK +0.75E

energy:

Divide both sides of the equation by E_AK 475

E to express the ratio of the two E E '

energies:

Substitute numerical values and B 116K 575 202
evaluate E'/E: E 90kJ

*85 (1 1]

Picture the Problem Assume that the bob
is moving with speed v as it passes the top
vertical point when looping around the peg.
There are two forces acting on the bob: the
tension in the string (if any) and the force
of gravity, Mg; both point downward when
the ball is in the topmost position. The
minimum possible speed for the bob to
pass the vertical occurs when the tension is
0; from this, gravity must supply the
centripetal force required to keep the ball
moving in a circle. We can use
conservation of energy to relate v to L and
R.

Express the condition that the bob 2
swings around the peg in a full M R > Mg
circle:
Simplify to obtain: v2
R
Use conservation of energy to relate %Mvz — Mg(L - 2R)

the kinetic energy of the bob at the
bottom of the loop to its potential
energy at the top of its swing:

Solve for v* v> =2g(L-2R)

Substitute to obtain: 2g(L-2R)
= >
R



Conservation of Energy 497

Solve for R: 2
R < g L

86 oo
Picture the Problem If the wood exerts an average force F on the bullet, the work it does
has magnitude FD. This must be equal to the change in the kinetic energy of the bullet,
or because the final kinetic energy of the bullet is zero, to the negative of the initial
kinetic energy. We’ll let m be the mass of the bullet and v its initial speed and apply the
work-kinetic energy theorem to relate the penetration depth to v.

Apply the work-kinetic energy W, = AK = K, — K,
theorem to relate the penetration -
depth to the change in the kinetic (\)Ar/, beci;\us}e< Ke=0,
energy of the bullet: total — TN
Substitute for Wi and K; to obtain: FD = —%mvz
Solve for D to obtain: 5 mv2

~2F

For an identical bullet with twice

FD'=—1m(2v)
the speed we have:

Solve for D’ to obtain: 2
DE4{—mVj:4D

and | (c)is correct.
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Picture the Problem For part (a), we’ll let the system include the glider, track, weight,
and the earth. The speeds of the glider and the falling weight will be the same while they
are in motion. Let their common speed when they have moved a distance Y be v and let
the zero of potential energy be at the elevation of the weight when it has fallen the
distance Y. We can use conservation of energy to relate the speed of the glider (and the
weight) to the distance the weight has fallen. In part (b), we’ll let the direction of motion
be the x direction, the tension in the connecting string be T, and apply Newton’s 2™ law
to the glider and the weight to find their common acceleration. Because this acceleration
is constant, we can use a constant-acceleration equation to find their common speed when
they have moved a distance VY.

(a) Use conservation of energy to
relate the kinetic and potential
energies of the system:

Because the system starts from rest
and U;=0:

Substitute to obtain:

AK +AU =0
or
K -K;+U;-U, =0

K, -U, =0

imv? +1iMvZ—mgY =0
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Solve for v:

(b) The free-body diagrams for the
glider and the weight are shown to
the right:

Apply Newton’s 3" law to obtain:

Apply D" F, =mato the glider:
Apply D" F, =mato the weight:

Add these equations to eliminate T
and obtain:

Solve for a to obtain:

Using a constant-acceleration
equation, relate the speed of the
glider to its initial speed and to the
distance that the weight has fallen:

Substitute for a and solve for v to
obtain:

*88 e

V=
r "
A}Fﬂ
)
— s
I
. ¥ mg
Y mg B
T =Te|=T
T =Ma
mg—-T =ma
mg = Ma + ma
a=g m
m+M
v2 =vZ +2aY
or, because vy = 0,
v? =2aY
V= \/M , the same result we
M +m

obtained in part (a).

Picture the Problem We’re given P = dW /dt and are asked to evaluate it under the

assumed conditions.

Express the rate of energy
expenditure by the man:

Express the rate of energy
expenditure P’ assuming that his

muscles have an efficiency of 20%:

P=

3mv? = 3(10kg)(3m/s)’

=270W

P=

Pl

(1



Solve for and evaluate P’';
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Picture the Problem The pictorial
representation shows the bob swinging
through an angle @ before the thread is cut
and it is launched horizontally. Let its
speed at position 1 be v. We can use
conservation of energy to relate v to the
change in the potential energy of the bob as
it swings through the angle . We can find
its flight time At from a constant-
acceleration equation and then express D as
the product of v and At.

Relate the distance D traveled
horizontally by the bob to its launch
speed v and time of flight At:

Use conservation of energy to relate
its launch speed v to the length of
the pendulum L and the angle &:

Substitute to obtain:
Solving for v yields:

In the absence of air resistance, the
horizontal and vertical motions of
the bob are independent of each
other and we can use a constant-
acceleration equation to express the
time of flight (the time to fall a
distance H):

Solve for At to obtain:

Substitute in equation (1) and
simplify to obtain:
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P'=5P =5(270W)=| 1.35kW

D = VAt

)

K,—K,+U;-U, =0
or, because U; = Ky =0,
K,-U,=0

1mv? —mgL(l-cosf)=0

v=J29Li1—cos¢9§

Ay =V, At +1a, (At)
or, because Ay = —H, ay, = —g, and vo, = 0,
~H =-jg(at

At=,2H /g
D =,/2gL(1-cos®) /ZTH

=| 2{/HL(1~cos)

which shows that, while D depends on 6, it
is independent of g.
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Picture the Problem The pictorial representation depicts the block in its initial position
against the compressed spring (1), as it separates from the spring with its maximum
kinetic energy (2), and when it has come to rest after moving a distance x + d. Let the
system consist of the earth, the block, and the surface on which the block slides. With this
choice, Wey: = 0. We can use the work-energy theorem with friction to determine how far
the block will slide before coming to rest.

a =4 a

3
x,=0 Xy =X xy3=x +d
vi=0 vy=7? v3=0

(a) Express the work done by the Wepring = AUgping = % kx?

spring on the block:

Substitute numerical values and WSpring

3(20N/em)(3cm)* =| 0.900]

(b) Relate the energy dissipated by W, = FAX = 1 F,AX = 1, mgAX
friction to the friction force and the
displacement of the block:

Substitute numerical values and W, =(0.2)5 kg)(9.81m/s2 )(0.03 m)
evaluate W —10294]
(c) Apply the conservation of K,-K,+U,,-U,, +W; =0

energy between points 1 and 2:
Because K; = Us, = 0: K,-U,, +W; =0

Substitute to obtain: imvi —1kx® +W, =0

Solve for vy: v = kx® — 2W,
, = [RX = Wy
m



Substitute numerical values and
evaluate vs:

(d) Apply the conservation of
energy between points 1 and 3:

Because AK = Ug3 =0:

Solve for d:

Substitute numerical values and
evaluate d:

91 e
Picture the Problem The pictorial
representation shows the block initially at
rest at point 1, falling under the influence
of gravity to point 2, partially compressing
the spring as it continues to gain Kinetic
energy at point 3, and finally coming to
rest at point 4 with the spring fully
compressed. Let the system consist of the
earth, the block, and the spring so that

Wex: = 0. Let Uy = 0 at point 3 for part (a)
and at point 4 for part (b). We can use the
work-energy theorem to express the kinetic
energy of the system as a function of the
block’s position and then use this function
to maximize K as well as determine the
maximum compression of the spring and
the location of the block when the system
has half its maximum kinetic energy.

(a) Apply conservation of
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. (20N/cm)(3cm) —2(0.2941)
? 5kg

=| 0.492m/s

AK +U_, -U , +W, =0

-U,, +W; =0

or
~1kx® + g,mg(x+d)=0

kx?
= — X
2/4,mg

_ (20N/cm)(3emY
~ 2(0.2)(5kg)(9.81m/s?

=| 6.17cm

—0.08m
)

AK+AU, +AU, =0
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mechanical energy to describe the
energy transformations between
state 1 and state 3:

Because K; = Ug3 = U1 = 0:

Differentiate K with respect to x and
set this derivative equal to zero to
identify extreme values:

Solve for x:

Evaluate the second derivative of K
with respect to x:

Evaluate K for x = mg/k:

(b) The spring will have its
maximum compression at point 4
where K = 0:

Solve for x and keep the physically
meaningful root:

(c) Apply conservation of
mechanical energy to the system as
it evolves from state 1 to the state in
which K = 2K :

Because K; = Ug3 = U1 = 0:

or
K;—K,+U,,-U,,+U,-U;, =0

K, —Ugyl +U,; =0

and
K, = K =mg(h+x) -1 kx?

Z—K =mg — kx = 0 for extreme values.
X
x = M9
k
2
1K _ <o
dt

m ..
= X :Tg maximizesK.

2
Kmax = mgh + mg(%j _%k(%)

2.2

mg
K

=| mgh+

mg(h + Xmax )_%eriax = 0
or
2 _2mg _2m_gh =0
max k max k

2

2
. =m+Jm9 , 2mgh
k2

max k k

AK+AU, +AU, =0

or
K-K;+Ug,;-U,, +U;-Ug, =0

K-U,,+U,; =0



Substitute for K to obtain:

Express this equation in quadratic form:

Solve for the positive value of x:
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Picture the Problem The free-body
diagram shows the forces acting on the
pendulum bob. The application of
Newton’s 2" law leads directly to the
required expression for the tangential
acceleration. Recall that, provided &is in
radian measure, s = L&. Differentiation
with respect to time produces the result
called for in part (b). The remaining parts
of the problem simply require following
the directions for each part.

(@) Apply > F, =ma, to the bob:

Solve for agn:

(b) Relate the arc distance s to the
length of the pendulum L and the
angle 4:

Differentiate with respect to time:

Conservation of Energy 503

and
K =mg(h+x)—1kx?

m?g
k

2

%[mgh+ ]zmg(h+x)—%kx2

k 2k? k
2.2
‘- m+\/2m g° 4mgh
k k? K
o

F

tan

=-mgsind=ma

tan

a,, =dv/dt=-gsiné

s=L6O

ds/dt=|v=_Ld@/dt
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(c) Multiply % by a6 and dv_dvdd dvdeo

d6 dt dtde de dt
substitute for d—‘91‘rom part (b): _ ﬂ(l)
dt do\ L
(d) Equate the expressions for dv/dt ﬂ Vo _gsing
from (a) and (c): dé\ L
Separate the variables to obtain: vdv =—gLsin&deo

jv'dv' = j— gLsin@'dé’
0

6o

(e) Integrate the left side of the
equation in part (d) from v = 0 to the
final speed v and the right side from

0=6t 0 =0:

Evaluate the limits of integration to 1y? = gL(1-cosb,)
obtain:

Note, from the figure, that V= /29h

h =L(1 - cos&). Substitute and

solve for v:
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Picture the Problem The potential energy of the climber is the sum of his gravitational
potential energy and the potential energy stored in the spring-like bungee cord. Let &be
the angle which the position of the rock climber on the cliff face makes with a vertical
axis and choose the zero of gravitational potential energy to be at the bottom of the cliff.
We can use the definitions of Uy and Uspying to express the climber’s total potential
energy.

(a) Express the total potential U (5) = U pngeecord +Yg
energy of the climber:

Substitute to obtain: u(s)

= 1k(s—L)" +Mgy
1k(s—LY +MgH cos®

N~

k(s—L) +MgH cos(%j

A spreadsheet solution is shown below. The constants used in the potential energy
function and the formulas used to calculate the potential energy are as follows:

Cell Content/Formula Algebraic Form
B3 300 H
B4 5 k
B5 60 L
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B6 85 M
B7 9.81 g
D11 60 s
D12 D11+1 s+1
E11 0.5*$B$4*(D11-$B$5)"2 2 s
+$B$6*3BS7*3B33*(cos(D11/9B$3) | 3K(S— L) +MgH Cos(gj
G11 E11-E61 U(60m)-U(110m)
A B C D E
1
2
3 H = | 300 m
4 k=[5 N/m
5 L =60 m
6 m=| 85 kg
7 g=]981 m/s"2
8
9
10 s U(s)
11 60 2.45E+05
12 61 2.45E+05
13 62 2.45E+05
14 63 2.45E+05
15 64 2.45E+05
147 196 | 2.45E+05
148 197 | 2.45E+05
149 198 | 2.45E+05
150 199 | 2.45E+05
151 200 | 2.46E+05

The following graph was plotted using the data from columns D (s) and E (U(s)).
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Picture the Problem The diagram to the
right shows the forces each of the springs
exerts on the block. The change in the
potential energy stored in the springs is due
to the elongation of both springs when the
block is displaced a distance x from its
equilibrium position and we can find AU

using%k(AL)2 . We can find the magnitude

of the force pulling the block back toward
its equilibrium position by finding the sum
of the magnitudes of the y components of
the forces exerted by the springs. In Part
(d) we can use conservation of energy to
find the speed of the block as it passes
through its equilibrium position.

(@) Express the change !n the AU = ZEK(AL)Z]: k(AL)2
potential energy stored in the

springs when the block is displaced where AL is the change in length of a

a distance x: spring.
Referring to the force diagram, AL=vV02+x2 — L
express AL:

Substitute to obtain: 2
AU = k(\/LZ + X2 —L)
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(b) Sum the forces acting on the Frestoring = 2F €080 = 2KAL cos &
block to express Frestoring: «
= 2kAL ——
VL2 +x?
Substitute for AL to obtain: e
l:restoring = 2k( L*+x* - L)#

L®+ x?

L
= 2kx|1-———
[ \/L2+x2j

(c) A spreadsheet program to calculate U(x) is shown below. The constants used in the
potential energy function and the formulas used to calculate the potential energy are as
follows:

Cell Content/Formula Algebraic Form

Bl 1 L

B2 1 K

B3 1 M

C8 C7+0.01 X

D7 $B$2*((C772+$B$12)"0.5-$B$1)"2 U(x)
A B C D

1 L=]0.1 m

2 k=11 N/m

3| M=]1 kg

4

5

6 X U(x)

7 0 0

8 0.01 2.49E-07

9 0.02 3.92E-06

10 0.03 1.94E-05

11 0.04 5.93E-05

12 0.05 1.39E-04

23 0.16 7.86E-03

24 0.17 9.45E-03

25 0.18 1.12E-02

26 0.19 1.32E-02

27 0.20 1.53E-02
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The following graph was plotted using the data from columns C (x) and D (U(x)).

0.00 0.05 0.10 0.15 0.20
x (m)
(d) Use conservation of energy to Kequilibrium =AU
relate the kinetic energy of the block or

as it passes through the equilibrium L a2
position to the change in its 7Mv =AU
potential energy as it returns to its

equilibrium position:

Solve for v to obtain: 2
Ve [2AU _Jzk(\/ﬁ +X° —L)
M

M

=(W—L) iﬂ—k

Substitute numerical values and evaluate v:

v=[\/(0.1m)2 +(0.1mYy —0.1m) /Z—Etlémj =| 5.86¢cm/s




