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Chapter 7 
Conservation of Energy 
 
Conceptual Problems 
 
*1 •  
Determine the Concept Because the peg is frictionless, mechanical energy is conserved 
as this system evolves from one state to another. The system moves and so we know that 
∆K > 0. Because ∆K + ∆U = constant, ∆U < 0. correct. is )( a  

 
2 •  
Determine the Concept Choose the zero of gravitational potential energy to be at ground 
level. The two stones have the same initial energy because they are thrown from the same 
height with the same initial speeds. Therefore, they will have the same total energy at all 
times during their fall. When they strike the ground, their gravitational potential energies 
will be zero and their kinetic energies will be equal.  Thus, their speeds at impact will be 
equal. The stone that is thrown at an angle of 30° above the horizontal has a longer flight 
time due to its initial upward velocity and so they do not strike the ground at the same 
time. correct. is )( c  

 
3 •  
(a) False. Forces that are external to a system can do work on the system to change its 
energy. 
 
(b) False. In order for some object to do work, it must exert a force over some distance. 
The chemical energy stored in the muscles of your legs allows your muscles to do the 
work that launches you into the air. 
 
4 •  
Determine the Concept Your kinetic energy increases at the expense of chemical 
energy. 
 
*5 •  
Determine the Concept As she starts pedaling, chemical energy inside her body is 
converted into kinetic energy as the bike picks up speed.  As she rides it up the hill, 
chemical energy is converted into gravitational potential and thermal energy.  While 
freewheeling down the hill, potential energy is converted to kinetic energy, and while 
braking to a stop, kinetic energy is converted into thermal energy (a more random form of 
kinetic energy) by the frictional forces acting on the bike. 
 
*6 •  
Determine the Concept If we define the system to include the falling body and the earth, 
then no work is done by an external agent and ∆K + ∆Ug + ∆Etherm= 0. Solving for the 
change in the gravitational potential energy we find ∆Ug = −(∆K + friction energy). 
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correct. is )( b  

 
7 ••  
Picture the Problem Because the constant friction force is responsible for a constant 
acceleration, we can apply the constant-acceleration equations to the analysis of these 
statements. We can also apply the work-energy theorem with friction to obtain 
expressions for the kinetic energy of the car and the rate at which it is changing. Choose 
the system to include the earth and car and assume that the car is moving on a horizontal 
surface so that ∆U = 0. 
 
(a) A constant frictional force 
causes a constant acceleration. The 
stopping distance of the car is 
related to its speed before the brakes 
were applied through a constant-
acceleration equation.  
 

0.    where22
0

2 =∆+= vsavv  

0.    where
2

2
0 <

−
=∆∴ a

a
vs  

Thus, ∆s ∝ 2
0v  and statement (a) is false. 

(b) Apply the work-energy theorem 
with friction to obtain: 
 

smgWK ∆−=−=∆ kf µ  

 

Express the rate at which K is 
dissipated: t

smg
t
K

∆
∆

−=
∆
∆

kµ  

 
 Thus, v

t
K

∝
∆
∆

and therefore not constant. 

Statement (b) is false. 
 

(c) In part (b) we saw that: K ∝ ∆s 
 

Because ∆s ∝ ∆t: K ∝ ∆t and statement (c) is false. 
 

Because none of the above are correct: correct. is )( d  

 
8 •  
Picture the Problem We’ll let the zero of potential energy be at the bottom of each ramp 
and the mass of the block be m. We can use conservation of energy to predict the speed 
of the block at the foot of each ramp. We’ll consider the distance the block travels on 
each ramp, as well as its speed at the foot of the ramp, in deciding its descent times.  
 
Use conservation of energy to find 
the speed of the blocks at the bottom 
of each ramp: 
 

0=∆+∆ UK  
or 

0topbottopbot =−+− UUKK  
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Because Ktop = Ubot = 0: 
 

0topbot =−UK  

Substitute to obtain: 
 

02
bot2

1 =− mgHmv  

Solve for vbot: gHv 2bot = independently of the shape of 
the ramp. 
 

 Because the block sliding down the circular 
arc travels a greater distance (an arc length 
is greater than the length of the chord it 
defines) but arrives at the bottom of the 
ramp with the same speed that it had at the 
bottom of the inclined plane, it will require 
more time to arrive at the bottom of the arc. 

correct. is )(b  

 
9 ••   
Determine the Concept No. From the work-kinetic energy theorem, no total work is 
being done on the rock, as its kinetic energy is constant.  However, the rod must exert a 
tangential force on the rock to keep the speed constant. The effect of this force is to 
cancel the component of the force of gravity that is tangential to the trajectory of the 
rock. 
 
Estimation and Approximation  
 
*10 ••  
Picture the Problem We’ll use the data for the "typical male" described above and 
assume that he spends 8 hours per day sleeping, 2 hours walking, 8 hours sitting, 1 hour 
in aerobic exercise, and 5 hours doing moderate physical activity. We can approximate 
his energy utilization using activityactivityactivity tAPE ∆= , where A is the surface area of his 
body, Pactivity is the rate of energy consumption in a given activity, and ∆tactivity is the time 
spent in the given activity. His total energy consumption will be the sum of the five terms 
corresponding to his daily activities. 
 
(a) Express the energy consumption 
of the hypothetical male: 
 act. aerobicact. mod.

sittingwalkingsleeping

EE

EEEE

++

++=
 

 
Evaluate Esleeping: 

( )( )( )( )
J1030.2

s/h3600h8W/m40m2
6

22

sleepingsleepingsleeping

×=

=

∆= tAPE

 

 
Evaluate Ewalking: 

( )( )( )( )
J1030.2

s/h3600h2W/m160m2
6

22

walkingwalkingwalking

×=

=

∆= tAPE
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Evaluate Esitting: 

( )( )( )( )
J1046.3

s/h3600h8W/m60m2
6

22

sittingsittingsitting

×=

=

∆= tAPE

 

 
Evaluate Emod. act.: 

( )( )( )( )
J1030.6

s/h3600h5W/m175m2
6

22
act. mod.act. mod.act. mod.

×=

=

∆= tAPE

 

 
Evaluate Eaerobic act.: 

( )( )( )( )
J1016.2

s/h3600h1W/m300m2
6

22
act. aerobicact. aerobicact. aerobic

×=

=

∆= tAPE

 
 

Substitute to obtain: 

J105.16

J1016.2J1030.6
J1046.3J1030.2J1030.2

6

66

666

×=

×+×+

×+×+×=E

 
 

Express the average metabolic rate 
represented by this energy 
consumption: 
 

( )( ) W191
s/h3600h24
J1016.5 6

av =
×

=
∆

=
t

EP  

or about twice that of a 100 W light bulb. 
 

(b)  Express his average energy 
consumption in terms of kcal/day: kcal/day3940

J/kcal4190
J/day1016.5 6

=
×

=E  

 
(c)   

kcal/lb22.5
lb175
kcal3940

=  is higher than the 

estimate given in the statement of the 
problem. However, by adjusting the day's 
activities, the metabolic rate can vary by 
more than a factor of 2.   

 
11 •  
Picture the Problem The rate at which you expend energy, i.e., do work, is defined as 
power and is the ratio of the work done to the time required to do the work. 
 
Relate the rate at which you can 
expend energy to the work done in 
running up the four flights of stairs 
and solve for your running time: 

P
Wt

t
WP ∆

=∆⇒
∆

∆
=  
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Express the work done in climbing 
the stairs: 
 

mghW =∆  

Substitute for ∆W to obtain: 
P

mght =∆  

 
Assuming that your weight is 600 
N, evaluate ∆t: 

( )( ) s6.33
W250

m3.54N600
=

×
=∆t  

 
12 •  
Picture the Problem The intrinsic rest energy in matter is related to the mass of matter 
through Einstein’s equation .2

0 mcE =  

 
(a) Relate the rest mass consumed to 
the energy produced and solve for 
and evaluate m: 

2
02

0 c
EmmcE =⇒=               (1) 

( ) kg1011.1
m/s10998.2

J1 17
28

−×=
×

=m

 
(b) Express the energy required as a 
function of the power of the light 
bulb and evaluate E: 

( )( )

J1047.9

h
s3600

d
h24

y
d365.24

y10W1003
3

10×=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

=
= PtE

 

 
Substitute in equation (1) to obtain: 

( ) g05.1
m/s10998.2

J1047.9
28

10

µ=
×

×
=m  

 
*13 •  
Picture the Problem There are about 3×108 people in the United States.  On the 
assumption that the average family has 4 people in it and that they own two cars, we have 
a total of 1.5×108 automobiles on the road (excluding those used for industry). We’ll 
assume that each car uses about 15 gal of fuel per week. 
 
Calculate, based on the assumptions identified above, the total annual consumption of 
energy derived from gasoline: 
 

( ) J/y103.04
gal
J102.6weeks52

weekauto
gal15auto101.5 1988 ×=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⋅
×

y
 

 
Express this rate of energy use as a 
fraction of the total annual energy use by 
the US: 

%6
J/y105

J/y103.04
20

19

≈
×

×
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Remarks: This is an average power expenditure of roughly 9x1011 watt, and a total 
cost (assuming $1.15 per gallon) of about 140 billion dollars per year. 
 
14 •  
Picture the Problem The energy consumption of the U.S. works out to an average power 
consumption of about 1.6×1013 watt.  The solar constant is roughly 103 W/m2 (reaching 
the ground), or about 120 W/m2 of useful power with a 12% conversion efficiency. 
Letting P represent the daily rate of energy consumption, we can relate the power 
available at the surface of the earth to the required area of the solar panels using IAP = . 
 
Relate the required area to the 
electrical energy to be generated by 
the solar panels: 
 

IAP =  
where I is the solar intensity that reaches the 
surface of the Earth. 

Solve for and evaluate A: ( )

211

2

13

m1067.2
W/m120

W101.62

×=

×
==

I
PA

 

where the factor of 2 comes from the fact that 
the sun is only up for roughly half the day. 
 

Find the side of a square with this 
area: km516m1067.2 211 =×=s  

 
Remarks: A more realistic estimate that would include the variation of sunlight over 
the day and account for latitude and weather variations might very well increase the 
area required by an order of magnitude. 
 
15 •  
Picture the Problem We can relate the energy available from the water in terms of its 
mass, the vertical distance it has fallen, and the efficiency of the process. Differentiation 
of this expression with respect to time will yield the rate at which water must pass 
through its turbines to generate Hoover Dam’s annual energy output. 
 
Assuming a total efficiencyη, use 
the definition of gravitational 
potential energy to express the 
energy available from the water 
when it has fallen a distance h: 
 

mghE η=  

Differentiate this expression with 
respect to time to obtain: 
 

[ ]
dt
dVgh

dt
dmghmgh

dt
dP ηρηη ===  

Solve for dV/dt: 
 gh

P
dt
dV

ηρ
=                        (1) 

 
Using its definition, relate the dam’s 
annual power output to the energy 
produced: t

EP
∆
∆

=  
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Substitute numerical values to 
obtain: ( )( ) W1057.4

h/d24d365.24
hkW104 8

9

×=
⋅×

=P  

 
Substitute in equation (1) and 
evaluate dV/dt: ( )( )( )

L/s1010.1

m211m/s9.81kg/L12.0
W1057.4

6

2

8

×=

×
=

dt
dV

 

 
The Conservation of Mechanical Energy 
 
16 •  
Picture the Problem The work done in compressing the spring is stored in the spring as 
potential energy. When the block is released, the energy stored in the spring is 
transformed into the kinetic energy of the block. Equating these energies will give us a 
relationship between the compressions of the spring and the speeds of the blocks.  

 
Let the numeral 1 refer to the first 
case and the numeral 2 to the second 
case.  Relate the compression of the 
spring in the second case to its 
potential energy, which equals its 
initial kinetic energy when released: 
 

( )( )
2
11

2
112

1

2
222

12
22

1

18

34

vm

vm

vmkx

=

=

=

 

Relate the compression of the spring 
in the first case to its potential 
energy, which equals its initial 
kinetic energy when released: 
 

2
112

12
12

1 vmkx =  

or 
2
1

2
11 kxvm =  

Substitute to obtain: 2
1

2
22

1 18kxkx =  

 
Solve for x2: 12 6xx =  

 
17 •  
Picture the Problem Choose the zero of gravitational potential energy to be at the foot of 
the hill. Then the kinetic energy of the woman on her bicycle at the foot of the hill is equal 
to her gravitational potential energy when she has reached her highest point on the hill. 

 
Equate the kinetic energy of the 
rider at the foot of the incline and 
her gravitational potential energy 
when she has reached her highest 

g
vhmghmv
2

2
2

2
1 =⇒=  
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point on the hill and solve for h: 
 
Relate her displacement along the 
incline d to h and the angle of the 
incline: 
 

d = h/sinθ 

Substitute for h to obtain: 
g

vd
2

sin
2

=θ  

 
Solve for d: 

θsin2

2

g
vd =  

 
Substitute numerical values and 
evaluate d: 

( )
( ) m4.97

sin3m/s9.812
m/s10

2

2

=
°

=d  

and correct. is )( c  

  
*18 •  
Picture the Problem The diagram shows 
the pendulum bob in its initial position. Let 
the zero of gravitational potential energy be 
at the low point of the pendulum’s swing, 
the equilibrium position.   We can find the 
speed of the bob at it passes through the 
equilibrium position by equating its initial 
potential energy to its kinetic energy as it 
passes through its lowest point. 

 

 
 

Equate the initial gravitational 
potential energy and the kinetic 
energy of the bob as it passes 
through its lowest point and solve 
for v: 
 

hgv

mvhmg

∆=

=∆

2

and

2
2
1

 

 

Express ∆h in terms of the length L 
of the  
pendulum: 

4
Lh =∆  

 
Substitute and simplify: 

2
gLv =  
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19 •  
Picture the Problem Choose the zero of gravitational potential energy to be at the foot 
of the ramp. Let the system consist of the block, the earth, and the ramp. Then there are 
no external forces acting on the system to change its energy and the kinetic energy of the 
block at the foot of the ramp is equal to its gravitational potential energy when it has 
reached its highest point. 

 
Relate the gravitational potential 
energy of the block when it has 
reached h, its highest point on the 
ramp, to its kinetic energy at the foot 
of the ramp: 
 

2
2
1 mvmgh =  

 

Solve for h:  
 g

vh
2

2

=  

 
Relate the displacement d of the 
block along the ramp to h and the 
angle the ramp makes with the 
horizontal: 
 

d = h/sinθ 

Substitute for h:  
g

vd
2

sin
2

=θ  

 
Solve for d: 

θsin2

2

g
vd =  

Substitute numerical values and 
evaluate d: 

( )
( ) m89.3

sin40m/s9.812
m/s7

2

2

=
°

=d  

 
20 •  
Picture the Problem Let the system consist of the earth, the block, and the spring. With 
this choice there are no external forces doing work to change the energy of the system. Let 
Ug = 0 at the elevation of the spring. Then the initial gravitational potential energy of the 
3-kg object is transformed into kinetic energy as it slides down the ramp and then, as it 
compresses the spring, into potential energy stored in the spring.  
 
(a) Apply conservation of energy to 
relate the distance the spring is 
compressed to the initial potential 
energy of the block: 
 

0ext =∆+∆= UKW  

and, because ∆K = 0,  
02

2
1 =+− kxmgh  
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Solve for x: 

k
mghx 2

=  

 
Substitute numerical values and 
evaluate x: 

( )( )( )

m858.0

N/m400
m5m/s9.81kg32 2

=

=x
 

 
(b) The energy stored in the 
compressed spring will accelerate 
the block, launching it back up the 
incline: 

m. 5 ofheight  a  torising
 path, its retrace block will The

 

 
21 •   
Picture the Problem With Ug chosen to be zero at the uncompressed level of the spring, 
the ball’s initial gravitational potential energy is negative. The difference between the 
initial potential energy of the spring and the gravitational potential energy of the ball is 
first converted into the kinetic energy of the ball and then into gravitational potential 
energy as the ball rises and slows … eventually coming momentarily to rest.  

 
Apply the conservation of energy to 
the system as it evolves from its 
initial to its final state:  
 

mghkxmgx =+− 2
2
1  

Solve for h: 
x

mg
kxh −=
2

2

 

 
Substitute numerical values and 
evaluate h: 

( )( )
( )( )

m05.5

m05.0
m/s9.81kg0.0152
m0.05N/m600

2

2

=

−=h
 

 
22 •  
Picture the Problem Let the system include the earth and the container. Then the work 
done by the crane is done by an external force and this work changes the energy of the 
system. Because the initial and final speeds of the container are zero, the initial and final 
kinetic energies are zero and the work done by the crane equals the change in the 
gravitational potential energy of the container. Choose Ug = 0 to be at the level of the 
deck of the freighter.  

 
Apply conservation of energy to the 
system: 
 

UKEW ∆+∆=∆= sysext  
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Because ∆K = 0: 
 

hmgUW ∆=∆=ext  

Evaluate the work done by the crane: 
( )( )( )

kJ314

m8m/s9.81kg4000 2
ext

−=

−=

∆= hmgW

 

 
23 •  
Picture the Problem Let the system 
consist of the earth and the child. Then Wext 
= 0. Choose Ug,i = 0 at the child’s lowest 
point as shown in the diagram to the right. 
Then the child’s initial energy is entirely 
kinetic and its energy when it is at its 
highest point is entirely gravitational 
potential. We can determine h from energy 
conservation and then use trigonometry to 
determine θ.   

 
Using the diagram, relate θ to h and 
L: 

⎟
⎠
⎞

⎜
⎝
⎛ −=

−
= −−

L
h

L
hL 1coscos 11θ  

 
Apply conservation of energy to the 
system to obtain: 

02
i2

1 =− mghmv  

 
 

Solve for h: 
g

vh
2

2
i=  

 
Substitute to obtain:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= −

gL
v

2
1cos

2
i1θ  

 
Substitute numerical values and 
evaluate θ : 

( )
( )( )

°=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= −

6.25

m6m/s9.812
m/s3.41cos 2

2
1θ

 

 
*24 ••  
Picture the Problem Let the system include the two objects and the earth. Then Wext = 0. 
Choose Ug = 0 at the elevation at which the two objects meet. With this choice, the initial 
potential energy of the 3-kg object is positive and that of the 2-kg object is negative. 
Their sum, however, is positive. Given our choice for Ug = 0, this initial potential energy 
is transformed entirely into kinetic energy.  
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Apply conservation of energy: 0gext =∆+∆= UKW  

or, because Wext = 0, 
∆K = −∆Ug 

 
Substitute for ∆K and solve for vf; 
noting that m represents the sum of 
the masses of the objects as they are 
both moving in the final state: 
 

g
2
i2

12
f2

1 Umvmv ∆−=−  

or, because vi = 0, 

m
U

v g
f

2∆−
=  

 
Express and evaluate ∆Ug: 

( )( )
( )

J91.4
m/s9.81

m0.5kg2kg30
2

ig,fg,g

−=
×

−−=

−=∆ UUU

 

 
Substitute and evaluate vf: ( ) m/s1.40

kg5
J4.912

f =
−−

=v  

 
25 ••  
Picture the Problem The free-body 
diagram shows the forces acting on the 
block when it is about to move. Fsp is the 
force exerted by the spring and, because 
the block is on the verge of sliding, fs = 
fs,max. We can use Newton’s 2nd law, under 
equilibrium conditions, to express the 
elongation of the spring as a function of m, 
k and θ  and then substitute in the 
expression for the potential energy stored 
in a stretched or compressed spring. 

 

 

 
Express the potential energy of the 
spring when the block is about to 
move: 
 

2
2
1 kxU =  

Apply ,m∑ = aF rr
under equilibrium 

conditions, to the block: 
 ∑

∑

=−=

=−−=

0cos
and

0sin

n

maxs,sp

θ

θ

mgFF

mgfFF

y

x
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Using fs,max = µsFn and Fsp = kx, 
eliminate fs,max and Fsp from the x 
equation and solve for x: 
 

( )
k

mgx θµθ cossin s+
=  

Substitute for x in the expression  
for U: 

( )

( )[ ]
k

mg

k
mgkU

2
cossin

cossin

2
s

2
s

2
1

θµθ

θµθ

+
=

⎥⎦
⎤

⎢⎣
⎡ +

=
 

 
26 ••  
Picture the Problem The mechanical 
energy of the system, consisting of the 
block, the spring, and the earth, is initially 
entirely gravitational potential energy. Let 
Ug = 0 where the spring is compressed 15 
cm. Then the mechanical energy when the 
compression of the spring is 15 cm will be 
partially kinetic and partially stored in the 
spring. We can use conservation of energy 
to relate the initial potential energy of the 
system to the energy stored in the spring 
and the kinetic energy of block when it has 
compressed the spring 15 cm.  
 
Apply conservation of energy to  
the system: 
 

0=∆+∆ KU  
or  

0ifis,fs,ig,fg, =−+−+− KKUUUU  

 
Because Ug,f = Us,I = Ki = 0: 
 

0ffs,ig, =++− KUU  

Substitute to obtain: 
 

( ) 02
2
12

2
1 =+++− mvkxxhmg  

 
Solve for v: 

( )
m

kxxhgv
2

2 −+=  

 
Substitute numerical values and evaluate v: 
 

( )( ) ( )( ) m/s00.8
kg2.4

m0.15N/m3955m0.15m5m/s9.812
2

2 =−+=v  
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*27 ••  
Picture the Problem The diagram 
represents the ball traveling in a circular 
path with constant energy. Ug has been 
chosen to be zero at the lowest point on the 
circle and the superimposed free-body 
diagrams show the forces acting on the ball 
at the top and bottom of the circular path. 
We’ll apply Newton’s 2nd law to the ball at 
the top and bottom of its path to obtain a 
relationship between TT and TB and the 
conservation of mechanical energy to 
relate the speeds of the ball at these two 
locations.  
 
Apply ∑ = radialradial maF to the ball 

at the bottom of the circle and solve 
for TB: 

R
vmmgT

2
B

B =−  

and 

R
vmmgT

2
B

B +=                          (1) 

 
Apply ∑ = radialradial maF to the ball 

at the top of the circle and solve for 
TT: 

R
vmmgT

2
T

T =+  

and 

R
vmmgT

2
T

T +−=                        (2) 

 
Subtract equation (2) from equation 
(1) to obtain: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−

+=−

R
vmmg

R
vmmgTT

2
T

2
B

TB

 

mg
R
vm

R
vm 2

2
T

2
B +−=     (3) 

 
Using conservation of energy, relate 
the mechanical energy of the ball at 
the bottom of its path to its 
mechanical energy at the top of the 

circle and solve for 
R
vm

R
vm

2
T

2
B − : 

 

( )Rmgmvmv 22
T2

12
B2

1 +=  

mg
R
vm

R
vm 4

2
T

2
B =−  

Substitute in equation (3) to obtain: mgTT 6TB =−  
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28 ••  
Picture the Problem Let Ug = 0 at the 
lowest point in the girl’s swing. Then we 
can equate her initial potential energy to 
her kinetic energy as she passes through 
the low point on her swing to relate her 
speed v to R. The FBD show the forces 
acting on the girl at the low point of her 
swing. Applying Newton’s 2nd law to her 
will allow us to establish the relationship 
between the tension T and her speed.  

 
 
Apply ∑ = radialradial maF to the girl 

at her lowest point and solve for T: 

R
vmmgT

R
vmmgT

2

2

and

+=

=−

 

 
Equate the girl’s initial potential 
energy to her final kinetic energy 

and solve for 
R
v2

: 

 

g
R
vmvRmg =⇒=

2
2

2
1

2
 

 

Substitute for v2/R2 and simplify to 
obtain: 

mgmgmgT 2=+=  

 
29 ••  
Picture the Problem The free-body 
diagram shows the forces acting on the car 
when it is upside down at the top of the 
loop. Choose Ug = 0 at the bottom of the 
loop. We can express Fn in terms of v and 
R by apply Newton’s 2nd law to the car and 
then obtain a second expression in these 
same variables by applying the 
conservation of mechanical energy. The 
simultaneous solution of these equations 
will yield an expression for Fn in terms of 
known quantities. 

 

 

 
Apply ∑ = radialradial maF to the car 

at the top of the circle and solve for 
Fn: 

R
vmmgF

2

n =+  

and 

mg
R
vmF −=

2

n                           (1) 
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Using conservation of energy, relate 
the energy of the car at the 
beginning of its motion to its energy 
when it is at the top of the loop: 
 

( )RmgmvmgH 22
2
1 +=  

Solve for 
R
vm

2

: ⎟
⎠
⎞

⎜
⎝
⎛ −= 22

2

R
Hmg

R
vm                       (2) 

 
Substitute equation (2) in equation 
(1) to obtain: 

⎟
⎠
⎞

⎜
⎝
⎛ −=

−⎟
⎠
⎞

⎜
⎝
⎛ −=

52

22n

R
Hmg

mg
R
HmgF

 

 
Substitute numerical values and evaluate Fn: 
 

( ) ( ) ( ) N1067.15
m7.5
m232m/s9.81kg1500 42

n ×=⎥
⎦

⎤
⎢
⎣

⎡
−=F  and correct. is )( c  

 
30 •  
Picture the Problem Let the system 
include the roller coaster, the track, and the 
earth and denote the starting position with 
the numeral 0 and the top of the second hill 
with the numeral 1. We can use the work-
energy theorem to relate the energies of the 
coaster at its initial and final positions. 

 
 
(a) Use conservation of energy to 
relate the work done by external 
forces to the change in the energy of 
the system: 
  

UKEW ∆+∆=∆= sysext  
 
 

Because the track is frictionless, 
Wext = 0: 
 

0=∆+∆ UK  
and 

00101 =−+− UUKK  
 

Substitute to obtain: 
 

001
2
02

12
12

1 =−+− mghmghmvmv  

Solve for v0: ( )01
2
10 2 hhgvv −+=  

 
If the coaster just makes it to the top 
of the second hill, v1 = 0 and: 
 

( )010 2 hhgv −=  
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Substitute numerical values and 
evaluate v0: 

( )( )
m/s9.40

m5m9.5m/s9.812 2
0

=

−=v
 

 
(b) 

hills.  two theof heights in the
difference on theonly  depends

speed required  that theNote No.
 

 
31 ••  
Picture the Problem Let the radius of the 
loop be R and the mass of one of the riders 
be m. At the top of the loop, the centripetal 
force on her is her weight (the force of 
gravity). The two forces acting on her at 
the bottom of the loop are the normal force 
exerted by the seat of the car, pushing up, 
and the force of gravity, pulling down.  We 
can apply Newton’s 2nd law to her at both 
the top and bottom of the loop to relate the 
speeds at those locations to m and R and, at 
b, to F, and then use conservation of 
energy to relate vt and vb.   
 
Apply radialradial maF =∑ to the 
rider at the bottom of the circular 
arc: 
 

R
vmmgF

2
b=−  

Solve for F to obtain: 
 R

vmmgF
2
b+=                    (1) 

 
Apply radialradial maF =∑ to the 
rider at the top of the circular arc: 
 

R
vmmg

2
t=  

Solve for 2
t v : gRv =2

t  
 

Use conservation of energy to relate 
the energies of the rider at the top 
and bottom of the arc: 
 

0tbtb =−+− UUKK  
or, because Ub = 0, 

0ttb =−− UKK  

Substitute to obtain: 
 

022
t2

12
b2

1 =−− mgRmvmv  

Solve for 2
bv : gRvb 52 =  

 
Substitute in equation (1) to obtain: 
 mg

R
gRmmgF 65

=+=  

i.e., the rider will feel six times heavier 
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than her normal weight. 
 
*32 ••  
Picture the Problem Let the system 
consist of the stone and the earth and 
ignore the influence of air resistance. Then 
Wext = 0. Choose Ug = 0 as shown in the 
figure. Apply the law of the conservation 
of mechanical energy to describe the 
energy transformations as the stone rises to 
the highest point of its trajectory. 

 
 
Apply conservation of energy: 
 

0ext =∆+∆= UKW  

and 
00101 =−+− UUKK  

 
Because U0 = 0: 
 

0101 =+− UKK  

Substitute to obtain: 
 

02
2
12

2
1 =+− mgHmvmvx  

In the absence of air resistance, the 
horizontal component of vr is 
constant and equal to vx = vcosθ. 
Hence: 
 

( ) 0cos 2
2
12

2
1 =+− mgHmvvm θ  

Solve for v: 

θ2cos1
2

−
=

gHv  

 
Substitute numerical values and 
evaluate v: 

( )( ) m/s2.27
53cos1

m24m/s9.812
2

2

=
°−

=v  
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33 •• 
Picture the Problem Let the system 
consist of the ball and the earth. Then  
Wext = 0. The figure shows the ball being 
thrown from the roof of a building. Choose 
Ug = 0 at ground level. We can use the 
conservation of mechanical energy to 
determine the maximum height of the ball 
and its speed at impact with the ground. 
We can use the definition of the work done 
by gravity to calculate how much work was 
done by gravity as the ball rose to its 
maximum height.  
 
(a) Apply conservation of energy: 0ext =∆+∆= UKW  

or 
01212 =−+− UUKK  

 
Substitute for the energies to obtain: 
 

012
2
12

12
22

1 =−+− mghmghmvmv  

Note that, at point 2, the ball is 
moving horizontally and: 
 

θcos12 vv =  

Substitute for v2 and h2: 
 

( )
0

cos

1

2
12

12
12

1

=−

+−

mgh
mgHmvvm θ

 

 
Solve for H: ( )1cos

2
2

2

1 −−= θ
g

vhH  

 
Substitute numerical values and 
evaluate H: 

( )
( )( )

m0.31

140cos
m/s9.812

m/s30m21 2
2

2

=

−°−=H
 

 
(b) Using its definition, express the 
work done by gravity: 

( )
( ) ( )ii

g i

hHmgmghmgH

UUUW hH

−−=−−=

−−=∆−=
 

 
 

Substitute numerical values and 
evaluate Wg: 

( )( )( )
J7.31

m12m31m/s9.81kg0.17 2
g

−=

−−=W
 

 
(c) Relate the initial mechanical 2

f2
1

i
2
i2

1 mvmghmv =+  
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energy of the ball to its just-before-
impact energy: 
 

 

Solve for vf: i
2
if 2ghvv +=  

 
Substitute numerical values and 
evaluate vf 

( ) ( )( )
m/s7.33

m12m/s9.812m/s30 22
f

=

+=v
 

 
34 ••  
Picture the Problem The figure shows the 
pendulum bob in its release position and in 
the two positions in which it is in motion 
with the given speeds. Choose Ug = 0 at 
the low point of the swing. We can apply 
the conservation of mechanical energy to 
relate the two angles of interest to the 
speeds of the bob at the intermediate and 
low points of its trajectory.  
 
(a) Apply conservation of energy: 0ext =∆+∆= UKW  

or 

.zeroequalandwhere
0

if

ifif

KU
UUKK =−+−

 

0if =−∴ UK  

 
Express Ui: ( )0i cos1 θ−== mgLmghU  

 
Substitute for Kf and Ui: ( ) 0cos1 0

2
f2

1 =−− θmgLmv  

 
Solve for θ0: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= −

gL
v

2
1cos

2
1

0θ  

 
Substitute numerical values and 
evaluate θ0: 

( )
( )( )

°=

⎥
⎦

⎤
⎢
⎣

⎡
−= −

0.60

m0.8m/s9.812
m/s2.81cos 2

2
1

0θ
 

 
(b) Letting primed quantities 
describe the indicated location, use 
the law of the conservation of 
mechanical energy to relate the 

.0where
0

i

ifif

=
=−+−

K
U'UK'K

 

0iff =−+∴ U'U'K  
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speed of the bob at this point to θ : 
Express 'U f : ( )θcos1f −== mgLmgh'U '  

 
Substitute for iff and, U'U'K : ( ) ( )

( ) 0cos1
cos1

0

2
f2

1

=−−
−+

θ
θ

mgL
mgL'vm

 

 
Solve for θ : ( )

⎥
⎦

⎤
⎢
⎣

⎡
+= −

0

2
f1 cos

2
'cos θθ

gL
v

 

 
Substitute numerical values and 
evaluate θ : 

( )
( )( )

°=

⎥
⎦

⎤
⎢
⎣

⎡
°+= −

3.51

60cos
m0.8m/s9.812

m/s4.1cos 2

2
1θ

 
 
*35 ••  
Picture the Problem Choose Ug = 0 at 
the bridge, and let the system be the earth, 
the jumper and the bungee cord. Then 
Wext = 0. Use the conservation of 
mechanical energy to relate to relate her 
initial and final gravitational potential 
energies to the energy stored in the 
stretched bungee, Us cord. In part (b), 
we’ll use a similar strategy but include a 
kinetic energy term because we are 
interested in finding her maximum speed.   
 
(a) Express her final height h above 
the water in terms of L, d and the 
distance x the bungee cord has 
stretched: 
 

h = L – d − x                                    (1) 

Use the conservation of mechanical 
energy to relate her gravitational 
potential energy as she just touches 
the water to the energy stored in the 
stretched bungee cord: 
 

0ext =∆+∆= UKW  

Because ∆K = 0 and ∆U = ∆Ug + ∆Us, 
,02

2
1 =+− kxmgL  

where x is the maximum distance the 
bungee cord has stretched.  

Solve for k: 
2

2
x
mgLk =           
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Find the maximum distance the 
bungee cord stretches: 
 

x = 310 m – 50 m = 260 m. 

Evaluate k: ( )( )( )
( )

N/m40.5
m260

m310m/s9.81kg602
2

2

=

=k
 

 
Express the relationship between the 
forces acting on her when she has 
finally come to rest and solve for x: 
 

0net =−= mgkxF  

and 

k
mgx =  

 
Evaluate x: ( )( ) m109

N/m5.40
m/s9.81kg60 2

==x  

 
Substitute in equation (1) and 
evaluate h: 

m151m109m50m310 =−−=h  

 
(b) Using conservation of energy, 
express her total energy E: 
 

0isg ==++= EUUKE  

Because v is a maximum when K is 
a maximum, solve for K and set its 
derivative with respect to x equal to 
zero: 
 

( ) 2
2
1

sg

kxxdmg

UUK

−+=

−−=
                (1) 

 valuesextremefor  0=−= kxmg
dx
dK

 

Solve for and evaluate x: ( )( ) m109
N/m5.40

m/s9.81kg60 2

===
k

mgx  

 
From equation (1) we have: ( ) 2

2
12

2
1 kxxdmgmv −+=  

 
 

Solve for v to obtain: 
( )

m
kxxdgv

2

2 −+=  

 
Substitute numerical values and evaluate v for x = 109 m: 
 

( )( ) ( )( ) m/s3.45
kg60

m109N/m5.4m109m50m/s9.812
2

2 =−+=v  
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Because :02

2

<−= k
dx

Kd
 

x = 109 m corresponds to Kmax and so v is a 
maximum. 

 
36 ••  
Picture the Problem Let the system be the 
earth and pendulum bob. Then  
Wext = 0. Choose Ug = 0 at the low point of 
the bob’s swing and apply the law of the 
conservation of mechanical energy to its 
motion. When the bob reaches the 30° 
position its energy will be partially kinetic 
and partially potential. When it reaches its 
maximum height, its energy will be 
entirely potential. Applying Newton’s 2nd 
law will allow us to express the tension in 
the string as a function of the bob’s speed 
and its angular position. 

 

 

 
(a) Apply conservation of energy to 
relate the energies of the bob at 
points 1 and 2: 0

or
0

1212

ext

=−+−

=∆+∆=

UUKK

UKW
 

Because U1 = 0, 
02

2
12

12
22

1 =+− Umvmv  

 
Express U2: ( )θcos12 −= mgLU  

 
Substitute for U2 to obtain: 
 

( ) 0cos12
12

12
22

1 =−+− θmgLmvmv  

Solve for v2: ( )θcos122
12 −−= gLvv  

 
Substitute numerical values and evaluate v2: 
 

( ) ( )( )( ) m/s52.3cos301m3m/s9.812m/s4.5 22
2 =°−−=v  

 
(b) Use the definition of gravitational 
potential energy to obtain: 
 

( )θcos12 −= mgLU  

 

Substitute numerical values and 
evaluate U2: 
 

( )( )( )( )
J89.7

cos301m3m/s9.81kg2 2
2

=

°−=U
 

(c) Apply ∑ = radialradial maF to the bob to 

obtain: L
vmmgT

2
2cos =− θ  
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Solve for T: 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

L
vgmT

2
2cosθ  

 
Substitute numerical values and evaluate T: 
 

( ) ( ) ( ) N3.25
m3
m/s3.52cos30m/s9.81kg2

2
2 =⎥

⎦

⎤
⎢
⎣

⎡
+°=T  

 
(d) When the bob reaches its greatest 
height: 

( )

0
and

cos1

max1

maxmax

=+

−==

UK

mgLUU θ
 

 
Substitute for K1 and Umax  ( ) 0cos1 max

2
12

1 =−+− θmgLmv  

 
Solve for θmax: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= −

gL
v

2
1cos

2
11

maxθ  

 
Substitute numerical values and 
evaluate θmax: 

( )
( )( )

°=

⎥
⎦

⎤
⎢
⎣

⎡
−= −

0.49

m3m/s9.812
m/s4.51cos 2

2
1

maxθ
 

 
37 ••  
Picture the Problem Let the system 
consist of the earth and pendulum bob. 
Then Wext = 0. Choose Ug = 0 at the bottom 
of the circle and let points 1, 2 and 3 
represent the bob’s initial point, lowest 
point and highest point, respectively. The 
bob will gain speed and kinetic energy 
until it reaches point 2 and slow down until 
it reaches point 3; so it has its maximum 
kinetic energy when it is at point 2. We can 
use Newton’s 2nd law at points 2 and 3 in 
conjunction with the law of the 
conservation of mechanical energy to find 
the maximum kinetic energy of the bob and 
the tension in the string when the bob has 
its maximum kinetic energy.  

 
(a) Apply ∑ = radialradial maF to the 

bob at the top of the circle and solve L
vmmg

2
3=  
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for 2
3v : and 

gLv =2
3  

 
Use conservation of energy to 
express the relationship between K2, 
K3 and U3 and solve for K2: 

0where0 22323 ==−+− UUUKK  

Therefore, 

( )Lmgmv

UKKK

22
32

1

33max2

+=

+==
 

 
Substitute for 2

3v  and simplify to 

obtain: 
 

( ) mgLmgLgLmK 2
5

2
1

max 2 =+=  

 

(b) Apply ∑ = radialradial maF to the 

bob at the bottom of the circle and 
solve for T2: 
 

L
vmmgTF

2
2

2net =−=  

and 

L
vmmgT

2
2

2 +=                                 (1) 

 
Use conservation of energy to relate 
the energies of the bob at points 2 
and 3 and solve for K2: 

0where0 22323 ==−+− UUUKK  

( )Lmgmv

UKK

22
32

1

332

+=

+=
 

 
Substitute for 2

3v  and K2 and solve 

for 2
2v : 

( ) ( )LmggLmmv 22
12

22
1 +=  

and 
gLv 52

2 =  

 
Substitute in equation (1) to obtain: mgT 62 =  

 
38 ••  
Picture the Problem Let the system 
consist of the earth and child. Then 
Wext = 0. In the figure, the child’s initial 
position is designated with the numeral 1; 
the point at which the child releases the 
rope and begins to fall with a 2, and its 
point of impact with the water is identified 
with a 3. Choose Ug = 0 at the water level. 
While one could use the law of the 
conservation of energy between points 1 
and 2 and then between points 2 and 3, it is 
more direct to consider the energy 
transformations between points 1 and 3. 
Given our choice of the zero of 
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gravitational potential energy, the initial 
potential energy at point 1 is transformed 
into kinetic energy at point 3. 
 
Apply conservation of energy to the 
energy transformations between 
points 1 and 3:  
 

0ext =∆+∆= UKW  

zero.areandwhere
0

13

1313

KU
UUKK =−+−

 

Substitute for K3 and U1;  ( )[ ] 0cos12
32

1 =−+− θLhmgmv  

 
Solve for v3: ( )[ ]θcos123 −+= Lhgv  

 
Substitute numerical values and evaluate v3: 
 

( ) ( )( )[ ] m/s91.8cos231m10.6m3.2m/s9.812 2
3 =°−+=v  

 
*39 ••  
Picture the Problem Let the system 
consist of you and the earth. Then there are 
no external forces to do work on the system 
and Wext = 0. In the figure, your initial 
position is designated with the numeral 1, 
the point at which you release the rope and 
begin to fall with a 2, and your point of 
impact with the water is identified with a 3. 
Choose  
Ug = 0 at the water level. We can apply 
Newton’s 2nd law to the forces acting on 
you at point 2 and apply conservation of 
energy between points 1 and 2 to determine 
the maximum angle at which you can begin 
your swing and then between points 1 and 
3 to determine the speed with which you 
will hit the water. 

 
 

 

 
(a) Use conservation of energy to 
relate your speed at point 2 to your 
potential energy there and at point 
1: 

0ext =∆+∆= UKW  
01212 =−+− UUKK  

Because K1 = 0, 

( )[ ] 0cos1

2
22

1

=+−−
+

mghmgL
mghmv

θ
 

 
Solve this equation for θ : 

⎥
⎦

⎤
⎢
⎣

⎡
−= −

gL
v

2
1cos

2
21θ                         (1) 
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Apply ∑ = radialradial maF yourself 

at point 2 and solve for T: L
vmmgT

2
2=−  

and 

L
vmmgT

2
2+=  

 
Because you’ve estimated that the 
rope might break if the tension in it 
exceeds your weight by 80 N, it 
must be that: ( )

m
Lv

L
vm

N80
or

N80

2
2

2
2

=

=

 

 
Let’s assume your weight is 650 N. 
Then your mass is 66.3 kg and: 
 

( )( ) 222
2 /sm55.5

66.3kg
m4.6N80

==v  

Substitute numerical values in 
equation (1) to obtain: ( )( )

°=

⎥
⎦

⎤
⎢
⎣

⎡
−= −

2.20

m4.6m/s9.812
/sm5.551cos 2

22
1θ

 

 
(b) Apply conservation of energy to 
the energy transformations between 
points 1 and 3: 
 

0ext =∆+∆= UKW  

zeroare
andwhere0

1

31313

K
UUUKK =−+−

 

Substitute for K3 and U1 to obtain: ( )[ ] 0cos12
32

1 =−+− θLhmgmv  

 
Solve for v3: 
 

( )[ ]θcos123 −+= Lhgv  

Substitute numerical values and evaluate v3: 
 

( ) ( )( )[ ] m/s39.6cos20.21m4.6m8.1m/s9.812 2
3 =°−+=v  
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40 ••  
Picture the Problem Choose Ug = 0 at 
point 2, the lowest point of the bob’s 
trajectory and let the system consist of the 
bob and the earth. Given this choice, there 
are no external forces doing work on the 
system. Because θ << 1, we can use the 
trigonometric series for the sine and cosine 
functions to approximate these functions. 
The bob’s initial energy is partially 
gravitational potential and partially 
potential energy stored in the stretched 
spring. As the bob swings down to point 2 
this energy is transformed into kinetic 
energy. By equating these energies, we can 
derive an expression for the speed of the 
bob at point 2. 

 
 

 

 
Apply conservation of energy to the 
system as the pendulum bob swings 
from point 1 to point 2: 
 

( )θcos12
2
12

22
1 −+= mgLkxmv  

 

Note, from the figure, that x ≈ Lsinθ 
when θ << 1:  
 

( ) ( )θθ cos1sin 2
2
12

22
1 −+= mgLLkmv  

Also, when θ << 1: 
 

2
2
11cosandsin θθθθ −≈≈  

Substitute, simplify and solve for v2: 

L
g

m
kLv += θ2  
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41 •••  
Picture the Problem Choose Ug = 0 at 
point 2, the lowest point of the bob’s 
trajectory and let the system consist of the 
earth, ceiling, spring, and pendulum bob. 
Given this choice, there are no external 
forces doing work to change the energy of 
the system. Because θ << 1, we can use the 
trigonometric series for the secant and 
cosine functions to approximate these 
functions. The bob’s initial energy is 
partially gravitational potential and 
partially potential energy stored in the 
stretched spring. As the bob swings down 
to point 2 this energy is transformed into 
kinetic energy. By equating these energies, 
we can derive an expression for the speed 
of the bob at point 2.  

 
Apply conservation of energy to the 
system as the pendulum bob swings 
from point 1 to point 2: 
 

( )θcos12
2
12

22
1 −+= mgLkxmv  

 

Note, from the figure, that 

( )1sec
2

−= θLx and that, 

for θ << 1, x ≈ Lsinθ :  
 

( )

( )θ

θ

cos1

1sec
2

2

2
12

22
1

−+

⎥⎦
⎤

⎢⎣
⎡ −=

mgL

Lkmv
 

Also, when θ << 1: 
 

2
2
12 1cosand212sec θθθθ −≈+≈  

Substitute, simplify and solve for v2: 2
2 θθ

m
k

L
gLv +=  

 
The Conservation of Energy 
 
42 •  
Picture the Problem The energy of the eruption is initially in the form of the kinetic 
energy of the material it thrusts into the air. This energy is then transformed into 
gravitational potential energy as the material rises. 
 
(a) Express the energy of the hmgE ∆=  
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eruption in terms of the height ∆h to 
which the debris rises: 
 
Relate the density of the material to 
its mass and volume: 
 

V
m

=ρ  

Substitute for m to obtain: hVgE ∆= ρ  

 
Substitute numerical values and 
evaluate E: 

( )( )( )
( )

J1014.3

m500
m/s9.81km4kg/m1600

16

233

×=

×
=E

 

 
(b) Convert 3.13×1016 J to megatons 
of TNT: 

TNTMton48.7

J104.2
TNTMton1
J1014.3J1014.3

15

1616

=

×
×

×=×

 

 
43 ••  
Picture the Problem The work done by the student equals the change in his/her 
gravitational potential energy and is done as a result of the transformation of metabolic 
energy in the climber’s muscles. 
 
(a) The increase in gravitational 
potential energy is: ( )( )( )

kJ2.94

m120m/s9.81kg80 2

=

=

∆=∆ hmgU
 

 
(b)  

body. in the storedenergy 
chemical from comes work this

 do  torequiredenergy  The
 

 
(c) Relate the chemical energy 
expended by the student to the 
change in his/her potential energy 
and solve for E: 

UE ∆=2.0  
and 

( ) kJ471kJ94.255 ==∆= UE  
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Kinetic Friction 
 
44 •  
Picture the Problem As the car skids to a stop on a horizontal road, its kinetic energy is 
transformed into internal (i.e., thermal) energy. Knowing that energy is transformed into 
heat by friction, we can use the definition of the coefficient of kinetic friction to calculate 
its value. 
 
(a) Relate the energy dissipated by 
friction to the change in kinetic 
energy of the car: 
 

KUW ∆=∆= thermf  

Because Kf = 0, the friction force 
will transform all the car’s initial 
kinetic energy: 

( )( ) kJ625m/s25kg2000 2
2
1

2
i2

1
if

==

== mvKW
 

 
(b) Relate the kinetic friction force 
to the coefficient of kinetic friction 
and the weight of the car and solve 
for the coefficient of kinetic 
friction: 
 

mg
fmgf k

kkk =⇒= µµ  

Express the relationship between 
the work done by friction and the 
kinetic friction force and solve fk: 
 

s
WfsfW
∆

=⇒∆= f
kkf  

Substitute to obtain: 
smg

W
∆

= f
kµ  

 
Substitute numerical values and 
evaluate µk: ( )( )( )

531.0

m60m/s9.81kg2000
kJ625

2k

=

=µ
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45 •  
Picture the Problem The free-body 
diagram shows the forces acting on the sled 
as it is pulled along a horizontal road. The 
work done by the applied force can be 
found using the definition of work. To find 
the energy dissipated by friction, we’ll use 
Newton’s 2nd law to determine fk and then 
use it in the definition of work. The change 
in the kinetic energy of the sled is equal to 
the net work done on it. Finally, knowing 
the kinetic energy of the sled after it has 
traveled 3 m will allow us to solve for its 
speed at that location.  

 
 
(a) Use the definition of work to 
calculate the work done by the 
applied force: 

( )( ) J10430cosm3N40

cos

=°=

=⋅= θFsW sF rr

 

 
(b) Express the energy dissipated by 
friction as the sled is dragged along 
the surface: 
 

xFW ∆= nkf µ  

Apply ∑ = yy maF to the sled and 

solve for Fn: 

0sinn =−+ mgFF θ  

and 
θsinn FmgF −=  

 
Substitute to obtain: ( )θµ sinkf FmgxW −∆=  

 
Substitute numerical values and  
evaluate Wf: 

( )( ) ( )( )[
( ) ]

J2.70

sin30N40

m/s9.81kg8m34.0 2

=

°−

=fW

 

 
(c) Because ∆U = 0: 

J33.8

J70.2J041f

=

−=−=∆ WWK
 

 
(d) Because Ki = 0: 2

2
1

f mvKK =∆=  
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Solve for v: 

m
Kv ∆

=
2

 

 
Substitute numerical values and 
evaluate v: 

( ) m/s2.91
kg8

J33.82
==v  

 
*46 •  
Picture the Problem Choose Ug = 0 at the 
foot of the ramp and let the system consist 
of the block, ramp, and the earth. Then the 
kinetic energy of the block at the foot of 
the ramp is equal to its initial kinetic 
energy less the energy dissipated by 
friction. The block’s kinetic energy at the 
foot of the incline is partially converted to 
gravitational potential energy and partially 
dissipated by friction as the block slides up 
the incline. The free-body diagram shows 
the forces acting on the block as it slides up 
the incline. Applying Newton’s 2nd law to 
the block will allow us to determine fk and 
express the energy dissipated by friction. 
 

 
 

 

(a) Apply conservation of energy to 
the system while the block is 
moving horizontally: 

 ext UKW ∆+∆=  

or, because ∆U = 0, 
ifext  KKKW −=∆=  

 
Solve for Kf: extif WKK +=  

 
Express the work done by the 
friction force: 

xmgxfW ∆−=∆−=⋅= kkext µsF rr
 

 
Substitute for Wext to obtain: xmgmvmv ∆−= k

2
i2

12
f2

1 µ  

 
Solve for vf: xgvv ∆−= k

2
if 2µ  

 
Substitute numerical values and 
evaluate vf: 

( ) ( )( )( )
m/s6.10

m2m/s9.810.32m/s7 22
f

=

−=v
 

 
(b) Relate the initial kinetic energy 
of the block to its final potential 
energy and the energy dissipated by 
friction: 

extfi WUK +=  
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Apply ∑ = yy maF to the block: 

 

θθ cos0cos nn mgFmgF =⇒=−  

 

Express Wext: θµµ cosknkkext mgLLFLfW ===  

 
Express the final potential energy  
of the block: 
 

θsinf mgLU =  

Substitute for Uf and Wext to obtain: θµθ cossin kf mgLmgLK +=  

 
Solve for L: 

( )θµθ cossin k

f

+
=

mg
KL  

 
Substitute numerical values and 
evaluate L: 

( )
( ) ( )( )

m17.2

cos400.3sin40m/s9.81
m/s10.6

2

2
2
1

=

°+°
=L

 

 
47 •  
Picture the Problem Let the system include the block, the ramp and horizontal surface, 
and the earth. Given this choice, there are no external forces acting that will change the 
energy of the system. Because the curved ramp is frictionless, mechanical energy is 
conserved as the block slides down it. We can calculate its speed at the bottom of the 
ramp by using the law of the conservation of energy. The potential energy of the block at 
the top of the ramp or, equivalently, its kinetic energy at the bottom of the ramp is 
converted into thermal energy during its slide along the horizontal surface. 
 
(a) Choosing Ug = 0 at point 2 and 
letting the numeral 1 designate the 
initial position of the block and the 
numeral 2 its position at the foot of 
the ramp, use conservation of energy 
to relate the block’s potential energy 
at the top of the ramp to its kinetic 
energy at the bottom: 
 

02
22

1 =∆− hmgmv  

 

Solve for v2: hgv ∆= 22  

 
Substitute numerical values and 
evaluate v2: 
 

( )( ) m/s67.7m3m/s9.812 2
2 ==v  

(b) The energy dissipated by friction 0thermf =∆+∆+∆=∆+∆+ UKEUKW



                                                                             Conservation of Energy 
 

 

463

is responsible for changing the 
thermal energy of the system: 
 

 

Because ∆K = 0 for the slide: ( ) hmgUUUUW ∆==−−=∆−= 112f  

 
Substitute numerical values and 
evaluate Wf: 

( )( )( ) J9.58m3m/s9.81kg2 2
f ==W  

 
(c) Express the energy dissipated by 
friction in terms of the distance over 
which it acts, the normal force 
acting on the block, and the 
coefficient of kinetic friction: 
 

xmgxfW ∆=∆= kkf µ  

Solve for µk: 
xmg

W
∆

= f
kµ  

 
Substitute numerical values and 
evaluate µk: ( )( )( ) 333.0

m9m/s9.81kg2
J58.9

2k ==µ  

 
48 ••  
Picture the Problem Let the system 
consist of the earth, the girl, and the slide. 
Given this choice, there are no external 
forces doing work that changes the energy 
of the system. By the time she reaches the 
bottom of the slide, her potential energy at 
the top of the slide has been converted into 
kinetic and thermal energy. Choose Ug = 0 
at the bottom of the slide and denote the 
top and bottom of the slide as shown in the 
figure.  We’ll use the work-energy theorem 
with friction to relate these quantities and 
the forces acting on her during her slide to 
determine the friction force that transforms 
some of her initial potential energy into 
thermal energy. 

 
 

 

 
(a) Express the work-energy 
theorem: 

0ext =∆+∆+∆= sfUKW  
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Because U2 = K1 = 0: 

2
22

1
21f

12

or
0

mvhmgKUW

sfUK

−∆=−=

=∆+−
 

 
Substitute numerical values and 
evaluate Wf: 

( )( )( )
( )( )
J611

m/s1.3kg20

m3.2m/s9.81kg20
2

2
1

2
f

=

−

=W

 

 
(b) Relate the energy dissipated by 
friction to the kinetic friction force 
and the distance over which this 
force acts and solve for µk: 

sFsfW ∆=∆= nkkf µ        

and 

sF
W

∆
=

n

f
kµ                     

        
Apply ∑ = yy maF to the girl and 

solve for Fn: 
θ

θ

cos
and

0cos

n

n

mgF

mgF

=

=−
 

 
Referring to the figure, relate ∆h to 
∆s and θ : θsin

hs ∆
=∆  

 
Substitute for ∆s and Fn to obtain: 

hmg
W

hmg

W
∆

=
∆

=
θ

θ
θ

µ tan

cos
sin

ff
k  

 
Substitute numerical values and  
evaluate µk: 

( )
( )( )( ) 354.0

m3.2m/s9.81kg20
tan20J611

2k =
°

=µ

 
 
49 ••  
Picture the Problem Let the system consist of the two blocks, the shelf, and the earth. 
Given this choice, there are no external forces doing work to change the energy of the 
system. Due to the friction between the 4-kg block and the surface on which it slides, not 
all of the energy transformed during the fall of the 2-kg block is realized in the form of 
kinetic energy. We can find the work done by friction (energy transformed into Etherm) 
from its definition and then use this result in the calculation of the speed of the system 
when it has moved a given distance. 
 
(a) Express the energy dissipated by 
friction in terms of the coefficient of 

sgmsfW ∆=∆= 1kkf µ  
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kinetic friction, the mass of the 
sliding block, and the displacement 
of the block (∆s = y): 
 
Substitute numerical values and 
evaluate Wf: 

( )( )( )
( )y

yW

N7.13

m/s9.81kg435.0 2
f

=

=
 

 
(b) Express the total mechanical 
energy of the system: 

( )yWEE N7.13fmech −=−=∆=  

 
(c) Express the total mechanical 
energy of the system: 
 

( ) f2
2

212
1 Wgymvmm −=+  

 

Solve for v to obtain: ( )
21

f22
mm

Wgym
v

+
−

=                         (1) 

 
Substitute numerical values and evaluate v: 
 

( ) ( ) ( )( )
m/s98.1

kg2kg4

m2N73.13m22m/s9.81kg22
=

+

⎥⎦
⎤

⎢⎣
⎡ −⎟

⎠
⎞⎜

⎝
⎛

=v  

 
*50 ••  
Picture the Problem Let the system consist of the particle and the earth. Then the 
friction force is external to the system and does work to change the energy of the system. 
The energy dissipated by friction during one revolution is the work done by the friction 
force. 
 
(a) Relate the work done by friction 
to the change in energy of the 
system: 

0since,if

fext

=∆−=
∆+∆==

UKK
UKWW

 

 
Substitute for Kf and Ki and simplify 
to obtain: ( ) ( )

2
08

3

2
02

12
02

1
2
1

2
i2

12
f2

1
f

mv

vmvm

mvmvW

=

−=

−=

 

 
(b) Relate the work done by friction 
to the distance traveled and the 
coefficient of kinetic friction and 
solve for the latter: 

( )rmg
smgW
πµ

µ
2k

kf

=
∆=

 

and 
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gr
v

mgr
mv

mgr
W

πππ
µ

16
3

22

2
0

2
08

3
f

k ===  

 

(c) 
.remaining  thelose  torevolution

 1/3another  requireonly  it will,lost it   revolution onein  Because

i4
1

i4
3

K
K

 

 
51 ••  
Picture the Problem The box will slow 
down and stop due to the work the friction 
force does on it. Let the system be the 
earth, the box, and the inclined plane and 
apply the work-energy theorem with 
friction. With this choice of the system, 
there are no external forces doing work to 
change the energy of the system. The free-
body diagram shows the forces acting on 
the box when it is moving up the incline. 

 

 
Apply the work-energy theorem 
with friction to the system: 
 

0fsysext =+∆+∆=∆= WUKEW  

               

Substitute to obtain: 
 

02
02

12
12

1
f =∆+−+∴ hmgmvmvW     (1) 

Express the work done by friction as 
the box moves a distance L up the 
incline: 
 

LFLfW nkkf µ==  

Referring to the FBD, relate the 
normal force to the weight of the 
box and the angle of the incline:  
 

θcosn mgF =  

Substitute in the expression for Wf 
to obtain: 
 

θµ coskf mgLW =  

Relate ∆h to the distance L along the 
incline: 
 

θsinLh =∆  

Substitute for Wf and ∆h in equation 
(1) to obtain: 
 

0sin
cos 2

02
12

12
1

k

=+

−+

θ
θµ

mgL
mvmvmgL

       (2) 
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Solve equation (2) for L to obtain: 
( )θθµ sincos2 k

2
0

+
=

g
vL  

 
Substitute numerical values and 
evaluate L: 

( )
( ) ( )[ ]

m875.0

sin37cos370.3m/s9.812
m/s3.8

2

2

=

°+°
=L

 

 
Let vf represent the box’s speed as it 
passes its starting point on the way 
down the incline. For the block’s 
descent, equation (2) becomes: 
 

0sin
cos 2

12
12

f2
1

k

=−

−+

θ
θµ

mgL
mvmvmgL

 

Set v1 = 0 (the block starts from rest 
at the top of the incline) and solve 
for vf :  
 

( )θµθ cossin2 kf −= gLv  

Substitute numerical values and evaluate vf: 
 

( )( ) ( )[ ]] m/s2.49cos370.3sin37m 0.875m/s9.812 2
f =°−°=v  

 
52 •••  
Picture the Problem Let the system 
consist of the earth, the block, the incline, 
and the spring. With this choice of the 
system, there are no external forces doing 
work to change the energy of the system. 
The free-body diagram shows the forces 
acting on the block just before it begins to 
move. We can apply Newton’s 2nd law to 
the block to obtain an expression for the 
extension of the spring at this instant. We’ll 
apply the work-energy theorem with 
friction to the second part of the problem. 

 

 

 
(a) Apply ∑ = aF rr

m to the block 

when it is on the verge of sliding: 

∑ =−−= 0sinmaxs,spring θmgfFFx  

and 

∑ =−= 0cosn θmgFFy  

 
Eliminate Fn, fs,max, and Fspring 0sincoss =−− θθµ mgmgkd  
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between the two equations to obtain: 
 
Solve for and evaluate d: ( )θµθ cossin s+=

k
mgd  

 
(b) Begin with the work-energy 
theorem for problems with friction 
and no work being done by an 
external force: 
 

0fsys =+∆+∆+∆=∆ WUUKE sg  

               

Because the block is at rest in both 
its initial and final states, ∆K = 0 
and: 
 

0f =+∆+∆ WUU sg              (1) 

Let Ug = 0 at the initial position of 
the block. Then: θsin

0initialg,finalg,g

mgd
mghUUU

=

−=−=∆
 

 
Express the change in the energy 
stored in the spring as it relaxes to its 
unstretched length: 

2
2
1

2
2
1

initials,finals,s 0

kd

kdUUU

−=

−=−=∆
 

 
Express Wf: 

θµ
µ

cosk

nkkf

mgd
dFdfsfW

−=
−=−=∆=

 

 
Substitute in equation (1) to obtain: 
 

0cossin k
2

2
1 =−− θµθ mgdkdmgd  

 
Finally, solve for µk: ( )s2

1
k tan µθµ −=  

 
Mass and Energy 
 
53 •  
Picture the Problem The intrinsic rest energy in matter is related to the mass of matter 
through Einstein’s equation .2

0 mcE =  

 
(a) Relate the rest mass consumed 
to the energy produced and solve 
for and evaluate m: 

( )( )
J1000.9

m/s103kg101
13

283

2
0

×=

××=

=
−

mcE
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(b) Express kW⋅h in joules: ( )( )( )
J1060.3

s/h3600h1J/s101hkW1
6

3

×=

×=⋅
 

 
Convert 9×1013 J to kW⋅h: ( )

hkW1050.2

J103.60
hkW1J109J109

7

6
1313

⋅×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⋅
×=×

 

 
Determine the price of the electrical 
energy: 

( )
6

7

105.2$

hkW
$0.10hkW102.50Price

×=

⎟
⎠
⎞

⎜
⎝
⎛

⋅
⋅×=

 

 
(c) Relate the energy consumed to 
its rate of consumption and the time 
and solve for the latter: 

PtE =  
and 

y28,500s109

W100
J109

11

13

=×=

×
==

P
Et

 

 
54 •  
Picture the Problem We can use the equation expressing the equivalence of energy and 
matter, E = mc2, to find the mass equivalent of the energy from the explosion. 
 
Solve E = mc2 for m: 

2c
Em =  

 
Substitute numerical values and 
evaluate m: ( )

kg1056.5

m/s102.998
J105

5

28

12

−×=

×

×
=m

 

 
55 •  
Picture the Problem The intrinsic rest energy in matter is related to the mass of matter 
through Einstein’s equation .2

0 mcE =  

 
Relate the rest mass of a muon to its 
rest energy: 20 c

Em =  

 
Express 1 MeV in joules: 1 MeV = 1.6×10−13 J 
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Substitute numerical values and 
evaluate m0: 

( )( )
( )

kg1088.1

m/s103
J/MeV101.6MeV105.7

28

28

13

0

−

−

×=

×

×
=m

 

 
*56 •   
Picture the Problem We can differentiate the mass-energy equation to obtain an 
expression for the rate at which the black hole gains energy. 
 
Using the mass-energy relationship, 
express the energy radiated by the 
black hole: 
 

201.0 mcE =  

Differentiate this expression to 
obtain an expression for the rate at 
which the black hole is radiating 
energy: 
 

[ ]
dt
dmcmc

dt
d

dt
dE 22 01.001.0 ==  

Solve for dm/dt: 
201.0 c

dtdE
dt
dm

=  

 
Substitute numerical values and 
evaluate dm/dt: ( )( )

kg/s1045.4

m/s10998.201.0
watt104

16

28

31

×=

×

×
=

dt
dm

 

 
57 •  
Picture the Problem The number of reactions per second is given by the ratio of the 
power generated to the energy released per reaction. The number of reactions that must 
take place to produce a given amount of energy is the ratio of the energy per second 
(power) to the energy released per second. 
 
In Example 7-15 it is shown that the 
energy per reaction is 17.59 MeV. 
Convert this energy to joules: 
 

( )
( )

J1028.1
J/eV101.6

MeV17.59MeV59.17

13

19

−

−

×=

××

=

 

 
The number of reactions per second is: 

sreactions/103.56

J/reaction1028.1
J/s1000

14

13

×=

× −
 

 
58 •   
Picture the Problem The energy required for this reaction is the difference between the 
rest energy of 4He and the sum of the rest energies of 3He and a neutron. 
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Express the reaction: 
 

nHeHe 34 +→  

The rest energy of a neutron  
(Table 7-1) is: 
 

939.573 MeV 

The rest energy of 4He  
(Example 7-15) is: 
 

3727.409 MeV 

The rest energy of 3He is:  
 

2808.432 MeV 

Substitute numerical values to find the difference in the rest energy of 4He and the sum of 
the rest energies of 3He and n: 
 

( )[ ] MeV574.20MeV573.93941.2808409.3727 =+−=E  

 
59 •  
Picture the Problem The energy required for this reaction is the difference between the 
rest energy of a neutron and the sum of the rest energies of a proton and an electron.  
 
The rest energy of a proton (Table  
7-1) is: 
 

938.280 MeV 

The rest energy of  an electron 
(Table 7-1) is: 
 

0.511 MeV 

The rest energy of  a neutron (Table 
7-1) is: 
 

939.573 MeV 

Substitute numerical values to find 
the difference in the rest energy of a 
neutron and the sum of the rest 
energies of a positron and an 
electron: 

( )[ ]
MeV.7820

MeV511.0280.938573.939

=

+−=E
 

 
60 ••  
Picture the Problem The reaction is E+→+ HeHH 422 . The energy released in this 
reaction is the difference between twice the rest energy of 2H and the rest energy of 4He. 
The number of reactions that must take place to produce a given amount of energy is the 
ratio of the energy per second (power) to the energy released per reaction. 
 
(a) The rest energy of 4He   
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(Example 7-14) is: 
 

3727.409 MeV 

The rest energy of a deuteron, 2H, 
(Table 7-1) is: 
 

 
1875.628 MeV 

The energy released in the reaction 
is: 

( )[ ]
J103.816MeV847.23

MeV409.3727628.18752
12−×==

−=E
 

 
(b) The number of reactions per 
second is: 

sreactions/1062.2

J/reaction10816.3
J/s1000

14

12

×=

× −
 

 
61 ••  
Picture the Problem The annual consumption of matter by the fission plant is the ratio 
of its annual energy output to the square of the speed of light. The annual consumption 
of coal in a coal-burning power plant is the ratio of its annual energy output to energy 
per unit mass of the coal. 
 
(a) Express m in terms of E: 

2c
Em =  

 
Assuming an efficiency of 33 
percent, find the energy produced 
annually:  

( )( )
( )( )

( )( )
J1084.2

d365.24h/d24
s/h3600J/s1033

y1J/s10333

17

9

9

×=

×
×=

×=∆= tPE

 

 
Substitute to obtain: 

( ) kg16.3
m/s103

J1084.2
28

17

=
×

×
=m  

 
(b) Assuming an efficiency of 38 
percent, express the mass of coal 
required in terms of the annual 
energy production and the energy 
released per kilogram: 

( ) ( )
kg1004.8

J/kg103.138.0
J109.47

/38.0
9

7

16
annual

coal

×=

×
×

==
mE

Em
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General Problems 
 
*62 ••  
Picture the Problem Let the system 
consist of the block, the earth, and the 
incline. Then the tension in the string is an 
external force that will do work to change 
the energy of the system. Because the 
incline is frictionless; the work done by 
the tension in the string as it displaces the 
block on the incline is equal to the sum of 
the changes in the kinetic and 
gravitational potential energies. 

 
 

 

 
Relate the work done by the tension 
force to the changes in the kinetic 
and gravitational potential energies 
of the block: 
 

KUWW ∆+∆== extforcetension  

Referring to the figure, express the 
change in the potential energy of the 
block as it moves from position 1 to 
position 2: 
 

θsinmgLhmgU =∆=∆  

Because the block starts from rest: 
 

2
2
1

2 mvKK ==∆  

Substitute to obtain: 
 

2
2
1

forcetension sin mvmgLW += θ  

and correct. is (c)  

 
63 ••   
Picture the Problem Let the system 
include the earth, the block, and the 
inclined plane. Then there are no external 
forces to do work on the system and Wext = 
0. Apply the work-energy theorem with 
friction to find an expression for the energy 
dissipated by friction. 

 

 
Express the work-energy theorem 
with friction: 
 

0fext =+∆+∆= WUKW  
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Because the velocity of the block is 
constant, ∆K = 0 and: hmg

UW
∆−=

∆−=f  

 
In time ∆t the block slides a 
distance tv∆ . From the figure: 
 

θsintvh ∆=∆  

Substitute to obtain: θsinf tmgvW ∆−=  

and correct. is )( b  

 
64 •  
Picture the Problem Let the system include the earth and the box. Then the applied 
force is external to the system and does work on the system in compressing the spring. 
This work is stored in the spring as potential energy. 
 
Express the work-energy theorem: thermsgext EUUKW ∆+∆+∆+∆=  

 
Because :0thermg =∆=∆=∆ EUK  

 
sext UW ∆=  

Substitute for Wext  and ∆Us: 2
2
1 kxFx =  

 
Solve for x: 

k
Fx 2

=  

 
Substitute numerical values and evaluate x: ( ) cm06.2

N/m6800
N702

==x  

 
*65 •  
Picture the Problem The solar constant is the average energy per unit area and per unit 
time reaching the upper atmosphere. This physical quantity can be thought of as the 
power per unit area and is known as intensity. 
 
Letting Isurface represent the intensity 
of the solar radiation at the surface 
of the earth, express Isurface as a 
function of power and the area on 
which this energy is incident: 
 

A
tE

A
PI ∆∆

==
/

surface   

Solve for ∆E: tAIE ∆=∆ surface  
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Substitute numerical values and 
evaluate ∆E: 

( )( )( )( )
MJ6.57

s/h3600h8m2kW/m1 22

=

=∆E
 

 
66 ••   
Picture the Problem The luminosity of the sun (or of any other object) is the product of 
the power it radiates per unit area and its surface area. If we let L represent the sun’s 
luminosity, I the power it radiates per unit area (also known as the solar constant or the 
intensity of its radiation), and A its surface area, then  
L = IA. We can estimate the solar lifetime by dividing the number of hydrogen nuclei in 
the sun by the rate at which they are being transformed into energy. 
 
(a) Express the total energy the sun 
radiates every second in terms of the 
solar constant: 
 

IAL =  

Letting R represent its radius, 
express the surface area of the sun: 
 

24 RA π=  

Substitute to obtain: 
 

IRL 24π=  

Substitute numerical values and 
evaluate L: 
 

( ) ( )
watt1082.3

kW/m1.35m101.54
26

2211

×=

×= πL
 

Note that this result is in good agreement 
with the value given in the text of 3.9×1026 
watt. 
 

(b) Express the solar lifetime in 
terms of the mass of the sun and the 
rate at which its mass is being 
converted to energy: 
 

tn
mM

tn
Nt

∆∆
=

∆∆
= nuclei H

solar  

where M is the mass of the sun, m the mass 
of a hydrogen nucleus, and n is the number 
of nuclei used up. 
 

Substitute numerical values to obtain: 

tn

tn
t

∆∆
×

=

∆∆
×

×

=
−

nucleiH1019.1

nucleuskg/H101.67
kg1099.1

57

27

30

solar  

 
For each reaction, 4 hydrogen 
nuclei are "used up"; so:   

( )

138

12

26

s1057.3
J104.27
J/s103.824

−

−

×=

×
×

=
∆
∆

t
n
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Because we’ve assumed that the sun 
will continue burning until roughly 
10% of its hydrogen fuel is used up, 
the total solar lifetime should be: y101.06s1033.3

s1057.3
nucleiH1019.11.0

1017

138

57

solar

×=×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

×
= −t

 

 
67 •   
Picture the Problem Let the system include the earth and the Spirit of America. Then 
there are no external forces to do work on the car and Wext = 0. We can use the work-
energy theorem to relate the coefficient of kinetic friction to the given information. A 
constant-acceleration equation will yield the car’s velocity when 60 s have elapsed. 
 
(a) Apply the work-energy theorem 
with friction to relate the coefficient 
of kinetic friction µk  to the initial 
and final kinetic energies of the car: 

0k
2
02

12
2
1 =∆+− smgmvmv µ  

or, because v = 0, 
0k

2
02

1 =∆+− smgmv µ  

 
Solve for µk: 

sg
v
∆

=
2

2

kµ  

 
Substitute numerical values and 
evaluate µk: 

( )( )[ ]
( )( ) 208.0

km9.5m/s9.812
sh/36001km/h708

2

2

k ==µ  

 
(b) Express the kinetic energy of the 
car: 
 

2
2
1 mvK =                                 (1) 

Using a constant-acceleration 
equation, relate the speed of the car 
to its acceleration, initial speed, and 
the elapsed time: 
 

tavv ∆+= 0  

Express the braking force acting on 
the car: 
 

mamgfF =−=−= kknet µ  

 

Solve for a: 
 

ga kµ−=  

Substitute for a to obtain: tgvv ∆−= k0 µ  

 
Substitute in equation (1) to obtain: ( )2

k02
1 tgvmK ∆−= µ  

 
Substitute numerical values and evaluate K: 
 



                                                                             Conservation of Energy 
 

 

477

( )[ ( )( )( )] MJ45.3s60m/s9.810.208m/h10708kg1250 223
2
1 =−×=K  

 
68 ••  
Picture the Problem The free-body 
diagram shows the forces acting on the 
skiers as they are towed up the slope at 
constant speed. Because the power 
required to move them is ,vF rr

⋅ we need to 
find F as a function of mtot, θ, and µk. We 
can apply Newton’s 2nd law to obtain such 
a function.  
 
Express the power required as a 
function of force on the skiers and 
their speed: 
 

FvP =                                        (1) 

Apply ∑ = aF rr
m to the skiers: 

 

∑ =−−= 0sintotk θgmfFFx  

and 

∑ =−= 0costotn θgmFFy  

 
Eliminate fk = µkFn and Fn between 
the two equations and solve for F: 
 

θµθ cossin totktot gmgmF +=  

Substitute in equation (1) to obtain: ( )
( )θµθ

θµθ
cossin

cossin

ktot

totktot

+=
+=

gvm
vgmgmP

 

 
Substitute numerical values and evaluate P: 
 

( )( )( ) ( )[ ] kW6.4615cos06.015sinm/s2.5m/s9.81kg7580 2 =°+°=P  
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69 ••  
Picture the Problem The pictorial 
representation has the free-body diagram 
for the box superimposed on it. The work 
done by friction slows and momentarily 
stops the box as it slides up the incline. 
The box’s speed when it returns to bottom 
of the incline will be less than its speed 
when it started up the incline due to the 
energy dissipated by friction while it was 
in motion. Let the system include the box, 
the earth, and the incline. Then Wext = 0. 
We can use the work-energy theorem with 
friction to solve the several parts of this 
problem. 

 

 

 

(a) 
earth. by the exerted box)  theof weight (the force nalgravitatio the

and force,friction  kinetic a plane, inclined by the exerted force normal
 thearebox  on the acting forces  that theseecan   weFBD  theFrom

 

 
(b) Apply the work-energy theorem 
with friction to relate the distance 
∆x the box slides up the incline to its 
initial kinetic energy, its final 
potential energy, and the work done 
against friction: 
 

0cosk
2
12

1 =∆+∆+− θµ xmghmgmv  

 
 
 

Referring to the figure, relate ∆h to 
∆x to obtain: 
 

θsinxh ∆=∆  

Substitute for ∆h to obtain: 

0cos
sin

k

2
12

1

=∆+

∆+−

θµ
θ

xmg
xmgmv

 

 
Solve for ∆x: 

( )θµθ cossin2 k

2
1

+
=∆

g
vx  

 
Substitute numerical values and 
evaluate ∆x: 

( )
( ) ( )[ ]

m0.451

cos600.3sin60m/s9.812
m/s3

2

2

=

°+°
=∆x
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(c) Express the energy dissipated by 
friction: 
 

θµ coskkf xmgxfW ∆=∆=  

 

Substitute numerical values and 
evaluate Wf: 

( )( )( )
( )

J1.33

cos60m0.451
m/s9.81kg20.3 2

f

=

°×
=W

 

 
(d) Use the work-energy theorem 
with friction: 

0fext =+∆+∆= WUKW  

or 
0f2121 =+−+− WUUKK  

 
Because K2 = U1 = 0 we have: 0f21 =+− WUK  

or 

0cos
sin

k

2
12

1

=∆+

∆−

θµ
θ

xmg
xmgmv

 

 
Solve for v1: ( )θµθ cossin2 k1 −∆= xgv  

 
Substitute numerical values and evaluate v1: 
 

( )( ) ( )[ ] m/s2.52cos600.3sin60m0.451m/s9.812 2
1 =°−°=v  

 
*70 •  
Picture the Problem The power provided by a motor that is delivering sufficient energy 
to exert a force F on a load which it is moving at a speed v is Fv. 
 
The power provided by the motor is 
given by: 
 

P = Fv 

Because the elevator is ascending 
with constant speed, the tension in 
the support cable(s) is: 
 

( )gmmF loadelev +=  

Substitute for F to obtain: ( )gvmmP loadelev +=  

 
Substitute numerical values and 
evaluate P: 

( )( )( )
kW45.1

m/s2.3m/s9.81kg2000 2

=

=P
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71 ••  
Picture the Problem The power a motor must provide to exert a force F on a load that it 
is moving at a speed v is Fv. The counterweight does negative work and the power of the 
motor is reduced from that required with no counterbalance. 
 
The power provided by the motor is 
given by: 
 

P = Fv 

Because the elevator is 
counterbalanced and ascending with 
constant speed, the tension in the 
support cable(s) is: 
 

( )gmmmF cwloadelev −+=  

Substitute and evaluate P: ( )gvmmmP cwloadelev −+=  

 
Substitute numerical values and 
evaluate P: 

( )( )( )
kW3.11

m/s2.3m/s9.81kg005 2

=

=P
 

 
Without a load: ( )gmmF cwelev −=  

and 
( )
( )( )( )

kW6.77

m/s2.3m/s9.81kg003 2
cwelev

−=

−=

−= gvmmP

 

 
72  ••  
Picture the Problem We can use the work-energy theorem with friction to describe the 
energy transformation within the dart-spring-air-earth system. With this choice of the 
system, there are no external forces to do work on the system, i.e., Wext = 0. Choose Ug = 
0 at the elevation of the dart on the compressed spring. The energy initially stored in the 
spring is transformed into gravitational potential energy and thermal energy. During the 
dart’s descent, its gravitational potential energy is transformed into kinetic energy and 
thermal energy.  
 
Apply conservation of energy 
during the dart’s ascent: 

0fext =+∆+∆= WUKW  

or 
0fis,fs,ig,fg, =+−+− WUUUU  

because ∆K = 0 
 

Because 0fs,ig, == UU : 0fis,fg, =+− WUU  
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Substitute for Ug,i and Us,f and solve 
for Wf: 

mghkxUUW −=−= 2
2
1

fg,is,f  

 
Substitute numerical values and 
evaluate Wf: 

( )( )
( )( )( )

J0.602

m24m/s9.81kg0.007

m0.03N/m5000
2

2
2
1

f

=

−

=W

 

 
Apply conservation of energy 
during the dart’s descent: 

0fext =+∆+∆= WUKW  

or, because Ki = Ug,f  = 0, 
0fig,f =+− WUK  

 
Substitute for Kf and Ug,i to obtain: 0f

2
f2

1 =+− Wmghmv  

 
Solve for vf: ( )

m
Wmghv f

f
2 −

=  

 
Substitute numerical values and evaluate vf: 
 

( )( )( )[ ] m/s3.17
kg007.0

J602.0m24m/s81.9kg007.02 2

f =
−

=v  

 
*73 ••  
Picture the Problem Let the system consist of the earth, rock, and air. Given this choice, 
there are no external forces to do work on the system and Wext = 0. Choose Ug = 0 to be 
where the rock begins its upward motion. The initial kinetic energy of the rock is partially 
transformed into potential energy and partially dissipated by air resistance as the rock 
ascends. During its descent, its potential energy is partially transformed into kinetic 
energy and partially dissipated by air resistance. 
 
(a) Using the definition of kinetic 
energy, calculate the initial kinetic 
energy of the rock: 

( )( )
kJ1.60

m/s40kg2 2
2
12

i2
1

i

=

== mvK
 

 
(b) Apply the work-energy theorem 
with friction to relate the energies of 
the system as the rock ascends: 
 

0f =+∆+∆ WUK  

 

Because Kf = 0: 0fi =+∆+− WUK  

and 
UKW ∆−= if  
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Substitute numerical values and 
evaluate Wf: 

( )( )( )
J619

m50m/s9.81kg2J6001 2
f

=

−=W
 

 
(c) Apply the work-energy theorem 
with friction to relate the energies of 
the system as the rock descends: 
  

0f =+∆+∆ WUK  

Because Ki = Uf = 0: 0'
fif =+− WUK  

where f
'

f 7.0 WW = . 

 
Substitute for the energies to obtain: 07.0 f

2
f2

1 =+− Wmghmv  

 
Solve for vf: 

m
Wghv f

f
4.12 −=  

 
Substitute numerical values and 
evaluate vf: 

( )( ) ( )( )

m/s23.4

kg2
J6191.4m50m/s9.812 2

f

=

−=v
 

 
74 ••  
Picture the Problem Let the distance the block slides before striking the spring be L. 
The pictorial representation shows the block at the top of the incline (1), just as it strikes 
the spring (2), and the block against the fully compressed spring (3). Let the block, 
spring, and the earth comprise the system. Then Wext = 0. Let  
Ug = 0 where the spring is at maximum compression. We can apply the work-energy 
theorem to relate the energies of the system as it evolves from state 1 to state 3. 

 
 

Express the work-energy theorem: 0sg =∆+∆+∆ UUK  

or 
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0s,1s,3g,1g,3 =−+−+∆ UUUUK  

 
Because ∆K = Ug,3 = Us,1 = 0: 0s,3g,1 =+− UU  

 
Substitute for each of these energy 
terms to obtain: 
 

02
2
1

1 =+− kxmgh  

Substitute for h3 and h1: 
 

( ) 0sin 2
2
1 =++− kxxLmg θ  

Rewrite this equation explicitly as a 
quadratic equation: 
 

0sin2sin22 =−−
k

mgLx
k

mgx θθ
 

Solve this quadratic equation to obtain: 
 

θθθ sin2sinsin 2
2

k
mgL

k
mg

k
mgx +⎟

⎠
⎞

⎜
⎝
⎛+=  

Note that the negative sign between the two terms leads to a non-physical solution. 
 
*75 •  
Picture the Problem We can find the work done by the girder on the slab by calculating 
the change in the potential energy of the slab. 
 
(a) Relate the work the girder does 
on the slab to the change in 
potential energy of the slab: 
 

hmgUW ∆=∆=  
 

Substitute numerical values and 
evaluate W: 

( )( )( )
J147

m0.001m/s9.81kg101.5 24

=

×=W
 

 

(b) 

expansion. sgirder'  thecauses which ,separation averagelarger 
 a  toleading energy, kinetic averagegreater  a with rategirder vib in the

 atoms  therises,girder   theof re temperatu theAs girder. n thewarmer tha
are which gs,surroundin its fromgirder   the toed transferrisenergy  The

 

 
76 ••  
Picture the Problem The average power delivered by the car’s engine is the rate at 
which it changes the car’s energy. Because the car is slowing down as it climbs the hill, 
its potential energy increases and its kinetic energy decreases. 
 
Express the average power delivered 
by the car’s engine: t

EP
∆
∆

=av  
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Express the increase in the car’s 
mechanical energy: 

( )hgvvm

hmgmvmv

UUKK
UKE

∆+−=

∆+−=

−+−=
∆+∆=∆

22
bot

2
top2

1

2
bot2

12
top2

1

bottopbottop
 

 
Substitute numerical values and evaluate ∆E: 
 

( ) ( ) ( ) ( )( )[ ] MJ41.1m120m/s9.812m/s24m/s10kg1500 222
2
1 =+−=∆E  

 
Assuming that the acceleration of 
the car is constant, find its average 
speed during this climb: 
 

m/s17
2

bottop
av =

+
=

vv
v  

Using the vav, find the time it takes 
the car to climb the hill: 
 

s118
m/s17

m2000

av

==
∆

=∆
v

st  

Substitute to determine Pav: kW11.9
s118

MJ1.41
av ==P  

 
*77 ••  
Picture the Problem Given the potential energy function as a function of y, we can find 
the net force acting on a given system from dydUF /−= . The maximum extension of 

the spring; i.e., the lowest position of the mass on its end, can be found by applying the 
work-energy theorem. The equilibrium position of the system can be found by applying 
the work-energy theorem with friction … as can the amount of thermal energy produced 
as the system oscillates to its equilibrium position. 
 
(a) The graph of U as a function of 
y is shown to the right. Because k 
and m are not specified, k has been 
set equal to 2 and mg to 1. The 
spring is unstretched when  
y = y0 = 0. Note that the minimum 
value of U (a position of stable 
equilibrium) occurs near y  = 0.5 m. 
 

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

y  (m)

 
 

(b) Evaluate the negative of the 
derivative of U with respect to 
y: 

( )

mgky

mgyky
dy
d

dy
dUF

+−=

−−=−= 2
2
1
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(c) Apply conservation of 
energy to the movement of the 
mass from y = 0 to y  =  ymax: 
 

0f =+∆+∆ WUK  

Because ∆K = 0 (the object 
starts from rest and is 
momentarily at rest at y = ymax) 
and Wf = 0 (no friction), it 
follows that:  
 

∆U = U(ymax) – U(0) = 0 

Because U(0) = 0, it follows 
that: 

U(ymax) = 0 ⇒ 0max
2
max2

1 =− mgyky  

 
Solve for ymax: 

k
mgy 2

max =  

 
(d) Express the condition of F at 
equilibrium and solve for yeq: 

00 eqeq =+−⇒= mgkyF  

and 

k
mgy =eq  

 
(e) Apply the conservation of 
energy to the movement of the mass 
from y = 0 to y  =  yeq and solve for 
Wf: 
 

0f =+∆+∆ WUK  

or, because ∆K = 0, 
fif UUUW −=∆−=  

 

Because ( ) :00i == UU  ( )eq
2
eq2

1
ff mgykyUW −−=−=  

 
Substitute for yeq and simplify to 
obtain: k

gmW
2

22

f =  

 
78 ••  
Picture the Problem The energy stored in the compressed spring is initially transformed 
into the kinetic energy of the signal flare and then into gravitational potential energy and 
thermal energy as the flare climbs to its maximum height. Let the system contain the 
earth, the air, and the flare so that Wext = 0. We can use the work-energy theorem with 
friction in the analysis of the energy transformations during the motion of the flare. 
 
(a) The work done on the spring in 
compressing it is equal to the kinetic 
energy of the flare at launch. 

2
02

1
flarei,s mvKW ==  
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Therefore:  
 
(b) Ignoring changes in gravitational 
potential energy (i.e., assume that 
the compression of the spring is 
small compared to the maximum 
elevation of the flare), apply the 
conservation of energy to the 
transformation that takes place as 
the spring decompresses and gives 
the flare its launch speed: 
 

0s =∆+∆ UK  

or 
0is,fs,if =−+− UUKK  

 

Because Ki = ∆Ug = Us,f: 
 

0is,f =−UK  

Substitute for is,f and UK : 

 

02
2
12

02
1 =− kdmv  

Solve for k to obtain: 
2

2
0

d
mvk =  

 
(c) Apply conservation of energy to 
the upward trajectory of the flare: 
 

0fg =+∆+∆ WUK  

Solve for Wf: 

fifi

gf

UUKK
UKW

−+−=

∆−∆−=
 

 
Because Kf = Ui = 0: mghmvW −= 2

02
1

f  
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79 ••  
Picture the Problem Let UD = 0. Choose 
the system to include the earth, the track, 
and the car. Then there are no external 
forces to do work on the system and 
change its energy and we can use 
Newton’s 2nd law and the work-energy 
theorem to describe the system’s energy 
transformations to point G … and then the 
work-energy theorem with friction to 
determine the braking force that brings the 
car to a stop. The free-body diagram for 
point C is shown to the right. 

 

  
The free-body diagram for point D is 
shown to the right. 

 
The free-body diagram for point  
F is shown to the right. 

 
(a) Apply the work-energy theorem 
to the system’s energy 
transformations between A and B:  
 

0=∆+∆ UK  
or 

0ABAB =−+− UUKK  

If we assume that the car arrives at 
point B with vB = 0, then: 

02
A2

1 =∆+− hmgmv  

where ∆h is the difference in elevation 
between A and B. 
 

Solve for and evaluate ∆h: 
g

vh
2

2
A=∆  

 
Substitute numerical values and 
evaluate ∆h: 

( )
( ) m34.7

m/s9.812
m/s12

2

2

==∆h  
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Express the height above the ground: m17.3m7.34m10 =+=∆+ hh  

 
(b) If the car just makes it to point 
B, i.e., if it gets there with vB = 0, 
then the force exerted by the track 
on the car will be the normal force: 

( )( )
kN4.91

m/s9.81kg500 2

ncarontrack

=

=

== mgFF

 

 
(c) Apply ∑ = xx maF to the car at 

point C (see the FBD) and solve for 
and evaluate a: 
 

mamg =θsin  

and 
( )
2

2

m/s4.91

sin30m/s9.81sin

=

°== θga
 

 
(d) Apply ∑ = yy maF to the car at 

point D (see the FBD) and solve for 
Fn: 
 

R
vmmgF

2
D

n =−  

and 

R

2
D

n
vmmgF +=  

 
Apply the work-energy theorem to 
the system’s energy transformations 
between B and D: 
 

0=∆+∆ UK  
or 

0BDBD =−+− UUKK  

Because KB = UD = 0: 
 

0BD =−UK  

Substitute to obtain: ( ) 02
D2

1 =∆+− hhmgmv  

 
Solve for 2

Dv : 

 

( )hhgv ∆+= 22
D  

Substitute to find Fn: 

( )

( )
⎥⎦
⎤

⎢⎣
⎡ ∆+

+=

∆+
+=

+=

R
hhmg

R
hhgmmg

vmmgF

21

2
R

2
D

n

 

 
Substitute numerical values and 
evaluate Fn: 

( )( ) ( )

upward.directedkN,13.4

m20
m17.321m/s9.81kg500 2

n

=

⎥
⎦

⎤
⎢
⎣

⎡
+=F
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(e) F has two components at point F; 
one horizontal (the inward force that 
the track exerts) and the other 
vertical (the normal force). Apply 

∑ = aF rr
m to the car at point F: 

 

∑ =⇒=−= mgFmgFFy nn 0  

and 

∑ ==
R
vmFFx

2
F

c  

Express the resultant of these two 
forces: 

( )

2
2

4
F

2
22

F

2
n

2
c

g
R
vm

mg
R
vm

FFF

+=

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

+=

 

 
Substitute numerical values and 
evaluate F: ( ) ( )

( )
( )

kN46.5

m/s9.81
m30

m/s12kg500 22
2

4

=

+=F
 

 
Express the angle the resultant 
makes with the x axis: ⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
= −−

2
F

1

c

n1 tantan
v
gR

F
Fθ  

 
Substitute numerical values and 
evaluate θ : 

( )( )
( )

°=⎥
⎦

⎤
⎢
⎣

⎡
= − 9.63

m/s12
m30m/s9.81tan 2

2
1θ  

 
(f) Apply the work-energy theorem 
with friction to the system’s energy 
transformations between F and the 
car’s stopping position: 
 

0fG =+− WK  

and 
2
G2

1
Gf mvKW ==  

The work done by friction is also 
given by: 

dFW brakef =  

where d is the stopping distance. 
 

Equate the two expressions for Wf: 2
F2

1
brake mvdF =  

 
Solve for Fbrake 

d
mvF
2

2
F

brake =  

 
Substitute numerical values and 
evaluate Fbrake 

( )( )
( ) kN1.44

m252
m/s12kg500 2

brake ==F  
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*80 •  
Picture the Problem The rate of 
conversion of mechanical energy can be 
determined from .vF rr

⋅=P  The pictorial 
representation shows the elevator moving 
downward just as it goes into freefall as 
state 1. In state 2 the elevator is moving 
faster and is about to strike the relaxed 
spring. The momentarily at rest elevator on 
the compressed spring is shown as state 3. 
Let Ug = 0 where the spring has its 
maximum compression and the system 
consist of the earth, the elevator, and the 
spring. Then Wext = 0 and we can apply the 
conservation of mechanical energy to the 
analysis of the falling elevator and 
compressing spring. 

 
 

 

 
(a) Express the rate of conversion of 
mechanical energy to thermal 
energy as a function of the speed of 
the elevator and braking force 
acting on it: 
 

0brakingvFP =  

Because the elevator is moving with 
constant speed, the net force acting 
on it is zero and: 
 

MgF =braking  

Substitute for Fbraking and evaluate P: 
( )( )( )

kW29.4

m/s1.5m/s9.81kg2000 2
0

=

=

= MgvP

 

 
(b) Apply the conservation of 
energy  to the falling elevator and 
compressing spring: 
 

0sg =∆+∆+∆ UUK  

or 
0s,1s,3g,1g,313 =−+−+− UUUUKK  

Because K3 = Ug,3 = Us,1 = 0: 
 

( ) ( ) 02
2
12

02
1 =∆+∆+−− ykydMgMv  

Rewrite this equation as a quadratic 
equation in ∆y, the maximum compression 
of the spring: 

( ) ( ) 022 2
0

2 =+−∆⎟
⎠
⎞

⎜
⎝
⎛−∆ vgd

k
My

k
Mgy  
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Solve for ∆y to obtain: ( )2
02

22

2 vgd
k
M

k
gM

k
Mgy ++±=∆  

 
Substitute numerical values and evaluate ∆y: 
 

( )( )

( ) ( )
( ) ( )( ) ( )[ ]

m19.5

m/s5.1m5m/s81.92
N/m105.1
kg2000

N/m105.1
m/s81.9kg2000

N/m105.1
m/s81.9kg2000

22
424

222

4

2

=

+
×

+
×

+

×
=∆y

 

 
81 •  
Picture the Problem We can use Newton’s 2nd law to determine the force of friction as a 
function of the angle of the hill for a given constant speed. The power output of the 
engine is given by vF rr

⋅= fP . 

 
FBD for (a): 

 

FBD for (b): 

 
 
(a) Apply ∑ = xx maF to the car: 0sin f =− Fmg θ ⇒ θsinf mgF =  

 
Evaluate Ff for the two speeds: ( )( )

( )( )
N981

sin5.74m/s9.81kg1000
and

N491

sin2.87m/s9.81kg1000

2
30

2
20

=

°=

=

°=

F

F

 

 
(b) Express the power an engine 
must deliver on a level road  in order 
to overcome friction loss and 
evaluate this expression for  
v = 20 m/s and 30 m/s: 

( )( ) kW9.82m/s20N49120 ==

=

P

vFP f
 

and 
( )( ) kW29.4m/s30N98130 ==P  



 Chapter 7    
 

 

492 

(c) Apply ∑ = xx maF to the car: ∑ =−−= 0sin fx FmgFF θ  

 
Relate F to the power output of the 
engine and the speed of the car: 
 

v
PFFvP == ,Since  

Substitute for F and solve for θ : 

mg

F
v
P

20
1sin

−
= −θ  

 
Substitute numerical values and 
evaluate θ : 

( )( ) °=
−

= − 85.8
m/s9.81kg1000

N491
m/s20
kW40

sin 2
1θ

 
 

(d) Express the equivalence of the 
work done by the engine in driving 
the car at the two speeds: 
 

( ) ( )30302020engine sFsFW ∆=∆=  

Let ∆V represent the volume of fuel 
consumed by the engine driving the 
car on a level road and divide both 
sides of the work equation by ∆V to 
obtain: 
 

( ) ( )
V
s

F
V
s

F
∆
∆

=
∆
∆ 30

30
20

20  

Solve for 
( )

V
s

∆
∆ 30 : 

( ) ( )
V
s

F
F

V
s

∆
∆

=
∆
∆ 20

30

2030  

 
Substitute numerical values and 

evaluate 
( )

V
s

∆
∆ 30 : 

( ) ( )

km/L6.36

km/L12.7
N981
N49130

=

=
∆
∆

V
s

 

 
82 ••  
Picture the Problem Let the system 
include the earth, block, spring, and 
incline. Then Wext = 0. The top pictorial 
representation shows the block sliding 
down the incline and compressing the 
spring. Choose Ug = 0 at the elevation at 
which the spring is fully compressed. We 
can use the conservation of mechanical 
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energy to determine the maximum 
compression of the spring. 
 
The pictorial representation to the right 
shows the block sliding up the rough 
incline after being accelerated by the fully 
compressed spring. We can use the work-
energy theorem with friction to determine 
how far up the incline the block slides 
before stopping. 

 
 
(a) Apply conservation of 
mechanical energy to the system as 
it evolves from state 1 to state 3: 

0sg =∆+∆+∆ UUK  

or 

0s,1s,3

g,1g,313

=−+

−+−

UU

UUKK
 

 
Because 

0s,1g,313 ==== UUKK : 
0s,3g,1 =+− UU  

or 
02

2
1 =+∆− kxhmg  

 
Relate ∆h to L + x and θ  and 
substitute to obtain: 
 

( ) θsinxLh +=∆  
( ) 0sin2

2
1 =+−∴ θxLmgkx  

Rewrite this equation in the form of 
an explicit quadratic equation: 
 

( ) 0sinsin2
2
1 =−− θθ mgLxmgkx  

Substitute for k, m, g, θ, and L to 
obtain: 

( ) 0J24.39N81.9
m
N50 2 =−−⎟

⎠
⎞

⎜
⎝
⎛ xx  

 
Solve for the physically meaningful 
(i.e., positive) root: 
 

m989.0=x  

(b) Proceed as in (a) but include 
work done by friction: 
 

0fs,3g,1 =++− WUU  

 

Express the mechanical energy 
transformed to thermal energy: 

( ) ( )
( )xLmg

xLFxLFW
+=

+=+=
θµ

µ
cosk

nkff  
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Substitute for ∆h  and Wf to obtain: 
 

( )
( ) 0cos

sin

k

2
2
1

=++

++−

xLmg
kxxLmg

θµ
θ

 

 
Substitute for k, m, g, θ, µk, and L to 
obtain: 
 

( ) 0J65.25N41.6
m
N50 2 =−−⎟

⎠
⎞

⎜
⎝
⎛ xx  

Solve for the positive root: 
 

m783.0=x  

(c) Apply the work-energy theorem 
with friction to the system as it 
evolves from state 3 to state 4: 
 

0fs,3s,4

g,3g,434

=+−+

−+−

WUU

UUKK
 

Because 
0s,4g,314 ==== UUKK : 

0fs,3g,4 =+− WUU  

or 
0' f

2
2
1 =++∆− Wkxhmg  

 
Substitute for ∆h′ and Wf to obtain: ( )

( ) 0'cos
sin'

k

2
2
1

=++

++−

xLmg
kxxLmg

θµ
θ

 

 
Solve for L′ with x = 0.783 m: m54.1'=L  

 
83 ••  
Picture the Problem The work done by the engines maintains the kinetic energy of the 
cars and overcomes the work done by frictional forces. Let the system include the earth, 
track, and the cars but not the engines. Then the engines will do external work on the 
system and we can use this work to find the power output of the train’s engines. 
 
(a) Use the definition of kinetic 
energy to evaluate K: 

( )

MJ17.4

s3600
h1

h
km15kg102

2
6

2
1

2
2
1

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××=

= mvK

 

 
(b) Use the definition of potential 
energy to express and evaluate the 
change in potential energy of the 
train: 

( )( )( )
J101.39

m707m/s9.81kg102
10

26

×=

×=

∆=∆ hmgU
 

 
(c) Express the energy dissipated by 
kinetic friction: 

sFW ∆= ff  
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Express the frictional force: 
 

mgF 008.0f =  

Substitute for Ff and evaluate Wf: 
( )

( )( )
J109.73

km62m/s9.81
kg1020.008

008.0

9

2

6
f

×=

×

×=

∆= smgW

 

 
(d) Express the power output of the 
train’s engines in terms of the work 
done by them: 
 

t
WP

∆
∆

=  

Use the work-energy theorem with 
friction to find the work done by the 
train’s engines: 
 

.0since,f

fext

=∆+∆=
+∆+∆=

KWU
WUKW

 

Find the time during which the 
engines do this work: 
 

v
st ∆

=∆  

Substitute in the expression for P to 
obtain: 

( )
s

vWU
P

∆
+∆

= f  

 
Substitute numerical values and evaluate P: 
 

( )
MW1.59

km62
s3600

h1
h

km15J109.73J101.39 910

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××+×

=P  

*84 ••  
Picture the Problem While on a horizontal surface, the work done by an automobile 
engine changes the kinetic energy of the car and does work against friction. These 
energy transformations are described by the work-energy theorem with friction. Let the 
system include the earth, the roadway, and the car but not the car’s engine. 
 
(a) The required energy equals the 
change in the kinetic energy of the 
car: ( )

kJ116

s3600
h1

h
km50kg1200

2

2
1

2
2
1

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

=∆ mvK

 

 
(b) The required energy equals the 
work done against friction: 

sFW ∆= ff  
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Substitute numerical values and 
evaluate Wf: 

( )( ) kJ90.0m300N300f ==W  

 
(c) Apply the work-energy theorem 
with friction to express the required 
energy: 
 

EK
WKWE

75.0
' fext

+∆=
+∆==

 

Divide both sides of the equation by 
E to express the ratio of the two 
energies: 
 

75.0'
+

∆
=

E
K

E
E

 

 

Substitute numerical values and 
evaluate E′/E: 

04.20.75
kJ90
kJ116'

=+=
E
E

 

 
*85 •••  
Picture the Problem Assume that the bob 
is moving with speed v as it passes the top 
vertical point when looping around the peg.  
There are two forces acting on the bob:  the 
tension in the string (if any) and the force 
of gravity, Mg; both point downward when 
the ball is in the topmost position.  The 
minimum possible speed for the bob to 
pass the vertical occurs when the tension is 
0; from this, gravity must supply the 
centripetal force required to keep the ball 
moving in a circle. We can use 
conservation of energy to relate v to L and 
R. 

 

 
Express the condition that the bob 
swings around the peg in a full 
circle: 
 

 
2

Mg
R
vM >  

 
Simplify to obtain: 
 g

R
v

>
2

 

 
Use conservation of energy to relate 
the kinetic energy of the bob at the 
bottom of the loop to its potential 
energy at the top of its swing: 
 

( )22
2
1 RLMgMv −=  

Solve for v2: ( )RLgv 222 −=  
 

Substitute to obtain: ( ) g
R

RLg
>

− 22
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Solve for R: 
LR

5
2 <  

 
86 ••  
Picture the Problem If the wood exerts an average force F on the bullet, the work it does 
has magnitude FD.  This must be equal to the change in the kinetic energy of the bullet, 
or because the final kinetic energy of the bullet is zero, to the negative of the initial 
kinetic energy.  We’ll let m be the mass of the bullet and v  its initial speed and apply the 
work-kinetic energy theorem to relate the penetration depth to v. 
 
Apply the work-kinetic energy 
theorem to relate the penetration 
depth to the change in the kinetic 
energy of the bullet: 
 

iftotal KKKW −=∆=  
or, because Kf = 0, 

itotal KW −=  

Substitute for Wtotal and Ki to obtain: 2
2
1 mvFD −=  

Solve for D to obtain: 

F
mvD
2

2

−=  

 
For an identical bullet with twice 
the speed we have: 
 

( )2
2
1 2' vmFD −=  

Solve for D′ to obtain: 
 D

F
mvD 4
2

4'
2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=  

and correct. is )(c  

 
87 ••  
Picture the Problem For part (a), we’ll let the system include the glider, track, weight, 
and the earth. The speeds of the glider and the falling weight will be the same while they 
are in motion. Let their common speed when they have moved a distance Y be v and let 
the zero of potential energy be at the elevation of the weight when it has fallen the 
distance Y. We can use conservation of energy to relate the speed of the glider (and the 
weight) to the distance the weight has fallen. In part (b), we’ll let the direction of motion 
be the x direction, the tension in the connecting string be T, and apply Newton’s 2nd law 
to the glider and the weight to find their common acceleration. Because this acceleration 
is constant, we can use a constant-acceleration equation to find their common speed when 
they have moved a distance Y. 
 
(a) Use conservation of energy to 
relate the kinetic and potential 
energies of the system: 
 

0=∆+∆ UK  
or 

0ifif =−+− UUKK  

Because the system starts from rest 
and  Uf = 0: 
 

0if =−UK  

Substitute to obtain: 02
2
12

2
1 =−+ mgYMvmv  
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Solve for v: 

mM
mgYv

+
=

2
 

 
(b) The free-body diagrams for the 
glider and the weight are shown to 
the right: 
 

 
Apply Newton’s 3rd law to obtain: T== 21 TT

rr
 

Apply maFx =∑ to the glider: 
 

MaT =  

Apply maFx =∑ to the weight: 
 

maTmg =−  

Add these equations to eliminate T 
and obtain: 
 

maMamg +=  

Solve for a to obtain: 

Mm
mga
+

=  

 
Using a constant-acceleration 
equation, relate the speed of the 
glider to its initial speed and to the 
distance that the weight has fallen: 
 

aYvv 22
0

2 +=  
or, because v0 = 0, 

aYv 22 =  

Substitute for a and solve for v to 
obtain: 

mM
mgYv

+
=

2
, the same result we 

obtained in part (a). 
 
*88 ••  
Picture the Problem We’re given dtdWP /= and are asked to evaluate it under the 
assumed conditions. 
 
Express the rate of energy 
expenditure by the man: 

( )( )
W270

m/s3kg1033 22

=
== mvP

 

 
Express the rate of energy 
expenditure P′ assuming that his 
muscles have an efficiency of 20%: 

P'P 5
1=  
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Solve for and evaluate P′: ( ) kW1.35W27055 === PP'  

 
89 ••  
Picture the Problem The pictorial 
representation shows the bob swinging 
through an angle θ before the thread is cut 
and it is launched horizontally. Let its 
speed at position 1 be v. We can use 
conservation of energy to relate v to the 
change in the potential energy of the bob as 
it swings through the angle θ . We can find 
its flight time ∆t from a constant-
acceleration equation and then express D as 
the product of v and ∆t.  

 
  
Relate the distance D traveled 
horizontally by the bob to its launch 
speed v and time of flight ∆t: 
 

tvD ∆=                      (1) 

Use conservation of energy to relate 
its launch speed v to the length of 
the pendulum L and the angle θ : 
 

00101 =−+− UUKK  
or, because U1 = K0 = 0, 

001 =−UK  

Substitute to obtain: 
 

( ) 0cos12
2
1 =−− θmgLmv  

Solving for v yields: 
 

( )θcos12 −= gLv  

In the absence of air resistance, the 
horizontal and vertical motions of 
the bob are independent of each 
other and we can use a constant-
acceleration equation to express the 
time of flight (the time to fall a 
distance H): 
 

( )2
2
1

0 tatvy yy ∆+∆=∆  
or, because ∆y = −H, ay = −g, and v0y = 0, 

( )2
2
1 tgH ∆−=−  

Solve for ∆t to obtain: gHt /2=∆  
 

Substitute in equation (1) and 
simplify to obtain: ( )

( )θ

θ

cos12

2cos12

−=

−=

HL

g
HgLD

 

which shows that, while D depends on θ, it 
is independent of g. 
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90 ••  
Picture the Problem The pictorial representation depicts the block in its initial position 
against the compressed spring (1), as it separates from the spring with its maximum 
kinetic energy (2), and when it has come to rest after moving a distance x + d. Let the 
system consist of the earth, the block, and the surface on which the block slides. With this 
choice, Wext = 0. We can use the work-energy theorem with friction to determine how far 
the block will slide before coming to rest. 
 

 
 
(a) Express the work done by the 
spring on the block: 
 

2
2
1

springspring kxUW =∆=  

 

Substitute numerical values and 
evaluate Wspring: 
 

( )( ) J0.900cm3N/cm20 2
2
1

spring ==W  

(b) Relate the energy dissipated by 
friction to the friction force and the 
displacement of the block: 
 

xmgxFxFW ∆=∆=∆= knkff µµ  

 

Substitute numerical values and 
evaluate Wf: 

( )( )( )( )
J0.294

m0.03m/s9.81kg50.2 2
f

=

=W
 

 
(c) Apply the conservation of 
energy between points 1 and 2: 
 

0fs,1s,212 =+−+− WUUKK  

Because K1 = Us,2 = 0: 
 

0fs,12 =+− WUK  

Substitute to obtain: 0f
2

2
12

22
1 =+− Wkxmv  

 
Solve for v2: 

m
Wkxv f

2

2
2−

=  
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Substitute numerical values and 
evaluate  v2: 

( )( ) ( )

m/s0.492

kg5
J0.2942cm3N/cm20 2

2

=

−
=v

 

 
(d) Apply the conservation of 
energy between points 1 and 3: 
 

0fs,1s,3 =+−+∆ WUUK  

Because ∆K = Us,3 = 0: 0fs,1 =+− WU  

or 
( ) 0k

2
2
1 =++− dxmgkx µ  

 
Solve for d: 

x
mg

kxd −=
k

2

2µ
 

 
Substitute numerical values and  
evaluate d: 

( )( )
( )( )( )

cm6.17

m0.03
m/s9.81kg50.22

cm3N/cm20
2

2

=

−=d
 

 
91 •• 
Picture the Problem The pictorial 
representation shows the block initially at 
rest at point 1, falling under the influence 
of gravity to point 2, partially compressing 
the spring as it continues to gain kinetic 
energy at point 3, and finally coming to 
rest at point 4 with the spring fully 
compressed. Let the system consist of the 
earth, the block, and the spring so that  
Wext = 0. Let Ug = 0 at point 3 for part (a) 
and at point 4 for part (b). We can use the 
work-energy theorem to express the kinetic 
energy of the system as a function of the 
block’s position and then use this function 
to maximize K as well as determine the 
maximum compression of the spring and 
the location of the block when the system 
has half its maximum kinetic energy.  

 
(a) Apply conservation of 0sg =∆+∆+∆ UUK  
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mechanical energy to describe the 
energy transformations between 
state 1 and state 3: 
 

or 
0s,1s,3g,1g,313 =−+−+− UUUUKK  

 

Because K1 = Ug,3 = Us,1 = 0: 0s,3g,13 =+− UUK  

and 
( ) 2

2
1

3 kxxhmgKK −+==  

 
Differentiate K with respect to x and 
set this derivative equal to zero to 
identify extreme values: 
 

.valuesextremefor0=−= kxmg
dx
dK

 

Solve for x: 
k

mgx =  

 
Evaluate the second derivative of K 
with respect to x: 
 

.maximizes

02

2

K
k

mgx

k
dt

Kd

=⇒

<−=
 

 
Evaluate K for x = mg/k: 

k
gmmgh

k
mgk

k
mgmgmghK

2

22

2

2
1

max

+=

⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛+=

 

 
(b) The spring will have its 
maximum compression at point 4 
where K = 0: 

( )

022
or

0

max
2
max

2
max2

1
max

=−−

=−+

k
mghx

k
mgx

kxxhmg
 

 
Solve for x and keep the physically 
meaningful root: 
 

k
mgh

k
gm

k
mgx 2

2

22

max ++=  

 
(c) Apply conservation of 
mechanical energy to the system as 
it evolves from state 1 to the state in 
which max2

1 KK = : 

 

0sg =∆+∆+∆ UUK  

or 
0s,1s,3g,1g,31 =−+−+− UUUUKK  

 

Because K1 = Ug,3 = Us,1 = 0: 0s,3g,1 =+− UUK  
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and 
( ) 2

2
1 kxxhmgK −+=  

 
Substitute for K to obtain: ( ) 2

2
1

22

2
1

2
kxxhmg

k
gmmgh −+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+  

 
Express this equation in quadratic form: 

0
2

2
2

22
2 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+−

k
mgh

k
gmx

k
mgx  

 
Solve for the positive value of x: 

k
mgh

k
gm

k
mgx 42

2

22

++=  

 
92 •••   
Picture the Problem The free-body 
diagram shows the forces acting on the 
pendulum bob. The application of 
Newton’s 2nd law leads directly to the 
required expression for the tangential 
acceleration. Recall that, provided θ is in 
radian measure, s = Lθ. Differentiation 
with respect to time produces the result 
called for in part (b). The remaining parts 
of the problem simply require following 
the directions for each part. 

 

 
 
(a) Apply ∑ = xx maF to the bob:  tantan sin mamgF =−= θ  

 
Solve for atan: θsin/tan gdtdva −==  

 
(b) Relate the arc distance s to the 
length of the pendulum L and the 
angle θ : 
 

θLs =  

Differentiate with respect to time: dtLdvdtds // θ==  
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(c) Multiply 
θ
θ

d
d

dt
dv by  and 

substitute for 
dt
dθ

from part (b): ⎟
⎠
⎞

⎜
⎝
⎛=

==

L
v

d
dv

dt
d

d
dv

d
d

dt
dv

dt
dv

θ

θ
θθ

θ

 

 
(d) Equate the expressions for dv/dt 
from (a) and (c): 

θ
θ

sing
L
v

d
dv

−=⎟
⎠
⎞

⎜
⎝
⎛  

 
Separate the variables to obtain: θθ dgLvdv sin−=  

(e) Integrate the left side of the 
equation in part (d) from v = 0 to the 
final speed v and the right side from  
θ  = θ0 to θ  = 0: 
 

∫∫ −=
0

0 0

''sin''
θ

θθ dgLdvv
v

 

Evaluate the limits of integration to 
obtain: 
 

( )0
2

2
1 cos1 θ−= gLv  

Note, from the figure, that  
h = L(1 − cosθ0). Substitute and 
solve for v: 

ghv 2=  

 
93 •••  
Picture the Problem The potential energy of the climber is the sum of his gravitational 
potential energy and the potential energy stored in the spring-like bungee cord. Let θ be 
the angle which the position of the rock climber on the cliff face makes with a vertical 
axis and choose the zero of gravitational potential energy to be at the bottom of the cliff.  
We can use the definitions of Ug and Uspring to express the climber’s total potential 
energy. 
 
(a) Express the total potential 
energy of the climber: 

( ) gcord bungee UUsU +=  
 

Substitute to obtain: ( )
( )

( ) ⎟
⎠
⎞

⎜
⎝
⎛+−=

+−=

+−=

H
sMgHLsk

MgHLsk

MgyLsksU

cos

cos

)(

2
2
1

2
2
1

2
2
1

θ  

 
A spreadsheet solution is shown below. The constants used in the potential energy 
function and the formulas used to calculate the potential energy are as follows: 
 

Cell Content/Formula Algebraic Form 
B3 300 H 
B4 5 k 
B5 60 L 
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B6 85 M 
B7 9.81 g 

D11 60 s 
D12 D11+1 s + 1 
E11 0.5*$B$4*(D11−$B$5)^2 

+$B$6*$B$7*$B$3*(cos(D11/$B$3)) ( ) ⎟
⎠
⎞

⎜
⎝
⎛+−

H
sMgHLsk cos2

2
1

 
G11 E11−E61 ( ) ( )m110m60 UU −   

 
 

 A B C D E 
1      
2      
3 H = 300 m   
4 k = 5 N/m   
5 L = 60 m   
6 m = 85 kg   
7 g = 9.81 m/s^2   
8      
9      

10    s U(s) 
11    60 2.45E+05 
12    61 2.45E+05 
13    62 2.45E+05 
14    63 2.45E+05 
15    64 2.45E+05 

      
147    196 2.45E+05 
148    197 2.45E+05 
149    198 2.45E+05 
150    199 2.45E+05 
151    200 2.46E+05  

 
The following graph was plotted using the data from columns D (s) and E (U(s)).  
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*94 •••  
Picture the Problem The diagram to the 
right shows the forces each of the springs 
exerts on the block. The change in the 
potential energy stored in the springs is due 
to the elongation of both springs when the 
block is displaced a distance x from its 
equilibrium position and we can find ∆U 
using ( )2

2
1 Lk ∆ . We can find the magnitude 

of the force pulling the block back toward 
its equilibrium position by finding the sum 
of the magnitudes of the y components of 
the forces exerted by the springs. In Part 
(d) we can use conservation of energy to 
find the speed of the block as it passes 
through its equilibrium position. 

 
 
 
 

 

 
(a) Express the change in the 
potential energy stored in the 
springs when the block is displaced 
a distance x: 
 

( )[ ] ( )22
2
12 LkLkU ∆=∆=∆  

where ∆L is the change in length of a 
spring. 

Referring to the force diagram, 
express ∆L: 

LxLL −+=∆ 22  
 

Substitute to obtain: ( )2
22 LxLkU −+=∆  
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(b) Sum the forces acting on the 
block to express Frestoring: 

22

restoring

2

cos2cos2

xL
xLk

LkFF

+
∆=

∆== θθ
 

 
Substitute for ∆L to obtain: 
 ( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−=

+
−+=

22

22

22
restoring

12

2

xL
Lkx

xL
xLxLkF

 

 
(c) A spreadsheet program to calculate U(x) is shown below. The constants used in the 
potential energy function and the formulas used to calculate the potential energy are as 
follows: 
 

Cell Content/Formula Algebraic Form 
B1 1 L 
B2 1 k 
B3 1 M 
C8 C7+0.01 x 
D7 $B$2*((C7^2+$B$1^2)^0.5−$B$1)^2 U(x)  

 
 A B C D 

1 L = 0.1 m  
2 k = 1 N/m  
3 M = 1 kg  
4     
5     
6   x U(x) 
7   0 0 
8   0.01 2.49E−07 
9   0.02 3.92E−06 
10   0.03 1.94E−05 
11   0.04 5.93E−05 
12   0.05 1.39E−04 
     

23   0.16 7.86E−03 
24   0.17 9.45E−03 
25   0.18 1.12E−02 
26   0.19 1.32E−02 
27   0.20 1.53E−02  
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The following graph was plotted using the data from columns C (x) and D (U(x)). 
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(d) Use conservation of energy to 
relate the kinetic energy of the block 
as it passes through the equilibrium 
position to the change in its 
potential energy as it returns to its 
equilibrium position: 
 

UK ∆=mequilibriu  
or 

UMv ∆=2
2
1  

Solve for v to obtain: ( )

( )
M
kLxL

M
LxLk

M
Uv

2

22

22

2
22

−+=

−+
=

∆
=

 

 
Substitute numerical values and evaluate v: 
 

( ) ( ) ( ) cm/s86.5
kg1
N/m12m1.0m1.0m1.0 22 =⎟

⎠
⎞⎜

⎝
⎛ −+=v  

 
 
 
 
 
 
 


