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Chapter 8 
Systems of Particles and Conservation of 
Momentum 
 
Conceptual Problems 
 
1 •  
Determine the Concept A doughnut. The definition of the center of mass of an object 
does not require that there be any matter at its location. Any hollow sphere (such as a 
basketball) or an empty container with any geometry are additional examples of three-
dimensional objects that have no mass at their center of mass. 
 
*2 •  
Determine the Concept The center of mass is midway between the two balls and is in 
free-fall along with them (all forces can be thought to be concentrated at the center of 
mass.)  The center of mass will initially rise, then fall.   
 
Because the initial velocity of the center of mass is half of the initial velocity of the ball 
thrown upwards, the mass thrown upwards will rise for twice the time that the center of 
mass rises.  Also, the center of mass will rise until the velocities of the two balls are equal 
but opposite. correct. is )(b  

 
3 •  
Determine the Concept The acceleration of the center of mass of a system of particles is 
described by ,cm

i
exti,extnet, aFF

rrr
M== ∑ where M is the total mass of the system. 

 
Express the acceleration of the 
center of mass of the two pucks: 21

1extnet,
cm mm

F
M

F
a

+
==  

and correct. is )(b  

  
4 •  
Determine the Concept The acceleration of the center of mass of a system of particles 
is described by ,cm

i
exti,extnet, aFF

rrr
M== ∑ where M is the total mass of the system. 

 
Express the acceleration of the 
center of mass of the two pucks: 21

1extnet,
cm mm

F
M

F
a

+
==  

because the spring force is an internal 
force. 

correct. is )( b  
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*5 •  
Determine the Concept No.  Consider a 1-kg block with a speed of 1 m/s and a 2- kg 
block with a speed of 0.707 m/s.  The blocks have equal kinetic energies but momenta of 
magnitude 1 kg·m /s and 1.414 kg·m/s, respectively. 
 
6 •  
(a) True. The momentum of an object is the product of its mass and velocity. Therefore, 
if we are considering just the magnitudes of the momenta, the momentum of a heavy 
object is greater than that of a light object moving at the same speed. 
 
(b) True. Consider the collision of two objects of equal mass traveling in opposite 
directions with the same speed. Assume that they collide inelastically. The mechanical 
energy of the system is not conserved (it is transformed into other forms of energy), but 
the momentum of the system is the same after the collision as before the collision, i.e., 
zero. Therefore, for any inelastic collision, the momentum of a system may be conserved 
even when mechanical energy is not. 
 
(c) True. This is a restatement of the expression for the total momentum of a system of 
particles. 
 
7 •  
Determine the Concept To the extent that the system in which the rifle is being fired is 
an isolated system, i.e., the net external force is zero, momentum is conserved during its 
firing. 
 
Apply conservation of momentum 
to the firing of the rifle: 

 

0bulletrifle =+ pp rr
 

or 

bulletrifle pp rr
−=  

 
*8 •  
Determine the Concept When she jumps from a boat to a dock, she must, in order for 
momentum to be conserved, give the boat a recoil momentum, i.e., her forward 
momentum must be the same as the boat’s backward momentum. The energy she 
imparts to the boat is .2 boat

2
boatboat mpE =  

 

zero.y essentiall is  them toimparts sheenergy   that thelarge so isearth 
  theplusdock   theof mass  theanother, dock to one from jumps sheWhen 

 

 
*9 ••  

Determine the Concept Conservation of momentum requires only that the net external 
force acting on the system be zero. It does not require the presence of a medium such as 
air. 
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10 •  
Determine the Concept The kinetic energy of the sliding ball is 2

cm2
1 mv . The kinetic 

energy of the rolling ball is rel
2
cm2

1 Kmv + , where its kinetic energy relative to its center 
of mass is relK . Because the bowling balls are identical and have the same velocity, the 

rolling ball has more energy. 
 
11 •   
Determine the Concept Think of someone pushing a box across a floor.  Her push on 
the box is equal but opposite to the push of the box on her, but the action and reaction 
forces act on different objects.  You can only add forces when they act on the same 
object. 
 
12 •  
Determine the Concept It’s not possible for both to remain at rest after the collision, as 
that wouldn't satisfy the requirement that momentum is conserved.  It is possible for one 
to remain at rest:  This is what happens for a one-dimensional collision of two identical 
particles colliding elastically. 
 
13 •  
Determine the Concept It violates the conservation of momentum!  To move forward 
requires pushing something backwards, which Superman doesn’t appear to be doing 
when flying around.  In a similar manner, if Superman picks up a train and throws it at 
Lex Luthor, he (Superman) ought to be tossed backwards at a pretty high speed to satisfy 
the conservation of momentum. 
 
*14 ••  
Determine the Concept There is only one force which can cause the car to move 
forward−the friction of the road!  The car’s engine causes the tires to rotate, but if the 
road were frictionless (as is closely approximated by icy conditions) the wheels would 
simply spin without the car moving anywhere.  Because of friction, the car’s tire pushes 
backwards against the road−from Newton’s third law, the frictional force acting on the 
tire must then push it forward.  This may seem odd, as we tend to think of friction as 
being a retarding force only, but true. 
 
15 ••  
Determine the Concept The friction of the tire against the road causes the car to slow 
down.  This is rather subtle, as the tire is in contact with the ground without slipping at all 
times, and so as you push on the brakes harder, the force of static friction of the road 
against the tires must increase. Also, of course, the brakes heat up, and not the tires. 
 
16 •  
Determine the Concept Because ∆p = F∆t is constant, a safety net reduces the force 
acting on the performer by increasing the time ∆t during which the slowing force acts.  
 
17 •  
Determine the Concept Assume that the ball travels at 80 mi/h ≈ 36 m/s. The ball stops 
in a distance of about 1 cm. So the distance traveled is about 2 cm at an average speed of 
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about 18 m/s. The collision time is ms1
m/s18

m0.02
≈ . 

  
18 •  
Determine the Concept The average force on the glass is less when falling on a carpet 
because ∆t is longer. 
 
19 •  
(a) False. In a perfectly inelastic collision, the colliding bodies stick together but may or 
may not continue moving, depending on the momentum each brings to the collision. 
 
(b) True. In a head-on elastic collision both kinetic energy and momentum are 
conserved and the relative speeds of approach and recession are equal. 
 
(c) True. This is the definition of an elastic collision. 
 
*20 ••  
Determine the Concept All the initial kinetic energy of the isolated system is lost in a 
perfectly inelastic collision in which the velocity of the center of mass is zero. 
 
21 ••  
Determine the Concept We can find the loss of kinetic energy in these two collisions 
by finding the initial and final kinetic energies. We’ll use conservation of momentum to 
find the final velocities of the two masses in each perfectly elastic collision. 
 
(a) Letting V represent the velocity 
of the masses after their perfectly 
inelastic collision, use conservation 
of momentum to determine V: 
 

afterbefore pp =  

or 
02 =⇒=− VmVmvmv  

Express the loss of kinetic energy 
for the case in which the two objects 
have oppositely directed velocities 
of magnitude v/2: 

4

2
20

2

2

2
1

if

mv

vmKKK

−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=−=∆

 

 
Letting V represent the velocity of 
the masses after their perfectly 
inelastic collision, use conservation 
of momentum to determine V: 
 

afterbefore pp =  

or 
vVmVmv 2

12 =⇒=  
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Express the loss of kinetic energy 
for the case in which the one object 
is initially at rest and the other has 
an initial velocity v: 

( )
42

2
2

2
2
1

2

2
1

if

mvmvvm

KKK

−=−⎟
⎠
⎞

⎜
⎝
⎛=

−=∆

 

 
 

cases.both in  same  theis
energy  kinetic of loss The

 

 
(b) Express the percentage loss for 
the case in which the two objects 
have oppositely directed velocities 
of magnitude v/2: 
 

%1002
4
1

2
4
1

before

==
∆

mv
mv

K
K

 

Express the percentage loss for the 
case in which the one object is 
initially at rest and the other has an 
initial velocity v: 
 

%502
2
1

2
4
1

before

==
∆

mv
mv

K
K

 

 

/2. magnitude of
s velocitiedirected oppositely have

 objects  twohein which t case the
for greatest  is loss percentage The

v

 

 
*22 ••  
Determine the Concept A will travel farther.  Both peas are acted on by the same force, 
but pea A is acted on by that force for a longer time.  By the impulse-momentum 
theorem, its momentum (and, hence, speed) will be higher than pea B’s speed on leaving 
the shooter. 
 
23 ••  
Determine the Concept Refer to the particles as particle 1 and particle 2. Let the 
direction particle 1 is moving before the collision be the positive x direction. We’ll use 
both conservation of momentum and conservation of mechanical energy to obtain an 
expression for the velocity of particle 2 after the collision. Finally, we’ll examine the 
ratio of the final kinetic energy of particle 2 to that of particle 1 to determine the 
condition under which there is maximum energy transfer from particle 1 to particle 2.  
 
Use conservation of momentum to 
obtain one relation for the final 
velocities: 
 

f2,2f1,1i1,1 vmvmvm +=             (1) 

Use conservation of mechanical 
energy to set the velocity of 

( ) i1,i1,i2,f1,f2, vvvvv =−−=−    (2) 
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recession equal to the negative of 
the velocity of approach: 
 
To eliminate v1,f, solve equation (2) 
for v1,f, and substitute the result in 
equation (1): 

i1,f2,f1, vvv +=  

( ) f2,2i1,f2,1i1,1 vmvvmvm +−=  

 
Solve for v2,f: 

i1,
21

1
f2,

2
v

mm
m

v
+

=  

 
Express the ratio R of K2,f to K1,i in 
terms of m1 and m2: 

( )2
21

2
1

1

2

2
i,112

1

2
i,1

2

21

1
22

1

i1,

f2,

4

2

mm
m

m
m

vm

v
mm

mm

K
K

R

+
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

==
 

 
Differentiate this ratio with respect 
to m2,  set the derivative equal to 
zero, and obtain the quadratic 
equation: 
 

012
1

2
2 =+−

m
m

 

Solve this equation for m2 to 
determine its value for maximum 
energy transfer: 
 

12 mm =  

 

.when 
 2  toed transferrisenergy  kinetic
 s1' of all becausecorrect  is )(  

12 mm

b

=

∴
 

 
24 •  
Determine the Concept In the center-of-mass reference frame the two objects approach 
with equal but opposite momenta and remain at rest after the collision. 
 
25 •  
Determine the Concept The water is changing direction when it rounds the corner in the 
nozzle.  Therefore, the nozzle must exert a force on the stream of water to change its 
direction, and, from Newton’s 3rd law, the water exerts an equal but opposite force on the 
nozzle. 
 
26 •  
Determine the Concept The collision usually takes place in such a short period of time 
that the impulse delivered by gravity or friction is negligible. 
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27 •   
Determine the Concept No. dtdpF rr

=netext,  defines the relationship between the net 

force acting on a system and the rate at which its momentum changes. The net external 
force acting on the pendulum bob is the sum of the force of gravity and the tension in 
the string and these forces do not add to zero.  
 
*28 ••  
Determine the Concept We can apply conservation of momentum and Newton’s laws of 
motion to the analysis of these questions. 
 
(a) Yes, the car should slow down.  An easy way of seeing this is to imagine a "packet" 
of grain being dumped into the car all at once:  This is a completely inelastic collision, 
with the packet having an initial horizontal velocity of 0.  After the collision, it is moving 
with the same horizontal velocity that the car does, so the car must slow down. 
 
(b) When the packet of grain lands in the car, it initially has a horizontal velocity of 0, so 
it must be accelerated to come to the same speed as the car of the train.  Therefore, the 
train must exert a force on it to accelerate it.  By Newton’s 3rd law, the grain exerts an 
equal but opposite force on the car, slowing it down.  In general, this is a frictional force 
which causes the grain to come to the same speed as the car. 
 
(c) No it doesn’t speed up.  Imagine a packet of grain being "dumped" out of the railroad 
car.  This can be treated as a collision, too.  It has the same horizontal speed as the 
railroad car when it leaks out, so the train car doesn’t have to speed up or slow down to 
conserve momentum. 
 
*29 ••  
Determine the Concept Think of the stream of air molecules hitting the sail.  Imagine 
that they bounce off the sail elastically−their net change in momentum is then roughly 
twice the change in momentum that they experienced going through the fan.  Another 
way of looking at it:  Initially, the air is at rest, but after passing through the fan and 
bouncing off the sail, it is moving backward−therefore, the boat must exert a net force on 
the air pushing it backward, and there must be a force on the boat pushing it forward. 
 
Estimation and Approximation 
 
30 ••  
Picture the Problem We can estimate the time of collision from the average speed of the 
car and the distance traveled by the center of the car during the collision. We’ll assume a 
car length of 6 m. We can calculate the average force exerted by the wall on the car from 
the car’s change in momentum and it’s stopping time. 
 
(a) Relate the stopping time to the 
assumption that the center of the car 
travels halfway to the wall with 
constant deceleration: 
 

( )
av

car4
1

av

car2
1

2
1

av

stopping

v
L

v
L

v
d

t ===∆  
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Express and evaluate vav: 

m/s5.12
2

km
m1000

s3600
h1

h
km900

2
fi

av

=

××+
=

+
=

vvv

 

 
Substitute for vav and evaluate ∆t: ( )

s120.0
m/s12.5
m64

1

==∆t  

 
(b) Relate the average force exerted by the wall on the car to the car’s change in 
momentum: 
 

( )
kN417

s0.120
km

m1000
s3600

h1
h

km90kg2000

av =
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××

=
∆
∆

=
t
pF  

 
31 ••  
Picture the Problem Let the direction the railcar is moving be the positive x direction 
and the system include the earth, the pumpers, and the railcar. We’ll also denote the 
railcar with the letter c and the pumpers with the letter p. We’ll use conservation of 
momentum to relate the center of mass frame velocities of the car and the pumpers and 
then transform to the earth frame of reference to find the time of fall of the car. 
 

(a) Relate the time of fall of the 
railcar to the distance it falls and its 
velocity as it leaves the bank: 
 

cv
yt ∆

=∆  

Use conservation of momentum to 
find the speed of the car relative to 
the velocity of its center of mass: 0

or

ppcc

fi

=+

=

umum

pp rr

 

 
Relate uc to up and solve for uc: 

m/s4

m/s4

cp

pc

−=∴

=−

uu

uu
 

 
Substitute for up to obtain: ( ) 0m/s4cpcc =−+ umum  
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Solve for and evaluate uc: 

( )

m/s85.1

kg754
kg3501

m/s4

1

m/s4

p

c
c =

+
=

+
=

m
mu  

 
Relate the speed of the car to its 
speed relative to the center of mass 
of the system: 

m/s74.10
km

m1000
s3600

h1
h

km32
s
m.851

cmcc

=

××+=

+= vuv

 

 
Substitute and evaluate ∆t: s2.33

m/s10.74
m25

==∆t  

 
(b) Find the speed with which the 
pumpers hit the ground: m/s6.74

m/s4m/s10.74pcp

=

−=−= uvv
 

 
 

injured. bemay 
 theyspeed, at this ground  theHitting

 

 
*32 ••  
Picture the Problem The diagram depicts the bullet just before its collision with the 
melon and the motion of the melon-and-bullet-less-jet and the jet just after the collision. 
We’ll assume that the bullet stays in the watermelon after the collision and use 
conservation of momentum to relate the mass of the bullet and its initial velocity to the 
momenta of the melon jet and the melon less the plug after the collision. 
 

 
 
Apply conservation of momentum 
to the collision to obtain: 
 

( ) 332f1321i1 2 Kmvmmmvm ++−=  

Solve for v2f: 

132

331i1
2f

2
mmm
Kmvm

v
+−

−
=  

 
Express the kinetic energy of the jet 
of melon in terms of the initial 
kinetic energy of the bullet: 
 

( ) 2
1i120

12
1i12

1
10
1

110
1

3 vmvmKK ===  
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Substitute and simplify to obtain: 
 ( )

( )
132

3111i

132

2
1i120

1
31i1

2f

1.0

2

mmm
mmmv

mmm
vmmvm

v

+−
−

=

+−
−

=
 

 
Substitute numerical values and evaluate v2f: 
 

( )( )( )

ft/s1.27

m/s386.0
kg0.0104kg0.14kg2.50

kg0.14kg0.01040.1kg0.0104
ft3.281

m1
s
ft18002f

−=

−=
+−

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=v

 

Note that this result is in reasonably good agreement with experimental results. 
 
Finding the Center of Mass 
 
33 •  
Picture the Problem We can use its definition to find the center of mass of this system. 
 
Apply its definition to find xcm: 
 

( )( ) ( )( ) ( )( ) m233.0
kg2kg2kg2

m0.5kg2m0.2kg20kg2

321

332211
cm =

++
++

=
++
++

=
mmm

xmxmxmx  

 
Because the point masses all lie 
along the x axis: 
 

0cm =y and the center of mass of this 

system of particles is at ( )0,m233.0 . 

 
*34 •  
Picture the Problem Let the left end of the handle be the origin of our coordinate 
system. We can disassemble the club-ax, find the center of mass of each piece, and then 
use these coordinates and the masses of the handle and stone to find the center of mass of 
the club-ax. 
 
Express the center of mass of the 
handle plus stone system: 
 

stonestick

stonecm,stonestickcm,stick
cm mm

xmxm
x

+

+
=  

Assume that the stone is drilled and 
the stick passes through it. Use 
symmetry considerations to locate 
the center of mass of the stick: 
 

cm0.45stickcm, =x  
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Use symmetry considerations to 
locate the center of mass of the 
stone: 
 

cm0.89stonecm, =x  

Substitute numerical values and 
evaluate xcm: 

( )( ) ( )( )

cm5.78

kg8kg2.5
cm89kg8cm54kg2.5

cm

=

+
+

=x
 

 
35 •  
Picture the Problem We can treat each of balls as though they are point objects and 
apply the definition of the center of mass to find (xcm, ycm). 
 
Use the definition of xcm: 

( )( ) ( )( ) ( )( )

m00.2
kg1kg1kg3

m3kg1m1kg1m2kg3

cm

=
++

++
=

++
++

=
CBA

CCBBAA

mmm
xmxmxm

x

 
Use the definition of ycm: 

( )( ) ( )( ) ( )( )

m40.1
kg1kg1kg3

0kg1m1kg1m2kg3

cm

=
++

++
=

++
++

=
CBA

CCBBAA

mmm
ymymymy

 

 
The center of mass of this system 
of particles is at: 

( )m40.1,m00.2  

 
36 •  
Picture the Problem The figure shows an 
equilateral triangle with its y-axis vertex 
above the x axis. The bisectors of the 
vertex angles are also shown. We can find 
x coordinate of the center-of-mass by 
inspection and the y coordinate using 
trigonometry.  
 
From symmetry considerations: 
 

0cm =x  
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Express the trigonometric 
relationship between a/2, 30°, and 
ycm: 
 

2
30tan cm

a
y

=°  

Solve for ycm: aay 289.030tan2
1

cm =°=  

 
 The center of mass of an equilateral 

triangle oriented as shown above is 
at ( )a289.0,0 . 

 
*37 ••  
Picture the Problem Let the subscript 1 refer to the 3-m by 3-m sheet of plywood before 
the 2-m by 1-m piece has been cut from it. Let the subscript 2 refer to 2-m by 1-m piece 
that has been removed and let σ be the area density of the sheet. We can find the center-
of-mass of these two regions; treating the missing region as though it had negative mass, 
and then finding the center-of-mass of the U-shaped region by applying its definition. 
 
Express the coordinates of the 
center of mass of the sheet of 
plywood: 

21

2,cm21cm,1
cm mm

xmxm
x

−
−

=  

21

2,cm21cm,1
cm mm

ymym
y

−
−

=  

 
Use symmetry to find xcm,1, ycm,1,  
xcm,2, and ycm,2: 

m0.2,m5.1
and

m5.1m,5.1

cm,2cm,2

cm,1cm,1

==

==

yx

yx
 

 
Determine m1 and m2: 

kgAm

Am

σσ

σσ

2
and

kg9

22

11

==

==
 

 
Substitute numerical values and 
evaluate xcm: 

( )( ) ( )( )

m50.1
kg2kg9

kg5.1kg2m5.1kg9
cm

=
−
−

=
σσ
σσx

 

 
Substitute numerical values and 
evaluate ycm: 

( )( ) ( )( )

m36.1
kg2kg9

m2kg2m5.1kg9
cm

=
−
−

=
σσ

σσy
 

 
The center of mass of the U-shaped sheet of plywood is at ( )m1.36m,1.50 . 
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38 ••  
Picture the Problem We can use its definition to find the center of mass of the can plus 
water. By setting the derivative of this function equal to zero, we can find the value of x 
that corresponds to the minimum height of the center of mass of the water as it drains out 
and then use this extreme value to express the minimum height of the center of mass. 
 
(a) Using its definition, express the 
location of the center of mass of the 
can + water: 
 mM

xmHM
x

+

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

= 22
cm  

Let the cross-sectional area of the 
cup be A and use the definition of 
density to relate the mass m of water 
remaining in the can at any given 
time to its depth x: 
 

Ax
m

AH
M

==ρ  

Solve for m to obtain: 
M

H
xm =  

 
Substitute to obtain: 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+

⎟
⎠
⎞

⎜
⎝
⎛+

=

+

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

=

H
x

H
x

H

M
H
xM

xM
H
xHM

x

1

1

2

22

2

cm

 

 
(b) Differentiate xcm with respect to x and set the derivative equal to zero for extrema: 
 

02
1

1
2

1

2
1

1
21

2

2
1

1
2

1

2
1

2
11

21

2
1

2
cm

=

+

+

−

+

+
=

+

++

−

+

++

=
+

+
=

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

H
x

HH
x

H
x

HH
x

H
x

H

H
x

H
x

dx
d

H
x

H
x

H
x

dx
d

H
x

H

H
x

H
x

dx
dH

dx
dx

 

 
Simplify this expression to obtain: 

012
2

=−⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

H
x

H
x
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Solve for x/H to obtain: 
 

( ) HHx 414.012 ≈−=  
where we’ve kept the positive solution 
because a negative value for x/H would 
make no sense. 
 

Use your graphing calculator to convince yourself that the graph of xcm as a function of x 
is concave upward at Hx 414.0≈ and that, therefore, the minimum value of xcm occurs 
at .414.0 Hx ≈  
 
Evaluate xcm at ( )12 −= Hx  to obtain: 
 

( )

( )

( )

( )12

121

121

2

2

12cm

−=

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

=
−=

H

H
H

H
H

Hx
Hx

 

 
Finding the Center of Mass by Integration  
 
*39 ••  
Picture the Problem A semicircular disk 
and a surface element of area dA is shown 
in the diagram. Because the disk is a 
continuous object, we’ll use 

∫= dmM rr
rr

cm and symmetry to find its 

center of mass.  

 
Express the coordinates of the center 
of mass of the semicircular disk: 

symmetry.by0cm =x  

M

dAy
y ∫=

σ
cm  

 
Express y as a function of r and θ : θsinry =  

 
Express dA in terms of r and θ : drdrdA θ=  

 
Express M as a function of r and θ : 2

2
1

diskhalf RAM σπσ ==  
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Substitute and evaluate ycm: 

RR
M

drr
MM

drdr
y

R

R

π
σ

σ
θθσ

π

3
4

3
2

2
sin

3

0

20 0

2

cm

==

== ∫
∫ ∫

 

 
40 •••  
Picture the Problem Because a solid hemisphere is a continuous object, we’ll use  

∫= dmM rr
rr

cm  to find its center of mass. The volume element for a sphere is  

dV = r2 sinθ dθ dφ dr, where θ is the polar angle and φ the azimuthal angle. 
 
Let the base of the hemisphere be 
the xy plane and ρ  be the mass 
density. Then: 
 

θcosrz =  
 

Express the z coordinate of the 
center of mass: 

∫
∫=

dV

dVr
z

ρ

ρ
cm  

 
Evaluate ∫= dVM ρ : 

( ) 3
3
23

3
4

2
1

sphere2
1

RR

VdVM

πρπρ

ρρ

==

== ∫  

 
Evaluate ∫ dVrρ : 

[ ]
4

sin
2

cossin

4
2/

0
2

2
1

4
0

2/

0

2

0

3

RR

drddrdVr
R

πρθπρ

φθθθρ

π

π π

==

=∫ ∫ ∫ ∫
 

 
Substitute and simplify to find zcm: 

R
R
Rz 8

3
3

3
2

4
4
1

cm ==
πρ
πρ

 

 
41 •••  
Picture the Problem Because a thin hemisphere shell is a continuous object, we’ll use 

∫= dmM rr
rr

cm  to find its center of mass. The element of area on the shell is dA = 2πR2 

sinθ dθ, where R is the radius of the hemisphere.  
 
Let σ  be the surface mass density 
and express the z coordinate of the 
center of mass: ∫

∫=
dA

dAz
z

σ

σ
cm  
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Evaluate ∫= dAM σ : 

( ) 22
2
1

shellspherical2
1

24 RR

AdAM

πσπσ

σσ

==

== ∫  

 
Evaluate ∫ dAzσ : 

σπ

θθσπ

θθθσπσ

π

π

3

2/

0

3

2/

0

3

2sin

cossin2

R

dR

dRdAz

=

=

=

∫

∫ ∫

 

 
Substitute and simplify to find zcm: 

R
R

Rz 2
1

2

3

cm 2
==

πσ
σπ

 

 
42 •••  
Picture the Problem The parabolic sheet 
is shown to the right. Because the area of 
the sheet is distributed symmetrically with 
respect to the y axis, xcm = 0. We’ll 
integrate the element of area dA (= xdy) to 
obtain the total area of the sheet and yxdy 
to obtain the numerator of the definition of 
the center of mass.  
 
Express ycm: 

∫

∫
= b

b

xdy

xydy
y

0

0
cm  

 

Evaluate ∫
b

xydy
0

: 

25

0

23

0

21

0

5
2

1

b
a

dyy
a

ydy
a

yxydy
bbb

=

== ∫∫∫
 

 

Evaluate ∫
b

xdy
0

: 

23

0

21

0

21

0

3
2

1

b
a

dyy
a

dy
a

yxdy
bbb

=

== ∫∫∫
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Substitute and simplify to determine ycm: 

b
b

a

b
ay 5

3

23

25

cm

3
2

5
2

==  

 
Note that, by symmetry: 
 

xcm = 0 
 

The center of mass of the parabolic 
sheet is at: 

( )b5
3,0  

 
Motion of the Center of Mass 
 
43 •  
Picture the Problem The velocity of the center of mass of a system of particles is related 
to the total momentum of the system through cm

i
ii vvP

rrr
Mm == ∑ . 

 
Use the expression for the total 
momentum of a system to relate the 
velocity of the center of mass of the 
two-particle system to the momenta 
of the individual particles: 
 

21

2211i
ii

cm mm
mm

M

m

+
+

==
∑ vv

v
v

rr
r

r
 

Substitute numerical values and 
evaluate cmvr : 

( )( ) ( )

( ) ( )[ ]
( ) ( ) ji

ji

vvvvv

ˆm/s5.1ˆm/s3

ˆm/s3ˆm/s6

kg6
kg3

2
1

212
121

cm

−=

−=

+=
+

=
rr

rr
r

 

 
*44 •  
Picture the Problem Choose a coordinate system in which east is the positive x 
direction and use the relationship cm

i
ii vvP

rrr
Mm == ∑  to determine the velocity of the 

center of mass of the system. 
 
Use the expression for the total 
momentum of a system to relate the 
velocity of the center of mass of the 
two-vehicle system to the momenta 
of the individual vehicles: 
 

ct

cctti
ii

cm mm
mm

M

m

+
+

==
∑ vv

v
v

rr
r

r
 

 

Express the velocity of the truck: ( ) iv ˆm/s16t =
r
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Express the velocity of the car: ( )iv ˆm/s20c −=
r

 

 
Substitute numerical values and evaluate cmvr : 

 
( )( ) ( )( ) ( ) iiiv ˆm/s00.4

kg1500kg3000

ˆm/s20kg1500ˆm/s16kg3000
cm =

+
−+

=
r

 

 
45 •  
Picture the Problem The acceleration of the center of mass of the ball is related to the 
net external force through Newton’s 2nd law: cmextnet, aF rr

M= . 

 
Use Newton’s 2nd law to express the 
acceleration of the ball: 
 

M
extnet,

cm

F
a

r
r

=  

Substitute numerical values and 
evaluate cmar : 

( ) ( )iia ˆm/s4.2
kg1kg1kg3

ˆN12 2
cm =

++
=

r
 

 
46 ••  
Picture the Problem Choose a coordinate system in which upward is the positive y 
direction. We can use Newton’s 2nd law cmextnet, aF rr

M= to find the acceleration of the 

center of mass of this two-body system. 
 
(a) 

. is reading  thefall,
 freein  is  while;)  (
 reads scale theinitially  Yes;

Mg
mgmM +  

 
(b) Using Newton’s 2nd law, express 
the acceleration of the center of mass 
of the system: 

tot

extnet,
cm m

F
a

r
r

=  

 
Substitute to obtain: 

ja ˆ
cm mM

mg
+

−=
r

 

 
(c) Use Newton’s 2nd law to express 
the net force acting on the scale while 
the object of mass m is falling: 
 

( ) cmextnet, )( amMgmMF +−+=  
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Substitute and simplify to obtain: ( )

Mg

mM
mgmMgmMF

=

⎟
⎠
⎞

⎜
⎝
⎛

+
+−+= )(extnet,

 

as expected, given our answer to  
part (a). 

 
*47 ••  
Picture the Problem The free-body  
diagram shows the forces acting on the  
platform when the spring is partially  
compressed. The scale reading is the force 
the scale exerts on the platform and is 
represented on the FBD by Fn. We can use 
Newton’s 2nd law to determine the scale 
reading in part (a) and the work-energy 
theorem in conjunction with Newton’s 2nd 
law in parts (b) and (c). 

 

 
  
(a) Apply ∑ = yy maF to the 

spring when it is compressed a 
distance d: 
 

∑ =−−= 0springonballpn FgmFFy  

Solve for Fn:  

( )gmmgmgm

k
gmkgmkdgm

FgmF

bpbp

b
pp

springonballpn

+=+=

⎟
⎠
⎞

⎜
⎝
⎛+=+=

+=

 

 
(b) Use conservation of mechanical 
energy, with Ug = 0 at the position at 
which the spring is fully 
compressed, to relate the 
gravitational potential energy of the 
system to the energy stored in the 
fully compressed spring: 
 

0sg =∆+∆+∆ UUK  

Because ∆K = Ug,f = Us,i = 0, 
0fs,ig, =−UU  

or 
02

2
1

b =− kdgdm  

Solve for d: 
k

gm
d b2

=  
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Evaluate our force equation in (a) 

with 
k

gm
d b2

= : 

( )gmmgmgm

k
gmkgmkdgm

FgmF

bpbp

b
pp

springonballpn

22

2

+=+=

⎟
⎠
⎞

⎜
⎝
⎛+=+=

+=

 

 
(c) When the ball is in its original 
position, the spring is relaxed and 
exerts no force on the ball. 
Therefore: 

gm

F

p

n readingscale

=

=
 

 
*48 ••  
Picture the Problem Assume that the object whose mass is m1 is moving downward 
and take that direction to be the positive direction. We’ll use Newton’s 2nd law for a 
system of particles to relate the acceleration of the center of mass to the acceleration of 
the individual particles. 
 
(a) Relate the acceleration of the 
center of mass to m1, m2, mc and 
their accelerations: 
 

cc2211cm aaaa rrrr mmmM ++=  

Because m1 and m2 have a common 
acceleration a and ac = 0: 
 

c21

21
cm mmm

mmaa
++

−
=  

From Problem 4-81 we have: 

21

21

mm
mmga

+
−

=  

 
Substitute to obtain: 

( )
( )( ) g

mmmmm
mm

mmm
mmg

mm
mma

c2121

2
21

c21

21

21

21
cm

+++
−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=

 

 
(b) Use Newton’s 2nd law for a 
system of particles to obtain: 

cmMaMgF −=−  

where M = m1 + m2 + mc and F is positive 
upwards. 
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Solve for F and substitute for acm 
from part (a): 
 
 
 

( )

gm
mm
mm

g
mm

mmMg

MaMgF

⎥
⎦

⎤
⎢
⎣

⎡
+

+
=

+
−

−=

−=

c
21

21

21

2
21

cm

4

 

 
(c) From Problem 4-81: g

mm
mmT

21

212
+

=  

 
Substitute in our result from part (b) 
to obtain: 

gmTgm
g
T

gm
mm
mmF

cc

c
21

21

22

22

+=⎥
⎦

⎤
⎢
⎣

⎡
+=

⎥
⎦

⎤
⎢
⎣

⎡
+

+
=

 

 
49 ••  
Picture the Problem The free-body 
diagram shows the forces acting on the 
platform when the spring is partially 
compressed. The scale reading is the force 
the scale exerts on the platform and is 
represented on the FBD by Fn. We can 
use Newton’s 2nd law to determine the 
scale reading in part (a) and the result of 
Problem 7-96 part (b) to obtain the scale 
reading when the ball is dropped from a 
height h above the cup. 

 

 

 
(a) Apply ∑ = yy maF to the spring 

when it is compressed a distance d: 
 

∑ =−−= 0springonballpn FgmFFy  

Solve for Fn: 

( )gmmgmgm

k
gmkgmkdgm

FgmF

bpbp

b
pp

springonballpn

+=+=

⎟
⎠
⎞

⎜
⎝
⎛+=+=

+=

 

 
(b) From Problem 7-96, part (b): 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++=

gm
kh

k
gm

x
b

b
max

211  
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From part (a): 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++=

+=+=

gm
khgmgm

kxgmFgmF

b
bp

maxpspringonballpn

211
 

 
The Conservation of Momentum 
 
50 •  
Picture the Problem Let the system include the woman, the canoe, and the earth. Then 
the net external force is zero and linear momentum is conserved as she jumps off the 
canoe. Let the direction she jumps be the positive x direction. 
 
Apply conservation of momentum to 
the system: 

0canoecanoegirlgirlii =+=∑ vvv
rrr

mmm  

 
Substitute to obtain: ( )( ) ( ) 0kg57ˆm/s5.2kg55 canoe =+ vi r

 

 
Solve for canoevr : ( ) iv ˆm/s83.1canoe −=

r
 

 
51 •  

Picture the Problem If we include the earth in our system, then the net external force is 
zero and linear momentum is conserved as the spring delivers its energy to the two 
objects. 
 

Apply conservation of momentum 
to the system: 

0101055ii =+=∑ vvv
rrr

mmm  

 
 

Substitute numerical values to obtain: 
 

( )( ) ( ) 0kg10ˆm/s8kg5 10 =+− vi r
 

Solve for 10vr : ( ) iv ˆm/s410 =
r

 

 
*52 •  
Picture the Problem This is an explosion-like event in which linear momentum is 
conserved. Thus we can equate the initial and final momenta in the x direction and the 
initial and final momenta in the y direction. Choose a coordinate system in the positive x 
direction is to the right and the positive y direction is upward. 
 
Equate the momenta in the y 
direction before and after the 
explosion: 

( ) 022

2

11

12fy,iy,

=−=

−== ∑∑
mvvm

mvmvpp
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 We can conclude that the momentum was 
entirely in the x direction before the 
particle exploded. 
 

Equate the momenta in the x 
direction before and after the 
explosion: 

3i

fx,ix,

4 mvmv

pp

=∴

=∑ ∑  

 
Solve for v3: 34

1
i vv =  and correct. is )(c  

 
53 •  
Picture the Problem Choose the direction the shell is moving just before the explosion 
to be the positive x direction and apply conservation of momentum.  
 
Use conservation of momentum to 
relate the masses of the fragments to 
their velocities: 
 

fi pp rr
=  

or 
'ˆˆ

2
1

2
1 vji r

mmvmv +=  

Solve for 'vr : jiv ˆˆ2' vv −=
r

 

 
*54 ••  
Picture the Problem Let the system include the earth and the platform, gun and block. 
Then extnet,F

r
= 0 and momentum is conserved within the system. 

 
(a) Apply conservation of 
momentum to the system just before 
and just after the bullet leaves the 
gun: 

platformbullet

afterbefore

0
or

pp

pp

rr

rr

+=

=
 

 
Substitute for platformbullet and pp rr

and 

solve for platformvr : 
platformpbb

ˆ0 vi rmvm +=  

and 

iv ˆ
b

p

b
platform v

m
m

−=
r

 

 
(b) Apply conservation of 
momentum to the system just before 
the bullet leaves the gun and just 
after it comes to rest in the block: 

afterbefore pp rr
=  

or 
platform0 p
r

= ⇒ 0platform =v
r

 

 
(c) Express the distance ∆s traveled 
by the platform: 

tvs ∆=∆ platform  
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Express the velocity of the bullet 
relative to the platform:  

b
p

bp
b

p

b

b
p

b
bplatformbrel

1 v
m

mm
v

m
m

v
m
mvvvv

+
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

+=−=

 

 
Relate the time of flight ∆t to L and 
vrel: relv

Lt =∆  

 
Substitute to find the distance ∆s 
moved by the platform in time ∆t: 

L
mm

m

v
m

mm
Lv

m
m

v
Lv

m
mtvs

bp

b

b
p

bp
b

p

b

rel
b

p

b
platform

+
=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=∆=∆

 

 
55 ••  

Picture the Problem The pictorial representation shows the wedge and small object, 
initially at rest, to the left, and, to the right, both in motion as the small object leaves the 
wedge. Choose the direction the small object is moving when it leaves the wedge be the 
positive x direction and the zero of potential energy to be at the surface of the table. Let 
the speed of the small object be v and that of the wedge V. We can use conservation of 
momentum to express v in terms of V and conservation of energy to express v in terms of 
h. 
 

 
 

Apply conservation of momentum to 
the small object and the wedge: 

Vi

pp

r

rr

mmv

xx

2ˆ0

or
f,i,

+=

=

 

 
Solve for :V

r
 iV ˆ

2
1 v−=

r
                    (1) 

and 
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vV 2
1=  

 
Use conservation of energy to 
determine the speed of the small 
object when it exits the wedge: 0

or
0

ifif =−+−

=∆+∆

UUKK

UK
 

 
Because Uf = Ki = 0: ( ) 02 2

2
12

2
1 =−+ mghVmmv  

 
Substitute for V to obtain: ( )( ) 02 2

2
1

2
12

2
1 =−+ mghvmmv  

 
Solve for v to obtain: 
 3

2 ghv =  

 
Substitute in equation (1) to 
determine V

r
: iiV ˆ

3
ˆ

3
22

1 ghgh
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

r
 

 
 i.e., the wedge moves in the direction 

opposite to that of the small object with a 

speed of
3
gh

. 

 
*56 ••  
Picture the Problem Because no external forces act on either cart, the center of mass of 
the two-cart system can’t move. We can use the data concerning the masses and 
separation of the gliders initially to calculate its location and then apply the definition of 
the center of mass a second time to relate the positions X1 and X2 of the centers of the 
carts when they first touch. We can also use the separation of the centers of the gliders 
when they touch to obtain a second equation in X1 and X2 that we can solve 
simultaneously with the equation obtained from the location of the center of mass. 
 
(a) Apply its definition to find the 
center of mass of the 2-glider system: 
 

( )( ) ( )( )

m10.1
kg0.2kg0.1

m1.6kg0.2m0.1kg0.1
21

2211
cm

=
+
+

=

+
+

=
mm

xmxmx

 

from the left end of the air track. 
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Use the definition of the center of 
mass to relate the coordinates of the 
centers of the two gliders when they 
first touch to the location of the 
center of mass: 
 

( ) ( )

23
2

13
1

21

21

2211

kg0.2kg0.1
kg0.2kg0.1

m10.1

XX

XX
mm

XmXm

+=
+
+

=

+
+

=

 

 
Also, when they first touch, their 
centers are separated by half their 
combined lengths: 
 

( ) m0.15cm20cm102
1

12 =+=− XX  

Thus we have: 
 

m10.1667.0333.0 21 =+ XX  
and 

m0.1512 =− XX  
 

Solve these equations simultaneously 
to obtain: 
 

m00.11 =X  and m15.12 =X  

 
(b) 

collision. after the
zero bemust it  so zero, is system
 theof momentum initial The No.

 

 
Kinetic Energy of a System of Particles 
 
*57 •  
Picture the Problem Choose a coordinate system in which the positive x direction is to 
the right. Use the expression for the total momentum of a system to find the velocity of 
the center of mass and the definition of relative velocity to express the sum of the kinetic 
energies relative to the center of mass. 
 
(a) Find the sum of the kinetic energies: 

( )( ) ( )( )
J43.5

m/s2kg3m/s5kg3 2
2
12

2
1

2
222

12
112

1

21

=

+=

+=

+=

vmvm

KKK

 

 
(b) Relate the velocity of the center 
of mass of the system to its total 
momentum:  
 

2211cm vvv rrr mmM +=  

 
 

Solve for :cmvr  

21

2211
cm mm

mm
+
+

=
vvv
rr

r
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Substitute numerical values and 
evaluate :cmvr  

( )( ) ( )( )

( )i

iiv

ˆm/s50.1

kg3kg3

ˆm/s2kg3ˆm/s5kg3
cm

=

+
−

=
r

 

 
(c) The velocity of an object relative 
to the center of mass is given by: 
 

cmrel vvv rrr
−=  

 ( ) ( )
( )

( ) ( )
( )i

iiv

i

iiv

ˆm/s50.3

ˆm/s5.1ˆm/s2

ˆm/s50.3

ˆm/s5.1ˆm/s5

rel2,

rel1,

−=

−−=

=

−=

r

r

 

 
(d) Express the sum of the kinetic 
energies relative to the center of 
mass: 
 

2
rel,222

12
rel,112

1
rel,2rel,1rel vmvmKKK +=+=  

 

Substitute numerical values and 
evaluate Krel: 

( )( )
( )( )

J75.63

m/s5.3kg3

m/s3.5kg3
2

2
1

2
2
1

rel

=

−+

=K

 

 
(e) Find Kcm: ( )( )

rel

2
2
12

cmtot2
1

cm

J36.75J43.5
J6.75

m/s1.5kg6

KK

vmK

−=

−=
=

==

 

 
58  •  

Picture the Problem Choose a coordinate system in which the positive x direction is to 
the right. Use the expression for the total momentum of a system to find the velocity of the 
center of mass and the definition of relative velocity to express the sum of the kinetic 
energies relative to the center of mass. 
 
(a) Express the sum of the kinetic energies: 

 

2
222

12
112

1
21 vmvmKKK +=+=  

 
Substitute numerical values and 
evaluate K: 

( )( ) ( )( )
J0.06

m/s3kg5m/s5kg3 2
2
12

2
1

=

+=K
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(b) Relate the velocity of the center of 
mass of the system to its total 
momentum:  
 

2211cm vvv rrr mmM +=  

 
 

Solve for cmvr : 

21

2211
cm mm

mm
+
+

=
vvv
rr

r
 

 
Substitute numerical values and 
evaluate cmvr : 

( )( ) ( )( )

( )i

iiv

ˆm/s75.3

kg5kg3

ˆm/s3kg5ˆm/s5kg3
cm

=

+
+

=
r

 

 
(c) The velocity of an object relative 
to the center of mass is given by: 
 

cmrel vvv rrr
−=  

Substitute numerical values and 
evaluate the relative velocities: 

( ) ( )
( )i

iiv

ˆm/s25.1

ˆm/s75.3ˆm/s5rel1,

=

−=
r

 

and 
( ) ( )

( )i
iiv

ˆm/s750.0

ˆm/s75.3ˆm/s3rel2,

−=

−=
r

 

 
(d) Express the sum of the kinetic 
energies relative to the center of 
mass: 

2
rel,222

12
rel,112

1

rel,2rel,1rel

vmvm

KKK

+=

+=
 

 
Substitute numerical values and 
evaluate Krel: 

( )( )
( )( )

J75.3

m/s75.0kg5

m/s25.1kg3
2

2
1

2
2
1

rel

=

−+

=K

 

 
(e) Find Kcm: ( )( )

rel

2
2
12

cmtot2
1

cm

 J3.65

m/s75.3kg8

KK

vmK

−==

==
 

 
Impulse and Average Force 
 
59 •  
Picture the Problem The impulse imparted to the ball by the kicker equals the change in 
the ball’s momentum. The impulse is also the product of the average force exerted on the 
ball by the kicker and the time during which the average force acts. 
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(a) Relate the impulse delivered to 
the ball to its change in momentum: 0since if

if

==
−=∆=

vmv
pppI

 

 
 

Substitute numerical values and 
evaluate I: 
 

( )( ) sN10.8m/s25kg0.43 ⋅==I  

(b) Express the impulse delivered to 
the ball as a function of the average 
force acting on it and solve for and 
evaluate avF : 

tFI ∆= av  

and 

kN1.34
s0.008
sN10.8

av =
⋅

=
∆

=
t

IF  

 
60 •  
Picture the Problem The impulse exerted by the ground on the brick equals the change 
in momentum of the brick and is also the product of the average force exerted by the 
ground on the brick and the time during which the average force acts. 
 
(a) Express the impulse exerted by 
the ground on the brick: 

bricki,brickf,brick pppI −=∆=  

 
Because pf,brick = 0: vmpI brickbricki, ==                     (1) 

 
Use conservation of energy to 
determine the speed of the brick at 
impact: 0

or
0

ifif =−+−

=∆+∆

UUKK

UK
 

 
Because Uf = Ki = 0: 

0
or

0

brick
2

brick2
1

if

=−

=−

ghmvm

UK
 

 
Solve for v: ghv 2=  

 
Substitute in equation (1) to obtain: ghmI 2brick=  

 
Substitute numerical values and 
evaluate I: 

( ) ( )( )
sN76.3

m8m/s9.812kg0.3 2

⋅=

=I
 

 
(c) Express the impulse delivered to 
the brick as a function of the 

tFI ∆= av  

and 
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average force acting on it and solve 
for and evaluate avF : 

kN89.2
s0.0013
sN76.3

av =
⋅

=
∆

=
t

IF  

 
*61 •  
Picture the Problem The impulse exerted by the ground on the meteorite equals the 
change in momentum of the meteorite and is also the product of the average force exerted 
by the ground on the meteorite and the time during which the average force acts. 
 
Express the impulse exerted by the 
ground on the meteorite: 
 

ifmeteorite pppI −=∆=  

Relate the kinetic energy of the 
meteorite to its initial momentum 
and solve for its initial momentum: 
 

ii

2
i

i 2
2

mKp
m

pK =⇒=  

 

Express the ratio of the initial and 
final kinetic energies of the 
meteorite: 

2

2m

2
2
f

2
i

2
f

2
i

f

i ===
p
p

p
m

p

K
K

 

 
Solve for pf: 

2
i

f
p

p =  

 
Substitute in our expression for I 
and simplify: 

⎟
⎠
⎞

⎜
⎝
⎛ −=

⎟
⎠
⎞

⎜
⎝
⎛ −=−=

1
2

12

1
2

1
2

i

ii
i

mK

pppI
 

 
Because our interest is in its magnitude, evaluate I : 

 

( )( ) sMN81.11
2

1J10617kg1030.82 63 ⋅=⎟
⎠
⎞

⎜
⎝
⎛ −××=I  

 
Express the impulse delivered to the 
meteorite as a function of the average 
force acting on it and solve for and 
evaluate avF : 

tFI ∆= av  

and 

MN602.0
s3

sMN81.1
av =

⋅
=

∆
=

t
IF  
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62 ••  
Picture the Problem The impulse exerted by the bat on the ball equals the change in 
momentum of the ball and is also the product of the average force exerted by the bat on 
the ball and the time during which the bat and ball were in contact. 
 
(a) Express the impulse exerted by 
the bat on the ball in terms of the 
change in momentum of the ball: 

( ) iii

pppI
ˆ2ˆˆ

if

ifball

mvmvmv =−−=

−=∆=
rrrr

 

where v = vf = vi 

 
Substitute for m and v and evaluate 
I: 

( )( ) sN00.6m/s20kg15.02 ⋅==I  

 
(b) Express the impulse delivered to 
the ball as a function of the average 
force acting on it and solve for and 
evaluate avF : 

tFI ∆= av  

and 

kN62.4
ms3.1

sN00.6
av =

⋅
=

∆
=

t
IF  

 
*63  ••  
Picture the Problem The figure shows the 
handball just before and immediately after 
its collision with the wall. Choose a 
coordinate system in which the positive x 
direction is to the right. The wall changes 
the momentum of the ball by exerting a 
force on it during the ball’s collision with 
it. The reaction to this force is the force the 
ball exerts on the wall. Because these 
action and reaction forces are equal in 
magnitude, we can find the average force 
exerted on the ball by finding the change 
in momentum of the ball. 

 
 

 

 
Using Newton’s 3rd law, relate the 
average force exerted by the ball on 
the wall to the average force exerted 
by the wall on the ball: 
  

ballon  avon wall av FF
rr

−=  

and 
ballon  avon wall av FF =                 (1) 

Relate the average force exerted by 
the wall on the ball to its change in 
momentum: 
 

t
m

t ∆
∆

=
∆
∆

=
vpF
rrr

ballon  av  
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Express xvr∆ for the ball: iiv ˆˆ
,i,f xxx vv −=∆

r
 

or, because vi,x = vcosθ and vf,x = −vcosθ, 
iiiv ˆcos2ˆcosˆcos θθθ vvvx −=−−=∆

r
 

 
Substitute in our expression for 

ballon  avF
r

: 
ivF ˆcos2

ballon  av t
mv

t
m

∆
−=

∆
∆

=
θ

rr
 

 
Evaluate the magnitude of ballon  avF

r
: 

( )( )

N230
ms2

cos40m/s5kg0.062

cos2
ballon  av

=

°
=

∆
=

t
mvF θ

 

 
Substitute in equation (1) to obtain:  N230on wall av =F  

 
64 ••  
Picture the Problem The pictorial 
representation shows the ball during the 
interval of time you are exerting a force on 
it to accelerate it upward. The average 
force you exert can be determined from the 
change in momentum of the ball. The 
change in the velocity of the ball can be 
found by applying conservation of 
mechanical energy to its rise in the air 
once it has left your hand.  
 
(a) Relate the average force exerted 
by your hand on the ball to the 
change in momentum of the ball: 

t
mv

t
pp

t
pF

∆
=

∆
−

=
∆
∆

= 212
av  

because v1 and, hence, p1 = 0. 
 

Letting Ug = 0 at the initial elevation 
of your hand, use conservation of 
mechanical energy to relate the 
initial kinetic energy of the ball to 
its potential energy when it is at its 
highest point: 
 

0since
0

or
0

if

fi

==
=+−

=∆+∆

UK
UK

UK
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Substitute for Kf and Ui and solve 
for v2: 

ghv

mghmv

2

and
0

2

2
22

1

=

=+−

 

 
Relate ∆t to the average speed of the 
ball while you are throwing it 
upward: 

22av

2

2
v
d

v
d

v
dt ===∆  

 
Substitute for ∆t and v2 in the 
expression for Fav to obtain: d

mghF =av  

 
Substitute numerical values and 
evaluate Fav: 

( )( )( )

N1.84

m0.7
m40m/s9.81kg0.15 2

av

=

=F
 

 
(b) Express the ratio of the weight of 
the ball to the average force acting 
on it: 

( )( ) %2
N84.1

m/s9.81kg0.15 2

avav

<==
F
mg

F
w

 

 

 weight.its neglected have  toreasonable isit  ball, on the
exerted force average  theof 2% than less is ball  theof weight  theBecause

 

 
65 ••  
Picture the Problem Choose a coordinate system in which the direction the ball is 
moving after its collision with the wall is the positive x direction. The impulse delivered 
to the wall or received by the player equals the change in the momentum of the ball. We 
can find the average forces from the rate of change in the momentum of the ball. 
 
(a) Relate the impulse delivered to 
the wall to the change in momentum 
of the handball: 

( )( )
( )( )[ ]

( )  wall.into directed ˆsN08.1

ˆm/s01kg0.06

ˆm/s8kg0.06
if

i

i

i

vvpI

⋅=

−−

=

−=∆=
rrrr

mm

 

 
(b) Find Fav from the change in the 
ball’s momentum: 

 wall.into N,603

s0.003
sN08.1

av

=

⋅
=

∆
∆

=
t
pF
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(c) Find the impulse received by the 
player from the change in 
momentum of the ball: 

( )( )
 wall.fromaway  s,N480.0

m/s8kg0.06
ball

⋅=

=
∆=∆= vmpI

 

 
(d) Relate Fav to the change in the 
ball’s momentum: t

p
F

∆
∆

= ball
av  

 
Express the stopping time in terms 
of the average speed vav of the ball 
and its stopping distance d: 
 

avv
dt =∆  

 

Substitute to obtain: 
d
pvF ballav

av
∆

=  

 
Substitute numerical values and 
evaluate Fav: 

( )( )

 wall.fromaway  N,84.3

m0.5
sN480.0m/s4

av

=

⋅
=F

 

 
66 •••  
Picture the Problem The average force exerted on the limestone by the droplets of 
water equals the rate at which momentum is being delivered to the floor. We’re given 
the number of droplets that arrive per minute and can use conservation of mechanical 
energy to determine their velocity as they reach the floor. 
 
(a) Letting N represent the rate at 
which droplets fall, relate Fav to the 
change in the droplet’s momentum: 
 

t
vmN

t
p

F
∆
∆

=
∆

∆
= droplets

av  

 

Find the mass of the droplets: ( )( )
kg103

mL0.03kg/L1
5−×=

== Vm ρ
 

 
Letting Ug = 0 at the point of impact 
of the droplets, use conservation of 
mechanical energy to relate their 
speed at impact to their fall 
distance: 
 

0
or

0

ifif =−+−

=∆+∆

UUKK

UK
 

 

Because Ki = Uf = 0: 02
f2

1 =− mghmv  
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Solve for and evaluate v = vf: ( )( )
m/s9.90

m5m/s9.8122 2

=

== ghv
 

 
Substitute numerical values and 
evaluate Fav: 

( )( )
N1095.4

m/s9.90kg103

s60
min1

min
droplets10

5

5

av

−

−

×=

××

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

∆⎟
⎠
⎞

⎜
⎝
⎛

∆
= vm

t
NF

 

 
(b) Calculate the ratio of the weight 
of a droplet to Fav: 

( )( )  6
N104.95
m/s9.81kg103

5

25
avav

≈
×

×
=

=

−

−

F
mg

F
w

 

 
Collisions in One Dimension 
 
*67 •  
Picture the Problem We can apply conservation of momentum to this perfectly 
inelastic collision to find the after-collision speed of the two cars. The ratio of the 
transformed kinetic energy to kinetic energy before the collision is the fraction of kinetic 
energy lost in the collision. 
 
(a) Letting V be the velocity of the 
two cars after their collision, apply 
conservation of momentum to their 
perfectly inelastic collision: 

( )Vmmmvmv

pp

+=+

=

21

finalinitial

or  

 
Solve for and evaluate V: 

m/s0.20
2

m/s10m/s30
2

21

=

+
=

+
=

vvV
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(b) Express the ratio of the kinetic 
energy that is lost to the kinetic 
energy of the two cars before the 
collision and simplify: 

( )

12

12

1

2
2

2
1

2

2
22

12
12

1

2
2
1

initial

final

initial

initialfinal

initial

−
+

=

−
+

=

−=

−
=

∆

vv
V

mvmv
Vm

K
K

K
KK

K
K

 

 
Substitute numerical values to obtain: ( )

( ) ( )
200.0

1
m/s10m/s30

m/s202
22

2

initial

−=

−
+

=
∆

K
K

 

 

metal. ofn deformatio the
 and sound, heat, into ed transformisenergy  kinetic initial  theof 20%

 

 
68 •  
Picture the Problem We can apply conservation of momentum to this perfectly 
inelastic collision to find the after-collision speed of the two players. 
 
Letting the subscript 1 refer to the 
running back and the subscript 2 refer 
to the linebacker, apply conservation 
of momentum to their perfectly 
inelastic collision: 
 

( )Vmmvm

pp

2111

fi

or
+=

=
 

Solve for V: 
1

21

1 v
mm

mV
+

=  

 
Substitute numerical values and 
evaluate V: 

( ) m/s13.3m/s7
kg051kg58

kg58
=

+
=V  

 
69 •  
Picture the Problem We can apply conservation of momentum to this collision to find 
the after-collision speed of the 5-kg object. Let the direction the 5-kg object is moving 
before the collision be the positive direction. We can decide whether the collision was 
elastic by examining the initial and final kinetic energies of the system.  
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(a) Letting the subscript 5 refer to 
the 5-kg object and the subscript 2 
refer to the 10-kg object, apply 
conservation of momentum to 
obtain: 
 

f,55i,10105i,5

fi

or
vmvmvm

pp

=−

=
 

 

Solve for vf,5: 

5

i,10105i,5
f,5 m

vmvm
v

−
=  

 
Substitute numerical values and 
evaluate vf,5: 

( )( ) ( )( )

m/s00.2

kg5
m/s3kg10m/s4kg5

f,5

−=

−
=v

 

where the minus sign means that the 5-kg 
object is moving to the left after the 
collision. 
 

(b) Evaluate ∆K for the collision: 
 

( )( ) ( )( )[ ( )( ) ] J0.75m/s3kg10m/s4kg5m/s2kg5 2
2
12

2
12

2
1

if −=+−=−=∆ KKK  

 
inelastic. wascollision   the0, K  Because ≠∆  

 
70 • 
Picture the Problem The pictorial 
representation shows the ball and bat just 
before and just after their collision. Take 
the direction the bat is moving to be the 
positive direction. Because the collision is 
elastic, we can equate the speeds of 
recession and approach, with the 
approximation that vi,bat ≈ vf,bat to find vf,ball. 

 
 
Express the speed of approach of the 
bat and ball: 
 

( )balli,bati,ballf,batf, vvvv −−=−  

Because the mass of the bat is much 
greater than that of the ball: 
 

batf,bati, vv ≈  

Substitute to obtain: ( )balli,batf,ballf,batf, vvvv −−=−  
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Solve for and evaluate vf,ball: ( )

v

vvvv
vvvv

3

22 batf,balli,

balli,batf,batf,ballf,

=

+=+−=

−+=

 

 
*71 ••  
Picture the Problem Let the direction the proton is moving before the collision be the 
positive x direction. We can use both conservation of momentum and conservation of 
mechanical energy to obtain an expression for velocity of the proton after the collision. 
(a) Use the expression for the total 
momentum of a system to find vcm: 

( )

( )i

i
v

v

vvP

ˆm/s1.23

ˆm/s300
12

and

13
1ip,

cm

cm

=

=
+

=

== ∑

mm
m

Mm
i

ii

r
r

rrr

 

 
(b) Use conservation of momentum 
to obtain one relation for the final 
velocities: 
 

fnuc,nucfp,pip,p vmvmvm +=            (1) 

Use conservation of mechanical 
energy to set the velocity of 
recession equal to the negative of 
the velocity of approach: 
 

( ) ip,ip,inuc,fp,fnuc, vvvvv =−−=−   (2) 

To eliminate vnuc,f, solve equation 
(2) for vnuc,f, and substitute the result 
in equation (1): 
 

fp,ip,fnuc, vvv +=  

( )fp,ip,nucfp,pip,p vvmvmvm ++=  

Solve for and evaluate vp,f: 

( ) m/s254m/s300
13

12

ip,
nucp

nucp
fp,

−=
−

=

+
−

=

m
mm

v
mm
mm

v
 

 
72 ••   
Picture the Problem We can use conservation of momentum and the definition of an 
elastic collision to obtain two equations in v2f and v3f that we can solve simultaneously. 
 
Use conservation of momentum to 
obtain one relation for the final 

2f23f33i3 vmvmvm +=              (1) 
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velocities:  
 
Use conservation of mechanical 
energy to set the velocity of 
recession equal to the negative of 
the velocity of approach: 
 

( ) 3i3i2i3f2f vvvvv =−−=−       (2) 

Solve equation (2) for v3f , substitute 
in equation (1) to eliminate v3f, and 
solve for and evaluate v2f: 

( )( )

m/s80.4

kg3kg2
m/s4kg322

32

3i3
2f

=

+
=

+
=

mm
vmv

 

 
Use equation (2) to find v3f: 

m/s0.800

m/s4.00m/s4.803i2f3f

=

−=−= vvv
 

 
Evaluate Ki and Kf: ( )( )

J24.0
m/s4kg3 2

2
12

3i32
1

3ii

=
=== vmKK

 

and 

( )( )
( )( )
J0.24

m/s4.8kg2

m/s0.8kg3
2

2
1

2
2
1

2
2f22

12
3f32

1
2f3ff

=
+

=

+=+= vmvmKKK

 

 

elastic.been  havingcollision   with theconsistent 
are  and for  obtained  values that theconcludecan   we,   Because 3f2ffi vvKK =

 

 
73 ••  
Picture the Problem We can find the velocity of the center of mass from the definition 
of the total momentum of the system. We’ll use conservation of energy to find the 
maximum compression of the spring and express the initial (i.e., before collision) and 
final (i.e., at separation) velocities. Finally, we’ll transform the velocities from the 
center of mass frame of reference to the table frame of reference. 
 
(a) Use the definition of the total 
momentum of a system to relate the 
initial momenta to the velocity of 
the center of mass: 

cmvvP
rrr

Mm
i

ii == ∑  

or 
( ) cm211i1 vmmvm +=  
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Solve for vcm: 

21

2i21i1
cm mm

vmvmv
+
+

=  

 
Substitute numerical values and 
evaluate vcm: 
 

( )( ) ( )( )

m/s00.5

kg5kg2
m/s3kg5m/s10kg2

cm

=

+
+

=v
 

 
(b) Find the kinetic energy of the 
system at maximum compression  
(u1 = u2 = 0): 

( )( ) J87.5m/s5kg7 2
2
1

2
cm2

1
cm

==

== MvKK
 

 
Use conservation of energy to relate 
the kinetic energy of the system to 
the potential energy stored in the 
spring at maximum compression: 
 

0s =∆+∆ UK  

or 
0sisfif =−+− UUKK  

Because Kf = Kcm and Usi = 0: ( ) 02
2
1

icm =∆+− xkKK  

 
Solve for ∆x: ( )

[ ]

k
Kvmvm

k
Kvmvm

k
KKx

cm
2
i22

2
i11

cm
2
i222

12
i112

1

cmi

2

2

2

−+
=

−+
=

−
=∆

 

 
Substitute numerical values and evaluate ∆x: 
 

( )( ) ( )( ) ( ) m250.0
N/m1120

J87.52
N/m1120

m/s3kg5m/s10kg2 22

=⎥
⎦

⎤
−

+
=∆x  

 
(c) Find u1i, u2i, and u1f for this 
elastic collision: 

m/s5m/s50
and

m/s,2m/s5m/s3
m/s,5m/s5m/s10

cm1f1f

cm2i2i

cm1i1i

−=−=−=

−=−=−=
=−=−=

vvu

vvu
vvu

 

 
Use conservation of mechanical 
energy to set the velocity of 
recession equal to the negative of 
the velocity of approach and solve 

( )1i2i1f2f uuuu −−=−     

and 
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for u2f: 
( )
m/s2

m/s5m/s5m/s2
1f1i2i2f

=
−+−−=

++−= uuuu
           

 
Transform u1f and u2f to the table 
frame of reference: 

0m/s5m/s5cm1f1f =+−=+= vuv  

and 

m/s00.7m/s5m/s2
cm2f2f

=+=

+= vuv
 

*74 ••  
Picture the Problem Let the system include the earth, the bullet, and the sheet of 
plywood. Then Wext = 0. Choose the zero of gravitational potential energy to be where 
the bullet enters the plywood. We can apply both conservation of energy and 
conservation of momentum to obtain the various physical quantities called for in this 
problem. 
 
(a) Use conservation of mechanical 
energy after the bullet exits the sheet 
of plywood to relate its exit speed to 
the height to which it rises: 

0=∆+∆ UK  
or, because Kf = Ui = 0, 

02
2
1 =+− mghmvm  

 
 

Solve for vm: ghvm 2=  

 
Proceed similarly to relate the initial 
velocity of the plywood to the height 
to which it rises: 
 

gHvM 2=  

(b) Apply conservation of momentum 
to the collision of the bullet and the 
sheet of plywood: 

fi pp rr
=  

or 
Mmm Mvmvmv +=i  

 
Substitute for vm and vM and solve for 
vmi: 

gH
m
Mghvm 22i +=  

 
(c) Express the initial mechanical 
energy of the system (i.e., just before 
the collision): 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛++=

=

H
m
MhH

m
Mhmg

mvE m

2

2
i2

1
i

2  
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Express the final mechanical energy 
of the system (i.e., when the bullet 
and block have reached their 
maximum heights): 
 

( )MHmhgMgHmghE +=+=f  

 

(d) Use the work-energy theorem 
with Wext = 0 to find the energy 
dissipated by friction in the inelastic 
collision: 

0frictionif =+− WEE  

and 

⎥
⎦

⎤
⎢
⎣

⎡
−+=

−=

12

fifriction

m
M

H
hgMH

EEW

 

 
75 ••  
Picture the Problem We can find the velocity of the center of mass from the definition 
of the total momentum of the system. We’ll use conservation of energy to find the 
speeds of the particles when their separation is least and when they are far apart.  
 
(a) Noting that when the distance 
between the two particles is least, 
both move at the same speed, 
namely vcm, use the definition of the 
total momentum of a system to relate 
the initial momenta to the velocity of 
the center of mass: 
 

cmvvP
rrr

Mm
i

ii == ∑  

or 
( ) cmppip vmmvm α+= . 

 
 

Solve for and evaluate vcm: 

0

0

21

ipip
cm

200.0

4
0'

v

mm
mv

mm
vmvm

vv

=

+
+

=
+
+

== αα

 

 
(b) Use conservation of momentum 
to obtain one relation for the final 
velocities: 
 

fpfp0p ααvmvmvm +=              (1) 

Use conservation of mechanical 
energy to set the velocity of 
recession equal to the negative of 
the velocity of approach: 
 

( ) piipifpf vvvvv −=−−=− αα    (2) 

Solve equation (2) for vpf , substitute 
in equation (1) to eliminate vpf, and 
solve for vαf: 

0
0

p

0p
f 400.0

4
22

v
mm

mv
mm
vm

v =
+

=
+

=
α

α  
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76 •  
Picture the Problem Let the numeral 1 denote the electron and the numeral 2 the 
hydrogen atom. We can find the final velocity of the electron and, hence, the fraction of 
its initial kinetic energy that is transferred to the atom, by transforming to the center-of-
mass reference frame, calculating the post-collision velocity of the electron, and then 
transforming back to the laboratory frame of reference. 
 
Express f, the fraction of the 
electron’s initial kinetic energy that 
is transferred to the atom: 
  2

1i

f1
2
i112

1

2
f112

1

i

f

i

fi

11

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−=

−=
−

=

v
v

vm
vm

K
K

K
KKf

             (1) 

 
Find the velocity of the center of 
mass: 

21

i11
cm mm

vmv
+

=  

or, because m2 = 1840m1, 

1i
11

i11
cm 1841

1
1840

v
mm

vmv =
+

=  

 
Find the initial velocity of the 
electron in the center-of-mass 
reference frame: 
 

1i

1i1icm1i1i

1841
11

1841
1

v

vvvvu

⎟
⎠
⎞

⎜
⎝
⎛ −=

−=−=
 

 
Find the post-collision velocity of 
the electron in the center-of-mass 
reference frame by reversing its 
velocity: 
  

1i1i1f 1
1841

1 vuu ⎟
⎠
⎞

⎜
⎝
⎛ −=−=  

To find the final velocity of the 
electron in the original frame, add 
vcm to its final velocity in the center-
of-mass reference frame: 
 

1icm1f1f 1
1841

2 vvuv ⎟
⎠
⎞

⎜
⎝
⎛ −=+=  

Substitute in equation (1) to obtain: 

%217.01017.2

1
1841

21
1

1841
2

1

3

2

2

1i

1i

=×=

⎟
⎠
⎞

⎜
⎝
⎛ −−=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

−=

−

v

v
f
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77 ••  
Picture the Problem The pictorial 
representation shows the bullet about to 
imbed itself in the bob of the ballistic 
pendulum and then, later, when the bob 
plus bullet have risen to their maximum 
height. We can use conservation of 
momentum during the collision to relate 
the speed of the bullet to the initial speed 
of the bob plus bullet (V). The initial 
kinetic energy of the bob plus bullet is 
transformed into gravitational potential 
energy when they reach their maximum 
height. Hence we apply conservation of 
mechanical energy to relate V to the angle 
through which the bullet plus bob swings 
and then solve the momentum and energy 
equations simultaneously for the speed of 
the bullet. 

 
 
 

 
 
 

 
Use conservation of momentum to 
relate the speed of the bullet just 
before impact to the initial speed of 
the bob plus bullet: 
 

( )VMmmv +=b  

 

Solve for the speed of the bullet: 
 

V
m
Mv ⎟

⎠
⎞

⎜
⎝
⎛ += 1b                      (1) 

 
Use conservation of energy to relate 
the initial kinetic energy of the 
bullet to the final potential energy of 
the system: 
 

0=∆+∆ UK  
or, because Kf = Ui = 0, 

0fi =+− UK  

Substitute for Ki and Uf and solve 
for V: 
 

( )
( ) ( ) 0cos1

2
2
1

=−++
+−

θgLMm
VMm

 

and 
( )θcos12 −= gLV  

 
Substitute for V in equation (1) to 
obtain: 

( )θcos121b −⎟
⎠
⎞

⎜
⎝
⎛ += gL

m
Mv  

 
Substitute numerical values and evaluate vb: 
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( )( )( ) m/s450cos601m2.3m/s9.812
kg0.016

kg1.51 2
b =°−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=v  

 
*78 ••  
Picture the Problem We can apply conservation of momentum and the definition of an 
elastic collision to obtain equations relating the initial and final velocities of the colliding 
objects that we can solve for v1f and v2f. 
 
Apply conservation of momentum to 
the elastic collision of the particles 
to obtain: 
 

2i21i1f22f11 vmvmvmvm +=+         (1) 

Relate the initial and final kinetic 
energies of the particles in an elastic 
collision: 
 

2
i222

12
i112

12
f222

12
f112

1 vmvmvmvm +=+  

Rearrange this equation and factor to 
obtain: 

( ) ( )2
f1

2
i11

2
i2

2
f22 vvmvvm −=−  

or 
( )( )

( )( )1fi11fi11

2if22if22

vvvvm
vvvvm

+−=
+−

          (2) 

 
Rearrange equation (1) to obtain: 
 

( ) ( )1f1i12i2f2 vvmvvm −=−            (3) 

Divide equation (2) by equation (3) 
to obtain: 
 

1fi12if2 vvvv +=+  

Rearrange this equation to obtain 
equation (4): 
 

1ii2f2f1 vvvv −=−                           (4) 
 

Multiply equation (4) by m2 and add 
it to equation (1) to obtain: 
 

( ) ( ) 2i21i211f21 2 vmvmmvmm +−=+  

Solve for v1f to obtain: 
iif v

mm
mv

mm
mmv 2

21

2
1

21

21
1

2
+

+
+
−

=  

 
Multiply equation (4) by m1 and 
subtract it from equation (1) to 
obtain: 
 

( ) ( ) 1i1i212f221 2 vmvmmvmm +−=+  

Solve for v2f to obtain: 
i2

21

12
i1

21

1
f2

2 v
mm
mmv

mm
mv

+
−

+
+

=  

 
Remarks: Note that the velocities satisfy the condition that ( )1i2i1f2f vvvv −−=− . 
This verifies that the speed of recession equals the speed of approach. 
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79 ••  
Picture the Problem As in this problem, Problem 78 involves an elastic, one-
dimensional collision between two objects. Both solutions involve using the conservation 
of momentum equation 2i21i1f22f11 vmvmvmvm +=+ and the elastic collision 
equation 1ii2f2f1 vvvv −=− . In part (a) we can simply set the masses equal to each other 
and substitute in the equations in Problem 78 to show that the particles "swap" velocities. 
In part (b) we can divide the numerator and denominator of the equations in Problem 78 
by m2 and use the condition that m2 >> m1 to show that v1f  ≈ −v1i+2v2i and v2f ≈ v2i. 
 
(a) From Problem 78 we have: 
 2i

21

2
i1

21

21
f1

2 v
mm

mv
mm
mmv

+
+

+
−

=             (1) 

and 

2i
21

12
1i

21

1
2f

2 v
mm
mmv

mm
mv

+
−

+
+

=            (2) 

 
Set m1 = m2 = m to obtain: 

i2i2f1
2 vv

mm
mv =
+

=  

and 

1i1if2
2 vv

mm
mv =
+

=  

 
(b) Divide the numerator and 
denominator of both terms in 
equation (1) by m2 to obtain: 
 

2i

2

1
i1

2

1

2

1

f1

1

2

1

1
v

m
mv

m
m
m
m

v
+

+
+

−
=  

 
If m2 >> m1: 

2ii1f1 2vvv +−≈  

 
Divide the numerator and 
denominator of both terms in 
equation (2) by m2 to obtain: 
 

2i

2

1

2

1

1i

2

1

2

1

2f

1

1

1

2
v

m
m

m
m

v

m
m

m
m

v
+

−
+

+
=  

 
If m2 >> m1: 

2i2f vv ≈  

 
Remarks: Note that, in both parts of this problem, the velocities satisfy the condition 
that ( )1i2i1f2f vvvv −−=− . This verifies that the speed of recession equals the speed 
of approach. 
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Perfectly Inelastic Collisions and the Ballistic Pendulum 
 
80 ••  
Picture the Problem Choose Ug = 0 at the bob’s equilibrium position. Momentum is 
conserved in the collision of the bullet with bob and the initial kinetic energy of the bob 
plus bullet is transformed into gravitational potential energy as it swings up to the top of 
the circle. If the bullet plus bob just makes it to the top of the circle with zero speed, it 
will swing through a complete circle. 
 
Use conservation of momentum to 
relate the speed of the bullet just 
before impact to the initial speed of 
the bob plus bullet:  
 

( )Vmmvm 211 +=  

                             

Solve for the speed of the bullet: 
 V

m
mv ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

1

21                 (1) 

 
Use conservation of energy to relate 
the initial kinetic energy of the bob 
plus bullet to their potential energy 
at the top of the circle: 
 

0=∆+∆ UK  
or, because Kf = Ui = 0, 

0fi =+− UK  

Substitute for Ki and Uf: ( ) ( ) ( ) 0221
2

212
1 =+++− LgmmVmm  

 
 

Solve for V: 
 

gLV =  

Substitute for V in equation (1) and 
simplify to obtain: gL

m
mv ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

1

21  

 
*81 ••  
Picture the Problem Choose Ug = 0 at the equilibrium position of the ballistic 
pendulum. Momentum is conserved in the collision of the bullet with the bob and 
kinetic energy is transformed into gravitational potential energy as the bob swings up to 
its maximum height.  
 
Letting V represent the initial speed 
of the bob as it begins its upward 
swing, use conservation of 
momentum to relate this speed to the 
speeds of the bullet just before and 

( ) Vmvmvm 22
1

11 +=  
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after its collision with the bob:  
 
Solve for the speed of the bob: v

m
m

V
2

1

2
=                              (1) 

 
Use conservation of energy to relate 
the initial kinetic energy of the bob 
to its potential energy at its 
maximum height: 
 

0=∆+∆ UK  
or, because Kf = Ui = 0, 

0fi =+− UK  

Substitute for Ki and Uf:  02
2

22
1 =+− ghmVm  

                                  
 

Solve for h: 
g

Vh
2

2

=                                   (2) 

 
Substitute V from equation (1) in 
equation (2) and simplify to obtain: 2

2

1
2

2

2

1

82
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
m
m

g
v

g

v
m
m

h  

 
82 •   
Picture the Problem Let the mass of the bullet be m, that of the wooden block M, the 
pre-collision velocity of the bullet v, and the post-collision velocity of the block+bullet be 
V. We can use conservation of momentum to find the velocity of the block with the bullet 
imbedded in it just after their perfectly inelastic collision. We can use Newton’s 2nd law 
to find the acceleration of the sliding block and a constant-acceleration equation to find 
the distance the block slides. 
 

 
 
Using a constant-acceleration 
equation, relate the velocity of the 
block+bullet just after their collision 
to their acceleration and 
displacement before stopping: 
  

xaV ∆+= 20 2  
because the final velocity of the 
block+bullet is zero. 

Solve for the distance the block 
slides before coming to rest: 
 a

Vx
2

2

−=∆                                     (1) 



Systems of Particles and Conservation of Momentum 
 

 

557

Use conservation of momentum to 
relate the pre-collision velocity of 
the bullet to the post-collision 
velocity of the block+bullet: 
 

( )VMmmv +=  

Solve for V: 
 v

Mm
mV
+

=  

Substitute in equation (1) to obtain: 2

2
1

⎟
⎠
⎞

⎜
⎝
⎛

+
−=∆ v

Mm
m

a
x                     (2) 

 
Apply aF rr

m=∑ to the 
block+bullet (see the FBD in the 
diagram): 

( )aMmfFx +=−=∑ k                  (3) 
and 

( ) 0n =+−=∑ gMmFFy                (4) 
 
 

Use the definition of the coefficient 
of kinetic friction and equation (4) 
to obtain: 
 

( )gMmFf +== knkk µµ  

Substitute in equation (3): ( ) ( )aMmgMm +=+− kµ  
 

Solve for a to obtain: ga kµ−=  
 

Substitute in equation (2) to obtain: 2

k2
1

⎟
⎠
⎞

⎜
⎝
⎛

+
=∆ v

Mm
m

g
x

µ
 

 
Substitute numerical values and evaluate ∆x: 
 

( )( ) ( ) m130.0m/s750
kg10.5kg0.0105

kg0.0105
m/s9.810.222

1
2

2 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=∆x  

 
83 ••  
Picture the Problem The collision of the ball with the box is perfectly inelastic and we 
can find the speed of the box-and-ball immediately after their collision by applying 
conservation of momentum. If we assume that the kinetic friction force is constant, we 
can use a constant-acceleration equation to find the acceleration of the box and ball 
combination and the definition of µk to find its value. 
 
Using its definition, express the 
coefficient of kinetic friction of the 
table: 
 

( )
( ) g

a
gmM
amM

F
f

=
+
+

==
n

k
kµ              (1) 

Use conservation of momentum to 
relate the speed of the ball just 
before the collision to the speed of 
the ball+box immediately after the 

( )vMmMV +=  
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collision: 
 
Solve for v: 

Mm
MVv
+

=                                        (2) 

 
Use a constant-acceleration equation 
to relate the sliding distance of the 
ball+box to its initial and final 
velocities and its acceleration: 
 

xavv ∆+= 22
i

2
f  

or, because vf = 0 and vi = v, 
xav ∆+= 20 2  

Solve for a: 

x
va
∆

−=
2

2

 

 
Substitute in equation (1) to obtain: 

xg
v
∆

=
2

2

kµ  

 
Use equation (2) to eliminate v: 

2

2

k

12
1

2
1

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+∆
=

⎟
⎠
⎞

⎜
⎝
⎛

+∆
=

M
m

V
xg

Mm
MV

xg
µ

 

 
Substitute numerical values and evaluate µk: 
 

( )( ) 0529.0
1

kg0.425
kg0.327
m/s1.3

m0.52m/s9.812
1

2

2k =

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
=µ  

 
*84 ••  
Picture the Problem Jane’s collision with Tarzan is a perfectly inelastic collision.  We 
can find her speed v1 just before she grabs Tarzan from conservation of energy and their 
speed V just after she grabs him from conservation of momentum. Their kinetic energy 
just after their collision will be transformed into gravitational potential energy when they 
have reached their greatest height h. 
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Use conservation of energy to relate 
the potential energy of Jane and 
Tarzan at their highest point (2) to 
their kinetic energy immediately 
after Jane grabbed Tarzan: 
 

12 KU =  
or 

2
TJ2

1
TJ Vmghm ++ =  

Solve for h to obtain: 
 g

Vh
2

2

=                                        (1) 

 
Use conservation of momentum to 
relate Jane’s velocity just before she 
collides with Tarzan to their 
velocity just after their perfectly 
inelastic collision: 
 

Vmvm TJ1J +=  

Solve for V: 
1

TJ

J v
m
mV

+

=                                  (2) 

 
Apply conservation of energy to 
relate Jane’s kinetic energy at 1 to 
her potential energy at 0: 

01 UK =  
or 

gLmvm J
2
1J2

1 =  
 

Solve for v1: gLv 21 =  
 

Substitute in equation (2) to obtain: 
gL

m
mV 2

TJ

J

+

=  

 
Substitute in equation (1) and 
simplify: 
 

L
m
mgL

m
m

g
h

2

TJ

J

2

TJ

J 2
2
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

++

 

 
Substitute numerical values and 
evaluate h: ( ) m3.94m25

kg82kg45
kg45

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=h  
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Exploding Objects and Radioactive Decay 
 
85 ••  
Picture the Problem This nuclear reaction is 4Be → 2α + 1.5×10−14 J. In order to 
conserve momentum, the alpha particles will have move in opposite directions with the 
same velocities. We’ll use conservation of energy to find their speeds. 
 
Letting E  represent the energy 
released in the reaction, express 
conservation of energy for this 
process: 
 

( ) EvmK == 2
2
122 ααα  

Solve for vα: 

α
α m

Ev =  

 
Substitute numerical values and 
evaluate vα: m/s1050.1

kg106.68
J101.5 6

27

14

×=
×
×

= −

−

αv

 
86 ••  
Picture the Problem This nuclear reaction is 5Li → α + p + 3.15 × 10−13 J. To conserve 
momentum, the alpha particle and proton must move in opposite directions. We’ll apply 
both conservation of energy and conservation of momentum to find the speeds of the 
proton and alpha particle. 
 
Use conservation of momentum in 
this process to express the alpha 
particle’s velocity in terms of the 
proton’s: 

0fi == pp  

and 
αα vmvm −= pp0  

 
 

Solve for vα and substitute for mα to 
obtain: p4

1
p

p

p
p

p

4
vv

m
m

v
m
m

v ===
α

α  

 
Letting E  represent the energy 
released in the reaction, apply 
conservation of energy to the 
process: 

EKK =+ αp  

or 
Evmvm =+ 2

2
12

pp2
1

αα  

 
Substitute for vα: ( ) Evmvm =+ 2

p4
1

2
12

pp2
1

α  
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Solve for vp and substitute for mα to 
obtain: 

ppp
p 416

32
16

32
mm

E
mm

Ev
+

=
+

=
α

 

 
Substitute numerical values and 
evaluate vp: 

( )
( )

m/s1074.1

kg101.6720
J103.1532

7

27

13

p

×=

×
×

= −

−

v
 

 
Use the relationship between vp and 
vα to obtain vα: 

( )
m/s104.34

m/s101.74
6

7
4
1

p4
1

×=

×== vvα
 

 
87 •••  
Picture the Problem The pictorial representation shows the projectile at its maximum 
elevation and is moving horizontally. It also shows the two fragments resulting from the 
explosion. We chose the system to include the projectile and the earth so that no 
external forces act to change the momentum of the system during the explosion. With 
this choice of system we can also use conservation of energy to determine the elevation 
of the projectile when it explodes. We’ll also find it useful to use constant-acceleration 
equations in our description of the motion of the projectile and its fragments. 
 

 
 
(a) Use conservation of momentum 
to relate the velocity of the projectile 
before its explosion to the velocities 
of its two parts after the explosion: 
 

jjii

vvv
pp

ˆˆˆˆ
22111133

221133

fi

yyx vmvmvmvm

mmm

−+=

+=
=

rrr

rr

 

The only way this equality can hold 
is if: 

2211

1133

and

yy

x

vmvm

vmvm

=

=
 

 
Express v3 in terms of v0 and 
substitute for the masses to obtain: ( ) m/s312cos30m/s1203

cos33 031

=°=
== θvvvx  



Chapter 8    
 

 

562 

and 
21 2 yy vv =                                       (1) 

 
Using a constant-acceleration 
equation with the downward 
direction positive, relate vy2 to the 
time it takes the 2-kg fragment to hit 
the ground: 
 

( )2
2
1

2 tgtvy y ∆+∆=∆  

( )
t

tgyvy ∆
∆−∆

=
2

2
1

2                        (2) 

With Ug = 0 at the launch site, apply 
conservation of energy to the climb 
of the projectile to its maximum 
elevation:  

0=∆+∆ UK  
Because Kf = Ui = 0, 0fi =+− UK  

or 
03

2
032

1 =∆+− ygmvm y  

 
Solve for ∆y: ( )

g
v

g
v

y y

2
30sin

2

2
0

2
0 °

==∆  

 
Substitute numerical values and 
evaluate ∆y: 

( )[ ]
( ) m183.5

m/s9.812
sin30m/s120

2

2

=
°

=∆y  

 
Substitute in equation (2) and 
evaluate vy2: 

( )( )

m/s33.3
s3.6

s3.6m/s9.81m183.5 22
2
1

2

=

−
=yv

 

 
Substitute in equation (1) and 
evaluate vy1: 
 

( ) m/s66.6m/s33.321 ==yv  

 

Express 1v
r

in vector form: 

( ) ( ) ji

jiv

ˆm/s6.66ˆm/s312

ˆˆ
111

+=

+= yx vvr

 

 
(b) Express the total distance d 
traveled by the 1-kg fragment: 
 

'xxd ∆+∆=                                   (3) 

Relate ∆x to v0 and the time-to-
explosion: 
 

( )( )exp0 cos tvx ∆=∆ θ                      (4) 

 

Using a constant-acceleration 
equation, express ∆texp: g

v
g

v
t y θsin00
exp ==∆  
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Substitute numerical values and 
evaluate ∆texp: 

( ) s6.12
m/s9.81

sin30m/s120
2exp =

°
=∆t  

 
Substitute in equation (4) and 
evaluate ∆x: 
 

( )( )( )
m636.5

s6.12cos30m/s120
=

°=∆x
 

 
Relate the distance traveled by the 
1-kg fragment after the explosion to 
the time it takes it to reach the 
ground: 
 

t'vx' x ∆=∆ 1                                       

Using a constant-acceleration 
equation, relate the time ∆t′ for the 
1-kg fragment to reach the ground to 
its initial speed in the y direction and 
the distance to the ground: 
 

( )2
2
1

1 t'gt'vy y ∆−∆=∆  

Substitute to obtain the quadratic 
equation: 
 

( ) ( ) 0s4.37s6.13 22 =−∆−∆ t't'  

 

Solve the quadratic equation to find 
∆t′: 
 

∆t′ = 15.9 s 
 

Substitute in equation (3) and 
evaluate d: ( )( )

km5.61

s15.9m/s312m636.5
1

=

+=
∆+∆=∆+∆= t'vxx'xd x

 

 
(c) Express the energy released in 
the explosion: 
 

ifexp KKKE −=∆=                   (5) 

Find the kinetic energy of the 
fragments after the explosion:  ( ) ( ) ( )[ ]

( )( )
kJ0.52

m/s33.3kg2

m/s66.6m/s312kg1
2

2
1

22
2
1

2
222

12
112

1
21f

=
+

+=

+=+= vmvmKKK

 

 
Find the kinetic energy of the 
projectile before the explosion: 

( )
( ) ( )[ ]

kJ2.16
30cosm/s201kg3

cos
2

2
1

2
032

12
332

1
i

=

°=

== θvmvmK
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Substitute in equation (5) to 
determine the energy released in the 
explosion: 

kJ35.8

kJ16.2kJ0.52ifexp

=

−=−= KKE
 

 
*88 •••  
Picture the Problem This nuclear 
reaction is 9B → 2α + p + 4.4×10−14 J. 
Assume that the proton moves in the –x 
direction as shown in the figure. The sum 
of the kinetic energies of the decay 
products equals the energy released in the 
decay. We’ll use conservation of 
momentum to find the angle between the 
velocities of the proton and the alpha 
particles. Note that 'αα vv = . 

 
 
Express the energy released to the 
kinetic energies of the decay 
products: 

relp 2 EKK =+ α  

or 
( ) rel

2
2
12

pp2
1 2 Evmvm =+ αα  

 
Solve for vα: 

α
α m

vmE
v

2
pp2

1
rel −

=  

 
Substitute numerical values and evaluate vα: 
 

( )( ) m/s1044.1
kg106.68

m/s106kg101.67
kg106.68
J104.4 6

27

2627
2
1

27

14

×=
×

××
−

×
×

= −

−

−

−

αv  

 
Given that the boron isotope was at 
rest prior to the decay, use 
conservation of momentum to relate 
the momenta of the decay products: 
 

0if == pp
rr

 ⇒  0f =xp  
( ) 0cos2 pp =−∴ vmvm θαα  

or 
( ) 0cos42 ppp =− vmvm θα  

Solve for θ : 

( ) °±=⎥
⎦

⎤
⎢
⎣

⎡
×

×
=

⎥
⎦

⎤
⎢
⎣

⎡
=

−

−

7.58
m/s101.448

m/s106cos

8
cos

6

6
1

p1

α

θ
v
v
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Let θ′ equal the angle the velocities 
of the alpha particles make with that 
of the proton: 

( )
°±=

°−°±=

121

7.58180'θ
 

 
Coefficient of Restitution 
 
89 •  
Picture the Problem The coefficient of restitution is defined as the ratio of the velocity 
of recession to the velocity of approach. These velocities can be determined from the 
heights from which the ball was dropped and the height to which it rebounded by using 
conservation of mechanical energy. 
 
Use its definition to relate the 
coefficient of restitution to the 
velocities of approach and recession: 
 

app

rec

v
ve =  

Letting Ug = 0 at the surface of the 
steel plate, apply conservation of 
energy to express the velocity of 
approach: 

0=∆+∆ UK  
Because Ki = Uf = 0, 

0
or

0

app
2
app2

1

if

=−

=−

mghmv

UK
 

 
Solve for vapp: appapp 2ghv =  

 
In like manner, show that: recrec 2ghv =  

 
Substitute in the equation for e to 
obtain: 

app

rec

app

rec

2
2

h
h

gh
gh

e ==  

 
Substitute numerical values and evaluate e: 

913.0
m3
m2.5

==e  

 
*90 •  
Picture the Problem The coefficient of restitution is defined as the ratio of the velocity 
of recession to the velocity of approach. These velocities can be determined from the 
heights from which an object was dropped and the height to which it rebounded by using 
conservation of mechanical energy. 
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Use its definition to relate the 
coefficient of restitution to the 
velocities of approach and 
recession: 
 

app

rec

v
ve =  

Letting Ug = 0 at the surface of the 
steel plate, apply conservation of 
energy to express the velocity of 
approach: 

0=∆+∆ UK  
Because Ki = Uf = 0, 

0
or

0

app
2
app2

1

if

=−

=−

mghmv

UK
 

 
Solve for vapp: appapp 2ghv =  

 
In like manner, show that: recrec 2ghv =  

 
Substitute in the equation for e to 
obtain: 

app

rec

app

rec

2
2

h
h

gh
gh

e ==  

 
Find emin: 825.0

cm254
cm173

min ==e  

 
Find emax: 849.0

cm254
cm183

max ==e  

and 849.0825.0 ≤≤ e  

 
91 •  
Picture the Problem Because the rebound kinetic energy is proportional to the rebound 
height, the percentage of mechanical energy lost in one bounce can be inferred from 
knowledge of the rebound height. The coefficient of restitution is defined as the ratio of 
the velocity of recession to the velocity of approach. These velocities can be determined 
from the heights from which an object was dropped and the height to which it rebounded 
by using conservation of mechanical energy. 
 
(a) We know, from conservation of 
energy, that the kinetic energy of an 
object dropped from a given height 
h is proportional to h: 
 

K α h. 
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If, for each bounce of the ball, 
hrec = 0.8happ: 
 

lost. isenergy  mechanical its of %20  

(b)  Use its definition to relate the 
coefficient of restitution to the 
velocities of approach and 
recession: 
 

app

rec

v
ve =  

Letting Ug = 0 at the surface from 
which the ball is rebounding, apply 
conservation of energy to express 
the velocity of approach: 

0=∆+∆ UK  
Because Ki = Uf = 0, 

0
or

0

app
2
app2

1

if

=−

=−

mghmv

UK
 

 
Solve for vapp: appapp 2ghv =  

 
In like manner, show that: recrec 2ghv =  

 
Substitute in the equation for e to 
obtain: 

app

rec

app

rec

2
2

h
h

gh
gh

e ==  

 

Substitute for 
app

rec

h
h

to obtain: 894.08.0 ==e  

 
92 ••  
Picture the Problem Let the numeral 2 refer to the 2-kg object and the numeral 4 to the 
4-kg object. Choose a coordinate system in which the direction the 2-kg object is moving 
before the collision is the positive x direction and let the system consist of the earth, the 
surface on which the objects slide, and the objects. Then we can use conservation of 
momentum to find the velocity of the recoiling 4-kg object. We can find the energy 
transformed in the collision by calculating the difference between the kinetic energies 
before and after the collision and the coefficient of restitution from its definition. 
 
(a) Use conservation of momentum 
in one dimension to relate the initial 
and final momenta of the 
participants in the collision: 
 

f22f44i22

fi

or
vmvmvm −=

= pp rr
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Solve for and evaluate the final 
velocity of the 4-kg object: 

( )( ) m/s3.50
kg4

m/s1m/s6kg2
4

f22i22
f4

=
+

=

+
=

m
vmvmv

 

 
(b) Express the energy lost in terms 
of the kinetic energies before and 
after the collision: 

( )
( )[ ]2

f44
2
f2

2
i222

1

2
f442

12
f222

12
i222

1

filost

vmvvm

vmvmvm

KKE

−−=

+−=

−=

 

 
Substitute numerical values and evaluate Elost: 
 

( ) ( ) ( ){ }( ) ( )( )[ ] J5.10m/s3.5kg4m/s1m/s6kg2 222
2
1

lost =−−=E  

 
(c) Use the definition of the coefficient of restitution: 
 

( ) 0.750
m/s6

m/s1m/s3.5

i2

f2f4

app

rec =
−−

=
−

==
v

vv
v
ve  

 
93 ••  
Picture the Problem Let the numeral 2 refer to the 2-kg block and the numeral 3 to the 
3-kg block. Choose a coordinate system in which the direction the blocks are moving 
before the collision is the positive x direction and let the system consist of the earth, the 
surface on which the blocks move, and the blocks. Then we can use conservation of 
momentum find the velocity of the 2-kg block after the collision. We can find the 
coefficient of restitution from its definition. 
 
(a) Use conservation of momentum in 
one dimension to relate the initial and 
final momenta of the participants in 
the collision: 
 

f33f223i3i22

fi

or
vmvmvmvm +=+

= pp rr

 

Solve for the final velocity of the 2-kg 
object: 2

f33i33i22
f2 m

vmvmvmv −+
=  

 
Substitute numerical values and evaluate v2f: 
 

( )( ) ( )( ) m/s70.1
kg2

m/s4.2m/s2kg3m/s5kg2
f2 =

−+
=v  
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(b) Use the definition of the coefficient 
of restitution: 

0.833

m/s2m/s5
m/s7.1m/s2.4

i3i2

f2f3

app

rec

=

−
−

=
−
−

==
vv
vv

v
ve

 

 
Collisions in Three Dimensions  
 
*94 ••  
Picture the Problem We can use the definition of the magnitude of a vector and the 
definition of the dot product to establish the result called for in (a). In part (b) we can use 
the result of part (a), the conservation of momentum, and the definition of an elastic 
collision (kinetic energy is conserved) to show that the particles separate at right angles. 
 
(a) Find the dot product of CB

rr
+  

with itself: 
( ) ( )

CB

CBCB
rr

rrrr

⋅++=

+⋅+

222 CB
 

 
Because CBA

rrr
+= : ( ) ( )CBCBCB

rrrrrr
+⋅+=+=

22A  

 
Substitute to obtain: CB

rr
⋅++= 2222 CBA  

 
(b) Apply conservation of 
momentum to the collision of the 
particles: 
 

Ppp
rrr

=+ 21  

Form the dot product of each side of 
this equation with itself to obtain: 
 

( ) ( ) PPpppp
rrrrrr

⋅=+⋅+ 2121  
or 

2
21

2
2

2
1 2 Ppp =⋅++ pp

rr
                (1) 

 
Apply the definition of an elastic 
collision to obtain: 
 m

P
m

p
m

p
222

22
2

2
1 =+  

or 
22

2
2
1 Ppp =+                                 (2) 

 
Subtract equation (1) from equation 
(2) to obtain: 

02 21 =⋅ pp rr
or 021 =⋅ pp rr

 

i.e., the particles move apart along paths that 
are at right angles to each other. 

 
95 •  

Picture the Problem Let the initial direction of motion of the cue ball be the positive x 
direction. We can apply conservation of energy to determine the angle the cue ball makes 
with the positive x direction and the conservation of momentum to find the final 
velocities of the cue ball and the eight ball. 
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(a) Use conservation of energy to 
relate the velocities of the collision 
participants before and after the 
collision: 

2
8

2
cf

2
ci

2
82

12
cf2

12
ci2

1

or
vvv

mvmvmv

+=

+=

 

 
This Pythagorean relationship tells 
us that 8cfci and,, vvv rrr

form a right 

triangle. Hence: °=

°=+

60

and
90

cf

8cf

θ

θθ
 

 
(b) Use conservation of momentum 
in the x direction to relate the 
velocities of the collision 
participants before and after the 
collision: 
 

88cfcfci

xfxi

coscos
or

θθ mvmvmv +=

= pp rr

 

 

Use conservation of momentum in 
the y direction to obtain a second 
equation relating the velocities of the 
collision participants before and 
after the collision: 
 

88cfcf

yfyi

sinsin0
or

θθ mvmv +=

= pp
rr

 

 

Solve these equations 
simultaneously to obtain: 

m/s33.4

and

m/s50.2

8

cf

=

=

v

v

 

 
96 ••  
Picture the Problem We can find the final velocity of the object whose mass is M1 by 
using the conservation of momentum. Whether the collision was elastic can be decided 
by examining the difference between the initial and final kinetic energy of the 
interacting objects. 
 
(a) Use conservation of momentum to 
relate the initial and final velocities of 
the two objects: 

fi pp rr
=  

or 
( ) ( ) 1f04

1
02

1
0

ˆ2ˆ2ˆ viji rmvmvmmv +=+  

 
Simplify to obtain: 
 

1f02
1

00
ˆˆˆ viji r

+=+ vvv  

Solve for 1fvr : jiv ˆˆ
002

1
1f vv +=
r
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(b) Express the difference between the kinetic energy of the system before the collision 
and its kinetic energy after the collision: 
 

( ) [ ]
[ ] [ ]

( ) ( )[ ] 2
016

12
016

12
04

52
04

12
02

1

2
f2

2
f1

2
i2

2
i12

12
f2

2
f1

2
i2

2
i12

1

2
f22

2
f11

2
i22

2
i112

1
2f1f2i1ifi

22

2222

mvvvvvm

vvvvmmvmvmvmv

vMvMvMvMKKKKKKE

=−−+=

−−+=−−+=

−−+=+−+=−=∆

 

 
. iscollision   the0, Because inelasticE ≠∆  

 
*97 ••  
Picture the Problem Let the direction of motion of the puck that is moving before the 
collision be the positive x direction. Applying conservation of momentum to the collision 
in both the x and y directions will lead us to two equations in the unknowns v1 and v2 that 
we can solve simultaneously. We can decide whether the collision was elastic by either 
calculating the system’s kinetic energy before and after the collision or by determining 
whether the angle between the final velocities is 90°. 
 
(a) Use conservation of momentum 
in the x direction to relate the 
velocities of the collision 
participants before and after the 
collision: 
 °+°=

°+°=

=

60cos30cos
or

60cos30cos
or

21

21

xfxi

vvv

mvmvmv

pp

 

 
Use conservation of momentum in 
the y direction to obtain a second 
equation relating the velocities of 
the collision participants before and 
after the collision: 
 °−°=

°−°=

=

60sin30sin0
or

60sin30sin0
or

21

21

yfyi

vv

mvmv

pp

 

 
Solve these equations 
simultaneously to obtain: 

m/s00.1andm/s73.1 21 == vv  

 
(b) . wascollision   the,90 is and between  angle  theBecause  21 elastic°vv rr

 

 
98 ••  
Picture the Problem Let the direction of motion of the object that is moving before the 
collision be the positive x direction. Applying conservation of momentum to the motion 
in both the x and y directions will lead us to two equations in the unknowns v2 and θ2 that 
we can solve simultaneously. We can show that the collision was elastic by showing that 
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the system’s kinetic energy before and after the collision is the same. 
 
(a) Use conservation of momentum 
in the x direction to relate the 
velocities of the collision 
participants before and after the 
collision: 

22100

22100

xfxi

cos2cos53

or
cos2cos53

or

θθ

θθ

vvv

mvmvmv

pp

+=

+=

=

 

 
Use conservation of momentum in 
the y direction to obtain a second 
equation relating the velocities of 
the collision participants before and 
after the collision: 
 2210

2210

yfyi

sin2sin50

or
sin2sin50

or

θθ

θθ

vv

mvmv

pp

−=

−=

=

 

 
Note that if tanθ1 = 2, then:   

5
2sinand

5
1cos 11 == θθ  

 
Substitute in the momentum 
equations to obtain: 

220

2200

cos
or

cos2
5

153

θ

θ

vv

vvv

=

+=

 

and 

220

220

sin0
or

sin2
5

250

θ

θ

vv

vv

−=

−=

 

 
Solve these equations 
simultaneously for θ2 : 

°== − 0.451tan 1
2θ  

 
Substitute to find v2: 

0
0

2

0
2 2

45coscos
vvvv =

°
==

θ
 

 
(b) To show that the collision was 
elastic, find the before-collision and 
after-collision kinetic energies: 

( )

( ) ( )( )
2
0

2

02
1

2

02
1

f

2
0

2
02

1
i

5.4

225

and
5.43

mv

vmvmK

mvvmK

=

+=

==
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elastic. is

collision    the,   Because fi KK =
 

 
*99 ••  
Picture the Problem Let the direction of motion of the ball that is moving before the 
collision be the positive x direction. Let v represent the velocity of the ball that is moving 
before the collision, v1 its velocity after the collision and v2 the velocity of the initially-at-
rest ball after the collision.  We know that because the collision is elastic and the balls 
have the same mass, v1 and v2 are 90° apart. Applying conservation of momentum to the 
collision in both the x and y directions will lead us to two equations in the unknowns v1 
and v2 that we can solve simultaneously.  
 
Noting that the angle of deflection 
for the recoiling ball is 60°, use 
conservation of momentum in the x 
direction to relate the velocities of 
the collision participants before and 
after the collision: 
 

°+°=

°+°=

=

60cos30cos
or

60cos30cos
or

21

21

xfxi

vvv

mvmvmv

pp

 

Use conservation of momentum in 
the y direction to obtain a second 
equation relating the velocities of 
the collision participants before and 
after the collision: 
 °−°=

°−°=

=

60sin30sin0
or

60sin30sin0
or

21

21

yfyi

vv

mvmv

pp

 

 
Solve these equations 
simultaneously to obtain: 

m/s00.5andm/s66.8 21 == vv  

 
100 ••  
Picture the Problem Choose the coordinate system shown in the diagram below with the 
x-axis the axis of initial approach of the first particle.  Call V the speed of the target 
particle after the collision. In part (a) we can apply conservation of momentum in the x 
and y directions to obtain two equations that we can solve simultaneously for tanθ. In part 
(b) we can use conservation of momentum in vector form and the elastic-collision 
equation to show that v = v0cosφ. 
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(a) Apply conservation of 
momentum in the x direction to 
obtain: 
 

θφ coscos0 Vvv +=               (1) 

Apply conservation of momentum in 
the y direction to obtain: 
 

θφ sinsin Vv =                       (2) 

Solve equation (1) for Vcosθ : 
 

φθ coscos 0 vvV −=               (3) 

Divide equation (2) by equation (3) 
to obtain: 
 φ

φ
θ
θ

cos
sin

cos
sin

0 vv
v

V
V

−
=  

or 

φ
φθ

cos
sintan

0 vv
v
−

=  

 
(b) Apply conservation of 
momentum to obtain: 
 

Vvv
rrr

+=0  

Draw the vector diagram 
representing this equation: 
 

 
Use the definition of an elastic 
collision to obtain: 
 

222
0 Vvv +=  

If this Pythagorean condition is to 
hold, the third angle of the triangle 
must be a right angle and, using the 
definition of the cosine function: 

φcos0vv =  
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Center-of-Mass Frame 
 
101 ••  
Picture the Problem The total kinetic energy of a system of particles is the sum of the 
kinetic energy of the center of mass and the kinetic energy relative to the center of mass. 
The kinetic energy of a particle of mass m is related to momentum according 
to mpK 22= . 

 
Express the total kinetic energy of 
the system: 
 

cmrel KKK +=            (1) 

Relate the kinetic energy relative to 
the center of mass to the momenta 
of the two particles: 

( )
21

21
2
1

2

2
1

1

2
1

rel 222 mm
mmp

m
p

m
pK +

=+=  

 
Express the kinetic energy of the 
center of mass of the two particles: 

( )
( ) 21

2
1

21

2
1

cm
2

2
2

mm
p

mm
pK

+
=

+
=  

 
Substitute in equation (1) and 
simplify to obtain: 

( )

⎥
⎦

⎤
⎢
⎣

⎡
+

++
=

+
+

+
=

2
212

2
1

2
221

2
1

2
1

21

2
1

21

21
2
1

6
2

2
2

mmmm
mmmmp

mm
p

mm
mmpK

 

 
In an elastic collision: 

⎥
⎦

⎤
⎢
⎣

⎡
+

++
=

⎥
⎦

⎤
⎢
⎣

⎡
+

++
=

=

2
212

2
1

2
221

2
1

2
1

2
212

2
1

2
221

2
1

2
1

fi

6
2

6
2

mmmm
mmmmp'

mmmm
mmmmp

KK

 

 
Simplify to obtain:  ( ) ( ) 11

2
1

2
1 pppp '' ±=⇒=  

and 
collide.not  do particles the, If 11 pp' +=  

 
*102 ••  
Picture the Problem Let the numerals 3 and 1 denote the blocks whose masses are 3 kg 
and 1 kg respectively. We can use cmvv rr Mm

i
ii =∑ to find the velocity of the center-of-

mass of the system and simply follow the directions in the problem step by step. 
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(a) Express the total momentum of 
this two-particle system in terms of 
the velocity of its center of mass: 
 

( ) cm31cm

3311

vv

vvvP
rr

rrrr

mmM

mmm
i

ii

+==

+== ∑
 

Solve for cmvr : 

13

1133
cm mm

mm
+
+

=
vvv
rr

r
 

 
Substitute numerical values and 
evaluate cmvr : 

( )( ) ( )( )

( )i

iiv

ˆm/s3.00

kg1kg3

ˆm/s3kg1ˆm/s5kg3
cm

−=

+
+−

=
r

 

 
(b) Find the velocity of the 3-kg 
block in the center of mass reference 
frame: 

( ) ( )
( )i

iivvu
ˆm/s2.00

ˆm/s3ˆm/s5cm33

−=

−−−=−=
rrr

 

 
Find the velocity of the 1-kg block 
in the center of mass reference 
frame: 

( ) ( )
( )i

iivvu
ˆm/s00.6

ˆm/s3ˆm/s3cm11

=

−−=−=
rrr

 

 
(c) Express the after-collision 
velocities of both blocks in the 
center of mass reference frame: 

( )iu ˆm/s00.23 ='r  

and 

( )iu ˆm/s00.61 −='r  

 
(d) Transform the after-collision 
velocity of the 3-kg block from the 
center of mass reference frame to the 
original reference frame: 
 

( ) ( )
( )i

iivuv
ˆm/s00.1

ˆm/s3ˆm/s2cm33

−=

−+=+=
rrr ''

 

 

Transform the after-collision velocity 
of the 1-kg block from the center of 
mass reference frame to the original 
reference frame: 
 

( ) ( )
( )i

iivuv
ˆm/s00.9

ˆm/s3ˆm/s6cm11

−=

−+−=+=
rrr ''

 

 

(e) Express Ki in the original frame of 
reference: 
 

2
112

12
332

1
i vmvmK +=  

 

Substitute numerical values and 
evaluate Ki: 

( )( ) ( )( )[ ]
J42.0

m/s3kg1m/s5kg3 22
2
1

i

=

+=K
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Express Kf in the original frame of 
reference: 
 

2
112

12
332

1
f v'mv'mK +=  

Substitute numerical values and 
evaluate Kf: 

( )( ) ( )( )[ ]
J42.0

m/s9kg1m/s1kg3 22
2
1

f

=

+=K
 

 
103 ••  
Picture the Problem Let the numerals 3 and 1 denote the blocks whose masses are 3 kg 
and 1 kg respectively. We can use cmvv rr Mm

i
ii =∑ to find the velocity of the center-of-

mass of the system and simply follow the directions in the problem step by step. 
 
(a) Express the total momentum of 
this two-particle system in terms of 
the velocity of its center of mass: 
 

( ) cm53cm

5533

vv

vvvP
rr

rrrr

mmM

mmm
i

ii

+==

+== ∑
 

Solve for cmvr : 

53

5533
cm mm

mm
+
+

=
vvv
rr

r
 

 
Substitute numerical values and 
evaluate cmvr : 

( )( ) ( )( )

0

kg5kg3

ˆm/s3kg5ˆm/s5kg3
cm

=

+
+−

=
iivr

 

 
(b) Find the velocity of the 3-kg 
block in the center of mass reference 
frame: 

( )
( ) i

ivvu
ˆm/s5

0ˆm/s5cm33

−=

−−=−=
rrr

 

 
Find the velocity of the 5-kg block in 
the center of mass reference frame: 

( )
( )i

ivvu
ˆm/s3

0ˆm/s3cm55

=

−=−=
rrr

 

 
(c) Express the after-collision 
velocities of both blocks in the 
center of mass reference frame: 

( )iu ˆm/s53 ='r  

and 
m/s75.05 ='u  

 
(d) Transform the after-collision 
velocity of the 3-kg block from the 
center of mass reference frame to the 
original reference frame: 

( )
( )i

ivuv
ˆm/s5

0ˆm/s5cm33

=

+=+=
rrr ''
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Transform the after-collision 
velocity of the 5-kg block from the 
center of mass reference frame to the 
original reference frame: 
 

( )
( )i

ivuv
ˆm/s3

0ˆm/s3cm55

−=

+−=+=
rrr ''

 

 

(e) Express Ki in the original frame 
of reference: 
 

2
552

12
332

1
i vmvmK +=  

 

Substitute numerical values and 
evaluate Ki: 

( )( ) ( )( )[ ]
J60.0

m/s3kg5m/s5kg3 22
2
1

i

=

+=K
 

 
Express Kf in the original frame of 
reference: 
 

2
552

12
332

1
f v'mv'mK +=  

Substitute numerical values and evaluate Kf: 
 

( )( )[ ( )( ) ] J60.0m/s3kg5m/s5kg3 22
2
1

f =+=K  

 
Systems With Continuously Varying Mass: Rocket Propulsion  
 
104 ••  
Picture the Problem The thrust of a rocket Fth depends on the burn rate of its fuel dm/dt 
and the relative speed of its exhaust gases uex according to exth udtdmF = . 

 
Using its definition, relate the 
rocket’s thrust to the relative speed 
of its exhaust gases: 
 

exth u
dt
dmF =  

Substitute numerical values and 
evaluate Fth: 

( )( ) MN20.1km/s6kg/s200th ==F  

 
105 ••  
Picture the Problem The thrust of a rocket Fth depends on the burn rate of its fuel dm/dt 
and the relative speed of its exhaust gases uex according to exth udtdmF = . The final 

velocity vf of a rocket depends on the relative speed of its exhaust gases uex, its payload 
to initial mass ratio mf/m0 and its burn time according to ( ) b0fexf ln gtmmuv −−= . 

 
(a) Using its definition, relate the 
rocket’s thrust to the relative speed exth u

dt
dmF =  
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of its exhaust gases:  
Substitute numerical values and 
evaluate Fth: 
 

( )( ) kN360km/s8.1kg/s200th ==F  

(b) Relate the time to burnout to the 
mass of the fuel and its burn rate: 
 

dtdm
m

dtdm
mt

/
8.0

/
0fuel

b ==  

 
Substitute numerical values and 
evaluate tb: 
 

( ) s120
kg/s200

kg30,0000.8
b ==t  

(c) Relate the final velocity of a 
rocket to its initial mass, exhaust 
velocity, and burn time: 
 

b
0

f
exf ln gt

m
muv −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=  

Substitute numerical values and evaluate vf: 
 

( ) ( )( ) km/s72.1s120m/s9.81
5
1lnkm/s1.8 2

f =−⎟
⎠
⎞

⎜
⎝
⎛−=v  

 
*106 ••  
Picture the Problem We can use the dimensions of thrust, burn rate, and acceleration to 
show that the dimension of specific impulse is time. Combining the definitions of rocket 
thrust and specific impulse will lead us to spex gIu = . 
 
(a) Express the dimension of 
specific impulse in terms of the 
dimensions of Fth, R, and g: 
 

[ ] [ ]
[ ][ ] T

T
L

T
M

T
LM

2

2
th

sp =
⋅

⋅

==
gR

FI  

 
(b) From the definition of rocket 
thrust we have: 
 

exth RuF =  

Solve for uex: 

R
Fu th

ex =  

 
Substitute for Fth to obtain: 
 sp

sp
ex gI

R
RgI

u ==                   (1) 

 
(c) Solve equation (1) for Isp and 
substitute for uex to obtain: 
 Rg

FI th
sp =  

From Example 8-21 we have:  R = 1.384×104 kg/s and Fth = 3.4×106 N 
   



Chapter 8    
 

 

580 

Substitute numerical values and 
evaluate Isp: ( )( )

s25.0

m/s81.9kg/s101.384
N103.4

24

6

sp

=

×
×

=I
 

 
*107 •••  
Picture the Problem We can use the rocket equation and the definition of rocket thrust 
to show that ga00 1+=τ . In part (b) we can express the burn time tb in terms of the 
initial and final masses of the rocket and the rate at which the fuel burns, and then use 
this equation to express the rocket’s final velocity in terms of Isp, τ0, and the mass ratio 
m0/mf. In part (d) we’ll need to use trial-and-error methods or a graphing calculator to 
solve the transcendental equation giving vf as a function of m0/mf. 
 
(a) Express the rocket equation: 
 

maRumg =+− ex  

From the definition of rocket thrust 
we have: 
 

exth RuF =  
 

Substitute to obtain: 
 

maFmg =+− th  

Solve for Fth at takeoff: 
000th amgmF +=  

 
 

Divide both sides of this equation by 
m0g to obtain: 
 g

a
gm

F 0

0

th 1+=  

Because )/( 0th0 gmF=τ : 

g
a0

0 1+=τ  

 
(b) Use equation 8-42 to express the 
final speed of a rocket that starts 
from rest with mass m0: 

b
f

0
exf ln gt

m
muv −= ,                      (1) 

where tb is the burn time. 
 

Express the burn time in terms of the 
burn rate R (assumed constant): 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−
=

0

f0f0
b 1

m
m

R
m

R
mmt  

 
Multiply tb by one in the form gT/gT 
and simplify to obtain: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

0

f

0

sp

0

fth

th

0

0

f0

th

th
b

1

1

1

m
mI

m
m

gR
F

F
gm

m
m

R
m

gF
gFt

τ
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Substitute in equation (1): 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

0

f

0

sp

f

0
exf 1ln

m
mgI

m
muv

τ
 

 
From Problem 32 we have: 
 

spex gIu = ,  
where uex is the exhaust velocity of the 
propellant. 
 

Substitute and factor to obtain: 
 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

0

f

0f

0
sp

0

f

0

sp

f

0
spf

11ln

1ln

m
m

m
mgI

m
mgI

m
mgIv

τ

τ
 

 
(c) A spreadsheet program to calculate the final velocity of the rocket as a function of the 
mass ratio m0/mf is shown below. The constants used in the velocity function and the 
formulas used to calculate the final velocity are as follows: 
 
  

Cell Content/Formula Algebraic Form 
B1 250 Isp 
B2 9.81 g 
B3 2 τ 
D9 D8 + 0.25 m0/mf 
E8 $B$2*$B$1*(LOG(D8) − 

(1/$B$3)*(1/D8)) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

0

f

0f

0
sp 11ln

m
m

m
mgI

τ
 

 
 

 A B C D E 
1 Isp = 250 s   
2 g = 9.81 m/s^2   
3 tau = 2    
4      
5      
6      
7    mass ratio vf 
8    2.00 1.252E+02
9    2.25 3.187E+02
10    2.50 4.854E+02
11    2.75 6.316E+02
12    3.00 7.614E+02
      

36    9.00 2.204E+03
37    9.25 2.237E+03
38    9.50 2.269E+03
39    9.75 2.300E+03
40    10.00 2.330E+03
41    725.00 7.013E+03 
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A graph of final velocity as a function of mass ratio is shown below.  
 
 

0

1

2

2 4 6 8 10

m 0/m f

v f
 (k

m
/s

)

 
 

(d) Substitute the data given in part (c) in the equation derived in part (b) to obtain: 
 

( )( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

0

f

f

02 1
2
1lns250m/s9.81km/s7

m
m

m
m

 

or 

x
x 5.05.0ln854.2 +−=  where x = m0/mf. 

 
Use trial-and-error methods or a 
graphing calculator to solve this 
transcendental equation for the root 
greater than 1: 

1.28=x , 

a value considerably larger than the 
practical limit of 10 for single-stage 
rockets. 

 
108 ••   
Picture the Problem We can use the velocity-at-burnout equation from Problem 106 to 
find vf and constant-acceleration equations to approximate the maximum height the 
rocket will reach and its total flight time. 
 
(a) Assuming constant acceleration, 
relate the maximum height reached 
by the model rocket to its time-to-
top-of-trajectory: 
 

2
top2

1 gth =                                 (1) 

From Problem 106 we have: 
 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

0

f

f

0
spf 11ln

m
m

m
mgIv

τ
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Evaluate the velocity at burnout vf 
for Isp = 100 s, m0/mf = 1.2, and  
τ = 5: 

( )( )

( )

m/s146
2.1

11
5
12.1ln

s100m/s9.81 2
f

=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−×

=v

 

 
Assuming that the time for the fuel 
to burn up is short compared to the 
total flight time, find the time to the 
top of the trajectory: 
 

s14.9
m/s9.81
m/s146

2
f

top ===
g
vt  

Substitute in equation (1) and 
evaluate h: 
 

( )( ) km1.09s14.9m/s9.81 22
2
1 ==h  

(b) Find the total flight time from 
the time it took the rocket to reach 
its maximum height: 
 

( ) s29.8s14.922 topflight === tt  

(c) Express and evaluate the fuel 
burn time tb: 

s3.33
1.2
11

5
s1001

0

=

⎟
⎠
⎞

⎜
⎝
⎛ −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

m
mI

t fsp
b τ  

 

burnout. untilon acceleraticonstant 
assuming m, 243   is  timein this movepossibly  couldrocket  model the

distance maximum  theas accuracy, 30%about   togood be however,
 should,It  accurate. very be  to)(Part in  obtained answer we expect the

tcan'  wee,flight tim  total theof 1/5ely approximat is burn time  thisBecause

b2
1 =vt

b
 

 
General Problems 
 
109 •     
Picture the Problem Let the direction of motion of the 250-g car before the collision be 
the positive x direction. Let the numeral 1 refer to the 250-kg car, the numeral 2 refer to 
the 400-kg car, and V represent the velocity of the linked cars. Let the system include 
the earth and the cars. We can use conservation of momentum to find their speed after 
they have linked together and the definition of kinetic energy to find their initial and 
final kinetic energies. 
 
Use conservation of momentum to 
relate the speeds of the cars 
immediately before and immediately 
after their collision: 
 

( )Vmmvm

pp

2111

fxix

or
+=

=
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Solve for V: 

21

11

mm
vmV

+
=  

 
Substitute numerical values and 
evaluate V: 

( )( ) m/s192.0
kg0.400kg0.250

m/s0.50kg0.250
=

+
=V

 
 

Find the initial kinetic energy of the 
cars: 

( )( )
mJ3.31

m/s0.50kg0.250 2
2
12

112
1

i

=

== vmK
 

 
Find the final kinetic energy of the 
coupled cars: 

( )
( )( )

mJ0.12

m/s0.192kg0.400kg0.250 2
2
1

2
212

1
f

=

+=

+= VmmK

 
110 •  
Picture the Problem Let the direction of motion of the 250-g car before the collision be 
the positive x direction. Let the numeral 1 refer to the 250-kg car and the numeral 2 refer 
to the 400-g car and the system include the earth and the cars. We can use conservation 
of momentum to find their speed after they have linked together and the definition of 
kinetic energy to find their initial and final kinetic energies. 
 
(a) Express and evaluate the initial 
kinetic energy of the cars: 

( )( )
mJ3.31

m/s0.50kg0.250 2
2
12

112
1

i

=

== vmK
 

 
(b) Relate the velocity of the center 
of mass to the total momentum of 
the system: 
 

cm
i

ii vvP
rrr

mm == ∑  

 

Solve for vcm: 

21

2211
cm mm

vmvmv
+
+

=  

 
Substitute numerical values and 
evaluate vcm: 
 

( )( ) m/s192.0
kg0.400kg0.250

m/s0.50kg0.250
cm =

+
=v  

Find the initial velocity of the 250-g 
car relative to the velocity of the 
center of mass: 

m/s0.308

m/s0.192m/s.500cm11

=

−=−= vvu
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Find the initial velocity of the 400-g 
car relative to the velocity of the 
center of mass: 

m/s192.0

m/s0.192m/s0cm22

−=

−=−= vvu
 

 
Express the initial kinetic energy of 
the system relative to the center of 
mass: 
 

2
222

12
112

1
reli, umumK +=  

 

Substitute numerical values and 
evaluate Ki,rel: 

( )( )
( )( )

mJ19.2

m/s0.192kg0.400

m/s0.308kg0.250
2

2
1

2
2
1

reli,

=

−+

=K

 

 
(c) Express the kinetic energy of the 
center of mass: 
 

2
cm2

1
cm MvK =  

 

Substitute numerical values and 
evaluate Kcm: 

( )( )
mJ12.0

m/s0.192kg0.650 2
2
1

cm

=

=K
 

 
(d) Relate the initial kinetic energy of 
the system to its initial kinetic energy 
relative to the center of mass and the 
kinetic energy of the center of mass: 

mJ31.2
mJ12.0mJ9.21

cmreli,i

=
+=

+= KKK
 

 
 

cmreli,i KKK +=∴  

 
*111 •  
Picture the Problem Let the direction the 4-kg fish is swimming be the positive x 
direction and the system include the fish, the water, and the earth. The velocity of the 
larger fish immediately after its lunch is the velocity of the center of mass in this 
perfectly inelastic collision. 
 
Relate the velocity of the center of 
mass to the total momentum of the 
system: 
 

cm
i

ii vvP
rrr

mm == ∑  

Solve for vcm: 

2.14

2.12.144
cm mm

vmvmv
+
−

=  
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Substitute numerical values and 
evaluate vcm: 

( )( )

m/s462.0

kg2.1kg4
)m/s(3kg)2.1(m/s5.1kg4

cm

=

+
−

=v
 

 
112 •  
Picture the Problem Let the direction the 3-kg block is moving be the positive x 
direction and include both blocks and the earth in the system. The total kinetic energy of 
the two-block system is the sum of the kinetic energies of the blocks. We can relate the 
momentum of the system to the velocity of its center of mass and use this relationship to 
find vcm. Finally, we can use the definition of kinetic energy to find the kinetic energy 
relative to the center of mass. 
 
(a) Express the total kinetic energy 
of the system in terms of the kinetic 
energy of the blocks: 
 

2
662

12
332

1
tot vmvmK +=  

 

Substitute numerical values and 
evaluate Ktot: 

( )( ) ( )( )
J81.0

m/s3kg6m/s6kg3 2
2
12

2
1

tot

=

+=K
 

 
(b) Relate the velocity of the center 
of mass to the total momentum of 
the system: 
 

cm
i

ii vvP
rrr

mm == ∑  

 

Solve for vcm: 

21

6633
cm mm

vmvmv
+
+

=  

 
Substitute numerical values and 
evaluate vcm: 

( )( ) ( )( )

m/s00.4

kg6kg3
m/s3kg6m/s6kg3

cm

=

+
+

=v
 

 
(c) Find the center of mass kinetic 
energy from the velocity of the 
center of mass: 

( )( )
J72.0

m/s4kg9 2
2
12

cm2
1

cm

=

== MvK
 

 
(d) Relate the initial kinetic energy 
of the system to its initial kinetic 
energy relative to the center of mass 
and the kinetic energy of the center 
of mass: 

J00.9

J0.27J0.81
cmtotrel

=

−=
−= KKK
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113 •  
Picture the Problem Let east be the positive x direction and north the positive y 
direction. Include both cars and the earth in the system and let the numeral 1 denote the 
1500-kg car and the numeral 2 the 2000-kg car. Because the net external force acting on 
the system is zero, momentum is conserved in this perfectly inelastic collision. 
 
(a) Express the total momentum of the 
system: ij

vvppp
ˆˆ

2211

221121

vmvm

mm

−=

+=+=
rrrrr

 

 
Substitute numerical values and evaluate p

r
: 

 
( )( ) ( )( )

( ) ( )ji

ijp
ˆkm/hkg1005.1ˆkm/hkg1010.1

ˆkm/h55kg2000ˆkm/h70kg1500
55 ⋅×+⋅×−=

−=
r

 

 
(b) Express the velocity of the 
wreckage in terms of the total 
momentum of the system: 
 

M
pvv
r

rr
== cmf  

 

Substitute numerical values and evaluate fvr : 
 

( ) ( )

( ) ( ) ji

jiv

ˆkm/h0.30ˆkm/h4.31

kg2000kg1500

ˆkm/hkg101.05
kg2000kg1500

ˆkm/hkg101.10 55

f

+−=

+
⋅×

+
+

⋅×−
=

r

 

 
Find the magnitude of the velocity 
of the wreckage: 

( ) ( )
km/h43.4

km/h30.0km/h31.4 22
f

=

+=v
 

 
Find the direction of the velocity of 
the wreckage: °−=⎥

⎦

⎤
⎢
⎣

⎡
−

= − 7.43
km/h31.4

km/h30.0tan 1θ  

 
 

north. of west 46.3
is  wreckage theofdirection  The

°
 

 
*114 ••  
Picture the Problem Take the origin to be at the initial position of the right-hand end of 
raft and let the positive x direction be to the left. Let ″w″ denote the woman and ″r″ the 
raft, d be the distance of the end of the raft from the pier after the woman has walked to 
its front. The raft moves to the left as the woman moves to the right; with the center of 
mass of the woman-raft system remaining fixed (because Fext,net = 0). The diagram shows 
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the initial (xw,i) and final (xw,f) positions of the woman as well as the initial (xr_cm,i) and 
final (xr_cm,f) positions of the center of mass of the raft both before and after the woman 
has walked to the front of the raft. 
 

x

x

xw
,

f

    
xr_cm,i

xr_cm,f

xw
,

i =6 m

    
xr_cm,i

0

0
×

×

CM

CM

xC
M

d

0.5 m
P 
I 
E 
R

 
 

 
(a) Express the distance of the raft 
from the pier after the woman has 
walked to the front of the raft: 
 

wf,m5.0 xd +=                  (1) 

Express  xcm before the woman has 
walked to the front of the raft:   

rw

i r_cm,riw,w
cm mm

xmxm
x

+

+
=  

 
Express  xcm after the woman has 
walked to the front of the raft:   

rw

fr_cm,rfw,w
cm mm

xmxm
x

+

+
=    

 
Because Fext,net = 0, the center of 
mass remains fixed and we can 
equate these two expressions for xcm 
to obtain: 
 

fr_cm,rfw,wir_cm,ri,ww xmxmxmxm +=+  

Solve for xw,f: ( )ir_cm,fr_cm,
w

r
iw,fw, xx

m
mxx −−=  

 
From the figure it can be seen that 
xr_cm,f – xr_cm,i = xw,f. Substitute xw,f 
for xr_cm,f – xr_cm,i and to obtain: 
  

rw

iw,w
fw, mm

xm
x

+
=  

Substitute numerical values and 
evaluate xw,f: 
 

( )( ) m00.2
kg120kg60

m6kg60
fw, =

+
=x  
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Substitute in equation (1) to obtain: m50.2m5.0m00.2 =+=d  

 
(b) Express the total kinetic energy 
of the system: 
 

2
rr2

12
ww2

1
tot vmvmK +=  

 

Noting that the elapsed time is 2 s, 
find vw and vr: 

m/s2
s2

m6m2iw,fw,
w −=

−
=

∆
−

=
t
xx

v  

relative to the dock, and 

m/s1
s2

m0.5m50.2ir,fr,
r =

−
=

∆
−

=
t
xx

v , 

also relative to the dock. 
 

Substitute numerical values and 
evaluate Ktot: 

( )( )
( )( )
J180

m/s1kg120

m/s2kg60
2

2
1

2
2
1

tot

=

+

−=K

 

 
Evaluate K with the raft tied to the 
pier: 

( )( )
J270

m/s3kg60 2
2
12

ww2
1

tot

=

== vmK
 

 

(c) 
energy. internalher 

into ed transformisenergy  kinetic  thefriction, static  viastops she assuming
 and, woman  theofenergy  chemical  thefrom derivesenergy  kinetic   theAll

  

 

(d) 

raft.  theoffront  at the lands and
 m 6 of range a has alsoshot   theframe,woman -raft in the Thus, land. the

 of frame reference in the m 6 of range a hadshot that   thedid asvelocity 
 initial same  thehasshot   theframeIn that  frame. reference inertialan 

sconstitute systemwoman -raft  thehand, s woman' theleavesshot  After the

  

 
115 ••  
Picture the Problem Let the zero of gravitational potential energy be at the elevation of 
the 1-kg block. We can use conservation of energy to find the speed of the bob just 
before its perfectly elastic collision with the block and conservation of momentum to 
find the speed of the block immediately after the collision. We’ll apply Newton’s 2nd law 
to find the acceleration of the sliding block and use a constant-acceleration equation to 
find how far it slides before coming to rest. 



Chapter 8    
 

 

590 

(a) Use conservation of energy to 
find the speed of the bob just before 
its collision with the block: 0

or
0

ifif =−+−

=∆+∆

UUKK

UK
 

 
Because Ki = Uf = 0: 

hgv

hgmvm

∆=

=∆+

2

and
0

ball

ball
2
ballball2

1

 

 
Substitute numerical values and 
evaluate vball: 
 

( )( ) m/s6.26m2m/s9.812 2
ball ==v  

Because the collision is perfectly 
elastic and the ball and block have 
the same mass:  
 

m/s26.6ballblock == vv  

 

(b) Using a constant-acceleration 
equation, relate the displacement of 
the block to its acceleration and 
initial speed and solve for its 
displacement: block

2
block

block

2
i

f

block
2
i

2
f

22

0,   Since
2

a
v

a
vx

v
xavv

−
=

−
=∆

=
∆+=

 

 
Apply ∑ = aF rr

m to the sliding 

block:  

∑

∑

=−=

=−=

0
and

blockn

blockk

gmFF

mafF

y

x

 

 
Using the definition of fk (µkFn) 
eliminate fk and Fn between the two 
equations and solve for ablock: 
 

ga kblock µ−=  

Substitute for ablock to obtain: 
g

v
g

vx
k

2
block

k

2
block

22 µµ
=

−
−

=∆  

 
Substitute numerical values and 
evaluate ∆x: 

( )
( )( ) m0.20

m/s9.810.12
m/s6.26

2

2

==∆x  

 
*116  ••  
Picture the Problem We can use conservation of momentum in the horizontal direction 
to find the recoil velocity of the car along the track after the firing. Because the shell will 
neither rise as high nor be moving as fast at the top of its trajectory as it would be in the 
absence of air friction, we can apply the work-energy theorem to find the amount of 
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thermal energy produced by the air friction. 
 

(a) 
conserved. benot   willsystem  theof momentum the

so and force externalan  is rails  theof forcereaction   verticalThe No.
 

 
(b) Use conservation of momentum 
in the horizontal (x) direction to 
obtain: 
 

0=∆ xp  

or 
030cos recoil =−° Mvmv  

 
Solve for and evaluate vrecoil: 

M
mvv °

=
30cos

recoil  

 
Substitute numerical values and 
evaluate vrecoil: 
 

( )( )

m/s33.4

kg5000
cos30m/s125kg200

recoil

=

°
=v

 

 
(c) Using the work-energy theorem, 
relate the thermal energy produced 
by air friction to the change in the 
energy of the system: 
 

KUEWW ∆+∆=∆== sysfext  

Substitute for ∆U and ∆K to obtain: 

( ) ( )22
f2

1
if

2
2
12

f2
1

ifext

i

i

vvmyymg

mvmvmgymgyW

−+−=

−+−=
 

 
Substitute numerical values and evaluate Wext: 
 

( )( )( ) ( ) ( ) ( )[ ] kJ569m/s125m/s80kg200m180m/s81.9kg200 22
2
12

ext −=−+=W  

 
117 ••  
Picture the Problem Because this is a perfectly inelastic collision, the velocity of the 
block after the collision is the same as the velocity of the center of mass before the 
collision. The distance the block travels before hitting the floor is the product of its 
velocity and the time required to fall 0.8 m; which we can find using a constant-
acceleration equation. 
 
Relate the distance D to the velocity 
of the center of mass and the time for 
the block to fall to the floor: 
 

tvD ∆= cm  
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Relate the velocity of the center of 
mass to the total momentum of the 
system and solve for vcm: 

cm
i

ii vvP
rrr

Mm == ∑  

and 

blockbullet

blockblockbulletbullet
cm mm

vmvmv
+
+

=  

 
Substitute numerical values and 
evaluate vcm: 
 

( )( ) m/s9.20
kg0.8kg0.015
m/s500kg0.015

cm =
+

=v  

Using a constant-acceleration 
equation, find the time for the block 
to fall to the floor: 
 

( )

g
ytv

tatvy

∆
=∆=

∆+∆=∆

2 0,   Because 0

2
2
1

0

 

 
Substitute to obtain: 

g
yvD ∆

=
2

cm  

 
Substitute numerical values and 
evaluate D: ( ) ( ) m72.3

m/s9.81
m0.82m/s20.9 2 ==D  

 
118 ••  
Picture the Problem Let the direction the particle whose mass is m is moving initially 
be the positive x direction and the direction the particle whose mass is 4m is moving 
initially be the negative y direction. We can determine the impulse delivered by F

r
 and, 

hence, the change in the momentum of the system from the change in the momentum of 
the particle whose mass is m. Knowing p

r
∆ , we can express the final momentum of the 

particle whose mass is 4m and solve for its final velocity. 
 
Express the impulse delivered by the 
force F

r
: ( ) iii

pppFI
ˆ3ˆˆ4

if

mvmvvm

T

=−=

−=∆==
rrrrr

 

 
Express m4'pr  : ( )

ij

ppvp
ˆ3ˆ4

04 m44m

mvmv

'm'

+−=

∆+==
rrrr

  

 
Solve for 'vr : jiv ˆˆ

4
3 vv' −=

r
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119 ••  
Picture the Problem Let the numeral 1 
refer to the basketball and the numeral 2 to 
the baseball. The left-hand side of the 
diagram shows the balls after the 
basketball’s elastic collision with the floor 
and just before they collide. The right-hand 
side of the diagram shows the balls just 
after their collision. We can apply 
conservation of momentum and the 
definition of an elastic collision to obtain 
equations relating the initial and final 
velocities of the masses of the colliding 
objects that we can solve for v1f and v2f. 

 

 
(a) Because both balls are in free-
fall, and both are in the air for the 
same amount of time, they have the 
same velocity just before the 
basketball rebounds.  After the 
basketball rebounds elastically, its 
velocity will have the same 
magnitude, but the opposite 
direction than just before it hit the 
ground. 
 

 baseball.
  theof velocity  thetodirection in 

 oppositebut  magnitudein  equal be
 willbasketball  theof velocity The

 

 

(b) Apply conservation of 
momentum to the collision of the 
balls to obtain: 
 

2i21i1f22f11 vmvmvmvm +=+         (1) 

Relate the initial and final kinetic 
energies of the balls in their elastic 
collision: 
 

2
i222

12
i112

12
f222

12
f112

1 vmvmvmvm +=+  

Rearrange this equation and factor 
to obtain: 

( ) ( )2
f1

2
i11

2
i2

2
f22 vvmvvm −=−  

or 
( )( )

( )( )1fi11fi11

2if22if22

vvvvm
vvvvm

+−=
+−

         (2) 

 
Rearrange equation (1) to obtain: 
 

( ) ( )1f1i12i2f2 vvmvvm −=−            (3) 

Divide equation (2) by equation (3) 
to obtain: 
 

1fi12if2 vvvv +=+  

Rearrange this equation to obtain 
equation (4): 
 

1ii2f2f1 vvvv −=−                         (4) 
 

Multiply equation (4) by m2 and add 
it to equation (1) to obtain: 
 

( ) ( ) 2i21i211f21 2 vmvmmvmm +−=+  



Chapter 8    
 

 

594 

Solve for v1f to obtain: 
i2

21

2
i1

21

21
f1

2 v
mm

mv
mm
mmv

+
+

+
−

=  

or, because v2i = −v1i, 

i1
21

21

i1
21

2
i1

21

21
f1

3

2

v
mm
mm

v
mm

mv
mm
mmv

+
−

=

+
−

+
−

=

 

 
For m1 = 3m2 and v1i = v: 
 0

3
33

22

22
f1 =

+
−

= v
mm
mmv  

 
(c) Multiply equation (4) by m1 and 
subtract it from equation (1) to 
obtain: 
 

( ) ( ) 1i1i212f221 2 vmvmmvmm +−=+  

Solve for v2f to obtain: 
i2

21

12
i1

21

1
f2

2 v
mm
mmv

mm
mv

+
−

+
+

=  

or, because v2i = −v1i, 

i1
21

21

i1
21

12
i1

21

1
f2

3

2

v
mm
mm

v
mm
mmv

mm
mv

+
−

=

+
−

−
+

=

 

 
For m1 = 3m2 and v1i = v: 
 

( ) vv
mm

mmv 2
3
33

22

22
f2 =

+
−

=  

 
120  •••  
Picture the Problem In Problem 119 
only two balls are dropped. They collide 
head on, each moving at speed v, and the 
collision is elastic. In this problem, as it 
did in Problem 119, the solution 
involves using the conservation of 
momentum equation 

2i21i1f22f11 vmvmvmvm +=+  and the 
elastic collision equation 

,1ii2f2f1 vvvv −=− where the numeral 1 
refers to the baseball, and the numeral 2 
to the top ball. The diagram shows the 
balls just before and just after their 
collision. From Problem 119 we know 
that that v1i = 2v and v2i = −v.  
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(a) Express the final speed v1f of the 
baseball as a function of its initial 
speed v1i and the initial speed of the 
top ball v2i (see Problem 78): 
 

i2
21

2
i1

21

21
f1

2 v
mm

mv
mm
mmv

+
+

+
−

=          

Substitute for v1i and , v2i to obtain: 
 ( ) ( )v

mm
mv

mm
mmv −

+
+

+
−

=
21

2

21

21
f1

22  

Divide the numerator and 
denominator of each term by m2 to 
introduce the mass ratio of the upper 
ball to the lower ball: 

( ) ( )v

m
mv

m
m
m
m

v −
+

+
+

−
=

1

22
1

1

2

1

2

1

2

1

f1  

 
Set the final speed of the baseball v1f 
equal to zero, let x represent the 
mass ratio m1/m2, and solve for x: 
 

( ) ( )v
x

v
x
x

−
+

+
+
−

=
1

22
1
10      

and 

 
2
1

2

1 ==
m
mx  

 
(b) Apply the second of the two 
equations in Problem 78 to the 
collision between the top ball and 
the baseball: 
 

2i
21

12
i1

21

1
f2

2 v
mm
mmv

mm
mv

+
−

+
+

=  

Substitute v1i = 2v and are given that 
v2i = −v to obtain: ( ) ( )v

mm
mmv

mm
mv −

+
−

+
+

=
21

12

21

1
f2 22

 

 
 

In part (a) we showed that  
m2 = 2m1. Substitute and simplify: 
 

( ) ( )

( )

v

vvv
m
mv

m
m

v
mm
mmv

mm
mv

3
7

3
1

3
8

1

1

1

1

11

11

11

1
3f

3
2

3
4

2
22

2
22

=

−=−=

+
−

−
+

=

 

 
*121 ••    
Picture the Problem Let the direction the probe is moving after its elastic collision with 
Saturn be the positive direction. The probe gains kinetic energy at the expense of the 
kinetic energy of Saturn. We’ll relate the velocity of approach relative to the center of 
mass to urec and then to v. 
 
(a) Relate the velocity of recession 
to the velocity of recession relative 
to the center of mass: 
 

cmrec vuv +=  
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Find the velocity of approach: 
 km/s0.20

km/s0.41km/s9.6app

−=

−−=u
 

 
Relate the relative velocity of 
approach to the relative velocity of 
recession for an elastic collision: 
 

km/s0.20apprec =−= uu  

Because Saturn is so much more 
massive than the space probe: 
 

km/s6.9Saturncm == vv  

Substitute and evaluate v: 

km/s29.6

km/s9.6km/s02cmrec

=

+=+= vuv
 

 
(b) Express the ratio of the final 
kinetic energy to the initial kinetic 
energy: 

10.8
km/s10.4
km/s29.6

2

2

i

rec
2
i2

1

2
rec2

1

i

f

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

v
v

Mv
Mv

K
K

 

 
Saturn. of slowing smallly immeasuraban  from comesenergy  The  

 
*122 ••   
Picture the Problem We can use the relationships mcP ∆= and 2mcE ∆=∆ to show 
that .cEP ∆=  We can then equate this expression with the change in momentum of the 
flashlight to find the latter’s final velocity. 
 
(a)  Express the momentum of the 
mass lost (i.e., carried away by the 
light) by the flashlight: 
 

mcP ∆=  

Relate the energy carried away by the 
light to the mass lost by the 
flashlight: 
 

2c
Em ∆

=∆  

Substitute to obtain: 
 c

E
c
EcP ∆

=
∆

= 2  

 
(b) Relate the final momentum of the 
flashlight to ∆E: 
 

mvp
c
E

=∆=
∆

 

because the flashlight is initially at rest. 
 

Solve for v: 

mc
Ev ∆

=  
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Substitute numerical values and 
evaluate v: ( )( )

m/s33.3

m/s1033.3
m/s102.998kg1.5

J101.5

6

8

3

µ=

×=

×
×

=

−

v

 

 
123 •  
Picture the Problem We can equate the change in momentum of the block to the 
momentum of the beam of light and relate the momentum of the beam of light to the 
mass converted to produce the beam. Combining these expressions will allow us to find 
the speed attained by the block. 
 
Relate the change in momentum of 
the block to the momentum of the 
beam: 
 

( ) beamPvmM =−    
because the block is initially at rest.                

Express the momentum of the mass 
converted into a well-collimated 
beam of light: 
 

mcP =beam  

Substitute to obtain: 
 

( ) mcvmM =−  
 

Solve for v: 

mM
mcv
−

=  

 
Substitute numerical values and 
evaluate v: 

( )( )

m/s1000.3

kg0.001kg1
m/s102.998kg0.001

5

8

×=

−
×

=v
 

 
124 ••    
Picture the Problem Let the origin of the coordinate system be at the end of the boat at 
which your friend is sitting prior to changing places. If we let the system include you and 
your friend, the boat, the water and the earth, then Fext,net = 0 and the center of mass is at 
the same location after you change places as it was before you shifted. 
 
Express the center of mass of the 
system prior to changing places: 

( )
mmm
mxmmx

mmm
mxxmxm

x

++
++

=

++
++

=

youboat

friendyouboatyou

friendyouboat

friendyouyouboatboat
cm
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Substitute numerical values and 
simplify to obtain an expression for 
xcm in terms of m: 

( )( ) ( )

m

m
mx

+
⋅

=

++
++

=

kg140
mkg280

kg80kg60
0kg80kg60m2

cm

 

 
Find the center of mass of the system after changing places: 
 

( )( ) ( )
mmm

m
mmm

mm
mmm

mxxmxm
x'

++
±

+
++
±+

=
++

++
=

youboat

you

youboat

boat

friendyouboat

friendyouyouboatboat
cm

m0.2m0.2m2
 

 
Substitute numerical values and simplify to obtain: 
 

( )( ) ( )( )

( )
m

mm
mmm

mx'

+
⋅±±

+

+
⋅±⋅

=
++

±
+

++
±+

=

kg140
mkg16m2.0m2

kg140
mkg12mkg120

kg80kg60
m0.2kg80

kg80kg60
m0.2m2kg60

cm

 

Because Fext,net = 0, cmcm xx' = . 

Equate the two expressions and 
solve for m to obtain: 
 

( )
( ) kg

0.22
28160

±
±

=m  

 

Calculate the largest possible mass 
for your friend: 
 

( )
( ) kg104kg

0.22
28160

=
−

+
=m  

Calculate the smallest possible mass 
for your friend: 

( )
( ) kg0.60kg

0.22
28160

=
+

−
=m  

 
125 ••  
Picture the Problem Let the system include the woman, both vehicles, and the earth. 
Then Fext,net = 0 and acm = 0. Include the mass of the man in the mass of the truck. We 
can use Newton’s 2nd and 3rd laws to find the acceleration of the truck and net force 
acting on both the car and the truck. 
 
(a) Relate the action and reaction forces 
acting on the car and truck: 

truckcar FF =  

or 
truckwomantruckcarcar amam +=  

 
Solve for the acceleration of the truck: 

womantruck

carcar
truck

+

=
m

ama  
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Substitute numerical values and 
evaluate atruck: 

( )( ) 2
2

truck m/s600.0
kg1600

m/s1.2kg800
==a

 
 

(b) Apply Newton’s 2nd law to 
either vehicle to obtain: 
 

carcarnet amF =  

Substitute numerical values and 
evaluate Fnet: 

( )( ) N960m/s1.2kg800 2
net ==F  

 
126 ••  
Picture the Problem Let the system include the block, the putty, and the earth. Then 
Fext,net = 0 and momentum is conserved in this perfectly inelastic collision. We’ll use 
conservation of momentum to relate the after-collision velocity of the block plus blob 
and conservation of energy to find their after-collision velocity.  
 
Noting that, because this is a 
perfectly elastic collision, the final 
velocity of the block plus blob is the 
velocity of the center of mass, use 
conservation of momentum to relate 
the velocity of the center of mass to 
the velocity of the glob before the 
collision: 
 

cmglgl

fi

or
Mvvm

pp

=

=
 

where M = mgl + mbl. 

Solve for vgl to obtain: 
 cm

gl
gl v

m
Mv =                       (1) 

 
Use conservation of energy to find 
the initial energy of the block plus 
glob: 

0f =+∆+∆ WUK  

Because ∆U = Kf = 0, 
0k

2
cm2

1 =∆+− xfMv  

 
Use fk = µkMg to eliminate fk and 
solve for vcm: 
 

xgv ∆= kcm 2µ  

 

Substitute numerical values and 
evaluate vcm: 

( )( )( )
m/s1.08

m0.15m/s9.810.42 2
cm

=

=v
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Substitute numerical values in 
equation (1) and evaluate vgl: 

( )

m/s36.2

m/s1.08
kg0.4

kg0.4kg13
gl

=

+
=v

 

 
*127 ••  
Picture the Problem Let the direction the moving car was traveling before the collision 
be the positive x direction. Let the numeral 1 denote this car and the numeral 2 the car 
that is stopped at the stop sign and the system include both cars and the earth. We can 
use conservation of momentum to relate the speed of the initially-moving car to the 
speed of the meshed cars immediately after their perfectly inelastic collision and 
conservation of energy to find the initial speed of the meshed cars. 
 
Using conservation of momentum, 
relate the before-collision velocity to 
the after-collision velocity of the 
meshed cars: 
 

( )Vmmvm

pp

2111

fi

or
+=

=
 

Solve for v1: V
m
mV

m
mmv ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

+
=

1

2

1

21
1 1  

 
Using conservation of energy, relate 
the initial kinetic energy of the 
meshed cars to the work done by 
friction in bringing them to a stop: 
 

0thermal =∆+∆ EK  

or, because Kf = 0 and ∆Ethermal = f∆s, 
0ki =∆+− sfK  

Substitute for Ki and, using  
fk = µkFn = µkMg, eliminate fk to 
obtain: 
 

0k
2

2
1 =∆+− xMgMV µ  

 
 

Solve for V: xgV ∆= k2µ  

 
Substitute to obtain: 

xg
m
mv ∆⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= k

1

2
1 21 µ  

 
Substitute numerical values and evaluate v1: 
 

( )( )( ) km/h23.3m/s48.6m0.76m/s9.810.922
kg1200
kg9001 2

1 ==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=v  
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km/h. 23.3at   traveling wasHe  truth. thegnot tellin driver was The  

 
128 ••  
Picture the Problem Let the zero of gravitational potential energy be at the lowest point 
of the bob’s swing and note that the bob can swing either forward or backward after the 
collision. We’ll use both conservation of momentum and conservation of energy to 
relate the velocities of the bob and the block before and after their collision. 
 
Express the kinetic energy of the 
block in terms of its after-collision 
momentum: 
 

m
pK m

2

2

m =  

                 

Solve for m to obtain: 
 

m

m

K
pm

2

2

=                      (1) 

 
Use conservation of energy to relate 
Km to the change in the potential 
energy of the bob: 

0=∆+∆ UK  
or, because Ki = 0, 

0if =−+ UUKm  

 
Solve for Km: 

( ) ( )[ ]
[ ]ifbob

fibob

if

coscos
cos1cos1

θθ
θθ

−=
−−−=

+−=

gLm
LLgm

UUKm

 

 
Substitute numerical values and evaluate Km: 
 

( )( )( )[ ] J2.47cos53cos5.73m1.6m/s9.81kg0.4 2 =°−°=mK  

 
Use conservation of energy to find 
the velocity of the bob just before its 
collision with the block: 

0=∆+∆ UK  
or, because Ki = Uf = 0, 

0if =−UK  

 
 ( )

( )i

ibob
2

bob2
1

cos12

or
0cos1

θ

θ

−=

=−−∴

gLv

gLmvm
 

 
Substitute numerical values and 
evaluate v: 
 

( )( )( )
m/s3.544

cos531m1.6m/s9.812 2

=

°−=v
 

Use conservation of energy to find 0=∆+∆ UK  
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the velocity of the bob just after its 
collision with the block: 

or, because Kf = Ui = 0, 
0fi =+− UK  

 
Substitute for Ki and Uf to obtain: ( ) 0cos1' fbob

2
bob2

1 =−+− θgLmvm  

 
Solve for v′: ( )fcos12' θ−= gLv  

 
Substitute numerical values and 
evaluate v′: 

( )( )( )
m/s396.0

cos5.731m1.6m/s9.812' 2

=

°−=v
 

 
Use conservation of momentum to 
relate pm after the collision to the 
momentum of the bob just before 
and just after the collision: 

mpvmvm

pp

±=

=

'
or

bobbob

fi

 

 
Solve for and evaluate pm: 

( )( )
m/skg0.158m/skg.4181
m/s0.396m/s3.544kg0.4

'bobbob

⋅±⋅=
±=

±= vmvmpm

 

 
Find the larger value for pm: 

m/skg1.576
m/skg0.158m/skg.4181

⋅=
⋅+⋅=mp

 

 
Find the smaller value for pm: 

m/skg1.260
m/skg0.158m/skg.4181

⋅=
⋅−⋅=mp

 

 
Substitute in equation (1) to 
determine the two values for m: 

( )
( ) kg503.0

J47.22
m/skg576.1 2

=
⋅

=m  

or 
( )

( ) kg321.0
J47.22
m/skg260.1 2

=
⋅

=m  

 
129 ••  
Picture the Problem Choose the zero of gravitational potential energy at the location 
of the spring’s maximum compression. Let the system include the spring, the blocks, 
and the earth. Then the net external force is zero as is work done against friction. We 
can use conservation of energy to relate the energy transformations taking place during 
the evolution of this system. 
 
Apply conservation of energy: 0sg =∆+∆+∆ UUK  
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Because ∆K = 0: 
 

0sg =∆+∆ UU  

Express the change in the 
gravitational potential energy: 
 

θsing MgxhmgU −∆−=∆  

Express the change in the potential 
energy of the spring: 
 

2
2
1

s kxU =∆  

Substitute to obtain: 
 

0sin 2
2
1 =+−∆− kxMgxhmg θ            

Solve for M: 
x

hm
g
kx

gx
hmgkxM ∆

−=
°
∆−

=
2

30sin

2
2
1

 

 
Relate ∆h to the initial and rebound 
positions of the block whose mass is 
m: 
 

( ) m720.030sinm56.2m4 =°−=∆h  

Substitute numerical values and evaluate M: 
 

( ) ( ) ( )( ) kg8.85
m0.04

m0.72kg12
m/s9.81

m0.04N/m1011
2

3

=−
×

=M  

 
*130 ••  
Picture the Problem By symmetry, xcm = 0. Let σ be the mass per unit area of the disk. 
The mass of the modified disk is the difference between the mass of the whole disk and 
the mass that has been removed.  
 
Start with the definition of ycm:  

hole

holeholediskdisk

hole

i
ii

cm

mM
ymym

mM

ym
y

−
−

=

−
=

∑
 

 
Express the mass of the complete disk: 2rAM σπσ ==  

 
Express the mass of the material removed: 

Mrrm 4
12

4
1

2

hole 2
==⎟

⎠
⎞

⎜
⎝
⎛= σπσπ  

 
Substitute and simplify to obtain: ( ) ( )( ) r

MM
rMMy 6

1

4
1

2
1

4
1

cm
0

=
−

−−
=  
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131 ••  
Picture the Problem Let the horizontal axis by the y axis and the vertical axis the z 
axis. By symmetry, xcm = ycm = 0. Let ρ be the mass per unit volume of the sphere. The 
mass of the modified sphere is the difference between the mass of the whole sphere and 
the mass that has been removed.  
 
Start with the definition of ycm:  

hole

holeholespheresphere

hole

i
ii

cm

mM
ymym

mM

ym
z

−

−
=

−
=

∑
 

 
Express the mass of the complete sphere: 
 

3
3
4 rVM ρπρ ==  

 
Express the mass of the material removed: ( ) Mrrm 8

13
3
4

8
1

3

3
4

hole 2
==⎟

⎠
⎞

⎜
⎝
⎛= ρπρπ  

 
Substitute and simplify to obtain: ( ) ( )( ) r

MM
rMMz 14

1

8
1

2
1

8
1

cm
0

=
−

−−
=  

 
*132 ••  
Picture the Problem In this elastic head-on collision, the kinetic energy of recoiling 
nucleus is the difference between the initial and final kinetic energies of the neutron. We 
can derive the indicated results by using both conservation of energy and conservation 
of momentum and writing the kinetic energies in terms of the momenta of the particles 
before and after the collision. 
 
(a) Use conservation of energy to 
relate the kinetic energies of the 
particles before and after the 
collision: 
 

M
p

m
p

m
p

222

2
nucleus

2
nf

2
ni +=                    (1) 

Apply conservation of momentum to 
obtain a second relationship between 
the initial and final momenta: 
 

nucleusnfni ppp +=                       (2) 

Eliminate pnf in equation (1) using 
equation (2): 

0
22

ninucleusnucleus =−+
m
p

m
p

M
p

          (3) 

 
Use equation (3) to write mp 22

ni in 

terms of pnucleus: 
( )

mM
mMpK

m
p

2

22
nucleus

n

2
ni

82
+

==       (4) 
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Use equation (4) to express 

MpK 22
nucleusnucleus = in terms of 

Kn: 
 

( ) ⎥
⎦

⎤
⎢
⎣

⎡

+
= 2nnucleus

4
mM

MmKK          (5) 

(b) Relate the change in the kinetic 
energy of the neutron to the after-
collision kinetic energy of the 
nucleus: 
 

nucleusn KK −=∆  

Using equation (5), express the 
fraction of the energy lost in the 
collision:  ( ) 22

n

n

1

44

⎟
⎠
⎞

⎜
⎝
⎛ +

=
+

=
∆−

M
m
M
m

mM
Mm

K
K

 

 
133 ••  
Picture the Problem Problem 132 (b) provides an expression for the fractional loss of 
energy per collision. 
 
(a) Using the result of Problem 132 
(b), express the fractional loss of 
energy per collision: 

( )
( )2

2

0

nni

ni

nf

mM
mM

E
KK

K
K

+
−

=
∆−

=  

 
Evaluate this fraction to obtain: ( )

( )
716.0

12
12

2

2

0

nf =
+
−

=
mm
mm

E
K

 

 
Express the kinetic energy of one 
neutron after N collisions: 
 

0nf 716.0 EK N=  

(b) Substitute for Knf and E0 to 
obtain: 
 

810716.0 −=N  
 

Take the logarithm of both sides of 
the equation and solve for N: 

55
0.716log

8N ≈
−

=  

 
134 ••  
Picture the Problem We can relate the number of collisions needed to reduce the 
energy of a neutron from 2 MeV to 0.02 eV to the fractional energy loss per collision 
and solve the resulting exponential equation for N. 
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(a) Using the result of Problem 132 
(b), express the fractional loss of 
energy per collision: 37.0

63.0

ni

nini

0

nni

ni

nf

=

−
=

∆−
=

K
KK

E
KK

K
K

 

 
Express the kinetic energy of one 
neutron after N collisions: 
 

0nf 37.0 EK N=  

Substitute for Knf and E0 to obtain: 
 

81037.0 −=N  

Take the logarithm of both sides of 
the equation and solve for N: 

19
0.37log
8

≈
−

=N  

 
(b) Proceed as in (a) to obtain: 

89.0

11.0

ni

nini

0

nni

ni

nf

=

−
=

∆−
=

K
KK

E
KK

K
K

 

 
Express the kinetic energy of one 
neutron after N collisions: 
 

0nf 89.0 EK N=  

Substitute for Knf and E0 to obtain: 
 

81089.0 −=N  
 

Take the logarithm of both sides of 
the equation and solve for N: 

158
0.89log
8

≈
−

=N  

 
135 ••  
Picture the Problem Let λ = M/L be the mass per unit length of the rope and y the 
length of rope supported by F at any instant and use the definition of the center of mass.  
 
(a) Letting m represent the mass of 
the rope that is being supported by 
the force at any given time and y′ its 
center of mass, express ycm: 
 

( )
L

y
L

yy
L

my'y
2

2
2
1

cm ===
λ

λ
λ

 

 

Relate y to v: vty =  

 
Substitute to obtain: ( ) 2

222

cm 222
t

L
v

L
vt

L
yy ===  
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(b) Differentiate ycm twice to acm: 

L
va

dt
yd

t
L
vt

L
v

dt
dy

2

cm2
cm

2

22
cm

and
2

2

==

==

 

 
(c) Apply ∑ = cmmaFy to the rope 

to obtain: 
 

cmmamgF =−  

Solve for F, substitute and simplify 
to obtain: 

t
L

Mvg
L

Mv

t
L

Mvgt
L

Mv

vtg
L
vvtmgmaF

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

−=

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+=

2

3

2

3

2

cm λλ

 

 
136 ••  
Picture the Problem The free-body 
diagram shows the forces acting on the 
platform when the spring is partially 
compressed. The scale reading is the force 
the scale exerts on the platform and is 
represented on the FBD by Fn.  
We can use Newton’s 2nd law to determine 
the scale reading in part (a). We’ll use both 
conservation of energy and momentum to 
obtain the scale reading when the ball 
collides inelastically with the cup.  

 
(a) Apply ∑ = yy maF to the 

spring when it is compressed a 
distance d: 
 

0springonballpn =−− FgmF  

Solve for Fn: 

( )gmmgmgm

k
gm

kgm

kdgm

FgmF

bpbp

b
p

p

springonballpn

+=+=

⎟
⎠
⎞

⎜
⎝
⎛+=

+=

+=
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(b) Letting the zero of gravitational 
energy be at the initial elevation of 
the cup and vbi represent the velocity 
of the ball just before it hits the cup, 
use conservation of energy to find 
this velocity: 
 

0  where0 gfig ===∆+∆ UKUK  

ghv

mghvm

2

and
0

bi

2
bib2

1

=

=−∴

 

 

Use conservation of momentum to 
find the velocity of the center of 
mass: 

fi pp rr
=  

⎥
⎦

⎤
⎢
⎣

⎡
+

=
+

=∴
cb

b

cb

bib
cm  2

mm
mgh

mm
vmv  

 
Apply conservation of energy to the 
collision to obtain: 

0scm =∆+∆ UK  

or, with Kf = Usi = 0, 
( ) 02

2
12

cmcb2
1 =++− kxvmm  

 
Substitute for vcm and solve for kx2: ( )

( )

cb

2
b

2

cb

b
cb

2
cmcb

2

2

 2

mm
ghm

mm
mmmgh

vmmkx

+
=

⎥
⎦

⎤
⎢
⎣

⎡
+

+=

+=

 

 
Solve for x: 

( )cb
b

2
mmk

ghmx
+

=  

 
From part (a): 

( )

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+=

+
+=

+=

cb
bp

cb
bp

pn

2

2

mmg
khmmg

mmk
ghkmgm

kxgmF

 

 
(c) height. original its  toreturnsnever  ball  theinelastic, iscollision   theBecause  

 
137 ••     
Picture the Problem Let the direction that astronaut 1 first throws the ball be the 
positive direction and let vb be the initial speed of the ball in the laboratory frame. Note 
that each collision is perfectly inelastic. We can apply conservation of momentum and 
the definition of the speed of the ball relative to the thrower to each of the perfectly 
inelastic collisions to express the final speeds of each astronaut after one throw and one 



Systems of Particles and Conservation of Momentum 
 

 

609

catch. 
 
Use conservation of momentum to 
relate the speeds of astronaut 1 and 
the ball after the first throw: 
 

0bb11 =+ vmvm                                  (1) 

Relate the speed of the ball in the 
laboratory frame to its speed relative 
to astronaut 1: 
 

1b vvv −=                                            (2) 

Eliminate vb between equations (1) 
and (2) and solve for v1: 
 

v
mm

m
v

b1

b
1 +

−=                                  (3) 

Substitute equation (3) in equation 
(2) and solve for vb: 

v
mm

mv
b1

1
b +

=                                    (4) 

 
Apply conservation of momentum to 
express the speed of astronaut 2 and 
the ball after the first catch: 
 

( ) 2b2bb0 vmmvm +==                      (5) 

Solve for v2: 
b

b2

b
2 v

mm
m

v
+

=                                   (6) 

 
Express v2 in terms of v by 
substituting equation (4) in equation 
(6): 

( )( ) v
mmmm

mm

v
mm

m
mm

mv

⎥
⎦

⎤
⎢
⎣

⎡
++

=

++
=

b1b2

1b

b1

1

b2

b
2

              (7) 

 
Use conservation of momentum to 
express the speed of astronaut 2 and 
the ball after she throws the ball: 
 

( ) 2f2bfb2b2 vmvmvmm +=+               (8) 

Relate the speed of the ball in the 
laboratory frame to its speed relative 
to astronaut 2: 
 

bf2f vvv −=                                          (9) 

Eliminate vbf between equations (8) 
and (9) and solve for v2f: v

mm
m

mm
mv ⎥

⎦

⎤
⎢
⎣

⎡
+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
b1

1

b2

b
f2 1   (10) 
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Substitute equation (10) in equation 
(9) and solve for vbf: 

v
mm

m

mm
mv

⎥
⎦

⎤
⎢
⎣

⎡
+

+×

⎥
⎦

⎤
⎢
⎣

⎡
+

−−=

b1

1

b2

b
bf

1

1
                 (11) 

 
Apply conservation of momentum to 
express the speed of astronaut 1 and 
the ball after she catches the ball: 
 

( ) 11bfb1fb1 vmvmvmm +=+            (12) 

 

Using equations (3) and (11), 
eliminate vbf and v1 in equation (12) 
and solve for v1f: 

( )
( ) ( )

v
mmmm

mmmm
v

b2
2

b1

b1b2
1f

2
++

+
−=  

 
*138 ••  
Picture the Problem We can use the definition of the center of mass of a system 
containing multiple objects to locate the center of mass of the earth−moon system. Any 
object external to the system will exert accelerating forces on the system.  
 
(a) Express the center of mass of the 
earth−moon system relative to the 
center of the earth: 

∑=
i

iicm rr
rr

mM  

or 
( )

1

0

m

e

em

me

emm

me

emme
cm

+
=

+
=

+
+

=

m
M

r
mM

rm
mM

rmMr

 

 
Substitute numerical values and 
evaluate rcm: 

km4670
13.81
km1084.3 5

cm =
+

×
=r  

 

earth.  theof surface  thebelow is systemmoon earth  theof mass ofcenter 
  theofposition   theearth,  theof radius  than theless is distance  thisBecause

−
 

 

(b) 
planets.other  andsun   thee.g., 

system, on the forces exerts systemmoon earth in thenot object Any −
 

 

(c) 
sun.  the towardis system  theofon accelerati  thesystem,

moon earth on the force externaldominant   theexertssun   theBecause −
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(d) Because the center of mass is at 
a fixed distance from the sun, the 
distance d moved by the earth in 
this time interval is: 

( ) km9340km467022 em === rd  

 
139 ••  
Picture the Problem Let the numeral 2 refer to you and the numeral 1 to the water 
leaving the hose. Apply conservation of momentum to the system consisting of yourself, 
the water, and the earth and then differentiate this expression to relate your recoil 
acceleration to your mass, the speed of the water, and the rate at which the water is 
leaving the hose. 
 
Use conservation of momentum to 
relate your recoil velocity to the 
velocity of the water leaving the 
hose: 

0
or

0

2211

21

=+

=+

vmvm

pp rr

 

 
Differentiate this expression with 
respect to t: 

02
2

2
2

1
1

1
1 =+++

dt
dmv

dt
dvm

dt
dmv

dt
dvm  

or 

02
22

1
111 =+++

dt
dmvma

dt
dmvam  

 
Because the acceleration of the 
water leaving the hose, a1, is zero … 

as is 
dt

dm2 , the rate at which you are 

losing mass: dt
dm

m
v

a

am
dt

dm
v

1

2

1
2

22
1

1

and

0

−=

=+

 

 
Substitute numerical values and 
evaluate a2: 

2

2

m/s960.0

)kg/s(2.4
kg75
m/s30

−=

−=a
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*140 ••• 
Picture the Problem Take the zero of gravitational potential energy to be at the elevation 
of the pan and let the system include the balance, the beads, and the earth. We can use 
conservation of energy to find the vertical component of the velocity of the beads as they 
hit the pan and then calculate the net downward force on the pan from Newton’s 2nd law. 
 
Use conservation of energy to relate 
the y component of the bead’s 
velocity as it hits the pan to its height 
of fall: 
 

0=∆+∆ UK  
or, because Ki = Uf = 0, 

02
2
1 =− mghmvy  

Solve for vy: ghvy 2=  

 
Substitute numerical values and 
evaluate vy: 

( )( ) m/s3.13m0.5m/s9.812 2 ==yv  

 
Express the change in momentum in 
the y direction per bead: 
 

( ) yyyyyy mvmvmvppp 2if =−−=−=∆  

 

Use Newton’s 2nd law to express the 
net force in the y direction exerted 
on the pan by the beads: 
 

t
p

NF y
y ∆

∆
=net,  

 

Letting M represent the mass to be 
placed on the other pan, equate its 
weight to the net force exerted by 
the beads, substitute for ∆py,  and 
solve for M: 

t
p

NMg y

∆

∆
=  

and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆

=
g

mv
t

NM y2
 

 
Substitute numerical values and 
evaluate M: 

( ) ( )( )[ ]

g9.31

m/s9.81
m/s3.13kg0.00052s/100 2

=

=M
 

 
141 ••• 
Picture the Problem Assume that the connecting rod goes halfway through both balls, 
i.e., the centers of mass of the balls are separated by L. Let the system include the 
dumbbell, the wall and floor, and the earth. Let the zero of gravitational potential be at 
the center of mass of the lower ball and use conservation of energy to relate the speeds of 
the balls to the potential energy of the system. By symmetry, the speeds will be equal 
when the angle with the vertical is 45°. 
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Use conservation of energy to 
express the relationship between the 
initial and final energies of the 
system: 
 

fi EE =  

Express the initial energy of the 
system: 
 

mgLE =i  

Express the energy of the system 
when the angle with the vertical is 
45°: 
 

( ) 2
2
1

f 245sin vmmgLE +°=  

Substitute to obtain: 2

2
1 vgLgL +⎟

⎠

⎞
⎜
⎝

⎛=  

 
Solve for v: 

⎟
⎠
⎞

⎜
⎝
⎛ −=

2
11gLv  

 
Substitute numerical values and 
evaluate v: ( )

( ) L

Lv

/sm70.1

2
11m/s81.9

2
1

2

=

⎟
⎠
⎞

⎜
⎝
⎛ −=
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