Chapter 8
Systems of Particles and Conservation of
Momentum

Conceptual Problems

1 .

Determine the Concept A doughnut. The definition of the center of mass of an object
does not require that there be any matter at its location. Any hollow sphere (such as a
basketball) or an empty container with any geometry are additional examples of three-
dimensional objects that have no mass at their center of mass.

*2 °

Determine the Concept The center of mass is midway between the two balls and is in
free-fall along with them (all forces can be thought to be concentrated at the center of
mass.) The center of mass will initially rise, then fall.

Because the initial velocity of the center of mass is half of the initial velocity of the ball
thrown upwards, the mass thrown upwards will rise for twice the time that the center of
mass rises. Also, the center of mass will rise until the velocities of the two balls are equal

but opposite. | (b) is correct.

3 .
Determine the Concept The acceleration of the center of mass of a system of particles is
described by Ifnet’ext = Z Ifi,ext = M4, where M is the total mass of the system.

i

Express the acceleration of the _Faex ~ FR
center of mass of the two pucks: M m+m,

and | (b) is correct.

4 .
Determine the Concept The acceleration of the center of mass of a system of particles
is described by Ifnet’ext = Z Ifi’ext = M4, where M is the total mass of the system.

i

cm?

Express the acceleration of the _ Foetext _ kK
center of mass of the two pucks: M m+m,

because the spring force is an internal
force.

(b) is correct.
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*5 °

Determine the Concept No. Consider a 1-kg block with a speed of 1 m/s and a 2- kg
block with a speed of 0.707 m/s. The blocks have equal kinetic energies but momenta of
magnitude 1 kg-m /s and 1.414 kg-m/s, respectively.

6 .
(a) True. The momentum of an object is the product of its mass and velocity. Therefore,
if we are considering just the magnitudes of the momenta, the momentum of a heavy
object is greater than that of a light object moving at the same speed.

(b) True. Consider the collision of two objects of equal mass traveling in opposite
directions with the same speed. Assume that they collide inelastically. The mechanical
energy of the system is not conserved (it is transformed into other forms of energy), but
the momentum of the system is the same after the collision as before the collision, i.e.,
zero. Therefore, for any inelastic collision, the momentum of a system may be conserved
even when mechanical energy is not.

(c) True. This is a restatement of the expression for the total momentum of a system of
particles.

7 .

Determine the Concept To the extent that the system in which the rifle is being fired is
an isolated system, i.e., the net external force is zero, momentum is conserved during its
firing.

Apply conservation of momentum Priie + Pouer =0
to the firing of the rifle: or

Prifie =~ Poutir
*8 °

Determine the Concept When she jumps from a boat to a dock, she must, in order for
momentum to be conserved, give the boat a recoil momentum, i.e., her forward
momentum must be the same as the boat’s backward momentum. The energy she
imparts to the boat is E,, = Py /2Myoy -

When she jumps from one dock to another, the mass of the dock plus the
earth is so large that the energy she imparts to them is essentially zero.

*9 (L]
Determine the Concept Conservation of momentum requires only that the net external

force acting on the system be zero. It does not require the presence of a medium such as
air.
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10 -
Determine the Concept The kinetic energy of the sliding ball is%mvfm . The kinetic

energy of the rolling ball is%mvfm + K, where its Kinetic energy relative to its center

rel 1

of mass is K, . Because the bowling balls are identical and have the same velocity, the

rel

rolling ball has more energy.

11 -

Determine the Concept Think of someone pushing a box across a floor. Her push on
the box is equal but opposite to the push of the box on her, but the action and reaction
forces act on different objects. You can only add forces when they act on the same
object.

12 -

Determine the Concept It’s not possible for both to remain at rest after the collision, as
that wouldn't satisfy the requirement that momentum is conserved. It is possible for one
to remain at rest: This is what happens for a one-dimensional collision of two identical
particles colliding elastically.

13 -

Determine the Concept It violates the conservation of momentum! To move forward
requires pushing something backwards, which Superman doesn’t appear to be doing
when flying around. In a similar manner, if Superman picks up a train and throws it at
Lex Luthor, he (Superman) ought to be tossed backwards at a pretty high speed to satisfy
the conservation of momentum.

*14 oo
Determine the Concept There is only one force which can cause the car to move
forward—the friction of the road! The car’s engine causes the tires to rotate, but if the
road were frictionless (as is closely approximated by icy conditions) the wheels would
simply spin without the car moving anywhere. Because of friction, the car’s tire pushes
backwards against the road—from Newton’s third law, the frictional force acting on the
tire must then push it forward. This may seem odd, as we tend to think of friction as
being a retarding force only, but true.

15 oo

Determine the Concept The friction of the tire against the road causes the car to slow
down. This is rather subtle, as the tire is in contact with the ground without slipping at all
times, and so as you push on the brakes harder, the force of static friction of the road
against the tires must increase. Also, of course, the brakes heat up, and not the tires.

16 -
Determine the Concept Because Ap = FAt is constant, a safety net reduces the force
acting on the performer by increasing the time At during which the slowing force acts.

17 -
Determine the Concept Assume that the ball travels at 80 mi/h ~ 36 m/s. The ball stops
in a distance of about 1 cm. So the distance traveled is about 2 cm at an average speed of
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about 18 m/s. The collision time is 0.02m ~1ms
18m/s

18 -
Determine the Concept The average force on the glass is less when falling on a carpet
because At is longer.

19 -
(a) False. In a perfectly inelastic collision, the colliding bodies stick together but may or
may not continue moving, depending on the momentum each brings to the collision.

(b) True. In a head-on elastic collision both kinetic energy and momentum are
conserved and the relative speeds of approach and recession are equal.

(c) True. This is the definition of an elastic collision.

*20 oo
Determine the Concept All the initial kinetic energy of the isolated system is lost in a
perfectly inelastic collision in which the velocity of the center of mass is zero.

21 oo

Determine the Concept We can find the loss of kinetic energy in these two collisions
by finding the initial and final kinetic energies. We’ll use conservation of momentum to
find the final velocities of the two masses in each perfectly elastic collision.

(a) Letting V represent the velocity
of the masses after their perfectly
inelastic collision, use conservation
of momentum to determine V:

Express the loss of kinetic energy
for the case in which the two objects
have oppositely directed velocities
of magnitude v/2:

Letting V represent the velocity of
the masses after their perfectly
inelastic collision, use conservation
of momentum to determine V:

pbefore = pafter
or
mv—mv=2mV =V =0

pbefore = pafter

or
mv=2mV =V =3v
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Express the loss of kinetic energy AK =K =K,
for the case in which the one object 2 , mv2
is initially at rest and the other has = %(Zm)(—J —zmv° =- 4

an initial velocity v:

The loss of kinetic energy
is the same in both cases.

(b) Express the percentage loss for AK mv 2
. . . = =100%
the case in which the two objects Koetore £ MV

have oppositely directed velocities
of magnitude v/2:

Express the percentage loss for the AK imv
case in which the one object is K
initially at rest and the other has an

initial velocity v:

before 2

The percentage loss is greatest for
the case in which the two objects
have oppositely directed velocities
of magnitude v/2.

*29 e
Determine the Concept A will travel farther. Both peas are acted on by the same force,
but pea A is acted on by that force for a longer time. By the impulse-momentum
theorem, its momentum (and, hence, speed) will be higher than pea B’s speed on leaving
the shooter.

23 e
Determine the Concept Refer to the particles as particle 1 and particle 2. Let the
direction particle 1 is moving before the collision be the positive x direction. We’ll use
both conservation of momentum and conservation of mechanical energy to obtain an
expression for the velocity of particle 2 after the collision. Finally, we’ll examine the
ratio of the final Kinetic energy of particle 2 to that of particle 1 to determine the
condition under which there is maximum energy transfer from particle 1 to particle 2.

Use conservation of momentum to MV, =MV ¢ + MV, ¢ (1)
obtain one relation for the final

velocities:

Use conservation of mechanical Vor — Vg = _(Vz,i —Vy; ) =v;; (2

energy to set the velocity of
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recession equal to the negative of
the velocity of approach:

To eliminate vy 1, solve equation (2) Vig =Vye +Vy;
for vy, and substitute the result in my,, = ml(v2f —v,, )+ m,v,
equation (1):
Solve for v, 2m,
Vor = Vi
m, +m,
Express the ratio R of K, to Ky in . ( 2m, J ,
terms of my and my: 2M, Vii
! 2 R — KZ,f — ml + m2
2
Kl,i 3 M,V
2
_m, 4m;
m, (ml + mz)
Differentiate this ratio with respect m2 120
to m,, set the derivative equal to m12 B
zero, and obtain the quadratic
equation:
Solve this equation for m; to m, =m,

determine its value for maximum
energy transfer:

.. (b) is correct because all of 1's
Kinetic energy is transferred to 2
whenm, =m,.

PZ
Determine the Concept In the center-of-mass reference frame the two objects approach
with equal but opposite momenta and remain at rest after the collision.

25 o

Determine the Concept The water is changing direction when it rounds the corner in the
nozzle. Therefore, the nozzle must exert a force on the stream of water to change its
direction, and, from Newton’s 3™ law, the water exerts an equal but opposite force on the
nozzle.

26 -
Determine the Concept The collision usually takes place in such a short period of time
that the impulse delivered by gravity or friction is negligible.
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27 -

Determine the Concept No. F = dp/dt defines the relationship between the net

ext,net

force acting on a system and the rate at which its momentum changes. The net external
force acting on the pendulum bob is the sum of the force of gravity and the tension in
the string and these forces do not add to zero.

*28 e
Determine the Concept We can apply conservation of momentum and Newton’s laws of
motion to the analysis of these questions.

(a) Yes, the car should slow down. An easy way of seeing this is to imagine a "packet”
of grain being dumped into the car all at once: This is a completely inelastic collision,
with the packet having an initial horizontal velocity of 0. After the collision, it is moving
with the same horizontal velocity that the car does, so the car must slow down.

(b) When the packet of grain lands in the car, it initially has a horizontal velocity of 0, so
it must be accelerated to come to the same speed as the car of the train. Therefore, the
train must exert a force on it to accelerate it. By Newton’s 3" law, the grain exerts an
equal but opposite force on the car, slowing it down. In general, this is a frictional force
which causes the grain to come to the same speed as the car.

(c) No it doesn’t speed up. Imagine a packet of grain being "dumped" out of the railroad
car. This can be treated as a collision, too. It has the same horizontal speed as the
railroad car when it leaks out, so the train car doesn’t have to speed up or slow down to
conserve momentum.

*20  ee
Determine the Concept Think of the stream of air molecules hitting the sail. Imagine
that they bounce off the sail elastically—their net change in momentum is then roughly
twice the change in momentum that they experienced going through the fan. Another
way of looking at it: Initially, the air is at rest, but after passing through the fan and
bouncing off the sail, it is moving backward—therefore, the boat must exert a net force on
the air pushing it backward, and there must be a force on the boat pushing it forward.

Estimation and Approximation

30 e
Picture the Problem We can estimate the time of collision from the average speed of the
car and the distance traveled by the center of the car during the collision. We’ll assume a
car length of 6 m. We can calculate the average force exerted by the wall on the car from
the car’s change in momentum and it’s stopping time.

(a) Relate the stopping time to the At = topping _ 1(3L,) _ il
assumption that the center of the car V,, V,y Vo
travels halfway to the wall with

constant deceleration:
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Express and evaluate V,: v = Vv, +V;
av 2
O+90k—mx 1h XlOOOm
B h 3600s km
2
=12.5m/s
[ ; L(6m
Substitute for v,, and evaluate At At =4 ( ) 01205
12.5m/s

(b) Relate the average force exerted by the wall on the car to the car’s change in
momentum:

1h  1000m
(2000kg)[ 90 XM 1000
Ap h 3600s  km
=P ~[417kN
At 0.120s

31 oo

Picture the Problem Let the direction the railcar is moving be the positive x direction
and the system include the earth, the pumpers, and the railcar. We’ll also denote the
railcar with the letter ¢ and the pumpers with the letter p. We’ll use conservation of
momentum to relate the center of mass frame velocities of the car and the pumpers and
then transform to the earth frame of reference to find the time of fall of the car.

(a) Relate the time of fall of the At= &Y
railcar to the distance it falls and its A
velocity as it leaves the bank:

Use conservation of momentum to P, = Py

find the speed of the car relative to or

the velocity of its center of mass: mu, +mu, =0
Relate u. to u, and solve for u: u,—u, =4m/s

suy =u,—4mfs

Substitute for uj, to obtain: m.u, + mp(uc -4 m/s) =0
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Solve for and evaluate u: 0, = Aamfs _ Amis L ao
m, 350kg
140 14 220
m, 4(75kg)
Relate the speed of the car to its Ve =Ug + Ve

speed relative to the center of mass
of the system:

—185M  zpkm, 1, 1000m
S h 3600s km

=10.74ml/s
Substitute and evaluate At: At = 25m 2335
10.74m/s
(b) Find the speed with which the Vv, =V, —u, =10.74m/s—4m/s
pumpers hit the ground: —674m/s

Hitting the ground at this speed, they
may be injured.

*32 e

Picture the Problem The diagram depicts the bullet just before its collision with the
melon and the motion of the melon-and-bullet-less-jet and the jet just after the collision.
We’ll assume that the bullet stays in the watermelon after the collision and use
conservation of momentum to relate the mass of the bullet and its initial velocity to the
momenta of the melon jet and the melon less the plug after the collision.

Before the Collision After the Collision
", 5
O—.’ ‘—’[ -
v]l i’_‘»
Apply conservation of momentum _ /
PRly mVy; = (mz —m; + ml)VZf + 2m3K3

to the collision to obtain:

Solve for vy m,Vy; —+/2m,K,
_ 1

Vy =
m, —m, +m,

i i i 2 2
Express the kinetic energy of the jet K,=1K, = %(% M2 ) = imv
of melon in terms of the initial
kinetic energy of the bullet:
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Substitute and simplify to obtain: [ ( 2)
plify _ m,Vy; — 2m3 %mlvli

V., =
A m, —m, +m,
_ vli(m1 —1/0.1m1m3)
m, —m; +m,

Substitute numerical values and evaluate v

0.0104kg — /0.1(0.0104kg){0.14 k
v, =| 180015 1M ( 901 )l g)):—0.386m/s
s 3281ft)  250kg—0.14kg +0.0104kg
=| —1.27ft/s

Note that this result is in reasonably good agreement with experimental results.

Finding the Center of Mass

33 -
Picture the Problem We can use its definition to find the center of mass of this system.

Apply its definition to find X¢m:

_ mx +m,x, +mx, _ (2kg)(0)+(2kg)(0.2m)+(2kg)(0.5m)

Xem =0.233m
m, +m, +m, 2kg +2kg + 2kg
Because the point masses all lie Y. = 0and the center of mass of this
along the x axis: system of particles is at| (0.233m,0) |.
*34 .

Picture the Problem Let the left end of the handle be the origin of our coordinate
system. We can disassemble the club-ax, find the center of mass of each piece, and then
use these coordinates and the masses of the handle and stone to find the center of mass of
the club-ax.

Express the center of mass of the « - Mtick Xem,stick + Mstone Xcm,stone
. cm T

handle plus stone system: Mgk + Meone

Assume that the stone is drilled and Xem.stick = 49.0Cm

the stick passes through it. Use
symmetry considerations to locate
the center of mass of the stick:
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Use symmetry considerations to Xem.stone = 89.0CM
locate the center of mass of the
stone:
Substitute numerical values and . - (2.5kg)(45cm)+(8kg)(89cm)
evaluate Xey: o 2.5kg +8kg
=| 78.5cm
35 e

Picture the Problem We can treat each of balls as though they are point objects and
apply the definition of the center of mass to find (Xcm, Yem)-

Use the definition of X¢m: w - MpX, + Mg Xg + M X
o m, +mg +m.
(3kg)(2m)+ (Lkg)(m)+ (Lkg)(3m)
3kg +1kg +1kg

=2.00m

Use the definition of yon: _MaYa+MgYp +McYe

(skg)(2m) + (tkg)(Lm) + (tkg) 0
3kg +1kg +1kg

Yem

=1.40m

The center of mass of this system (2,00 m,1.40 m)
of particles is at:

36

Picture the Problem The figure shows an
equilateral triangle with its y-axis vertex
above the x axis. The bisectors of the
vertex angles are also shown. We can find
x coordinate of the center-of-mass by
inspection and the y coordinate using
trigonometry.

From symmetry considerations: Xem =0
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Express the trigonometric tan 30° = Yem

relationship between a/2, 30°, and a/2

Yem:

Solve for yen: Yem =3 atan30° =0.289a

The center of mass of an equilateral
triangle oriented as shown above is

at| (0,0.289a) |.

*37  ee
Picture the Problem Let the subscript 1 refer to the 3-m by 3-m sheet of plywood before
the 2-m by 1-m piece has been cut from it. Let the subscript 2 refer to 2-m by 1-m piece
that has been removed and let o be the area density of the sheet. We can find the center-
of-mass of these two regions; treating the missing region as though it had negative mass,
and then finding the center-of-mass of the U-shaped region by applying its definition.

Express the coordinates of the w = My Xems = My Xem 2
center of mass of the sheet of o m, —m,
pIyWOOd: y, = mlycm,l - m2 ycm,z

cm ml _ m2
Use symmetry to find Xem 1, Yem 1, Xemp =1.0M, y,, =1.5m
Xem,2, and Yem,2: and

Xemz =1.9M, Yo, =2.0M

Determine m; and my: m, = oA =90 kg
and
m, = oA, = 20 kg
Substitute numerical values and « = (9o kg)(1.5m)- (20 kg)(L.5kg)
evaluate Xgy! o 90 kg — 20 kg
=1.50m
Substitute numerical values and _(9okg)(1.5m)—(20kg)(2m)
evaluate Yo o 90 kg — 20 kg
=1.36m

The center of mass of the U-shaped sheet of plywood is at (1.50 m,1.36 m) :
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38 e
Picture the Problem We can use its definition to find the center of mass of the can plus
water. By setting the derivative of this function equal to zero, we can find the value of x
that corresponds to the minimum height of the center of mass of the water as it drains out
and then use this extreme value to express the minimum height of the center of mass.

(a) Using its definition, express the H X
location of the center of mass of the M ) +m 2
can + water: Xem
M +m
Let the cross-sectional area of the M m
cup be A and use the definition of P= AH = Ax
density to relate the mass m of water
remaining in the can at any given
time to its depth x:
Solve for m to obtain: X
m=—M
H
Substitute to obtain:
2 H 2
Xcm = X
M+—M
X 2
1+ —
_|HI T
2 1+
H

(b) Differentiate x., with respect to x and set the derivative equal to zero for extrema:

2 2
oalaf] el
H /) dx H H dx H
) 2
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Solve for x/H to obtain: X = H (\/5_1)z 0.414H

where we’ve kept the positive solution
because a negative value for x/H would
make no sense.

Use your graphing calculator to convince yourself that the graph of x.m as a function of x
is concave upward at X ~ 0.414H and that, therefore, the minimum value of x., occurs
atx ~ 0.414H.

Evaluate x;m at X =H (\/E—l) to obtain: H \/E—l 2
1+
Xcm|x:H(ﬁ—1) T H ﬁ_l
1+ H

Finding the Center of Mass by Integration

*30 oo
Picture the Problem A semicircular disk
and a surface element of area dA is shown
in the diagram. Because the disk is a
continuous object, we’ll use

Mr,, = J.de and symmetry to find its

center of mass.

Express the coordinates of the center X.m = 0 by symmetry.
of mass of the semicircular disk: J‘ yo dA
Yem = M
Express y as a function of rand & y=rsing
Express dA in terms of r and 6: dA=rd@dr

Express M as a function of r and 6: M = 6A i =2 OR’
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Substitute and evaluate Y., e .
Yem a”rzsm gdodr .
00

20 ¢ ,
Yem M !)‘

M

22—0R3: iR
3M 3

40 o00
Picture the Problem Because a solid hemisphere is a continuous object, we’ll use
Mr,, = Ide to find its center of mass. The volume element for a sphere is

dV = r?sindd&d¢dr, where @is the polar angle and ¢ the azimuthal angle.

Let the base of the hemisphere be Z=rcoséd
the xy plane and p be the mass
density. Then:

Express the z coordinate of the J‘ rodV
center of mass: Zom = .[ v
Evaluate M = I paV M = IPdV =3 MVsphere

. Rzl22x
Evaluate jrpdv ' Irpdv :j I Ir3sin 6 cos &d ad gdr
00 O
4 4
_ AR [%smze]g/z _ R
2 4
Substitute and simplify to find zen: , iRt R
cm %E,DRS 8

41 00
Picture the Problem Because a thin hemisphere shell is a continuous object, we’ll use
Mr,, = ‘[de to find its center of mass. The element of area on the shell is dA = 2R’

sindd g, where R is the radius of the hemisphere.

Let o be the surface mass density J‘ 70 dA
and express the z coordinate of the Iem = J-o_ A
center of mass:
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Evaluate M =J.O'dAZ

Evaluate I zodA:

Substitute and simplify to find z:

42 eee
Picture the Problem The parabolic sheet
is shown to the right. Because the area of
the sheet is distributed symmetrically with
respect to the y axis, Xem = 0. We'll
integrate the element of area dA (= xdy) to
obtain the total area of the sheet and yxdy
to obtain the numerator of the definition of
the center of mass.

EXpress Yem:

b
Evaluate Ixydy ;
0

b
Evaluate dey :
0

M

J.O' dA = % GA%pherical shell
= 10(47R?)= 270R?

7l2

jwdA: 2R3 jsinecosede
0

72

- R jsin 20d6
0

=R

N
Il
Il

N~

Py

1Y

| (0,b)

dA
\zzz77787777771

0 a
— 2 b5/2
5Va
b b . 12 10
[ xdy = [X=dy = y**dy
0 0 a 0
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Substitute and simplify to determine ycm: 2 b2

_5\/3. _éb
~ 5
2 b3/2

3/a

Note that, by symmetry: Xem =0
The center of mass of the parabolic (0,2b)
sheet is at:

Motion of the Center of Mass

43
Picture the Problem The velocity of the center of mass of a system of particles is related
to the total momentum of the system through P = Z myv, = Mv_,, .

i

Use the expression for the total
momentum of a system to relate the
velocity of the center of mass of the
two-particle system to the momenta
of the individual particles:

2.mv, myV, + m,v
_ i _my, +m,v,

—

v
cm
M m, +m,

Substitute numerical values and G (3kg)(V, +V,) = 1(V, +V,)

evaluate V_, : o 6kg
= %[(6 m/s)i —(3 m/s)f]

~

— | (3m/s)i —(1.5m/s)]

*44 .

Picture the Problem Choose a coordinate system in which east is the positive x

direction and use the relationship P = z m,V, = MV, to determine the velocity of the
i

center of mass of the system.

Use the expression for the total Z m.\v,
momentum of a system to relate the vV, =
velocity of the center of mass of the
two-vehicle system to the momenta
of the individual vehicles:

Express the velocity of the truck: v, = (16 m/s)f
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Express the velocity of the car: V. =(-20 m/s)f

Substitute numerical values and evaluate V, :

7. - (3000kg)(16m/s) i +(1500kg)—20m/s) i _ (4.00mis) T
3000kg +1500kg
45 .
Picture the Problem The acceleration of the center of mass of the ball is related to the
net external force through Newton’s 2™ law: Ifrmext =Ma,,.
Use Newton’s 2™ law to express the . Ifnet,ext
acceleration of the ball: Bem = M
Substitute numerical values and _ 12N f =
luate 5. - a,, = (12N) = (2.4m/sz)|
evaluate a,p, : 3kg +1kg +1kg
46 oo

Picture the Problem Choose a coordinate system in which upward is the positive y

direction. We can use Newton’s 2" law F = M4, to find the acceleration of the

net,ext

center of mass of this two-body system.

@) Yes; initially the scale reads
(M +m)g;whilemisin free
fall, the reading is Mg.

(b) Using Newton’s 2™ law, express F

= net,ext
a, =—

the acceleration of the center of mass M m
of the system:

tot

Substitute to obtain: 5 - mg I
o M +m
(c) Use Newton’s 2" law to express Fretext = (M +m)g—(M +m)a,,

the net force acting on the scale while
the object of mass m is falling:
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Substitute and simplify to obtain: Fooe =(M+m)g—(M + m)(Mmg j
, +m

as expected, given our answer to
part (a).

*A7 ee
Picture the Problem The free-body
diagram shows the forces acting on the
platform when the spring is partially F,
compressed. The scale reading is the force
the scale exerts on the platform and is
represented on the FBD by F,. We can use
Newton’s 2™ law to determine the scale
reading in part (a) and the work-energy 18
theorem in conjunction with Newton’s 2™
law in parts (b) and (c). F

¥ b on spring

(a) Apply z Fy = may to the z I:y = Fn - mpg - I:ballonspring =0
spring when it is compressed a
distance d:

Solve for Fy: I:n = mpg + I:ball on spring

m,g
=m,g+kd =mpg+k( E

=[mg+myg =(m,+m,)g

(b) Use conservation of mechanical AK+AU, +AU, =0
energy, with U, = 0 at the position at Because AK = Uy = Ug; = 0,
which the spring is fully Ugi -U,, =0

compressed, to relate the
gravitational potential energy of the
system to the energy stored in the
fully compressed spring:

or
m,gd —1kd? =0

Solve for d:
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Evaluate our force equation in (a) Fo =M, 0+ Foai on spring

with d _2m,g ;

=m.g+kd =myg +k(2n;bg)

= mg+2m,g =(m, +2m, )y

(c) When the ball is in its original F., =scale reading
position, the spring is relaxed and =[m_g

exerts no force on the ball. ’
Therefore:

*48 oo

Picture the Problem Assume that the object whose mass is m; is moving downward
and take that direction to be the positive direction. We’ll use Newton’s 2™ law for a
system of particles to relate the acceleration of the center of mass to the acceleration of
the individual particles.

(a) Relate the acceleration of the Ma,, =ma, + m,a, + m.a,
center of mass to my, m,, m; and
their accelerations:

Because m; and m, have a common a —a m, —m,
acceleration a and a, = 0: T m +m, +m,
From Problem 4-81 we have: a- m, —m,
m, +m,
Substitute to obtain: a m, —m, m, —m,
TolmAm, T )im +m, +m,
2
— (ml — mz) g
(m, +m, )(m, +m, +m,)

(b) Use Newton’s 2™ law for a F-Mg=-Ma,,

system of particles to obtain: where M = m; + m, + m¢ and F is positive
upwards.
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Solve for F and substitute for agm F =Mg-Ma,_,
from part (a): m. —m. V
— Mg _ ( 1 2) g
m, +m,
4m,m
=||——%+m,|g
m, +m,
(c) From Problem 4-81: T_ 2mm,
m, +m,
Substitute in our result from part (b) 2m;m,
to obtain: P2 —+M g
: m, +m,
= {21+ mc} =1 2T +m.g
g
49 e
Picture the Problem The free-body
diagram shows the forces acting on the 4
platform when the spring is partially F,
compressed. The scale reading is the force
the scale exerts on the platform and is
represented on the FBD by F.. We can |
use Newton’s 2" law to determine the
scale reading in part (a) and the result of 78
Problem 7-96 part (b) to obtain the scale
reading when the ball is dropped from a ‘E“\m.s.-;.\g
height h above the cup.
(a) Apply > F, =ma, to the spring D F, =F, =M, 0~ Fouon spring =0

when it is compressed a distance d:

Solve for F,: I:n = mpg + I:ball on spring

m,g
=m,g +kd =mpg+k($

=| mg+m,g =(m, +m,)g

(b) From Problem 7-96, part (b): m.g ( 2kh j
X 0211+ 1+
k m,g
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From part (a): I:n = mpg + I:ball on spring = mpg + kXmax

=| m,g+m,g| 1+ /1+ 2k
m,9

The Conservation of Momentum

50 -

Picture the Problem Let the system include the woman, the canoe, and the earth. Then
the net external force is zero and linear momentum is conserved as she jumps off the
canoe. Let the direction she jumps be the positive x direction.

Apply conservation of momentum to z MV =My Vi + MeneeVeanoe =0
the system:

Substitute to obtain: (55kg }2.5m/s)i + (75kg)V,,.,, =0
Solve for V., V.o, =| (-1.83m/s) i

51 e

Picture the Problem If we include the earth in our system, then the net external force is
zero and linear momentum is conserved as the spring delivers its energy to the two
objects.

Apply conservation of momentum D my, =myV +myVy, =0
to the system:

Substitute numerical values to obtain: (5kg)-8mis) i+ (10kg)v,, =0
Solve for V,,: V, =| (4 m/s)f
*52 e

Picture the Problem This is an explosion-like event in which linear momentum is
conserved. Thus we can equate the initial and final momenta in the x direction and the
initial and final momenta in the y direction. Choose a coordinate system in the positive x
direction is to the right and the positive y direction is upward.

Equate the momenta in the y D Py =D, Py =My, —2my,
direction before and after the _ m(ZVl)— 2mv, =0
explosion:
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We can conclude that the momentum was
entirely in the x direction before the
particle exploded.

Equate the momenta in the x Z Pyi = Z Py s

direction before and after the -~ Amy, = mv,

explosion:

Solve for vs: V; =%V, and | (c)is correct.
53 -

Picture the Problem Choose the direction the shell is moving just before the explosion
to be the positive x direction and apply conservation of momentum.

Use conservation of momentum to P, = Py

relate the masses of the fragments to or

their velocities: mvi =1mvj +1imy’
Solve for V': V'=| 2vi —vj

*54 e

Picture the Problem Let the system include the earth and the platform, gun and block.

Then F = 0 and momentum is conserved within the system.

net,ext

(a) Apply conservation of Boefore = Pafter
momentum to the system just before or
and just after the bullet leaves the 0 = Poutec + Pptttorm
gun:
Substitute for Py, e AN Ppjaggorm aNd 0=myVyl + M Vo
solve for Vplatform : and

_ my, =

Vplatform = _m_vbI

P

(b) Apply conservation of Pretore = Pafeer
momentum to the system just before or
the bullet leaves the gun and just 0= pplatform :>\7platform =0
after it comes to rest in the block:
(c) Express the distance As traveled AS =V jatormAl

by the platform:
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Express the velocity of the bullet m,
. Vit =V, — Vplatform =Vp+—V
relative to the platform: m,
m m +m
= [1+ —b}vb =P 2y
mp mp
Relate the time of flight At to L and At—_ L
Vrel: Vre|
Substitute to find the distance As m L
. . AS =V, omAt = =2V, | —
moved by the platform in time At: platform m |
p re
— mb L
I e moam
p p b Vb
mp
= M, L
m, +m,

55 e
Picture the Problem The pictorial representation shows the wedge and small object,

initially at rest, to the left, and, to the right, both in motion as the small object leaves the
wedge. Choose the direction the small object is moving when it leaves the wedge be the
positive x direction and the zero of potential energy to be at the surface of the table. Let
the speed of the small object be v and that of the wedge V. We can use conservation of
momentum to express v in terms of V and conservation of energy to express v in terms of

h.

h L
2m xl 3__ E - i..
Apply conservation of momentum to Pix = Prx
the small object and the wedge: or

Solve for V : V =—21vi (1)



Systems of Particles and Conservation of Momentum 533

V=1v
Use conservation of energy to AK +AU =0
determine the speed of the small or
object when it exits the wedge: K, -K,+U;-U, =0
Because Ur = K; = 0: 1mv? +3(2m)vV? —mgh =0
Substitute for V to obtain: 1mv? +1(2m)(Ev)’ —mgh =0
Solve for v to obtain:

v=2 g_h

3
Substitute in equation (1) to - - -
NS VA PN LU o R L

determine V : 2 3 3

i.e., the wedge moves in the direction

opposite to that of the small object with a

speed of , /g_h :

3

*5Q oo

Picture the Problem Because no external forces act on either cart, the center of mass of
the two-cart system can’t move. We can use the data concerning the masses and
separation of the gliders initially to calculate its location and then apply the definition of
the center of mass a second time to relate the positions X; and X, of the centers of the
carts when they first touch. We can also use the separation of the centers of the gliders
when they touch to obtain a second equation in X; and X, that we can solve
simultaneously with the equation obtained from the location of the center of mass.

(a) Apply its definition to find the m,X, + m,X,
center of mass of the 2-glider system: Xem = W
~ (0.1kg)(0.1m)+(0.2kg)(1.6m)
0.1kg+0.2kg
=1.10m

from the left end of the air track.
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Use the definition of the center of m X, +m,X,
mass to relate the coordinates of the 1.10m = m +m

. 1 2
centers of the two gliders when they
first touch to the location of the _ (0.1kg)X, +(0.2kg)X,
center of mass: ~ 0.1kg+0.2kg

=3 X +5X,

Also, when they first touch, their X, =X, = %(10cm + 20cm) =0.15m

centers are separated by half their
combined lengths:

Thus we have: 0.333X,+0.667X, =1.10m
and
X, =X, =0.15m
Solve these equations simultaneously X. =[1.00m and X. =[1.15m
to obtain: R 2=
(b) No. The initial momentum of the

system s zero, so it must be zero
after the collision.

Kinetic Energy of a System of Particles

*57 .

Picture the Problem Choose a coordinate system in which the positive x direction is to
the right. Use the expression for the total momentum of a system to find the velocity of
the center of mass and the definition of relative velocity to express the sum of the kinetic
energies relative to the center of mass.

(a) Find the sum of the Kinetic energies: K=K,+K,
=3 mlvlz +3 mzvz2
=1(3kg)(5m/s) +1(3kg)(2m/s)’

=|43.5]
(b) Relate the velocity of the center MV, =myV, + m,V,
of mass of the system to its total
momentum:
Solve for vV, : 7o myV, + m,v,

cm

m, +m,
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Substitute numerical values and ~ (3kg)(5 m/s)iA —(3kg)(2 m/s)f
evaluate V, : Vem = 3kg + 3kg

=| (1.50m/s)i
(c) The velocity of an object relative Vg =V-V,,

to the center of mass is given by:

V, o =(Bm/s)i —(@L5m/s)i

= | (3.50m/s)i
U, = (—2mis)i — (L.5m/s)i
= | (-3.50m/s)i
(d) Express the sum of the kinetic Kt = Ky + Koo =3mV7 g +3m,y;
energies relative to the center of
mass:
Substitute numerical values and K, =1(3kg)(@3.5m/s)
evaluate K: +1 (3 kg) (_ 35m /5)2
=|36.75J
(€) Find Koy K., =4m V2 =1(6kg)d.5m/s)
=6.75J
=43.5J-36.75J
= K- Krel
58 o

Picture the Problem Choose a coordinate system in which the positive x direction is to
the right. Use the expression for the total momentum of a system to find the velocity of the
center of mass and the definition of relative velocity to express the sum of the kinetic
energies relative to the center of mass.

(a) Express the sum of the kinetic energies: K = K, + K, =1myv + I m,v;

Substitute numerical values and K =1(3kg)(5m/s)’ +1(5kg)(3m/s)
evaluate K: _160.0J
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(b) Relate the velocity of the center of
mass of the system to its total
momentum:

Solve for vV, :

Substitute numerical values and
evaluate V,,:

(c) The velocity of an object relative
to the center of mass is given by:

Substitute numerical values and
evaluate the relative velocities:

(d) Express the sum of the kinetic
energies relative to the center of
mass:

Substitute numerical values and
evaluate Kg:

(e) Find Kem:

Impulse and Average Force

59 -

_ MV, +myyV,
o m, +m,

J (3kg)(5mis)i +(5kg)(3m/s)i

o 3kg +5kg
| (3.75mis)i

<l

I

<l
|

<l

V, 0 = (5mIs)i —(3.75mis)i

=| (1.25m/s)i

and
V, e = (3M/s)i —(3.75m/s)i

= | (-0.750m/s)i

= Kl,rel + K2,rel

—1 2 1 2
-2 mlvl,rel + 2 m2V2,reI

K, =1(3kg)(L.25m/s)’
+1(5kg)(-0.75m/s)’
=|3.75J

Kem = %mtotvfm = %(8 kg)(3'75 m/S)Z
56.3J=| K-K

rel

Picture the Problem The impulse imparted to the ball by the kicker equals the change in
the ball’s momentum. The impulse is also the product of the average force exerted on the
ball by the kicker and the time during which the average force acts.
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(a) Relate the impulse delivered to | =Ap=p; - p

the ball to its change in momentum:; =mv, since v, =0

Substitute numerical values and | = (0,43 kg )(25 m/s) —110.8N-s
evaluate I:

(b) Express the impulse delivered to | = F, At

the ball as a function of the average and

force acting on it and solve for and I 10.8N-s

evaluate F,, ™ T At . 0008s 1.34kN
60 -

Picture the Problem The impulse exerted by the ground on the brick equals the change
in momentum of the brick and is also the product of the average force exerted by the
ground on the brick and the time during which the average force acts.

(a) Express the impulse exerted by | = |Apbmk| = ‘ Prprick — Pibrick
the ground on the brick:
Because prprick = 0: I'= Dibrick = MpricicV (1)
Use conservation of energy to AK +AU =0
determine the speed of the brick at or
impact: K, -K,+U;-U, =0
Because Uy = K; = 0: K;-U, =0
or

Solve for v: v=,/2gh
Substitute in equation (1) to obtain: I =m+/29h
Substitute numerical values and | = (0.3 kg)\/2(9.81m/52 )(8m)
evaluate I
=|3.76N-s
(c) Express the impulse delivered to I = F, At

the brick as a function of the and
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average force acting on it and solve _ 1 _376N-s oo
for and evaluate F,,: “ At 0.0013s :
*61 -

Picture the Problem The impulse exerted by the ground on the meteorite equals the
change in momentum of the meteorite and is also the product of the average force exerted
by the ground on the meteorite and the time during which the average force acts.

Express the impulse exerted by the I = ADreteoriie = Pr = P
ground on the meteorite:

Relate the kinetic energy of the :
] L 9y Ki=p_|:> pi=\/2mKi
meteorite to its initial momentum m

and solve for its initial momentum:

Express the ratio of the initial and pf
final kinetic energies of the ﬁ_z_m_p_f_ )
meteorite: K, pf2 pf?—
2m
Solve for ps:

Substitute in our expression for | | = P; p=p
and simplify: \/E ' '

Because our interest is in its magnitude, evaluate |I| :

1] = |y/2(30.8x10° kg)(617><106J)(i— j‘: 1.81MN-s

V2

Express the impulse delivered to the I = F, At

meteorite as a function of the average and

f ti it and solve f d .

orce acting o.nl and solve for an E =L:1.81MN S _ 0.602 MN
evaluate F,,: VAL 3s
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62 oo

Picture the Problem The impulse exerted by the bat on the ball equals the change in
momentum of the ball and is also the product of the average force exerted by the bat on
the ball and the time during which the bat and ball were in contact.

(a) Express the impulse exerted by
the bat on the ball in terms of the
change in momentum of the ball:

Substitute for m and v and evaluate
I:

(b) Express the impulse delivered to
the ball as a function of the average
force acting on it and solve for and
evaluate F,, :

*63 oo
Picture the Problem The figure shows the
handball just before and immediately after
its collision with the wall. Choose a
coordinate system in which the positive x
direction is to the right. The wall changes
the momentum of the ball by exerting a
force on it during the ball’s collision with
it. The reaction to this force is the force the
ball exerts on the wall. Because these
action and reaction forces are equal in
magnitude, we can find the average force
exerted on the ball by finding the change
in momentum of the ball.

Using Newton’s 3" Jaw, relate the
average force exerted by the ball on
the wall to the average force exerted
by the wall on the ball:

Relate the average force exerted by
the wall on the ball to its change in
momentum:

I= Ar)bau = ﬁf - pi
= mvff—(—mvif): 2mvi

where v = v; = v;

| =2(0.15kg)(20m/s)=| 6.00N -s
| = F, At
and

F, == 200NS ek

At 1.3ms

IEalvon wall — _Ifavon ball

and

I:avon wall — I:avon ball (1)

= _Ap _ mAvV

av on ball At At
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Express AV, for the ball:

Substitute in our expression for

F

avon ball *

Evaluate the magnitude of F

avon ball *

Substitute in equation (1) to obtain:

64 oo
Picture the Problem The pictorial

representation shows the ball during the
interval of time you are exerting a force on
it to accelerate it upward. The average
force you exert can be determined from the
change in momentum of the ball. The
change in the velocity of the ball can be

found by applying conservation of

mechanical energy to its rise in the air

once it has left your hand.

(a) Relate the average force exerted
by your hand on the ball to the
change in momentum of the ball:

Letting Uy = O at the initial elevation
of your hand, use conservation of
mechanical energy to relate the
initial kinetic energy of the ball to
its potential energy when it is at its
highest point:

A

AV, =V, 0=V, i
or, because vi, = vcos@and v, = —VCOSH,
AV, =-vcos@di—vcosdi =-2vcoshi

- MAV 2mvcosé -~
F - I

avonball — At - At
2mvcosé
I:av onball — A—t
_ 2(0.06kg)(5m/s)cos40°
2ms
=230N
I:avon wall = 230 N
by = At
2( Jya=d

10_‘!1 =0

v, =0

_Ap P, — P _ MV,

YAt At At
because v; and, hence, p; = 0.

AK +AU =0

or

-K,+U,; =0
since K, =U, =0



Systems of Particles and Conservation of Momentum 541

Substitute for K¢ and U; and solve —imv; +mgh=0
for vy: and

v, =,/2gh
Relate At to the average speed of the ape 4 _d_2d
ball while you are throwing it Vo V2oV,
upward: 2
Substitute for At and v, in the o mgh
expression for F,, to obtain: ¥ od
Substitute numerical values and Eo_ (0.15kg)(0.81m/s? )(40m)
evaluate F.,: v 0.7m

=|84.1N

(b) Express the ratio of the weight of w _ mg (0.15 kg)(9.81m/sz) < 20
the ball to the average force acting FE E 84.1N °

av av

on it;

Because the weight of the ballis less than 2% of the average force exerted
on the ball, it is reasonable to have neglected its weight.

65 oo

Picture the Problem Choose a coordinate system in which the direction the ball is
moving after its collision with the wall is the positive x direction. The impulse delivered
to the wall or received by the player equals the change in the momentum of the ball. We
can find the average forces from the rate of change in the momentum of the ball.

(a) Relate the impulse delivered to | = AP = mV, —mv,
the wall to the change in momentum _ (O 06 kg)(8 m/s)f
of the handball: '

~[ (0.06kg)@omis)i]
(1.08N-s)i directed into wall.

(b) Find F, from the change in the E Ap _ 1.08N-s
ball’s momentum: “ At 0.003s

=| 360 N, into wall.
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(c) Find the impulse received by the
player from the change in
momentum of the ball:

(d) Relate F,, to the change in the
ball’s momentum:

Express the stopping time in terms
of the average speed v,, of the ball
and its stopping distance d:
Substitute to obtain:

Substitute numerical values and
evaluate F,:

66 [ L 1]

I = Ap,, = mAv
(0.06kg)(8mi/s)
=| 0.480N -s, away from wall.

A
Fav — z&;all
at= 9

Vav
Fav — VavAdpball

_ (4m/s)(0.480N -s)
aV 0.5m

=| 3.84 N, away from wall.

Picture the Problem The average force exerted on the limestone by the droplets of
water equals the rate at which momentum is being delivered to the floor. We’re given
the number of droplets that arrive per minute and can use conservation of mechanical
energy to determine their velocity as they reach the floor.

(a) Letting N represent the rate at
which droplets fall, relate F,, to the
change in the droplet’s momentum:

Find the mass of the droplets:

Letting Uy = 0 at the point of impact
of the droplets, use conservation of
mechanical energy to relate their
speed at impact to their fall
distance:

Because K; = Us = 0:

Fav — Apdroplets — N mAV
At At

m = pV =(1kg/L)(0.03mL)
=3x10 kg

AK +AU =0
or
K -K,+U; -U, =0

imvi —mgh=0
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Solve for and evaluate v = v¢. v=12gh = \/2(9.81m/52 )(5 m)
=9.90m/s
Substitute numerical values and ( N j
F. =| — |MAv
evaluate F: At
_[10 droplets . Lmin
min 60s
x (3 x 10 kg)(9.90 m/s)
=14.95x10° N
(b) Calculate the ratio of the weight w _mg
of a droplet to Fy: F,. Fu
_(8x10°kg)0.81mis°)
4.95x10° N

Collisions in One Dimension

*67 .

Picture the Problem We can apply conservation of momentum to this perfectly
inelastic collision to find the after-collision speed of the two cars. The ratio of the
transformed kinetic energy to kinetic energy before the collision is the fraction of kinetic
energy lost in the collision.

(a) Letting V be the velocity of the Pinitial = Pinal

two cars after their collision, apply or

conservat?on of .mome.nt_um to their my, +mv, = (m+m)V

perfectly inelastic collision:

Solve for and evaluate V: v oVatV, 30m/s+10m/s
2 2

=| 20.0m/s




544 Chapter 8

(b) Express the ratio of the kinetic AK _ K inat = Kinitial
energy that is lost to the kinetic Kinitial Kinitial
energy of the two cars before the Keina
collision and simplify: K N -1
_ sm)v? 4
Imv? +1mv?
2V?
=5, 71
v, +V,
Substitute numerical values to obtain: AK 2(20m/s)’
K (30m/s)* + (10 m/sy
=-0.200

20% of the initial kinetic energy is transformed into heat, sound, and
the deformation of metal.

68 -
Picture the Problem We can apply conservation of momentum to this perfectly
inelastic collision to find the after-collision speed of the two players.

Letting the subscript 1 refer to the Pi = Ps
running back and the subscript 2 refer or
to the linebacker, apply conservation my, = (m1 +m, )V

of momentum to their perfectly
inelastic collision:

Solve for V: V = m, v,
m, +m,
Substitute numerical values and V= 85kg (7 m/s) _[313mis
evaluate V: 85kg +105kg
69 o

Picture the Problem We can apply conservation of momentum to this collision to find
the after-collision speed of the 5-kg object. Let the direction the 5-kg object is moving
before the collision be the positive direction. We can decide whether the collision was
elastic by examining the initial and final kinetic energies of the system.
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(a) Letting the subscript 5 refer to Pi = P¢
the 5-kg object and the subscript 2 or
refer to th_e 10-kg object, apply MgV, 5 — MgV 10 = MeV, g
conservation of momentum to
obtain:
Solve for vss: MgVis —MyoViag
Vis = m
5
Substitute numerical values and v = (5kg)(4m/s)—(10kg)(3m/s)
evaluate vs: " 5kg
=| —2.00m/s

where the minus sign means that the 5-kg
object is moving to the left after the
collision.

(b) Evaluate AK for the collision:

AK =K, —K; = 1(5kg)(2mis) — |1 (5kg)(4 m/s )+ 1 (10kg)(3mis) | = ~-75.0J

Because AK = 0, the collision was inelastic.

70

Picture the Problem The pictorial V=V
representation shows the ball and bat just =
before and just after their collision. Take =G| |-B=
the direction the bat is moving to be the | e
positive direction. Because the collision is
elastic, we can equate the speeds of
recession and approach, with the
approximation that V; pat & V¢ par to find Ve pa.

Express the speed of approach of the Veat = Vioa = ~(Vipat = Vian)
bat and ball:
Because the mass of the bat is much Vipat * Vibat

greater than that of the ball:

Substitute to obtain: Vepat — Vepan = _(Vf,bat - Vi,ball)
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Solve for and evaluate Vg pq:

*T1 e

Vipan = Vipar T (Vf,bat - Vi,ball)
=—Vipa T 2Vf,bat =V+2v

=| 3v

Picture the Problem Let the direction the proton is moving before the collision be the
positive x direction. We can use both conservation of momentum and conservation of
mechanical energy to obtain an expression for velocity of the proton after the collision.

(a) Use the expression for the total
momentum of a system to find v¢n:

(b) Use conservation of momentum
to obtain one relation for the final
velocities:

Use conservation of mechanical
energy to set the velocity of
recession equal to the negative of
the velocity of approach:

To eliminate vy, 1, Solve equation
(2) for vnye 1, and substitute the result

in equation (1):

Solve for and evaluate vy :

72 oo

P=>'my, =MV,

and
mv_. “
V,=—2P2 = 1(300m/s)i
™ m+12m B )
=| (23.1mss)i
mpvp,i = mpvp,f + mnucvnuc,f (1)

Vnuc,f _Vp,f = _(Vnuc,i - Vp,i ): Vp,i (2)

Y =Vpi Vs

nuc,f

MV =MV e + My (Vp,i + Vs )

mp - mnuc

p,i
mp + M.

p,f

m-12m

(300m/s)=| —254m/s

13m

Picture the Problem We can use conservation of momentum and the definition of an
elastic collision to obtain two equations in v,sand vs; that we can solve simultaneously.

Use conservation of momentum to
obtain one relation for the final

M3Vy = MgVae + MyVy (1)
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velocities:

Use conservation of mechanical Vo — Vg = —(VZi —Vy ) =V (2
energy to set the velocity of

recession equal to the negative of

the velocity of approach:

Solve equation (2) for vy , substitute v = 2myvy 2(3kg)(4mis)
in equation (1) to eliminate vz, and A m, +m, 2kg +3kg
solve for and evaluate vy: —[4.80m/s
Use equation (2) to find v Vg =V, — V5 =4.80m/s—4.00m/s
=| 0.800m/s
Evaluate K; and K K, = Ky = imyV2 =1(3kg)(4m/sy
=24.0]
and
K =Ky + Ky = %m3v32f +%m2V22f
= 1(3kg)(0.8m/s)’
+1(2kg)(4.8m/s)
=24.0]

Because K, = K;, we can conclude that the values obtained for v, and v., are
consistent with the collision having been elastic.

73 e
Picture the Problem We can find the velocity of the center of mass from the definition
of the total momentum of the system. We’ll use conservation of energy to find the
maximum compression of the spring and express the initial (i.e., before collision) and
final (i.e., at separation) velocities. Finally, we’ll transform the velocities from the
center of mass frame of reference to the table frame of reference.

(a) Use the definition of the total P=>'mv, =My,
momentum of a system to relate the i
initial momenta to the velocity of or

the center of mass: m\vy; = (ml +m, )ch
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Solve for ven:

Substitute numerical values and
evaluate ven:

(b) Find the kinetic energy of the
system at maximum compression
(uy=up, =0):

Use conservation of energy to relate
the kinetic energy of the system to
the potential energy stored in the
spring at maximum compression:

Because K; = K¢ and Ug; = 0:

Solve for Ax:

Substitute numerical values and evaluate Ax:

Y My Mgy
o m, +m,
_ (2kg)(10m/s)+(5kg)(3m’s)
o 2kg +5kg
=15.00m/s
K = Kcm :%Mvczm
=1(7kg)(5m/s)’ =87.5J
AK +AU, =0
or
K,-K,+U,-U, =0

K. — K, +1k(Ax)* =0

xm (2K
\/2
g

1 2 1 2
7 MV +5 MV, — K
k
mv2 +m,vZ — 2K
1710 272i cm
k

cm

(2kg)@@om/s) +(5kg)(3m/s)*  2(87.5J)

-

(c) Find uy;, uy;, and ugys for this
elastic collision:

1120N/m

Use conservation of mechanical
energy to set the velocity of
recession equal to the negative of
the velocity of approach and solve

1120 N/m} =[0.20m
Uy; =Vy; =V, =10m/s—5m/s =5mfs,
Uy =V, =V, =3M/s—5m/s=-2m/s,
and
Uy = Vi — V., =0-5m/s=-5m/s

Uy — Uy = _(uzi - uli)

and
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for uys:

Transform uys and uy to the table
frame of reference:

*T4 e

Uy = —Uy + Uy + Uy
= —(~2m/s)+5m/s—5m/s
=2m/s

Vi = Uy +V,, :—5m/s+5m/s:@

and
V2f = qu +ch

=2m/s+5m/s=| 7.00m/s

Picture the Problem Let the system include the earth, the bullet, and the sheet of
plywood. Then W = 0. Choose the zero of gravitational potential energy to be where
the bullet enters the plywood. We can apply both conservation of energy and
conservation of momentum to obtain the various physical quantities called for in this

problem.

(a) Use conservation of mechanical
energy after the bullet exits the sheet
of plywood to relate its exit speed to
the height to which it rises:

Solve for v,

Proceed similarly to relate the initial
velocity of the plywood to the height
to which it rises:

(b) Apply conservation of momentum
to the collision of the bullet and the
sheet of plywood:

Substitute for v, and vy and solve for
Vmi-

(c) Express the initial mechanical
energy of the system (i.e., just before
the collision):

AK +AU =0
or, because K¢ = U; = 0,
—1imvZ + mgh=0

V., =|4/2gh

Vy =|+/20H

ﬁ. = pf

or

mv,, = mv, + My,

Il

3

«

=

+

=

T

+
7\

=
~—

T
I |
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Express the final mechanical energy E, =mgh+MgH = g(mh +MH )
of the system (i.e., when the bullet
and block have reached their
maximum heights):

(d) Use the work-energy theorem Ei —E +W;iion =0
with W, = 0 to find the energy and
dissipated by friction in the inelastic W, iion = E; — E;
collision:
= gMH{Z\/E+M—1}
H m
75 e

Picture the Problem We can find the velocity of the center of mass from the definition
of the total momentum of the system. We’ll use conservation of energy to find the
speeds of the particles when their separation is least and when they are far apart.

(a) Noting that when the distance P= Z mv, = MV,
between the two particles is least, i

both move at the same speed, or

namely Ve, use the definition of the MyVoi = (mp +m, )ch :

total momentum of a system to relate
the initial momenta to the velocity of
the center of mass:

Solve for and evaluate vem: Ve myVy + M.V, _mv, + 0
o m, +m, m + 4m
=1 0.200v,
(b) Use conservation of momentum MV =MV + MV, (1)
to obtain one relation for the final
velocities:
Use conservation of mechanical Ve =V = —(Vpi -V, )= -V, (2

energy to set the velocity of
recession equal to the negative of
the velocity of approach:

Solve equation (2) for v, , substitute 2m,v, 2my,

. . - V, = = =| 0.400v,
in equation (1) to eliminate vy, and of m,+m, m+4m 0
solve for v 4:
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76 e

Picture the Problem Let the numeral 1 denote the electron and the numeral 2 the
hydrogen atom. We can find the final velocity of the electron and, hence, the fraction of
its initial kinetic energy that is transferred to the atom, by transforming to the center-of-
mass reference frame, calculating the post-collision velocity of the electron, and then
transforming back to the laboratory frame of reference.

Express f, the fraction of the
electron’s initial kinetic energy that
is transferred to the atom:

Find the velocity of the center of
mass:

Find the initial velocity of the
electron in the center-of-mass
reference frame:

Find the post-collision velocity of
the electron in the center-of-mass
reference frame by reversing its
velocity:

To find the final velocity of the
electron in the original frame, add
Vem to its final velocity in the center-
of-mass reference frame:

Substitute in equation (1) to obtain:

(KK K
K. K,
2 1)
_1- 3 My _1_("4}
1 2
2 m1V1i Vli
V. = M, Vs,
om,+m,
or, because m, = 1840m,,
my\v,, 1

ch = - Vli
m, +1840m, 1841

v -1y
o1g41 "

= (1 - Ljvli
1841

1
Uy =—Uy = @_1 Vii

Uy =Vy; —V,

cm

2
Vig = Uy +Vo, = M_l Vi

2
(18241_1)\/” 2 Y
fog| 0t :1—( 1)

v, 1841

=217x10° =] 0.217%
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77 oo

Picture the Problem The pictorial
representation shows the bullet about to
imbed itself in the bob of the ballistic
pendulum and then, later, when the bob
plus bullet have risen to their maximum
height. We can use conservation of
momentum during the collision to relate
the speed of the bullet to the initial speed
of the bob plus bullet (V). The initial
Kinetic energy of the bob plus bullet is
transformed into gravitational potential
energy when they reach their maximum
height. Hence we apply conservation of
mechanical energy to relate V to the angle
through which the bullet plus bob swings
and then solve the momentum and energy
equations simultaneously for the speed of
the bullet.

Use conservation of momentum to
relate the speed of the bullet just
before impact to the initial speed of
the bob plus bullet:

Solve for the speed of the bullet:

Use conservation of energy to relate
the initial kinetic energy of the
bullet to the final potential energy of
the system:

Substitute for K; and U and solve
for V:

Substitute for V in equation (1) to
obtain:

Substitute numerical values and evaluate vy:

LIS

Lcos6

v, = (1+ij Q)

AK +AU =0
or, because K¢= U; = 0,
-K,+U; =0

~1(m+M)V?
+(m+M)gL(l-cos@)=0

and

V =,/2gL(1-cosd)

~—

v, = (1+ %j 2gL(1-cos&
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v, = [1+ﬁj\/2(9.81m/52 )(2.3m)(1-cos60°) = | 450m/s

0.016kg

*78 e

Picture the Problem We can apply conservation of momentum and the definition of an
elastic collision to obtain equations relating the initial and final velocities of the colliding

objects that we can solve for vis and voy.

Apply conservation of momentum to
the elastic collision of the particles
to obtain:

Relate the initial and final kinetic
energies of the particles in an elastic
collision:

Rearrange this equation and factor to
obtain:

Rearrange equation (1) to obtain:

Divide equation (2) by equation (3)
to obtain:

Rearrange this equation to obtain
equation (4):

Multiply equation (4) by m, and add
it to equation (1) to obtain:

Solve for vi¢ to obtain:

Multiply equation (4) by m; and
subtract it from equation (1) to
obtain:

Solve for vy to obtain:

MVie + MyVye = MVy; + MYV, (1)

1 2 1 2 _ 1 2 1 2
2 MV + 5 MyVoe =5 MV + 5 MV,

2 2 2 2
m, (sz _V2i)= ml(vli _Vlf)
or

m, (sz =V )(VZf + V2i)

(2)
= ml(vli — Vit )(Vli +V1f)
mz(sz —Vyi ) = ml(vli — Vi ) (3)
Vor V5 = Vi + Vg
Vig =V = Vo =V (4)

(m1 +m, )Vlf = (ml -m, )Vli + 2m2V2i

— 2
Vlf - V1i+ V2i

(m1 +m, )sz = (mz - ml)Vzi + 2m1V1i

2m, m, —m,
Vor = Vi + Vyi
m, +m, m, +m,

Remarks: Note that the velocities satisfy the condition that v, —v,; = —(v2i -V )
This verifies that the speed of recession equals the speed of approach.
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79 e
Picture the Problem As in this problem, Problem 78 involves an elastic, one-
dimensional collision between two objects. Both solutions involve using the conservation
of momentum equation m\v;; + m,v,, = mv;; + m,V,; and the elastic collision
equationV; —V, =V,; —V,;. In part (a) we can simply set the masses equal to each other
and substitute in the equations in Problem 78 to show that the particles "swap" velocities.
In part (b) we can divide the numerator and denominator of the equations in Problem 78
by m, and use the condition that m, >> m; to show that vis &~ —vy;+2V,; and Vs~ Vs;.

(a) From Problem 78 we have: m, —m, 2m,
Vi = Vit Vyi (1)
m, +m, m, +m,
and
2m m,—m
Vor = LV Yy, 2
m, +m, m, +m,
Set m; = m, = m to obtain: m
V., = V.. =| V..
1f m+m 2i 2i
and
_2m v
2f m-+m 1i 1i
(b) Divide the numerator and m,
denominator of both terms in mi - 2
. - _m,
equation (1) by m; to obtain: Vi = Vit Vy
ml ml
—+1 —+1
m2 m2
I m; >> m;: Vi & | —Vy+2Vy;
Divide the numerator and m m
. . 21 _
denominator of both terms in m m
) . _ 2 2
equation (2) by m; to obtain: Vo = vy + Vy
ml ml
—+1 —+1
mZ m2
If my; >> mjy: sz ~ V2i

Remarks: Note that, in both parts of this problem, the velocities satisfy the condition
thatv, — v = —(v2i -V ) This verifies that the speed of recession equals the speed
of approach.
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Perfectly Inelastic Collisions and the Ballistic Pendulum

80 e
Picture the Problem Choose Uy = 0 at the bob’s equilibrium position. Momentum is
conserved in the collision of the bullet with bob and the initial kinetic energy of the bob
plus bullet is transformed into gravitational potential energy as it swings up to the top of
the circle. If the bullet plus bob just makes it to the top of the circle with zero speed, it
will swing through a complete circle.

Use conservation of momentum to myv = (ml + mz)V
relate the speed of the bullet just

before impact to the initial speed of

the bob plus bullet:

Solve for the speed of the bullet: m
v=|1+—2 |V (1)
ml
Use conservation of energy to relate AK +AU =0
the initial kinetic energy of the bob or, because K;=U; =0,
plus bullet to their potential energy -K,+U; =0

at the top of the circle:

Substitute for K; and Ur: —1(m+m,V?+(m +m,)g(2L)=0
Solve for V: V =,/gL
Substitute for V in equation (1) and m
_ 2
simplify to obtain: V= [1+m_ B
1

*81 oo

Picture the Problem Choose U, = 0 at the equilibrium position of the ballistic
pendulum. Momentum is conserved in the collision of the bullet with the bob and
Kinetic energy is transformed into gravitational potential energy as the bob swings up to
its maximum height.

Letting V represent the initial speed my = m, ($v)+m\V
of the bob as it begins its upward

swing, use conservation of

momentum to relate this speed to the

speeds of the bullet just before and
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after its collision with the bob:

Solve for the speed of the bob: V - m, v 1)
2m,

Use conservation of energy to relate AK +AU =0

the initial kinetic energy of the bob or, because K;=U; =0,

to its potential energy at its -K,+U; =0

maximum height:

Substitute for K; and Us: —imyV?+m,gh=0

Solve for h: V2

olve for hoVo )

29

Substitute V from equation (1) in m, 2

equation (2) and simplify to obtain: o om, i ﬁ m 2

29 8g{m,

82 -

Picture the Problem Let the mass of the bullet be m, that of the wooden block M, the
pre-collision velocity of the bullet v, and the post-collision velocity of the block+bullet be
V. We can use conservation of momentum to find the velocity of the block with the bullet
imbedded in it just after their perfectly inelastic collision. We can use Newton’s 2™ law
to find the acceleration of the sliding block and a constant-acceleration equation to find
the distance the block slides.

mO—— M E Om+ M —» -3 I3 |

§ > Ax- |

(m+M) S"
Using a constant-acceleration 0=V?2+2aAx
equation, relate the velocity of the because the final velocity of the
block+bullet just after their collision block+bullet is zero.
to their acceleration and
displacement before stopping:
Solve for the distance the block V2

1)

slides before coming to rest: AX = " %a
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Use conservation of momentum to mv=(m+M )V
relate the pre-collision velocity of
the bullet to the post-collision
velocity of the block+bullet:
Solve for V:

V= m Vv

m+M

Substitute in equation (1) to obtain: 1 - 2

AX = ——( j 2

2a\ m+M

Apply Zﬁ:métothe Zsz—sz(m+M)a (3)
block+bullet (see the FBD in the and
diagram): Z F, =F, —(m +M )g =0 4)

Use the definition of the coefficient
of kinetic friction and equation (4)
to obtain:

Substitute in equation (3):
Solve for a to obtain:

Substitute in equation (2) to obtain:

fo = uF, :ﬂk(m+M )g

~ s (m+M)g =(m+M)a

a=-u49

1 m ?
AX = Y
Zﬂkg(m"‘M J

Substitute numerical values and evaluate Ax:

1 0.0105kg
AX =
2(0.22)(9.81m/s? )| 0.0105kg +10.5kg

2
(750 m/s)J =|0.130m

83 e
Picture the Problem The collision of the ball with the box is perfectly inelastic and we
can find the speed of the box-and-ball immediately after their collision by applying
conservation of momentum. If we assume that the kinetic friction force is constant, we
can use a constant-acceleration equation to find the acceleration of the box and ball
combination and the definition of 4 to find its value.

Using its definition, express the
coefficient of kinetic friction of the
table:

Use conservation of momentum to
relate the speed of the ball just

before the collision to the speed of
the ball+box immediately after the

f

_ _k R |
ATE T Mamg g

M)
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collision:
Solve for v: MV
V= ()
m+M
Use a constant-acceleration equation sz — Vi2 +2aAX

to relate the sliding distance of the

S . or, because vi =0 and v; = v,
ball+box to its initial and final f '

velocities and its acceleration: 0=V"+2aAx
Solve for a: V2
T 2AX
Substitute in equation (1) to obtain: V2
M= Dgax
Use equation (2) to eliminate v: 1 MY
#he = ZgAx(erMj
2
1 \Y
2g9Ax| M +1
Substitute numerical values and evaluate z4:
2
1 1.3m/s
Uy = =1 0.0529
2(9.81m/s”)(0.52m)| 0.327kg
0.425kg

*84 oo
Picture the Problem Jane’s collision with Tarzan is a perfectly inelastic collision. We
can find her speed v, just before she grabs Tarzan from conservation of energy and their
speed V just after she grabs him from conservation of momentum. Their Kinetic energy
just after their collision will be transformed into gravitational potential energy when they
have reached their greatest height h.
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]

L

. &
, |'\
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\ | N
2
R | \/Im}_.l,
™~ - h
T i ekl e T

Use conservation of energy to relate U, =K,
the potential energy of Jane and
Tarzan at their highest point (2) to

_1 2
their Kinetic energy immediately m,..gh=;m,.V
after Jane grabbed Tarzan:
Solve for h to obtain: V2
h=— (1)
29
Use conservation of momentum to my, =m, .V
relate Jane’s velocity just before she
collides with Tarzan to their
velocity just after their perfectly
inelastic collision:
Solve for V: m
V=— Vi )
mJ+T
Apply conservation of energy to K,=U,

relate Jane’s kinetic energy at 1 to
her potential energy at 0:

Solve for v;: v, =+/29gL
Substitute in equation (2) to obtain:
q (2 v m 29l
J+T
Substitute in equation (1) and 2 2
simplify: h:i[ m, J 29L:( M| L
Zg m.]+T J+T
Substitute numerical values and 2
evaluate h: _| kg (25m)=| 3.94m
54kg+82kg
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Exploding Objects and Radioactive Decay

85 e
Picture the Problem This nuclear reaction is “Be — 2a + 1.5x10" In order to
conserve momentum, the alpha particles will have move in opposite directions with the
same velocities. We’ll use conservation of energy to find their speeds.

14\].

Letting E represent the energy 2K, = 2(% mavi ) =E
released in the reaction, express
conservation of energy for this

process:
Solve for v,; E

v, =, |—

ma
Substitute numerical values and -14
, v o= [0 e 0 mis

evaluate v, “ 6.68x107%" kg
86 )

Picture the Problem This nuclear reaction is °Li — « + p + 3.15 x 10** J. To conserve
momentum, the alpha particle and proton must move in opposite directions. We’ll apply
both conservation of energy and conservation of momentum to find the speeds of the
proton and alpha particle.

Use conservation of momentum in p,=p; =0

this process to express the alpha and

particle’s velocity in terms of the 0=myv, —m,v,

proton’s:

Solve for v, and substitute for m, to omy o om,
in: Vo =V ==V, =4V

obtain: m, 4am,

Letting E represent the energy K,+K,=E

released in the reaction, apply or

conservation of energy to the 1 mpvs +imVvi=E

process:

. . 2 2
Substitute for v, %mpvp +im, (lv ) =E
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Solve for v, and substitute for m, to 32E 32E
obtain: P\16m +m, \16m_ +4m
Substitute numerical values and 32(3,15 x10718 J)
. vV, =
evaluate vp: P\ 20(1.67x10" kg)
=|1.74x10" m/s
Use the relationship between v, and V, =%V, = %(1.74><107 m/s)

v, to obtain v, =|4.34%x10% m/s

87  eee

Picture the Problem The pictorial representation shows the projectile at its maximum
elevation and is moving horizontally. It also shows the two fragments resulting from the
explosion. We chose the system to include the projectile and the earth so that no
external forces act to change the momentum of the system during the explosion. With
this choice of system we can also use conservation of energy to determine the elevation
of the projectile when it explodes. We’ll also find it useful to use constant-acceleration
equations in our description of the motion of the projectile and its fragments.

N
= o (Ax,Ay) \

2 I \
v, \

U,=0 \
: X
Ax d = Ax + Ax
(a) Use conservation of momentum pi = P
to relate the velocity of the projectile m.V, = mV, + m,V,

before its explosion to the velocities

MVl = MV, 0 + MV, —m,V,, ]
of its two parts after the explosion: 3 ol Ty ] =MV )

The only way this equality can hold m;Vs =myv,,
is if: and
myv,, =myV,,

Express vs in terms of v, and v,, =3V, =3v,c0s8
substitute for the masses to obtain: = 3(120 m/s)cos30° =312m/s
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Using a constant-acceleration
equation with the downward
direction positive, relate vy, to the
time it takes the 2-kg fragment to hit
the ground:

With Ug = 0 at the launch site, apply
conservation of energy to the climb

of the projectile to its maximum
elevation:

Solve for Ay:

Substitute numerical values and
evaluate Ay:

Substitute in equation (2) and
evaluate vy,:

Substitute in equation (1) and
evaluate vy;:

Express V, in vector form:

(b) Express the total distance d
traveled by the 1-kg fragment:

Relate Ax to v, and the time-to-
explosion:

Using a constant-acceleration
equation, express Atexp:

and
Vi, = 2vy2 Q)

Ay =v,,At +1 g(At)

_Ay-3g(atf

\'
ye At

)

AK +AU =0

Because Ki=U;=0, - K, +U; =0
or

—%m3V§0 +m3gAy:O

Ay= Vio _ (vsin30°y
29 29

[(120m/s)sin30°]?
2(9.81m/s?)

=183.5m

_183.5m - 3(9.81m/s?)(3.6s)
vz 3.6s
=33.3m/s

v,, = 2(33.3m/s)=66.6m/s

V; =Vl +Vylj

~

— | (312m/s)i +(66.6m/s)j

d = Ax + AX' (3)
Ax = (v, cos O At,,, ) 4)
AL = Vyo _ VpsSin®

exp

g9 9
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Substitute numerical values and
evaluate Ateyp:

Substitute in equation (4) and
evaluate Ax:

Relate the distance traveled by the
1-kg fragment after the explosion to
the time it takes it to reach the
ground:

Using a constant-acceleration
equation, relate the time At’ for the
1-kg fragment to reach the ground to
its initial speed in the y direction and
the distance to the ground:

Substitute to obtain the quadratic
equation:

Solve the quadratic equation to find
At

Substitute in equation (3) and
evaluate d:

(c) Express the energy released in
the explosion:

Find the kinetic energy of the
fragments after the explosion:

Find the kinetic energy of the
projectile before the explosion:

At = (120m/s)sin30° _ 5.125

P 9.81m/s®

Ax = (120 m/s)(c0s30°)(6.12s)
=636.5m

AX' =V At

Ay =v, At =3 g(At' )

(At'f —(13.65)At' —=37.45° =0
At =159s

d = AX+ AX' = AX+ VAt

=636.5m +(312m/s)(15.95)
=| 5.61km
Eexp =AK = Kf - Ki ®)

Ky = K, + K, = 3my? +3m,v
- 1(1kg)[(3812ms) +(66.6mis)]
+1(2kg)(33.3m/s)’
~ 52,0k

Ki=3% m3V§ =3 M, (Vo cos ‘9)2
1(3kg)[(120m/s)cos 30°]?
16.2kJ
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Substitute in equation (5) to

E,, = K — K, =52.0k]-16.2kJ

determine the energy released in the —[358kKJ
explosion:
*88 o00
Picture the Problem This nuclear Y
reaction is °B — 2 + p + 4.4x107 J. =
Assume that the proton moves in the —x &
direction as shown in the figure. The sum
of the kinetic energies of the decay ?fp i
products equals the energy released in the - 0
decay. We’ll use conservation of
momentum to find the angle between the
velocities of the proton and the alpha v,
particles. Note that v, =V ".
Express the energy released to the K, +2K, =E4
kinetic energies of the decay or
products: Imv? + 2(% mavi): E,
Solve for v, v - E —5myv:
mO(
Substitute numerical values and evaluate v,
44x10™)  1(1.67x107 kg)(6x10° m/s) :
v, = ——— o =|1.44x10° m/s
6.68x107" kg 6.68x107"" kg
Given that the boron isotope was at pr=p,=0= p,=0
rest prior to the decay, use =~ 2(m, v, cosd)- m,v, =0
conservation of momentum to relate or
the momenta of the decay products: 2(4mpVa coS 9)_ m,v, = 0
Solve for : _1{ v, }
@ =cos | —
8v,
6
_ cost| 210 T/s = +58.7°
8(L.44x10° m/s)
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Let 6’equal the angle the velocities ¢ = +(180°-58.7°)
of the alpha particles make with that —[+121°
of the proton:

Coefficient of Restitution

89

Picture the Problem The coefficient of restitution is defined as the ratio of the velocity
of recession to the velocity of approach. These velocities can be determined from the
heights from which the ball was dropped and the height to which it rebounded by using
conservation of mechanical energy.

Use its definition to relate the o= Viee
coefficient of restitution to the Vapp
velocities of approach and recession:
Letting Uy = 0 at the surface of the AK+AU =0
steel plate, apply conservation of Because K; = Us =0,
energy to express the velocity of Ki-U;=0
approach: or
lm aPP mghapp

Solve for Vay: =/ 2gh,,
In like manner, show that: =./2gh,.
Substitute in the equation for e to J 29h,.. /
obtain: /7

app

Substitute numerical values and evaluate e:
0.913

*90 -

Picture the Problem The coefficient of restitution is defined as the ratio of the velocity
of recession to the velocity of approach. These velocities can be determined from the
heights from which an object was dropped and the height to which it rebounded by using
conservation of mechanical energy.
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Use its definition to relate the o= Viec
coefficient of restitution to the a0
velocities of approach and
recession:
Letting Uy = O at the surface of the AK+AU =0
steel plate, apply conservation of Because K; = U; = 0,
energy to express the velocity of Ki-=U;=0
approach: or

2

zMmv,, —mgh, =0

Solve for Vypp: Vaop = 4/ 20N,
In like manner, show that: Vi = /29hrec
Substitute in the equation for e to 2gh, rec
obtain:

\/ Zghapp happ

F.nd emin:

' e = [XI3CM _4e05
254cm

Find emay:

nae e = [1B3CM _ 49
254cm

and | 0.825<e<0.849
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Picture the Problem Because the rebound kinetic energy is proportional to the rebound
height, the percentage of mechanical energy lost in one bounce can be inferred from
knowledge of the rebound height. The coefficient of restitution is defined as the ratio of
the velocity of recession to the velocity of approach. These velocities can be determined
from the heights from which an object was dropped and the height to which it rebounded
by using conservation of mechanical energy.

(a) We know, from conservation of Kah.
energy, that the kinetic energy of an

object dropped from a given height

h is proportional to h:
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If, for each bounce of the ball,
hrec = 0.8happ:

(b) Use its definition to relate the
coefficient of restitution to the
velocities of approach and
recession:

Letting Uq = O at the surface from
which the ball is rebounding, apply

conservation of energy to express
the velocity of approach:

Solve for Vapp:

In like manner, show that:

Substitute in the equation for e to
obtain:

. h )
Substitute for —< to obtain:
app
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20% of its mechanical energy is lost.

e — rec

app
AK+AU =0
Because K; = U; = 0,
K;-U,=0
or
imvi —mgh, =0

Vapp =/ 2gh,,
VreC = Vzghrec

2gh
e — g rec — rec
\/ 29 happ happ

e=+0.8=|0.894

Picture the Problem Let the numeral 2 refer to the 2-kg object and the numeral 4 to the
4-kg object. Choose a coordinate system in which the direction the 2-kg object is moving
before the collision is the positive x direction and let the system consist of the earth, the
surface on which the objects slide, and the objects. Then we can use conservation of
momentum to find the velocity of the recoiling 4-kg object. We can find the energy
transformed in the collision by calculating the difference between the kinetic energies
before and after the collision and the coefficient of restitution from its definition.

(a) Use conservation of momentum
in one dimension to relate the initial
and final momenta of the
participants in the collision:

P = P
or
MyVy = MyVye — MoV
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Solve for and evaluate the final v = MaVai + MyVy
velocity of the 4-kg object: “ m,
2k m/s+1m
= ( g)(6 fs /S) =1 3.50m/s
4kg
(b) Express the energy lost in terms Epose = Ki = K;
o:t the:inetlilcl e?nergies before and = %mzv; — (% m2v22f +im 4vff )
after the collision:
= %[mz (V22i - V22f )_ m4ij

Substitute numerical values and evaluate E,q:

Eoe = 3 [(2Ko) (Bmis)” - (s - (4kg)(@ 5misy|= [ 1051

(c) Use the definition of the coefficient of restitution:

o= Ve _ Var ~Var _ 3.5m/s—(-1m’s) _ 0750
6m/s
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Picture the Problem Let the numeral 2 refer to the 2-kg block and the numeral 3 to the
3-kg block. Choose a coordinate system in which the direction the blocks are moving
before the collision is the positive x direction and let the system consist of the earth, the
surface on which the blocks move, and the blocks. Then we can use conservation of
momentum find the velocity of the 2-kg block after the collision. We can find the
coefficient of restitution from its definition.

(a) Use conservation of momentum in P = Py
one dimension to relate the initial and or
final momenta of the participants in _
. P P M,y + MgVg = MyVyr + M3V
the collision:

Solve for the final velocity of the 2-kg v = MaVai + Mgy — MV
object: A m,

Substitute numerical values and evaluate v

_ (2kg)(5m/s)+(3kg)(2m/s—4.2mis) _[170ms

of 2kg
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(b) Use the definition of the coefficient o Viee Vg —Vpe  4.2M/s—1.7m/s
-V, Sm/s—2ml/s

of restitution: Vi V2

=| 0.833

Collisions in Three Dimensions

*94 e

Picture the Problem We can use the definition of the magnitude of a vector and the
definition of the dot product to establish the result called for in (a). In part (b) we can use
the result of part (a), the conservation of momentum, and the definition of an elastic
collision (Kinetic energy is conserved) to show that the particles separate at right angles.

(a) Find the dot product of B+C (I§+6)-(I§+6)
with itself: _B24+C242B.C

Irs = = — — |2 — — — —
Because A=B+C: AZ:‘B+C‘ :(B+C)-(B+C)
Substitute to obtain: A2 —B2+C24+2B.C
(b) Apply conservation of B, + P, = p
momentum to the collision of the e
particles:
Form the dot product of each side of 5.+08.)(b+5.)=P-P
this equation with itself to obtain: (Erpl P.) (B + P2)

pr+p; +2P, P, =P ()

Apply the definition of an elastic p2 p? P?
collision to obtain: =

2m  2m 2m
or

pl+p; =P’ @)

Subtract equation (1) from equation
(2) to obtain:

2[31' r)Z =0or ﬁl' rjz =0
i.e., the particles move apart along paths that
are at right angles to each other.
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Picture the Problem Let the initial direction of motion of the cue ball be the positive x
direction. We can apply conservation of energy to determine the angle the cue ball makes
with the positive x direction and the conservation of momentum to find the final
velocities of the cue ball and the eight ball.
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(a) Use conservation of energy to
relate the velocities of the collision
participants before and after the
collision:

This Pythagorean relationship tells
us that V;, V;, and Vg form a right

ci?

triangle. Hence:

(b) Use conservation of momentum
in the x direction to relate the
velocities of the collision
participants before and after the
collision:

Use conservation of momentum in
the y direction to obtain a second
equation relating the velocities of the
collision participants before and
after the collision:

Solve these equations
simultaneously to obtain:
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1 2 _ 1 2 1 2
fmvci _fmvcf +§mv8
or
2 2 2
Ve = Ve + Vg
6, + 06, =90°
and
6, =| 60°
pXI = pr
or

0 =mv, sinf, + my,sin g,

v, =| 2.50m/s
and
Vg =| 4.33m/s

Picture the Problem We can find the final velocity of the object whose mass is M; by
using the conservation of momentum. Whether the collision was elastic can be decided
by examining the difference between the initial and final kinetic energy of the

interacting objects.
(a) Use conservation of momentum to

relate the initial and final velocities of
the two objects:

Simplify to obtain:

Solve for vV, :

—

Pi = f)f
or
mvyi +2m(3v, )= 2m{avyi )+ me

- ’.‘_ 1 o —
Vol +V,j =1V, +Vy,

~

|1y i
Vig =| 7Vl +V5)
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(b) Express the difference between the kinetic energy of the system before the collision
and its kinetic energy after the collision:

_ _ 1 2 2 2 2
AE = Ki - Kf - Kli + Kzi _(Klf + Kzf)— 7[M1V1i + M2V2i - M1V1f - M2V2f
1 2 2 2 2|1 2 2 2 2

Z[mvg; +2mvy; —myvy, — 2mV2f]_ 2 MVy; + 25 — Vi _2V2f]

1 2 14,2 54,2 142\ | 2 2
Em[vO +2(zv0)—zv0 —Z(Ev0 )]_ £ My

Because AE = 0, the collision is inelastic.

*Q7 oo

Picture the Problem Let the direction of motion of the puck that is moving before the
collision be the positive x direction. Applying conservation of momentum to the collision
in both the x and y directions will lead us to two equations in the unknowns vy and v, that
we can solve simultaneously. We can decide whether the collision was elastic by either
calculating the system’s kinetic energy before and after the collision or by determining
whether the angle between the final velocities is 90°.

(a) Use conservation of momentum Pyi = Pys

in the x direction to relate the or

velocities of the collision mv = mv, cos30° +mv, cos 60°
participants before and after the or

collision:

v =V, c0s30°+vV, cos60°

Use conservation of momentum in Pyi = Pyt
the y direction to obtain a second or
equation relating the velocities of ; ;
q 9 0 = my, sin 30° — mv, sin 60°

the collision participants before and
after the collision:

or
0=y, sin30°-v, sin 60°

Solve these equations v, =| 1.73m/s |andv, =| 1.00m/s
simultaneously to obtain:

(b) | Because the angle between v, and v, is 90°, the collision was elastic.
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Picture the Problem Let the direction of motion of the object that is moving before the
collision be the positive x direction. Applying conservation of momentum to the motion
in both the x and y directions will lead us to two equations in the unknowns v, and & that
we can solve simultaneously. We can show that the collision was elastic by showing that
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the system’s Kkinetic energy before and after the collision is the same.

(a) Use conservation of momentum
in the x direction to relate the
velocities of the collision
participants before and after the
collision:

Use conservation of momentum in
the y direction to obtain a second
equation relating the velocities of
the collision participants before and
after the collision:

Note that if tané, = 2, then:

Substitute in the momentum
equations to obtain:

Solve these equations
simultaneously for & :

Substitute to find vs:

(b) To show that the collision was
elastic, find the before-collision and
after-collision kinetic energies:

pxi = pr
or

3mv, =~/5mv, cos g, + 2mv, cos 6,
or
3v, = ~/5v, €06, + 2V, C0S 6,

Pyi = Py

or

0= \/gmvo sing, —2mv, sin 4,
or

0= \/gvo sing, —2v, siné,

cosd, _ L and sind, =

35 % =g

3v, = /5V, — + 2V, €0 6,

f

or
V, =V, C0S6,
and

O\/gv

or
0=v,-V,sing,

—2v,siné,

3

0, =tan"1=| 45.0°

v, v,
v,=—2 - =—20_= \/Evo
cosd, cos4s°
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Because K, = K, the collision
is elastic.

*00 e
Picture the Problem Let the direction of motion of the ball that is moving before the
collision be the positive x direction. Let v represent the velocity of the ball that is moving
before the collision, v; its velocity after the collision and v, the velocity of the initially-at-
rest ball after the collision. We know that because the collision is elastic and the balls
have the same mass, v, and v, are 90° apart. Applying conservation of momentum to the
collision in both the x and y directions will lead us to two equations in the unknowns v,
and v, that we can solve simultaneously.

Noting that the angle of deflection Pyi = Pys
for the recoiling ball is 60°, use or
conservation of momentum in the x mv = mv, cos30° + mv, cos 60°

direction to relate the velocities of
the collision participants before and
after the collision:

or
v =V, cos30°+V, cos60°

Use conservation of momentum in Pyi = Py
the y direction to obtain a second or
equation relating the velocities of : ;
q 9 0 = my, sin 30° —mv, sin 60°

the collision participants before and

.. or
after the collision:

0 =v,sin30°-v, sin 60°

Solve these equations v, =|8.66m/s |andv, =| 5.00m/s
simultaneously to obtain:
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Picture the Problem Choose the coordinate system shown in the diagram below with the
x-axis the axis of initial approach of the first particle. Call V the speed of the target
particle after the collision. In part (a) we can apply conservation of momentum in the x
and y directions to obtain two equations that we can solve simultaneously for tané. In part
(b) we can use conservation of momentum in vector form and the elastic-collision
equation to show that v = vocos¢.
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vV
(@) Apply conservation of V, =Vvcosg+V cosd (1)
momentum in the X direction to
obtain:
Apply conservation of momentum in vsing =V sind (2)
the y direction to obtain:
Solve equation (1) for Vcosé: V cosfd =v, —vcosg (3)
Divide equation (2) by equation (3) Vsing  vsing
to obtain: V cos# Vv, —VCosg
or
tang=|_vsing
V, —VCOS¢

(b) Apply conservation of
momentum to obtain:

Draw the vector diagram
representing this equation:

Use the definition of an elastic Vi =vi+V?
collision to obtain:

If this Pythagorean condition is to
hold, the third angle of the triangle
must be a right angle and, using the
definition of the cosine function:
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Center-of-Mass Frame

101 e

Picture the Problem The total kinetic energy of a system of particles is the sum of the
kinetic energy of the center of mass and the kinetic energy relative to the center of mass.
The kinetic energy of a particle of mass m is related to momentum according

toK = p?/2m.

Express the total kinetic energy of K=K, +Kg, (1)
the system:
Relate the kinetic energy relative to K. = p! . P _ Pl (m, +m,)
the center of mass to the momenta rel 2m, 2m, 2mm,
of the two particles:
Express the kinetic energy of the (2p,)f 2p?

o K = -
center of mass of the two particles: om 2(m1 + mz) m, +m,
Substitute in equation (1) and K = pZ(m, +m,) N 2p!
simplify to obtain: 2m,m, m, +m,

2 2 2

_ P {ml +6mm, +m2}
2 2

2| m'm,+mm,

In an elastic collision: K, =K

p/ {mf +6mm, + mzz}
2 2
2 | mm,+mm,

12 2 2
_| PY {ml +6mlm2+m2}
2 2
2 m;,m, +mm,

Simplify to obtain: (p'l)z :(p1)2 =| p, =%p,

and
If p, = +p,, the particles do not collide.

*102 e
Picture the Problem Let the numerals 3 and 1 denote the blocks whose masses are 3 kg
and 1 kg respectively. We can use 2 m,V, = MV to find the velocity of the center-of-

mass of the system and simply follow the directions in the problem step by step.
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(a) Express the total momentum of
this two-particle system in terms of
the velocity of its center of mass:

Solve for vV, :

Substitute numerical values and
evaluate V,,:

(b) Find the velocity of the 3-kg
block in the center of mass reference
frame:

Find the velocity of the 1-kg block
in the center of mass reference
frame:

(c) Express the after-collision
velocities of both blocks in the
center of mass reference frame:

(d) Transform the after-collision
velocity of the 3-kg block from the
center of mass reference frame to the
original reference frame:

Transform the after-collision velocity
of the 1-kg block from the center of
mass reference frame to the original
reference frame:

(e) Express K; in the original frame of
reference:

Substitute numerical values and
evaluate K;:

_ (3kg)(=5m/s)i +(Lkg)(3mis)i
o 3kg +1kg

= | (~3.00m/s)i

G, =V, -V, = (3m/s)i —(-3mi/s)i

=| (6.00m/s)i

G, =| (2.00m/s)i

and
G, =| (-6.00m/s)i

V, =, +V,, =(2m/s)i +(-3m/s)i

3
=| (~1.00m/s)i

V, = 0, +V,, = (-6m/s)i +(-3m/s)i

1
=| (-9.00m/s)i

_1 2 1 2
Ki =7MVy +5 MV,

K, = 1|(3kg)BEmis)? + (1kg)(3m/s)]
~[42.0
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Express K in the original frame of K, =imyv'?Z +imyv'?

reference:

Substitute numerical values and Ki =% [(3 kg)(@m/s) +(1kg)(9 m/s)z]
evaluate K: 14203
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Picture the Problem Let the numerals 3 and 1 denote the blocks whose masses are 3 kg
and 1 kg respectively. We can use Z m,V; = MV, to find the velocity of the center-of-
i

mass of the system and simply follow the directions in the problem step by step.

(a) Express the total momentum of P= Z m;V; = MV, + MgV

this two-particle system in terms of '

the velocity of its center of mass: = MV, = (m;+mg )V,

Solve for V, : L MV, +mgVg
om+m,

Substitute numerical values and

g (3kg)(=5m/s)i +(5kg)(3m/s)i

evaluate V,,: cm 3kg +5kg
(b) Find the velocity of the 3-kg G, =V,—V,, =(-5m/s)i-0
block in the center of mass reference 3 ( 5m/ ) x
frame: =[\zomis)]
Find the velocity of the 5-kg block in G, =V, —V,, = (3m/s)i -0
the center of mass reference frame: B (3 m /S)f
(c) Express the after-collision 0'3 = (5 m/s)f
velocities of both blocks in the

and
center of mass reference frame: ,

us =| 0.75mf/s
(d) Transform the after-collision \7;3 = a; +V,, = (5 m/s)f +0
velocity of the 3-kg block from the 3 (5 / ).A
center of mass reference frame to the B mis)i

original reference frame:
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Transform the after-collision V. =0, +V,_ =(-3m/s)i +0
velocity of the 5-kg block from the 3 ( 3m/ )A
center of mass reference frame to the = [T oMt

original reference frame:

(e) Express K; in the original frame K, =1myv; +Imy?
of reference:

Substitute numerical values and K, =1 [(3 kg)(5m/s) +(5kg)(3 m/s)z]
evaluate K;: —[6003

Express K; in the original frame of Ky =1imyv'? +1my'?

reference:

Substitute numerical values and evaluate K

K, = 1|(3kg)Emis}  +(5kg)(3misy |=[60.0J

Systems With Continuously Varying Mass: Rocket Propulsion

104 oo
Picture the Problem The thrust of a rocket Fy, depends on the burn rate of its fuel dm/dt
and the relative speed of its exhaust gases Uey according to F,, = |dm/ dt|ueX :

Using its definition, relate the E d_mu

rocket’s thrust to the relative speed "ldt |

of its exhaust gases:

Substitute numerical values and F,, = (200kg/s)(6km/s)=| 1.20 MN

evaluate Fy,:
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Picture the Problem The thrust of a rocket Fy, depends on the burn rate of its fuel dm/dt
and the relative speed of its exhaust gases e according to F, = |dm/ dt|uex . The final

velocity v; of a rocket depends on the relative speed of its exhaust gases Uy, its payload
to initial mass ratio m¢/mg and its burn time according tov, =—U,, In(mf /mo)— ot,.

dm
dt

(a) Using its definition, relate the

u
rocket’s thrust to the relative speed &

Fth :‘
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of its exhaust gases:
Substitute numerical values and
evaluate Fy,:

(b) Relate the time to burnout to the
mass of the fuel and its burn rate:

Substitute numerical values and
evaluate t,:

(c) Relate the final velocity of a
rocket to its initial mass, exhaust
velocity, and burn time:

Substitute numerical values and evaluate vs:

(1.8 km/s)ln(%j—(9.81m/sz)(1zos) -

*106 e

F,, = (200kg/s)(1.8km/s)=| 360kN
_ mg,  0.8m,
" dm/dt dm/dt
b:O.8(30,000kg): 1705
200kg/s

m
Vi = —Ugy In[m_fj - gtb
0

1.72km/s

Picture the Problem We can use the dimensions of thrust, burn rate, and acceleration to
show that the dimension of specific impulse is time. Combining the definitions of rocket

thrust and specific impulse will lead us tou,,

(a) Express the dimension of
specific impulse in terms of the
dimensions of Fy, R, and g:

(b) From the definition of rocket
thrust we have:

Solve for Ugy:

Substitute for F, to obtain:

(c) Solve equation (1) for I, and
substitute for ue, to obtain:

From Example 8-21 we have:

=gl,,.
] M-L
Fth
T
I.]- [RIs] M L
T T°
I:th :Ruex
uex:i
R
Rgl,
ex_Tp: glsp (l)
_Fn
sp Rg

R = 1.384x10" kg/s and Fy, = 3.4x10° N
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Substitute numerical values and | 3.4%x10° N

evaluate 1y ® ~ [1.384x10" kg/s)(9.81m/s?)
=|25.0s

*107  eee

Picture the Problem We can use the rocket equation and the definition of rocket thrust
to show thatz, =1+ ao/g . In part (b) we can express the burn time t, in terms of the
initial and final masses of the rocket and the rate at which the fuel burns, and then use

this equation to express the rocket’s final velocity in terms of I, 7, and the mass ratio
mo/mz. In part (d) we’ll need to use trial-and-error methods or a graphing calculator to

solve the transcendental equation giving vt as a function of my/ms.

(a) Express the rocket equation:

From the definition of rocket thrust
we have:

Substitute to obtain:

Solve for Fy, at takeoff:

Divide both sides of this equation by
mog to obtain:

Because 7, = F,, /(m,Q):

(b) Use equation 8-42 to express the
final speed of a rocket that starts
from rest with mass mq;

Express the burn time in terms of the
burn rate R (assumed constant):

Multiply t, by one in the form gT/gT
and simplify to obtain:

-mg +Ru,, =ma

Fth = Ruex

—-mg + F, =ma

Fn =Myg +mya,

m
v, =u_ In——gt,_, 1)
f ex mf b
where t;, is the burn time.

tb = Mo~ My :%(1—ﬂj

R R m,
tb = _gFth ﬂ(l—ﬂj
gF, R My

:.gm@(l_ﬂj
Fn ORL My

oo me
Ty m,
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Substitute in equation (1):
uation (1) g Mo Gl m
f = Yex
m. 7, m,
From Problem 32 we have: u, =gl
ex sp !
where U is the exhaust velocity of the
propellant.
Substitute and factor to obtain:
vo—al inMe_Glof, m
f g sp n
m; Ty m,

|oR)-2lR

(c) A spreadsheet program to calculate the final velocity of the rocket as a function of the
mass ratio mo/m¢ is shown below. The constants used in the velocity function and the
formulas used to calculate the final velocity are as follows:

Cell Content/Formula Algebraic Form

Bl 250 Isp

B2 9.81 g

B3 2 T

D9 D8 +0.25 Mo/M¢

E8 $B$2*$B$1*(LOG(D8) — Ll Mo )L

(1/$B$3)*(1/D8)) s ”(me TO( mg)

A B C D E

1 |Isp=|250 |s

2 =19.81 | m/s"2

3 |tau=|2

4

5

6

7 mass ratio vf

8 2.00 1.252E+02

9 2.25 3.187E+02

10 2.50 4.854E+02

11 2.75 6.316E+02

12 3.00 7.614E+02

36 9.00 2.204E+03

37 9.25 2.237E+03

38 9.50 2.269E+03

39 9.75 2.300E+03

40 10.00 2.330E+03

41 725.00 | 7.013E+03
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A graph of final velocity as a function of mass ratio is shown below.

2 //
@
£
>
0
2 4 6 8 10
mo/m;

(d) Substitute the data given in part (c) in the equation derived in part (b) to obtain:

7kmis = (9.81m/s* )(2505)('”m_£[1_&j]

mf mO
or
0.5
2.854 = In x— 0.5+ —— where x = mg/m;.

X

Use trial-and-error methods or a _
. . Xx=|28.1],

graphing calculator to solve this )
transcendental equation for the root a value considerably larger than the
greater than 1: practical limit of 10 for single-stage

rockets.
108 e

Picture the Problem We can use the velocity-at-burnout equation from Problem 106 to
find v¢ and constant-acceleration equations to approximate the maximum height the
rocket will reach and its total flight time.

(a) Assuming constant acceleration, h=1 gttZOp (1)
relate the maximum height reached

by the model rocket to its time-to-

top-of-trajectory:

From Problem 106 we have: v. =al_| 1l Mo _Apme
1 =0ly N
m T My
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Evaluate the velocity at burnout v¢ v, = (9.81 m/SZ)(loo 5)
for I, = 100 s, me/m¢ = 1.2, and

r=5 x[ln(l.z)—%(l—%ﬂ

=146 m/s
Assuming that the time for the fuel v, 146m/s
to burn up is short compared to the top E - 9.81m/s2 =14.9s
total flight time, find the time to the )
top of the trajectory:
Substitute in equation (1) and h= ;(9 81m/32)(14 95)2 —[1.09km
evaluate h: 2\ ' :

(b) Find the total flight time from
the time it took the rocket to reach
its maximum height:

tign: = 2tep = 2(14.95)=| 29.85

(c) Express and evaluate the fuel I m, 1005 1
burn time ty: t,=—>|1-— :_(1__j
T m, 5 1.2
=3.33s

Because this burn time is approximately 1/5 of the total flight time, we can't
expect the answer we obtained in Part (b) to be very accurate. It should,
however, be good to about 30% accuracy, as the maximum distance

the model rocket could possibly move in this time is 3 vt, =243 m, assuming
constant acceleration until burnout.

General Problems
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Picture the Problem Let the direction of motion of the 250-g car before the collision be
the positive x direction. Let the numeral 1 refer to the 250-kg car, the numeral 2 refer to
the 400-kg car, and V represent the velocity of the linked cars. Let the system include
the earth and the cars. We can use conservation of momentum to find their speed after
they have linked together and the definition of kinetic energy to find their initial and
final Kinetic energies.

Use conservation of momentum to Pix = Psx
relate the speeds of the cars or
immediately before and immediately my, = (m1 +m, )V

after their collision:
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Solve for V:

Substitute numerical values and
evaluate V:

Find the initial Kinetic energy of the
cars:

Find the final kinetic energy of the
coupled cars:

110 -

mv,
m, +m,

V =

_ (0.250kg)(0.50m/s) _
0.250kg +0.400kg

0.192m/s

Picture the Problem Let the direction of motion of the 250-g car before the collision be
the positive x direction. Let the numeral 1 refer to the 250-kg car and the numeral 2 refer
to the 400-g car and the system include the earth and the cars. We can use conservation
of momentum to find their speed after they have linked together and the definition of
Kinetic energy to find their initial and final kinetic energies.

(a) Express and evaluate the initial
kinetic energy of the cars:

(b) Relate the velocity of the center
of mass to the total momentum of
the system:

Solve for vm:

Substitute numerical values and
evaluate Ve

Find the initial velocity of the 250-g
car relative to the velocity of the
center of mass:

K, =imyv} =1(0.250kg)(0.50m/s)’
= 31.3mJ

P= > my, =mv,,
i

_ MYy + MV,
cm
m, +m,

_ (0.250kg)(0.50m/s)
" 0.250kg +0.400kg

=0.192m/s

u, =V, —V,, =0.50m/s-0.192m/s
=| 0.308m/s
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Find the initial velocity of the 400-g
car relative to the velocity of the
center of mass:

Express the initial kinetic energy of
the system relative to the center of
mass:

Substitute numerical values and
evaluate Kj

(c) Express the kinetic energy of the
center of mass:

Substitute numerical values and
evaluate K¢

(d) Relate the initial kinetic energy of
the system to its initial kinetic energy
relative to the center of mass and the
kinetic energy of the center of mass:

*111 -

u, =V, —v,, =0m/s-0.192m/s

= -0.192m/s
Ki,rel = % mlu12 + % mzuz2
K, = 4(0.250kg)(0.308 m/s)’
+1(0.400kg)(-0.192m/s)’
=(19.2mJ
Kcm = % Mvsm

K., =1(0.650kg)(0.192m/sy
=|12.0mJ

Ki = Ki,rel + Kcm
=19.2mJ+12.0mJ
=31.2mJ

Ki = Ki,rel + Kcm

Picture the Problem Let the direction the 4-kg fish is swimming be the positive x
direction and the system include the fish, the water, and the earth. The velocity of the
larger fish immediately after its lunch is the velocity of the center of mass in this

perfectly inelastic collision.
Relate the velocity of the center of
mass to the total momentum of the

system:

Solve for vm:
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Substitute numerical values and v - (4 kg)(1.5 m/s)— (1.2kg) (3m/s)
evaluate Vg o 4kg+1.2kg

=| 0.462m/s
112 -

Picture the Problem Let the direction the 3-kg block is moving be the positive x
direction and include both blocks and the earth in the system. The total kinetic energy of
the two-block system is the sum of the kinetic energies of the blocks. We can relate the
momentum of the system to the velocity of its center of mass and use this relationship to
find v, Finally, we can use the definition of kinetic energy to find the kinetic energy
relative to the center of mass.

(a) Express the total kinetic energy Ky = myvZ +1mgvg
of the system in terms of the Kinetic
energy of the blocks:

Substitute numerical values and Ky =1(3kg)(6m/s) +1(6kg)(3mis)
evaluate K —81.0J
(b) Relate the velocity of the center P= Z myV; = mv,
of mass to the total momentum of i
the system:
Solve for Vgp: _ MyVy + MeVe

o m, +m,
Substitute numerical values and v = (3kg)(6m/s)+(6kg)(3m/s)
evaluate Vgn: o 3kg +6kg

=| 4.00m/s

(c) Find the center of mass kinetic K., =i Mv? =1(9kg)(4m/sy
energy from the velocity of the _[7203
center of mass:
(d) Relate the initial kinetic energy K = Kt = K
of the system to its initial kinetic =81.0J-72.0J
energy relative to the center of mass _[9003

and the kinetic energy of the center
of mass:
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113 -

Picture the Problem Let east be the positive x direction and north the positive y
direction. Include both cars and the earth in the system and let the numeral 1 denote the
1500-kg car and the numeral 2 the 2000-kg car. Because the net external force acting on
the system is zero, momentum is conserved in this perfectly inelastic collision.

(a) Express the total momentum of the P=Pp+ P, =My, + m,V,

system: =my, | —m,v,i

Substitute numerical values and evaluate P :

A

b = (1500kg)(70km/h)j —(2000kg)(55km/h )i
—| —(1.10x10°kg-km/h ) i +(1.05x10° kg - km/h )j

(b) Express the velocity of the -
wreckage in terms of the total
momentum of the system:

Substitute numerical values and evaluate V :

o _—(L10x10°kg-km/h) T (1.05x10° kg - kmvh)j
' 1500 kg + 2000 kg 1500 kg + 2000 kg

A

= —(3L.4km/h) i +(30.0km/h)j

Find the magnitude of the velocity v, = \/(31,4 km/h)* +(30.0km/h)’
of the wreckage:
=| 43.4km/h
Find the direction of the velocity of 4| 30.0km/h
_ 0=t ——— |=-43.7°
the wreckage: —31.4km/h

The direction of the wreckage is
46.3° west of north.
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Picture the Problem Take the origin to be at the initial position of the right-hand end of
raft and let the positive x direction be to the left. Let "w” denote the woman and "r” the
raft, d be the distance of the end of the raft from the pier after the woman has walked to
its front. The raft moves to the left as the woman moves to the right; with the center of
mass of the woman-raft system remaining fixed (because Fey;net = 0). The diagram shows
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the initial (xy,;) and final (x. ) positions of the woman as well as the initial (X, ¢m;) and
final (x, cmr) positions of the center of mass of the raft both before and after the woman

has walked to the front of the raft.

E |<_Xr7cm,i_0
Liixwi=6 m

' ) Xc

M 0 B
: sm |
E/CM H < i E
X [ o X |
Xr_cm,f 0
Xr_cm,i — T Xwf
[ — d —
(a) Express the distance of the raft d=05m+x,, (1)
from the pier after the woman has
walked to the front of the raft:
Express Xcm before the woman has « - My, Xyi +MeX o i
walked to the front of the raft: em m, +m,
Express X.m after the woman has « - My Xys M X ot
walked to the front of the raft: em m, +m,
Because Fex:net = 0, the center of My, Xy i +MX i = My X +MX g
mass remains fixed and we can
equate these two expressions for X¢m
to obtain:
Solve for Xy +: m
" Xw,f = XW,i - _r(xr_cm,f - Xr_cm,i)
w

From the figure it can be seen that X My, Xy
Xr emf = Xr cmi = Xwt. SUbstitute X, wi m,, +m,
for X; cmf— Xr cm,i @nd to obtain:
Substitute numerical values and _ (60kg)(6m)

evaluate X f:

wi = =2.00m
" 60kg+120kg
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Substitute in equation (1) to obtain:

(b) Express the total Kinetic energy
of the system:

Noting that the elapsed time is 2 s,
find vy, and v;:

Substitute numerical values and
evaluate Kio:

Evaluate K with the raft tied to the
pier:

d=200m+05m=|250m

Ktot = %mwvvzv +%mrvf
X — X, —
v, = LWl 2m=6M _ 5 s
At 2s
relative to the dock, and
X =X 2.50m—-0.5m
v, =— = = =1m/s,
At 28
also relative to the dock.
K = 5(60kg)(-2m/s)
+1(120kg)(@m/s)’
=1180J
Kot =% mwvvzv = %(60 kg )(3 mls)z
=|270J

her internal energy.

All the kinetic energy derives from the chemical energy of the woman and,
(c) | assuming she stops via static friction, the kinetic energy is transformed into

and lands at the front of the raft.

After the shot leaves the woman's hand, the raft - woman system constitutes
an inertial reference frame. In that frame the shot has the same initial

(d) | velocity as did the shot that had a range of 6 m in the reference frame of

the land. Thus, in the raft - woman frame, the shot also has a range of 6 m
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Picture the Problem Let the zero of gravitational potential energy be at the elevation of
the 1-kg block. We can use conservation of energy to find the speed of the bob just
before its perfectly elastic collision with the block and conservation of momentum to
find the speed of the block immediately after the collision. We’ll apply Newton’s 2™ law
to find the acceleration of the sliding block and use a constant-acceleration equation to

find how far it slides before coming to rest.
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(a) Use conservation of energy to
find the speed of the bob just before
its collision with the block:

Because K; = Us; = 0:

Substitute numerical values and
evaluate Vpg:

Because the collision is perfectly
elastic and the ball and block have
the same mass:

(b) Using a constant-acceleration
equation, relate the displacement of
the block to its acceleration and
initial speed and solve for its
displacement:

Apply > F =mato the sliding
block:

Using the definition of f, (t4Fn)
eliminate f, and F,, between the two
equations and solve for ayjock:

Substitute for ayec to obtain:

Substitute numerical values and
evaluate Ax;
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AK + AU =0
or
K, -K,+U;-U, =0

2
%mballvball + mballgAh =0
and

Voar =+/29Ah

Vo = 1/2(9.81m/s? )(2m) = 6.26 m/s

Vitock = Voan = 6.26m/s

2 2
Vi = Vi 28400, AX
Sincev, =0,
2 2
AX = Vi — ~ Volock
2ablock 2ablock

z Fo=—f =May
and

sz = I:n ~Myjoe 9 =0

Apiock = —H 9

AX = _ Vtflock — Vlflock
-21,9 219

_ (6.26m/s)

~2(0.1)(0.81mss?) 200m

Picture the Problem We can use conservation of momentum in the horizontal direction
to find the recoil velocity of the car along the track after the firing. Because the shell will
neither rise as high nor be moving as fast at the top of its trajectory as it would be in the

absence of air friction, we can apply the work-energy theorem to find the amount of
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thermal energy produced by the air friction.

No. The vertical reaction force of the railsis an external force and so

a
@ the momentum of the system will not be conserved.
(b) Use conservation of momentum Ap, =0
in the horizontal (x) direction to or
obtain: mvcos30°—Mv,, =0
Solve for and evaluate Vyeei: Vo= mv cos 30°

recoil —  ~p

M
Substitute numerical values and v (200kg)(125m/s)cos30°
evaluate Vreco”. recoll 5000 kg
=| 4.33m/s

(c) Using the work-energy theorem, W, =W, = AE = AU + AK
relate the thermal energy produced
by air friction to the change in the
energy of the system:
Substitute for AU and AK to obtain: W, = mgy, —mgy, +1mv; —1mv’

=mg(y, - y,)+m(vZ -v?)

Substitute numerical values and evaluate Wey:

W,,, = (200kg)(0.81m/s? (180 m)-+ 4 (200kg)|(8Om/s): — (125mis) |= [ ~569KkJ

117 e

Picture the Problem Because this is a perfectly inelastic collision, the velocity of the
block after the collision is the same as the velocity of the center of mass before the
collision. The distance the block travels before hitting the floor is the product of its
velocity and the time required to fall 0.8 m; which we can find using a constant-
acceleration equation.

Relate the distance D to the velocity D=v,At
of the center of mass and the time for
the block to fall to the floor:
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Relate the velocity of the center of
mass to the total momentum of the
system and solve for vgp:

Substitute numerical values and
evaluate Ve

Using a constant-acceleration

equation, find the time for the block
to fall to the floor:

Substitute to obtain:

Substitute numerical values and
evaluate D:

P=>"mv, =MV,

and

mbulletvbullet + mblockvblock
Myyiier + Mpiock

V =

cm

_ (0.015kg)(500mvs) _ 9.20m/s

v
‘" 0.015kg +0.8kg

Ay =V At +1a(At)

Becausev, =0, At = 28y

9
D=v,, /@
9

D =(9.20m/s)

2(08m) _

=[3.72m
9.81m/s?
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Picture the Problem Let the direction the particle whose mass is m is moving initially
be the positive x direction and the direction the particle whose mass is 4m is moving
initially be the negative y direction. We can determine the impulse delivered by F and,

hence, the change in the momentum of the system from the change in the momentum of
the particle whose mass is m. Knowing Ap , we can express the final momentum of the

particle whose mass is 4m and solve for its final velocity.

[ FT = 8p=p—p

= m(4v)i —mvi =3mvi

Express the impulse delivered by the
force F :

Express p',,, : P'un = 4MV" = P, (0)+ AP

=-4mv j+3mvf

Solve for V' :

<l
I

3 o n
2vi-vj
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Picture the Problem Let the numeral 1 Tt
refer to the basketball and the numeral 2 to
the baseball. The left-hand side of the

diagram shows the balls after the 0

basketball’s elastic collision with the floor ? Dy
and just before they collide. The right-hand

U-Zl
(GT

side of the diagram shows the balls just
after their collision. We can apply
conservation of momentum and the
definition of an elastic collision to obtain
equations relating the initial and final

velocities of the masses of the colliding
objects that we can solve for vis and voy.

(a) Because both balls are in free- The velocity of the basketball will

fall, and both are in the air for the ] . .
same amount of time, they have the be equal in magnitude but opposite

same velocity just before the in direction to the velocity of the
basketball rebounds. After the

basketball rebounds elastically, its baseball.
velocity will have the same
magnitude, but the opposite
direction than just before it hit the
ground.
(b) Apply conservation of MV + MoV, = MV, + MoV, (1)
momentum to the collision of the
balls to obtain:
i . — ) ) , )

Relatg the initial and_flnal _kmetlc_ Imyz +imyVz =imyvz +3imy
energies of the balls in their elastic
collision:
Rearrange this equation and factor mZ(VSf —V2 ) _ ml(vf_ V2 )
to obtain: ' '

or

mz(sz _V2i)(V2f JrVzi) @)

= ml(vli — Vit )(Vli +Vlf)

Rearrange equation (1) to obtain: mz(sz —V, ) = ml(\/1i —V, ) (3)
Divide equation (2) by equation (3) Vye + Vo = Vi + Vi
to obtain:
Rearrange this equation to obtain Vi =V =V, =V, (4)
equation (4):
Multiply equation (4) by m, and add (m1 +m, )Vlf = (ml - mz)\/li +2m,V,,

it to equation (1) to obtain:
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Solve for vy to obtain:

For m; =3m, and vy = v;

(c) Multiply equation (4) by m; and
subtract it from equation (1) to
obtain:

Solve for vy to obtain:

For my = 3m, and vy; = v:
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Picture the Problem In Problem 119
only two balls are dropped. They collide
head on, each moving at speed v, and the
collision is elastic. In this problem, as it
did in Problem 119, the solution
involves using the conservation of
momentum equation

m,\v;; + m,v,, =m,v;;, + m,v,, and the
elastic collision equation

V¢ —Vy =V, —Vy;, where the numeral 1

refers to the baseball, and the numeral 2
to the top ball. The diagram shows the
balls just before and just after their
collision. From Problem 119 we know
that that vq;= 2v and v,; = —v.

m, —m, 2m,
Vi = Vy+ Vyi
m, +m, m, +m,
or, because V,; = —Vvi;,
m,—m 2m
Vyp = ———2V— 2V,
m, +m, m, +m,
_m - 3m, _
m+m,
3m, —3m
= 2v=|0
3m, +m,

(ml +m, )sz = (mz - ml)VZi + 2le1i

or, because v, = —Vvy;,
2m m, —m
1y 2 1

Vor =

m+m, ' m+m, "
_3m,—m,
m+m, -
3(3m, )—m
2f: ( 2) 2V: 2V
3m, +m,
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(a) Express the final speed vy; of the y m, —m, vt 2m, y
baseball as a function of its initial i = 1i 2
speed vy; and the initial speed of the m, +m, m, +m,
top ball vy; (see Problem 78):

Substitute for v4; and , v, to obtain: m,—m, 2m,
vy = 2v)+ (-v)

m, +m, m +m,
Divide the numerator and m,
denominator of each term by m, to mi - 2
introduce the mass ratio of the upper Vy = —2 (2v)+ (—V)
ball to the lower ball: M 4 ALY

m2 m2
Set the final speed of the baseball vis 0= x—1 ) 2
equal to zero, let x represent the = _( ) —(— V)

] X+1 Xx+1
mass ratio my/m,, and solve for x: and
DL
m, [2
(b) Apply the second of the two 2m, ,—m
equations in Problem 78 to the Vot = Vi + Vai
o m, +m m, +m
collision between the top ball and 1o 1o
the baseball:
Substitute vq; = 2v and are given that y 2m, (2v)+ m, —m, ( v)
V,i = —V to obtain: of = -
2 m +m, m, +m,
In part (a) we showed that y 2(2m,) (2v) 2m, —m,
m, = 2m;. Substitute and simplify: L S I
2= M plify m, +2m, m, +2m,
dm m
=AM (2u)- ey = v

3m, 3m,
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Picture the Problem Let the direction the probe is moving after its elastic collision with
Saturn be the positive direction. The probe gains kinetic energy at the expense of the
kinetic energy of Saturn. We’ll relate the velocity of approach relative to the center of
mass to U and then to v.

(a) Relate the velocity of recession V=U, *+ Ve
to the velocity of recession relative
to the center of mass:
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Find the velocity of approach: Uy,p =—9.6km/s—10.4km/s
=-20.0km/s
Relate the relative velocity of Uree = —U,,, = 20.0km/s

approach to the relative velocity of
recession for an elastic collision:

Because Saturn is so much more Vem = Vsaum = 9.6 KM/
massive than the space probe:

Substitute and evaluate v: V=U, +V,, =20km/s+9.6km/s
=| 29.6km/s
(b) Express the ratio of the final K, 4 My 2 (v T
— rec __ rec
Kineti e N — | Zrec
inetic energy to the initial kinetic K, %va v
energy:

2
_ 29.6km/s 810
10.4km/s

The energy comes from an immeasurably small slowing of Saturn.
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Picture the Problem We can use the relationships P = cAm and AE = Amc®to show
that P = AE/c. We can then equate this expression with the change in momentum of the
flashlight to find the latter’s final velocity.

(a) Express the momentum of the P =cAm
mass lost (i.e., carried away by the
light) by the flashlight:

Relate the energy carried away by the AE

light to the mass lost by the Am = ra

flashlight:

Substitute to obtain: AE | AE
P=Cc—=|—

c c
(b) Relate the final momentum of the AE
flashlight to AE: o Ap=mv

because the flashlight is initially at rest.

Solve for v: y AE
T mc
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Substitute numerical values and 1.5%x10%)J

. V=
evaluate v. (1.5kg)(2.998 x 10° m/s)
3.33x10°m/s

=| 3.33 um/s

123 -

Picture the Problem We can equate the change in momentum of the block to the
momentum of the beam of light and relate the momentum of the beam of light to the
mass converted to produce the beam. Combining these expressions will allow us to find
the speed attained by the block.

Relate the change in momentum of (|\/| - m)v =P,
the bI_OCk o the momentum of the because the block is initially at rest.
beam:
Express the momentum of the mass Py = MC
converted into a well-collimated
beam of light:
Substitute to obtain: (|\/| — m)v -mc
Solve for v: . mc
M -m
Substitute numerical values and (0.00lkg)(2.998 % 108 m/s)
evaluate v: V=
1kg—0.001kg
=|3.00 x 10° m/s
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Picture the Problem Let the origin of the coordinate system be at the end of the boat at
which your friend is sitting prior to changing places. If we let the system include you and
your friend, the boat, the water and the earth, then Fey et = 0 and the center of mass is at
the same location after you change places as it was before you shifted.

Express the center of mass of the « - Myoat Xooat T MyouXyou + MXfieng
H H . cm T
system prior to changing places: Mygar + Myoy + Meieng

_ Xyou (mboat + myou )+ meriend
mboat + myou +m
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Substitute numerical values and
simplify to obtain an expression for
Xem 1N terms of m:

y _(2m)(60kg+80kg)+(0)m
o 60kg +80kg +m

_ 280kg-m

~ 140kg+m

Find the center of mass of the system after changing places:

_ mboatxboat + My, X + mxfriend

_ (Myge +m)(2m+0.2m)

N My, (£0.2m)

X' = you “*you
cm
m

+ myou +m

boat friend

m

+ My, +M Mygar + My +M

boat boat

Substitute numerical values and simplify to obtain:

y (60kg+m)(2m+0.2m)
o 60kg +80kg+m

. (2m)m+0.2mm=+16kg-m

140kg+m
Because Fextnet = 0, X'cm = Xem -

Equate the two expressions and
solve for m to obtain:

Calculate the largest possible mass
for your friend:

Calculate the smallest possible mass
for your friend:
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. (80kg)(+0.2m) 120kg-m+12kg-m
60kg+80kg+m

140kg +m
(160 + 28)
m =-———-kg
(2+0.2)
m= ng =| 104kg
(2-0.2)
(2+0.2)

Picture the Problem Let the system include the woman, both vehicles, and the earth.
Then Fexenet = 0 and agy = 0. Include the mass of the man in the mass of the truck. We
can use Newton’s 2™ and 3" laws to find the acceleration of the truck and net force

acting on both the car and the truck.

(a) Relate the action and reaction forces
acting on the car and truck:

Solve for the acceleration of the truck:

Fcar = l:truck
or
mcaracar = mtruck+woman atruck

m.,a

a _ car “car
truck

truck+woman
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Substitut ical val d 2m/s’

ubstitute nur.nerlca values an = (800 kg)(l 2m/s ): 0.600m/<?
evaluate aye: 1600kg

(b) Apply Newton’s 2" law to Fret = Mgy

either vehicle to obtain:

Substitute numerical values and
evaluate Fpe:

F.. = (800kg)(1.2m/s?)=[ 960N

126 e

Picture the Problem Let the system include the block, the putty, and the earth. Then
Fextnet = 0 and momentum is conserved in this perfectly inelastic collision. We’ll use
conservation of momentum to relate the after-collision velocity of the block plus blob

and conservation of energy to find their after-collision velocity.

Noting that, because this is a
perfectly elastic collision, the final
velocity of the block plus blob is the
velocity of the center of mass, use
conservation of momentum to relate
the velocity of the center of mass to
the velocity of the glob before the
collision:

Solve for vy to obtain:

Use conservation of energy to find
the initial energy of the block plus
glob:

Use fy = 14Mg to eliminate f, and
solve for vgm:

Substitute numerical values and
evaluate Ve

Pi = P¢
or

mglvgl = Mvcm

where M = mg + my,.

g = Vem 1)

AK +AU +W; =0

Because AU = K; =0,
—i MV, + f Ax=0

ch = \Y 2/uk gAX

Vo =+/2(0.4)(9.81m/s?)(0.15m)
=1.08m/s



600 Chapter 8

Subst_itute numerical values in v, = 13kg +0.4kg (L.08ms)
equation (1) and evaluate vg: 0.4kg
=|36.2m/s
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Picture the Problem Let the direction the moving car was traveling before the collision
be the positive x direction. Let the numeral 1 denote this car and the numeral 2 the car
that is stopped at the stop sign and the system include both cars and the earth. We can
use conservation of momentum to relate the speed of the initially-moving car to the
speed of the meshed cars immediately after their perfectly inelastic collision and
conservation of energy to find the initial speed of the meshed cars.

Using conservation of momentum, P, = Ps
relate the before-collision velocity to or

the after-collision velocity of the
meshed cars:

myv, = (ml +m, )V

Solve for vy: m, +m m
' V=2V =142 |V
m, m,
Using conservation of energy, relate AK +AE, ... =0
the initial kinetic energy of the or, because K¢ = 0 and AEqerma = fAS,
meshed cars to the work done by -K; + f,As=0

friction in bringing them to a stop:

Substitute for Ki and, using —1MV?+ 14, MgAX =0

f« = wuFn = Mg, eliminate fy to
obtain:

Solve for V: V =,/2u,09AX

Substitute to obtain:
Vv, = (1+ﬂ]1/2,ukgAx
m

1

Substitute numerical values and evaluate v;:

900k
v, = (1+ 1200 k% J\/2(0.92)(9.81m/52)(0.76 m) = 6.48m/s = 23.3km/h
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The driver was not telling the truth. He was traveling at 23.3 km/h.
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Picture the Problem Let the zero of gravitational potential energy be at the lowest point
of the bob’s swing and note that the bob can swing either forward or backward after the
collision. We’ll use both conservation of momentum and conservation of energy to
relate the velocities of the bob and the block before and after their collision.

Express the kinetic energy of the p2

. . . K,=—"
block in terms of its after-collision ™ om
momentum:
Solve for m to obtain: 2

m=_Po (1)
2K,

Use conservation of energy to relate AK +AU =0
K to the change in the potential or, because K; =0,
energy of the bob: K,+U;-U, =0
Solve for Ki,: K,=-U;+U,

= mbobg[L(l— cosé;)— L(1-cosé, )]
= m,,,0L[cos6, —cosé]

Substitute numerical values and evaluate K

K,, = (0.4kg)(9.81m/s?)(L.6 m)[c0s5.73° — c0s53°] = 2.47]

Use conservation of energy to find AK +AU =0
the velocity of the bob just before its or, because K; = U; = 0,
collision with the block: Ki-U,=0

s im,,v2-m,, gLl-cosd)=0

or
Substitute numerical values and V= \/2(9_81m/52)(1.6 m)(l— C0553°)
evaluate v: =3.544m/s

Use conservation of energy to find AK +AU =0
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the velocity of the bob just after its
collision with the block:

Substitute for K; and Us to obtain:

Solve for v';

Substitute numerical values and
evaluate v';

Use conservation of momentum to
relate py, after the collision to the
momentum of the bob just before
and just after the collision:

Solve for and evaluate pp:

Find the larger value for pp:

Find the smaller value for pp;:

Substitute in equation (1) to

determine the two values for m:
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or, because K: = U; =0,
-K,+U; =0

—3myo v +my,gL(l—cosé; ) =0

V'= 1/ZgLil—cosé?f ]

v'=4/2(9.81m/s? (1.6 m)(1—c0s5.73°)
=0.396m/s

Pi = Pr
or
MyepV = mbobV'i P

P = MyopV £ MgV’
= (0.4kg)(3.544m/s +0.396 m/s)
=1.418kg-m/s+0.158kg - m/s

P, =1.418kg-m/s+0.158kg - m/s
=1.576kg - m/s

P, =1.418kg-m/s—0.158kg - m/s

=1.260kg - m/s
2
m=(1.576kg-m/s) _0.503kg
2(2.471)
or

_ (L.260kg-m/s)°
2(2.47))

=] 0.321kg

Picture the Problem Choose the zero of gravitational potential energy at the location
of the spring’s maximum compression. Let the system include the spring, the blocks,
and the earth. Then the net external force is zero as is work done against friction. We
can use conservation of energy to relate the energy transformations taking place during

the evolution of this system.

Apply conservation of energy:

AK +AU, +AU, =0
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Because AK = 0:

Express the change in the
gravitational potential energy:

Express the change in the potential
energy of the spring:

Substitute to obtain:

Solve for M:

Relate Ah to the initial and rebound
positions of the block whose mass is
m:

Substitute numerical values and evaluate M:

Y

11x10° N/m)(0.04m)

AU, +AU =0

AU, = —-mgAh — Mgxsin @

AU

1 2
EkX

S

—mgAh — Mgxsin @ + 1 kx* =0

M = $kx®* —mgAh _ kx  2mAh
gxsin 30° g X

Ah =(4m—2.56m)sin30° = 0.720m

2(1kg)(0.72m) 8.85Kg

9.81m/s?
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Picture the Problem By symmetry, X¢m = 0.

0.04m

Let o be the mass per unit area of the disk.

The mass of the modified disk is the difference between the mass of the whole disk and

the mass that has been removed.

Start with the definition of y¢m:

Express the mass of the complete disk:

Express the mass of the material removed:

Substitute and simplify to obtain:

Yom = —
M mhole
— mdisk ydisk — mhole yhole
M - Miore

M =cA=orr’

2
mh0|e=672'(£j =loxr’=1iM
L _MO-Gmein
cm 1M 6
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Picture the Problem Let the horizontal axis by the y axis and the vertical axis the z
axis. By symmetry, X.m = Yem = 0. Let p be the mass per unit volume of the sphere. The
mass of the modified sphere is the difference between the mass of the whole sphere and
the mass that has been removed.

Start with the definition of yem: > my,

Express the mass of the complete sphere: M=pV=5prr

Express the mass of the material removed:

Substitute and simplify to obtain:

*132 e

Picture the Problem In this elastic head-on collision, the kinetic energy of recoiling
nucleus is the difference between the initial and final kinetic energies of the neutron. We
can derive the indicated results by using both conservation of energy and conservation
of momentum and writing the Kinetic energies in terms of the momenta of the particles
before and after the collision.

(a) Use conservation of energy to pﬁi _ p.ff n pnzucleus 1)
relate the kinetic energies of the 2m  2m 2M

particles before and after the

collision:

Apply conservation of momentum to Pri = Prs + Pructeus (2)
obtain a second relationship between

the initial and final momenta:

Eliminate p, in equation (1) using Pructeus " Prucieus _ Pni _ 0 3)
equation (2): 2M 2m m

Use equation (3) to write pZ/2min P P e (M +m)’ @

terms of Pruciess: 2m " 8M °m
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Q)

_ Rn2
nucleus — pnucleus

Use equation (4) to express { 4AMm }
K, —(

i Knuceus =
K /ZM in terms of I M + m)2
Ka:

(b) Relate the change in the kinetic AK, ==K creus
energy of the neutron to the after-

collision kinetic energy of the

nucleus:

Using equation (5), express the m
fraction of the energy lost in the -AK, 4Mm M
collision: K, (M +m) [ m jz
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Picture the Problem Problem 132 (b) provides an expression for the fractional loss of
energy per collision.

(a) Using the result of Problem 132 Ky K,;—AK, (M-m)

(b), express the fractional loss of K, E (M +m)

energy per collision:

Evaluate this fraction to obtain: Ky (12m - m)2 0716
E, (2m+m)y

Express the kinetic energy of one K. = 0.716" E,

neutron after N collisions:

(b) Substitute for K, and Eq to 0.716N =107

obtain:

Take the logarithm of both sides of Ne_ 8 ~[ 55

the equation and solve for N: log0.716
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Picture the Problem We can relate the number of collisions needed to reduce the
energy of a neutron from 2 MeV to 0.02 eV to the fractional energy loss per collision
and solve the resulting exponential equation for N.
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(a) Using the result of Problem 132
(b), express the fractional loss of
energy per collision:

Express the kinetic energy of one
neutron after N collisions:

Substitute for K,s and Eg to obtain:

Take the logarithm of both sides of
the equation and solve for N:

(b) Proceed as in (a) to obtain:

Express the kinetic energy of one
neutron after N collisions:

Substitute for K, and Eg to obtain:

Take the logarithm of both sides of
the equation and solve for N:
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Kie  K,—AK, K, -0.63K;

Kni EO Kni
=0.37

Ky = 0.37" E,

037" =107

N = —8 ~|19
log0.37

Ky  K,i—-AK, K,;-011K,

Kni EO Kni
=0.89

K, =|0.89"E,

0.89" =107

N = 8 . 158
log0.89

Picture the Problem Let 4 = M/L be the mass per unit length of the rope and y the
length of rope supported by F at any instant and use the definition of the center of mass.

(a) Letting m represent the mass of
the rope that is being supported by
the force at any given time and y’ its
center of mass, express Yem:

Relate y to v:

Substitute to obtain:

_my _ayGy)_y

Yo AL AL 2L
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(b) Differentiate y.n, twice to acn: dy., SV LY
dt 2L L
and

d?y.. v

() Apply D" F, =may, to the rope F-mg=ma,,

to obtain:

V2

Solve for F, substitute and simplify }L g
L

to obtain: F=ma,, +mg= ﬂvt(

3
M\Z/ t_Mvgt
L L

3
L L
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Picture the Problem The free-body Y
diagram shows the forces acting on the
platform when the spring is partially
compressed. The scale reading is the force
the scale exerts on the platform and is
represented on the FBD by F,. )
We can use Newton’s 2™ law to determine -
the scale reading in part (a). We’ll use both 78
conservation of energy and momentum to
obtain the scale reading when the ball =
collides inelastically with the cup. ponspring

(a) Apply z Fy = may to the I:n - mpg - Fballon spring — 0

spring when it is compressed a
distance d:

Solve for F,: I:n = mpg + I:ball on spring

=m,g+kd

m,g
mpg+k[ |2 j

=[m,g+m,g=(m, +m,)g
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(b) Letting the zero of gravitational AK + AU, =0whereK; =U =0
energy be at the initial elevation of %mbvé ~mgh=0
the cup and vy,; represent the velocity and
of the ball just before it hits the cup,
use conservation of energy to find Vi =~/29h
this velocity:
Use conservation of momentum to P, = Py
find the velocity of the center of . omy, \/ﬂ m,
mass: T my4+m, g m, +m,
Apply conservation of energy to the AK,, +AU, =0
collision to obtain: or, with K; = Ug = 0,
_%(mb + mc)vczm +%kxz =0
Substitute for ver, and solve for kx*: kx? = (m, +m V2,
2
m
= 2gh(m, + mC){m +bm }
b c
_ 2ghm
m, +m,
Solve for x: 2gh
X=my | ———
k(mb + mc)
From part (a): F, =m,g +kx
2gh
=m,g +km, k(L
m, +m, )
=[glm +m —Zkh
P ° g(mb + mc)

(c) | Because the collision is inelastic, the ball never returns to its original height.
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Picture the Problem Let the direction that astronaut 1 first throws the ball be the
positive direction and let vy, be the initial speed of the ball in the laboratory frame. Note
that each collision is perfectly inelastic. We can apply conservation of momentum and
the definition of the speed of the ball relative to the thrower to each of the perfectly
inelastic collisions to express the final speeds of each astronaut after one throw and one
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catch.

Use conservation of momentum to myVv, +myv, =0 (1)
relate the speeds of astronaut 1 and
the ball after the first throw:

Relate the speed of the ball in the V=V, -V, (2)
laboratory frame to its speed relative
to astronaut 1:

Eliminate vy between equations (1) m,

vy =———2—v )
and (2) and solve for vy: m, +m,
Substitute equation (3) in equation m,

vV, =—L1—v (4)
(2) and solve for v: m, +m,
Apply conservation of momentum to 0=myv, =(m, +m, v, 5)
express the speed of astronaut 2 and
the ball after the first catch:

: m
Solve for v,: v, = b v, ()
m, +m,
Express v, in terms of v by V. = m, m, v
substituting equation (4) in equation ? m, +my, m, +m,
6): (7)
(6) { m,m, }
= \
(m, +m, )(ml +m,)

Use conservation of momentum to (m2 + mb)v2 =MV + M,V 8)
express the speed of astronaut 2 and
the ball after she throws the ball:
Relate the speed of the ball in the V=V, —Vy 9

laboratory frame to its speed relative
to astronaut 2:

(10)

Eliminate vy¢ between equations (8) m, m,
and (9) and solve for vs: 1+ v
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Substitute equation (10) in equation m,
. Vor == 1-—7—
(9) and solve for vy m, +m,
(11)
m
x| 1+ L v
m, +m,
Apply conservation of momentum to (m1 +m, )V1f =MV, + MV, (12)
express the speed of astronaut 1 and
the ball after she catches the ball:
Using equations (3) and (11), m,m, (2m, + m,)

eliminate vy and v, in equation (12)
and solve for vis:

(ml + mb)z(mZ + mb)
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Picture the Problem We can use the definition of the center of mass of a system
containing multiple objects to locate the center of mass of the earth—moon system. Any
object external to the system will exert accelerating forces on the system.

(a) Express the center of mass of the Mr,,, = z m.r;
earth—moon system relative to the :
center of the earth: or
— Me(o)+mmrem — mmrem
cm
M,+m, M,+m,
— rem
M
£ +1
mm
Substitute numerical values and 3.84x10° km
w=—————=| 4670km
evaluate rep: 81.3+1

Because this distance is less than the radius of the earth, the position of the
center of mass of the earth — moon system is below the surface of the earth.

Any object not in the earth — moon system exerts forces on the system,
(b)
e.g., the sun and other planets.
© Because the sun exerts the dominant external force on the earth — moon
c
system, the acceleration of the system is toward the sun.
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(d) Because the center of mass is at
a fixed distance from the sun, the
distance d moved by the earth in
this time interval is:
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d =2r, =2(4670km)=| 9340km

Picture the Problem Let the numeral 2 refer to you and the numeral 1 to the water
leaving the hose. Apply conservation of momentum to the system consisting of yourself,
the water, and the earth and then differentiate this expression to relate your recoil
acceleration to your mass, the speed of the water, and the rate at which the water is

leaving the hose.

Use conservation of momentum to
relate your recoil velocity to the
velocity of the water leaving the
hose:

Differentiate this expression with
respect to t:

Because the acceleration of the
water leaving the hose, ag, is zero ...

_dm
as is —2

, the rate at which you are

losing mass:

Substitute numerical values and
evaluate a:

p,+ P, =0
or
myv, +myv, =0

or

v, dntll +m,a, =0
and
_ v dm,
2 m, dt
30m/s
a, =— 2.4kgls
) 75kg (2.4kgls)

=| —0.960m/s?
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*140  eee

Picture the Problem Take the zero of gravitational potential energy to be at the elevation
of the pan and let the system include the balance, the beads, and the earth. We can use
conservation of energy to find the vertical component of the velocity of the beads as they
hit the pan and then calculate the net downward force on the pan from Newton’s 2™ law.

Use conservation of energy to relate
the y component of the bead’s
velocity as it hits the pan to its height
of fall:

Solve for vy:

Substitute numerical values and
evaluate vy:

Express the change in momentum in
the y direction per bead:

Use Newton’s 2™ law to express the
net force in the y direction exerted
on the pan by the beads:

Letting M represent the mass to be
placed on the other pan, equate its
weight to the net force exerted by
the beads, substitute for Apy, and
solve for M:

Substitute numerical values and
evaluate M:
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AK+AU =0
or, because K; = U; = 0,
imv; —mgh=0

Vv, =4/2gh

v, =+/2(9.81m/s?)(0.5m) = 3.13m/s

Ap, = Py — Py =Mmv, _(_ mvy): 2mv,

Ap
I:net,y = Aty
Ap
Mg=N—L
: At
and
M :ﬂ 2my,
Atl g
M = (100 /S\[2(0.0005kg)(3.13m/s)]
! 9.81m/s?
=| 31.9¢

Picture the Problem Assume that the connecting rod goes halfway through both balls,
i.e., the centers of mass of the balls are separated by L. Let the system include the
dumbbell, the wall and floor, and the earth. Let the zero of gravitational potential be at
the center of mass of the lower ball and use conservation of energy to relate the speeds of
the balls to the potential energy of the system. By symmetry, the speeds will be equal

when the angle with the vertical is 45°.
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Use conservation of energy to E, =E
express the relationship between the

initial and final energies of the

system:

Express the initial energy of the E, =mgL
system:

Express the energy of the system E; = mgLsin45° +%(2m)v2
when the angle with the vertical is
45°:

Substitute to obtain: 1 2
gL=gL| — |+V
Ng)

Solve for v: 1 1 j
V= -—
GNP
Substitute numerical values and ) 1
aluate v v=_|(0.81m/s? )L -

= (1.70 m%/s)\/f
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