Chapter 9
Rotation

Conceptual Problems

*1 °

Determine the Concept Because 7 is greater for the point on the rim, it moves the
greater distance. Both turn through the same angle. Because 7 is greater for the point on
the rim, it has the greater speed. Both have the same angular velocity. Both have zero
tangential acceleration. Both have zero angular acceleration. Because r is greater for the
point on the rim, it has the greater centripetal acceleration.

2 .

1
(a) False. Angular velocity has the dimensions {F} whereas linear velocity has

L
dimensions [—:| .
T

(b) True. The angular velocity of all points on the wheel is d@/dt.
(c¢) True. The angular acceleration of all points on the wheel is da/dt.

3 (L]
Picture the Problem The constant-acceleration equation that relates the given variables
isw’ = a)é + 20A8 . We can set up a proportion to determine the number of revolutions

required to double @ and then subtract to find the number of additional revolutions to
accelerate the disk to an angular speed of 2.

Using a constant-acceleration
equation, relate the initial and final
angular velocities to the angular
acceleration:

Let A6y, represent the number of
revolutions required to reach an
angular velocity @:

Let A6, represent the number of
revolutions required to reach an
angular velocity @:

Divide equation (2) by equation (1)
and solve for A&,

o’ = 0w, +20A0

2
or, because w, =0,

w® =2aA0
o’ =20A0,, (1)
2w) =2aA4,, (2)
2
AO,, = (2“’2) AO,, = 4A0,,
w

615
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The number of additional revolutions is: 4A0,, — AB,, = 3A6,, = 3(10rev) = 30 rev

and | (c)1is correct.

*4 °

. ML
Determine the Concept Torque has the dimension[ P } .
ML
(a) Impulse has the dimension [T} .

ML i .
(b) Energy has the dimension{ P } . (b) is correct
ML}

(¢) Momentum has the dimension {? .

5 .

Determine the Concept The moment of inertia of an object is the product of a constant

that is characteristic of the object’s distribution of matter, the mass of the object, and the
square of the distance from the object’s center of mass to the axis about which the object

is rotating. Because both (b) and (c) are correct | (d) is correct.

*6 °

Determine the Concept Yes. A net torque is required to change the rotational state of an
object. In the absence of a net torque an object continues in whatever state of rotational
motion it was at the instant the net torque became zero.

7

Determine the Concept No. A net torque is required to change the rotational state of an
object. A net torque may decrease the angular speed of an object. All we can say for sure
is that a net torque will change the angular speed of an object.

8 o
(a) False. The net torque acting on an object determines the angular acceleration of the
object. At any given instant, the angular velocity may have any value including zero.

(b) True. The moment of inertia of a body is always dependent on one’s choice of an axis
of rotation.

(c) False. The moment of inertia of an object is the product of a constant that is
characteristic of the object’s distribution of matter, the mass of the object, and the square
of the distance from the object’s center of mass to the axis about which the object is
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rotating.

9 .
Determine the Concept The angular acceleration of a rotating object is proportional to
the net torque acting on it. The net torque is the product of the tangential force and its

lever arm.

Express the angular acceleration of o= Thet _ F_d _ E d
the disk as a function of the net 1 1 1
torque acting on it: ie, aocd

Because @ o d , doubling d will (b) is correct.

double the angular acceleration.

*10 o
Determine the Concept From the parallel-axis theorem we know that
I=1_+ Mhz, where I, is the moment of inertia of the object with respect to an axis

through its center of mass, M is the mass of the object, and / is the distance between the

parallel axes. Therefore, / is always greater than I, by Mh>. | (d)is correct.

11 -

Determine the Concept The power delivered by the constant torque is the product of the
torque and the angular velocity of the merry-go-round. Because the constant torque
causes the merry-go-round to accelerate, neither the power input nor the angular velocity

of the merry-go-round is constant. | (b)is correct.

12 -

Determine the Concept Let’s make the simplifying assumption that the object and the
surface do not deform when they come into contact, i.e., we’ll assume that the system is
rigid. A force does no work if and only if it is perpendicular to the velocity of an object,
and exerts no torque on an extended object if and only if it’s directed toward the center of
the object. Because neither of these conditions is satisfied, the statement is false.

13 -

Determine the Concept For a given applied force, this increases the torque about the
hinges of the door, which increases the door’s angular acceleration, leading to the door
being opened more quickly. It is clear that putting the knob far from the hinges means
that the door can be opened with less effort (force). However, it also means that the hand
on the knob must move through the greatest distance to open the door, so it may not be
the quickest way to open the door. Also, if the knob were at the center of the door, you
would have to walk around the door after opening it, assuming the door is opening
toward you.
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*14 .
Determine the Concept If the wheel is rolling without slipping, a point at the top of the
wheel moves with a speed twice that of the center of mass of the wheel, but the bottom of

the wheel is momentarily at rest.| (¢) is correct.

15 e

Picture the Problem The kinetic energies of both objects is the sum of their translational
and rotational kinetic energies. Their speed dependence will differ due to the differences
in their moments of inertia. We can express the total kinetic of both objects and equate
them to decide which of their translational speeds is greater.

Express the kinetic energy of the K., =51 Cyla)czyl + %mvfyl

cylinder: 2

— 3 00,2
=3 MYy
. . _ 1 2 1 2

Express the kinetic energy of the Kon =7 Ln @5 +7mvyy,

sphere: 2
_ 12 2) sph 1 2
_2(5mr 2 +2mvsph
— 1 2
10 mvsph

o . _ /&
Equate the kinetic energies and Vet = A T5Veh < Veph

simplify to obtain:

and| (b)is correct.

*16

Determine the Concept You could spin the pipes about their center. The one which is
easier to spin has its mass concentrated closer to the center of mass and, hence, has a
smaller moment of inertia.

17 oo

Picture the Problem Because the coin and the ring begin from the same elevation, they
will have the same kinetic energy at the bottom of the incline. The kinetic energies of
both objects is the sum of their translational and rotational kinetic energies. Their speed
dependence will differ due to the differences in their moments of inertia. We can express
the total kinetic of both objects and equate them to their common potential energy loss to
decide which of their translational speeds is greater at the bottom of the incline.



Express the kinetic energy of the
coin at the bottom of the incline:

Express the kinetic energy of the
ring at the bottom of the incline:

Equate the kinetic of the coin to its
change in potential energy as it
rolled down the incline and solve for

Veoin-

Equate the kinetic of the ring to its
change in potential energy as it
rolled down the incline and solve for

vring:

18 oo
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K . =1] @* +1im_V?

coin _7 cyl™coin 2 coin " coin

2
_1fx 2\ Veoin 1 2
= ( mcoinr ) ;/-2 +2m v

2\2 coin ” coin

_3 2
—4m 1%

coin ~ coin

1 2 2
K =31, @ + ring " ring

ring 2 *ring®ring

1
Zm

2
v
1 2) ring 1 2
5 (mrmgr —rz + 5 m.. Vv

ring ¥ ring

2

ring * ring

3 2
4 mcoin Vcoin - mcoin gh
and

2 _a

coin ~ 3 gh

2

ringvring - mringgh
and

2 _
vring gh

Therefore, v, >v,,,and (b)is

coin

correct.

Picture the Problem We can use the definitions of the translational and rotational kinetic
energies of the hoop and the moment of inertia of a hoop (ring) to express and compare

the kinetic energies.

Express the translational kinetic
energy of the hoop:

Express the rotational kinetic energy
of the hoop:

Therefore, the translational and rotational
kinetic energies are the same and

(c)is correct.
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19 e

Picture the Problem We can use the definitions of the translational and rotational kinetic
energies of the disk and the moment of inertia of a disk (cylinder) to express and compare
the kinetic energies.

Express the translational kinetic K s =3 mv

energy of the disk:

Express the rotational kinetic energy K 1] ool (L - ) ﬁ L
of the disk: rot — 2~ hoop 2 \2 2

Therefore, the translational kinetic energy is

greater and | (a)1is correct.

20 e

Picture the Problem Let us assume that /= 0 and acts along the direction of motion.
Now consider the acceleration of the center of mass and the angular acceleration about
the point of contact with the plane. Because Fy # 0, acn # 0. However, 7 = 0 because ¢

=0,s0 ¢ =0. But a =0 is not consistent with a., # 0. Consequently, /= 0.

21 -
Determine the Concept True. If the sphere is slipping, then there is kinetic friction
which dissipates the mechanical energy of the sphere.

22
Determine the Concept Because the ball is struck high enough to have topspin, the
frictional force is forward; reducing @ until the nonslip condition is satisfied.

(a)1s correct.

Estimation and Approximation

23 oo

Picture the Problem Assume the wheels are hoops, i.e., neglect the mass of the spokes,
and express the total kinetic energy of the bicycle and rider. Let M represent the mass of
the rider, m the mass of the bicycle, m,, the mass of each bicycle wheel, and 7 the radius

of the wheels.

Express the ratio of the kinetic K K

. . . rot __ rot 1
energy associated with the rotation K K _+K (1)
of the wheels to that associated with tot trans rot

the total kinetic energy of the
bicycle and rider:
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Express the translational kinetic K
energy of the bicycle and rider:

=K +K

trans bicycle rider

2 2
=1mv +3 My

Express the rotational kinetic energy K. =2K. | re = 2(% I w2)
of the bicycle wheels: b oLy ;e Y
= mwrz)—z =m,v’
r

Substitute in equation (1) to obtain:

K. mwv2 B m, _ 2

- 2 2 2 -
Ky smv +iMv +my' im+iM+m, , m+M
mW

Substitute numerical values and K., _ 2 ~_[103%
evaluate K o/Ki: K., o 14kg +38kg

3kg

24 e
Picture the Problem We can apply the definition of angular velocity to find the angular
orientation of the slice of toast when it has fallen a distance of 0.5 m from the edge of the
table. We can then interpret the orientation of the toast to decide whether it lands jelly-
side up or down.

Relate the angular orientation & of 0 =0, + oAt (1)
the toast to its initial angular

orientation, its angular velocity @,

and time of fall Az:

Use the equation given in the \/m
problem statement to find the @ =0.956,|——— =9.47rad/s
angular velocity corresponding to 0.1m

this length of toast:

Using a constant-accgleration Ay =v, At +1 a, ( A t)z
equation, relate the distance the ’ - B
toast falls Ay to its time of fall At: or, because VOyz =0Oanda, =g,
Av=14g(Ar)
Solve for At e 2Ay
g

Substitute numerical values and 205 m)
luate At: At = /—j':O.3l9s
evaluate Af 9 81m/s’
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)2 T
—(;f i +¢os 6, Substitute in equation (1) to & = 6 +(9.47rad/s)(0.319s)
&

find 6 =3.54rad x 180 =203°
wrrad

The orientation of the slice of toast will therefore be at an angle of 203°

with respect to the ground, i.e. with the jelly - side down.

*95 e

Picture the Problem Assume that the mass of an average adult male is about 80 kg, and
that we can model his body when he is standing straight up with his arms at his sides as a
cylinder. From experience in men’s clothing stores, a man’s average waist circumference
seems to be about 34 inches, and the average chest circumference about 42 inches. We’ll
also assume that about 20% of the body’s mass is in the two arms, and each has a length
L =1 m, so that each arm has a mass of about m = 8 kg.

Letting I, represent his moment of L, ooy + Lo
inertia with his arms straight out and = (D
I, his moment of inertia with his in in

arms at his side, the ratio of these
two moments of inertia is:

Express the moment of inertia of the I =1 MR?>
"man as a cylinder”:
Express the moment of inertia of his J = 2(%)," J2
arms: arms
Express the moment of inertia of his Iy = %( M — m) R>
body-less-arms: o
Substitute in equation (1) to obtain: I, %( M — m) R2 + 2(%)," I?
- 2
in % MR
Assume the circumference of the 34in +421in .
cylinder to be the average of the Cav = 3 =38in
average waist circumference and the
average chest circumference:
Find the radius of a circle whose . 254cm 1m
circumference is 38 in: c 38in x n x 100em
R="av —
2r 2n
=0.154m

Substitute numerical values and evaluate 7,/ [,
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I

out

1(80kg—16kg)(0.154m)’ + 2 (8kg)(I1m)’
= . =| 6.42
I, 1(80kg)(0.154m)

Angular Velocity and Angular Acceleration

26 -

Picture the Problem The tangential and angular velocities of a particle moving in a
circle are directly proportional. The number of revolutions made by the particle in a given
time interval is proportional to both the time interval and its angular speed.

(a) Relate the angular velocity of V=rm
the particle to its speed along the
circumference of the circle:

: 25m/
Solve for and evaluate w: w=2 =28 o578 ad/s
r  90m
b) Using a constant-acceleration d 1
(b) Using A= wAr =] 0278222 |(30s)]
equation, relate the number of S 27rrad
revolutions made by the particle in a
. o . =| 1.33rev
given time interval to its angular
velocity:
27

Picture the Problem Because the angular acceleration is constant; we can find the
various physical quantities called for in this problem by using constant-acceleration

equations.

(a) Using a constant-acceleration w =, +alt

equation, relate the angular velocity or, when ay = 0,

of the wheel to its angular o = alt

acceleration and the time it has been

accelerating:

Evaluate @ when A7=6 s: w = (2.6 rad/szj(6 s)=| 15.6rad/s
(b) Using another constant- A = w,At + %Ot(At)2

acceleration equation, relate the or, when ay = 0,

angular displacement to the wheel’s 2
S D e e A =Lal(Ar)
angular acceleration and the time it
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has been accelerating:

Evaluate A@ when Ar=6s:

(c) Convert A9(6 s) from rad to

revolutions:

(d) Relate the angular velocity of the
particle to its tangential speed and
evaluate the latter when

At=6s:

Relate the resultant acceleration of
the point to its tangential and
centripetal accelerations when
At=6s:

Substitute numerical values and
evaluate a:

*28

AB(6s)= %(2.6 rad/s’ )(6s)2 =| 46.8rad

A6(65) = 46.8radx 1 —[7 45rey

27rad

v=ro=(0.3m)(15.6rad/s)=| 4.68m/s

a=\Jd +a’ =(ra) +(re*f
=mla’ +o

a=(03 m)\/(2.6 rad/s’ )2 +(15.6rad/s)’
=| 73.0m/s’

Picture the Problem Because we’re assuming constant angular acceleration; we can find

the various physical quantities called for in this problem by using constant-acceleration

equations.

(a) Using its definition, express the
angular acceleration of the
turntable:

Substitute numerical values and
evaluate o

_Ao_o-o
At At

0-331 rev 8 27trad>< 1 min

min rev 60s
26s

=| 0.134rad/s?

a =
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(b) Because the angular acceleration o = w, + @
is constant, the average angular o 2
velocity is the average of its initial 331 TV 2rrad y I min
and final values: B > min rev 60s

- 2

=|1.75rad/s
(¢) Using the definition of @,,, find A0 =w, At = (1 .75rad/ S)(26 S)
the number or revolutions the lrev

. =45.5rad x =|7.24rev

turntable makes before stopping: 2rrad

29 -

Picture the Problem Because the angular acceleration of the disk is constant, we can use
a constant-acceleration equation to relate its angular velocity to its acceleration and the
time it has been accelerating. We can find the tangential and centripetal accelerations
from their relationships to the angular velocity and angular acceleration of the disk.

(a) Using a constant-acceleration w=w0,+alt
equation, relate the angular velocity or, because ay =0,
of the disk to its angular w=alt

acceleration and time during which
it has been accelerating:

Evaluate o when 7= 5 s: w(5s) = (8 rad/s’ )(5 s)=| 40.0rad/s
(b) Express a; in terms of «: a, =ra
Evaluate g, when =5 s: a,(5s)= (0.12m)(8 rad/sz)
=1 0.960m/s’
Express a. in terms of w: a, =ro’
Evaluate a, when =5 s: a, (5 s) = (0.12m)(40.0 rad/s)2
=| 192m/s
30 -

Picture the Problem We can find the angular velocity of the Ferris wheel from its
definition and the linear speed and centripetal acceleration of the passenger from the
relationships between those quantities and the angular velocity of the Ferris wheel.
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(a) Find o from its definition:

(b) Find the linear speed of the
passenger from his/her angular speed:

Find the passenger’s centripetal
acceleration from his/her angular

velocity:

31 -

_A_H_Z;zrad_

0.233rad/s

= =
At 27s

v=ro=(12m)(0.233rad/s)

=|2.79m/s

C

=1 0.651m/s*

a, = re* =(12m)(0.233rad/s)’

Picture the Problem Because the angular acceleration of the wheels is constant, we can

use constant-acceleration equations in rotational form to find their angular acceleration

and their angular velocity at any given time.

(a) Using a constant-acceleration
equation, relate the angular
displacement of the wheel to its
angular acceleration and the time it
has been accelerating:

Solve for a:

Substitute numerical values and
evaluate o

(b) Using a constant-acceleration
equation, relate the angular velocity
of the wheel to its angular
acceleration and the time it has been
accelerating:

Evaluate @ when Ar =8 s:

A0 = o At +La(At)

or, because ay =0,

A0 = La(Ar)

rev

j =| 0.589rad/s’

(8s)°

w=w,+aAt

or, when ax =0,
o = alt

o(8s)= (0.589 rad/s® )(85) =| 4.71rad/s
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32 -
Picture the Problem The earth rotates through 2z radians every 24 hours.

Find w using its definition: o A6 27 rad

At 5ahx 3600s

=|7.27x107 rad/s

3

Picture the Problem When the angular acceleration of a wheel is constant, its average
angular velocity is the average of its initial and final angular velocities. We can combine
this relationship with the always applicable definition of angular velocity to find the
initial angular velocity of the wheel.

Express the average angular velocity o = W, +w
of the wheel in terms of its initial and “ 2
final angular speeds: or, because w= 0,

a)av = %a)O
Express the definition of the average o = A_9
angular velocity of the wheel: YAt

i 2A0 2(5rad

Equate these two expressions and ®, = _ ( ) —357sand
solve for ay: At 2.8s

(d)1s correct.

34 -

Picture the Problem The tangential and angular accelerations of the wheel are directly
proportional to each other with the radius of the wheel as the proportionality constant.
Provided there is no slippage, the acceleration of a point on the rim of the wheel is the
same as the acceleration of the bicycle. We can use its defining equation to determine the
acceleration of the bicycle.

Relate the tangential acceleration of a=a =ra
a point on the wheel (equal to the and

acceleration of the bicycle) to the
wheel’s angular acceleration and
solve for its angular acceleration:
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Use its definition to express the a= & _VY=V%
acceleration of the wheel: At At
or, because vy =0,
Y
a=—
At
Substitute in the expression for « to a=_"
obtain: rAt
Substitute numerical values and 24 km 1h 1000 m
evaluate o “h 136005 km
(0.6m)(14.0s)
=1 0.794rad/s*
*35 e

Picture the Problem The two tapes will have the same tangential and angular velocities
when the two reels are the same size, i.e., have the same area. We can calculate the
tangential speed of the tape from its length and running time and relate the angular
velocity to the constant tangential speed and the radius of the reels when they are turning
with the same angular velocity.

Relate the angular velocity of the W= v 1)
tape to its tangential speed: r
. . 2 2 _ 2 2
Letting R; represent the outer radius TR —7mr” =5 (77 R —r7mr )
of the reel when the reels have the
same area, express the condition
that they have the same speed:
Solve for Ry: R2 472
R, = 5
Substitute numerical values and 4 21 (12 2
. R, = ( Smm) +( mm) =32.9mm
evaluate Ry f 2
Find the tangential speed of the tape 246m x 100cm
from its length and running time: y= L _ M _342¢cm/s
At T hx 3600s

h



Substitute in equation (1) and
evaluate w:

Convert 1.04 rad/s to rev/min:

Rotation 629

y 3.42cm/s
=—=
Ry 35 9mmx
10mm
=| 1.04rad/s

1.04radss = 1,047, Lrev | 60s

s 2zrad min

= 9.93rev/min

Torque, Moment of Inertia, and Newton’s Second Law for

Rotation

36 -

Picture the Problem The force that the woman exerts through her axe, because it does
not act at the axis of rotation, produces a net torque that changes (decreases) the angular

velocity of the grindstone.

(a) From the definition of angular
acceleration we have:

Substitute numerical values and
evaluate o:

(b) Use Newton’s 2™ law in
rotational form to relate the angular
acceleration of the grindstone to the
net torque slowing it:

Express the moment of inertia of
disk with respect to its axis of
rotation:

Ao w-w,

o =——

At At
or, because @ =0,
a="2

At

730 re‘V y 27 rad y I min
min rev 60s
o=-
9s
=| —8.49rad/s’

where the minus sign means that the

grindstone is slowing down.

T . =la

net

I =1MR?
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Substitute to obtain: T, =3 MRa

Substitute numerical values and z,. = 1(1.7kg)(0.08m)’ (8.49 rad/s’ )
evaluate —[0.0462N-m

*37 -

Picture the Problem We can find the torque exerted by the 17-N force from the
definition of torque. The angular acceleration resulting from this torque is related to the
torque through Newton’s 2™ law in rotational form. Once we know the angular
acceleration, we can find the angular velocity of the cylinder as a function of time.

(a) Calculate the torque from its r=F/=(17N)(0.11m)=| 1.87N-m
definition:
(b) Use Newton’s 2™ law in o= T
rotational form to relate the 1
acceleration resulting from this
torque to the torque:
Express the moment of inertia of the I = %MR2
cylinder with respect to its axis of
rotation:
Substitute to obtain: o= 27
MR?

i i 2(1.87N-m
Substitute numerical values and o= ( ) = 124rad/s>
evaluate o (2.5 kg)(O. 1 lm)
(¢) Using a constant-acceleration w=w0,+at
equation, express the angular or, because ay = 0,
velocity of the cylinder as a function w=ot
of time:
Evaluate @ (5 s): w(5s)= (1 24rad/s? )(5 s)=| 620rad/s
38 e

Picture the Problem We can find the angular acceleration of the wheel from its
definition and the moment of inertia of the wheel from Newton’s 2™ law.
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(a) Express the moment of inertia of I = z
the wheel in terms of the angular a
acceleration produced by the applied
torque:
Find the angular acceleration of the 6007 27 rad y I min
wheel: o= Ao min  rev 60s
At 20s
=3.14rad/s®
i : S50N-
Substitute and evaluate /: I = mz ~[15.9kg- 2
3.14rad/s
(b) Because the wheel takes 120 s to r,=1lr= %(SON . m) —| 833N-m

slow to a stop (it took 20 s to
acquire an angular velocity of 600
rev/min) and its angular acceleration
is directly proportional to the
accelerating torque:

39 e
Picture the Problem The pendulum and
the forces acting on it are shown in the
free-body diagram. Note that the tension in
the string is radial, and so exerts no
tangential force on the ball. We can use
Newton’s 2™ law in both translational and
rotational form to find the tangential
component of the acceleration of the bob.

(a) Referring to the FBD, express
the component of m( that is tangent

to the circular path of the bob:

Use Newton’s 2™ law to express the _F -

) , a, =—=| gsin@
tangential acceleration of the bob: m
(b) Noting that, because the line-of- erivot o =| MgLsin @

action of the tension passes through
the pendulum’s pivot point, its lever
arm is zero and the net torque is due
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to the weight of the bob, sum the
torques about the pivot point to
obtain:

(¢) Use Newton’s 2™ law in T, =mgLsind=Ia
rotational form to relate the angular

acceleration of the pendulum to the

net torque acting on it:

Solve for « to obtain: o= mgLsin @
1

Express the moment of inertia of the I =mL’
bob with respect to the pivot point:

Substitute to obtain: o= mgL sin @ _g sin @
mL’ L
Relate o to ay: a = ra - L[g sin 9) _[gsing
L
*40 o00

Picture the Problem We can express the velocity of the center of mass of the rod in
terms of its distance from the pivot point and the angular velocity of the rod. We can find
the angular velocity of the rod by using Newton’s 2™ law to find its angular acceleration
and then a constant-acceleration equation that relates wto a. We’ll use the impulse-
momentum relationship to derive the expression for the force delivered to the rod by the
pivot. Finally, the location of the center of percussion of the rod will be verified by
setting the force exerted by the pivot to zero.

(a) Relate the velocity of the center v = £ o (1)
of mass to its distance from the o2
pivot point:
Express the torque due to F: r=Fx=1,,2
Solve for a: o= Fyx
Ipivot
Express the moment of inertia of the Lo = %ML2

rod with respect to an axis through



its pivot point:

Substitute to obtain:

Express the angular velocity of the
rod in terms of its angular

acceleration:

Substitute in equation (1) to obtain:

(b) Let Ip be the impulse exerted by
the pivot on the rod. Then the total
impulse (equal to the change in
momentum of the rod) exerted on
the rod is:

Substitute our result from (a) to
obtain:

Because [, = F,At:

In order for Fp to be zero:

41 o00
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_ 3Fx
ML
o= Af = 3F0x2At
ML
i 3F,xAt
o 2ML

I, + F,At =My,

and
I, =My, —FAt

3x

B o A 2E
21

2L

3x
F, = FO(Z— lj

3—x—1:0:>x: 2L
2L 3

IP

Picture the Problem We’ll first express the torque exerted by the force of friction on the
elemental disk and then integrate this expression to find the torque on the entire disk.

We’ll use Newton’s 2™ law to relate this torque to the angular acceleration of the disk

and then to the stopping time for the disk.

(a) Express the torque exerted on
the elemental disk in terms of the

friction force and the distance to the

elemental disk:

Using the definition of the
coefficient of friction, relate the

dr, =rdf, (1)

df\, = pgdm (2)
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force of friction to z4 and the weight
of the circular element:

Letting o represent the mass per unit
area of the disk, express the mass of
the circular element:

Substitute equations (2) and (3) in
(1) to obtain:

Because o = >
TR

(b) Integrate d 7, to obtain the total

torque on the elemental disk:

(c) Relate the disk’s stopping time
to its angular velocity and
acceleration:

Using Newton’s 2™ law, express o
in terms of the net torque acting on
the disk:

The moment of inertia of the disk,
with respect to its axis of rotation,

1S:

Substitute and simplify to obtain:

dm=2rxrodr

dr, = —2’ukj\24gr2dr
R
2uM gh
Tf:#!rzdr:
0
Ar=2
a
a=21
I
I=1MR’
R
Af = 3Rw
du g

Calculating the Moment of Inertia

42 .

)

$MRu g

Picture the Problem One can find the formula for the moment of inertia of a thin

spherical shell in Table 9-1.

The moment of inertia of a thin
spherical shell about its diameter is:

I =2MR’
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Substitute numerical values and I = %(0.057 kg)(0.035 m)2
evaluate I

=| 4.66x10” kg-m’

*43 .

Picture the Problem The moment of inertia of a system of particles with respect to a
given axis is the sum of the products of the mass of each particle and the square of its
distance from the given axis.

Use the definition of the moment of ] = z m, ,,iZ
inertia of a system of particles to i . X i i
obtain: =mr” +myr, +myry +myr,
Substitute numerical values and = (3 kg)(Z m)z + ( 4 kg)(Z \/E m)z
evaluate I

o +(ake)(0) + (3ke)2m)

=|56.0kg-m’

44 -

Picture the Problem Note, from symmetry considerations, that the center of mass of the
system is at the intersection of the diagonals connecting the four masses. Thus the

distance of each particle from the axis through the center of mass is \/5 m. According to
the parallel-axis theorem, / =1_ + Mh?, where I, is the moment of inertia of the

object with respect to an axis through its center of mass, M is the mass of the object, and
h is the distance between the parallel axes.

Express the parallel axis theorem: I=1_+Mh

Solve for I, and substitute from I =1- MW

Problem 44: 2
roblem =56.0kg-m’ —(l4kg)(\/5m)

=| 28.0kg-m’

Use the definition of the moment of I, = Z mr’

inertia of a system of particles to i , , ) )

express Ion: =mn +myr, +myly - myry

Substitute numerical values and L. =(3 kg)( 2 m)z +(4ke) ( NG m)z

evaluate /.

+(4 kg)(\/a m)2 +(3 kg)(\/E m)2

=| 28.0kg-m’
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45 -

Picture the Problem The moment of inertia of a system of particles with respect to a
given axis is the sum of the products of the mass of each particle and the square of its
distance from the given axis.

(a) Apply the definition of the I, = Z miri2
moment of inertia of a system of i . , . .
particles to express /,: =Myt gy +myry
Substitute numerical values and I = (3 kg)(2 rn)2 + (4 kg)(Z m)2
evaluate /,: + (4 kg)(0)+ (3 kg)(O)
=| 28.0kg-m’
.. 2
(b) Apply the definition of the I, = z mr,
moment of inertia of a system of : ) ) ) )
particles to express 1, =m +nmyn sy +myr
. . 2
Substitute numerical values and I, = (3 kg)(0)+ (4 kg)(2 m)
| 1
e +(4kg)(0)+(3kg)(2m)
=| 28.0kg-m’

Remarks: We could also use a symmetry argument to conclude that I, = 1.

46 -
Picture the Problem According to the parallel-axis theorem, I = I, + Mh*, where Iy,

is the moment of inertia of the object with respect to an axis through its center of mass, M
is the mass of the object, and /4 is the distance between the parallel axes.

Use Table 9-1 to find the moment of I, =iMR’
inertia of a sphere with respect to an
axis through its center of mass:

Express the parallel axis theorem: I=1_ +Mh’

Substitute for I, and simplify to I=2MR* + MR* =| L MR’
obtain:
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Picture the Problem The moment of inertia of the wagon wheel is the sum of the

moments of inertia of the rim and the six spokes.

Express the moment of inertia of the

wagon wheel as the sum of the
moments of inertia of the rim and
the spokes:

Using Table 9-1, find formulas for
the moments of inertia of the rim
and spokes:

Substitute to obtain:

Substitute numerical values and

evaluate [yheel:

*48 e

1 1. +1

wheel — 4 tim spokes
_ 2
1 rim M rimR
and
— 1 2
Ispoke -3 MspokeL
_ 2 1 2
Iwheel - MrimR + 6(? MspokeL )
—_ 2 2
- MrimR + 2Msp0keL

I, =8kg)(0.5m) +2(1.2kg)(0.5m)’

wheel

=| 2.60kg-m’

Picture the Problem The moment of inertia of a system of particles depends on the axis
with respect to which it is calculated. Once this choice is made, the moment of inertia is

the sum of the products of the mass of each particle and the square of its distance from

the chosen axis.

(a) Apply the definition of the
moment of inertia of a system of
particles:

(b) Set the derivative of  with
respect to x equal to zero in order to
identify values for x that correspond
to either maxima or minima:

If ﬂ =0, then:
dx

1 :Z:miri2 = mlx2 +m2(L—x)2
i

% =2mx+2m, (L - x)(— 1)

= Z(mlx + m,x — mzL)

= 0 for extrema

mx +m,x —m,L =0
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Solve for x:

Convince yourself that you’ve found
2

a minimum by showing thatF is
X

positive at this point.

49 e

Picture the Problem Let o be the mass
per unit area of the uniform rectangular
plate. Then the elemental unit has mass
dm = o dxdy. Let the corner of the plate
through which the axis runs be the
origin. The distance of the element
whose mass is dm from the corner r is
related to the coordinates of dm through
the Pythagorean relationship * = x* + .

(a) Express the moment of inertia of
the element whose mass is dm with
respect to an axis perpendicular to it
and passing through one of the
corners of the uniform rectangular
plate:

Integrate this expression to find /:

(b) Letting d represent the distance
from the origin to the center of mass
of the plate, use the parallel axis
theorem to relate the moment of
inertia found in (@) to the moment of
inertia with respect to an axis
through the center of mass:

Using the Pythagorean theorem,
relate the distance d to the center of

m,L
y=_t
m, +m,

m,L . ..
x = —2——1is, by definition, the
m, +m,

\ £
dm \
(x, )

(, b/ill-\\r \\ \

RN

distance of the center of mass from m.

(0,0) (a/2,0) (a,0)

dl = O'(x2 +y° )dxdy

I =1-md’ :%m(az+bz)—ma’2

cm



mass to the lengths of the sides of
the plate:

Substitute for ¢ in the expression

for /., and simplify to obtain:

*50 e
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Picture the Problem Corey will use the point-particle relationship
1, = Z m.r> = mr’ +m,r; for his calculation whereas Tracey’s calculation will take

1

into account not only the rod but also the fact that the spheres are not point particles.

(a) Using the point-mass
approximation and the definition of
the moment of inertia of a system of
particles, express Jpp:

Substitute numerical values and
evaluate Z,pp:

Express the moment of inertia of the
two spheres and connecting rod
system:

Use Table 9-1 to find the moments
of inertia of a sphere (with respect
to its center of mass) and a rod (with
respect to an axis through its center
of mass):

Because the spheres are not on the
axis of rotation, use the parallel axis
theorem to express their moment of
inertia with respect to the axis of
rotation:

Substitute to obtain:

Substitute numerical values and evaluate I:

_ 2 2 2
Iapp _Zmiri =mn +m2r2

1

I =(0.5kg)(0.2m)’ +(0.5kg)(0.2m)’

app

=1 0.0400kg - m’

=1 +1,4

spheres

R2

III
<

sphere sphere

and

] =1 Mrosz

rod 12

h2

where h is the distance from the center

=2M_ . R+ M

sphere 5 sphere

1

sphere

of mass of a sphere to the axis of

rotation.

I = 2{% Alspherele2 + A4sphe1reh2 }+ %Mrosz
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1=2p(0.5kg)(0.05m) +(0.5kg)(0.2m |+ (0.06 kg)(0.3m )

=1 0.0415kg-m’

Compare [ and I,p, by taking their ratio:

Ly, _ 0.0400kg-m’ _

!

0.0415kg - m?

0.964

(b)

greater than /_, of asolid sphere.

The rotational inertia would increase because /_, of a hollow sphere is

51 e

Picture the Problem The axis of rotation
passes through the center of the base of the
tetrahedron. The carbon atom and the
hydrogen atom at the apex of the
tetrahedron do not contribute to / because
the distance of their nuclei from the axis of
rotation is zero. From the geometry, the
distance of the three H nuclei from the
rotation axis is a/ ﬁ , where a is the

length of a side of the tetrahedron.

Apply the definition of the moment of
inertia for a system of particles to
obtain:

Substitute numerical values and
evaluate [

52 e

Picture the Problem Let the mass of
the element of volume dJ be

dm = pdV = 2 zphrdr where h is the
height of the cylinder. We’ll begin by
expressing the moment of inertia d/ for
the element of volume and then
integrating it between R; and R,.

_ 2 2 2 2
I—Z:miri =myn” +myry +myr,
i

2
= 3’”14(%] =mya’
3

1=(1.67x107kg)(0.18x10° m

5.41x10" kg -m?




Express the moment of inertia of the
element of mass dm:

Integrate dI from R, to R, to obtain:

The mass of the hollow cylinder
ism= 7r,0h(R22 - Rf), S0:

Substitute for p and simplify to obtain:

I =

)=

53 00

”(ﬁ(ﬁ—m)]h(@—zef)(@mf): sm (R} + k)
2 1

Rotation 641

dl = r’dm =2rp hr'dr

I = 27zph1j.2r3dr :%nph(R; _R14)

R

= %ﬁph(Rzz ~- R’ )(R22 +R12)

m

P hR —R?)

Picture the Problem We can derive the given expression for the moment of inertia of a

spherical shell by following the procedure outlined in the problem statement.

Find the moment of inertia of a
sphere, with respect to an axis
through a diameter, in Table 9-1:

Express the mass of the sphere as a
function of its density and radius:

Substitute to obtain:

Express the differential of this
expression:

Express the increase in mass dm as
the radius of the sphere increases by
dR:

Eliminate dR between equations (1)
and (2) to obtain:

I=2mR’

m=24zpR’

I=LtrpR

dl =37 pR*dR (1)
dm =4z pR*dR )
dl =2R*dm

Therefore, the moment of inertia of

the spherical shell of mass m is 2mR”.
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*54  eee

Picture the Problem We can find C in terms of M and R by integrating a spherical shell
of mass dm with the given density function to find the mass of the earth as a function of
M and then solving for C. In part (b), we’ll start with the moment of inertia of the same
spherical shell, substitute the earth’s density function, and integrate from 0 to R.

a) Express the mass of the earth R
(@) Exp M=Idm=j47zpr2dr
0

using the given density function:

R R
—4zC j 12202dr - C [ gy
0

0

- %”1.2261{3 — 7 CR?

lve fi functi
Solve F)rCasa unction of M and R C= 0.508%
to obtain: R
(b) From Problem 9-40 we have: dl =37 pridr
Integrate to obtain: R
s I = %ﬂj‘pr“dr
0
R R
_ 87(0.508)M (O'Sgg)M [1.20r%r - Lisar
3R 0 R
_ 426M | 1.22 R —lRS
R’ 5 6

=| 0.329MR">
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Picture the Problem Let the origin be at
the apex of the cone, with the z axis along

the cone’s symmetry axis. Then the radius
of the elemental ring, at a distance z from
the apex, can be obtained from the
proportionz = 5 The mass dm of the

z H
elemental disk is pdV = pmdz. We’ll
integrate ’dm to find the moment of inertia
of the disk in terms of R and H and then
integrate dm to obtain a second equation in
R and H that we can use to eliminate / in
our expression for /.

Express the moment of inertia of the
cone in terms of the moment of
inertia of the elemental disk:

Express the total mass of the cone in
terms of the mass of the elemental
disk:

Divide / by M, simplify, and solve
for / to obtain:

56
Picture the Problem Let the axis of
rotation be the x axis. The radius 7 of the

elemental area is v R? — z* and its mass,
dm,isocdA=20VR* —z*dz. We’ll

integrate z* dm to determine / in terms of &

and then divide this result by M in order to
eliminate o and express / in terms of M
and R.

Rotation 643

1= %J-rzdm
H 2 2
:%I%zz[pﬂ—zzzjdz
0
4 H 4
0
H HR2
M = ﬂpjrzdz = ﬂpj—zz dz
0 0
=1lzpR*H
I=|3MR’
(0,0,2) 1
AT 0L 42

|

R

pd
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Express the moment of inertia about I = J'szm = J.zzo- dA
the x axis: R

= IZZ(ZG\/ R* -7 dz)

-R

= LoaR*
The mass of the thin uniform disk M =onR?
is:
Divide I by M, simplify, and solve =| L MR? |, aresult in agreement with

for I to obtain: . L
or o obtain the expression given in Table 9-1 for a

cylinder of length L = 0.

57 00

Picture the Problem Let the origin be at
the apex of the cone, with the z axis along
the cone’s symmetry axis, and the axis of

(&4

rotation be the x rotation. Then the radius
of the elemental disk, at a distance z from
the apex, can be obtained from the

R
proportionl = —. The mass dm of the
z H

——

elemental disk is pdV = pm’dz. Each
elemental disk rotates about an axis that is

—
e
)

parallel to its diameter but removed from it

by a distance z. We can use the result from v
Problem 9-57 for the moment of inertia of

the elemental disk with respect to a s

diameter and then use the parallel axis

theorem to express the moment of inertia

of the cone with respect to the x axis.

Using the parallel axis theorem, dl, =dl,, +dmz’ (1)
express the moment of inertia of the where
elemental disk with respect to the x dm= pdV = pr r2dz
axis:
In Problem 9-57 it was established dl ., = %(pﬂ rzdz)r2
that the moment of inertia of a thin R 2
uniform disk of mass M and radius =4 pﬁ(—z 22] dz
H

R rotating about a diameter
is%MR2 . Express this result in
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terms of our elemental disk:

Substitute in equation (1) to obtain: 1 ( 2 zjz
dz

Integrate from O to H to obtain: T 1 .
I.=mp||—|—F2z" | +—5z |dz
o | 4\ H
R‘H R’H’
=7p +
20 5
Express the total mass of the cone in M= a 20 T R? 2
terms of the mass of the elemental P .([ raz=np .!‘ T2 P9
disk:
=lzpR*H
Divide /, by M, simplify, and solve H? R?
- I =|3M|—+—
for 7, to obtain: x 5 20

Remarks: Because both H and R appear in the numerator, the larger the cones are,
the greater their moment of inertia and the greater the energy consumption
required to set them into motion.

Rotational Kinetic Energy

58 -

Picture the Problem The kinetic energy of this rotating system of particles can be
calculated either by finding the tangential velocities of the particles and using these
values to find the kinetic energy or by finding the moment of inertia of the system and
using the expression for the rotational kinetic energy of a system.

(a) Use the relationship between v v, =0 =(0.2m)(2rad/s) = 0.4m/s
and o to find the speed of each and

particle: v, = o =(0.4m)(2rad/s) = 0.8 m/s
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Find the kinetic energy of the K =2K,+2K, = myv; +myv;

system: = (3kg)(0.4m/s) +(1kg)(0.8m/s)’
=1.12J

(b) Use the definition of the moment I = Z miriz

of inertia of a system of particles to i

obtain: =mr] +myry +myry +mr]

Substitute numerical values and I = (1 kg)(0.4 m)2 + (3 kg)(O.Z m)2

evaluate [ +(1kg)(0.4m) + (3kg)(0.2m)’

=0.560kg-m’
Calculate the kinetic energy of the K=1I0= %(0.560 kg-m’ )(2 rad/ 5)2

system of particles: =11.12J

*59 .

Picture the Problem We can find the kinetic energy of this rotating ball from its angular
speed and its moment of inertia. We can use the same relationship to find the new angular
speed of the ball when it is supplied with additional energy.

2

(a) Express the kinetic energy of the K=1lo

ball:

Express the moment of inertia of I=21MR’

ball with respect to its diameter:

Substitute for I: K =1 MR'&’

Substitute numerical values and K= %(l 4 kg)(0.075 m)2

evaluate K: )
rev 2zrad 1min

x| 70——x X
min  rev 60s
=| 84.6mJ
(b) Express the new kinetic energy K'=11 0"

with K" =2.0846 J:

Express the ratio of K to K* K 1lo” (o ’
K 1lo® \o
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Solve for w” , K'
o'=w,—
K
Substitute numerical values and N 2.08467
o' = (70rev/min) |[=-——=
evaluate @' 0.08461J
=| 347 rev/min
60

Picture the Problem The power delivered by an engine is the product of the torque it
develops and the angular speed at which it delivers the torque.

Express the power delivered by the P=rw
engine as a function of the torque it

develops and the angular speed at

which it delivers this torque:

Substitute numerical values and evaluate P:

rev 2zxrad Imin
X X

P= (400N-m)[3700 j =| 155kW

min  rev 60s

61 (1]

Picture the Problem Let r, and r, be the distances of m, and m, from the center of mass.
We can use the definition of rotational kinetic energy and the definition of the center of
mass of the two point masses to show that K\/K, = my/m;.

Use the definition of rotational K, Yo} mrieo® mr’

I : L 72 2 2 2
kinetic energy to express the ratio of , Sloy myr o m,r,

the rotational kinetic energies:

Use the definition of the center of nm, =r,m,

mass to relate m;, my, r;, and r:

2
12 .
Solve for —-, substitute and K, _mmy |
"2 K, m,

simplify to obtain:

62 oo
Picture the Problem The earth’s rotational kinetic energy is given by

K., =311 @’ where [ is its moment of inertia with respect to its axis of rotation. The
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center of mass of the earth-sun system is so close to the center of the sun and the earth-
sun distance so large that we can use the earth-sun distance as the separation of their

centers of mass and assume each to be point mass.

Express the rotational kinetic energy
of the earth:

Find the angular speed of the earth’s
rotation using the definition of w:

From Table 9-1, for the moment of
inertia of a homogeneous sphere, we
find:

Substitute numerical values in
equation (1) to obtain:

Express the earth’s orbital kinetic
energy:

Find the angular speed of the center
of mass of the earth-sun system:

Express and evaluate the orbital
moment of inertia of the earth:

Substitute in equation (2) to obtain:

K, =ilo’ (1)
A0  2xrad
At 24h x 3600s

=7.27x107° rad/s

Il
[}

I =2 MR?

5

2(6.0x10* kg)(6.4x10° mJ
=9.83x10"" kg-m’

K, =4(0.83x10" kg-m?)
x(7.27x107 rad/s]
2.60x10” 1

K., =1lol, 2)

ob — 2

AG
w=—
At

2rrad

365.25daysx 24 1 x 20008

day h
=1.99x107" rad/s
I=MR,,
= (6.0x10* kg)(1.50x10" m)’
=1.35x10"kg -m*

K,, =1(1.35x10" kg-m?)
x(1.99x107 rad/s)’
=2.67x10"J
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_2.67x10%J

K orb K orb
' 2.60x10% 7]

~[10*
Kr ot K

Evaluate the ratio

rot

*G3 oo

Picture the Problem Because the load is not being accelerated, the tension in the cable
equals the weight of the load. The role of the massless pulley is to change the direction
the force (tension) in the cable acts.

(a) Because the block is lifted at T=mg= (2000 kg)(9.81m/sz)
constant speed:
=|19.6kN

(b) Apply the definition of torque at r=Tr=(19.6kN)(0.30m)
the winch drum: —| 5.89kN-m

0.08 m/!
(c? Relate the angular speed (?f the _y_ ms _ 0267 rad/s
winch drum to the rate at which the r  0.30m
load is being lifted (the tangential
speed of the cable on the drum):
(d) Express the power developed by P =Tv=(19.6kN)(0.08m/s)
the motor in terms of the tension in = 1.57kW
the cable and the speed with which
the load is being lifted:
64 oo

Picture the Problem Let the zero of gravitational potential energy be at the lowest point
of the small particle. We can use conservation of energy to find the angular velocity of
the disk when the particle is at its lowest point and Newton’s 2™ law to find the force the
disk will have to exert on the particle to keep it from falling off.

(a) Use conservation of energy to AK +AU =0

relate the initial potential energy of or, because Ur=K; =0,

the system to its rotational kinetic 5 (I gisk T Lparticte )a)f2 —mgAh =0
energy when the small particle is at

its lowest point:

Solve for wy: o 2mgAh

Ly +1

particle
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Substitute for Zgis, Lpartictes and Ak
and simplify to obtain:

(b) The mass is in uniform circular
motion at the bottom of the disk, so
the sum of the force F exerted by
the disk and the gravitational force
must be the centripetal force:

Solve for F and simplify to obtain:

65 oo

o, = \/ 2mg(2R)  _ \/ 8mg

L MR® + mR* R(2m+ M)

F —mg =mRa;

F =mg +mRo;
=mg + mR _Bmg
R(2mM)

=|m (1+8—m]
& 2m+ M

Picture the Problem Let the zero of gravitational potential energy be at the center of
mass of the ring when it is directly below the point of support. We’ll use conservation of

energy to relate the maximum angular velocity and the initial angular velocity required

for a complete revolution to the changes in the potential energy of the ring.

(a) Use conservation of energy to
relate the initial potential energy of
the ring to its rotational kinetic
energy when its center of mass is
directly below the point of support:

Use the parallel axis theorem and
Table 9-1 to express the moment of
inertia of the ring with respect to its

pivot point P:

Substitute in equation (1) to obtain:

Solve for @max:

Substitute numerical values and
evaluate @Wmpax:

AK +AU =0
or, because Uy=K; =0,
31,00, —mgAh =0 (1)

I,=1, +mR’

%(mR2 +mR’ )a)iax -mgR =0

2
O = 981m/s” _ 3.62rad/s
0.75m
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(b) Use conservation of energy to AK +AU =0
relate the final potential energy of or, because U; = K;y= 0,
the ring to its initial rotational —L1,0! +mgAh=0

kinetic energy:

Noting that the center of mass must —%(mR2 +mR’ )0)12 +mgR =0
rise a distance R if the ring is to

make a complete revolution,

substitute for /» and A/ to obtain:

Solve for w;:
o =&
R
Substitute numerical values and 1m/s>
. o = 23S R radss
evaluate w;: i 0.75m
66 e

Picture the Problem We can find the energy that must be stored in the flywheel and
relate this energy to the radius of the wheel and use the definition of rotational kinetic
energy to find the wheel’s radius.

Relate the kinetic energy of the K., =311 Cyla)2 = (2 MJ/km)(300 km)
flywheel to the energy it must = 600MJ
deliver:
Express the moment of inertia of the I, = 1 MR?
flywheel:
Substitute for /., and solve for w: R 2 |K,,

o\ M
Substitute numerical values and 107

. 600 MJ x
evaluate R: B 2 MJ
400mlx2nrad 100kg
S rev

=[1.95m

67 (L]

Picture the Problem We’ll solve this problem for the general case of a ladder of length
L, mass M, and person of mass m. Let the zero of gravitational potential energy be at
floor level and include you, the ladder, and the earth in the system. We’ll use
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conservation of energy to relate your impact speed falling freely to your impact speed

riding the ladder to the ground.

Use conservation of energy to relate
the speed with which a person will
strike the ground to the fall distance
L:

Solve for v; :

Letting ar represent the angular
velocity of the ladder+person
system as it strikes the ground, use
conservation of energy to relate the
initial and final momenta of the
system:

Substitute for the moments of inertia
to obtain:

Substitute v, for L@r and solve for
2
V2

re

2

.V
Express the ratio —:

Ve

AK +AU =0
or, because K; = U;= 0,
Imvl —mgL =0

vi =2gL

AK +AU =0
or, because K; = U;= 0,

L
% (Iperson + Iladder )a)r2 - (mgL + Mg 5) = 0

Vv, =

m+-—

M

2 m+—

Ve 2

2 M

vf m4+—

3

Unless M, the mass of the ladder, is

zero, v, > v;.Itis better to let go and

fall to the ground.
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Pulleys, Yo-Yos, and Hanging Things

*08 ee

Picture the Problem We’ll solve this problem for the general case in which the mass of
the block on the ledge is M, the mass of the hanging block is m, and the mass of the

pulley is M, and R is the radius of the pulley. Let the zero of gravitational potential

energy be 2.5 m below the initial position of the 2-kg block and R represent the radius of
the pulley. Let the system include both blocks, the shelf and pulley, and the earth. The
initial potential energy of the 2-kg block will be transformed into the translational kinetic

energy of both blocks plus rotational kinetic energy of the pulley.

(a) Use energy conservation to
relate the speed of the 2 kg block
when it has fallen a distance A% to
its initial potential energy and the

kinetic energy of the system:

Substitute for I,y and @ to obtain:

Solve for v:

Substitute numerical values and

evaluate v:

(b) Find the angular velocity of the
pulley from its tangential speed:

69 e
Picture the Problem The diagrams show
the forces acting on each of the masses and
the pulley. We can apply Newton’s 2™ law
to the two blocks and the pulley to obtain
three equations in the unknowns 77, 75, and

a.

AK+AU =0
or, because K; = U;= 0,
%(m+M)v2+lI @ —mgh=0

2 * pulley

2

L(m+ MW +%(%MR2)%—mgh =0

. 2mgh
M+m+3iM,

e 2(2kg)(9.81m/s?)(2.5m)
4kg +2kg +1(0.6kg)

=|3.95m/s

= M =| 49.3rad/s

Y
R 0.08m

Yom,g
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Apply Newton’s 2™ law to the two
blocks and the pulley:

Eliminate « in equation (2) to
obtain:

Eliminate 7} and 7, between
equations (1), (3) and (4) and solve
for a:

Substitute numerical values and
evaluate a:

Using equation (1), evaluate 7T}:

Solve equation (3) for 75:

Substitute numerical values and
evaluate T5:
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Picture the Problem We’ll solve this problem for the general case in which the mass of
the block on the ledge is M, the mass of the hanging block is m, the mass of the pulley is
M, and R is the radius of the pulley. Let the zero of gravitational potential energy be 2.5

YF =T, =ma, (1)
2.7, =(L-T)r=1a, @)
and
ZFx:ng_Tzzmza (3)
T,-T,=3M ,a “
q= mg

my, +m,+3M,

2
__ (kg)O08Ims’)  _r—s
2kg+4kg+1(0.6kg)

T, = (4kg)(3.11m/s?)=[ 12.5N

T, :mz(g_a)

T, = (2kg)(9.81m/s> —3.11m/s*)
~[13.4N

m below the initial position of the 2-kg block. The initial potential energy of the 2-kg

block will be transformed into the translational kinetic energy of both blocks plus

rotational kinetic energy of the pulley plus work done against friction.

(a) Use energy conservation to
relate the speed of the 2 kg block
when it has fallen a distance Ak to
its initial potential energy, the

kinetic energy of the system and the

work done against friction:

Substitute for I,y and @ to obtain:

AK+AU+W, =0
or, because K; = U;= 0,

1 241 2
i(m +M)V +51pulley0)

—mgh+ u, Mgh =0

2
v

S M)V 4550, )

—mgh+ yu Mgh =0
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Solve for v 2 gh(m -u M )
v:
M+m+iM,

Substitute numerical values and evaluate v:

b 2(9.81m/s” )(2.5m)[2kg —(0.25)(4kg)] _ T
4kg +2kg +1(0.6kg)

. . 2'
(b) Find the angular velocity of the pulley o= v _ 79 m/s —[349rad/s

from its tangential speed: R 0.08m

71 e

Picture the Problem Let the zero of gravitational potential energy be at the water’s
surface and let the system include the winch, the car, and the earth. We’ll apply energy
conservation to relate the car’s speed as it hits the water to its initial potential energy.
Note that some of the car’s initial potential energy will be transformed into rotational
kinetic energy of the winch and pulley.

Use energy conservation to relate AK +AU =0
the car’s speed as it hits the water to or, because K; = U;= 0,
its initial potential energy: I +11 02 +11 » a)}f —mgAh =0
Express @, and @, in terms of the v v
. o, =—andw, =—
speed v of the rope, which is the v r

same throughout the system:

Substitute to obtain: v 2
1 2 1 1 —
v +51 —+51,——mgAh=0
w P

Solve for v:
Substitute numerical values and 2(1 200 kg)(9. 81m/s? )(5 m)
V =
evaluate v: .m?2 .m?2
1200kg + 320kg-m N 4kg-m

(0.8m)*  (0.3m)’

=| 8.21m/s
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Picture the Problem Let the system 1
include the blocks, the pulley and the earth. T
Choose the zero of gravitational potential
energy to be at the ledge and apply energy !
conservation to relate the impact speed of 1
the 30-kg block to the initial potential
energy of the system. We can use a

”!203‘

constant-acceleration equations and My §
Newton’s 2" law to find the tensions in the |
strings and the descent time.

(a) Use conservation of energy to AK +AU =0
relate the impact speed of the 30-kg or, because K; = Ur= 0,

block to the initial potential energy Tmyv? +Lmyv’ + 11 07

of the system: + Moy gAh — my,gAh =0

Substitute for @, and 7, to obtain: V2
1 241 2411 2
5 My V™ + 5 M,V +7(7Mpr ) rz

+ m,,gAh —m,,gAh =0

Solve for v: - 2gAh(m30 - mzo)

My + 13y +3 M
Substitute numerical values and 2(9.8 1m/s? )(2 m)(SO kg — 20 kg)

: v=
evaluate v: 20kg +30kg + 1 (5kg)
=| 2.73m/s

(b) Find the angular speed at impact o= v_ 2.73m/s 27 3rad/s
from the tangential speed at impact r 0.1m
and the radius of the pulley:
(¢) Apply Newton’s 2™ law to the ZFX =1, —m,g =m,,a (1)
blocks: ZFx =myg —T, =mya )
Using a constant-acceleration v: =v +2aAh

equation, relate the speed at impact
to the fall distance and the

or, because vy =0,



acceleration and solve for and
evaluate a:

Substitute in equation (1) to find 77:

Substitute in equation (2) to find 7>:

(d) Noting that the initial speed of
the 30-kg block is zero, express the
time-of-fall in terms of the fall
distance and the block’s average
speed:

Substitute numerical values and
evaluate At:
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Picture the Problem The force diagram
shows the forces acting on the sphere and
the hanging object. The tension in the
string is responsible for the angular
acceleration of the sphere and the

difference between the weight of the object

and the tension is the net force acting on
the hanging object. We can use Newton’s
2" law to obtain two equations in ¢ and T’

that we can solve simultaneously.

(a)Apply Newton’s 2™ law to the
sphere and the hanging object:

Substitute for /pnere and o in
equation (1) to obtain:

Rotation 657

v (2.73mss)

a= = =1.87 m/s?
2Ah 2(2m)
T = mzo(g"‘a)
=(20kg)(9.81m/s” +1.87m/s
(20kg)(0.81m/s? ’)
=| 234N
T, = m3o(g—a)
= Slm/S —1. S
(30kg)(9.81m/s> —1.87m/s?)
=| 238N
Ar =D _ AR 2AR
Vo, 3V y
_22m) o
2.73m/s
3
=
T
| mg
|_
Yty =TR=1,.a (1)
and
D F, =mg-T=ma )
TR = (2 MR? )% (3)
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Eliminate T between equations (2)
and (3) and solve for a to obtain:

(b) Substitute for @ in equation (2)
and solve for 7 to obtain:

74 e

Picture the Problem The diagram shows
the forces acting on both objects and the
pulley. By applying Newton’s 2™ law of
motion, we can obtain a system of three
equations in the unknowns 7, 7», and a
that we can solve simultaneously.

(a) Apply Newton’s 2™ law to the
pulley and the two objects:

Substitute for /o = Iouiey and o in
equation (2) to obtain:

Eliminate 7, and T, between
equations (1), (3) and (4) and solve
for a to obtain:

Substitute numerical values and
evaluate a:

(b) Substitute for a in equation (1)
and solve for 7 to obtain:

_ g
S Y V7
1+—
Sm
T 2mMg
Sm+2M

lmgg'
ZF =1 mlg m,a (D
Yot =(,-T)r =10, ()
and
Y F =mg-T (3)
(1, ~1)r = (s mr)" )
a= (mz_ml)g

1
m+m,+5m

_ (510g-500g)(981cmys?)
500g+510g+1(50¢g)

=|9.478cm/s’

Ii=m, (g + a)
= (0.500kg)(9.81m/s” +0.09478 m/s? )
=[4.9524N




Substitute for a in equation (3) and
solve for 7T, to obtain:

Find AT:

(c) If we ignore the mass of the

pulley, our acceleration equation is:

Substitute numerical values and
evaluate a:

Substitute for a in equation (1) and
solve for T} to obtain:

Substitute numerical values and evaluate T7:

T, =(0.500kg)(9.81m/s* +0.09713m/s* ) =[ 4.9536 N

From equation (4), if m = 0:

*75 oo

Picture the Problem The diagram shows
the forces acting on both objects and the
pulley. By applying Newton’s 2" law of
motion, we can obtain a system of three
equations in the unknowns 7, 75, and o

that we can solve simultaneously.

(a) Express the condition that the
system does not accelerate:
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T, =m, (g - a)
=(0.510kg)(9.81m/s> —0.09478 m/s* )
=[4.9548N

AT =T,-T, =4.9548N - 4.9524N
=[0.0024N

(mz —m )g
ml + m2

a =

_ (510g-500g)(81cm/s’)
500g+510g

=19.713cm/s’

T, :ml(g+a)

Tl:TZ

Vi, 8
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Solve for m;: R,

i i 1.2m
Substitute numerical values and m, = (2 4 kg) _[72.0kg
evaluate m,: 04m
(b) Apply Newton’s 2™ law to the Y F =mg-T,=ma, (1)
objects and the pulley: Z t,=TR -T,R, =I,a, (2)

and
zFx:Tz_ng:mza (3)

Eliminate a in favor of « in equations I, =m, (g - R« ) 4)
(1) and (3) and solve for T} and T>: and

T, =m, (g+R2a) (5)
Substitute for 77 and T3 in equation o= (mlRl —m,R, )g
(2) and solve for « to obtain: m R’ +m,R; +1,

Substitute numerical values and evaluate o

L [G6kg)(1.2m)~ (72kg)(0.4m)](0.81m/s*) T

(36kg)(1.2m)* +(72kg)(0.4m)’ + 40kg - m*

Substitute in equation (4) to find 77:

T, = (36kg)[9.81m/s* - (1.2m)(1. 37 rad/s* )| = 294N

Substitute in equation (5) to find 7>:

T, = (72kg)[0.81m/s*+ (0.4 m)(1.37rad/s? )| = 746N
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Picture the Problem Choose the
coordinate system shown in the diagram.
By applying Newton’s 2™ law of motion,
we can obtain a system of two equations in
the unknowns 7 and a. In (b) we can use
the torque equation from (a) and our value
for T to finde. In (¢) we use the condition

that the acceleration of a point on the rim
of the cylinder is the same as the

acceleration of the hand, together with the Y Mg
angular acceleration of the cylinder, to find |
the acceleration of the hand.

) nd
(a) Apply Newton s.2 law to ‘Fhe ZTO —TR=1, a )
cylinder about an axis through its
center of mass: and
Y F,=Mg-T=0 (2)
Solve for T to obtain: T=| Mg
(b) Rewrite equation (1) in terms of IR = I,
o
Solve for a: _ IR
o =—
IO
Substitute for T and I, to obtain: o= MgR | 2g
IMR* [ R
(¢) Relate the acceleration a of the a=Ra

hand to the angular acceleration of
the cylinder:

. o 2
Substitute for o to obtain: a= R( g j
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77 e

Picture the Problem Let the zero of

gravitational potential energy be at the

bottom of the incline. By applying F

Newton’s 2™ law to the cylinder and the

block we can obtain simultaneous | T
equations in @, T, and « from which we

can express a and 7. By applying the

conservation of energy, we can derive
an expression for the speed of the block
when it reaches the bottom of the

incline.
(a) Apply Newton’s 2™ law to the z 7,=1R =1, e
cylinder and the block: and
ZFX =m,gsind@—T =m,a (2)
Substitute for « in equation (1), gsiné
a=|—
solve for T, and substitute in m,
: 1+

equation (2) and solve for a to 2m,
obtain:
(b) Substitute for a in equation (2) %m1 gsinf
and solve for T r= m

1+—!

2m,

(c) Noting that the block is released E=U+K =| m,gh
from rest, express the total energy of
the system when the block is at
height A:
(d) Use the fact that this system is E, o =| mygh
conservative to express the total
energy at the bottom of the incline:
(e) Express the total energy of the Eoom = Kian + Koot
system when the block is at the =1 m2v2 +1 Ioa)z

bottom of the incline in terms of its
kinetic energies:
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2

Substitute for w and /, to obtain: . g (1 ) )v
TV lmr )y = m,gh

Solve for v to obtain:

(f) For 8= 0: a=T=0
For 6= 90°:
1+
2m,
1
T m
T=- ’lng =|ima |,
1+
2m,
and
2gh
V= gm
| —
2m,
For m; =0: a=|gsinf ,T:@,and
V= \/ 2gh
*78 oo
Picture the Problem Let r be the radius of
the concentric drum (10 cm) and let /) be
the moment of inertia of the drum plus T
platform. We can use Newton’s 2™ law in
both translational and rotational forms to
express Iy in terms of @ and a constant-
acceleration equation to express a and then T
find ;. We can use the same equation to Mg
find the total moment of inertia when the |
object is placed on the platform and then L
subtract to find its moment of inertia.
(a) Apply Newton’s 2™ law to the z T, =Tr=1,x (1)

platform and the weight: Z F =Mg—T=Ma )
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Substitute a/r for « in equation (1)
and solve for T

Substitute for 7" in equation (2) and
solve for a to obtain:

Using a constant-acceleration
equation, relate the distance of fall
to the acceleration of the weight and
the time of fall and solve for the
acceleration:

Substitute for a in equation (3) to
obtain:

Substitute numerical values and
evaluate /;:

(b) Relate the moments of inertia of
the platform, drum, shaft, and pulley
(1o) to the moment of inertia of the
object and the total moment of
inertia:

Substitute numerical values and

evaluate [,

Solve for and evaluate [:

Ax = v At +La(Ar)

3)

or, because vy = 0 and Ax =D,

_ 2D

(ary

I, :Mﬁ(é_lj :Mrz(g(At)z

a

(2.5kg)(0.1m)’

) {(9.81m/sz)(4.2 s)?

2(1.8m)

1,

=|1.177kg-m’

a

:Mrz[M—lJ

I, =1,+1 :Mr2[§—1j

2D

I, =(2.5kg)(0.1m)

2D

i

X{(9.81m/52)(6.85)2
2(1.8m)

=|3.125kg-m’

I=1,-1,=3.125kg-m’
~1.177kg-m’
=|1.948kg-m’

.

:
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Objects Rolling Without Slipping

*7Q oo

Picture the Problem The forces acting on

the yo-yo are shown in the figure. We can

use a constant-acceleration equation to %
relate the velocity of descent at the end of

the fall to the yo-yo’s acceleration and

Newton’s 2™ law in both translational and

rotational form to find the yo-yo’s | mg
acceleration. !
Using a constant-acceleration v =y +2aAh
equation, relate the yo-yo’s final or, because v = 0
speed to its acceleration and fall v =2aAh (1)
distance:
Use Newton’s 2™ law to relate the Z F =mg—-T =ma )
forces that act on the yo-yo to its and
acceleration: Z r,=Tr =1, 3)
Use a = ra to eliminate o in a
: Tr=1,— “4)
equation (3) r
. . . I

Eliminate 7 be'tween equations (2) mg _g 4= ma 5)
and (4) to obtain: r
Substitute 5 mR * for I, in equation 1mR 2

mg ————a=ma
(5): r
Solve for a: __ &

a 7

1+—
2r

Substitute numerical values and 9.81m/s”

a=——7—-3=0.0864 m/s’
evaluate a: (1 5 m)

2(0. 1 m)2

Substitute in equation (1) and V= \/2(0.0864 m/s? )(57 m)

evaluate v:

=|3.14m/s
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80 e

Picture the Problem The diagram shows
the forces acting on the cylinder. By
applying Newton’s 2™ law of motion, we
can obtain a system of two equations in the
unknowns 7, a, and « that we can solve
simultaneously.

(a) Apply Newton’s 2™ law to the
cylinder:

Substitute for « and [, in equation
(1) to obtain:

Solve for T:

Substitute for 7" in equation (2) and
solve for a to obtain:

(b) Substitute for @ in equation (3)
to obtain:

81 e

Picture the Problem The forces acting on
the yo-yo are shown in the figure. Apply
Newton’s 2" law in both translational and
rotational form to obtain simultaneous
equations in 7, @, and « from which we can
eliminate « and solve for T and a.

Apply Newton’s 2™ law to the yo-yo:

Use a = ra to eliminate o in
equation (2)

T=1Ma 3)

mg

ZFx =mg—-T=ma

and
ZTO =Tr=1x
Tr=1,2

Q)

2

)
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. . . [
Eliminate T betcween equations (1) mg — _g 4= ma )
and (3) to obtain: r
Substitute 1 mR? for I, in equation 1 mR?
mg ————a=ma
(4):
Solve for a: __ &
a 2
R
I+—
2r
Substitute numerical values and 4= 9.81m/522 _10.192m/s?
evaluate a: { ((). 1 m)
+ -~ @ 7
2(0.01m)’
Use equation (1) to solve for and T= in(g - a)
evaluate T: = (0.1kg)(9.81m/s> —0.192m/s?)
=|0.962N
*82 e

Picture the Problem We can determine the kinetic energy of the cylinder that is due to
its rotation about its center of mass by examining the ratio K, /K .

Express the rotational kinetic energy of K =17 @=L (L - )_ — Loy
the homogeneous solid cylinder: ot 2 eyl 2\ rr !
Express the total kinetic energy of the K=K, +K,,=tmv’+im’=3my
homogeneous solid cylinder:
K K Lmy? -
Express the ratio —=-: ot — ‘3‘ > =+and | (b)is correct.
K K imv

83 -
Picture the Problem Any work done on the cylinder by a net force will change its
kinetic energy. Therefore, the work needed to give the cylinder this motion is equal to its

kinetic energy.

Express the relationship between the |W| = |AK | =imv’ +1l0’
work needed to stop the cylinder and
its kinetic energy:



668 Chapter 9

Because the cylinder is rolling without V=rw
slipping, its translational and angular
speeds are related according to:

Substitute for / (see Table 9-1) and @ |W| = %mv2 +%Ia)2
and simplify to obtain: 2

Substitute for m and v to obtain: |W| = %(60 kg)(S m/s)2 =|1.13kJ

84 -
Picture the Problem The total kinetic energy of any object that is rolling without
slipping is given by K = K+ K, . We can find the percentages associated with each

trans
motion by expressing the moment of inertia of the objects as km” and deriving a general
expression for the ratios of rotational kinetic energy to total kinetic energy and
translational kinetic energy to total kinetic energy and substituting the appropriate values
of k.

Express the total kinetic energy K=K, .+K.,=tm’+1low
associated with a rotating and 2

. . _ 1 2 1 2
translating object: =5;mv + g(kmr )r_

K Lkmy?
Express the ratio —=-: Koot _ 1 2 k;’l’lV = k __1
K K im(1+k) 14k |,
K Lmy?
Express the ratio —==: Kis _ > ;nv _ !
K Im’(1+k) 1+k
(a) Substitute k£ = 2/5 for a uniform Ko _ 1 —0.286=| 28.6%
sphere to obtain: K 1+ e
0.4
and
K 1

0.714 =| 71.4%




(b) Substitute k£ = 1/2 for a uniform
cylinder to obtain:

(c¢) Substitute £ = 1 for a hoop to obtain:

85 -
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K 1+L
0.5
and
K s = ! =166.7%
K 1+0.5
rot 1
—ot =——— =150.0%
K 1+1
1
and
B _ L _1'50,0%
K 1+1

Picture the Problem Let the zero of gravitational potential energy be at the bottom of the
incline. As the hoop rolls up the incline its translational and rotational kinetic energies are

transformed into gravitational potential energy. We can use energy conservation to relate

the distance the hoop rolls up the incline to its total kinetic energy at the bottom of the

incline.

Using energy conservation, relate
the distance the hoop will roll up the
incline to its kinetic energy at the
bottom of the incline:

Express K as the sum of the
translational and rotational kinetic
energies of the hoop:

When a rolling object moves with
speed v, its outer surface turns with
a speed v also. Hence @ = v/r.
Substitute for / and @ to obtain:

Letting A4 be the change in
elevation of the hoop as it rolls up
the incline and AL the distance it

rolls along the incline, express Uk

Substitute in equation (1) to obtain:

AK+AU =0
or, because K= U; =0,
-K,+U; =0 (1)
Ki = Ktrans +Krot :%mvz +%]C!)2
2
K, =1imv’ +%(mr2)—2:mv
7

U: = mgAh = mgALsin 6

—mv® + mgALsinf =0
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Solve for AL: AL = V'2
gsin@
Substitute numerical values and (l Sm/ S)2
. = AN =1459m
evaluate AL: (9.81m/s ) sin30°
*86 o0

Picture the Problem From Newton’s 2™ law, the acceleration of the center of mass
equals the net force divided by the mass. The forces acting on the sphere are its weight

m(@ downward, the normal force IErl that balances the normal component of the weight,

and the force of friction f acting up the incline. As the sphere accelerates down the
incline, the angular velocity of rotation must increase to maintain the nonslip condition.
We can apply Newton’s 2™ law for rotation about a horizontal axis through the center of
mass of the sphere to find ¢, which is related to the acceleration by the nonslip condition.
The only torque about the center of mass is due to f because both mg and IEn act through
the center of mass. Choose the positive direction to be down the incline.

Apply z F = ma to the sphere: mgsinf — f =ma,, (1)
Apply Z 7 =1, a to the sphere: fr=1,«a
Use the nonslip condition to a.,.
eliminate & and solve for f: fr=1, P

and

1
— cm a

f ]/'2 cm
Substitute this result for fin . om
equation (1) to obtain: mgsin@ ——ta,, =ma,,
From Table 9-1 we have, for a solid I, =2 mr?

sphere:
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Substitute in equation (1) and simplify mgsin@—2a,_ =ma,,
to obtain:
Solve for and evaluate 6: . 7a
6 =sin~ o
4
0

—sin| 7 28| _ 16.3°
5g

87 e
Picture the Problem From Newton’s 2™ law, the acceleration of the center of mass
equals the net force divided by the mass. The forces acting on the thin spherical shell are

its weight mg downward, the normal force |fn that balances the normal component of the

weight, and the force of friction f acting up the incline. As the spherical shell accelerates

down the incline, the angular velocity of rotation must increase to maintain the nonslip
condition. We can apply Newton’s 2™ law for rotation about a horizontal axis through the
center of mass of the sphere to find ¢, which is related to the acceleration by the nonslip

condition. The only torque about the center of mass is due to f because both m( and

F act through the center of mass. Choose the positive direction to be down the incline.
y

1

Apply z F = ma to the thin mgsinf — f =ma,, (1)
spherical shell:

Apply Z 7 =1, a to the thin fr=1_oa

spherical shell:

Use the nonslip condition to a,, I,
eliminate & and solve for f: fr=1I,—%and f = 2 e
Substitute this result for fin . I,

equation (1) to obtain: mgsin @ ——ta,, =ma,,

From Table 9-1 we have, for a thin J = %mrz
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spherical shell:
Substitute in equation (1) and mg sin 6 — % a, =ma,,
simplify to obtain:
Solve for and evaluate . 9a,,
@ =sin” —
3g
. 1 5(0.2
=sin” M =119.5°
3g

Remarks: This larger angle makes sense, as the moment of inertia for a given mass
is larger for a hollow sphere than for a solid one.

88 oo
Picture the Problem The three forces
acting on the basketball are the weight of
the ball, the normal force, and the force of
friction. Because the weight can be
assumed to be acting at the center of mass,
and the normal force acts through the
center of mass, the only force which exerts
a torque about the center of mass is the
frictional force. We can use Newton’s 2™
law to find a system of simultaneous

equations that we can solve for the

quantities called for in the problem

statement.
(a) Apply Newton’s 2™ law in both ZFx =mgsinf - f, =ma, (1)
translational and rotational form to the Z F =F —mgcosf =0 )
ball: g !
and
2n=fr=la 3)
Because the basketball is rolling a=2
without slipping we know that: r
Substitute in equation (3) to obtain: fr=1 a )
s 0 r
From Table 9-1 we have: I, =2mr’
Substitute for /; and « in equation fr= (; mr? )ﬁ = [ =2ma (5)
s" T \3 s 3

(4) and solve for f;: ' r
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Substitute for f; in equation (1) and a=|igsind

solve for a:

(b) Find f; using equation (5): f.=2m(gsin0)=| 2mgsin0
(¢) Solve equation (2) for F: F =mgcos®

Use the definition of f; max to obtain: Somax = M, = umgcos@
Use the result of part (b) to obtain: tmgsin6,, = umgcosé
Solve for Gpax: 0. . =|tan” (% ﬂs)
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Picture the Problem The three forces
acting on the cylinder are the weight of the
cylinder, the normal force, and the force of
friction. Because the weight can be
assumed to be acting at the center of mass,
and the normal force acts through the
center of mass, the only force which exerts
a torque about the center of mass is the
frictional force. We can use Newton’s 2™
law to find a system of simultaneous
equations that we can solve for the

quantities called for in the problem

statement.
(a) Apply Newton’s 2" law in both ZFX =mgsinf — f. =ma, (1)
translational and rotational form to z F =F —mgcosd =0 )
the cylinder: g !

and

Yty =fir=1a (3)
Because the cylinder is rolling o= a
without slipping we know that: r
Substitute in equation (3) to obtain: fr=1I a )

st fo

From Table 9-1 we have: I, =+mr
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Substitute for /o and « in equation
(4) and solve for f:

Substitute for f; in equation (1) and
solve for a:

(b) Find f; using equation (5):

(c) Solve equation (2) for F;:

Use the definition of f; .« to obtain:

Use the result of part () to obtain:

Solve for Opax:

*90 e

fi=4im(2gsin@)=| Lmgsin@

F =mgcos®

f;,max = /LlSFn = /Llsmg COos emax

+mgsing,, = umgcosd

max max

6. =| tan"(3u,)

max

Picture the Problem Let the zero of gravitational potential energy be at the elevation

where the spheres leave the ramp. The distances the spheres will travel are directly

proportional to their speeds when they leave the ramp.

Express the ratio of the distances
traveled by the two spheres in terms
of their speeds when they leave the
ramp:

Use conservation of mechanical
energy to find the speed of the

spheres when they leave the ramp:

Express K for the spheres:

Substitute in equation (2) to obtain:

L' vAt V'

- = 1
L vAr v M
AK +AU =0

or, because K; = U;= 0,

K.-U, =0 2)
Kf :Ktrans +Kr0t

12 1 2
=omv. +51 @
2
v
%mv2 +%(ka2)—2
R

=Lmv? + Lkmv?

= (1 + k)% mv’
where £ is 2/3 for the spherical shell and 2/5
for the uniform sphere.

(1+k)Lmv? = mgH



Solve for v:

Substitute in equation (1) to obtain:

91 oo

_|2gH
Vi+k
L'_\/m_ 2
L \i+k 1+2
or

L'=]1.09L
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=1.09

Picture the Problem Let the subscripts u and h refer to the uniform and thin-walled

spheres, respectively. Because the cylinders climb to the same height, their kinetic

energies at the bottom of the incline must be equal.

Express the total kinetic energy of
the thin-walled cylinder at the
bottom of the inclined plane:

Express the total kinetic energy of
the solid cylinder at the bottom of
the inclined plane:

Because the cylinders climb to the

same height:

Divide the first of these equations

by the second:

Simplify to obtain:

Solve for v':

—_ | 1
Kh - Ktrans +Kr0t _Emhv +51ha)
V2
_1 2,1 2)_ 2
=MV 5 (I’I’lhl" 7 =My
r
_ _ 1 12 1 2
Ku _Ktrans+Kr0t - 2m v +21ua)
12
—1 12, 11 2V _ 3 2
=5m,v +2(5mur ) >~ =ymy
2myv? =m gh
4 "y - ug
and
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Picture the Problem Let the subscripts s
and c refer to the solid sphere and thin-
walled cylinder, respectively. Because the
cylinder and sphere descend from the same
height, their kinetic energies at the bottom
of the incline must be equal. The force
diagram shows the forces acting on the
solid sphere. We’ll use Newton’s 2™ law to
relate the accelerations to the angle of the
incline and use a constant acceleration to
relate the accelerations to the distances
traveled down the incline.

Apply Newton’s 2™ law to the sphere:

Substitute for [y and « in equation
(3) and solve for f;:

Substitute for f; in equation (1) and
solve for a:

Proceed as above for the thin-walled
cylinder to obtain:

Using a constant-acceleration
equation, relate the distance traveled
down the incline to its acceleration
and the elapsed time:

Because As is the same for both objects:

Substitute for a, and a, to obtain the
quadratic equation:

ZFx:mgsinG—fS:mas, (1)

ZFy =F —mgcosf =0, 2)
and
Zro =fr=1a 3)

S

a
for= (%mrz); = f,=2ma

_ 5 1
a,=2gsind
— 1 :
a, =5 gsind

As = v At +La(Ar)

or, because vy =0,

As = La(Ac) 4)
at! =at;
where

2 =(t,+2.4) =12 +4.8¢, +5.76

provided z. and ¢, are in seconds.

t2+4.8t, +576="12¢



Solve for the positive root to obtain:

Substitute in equation (4), simplify,
and solve for 4:

Substitute numerical values and
evaluate @:

93 o00
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t, =12.3s
0= sin’1_14AS
| Sgt;
. 14(3m)
0: 1
o _5(9.81111/52)(12.35)2}
=[0324°

Picture the Problem The kinetic energy of the wheel is the sum of its translational and
rotational kinetic energies. Because the wheel is a composite object, we can model its

moment of inertia by treating the rim as a cylindrical shell and the spokes as rods.

Express the kinetic energy of the
wheel:

Express the moment of inertia of
the wheel:

Substitute for /., in the equation
for K:

Substitute numerical values and
evaluate K:

K = Ktrans + Krot
—1 2 1 2
_EMtotv +Elcma)
2
1%
viedr

tot 2 7 cm 2
R

=1M

where ]Mtot = Mrim + 4M. spoke

Icm = Irim + Ispokes
= MrimR2 + 4(%Msp0keR2)
= (Mrim + %MSPOI“’/ )R ’
K= M+ 0 00 0TS

= [% (Mtot + Mrim ) + %MSPOke ]V2

~
[

[£(7.8kg +3kg)+2(1.2kg)|(6 m/s)’
=| 223J




678 Chapter 9

94  eee

Picture the Problem Let M represent the
combined mass of the two disks and their
connecting rod and / their moment of
inertia. The object’s initial potential energy
is transformed into translational and
rotational kinetic energy as it rolls down
the incline. The force diagram shows the
forces acting on this composite object as it
rolls down the incline. Application of
Newton’s 2" law will allow us to derive an
expression for the acceleration of the
object.

(a) Apply Newton’s 2™ law to the
disks and rod:

Eliminate f; and « between
equations (1) and (3) and solve for a
to obtain:

Express the moment of inertia of the
two disks plus connecting rod:

Substitute numerical values and
evaluate [

Substitute in equation (4) and
evaluate a:

(b) Find « from a:

D> F, =Mgsin- f, =Ma, (1)
ZFy =F —Mgcosfd =0, ?2)
and
a:Mgsm[@ @)
M+—
r

I = 2Idisk +]r0d
_ (1 2 1 2
= Z(EmdiskR )+7mmd"

_ 2 1 2
- mdiskR + 2 mrodr

I=(20kg)(0.3m)* +1(1kg)(0.02m)’
=1.80kg-m’

(41kg)(9.81m/s?) sin30°
1.80kg-m®

(0.02m)

=1 0.0443m/s’

41kg+

a 0.0443m/s’

r 0.02m

=| 2.21rad/s’
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(c) Express the kinetic energy of Ko =MV’
translation of the disks-plus-rod
when it has rolled a distance As

down the incline:

Using a constant-acceleration v =v] +2aAs
equation, relate the speed of the or, because vy = 0
disks-plus-rod to their acceleration v2 =2aAs

and the distance moved:

Substitute to obtain: K. s = MaAs
= (41kg)(0.0443m/s”)(2m)
=|3.63J

(d) Express the rotational kinetic Ko =Ui = Kos = Mgh =K,

energy of the disks after rolling 2 m
in terms of their initial potential
energy and their translational kinetic

energy:
Substitute numerical values and K, =(41 kg)(9.8 1m/s’? )(2 m)sin30°
evaluate Ko —-3.63]

=1399]
95 L1 1]

Picture the Problem We can express the coordinates of point P as the sum of the
coordinates of the center of the wheel and the coordinates, relative to the center of the
wheel, of the tip of the vector 7, . Differentiation of these expressions with respect to time

will give us the x and y components of the velocity of point P.

(a) Express the coordinates of point x =r,cos0
P relative to the center of the wheel: and
y =r,sin6
Because the coordinates of the (xp,vp)=| (X +7,cos6,R+7,sind)

center of the circle are X and R:
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(b) Differentiate xp to obtain:

Note that
d—X:Vandﬁz—a)z—K So:
dt dt R

Differentiate yp to obtain:

Because —=—-w =——:
dt R

(c) Calculate V - T :

(d) Express v in terms of its components:

Express 7 in terms of its components:

Divide v by 7 to obtain:

Vo, =%(X+r0 cosf)
=d—X—r0 sin@ - —
dt dt

V.
Vp, = v+ sing
R

=1(R+r0 sin@):ro cos@-d—e

v
Pdt dt
Vp, = —%cos&

VT =vpr +v,r,

v
(V + % sin Hj(ro cosf)

rV

- (? cos 9)(R +7,sin 0)

V
= =| —
R
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Picture the Problem Let the letter B
identify the block and the letter C the
cylinder. We can find the accelerations of
the block and cylinder by applying
Newton’s 2™ law and solving the resulting
equations simultaneously.

Apply ZFX = ma, to the block:
Apply Z F_=ma_to the cylinder:
Apply Z Tem = Loy @ to the cylinder:

Substitute for /¢y in equation (3)
and solve for f=f"' to obtain:

Relate the acceleration of the block
to the acceleration of the cylinder:

Equate equations (2) and (4) and
substitute from (5) to obtain:

Substitute equation (4) in equation (1)
and substitute for ac to obtain:

Solve for ag:

97  eee

Picture the Problem Let the letter B
identify the block and the letter C the
cylinder. In this problem, as in Problem 97,
we can find the accelerations of the block
and cylinder by applying Newton’s 2™ law
and solving the resulting equations
simultaneously.

Rotation 681

-
i - —x
i F
mg

(1

S =Ma, (2)
JR=1ya (3)

f=L1MRa 4)

-2

ac. =ag+acg
or, because acg = —Ra 1s the acceleration

of the cylinder relative to the block,
a. =az —Ra

and
Ra =ay —ag (5)
ag = 3ac

1 —
F—sMay = may

3F
M +3m
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Apply Z F_=ma_to the block:

Apply z F_=ma_to the cylinder:

Apply z Tey = Loy to the cylinder:

Substitute for /-y in equation (3)
and solve for f;

Relate the acceleration of the block
to the acceleration of the cylinder:

(a) Solve for & and substitute for ag
to obtain:

(b) Equate equations (2) and (4) and
substitute (5) to obtain:

From equations (1) and (4) we
obtain:

Solve for ag:
Substitute to obtain the linear

acceleration of the cylinder relative
to the table:

F— f =may (1
f=Ma, @)
JR=1Ioya 3)
f=4+MRa )

e =ag +acy
or, because acg = —Ra,
a-. =ay — Ra

and

Ra =ay—a. Q)
g% _ 3a. —ac. _ 2a
R R R
B 2F
R(M +3m)

From the force diagram it is evident
that the torque and, therefore,  is in

the counterclockwise direction.

ag = 3ac

1 —
F—-3sMay = mayg

_ 3F
M +3m
. F
G =39 = M +3m




(c) Express the acceleration of the
cylinder relative to the block:

98  eee

Picture the Problem Let the system
include the earth, the cylinder, and the
block. Then F is an external force that
changes the energy of the system by doing
work on it. We can find the kinetic energy
of the block from its speed when it has
traveled a distance d. We can find the
kinetic energy of the cylinder from the sum
of its translational and rotational kinetic
energies. In part (c) we can add the kinetic
energies of the block and the cylinder to
show that their sum is the work done by

F in displacing the system a distance d.

(a) Express the kinetic energy of the block:

Using a constant-acceleration
equation, relate the velocity of the
block to its acceleration and the
distance traveled:

Substitute to obtain:
Apply ZFx = ma_to the block:

Apply z F_=ma_to the cylinder:

Apply z Tey = Loy to the

cylinder:

Substitute for /-y in equation (4)
and solve for f;

Relate the acceleration of the block
to the acceleration of the cylinder:

Rotation 683

Aeg =0 —ag = ac —3a. =—2a.
B 2F
M +3m
y
3
fr

i - - —X
F
mg

_ 1 2
KB - Wvon block — 2 mvB
22

Vg =V, +2ad

or, because the block starts from rest,
ve =2a,d

Ky =1m(2a,d)=magyd (1)
F—f =mag )
f ZMCIC, (3)
JR =1y “4)
f=3+MRa 5)

a- =ag +acy

or, because acg = —Ra,
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Equate equations (3) and (5) and
substitute in (6) to obtain:

Substitute equation (5) in equation
(2) and use ay = 3a to obtain:

Solve for ag:

Substitute in equation (1) to obtain:

(b) Express the total kinetic energy of
the cylinder:

In part (a) it was established that:

Integrate both sides of the equation
with respect to time to obtain:

Substitute the initial conditions to obtain:

Substitute in our expression for vcg
to obtain:

Substitute for /oy and veg in
equation (7) to obtain:

a-. =agz —Ra

and

Roa =ay—ac (6)
ag =3a.

F—Ma. =may

or

F
ag = !
m+§M
| mFd
K,=| 5
m+§M
— — 1 2,1 2
Kcyl - Ktrans +Krot _SMVC +51CMa)

Vep )

_ 1 2 1
_EMVC+EICM Rz

where vy =V — V.
ag =3a.

vy = 3y, +constant

where the constant of integration is
determined by the initial conditions that v¢
= (0 when vg = 0.

constant =0
and
vy =3V

Ve = Ve — Vg = Ve —3Ve =2V,

2
M+ %(%MRZ)—(_ 2vc)

K
R? (®)

1
cyl 2

My

0w
Qv
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Because V. =1 V! ve =1vp
: . 2
It part (a) it was established that: v =2ayd
and
F
ag =
m+iM
Substitute to obtain: F
2 _ 1 —2
S )
m+iM
_ 2Fd
9(m+1M)
Substitute in equation (8) to obtain: 2Fd
1 Kcyl = %M N 1 A
9(m +iM )
_ MFd
3(m +iM )
(c) Express the total kinetic energy K, =Kg+K,
of the system and simplify to obtain: mFd MFd
= +
m+iM  3(m+iM)
3m+M
— (Bm+M) Fd=| Fd
3(m+1M)
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Picture the Problem The forces
responsible for the rotation of the gears are 2N
shown in the diagram to the right. The ;
forces acting through the centers of mass of X
the two gears have been omitted because
they produce no torque. We can apply ¢
Newton’s 2™ law in rotational form to o
obtain the equations of motion of the gears
and the not slipping condition to relate
their angular accelerations. ¥
(a) Apply ZT:Ia to the gears to 2N-m-FR =1, (1)
obtain their equations of motion: and
FR, =1,a, )

where F'is the force keeping the gears from
slipping with respect to each other.

Because the gears do not slip Ra, =R,
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relative to each other, the tangential
accelerations of the points where
they are in contact must be the
same:

Divide equation (1) by R, to obtain:

Divide equation (2) by R, to obtain:

Add these equations to obtain:

Use equation (3) to eliminate o,:

Solve for ¢ to obtain:

Substitute numerical values and
evaluate a:

Use equation (3) to evaluate a:

(b) To counterbalance the 2-N-m
torque, a counter torque of 2 N-m
must be applied to the first gear. Use
equation (2) with ¢ =0 to find F:

or
R
a, =R_;a1 =3 €)
2N-m_F:La’1
Rl Rl
1
F=-1q,
RZ
2Nm I, 1,
=—La+2a,
Rl Rl R2
2N-m ], I,
=—qo +—q,
R R ' 2R,
a - 2N-m
=
Il+£12
R2
o - 2N -m
=
lkg-m2+0'5m(l6kg-m2)
Im

0.222 rad/s?

a, =+(0.222rad/s? )=

0.111rad/s*

2N-m—-FR =0
and
F=2N~m_2N-m=

R 05m

4.00N




*100 -

Picture the Problem Let r be the radius of
the marble, m its mass, R the radius of the
large sphere, and v the speed of the marble
when it breaks contact with the sphere. The
numeral 1 denotes the initial configuration
of the sphere-marble system and the
numeral 2 is configuration as the marble
separates from the sphere. We can use
conservation of energy to relate the initial
potential energy of the marble to the sum
of its translational and rotational kinetic
energies as it leaves the sphere. Our choice
of the zero of potential energy is shown on
the diagram.

(a) Apply conservation of energy:

Because U, = K; =0:

Use the rolling-without-slipping
condition to eliminate @:

From Table 9-1 we have:

Substitute to obtain:

Solve for v* to obtain:

Apply ZFr = ma, to the marble as

it separates from the sphere:

Rotation 687

AU +AK =0

or

U,-U,+K,-K, =0

—mg[R+r—(R+7r)cosd]

+imv? + 110’ =0

or

—mg|(R+r)(1-cos 6’)]
+imv’ +1l0® =0

—mg[(R+7)(1-cosb)|

2

v
+imy’ +11—=0
r

2

I =%mr

uro

—mg[(R+r)(1-cos6)]

1 2,12 2
+7mv +7(gml")

or

2

v
_2:()
r

- mg[(R +7)(1-cos 9)]

2 2
+1imy- +Limv° =0

, 10

Vo= Tg(R +7)(1-cos@)

mgcosfd =m

or

2

R+r
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2

Q=——
co8 g(R +r)
Substitute for v*:
ubstitute for v COSHZm[gg(RjL’”)(I_COSQ)}
= {%(l—cos@)}
Solve for and evaluate 6: _{10]
@ =cos | — |=]|54.0°

The force of friction is always less than x, multiplied by the normal
force on the marble. However, the normal force decreases to 0 at the
(b)| point where the ball leaves the sphere, meaning that the force of

friction must be less than the force needed to keep the ball rolling

without slipping before it leaves the sphere.

Rolling With Slipping

101 -

Picture the Problem Part (a) of this problem is identical to Example 9-16. In part (b) we
can use the definitions of translational and rotational kinetic energy to find the ratio of the
final and initial kinetic energies.

(a) From Example 9-16: 12 vg
s = —= s
P49 e
2
t,=| = Yo , and
T mg

5
VI =480 = 7"0

(b) When the ball rolls without Ky =K, + Ky,
slipping, v| = ro. Express the final =1 lez +4 Iw?
kinetic energy of the ball: 2

— 12 L(; 2)"_1
=5 Mv; +5\sMr .

_ 1 2 _ 5 2
= Mv; = My



Express the ratio of the final and
initial kinetic energies:

(c¢) Substitute in the expressions in
(a) to obtain:

*102 e
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Ky _fiMv |5
K, imv? |7
2
g 12 (8mis) ~=[26.6m
49 (0.06)(9.81m/s? )
2 8m/s
== =|3.88
"=3 (0.06)(9.81m/s? ) :

v = %(8 m/s)=| 5.71m/s

Picture the Problem The cue stick’s blow delivers a rotational impulse as well as a
translational impulse to the cue ball. The rotational impulse changes the angular

momentum of the ball and the translational impulse changes its linear momentum.

Express the rotational impulse P

as the product of the average torque

and the time during which the
rotational impulse acts:

Express the average torque it

produces about an axis through the
center of the ball:

Substitute in the expression for Py
to obtain:

The translational impulse is also
given by:

Substitute to obtain:

Solve for ax:

P, =7, At

rot

t,, =P(h—r)sin@=P(h-r)
where 6 (=90°) is the angle between F
and the lever arm 4 — 7.

By = R(h—r)At=(RAt)(h—r)
= Rrams(h_r = AL = Ia)O

P...=FAt=Ap=my,

trans

mv, (h - r) = %mrza)o

5v, (h — r)

w, =
0
2r°
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Picture the Problem The angular velocity Y
of the rotating sphere will decrease until
the condition for rolling without slipping is
satisfied and then it will begin to roll. The
force diagram shows the forces acting on
the sphere. We can apply Newton’s 2™ law
to the sphere and use the condition for

rolling without slipping to find the speed of

F B A A A B B A O B B B A ey B v v B B v i

the center of mass when the sphere begins fi
to roll without slipping. mg
Relate the velocity of the sphere v =alt (1)

when it begins to roll to its
acceleration and the elapsed time:

Apply Newton’s 2™ law to the ZFX = f, =ma, )
sphere: sz —F -mg=0, 3)
and
2 =fir=la “
Using the definition of f and F, a=ug

from equation (3), substitute in
equation (2) and solve for a:

Substitute in equation (1) to obtain: v =alt = u, gAt ®)

_ S _ mar S ueg
I, *mr’ 2 r

Solve for & in equation (4): a

5
Express the angular speed of the 0=w,-aht=ao,- 8 At (6)
sphere when it has been moving for r
a time Af:
Express the condition that the V=rw

sphere rolls without slipping:

Substitute from equations (5) and

(6) and solve for the elapsed time T g
until the sphere begins to roll:



Use equation (4) to find v when the
sphere begins to roll:
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Picture the Problem The sharp force
delivers a rotational impulse as well as a
translational impulse to the ball. The
rotational impulse changes the angular
momentum of the ball and the translational
impulse changes its linear momentum. In

parts (¢) and (d) we can apply Newton’s 2™

law to the ball to obtain equations
describing both the translational and
rotational motion of the ball. We can then
solve these equations to find the constant
accelerations that allow us to apply
constant-acceleration equations to find the
velocity of the ball when it begins to roll
and its sliding time.

(a) Relate the translational impulse
delivered to the ball to its change in
its momentum:

Solve for vy:

Substitute numerical values and

evaluate vo:

(b) Express the rotational impulse
P,y as the product of the average
torque and the time during which
the rotational impulse acts:

Letting / be the height at which the
impulsive force is delivered, express
the average torque it produces about
an axis through the center of the ball:

Substitute # — » for ¢ and 90° for 9

Rotation 691

v:,ugAt:gra)O'ukg: 2rm,
‘ 7 mg 7
y

rrrrirrrrriT

/

U o T T
k

mg

=| 200m/s

Rrans = F;vAt = Ap = mVO
F At
VO =
m
L _ (20kN)(2x107s)
0 0.02kg
f)rot = z-avAt
7, =Flsin@

where @is the angle between F and the

lever arm /.

T =F(h—r)

av
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to obtain:

Substitute in the expression for Py
to obtain:

Because Pins = FAL:

Express the translational impulse
delivered to the cue ball:

Substitute for Py, to obtain:
Solve for ax:

Substitute numerical values and
evaluate ay:

(c) and (d) Relate the velocity of the
ball when it begins to roll to its

acceleration and the elapsed time:

Apply Newton’s 2™ law to the ball:

Using the definition of f and F,
from equation (3), substitute in
equation (2) and solve for a:

Substitute in equation (1) to obtain:

Solve for & in equation (4):

P, =F(h—r)At

ot =
])rot = Ptrans(h - 7"): AL = ]a)O
=imro,

P

trans

= B At = Ap = mvy,

2 2 _
Smr-@, = my,

Svlh—r
=

5(200m/s)(0.09m —0.05m)
Wy = >

2(.05m)
=| 8000rad/s

v = alt €))
2 F. = fi=ma, b
Y F, =F,-mg=0, 3)
and
Zfoszrzloa “4)
a=mg
v =alAt = u, gAt (5)

_ S mar 5 g

a 2
I, tmr® 2 r



Express the angular speed of the ball
when it has been moving for a time
At:

Express the speed of the ball when it
has been moving for a time At:

Express the condition that the ball
rolls without slipping:

Substitute from equations (6) and
(7) and solve for the elapsed time

until the ball begins to roll:

Substitute numerical values and
evaluate Ar:

Use equation (4) to express v when
the ball begins to roll:

Substitute numerical values and
evaluate v:
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S’U_kgAt
r

w=0,-alAt=w,-

(6)

V=, + 1, gAt @)

V=rw
At:gm}o—vo
T g

2| (0.05m)(8000rad/s)—200m/s
At==
7 (0.5)(9.81m/s?)
=|11.6s
v =y, + u, gAt

v =200m/s+(0.5)(9.81m/s?)(11.65)
=[257m/s

Picture the Problem Because the impulse is applied through the center of mass,
ay = 0. We can use the results of Example 9-16 to find the rolling time without slipping,

the distance traveled to rolling without slipping, and the velocity of the ball once it begins

to roll without slipping.

(a) From Example 9-16 we have:

Substitute numerical values and
evaluate #;:

(b) From Example 9-16 we have:

2 v,
t,==
T g
2 4m/s
=z =10.194
! 7(0.6)(9.81m/s?) °

_12 v

s, =
49 u g
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Substitute numerical values and
evaluate s;:

(c) From Example 9-16 we have:

Substitute numerical values and

evaluate v;:

106 oo

Picture the Problem Because the
impulsive force is applied below the center
line, the spin is backward, i.e., the ball will
slow down. We’ll use the impulse-
momentum theorem and Newton’s 2" law
to find the linear and rotational velocities
and accelerations of the ball and constant-
acceleration equations to relate these
quantities to each other and to the elapsed
time to rolling without slipping.

(a) Express the rotational impulse
delivered to the ball:

Solve for ax:

(b) Apply Newton’s 2™ law to the
ball to obtain:

Using the definition of f and F,
from equation (2), solve for

Using a constant-acceleration
equation, relate the angular speed of
the ball to its acceleration:

2
5 =12 (4ms) =] 0.666m
49 (0.6)(9.81m/s?)
v _EV
1_7 0

v, = %(4 m/s)=| 2.86m/s

R
P, =myyr = vaT =1

cm 0
= (%mRz)a)O
5v

"3

zfoszRzlcma’ (1)
Y F =F,-mg=0, 2)
and

> F, =—f =ma (3)

I 2mR* 2R

cm

o = HmeR _ pmgR _ Sug

5
a):a)0+aAt=a)o+%At



Using the definition of £ and F,
from equation (2), solve equation
(3) for a:

Using a constant-acceleration
equation, relate the speed of the ball

to its acceleration:

Impose the condition for rolling
without slipping to obtain:

Solve for At:

Substitute in equation (4) to obtain:

(c) Express the initial kinetic energy
of the ball:

(d) Express the work done by friction
in terms of the initial and final kinetic
energies of the ball:

Express the final kinetic energy of the
ball:

Substitute to find W
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a=-ug

v=v, +alAt =v, — u, gAt 4)

S g
R[a)o +ﬁAl‘j = VO —IlegAt

Ar=10Y
21 g
v=y, — 16 v, —iv
0~ H& 21 4 g 710
=] 0.238yv,
Ki = Ktrans +Krot = %mv(? +%Ia)§
2
S5v, 19
—sm oo 2] <L
=|1.056mv;
Wfr _Ki _Kf
K, =tmV+1I &’
=1lmy’ +§(§ mRz)%:%mvz

= Zm(0.238v, )" =0.0397mv;

W,

T

=1.056mv; —0.0397mv,
=| 1.016mv;
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Picture the Problem The figure shows the
forces acting on the bowling during the
sliding phase of its motion. Because the
ball has a forward spin, the friction force is
in the direction of motion and will cause
the ball’s translational speed to increase.
We’ll apply Newton’s 2™ law to find the
linear and rotational velocities and
accelerations of the ball and constant-
acceleration equations to relate these
quantities to each other and to the elapsed
time to rolling without slipping.

(a) and (b) Relate the velocity of the
ball when it begins to roll to its

acceleration and the elapsed time:

Apply Newton’s 2™ law to the ball:

Using the definition of f; and F,
from equation (3), substitute in
equation (2) and solve for a:

Substitute in equation (1) to obtain:
Solve for « in equation (4):

Relate the angular speed of the ball
to its acceleration:

Apply the condition for rolling
without slipping:

| A

ng
v=yv,+alAt (1)
D F, = f, =ma, )
ZFy:Fn_mg=0, (3)
and
zfoszRzloa 4)
a=umg

v =v,+alAt = v, + u, gAt (%)

_ /iR _ maR _i/"kg

I, 2mR*> 2 R

o
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5
Sy =3y, — E,ukgAt (6)
Equate equations (5) and (6) and As 4 v,
solve At: 7 1.8
. . . 1 1
Subs.tltute for At in equation (6) to v=v, =| 157y,
obtain: 7
(c) Relate Ax to the average speed of Ax =v, At = %(VO + V)At
the ball and the time it moves before 11 4,
_1
beginning to roll without slipping: ~2 (Vo + = Voj Tiug
2 2
_0 M o735 %
49 u.g 8
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Picture the Problem The figure shows the
forces acting on the cylinder during the
sliding phase of its motion. The friction ¥

force will cause the cylinder’s translational
speed to decrease and eventually satisfy the
condition for rolling without slipping.
We’ll use Newton’s 2™ law to find the
linear and rotational velocities and
accelerations of the ball and constant-
acceleration equations to relate these
quantities to each other and to the distance

traveled and the elapsed time until the

satisfaction of the condition for rolling Ymg
without slipping.

(a) Apply Newton’s 2™ law to the ZFx =—f, =Ma, (D
cylinder: _ _
Y 2F, =F,-Mg=0, @)
and
20 =fiR=1a (3)
Use fi = wF, to eliminate F, a=—ug

between equations (1) and (2) and
solve for a:
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Using a constant-acceleration
equation, relate the speed of the
cylinder to its acceleration and the
elapsed time:

Similarly, eliminate f; between
equations (2) and (3) and solve for
o

Using a constant-acceleration
equation, relate the angular speed of
the cylinder to its acceleration and
the elapsed time:

Apply the condition for rolling
without slipping:

Solve for At:

Substitute for Af in the expression
for v:

(b) Relate the distance the cylinder
travels to its average speed and the
elapsed time:

(c) Express the ratio of the energy
dissipated in friction to the cylinder’s
initial mechanical energy:

Express the kinetic energy of the
cylinder as it begins to roll without

slipping:

v=v, +aAt =v, — u, gAt

2
o = H &

2
a):a)0+aAt:%At

=2, 8Nt
At = 0
3.8
Vo
V=V~ & =1 5%
34
— — 1 2
Ax =v, At =7 (Vo +3 Vo)(
_| 5w
18 g
Wfr _ Ki _Kf
K K.
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Substitute for K; and K; and simplify /2 %MVO2 - %MVOZ |1
to obtain: K. - 1 Mvg 13
109 oo

Picture the Problem The forces acting on
the ball as it slides across the floor are its

weight m(, the normal force IEn exerted by

the floor, and the friction force f . Because

the weight and normal force act through
the center of mass of the ball and are equal
in magnitude, the friction force is the net
(decelerating) force. We can apply
Newton’s 2™ law in both translational and
rotational form to obtain a set of equations
that we can solve for the acceleration of the
ball. Once we have determined the ball’s
acceleration, we can use constant-
acceleration equations to obtain its velocity
when it begins to roll without slipping.

() Apply Z F = ma to the ball: ZFX =—f=ma (1)
and
Y F =F,-mg=0 (2)
From the definition of the f=uF, 3)
coefficient of kinetic friction we
have:
Solve equation (2) for F;: F, =mg
Substitute in equation (3) to obtain: f=umg
Substitute in equation (1) to obtain: — @,mg =ma
or
a=—-ug
Apply Zr = [ to the ball: Jr=1a
Solve for a to obtain: o= fr wmgr
1 1
Assuming that the coefficient of Ve =V =alAt =—p, gAt 4)
kinetic friction is constant*, we and
can use constant-acceleration ,
equations to describe how long . = Hgmr Af (5)

it will take the ball to begin R
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rolling without slipping:

Once rolling without slipping Ve
has been established, we also Wy = 7 (6)
have:
Equate equations (5) and (6): Ve _ th8mr
ro
Solve for At: 1
olve for Af = Ve i
H gmr
Substitute in equation (4) to obtain: i
Ve V="l —
H gmr
mr®
Solve for vg: 1
Vv, = %
4 1
I+—;
mr

(b) Express the total kinetic 1 5, 1.,
energy of the ball: K= 5 mvy + Elwf

Because the ball is now rolling without slipping, v = r@; and:

2 2 5 2
K:lm(%j v2+ll(;2j =lmv2 (1+I/mr2)(;2j
2 \1+1/mr 2 \1+1/mr r 2 1+1/mr

i)
=l —-mv| —7
2 1+1/mr?

* Remarks: This assumption is not necessary. One can use the impulse-momentum
theorem and the related theorem for torque and change in angular momentum to
prove that the result holds for an arbitrary frictional force acting on the ball, so long
as the ball moves along a straight line and the force is directed opposite to the
direction of motion of the ball.

<

8]

General Problems

*110 -
Picture the Problem The angular velocity of an object is the ratio of the number of
revolutions it makes in a given period of time to the elapsed time.



The moon’s angular velocity is:

111 -
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lrev

0=—-
27.3days

lrev 2zrad lday 1lh
X X X

T 273days rtev  24h  3600s

=| 2.66x107%rad/s

Picture the Problem The moment of inertia of the hoop, about an axis perpendicular to
the plane of the hoop and through its edge, is related to its moment of inertia with respect

to an axis through its center of mass by the parallel axis theorem.

Apply the parallel axis theorem:

112 e

=1, +Mh =MR*+MR* =| 2mR’

Picture the Problem The force you exert on the rope results in a net torque that

accelerates the merry-go-round. The moment of inertia of the merry-go-round, its angular

acceleration, and the torque you apply are related through Newton’s 2™ law.

(a) Using a constant-acceleration
equation, relate the angular
displacement of the merry-go-round
to its angular acceleration and
acceleration time:

Solve for and evaluate o

(b) Use the definition of torque to obtain:

(¢) Use Newton’s 2™ law to find the
moment of inertia of the merry-go-
round:

AB = w,At +La(At)
or, because ay = 0,
A0 = La(Atf

_2A0  2(2zrad)

0.0873 rad/s’

“TF T (28

r=Fr=(260N)(2.2m)=

~ Dot _ 572N -m

a  0.0873rad/s’
=|6.55x10° kg-m®

572N-m
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Picture the Problem Because there are no
horizontal forces acting on the stick, the
center of mass of the stick will not move in
the horizontal direction. Choose a
coordinate system in which the origin is at
the horizontal position of the center of
mass. The diagram shows the stick in its
initial raised position and when it has fallen
to the ice.

Express the displacement of the right
end of the stick Ax as the difference
between the position coordinates x,
and x,:

Using trigonometry, find the initial
coordinate of the right end of the
stick:

Because the center of mass has not
moved horizontally:

Substitute to find the displacement of
the right end of the stick:

114 o

Ax =x, —x,

x, = cosd = (Im)cos30° = 0.866m

x,=0(=1m

Ax=1m-0.866m=| 0.134m

Picture the Problem The force applied to the string results in a torque about the center

of mass of the disk that accelerates it. We can relate these quantities to the moment of

inertia of the disk through Newton’s 2™ law and then use constant-acceleration equations

to find the disk’s angular velocity the angle through which it has rotated in a given period

of time. The disk’s rotational kinetic energy can be found from its definition.

(a) Use the definition of torque to
obtain:

(b) Use Newton’s 2™ law to express
the angular acceleration of the disk
in terms of the net torque acting on
it and its moment of inertia:

Substitute numerical values and
evaluate a:

(c) Using a constant-acceleration
equation, relate the angular velocity
of the disk to its angular

r=FR=(20N)(0.12m)=| 2.40N-m
o h_ z.net

I 1MR’
a= 2(2.40N - m) =| 66.7rad/s’

(5kg)(0.12m)’

w=w,+aAt

or, because ay = 0,
o = alt



acceleration and the elapsed time:

Substitute numerical values and
evaluate w:

(d) Use the definition of rotational
kinetic energy to obtain:

Substitute numerical values and
evaluate Ko

(e) Using a constant-acceleration

equation, relate the angle through
which the disk turns to its angular
acceleration and the elapsed time:

Substitute numerical values and
evaluate AQ:

(f) Express K in terms of 7and &:
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Picture the Problem The diagram shows
the rod in its initial horizontal position and
then, later, as it swings through its vertical
position. The center of mass is denoted by
the numerals 0 and 1. Let the length of the
rod be represented by L and its mass by m.
We can use Newton’s 2™ law in rotational
form to find, first, the angular acceleration
of the rod and then, from

a, the acceleration of any point on the rod.
We can use conservation of energy to find
the angular velocity of the center of mass
of the rod when it is vertical and then use
this value to find its linear velocity.

(a) Relate the acceleration of the
center of the rod to the angular

Rotation 703

= (66.7 rad/sz)(S s)=|333rad/s

K

w =0 =L MR o

K, =1(5kg)(0.12m)*(333rad/s)’
=| 2.00kJ

AB = o At +La(At)

or, because ay =0,

A0 = La(A)
AQ = 1(66.7rad/s”)(5s) = 834rad
K =1 1o? :i[ij(am)z 2 ar(Ar)
(04
=|7A0
A P — L S — 1
P e —— 1; — e
) /
-_\h:% /
Y
N
|—— ——u,=0
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acceleration of the rod:

Use Newton’s 2™ law to relate the
torque about the suspension point of
the rod (exerted by the weight of the
rod) to the rod’s angular
acceleration:

Substitute numerical values and
evaluate o

Substitute numerical values and
evaluate a:

(b) Relate the acceleration of the
end of the rod to «:

(c) Relate the linear velocity of the
center of mass of the rod to its
angular velocity as it passes through
the vertical:

Use conservation of energy to relate
the changes in the kinetic and
potential energies of the rod as it
swings from its initial horizontal
orientation through its vertical
orientation:

Substitute to obtain:

Substitute for A4 and solve for w:

Substitute to obtain:

Substitute numerical values and evaluate v:

2
a= 319-81m/s =18.4rad/s’

2(0.8m)

a=1(0.8m)(18 4rad/s?) =

7.36m/s’

a,, = La =(0.8m)(18 4rad/s?)

=|14.7m/s’

AK +AU =K, -K,+U,-U, =0

or, because Ko = U,; =0,
K -U,=0

11,0 = mghh

o=
L

v=+L 3Tg =1.3gL

v=1309.81m/s?)(0.8m) =

2.43m/s
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Picture the Problem Let the zero of gravitational potential energy be at the bottom of

the track. The initial potential energy of the marble is transformed into translational and

rotational kinetic energy as it rolls down the track to its lowest point and then, because

the portion of the track to the right is frictionless, into translational kinetic energy and,

eventually, into gravitational potential energy.

Using conservation of energy, relate
h, to the kinetic energy of the
marble at the bottom of the track:

Substitute for K;and Urto obtain:

Solve for A;:

Using conservation of energy, relate

h to the kinetic energy of the
marble at the bottom of the track:

Substitute for Krand U to obtain:
Substitute for 7 and solve for v* to

obtain:

Substitute in equation (1) to obtain:
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AK+AU =0
or, because K= U; =0,
-K,+U; =0

— 1MV —Mgh, =0

hy=—— (1)

AK +AU =0
or, because K; = U;= 0,
K.-U, =0

Iy’ +11w® - Mgh =0

Ny
S
Il
oQ
S
Il
<
By

Picture the Problem To stop the wheel, the tangential force will have to do an amount of

work equal to the initial rotational kinetic energy of the wheel. We can find the stopping

torque and the force from the average power delivered by the force during the slowing of

the wheel. The number of revolutions made by the wheel as it stops can be found from a

constant-acceleration equation.

(a) Relate the work that must be
done to stop the wheel to its kinetic

energy:
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Substitute numerical values and
evaluate -

(b) Express the stopping torque is
terms of the average power
required:

Solve for 7:

Substitute numerical values and
evaluate 7:

Relate the stopping torque to the
magnitude of the required force and
solve for F:

(c) Using a constant-acceleration
equation, relate the angular
displacement of the wheel to its
average angular velocity and the
stopping time:

Substitute numerical values and
evaluate AG
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W =1(120kg)(1.4m)

o2
«| 1100 re.V 8 2rrad " 1min
min  rev 60s
=| 780KkJ
Pav = Ta)av
£,
T =
w,

780kJ
(2.5min)(60s/min)

* = 1100 rev/min) (27 rad/rev)(1 min/60s)

2
(5038 m]
F=£=90.3N‘m= 5IN
R 0.6m
A0 = o, At
AQ = (1 IOOreV/mmj(z.Smin)
=|1380rev

Picture the Problem The work done by the four children on the merry-go-round will

change its kinetic energy. We can use the work-energy theorem to relate the work done

by the children to the distance they ran and Newton’s 2™ law to find the angular

acceleration of the merry-go-round.



(a) Use the work-kinetic energy
theorem to relate the work done by
the children to the kinetic energy of
the merry-go-round:

Substitute for 7 and solve for As to obtain:

Substitute numerical values and
evaluate As:

(b) Apply Newton’s 2™ law to
express the angular acceleration of
the merry-go-round:

Substitute numerical values and
evaluate o

(¢) Use the definition of work to
relate the force exerted by each
child to the distance over which that
force is exerted:

(d) Relate the kinetic energy of the
merry-go-round to the work that
was done on it:

Substitute numerical values and

evaluate Wi force:

119 o
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Wnet force — AK
=K,
or
4FAs =110
Ag = o _imr'e’ mr'e’
8F 8F 16F
2
(240kg)2m )| LreV , 2xrad
2.8s rev
As =
16(26N)
=|11.6m
T _ 4Fr _8F
I imr* mr
_806N)  _ 0.433rad/s’
(240kg)(2m)

W = FAs = (26N)(11.6m)=| 3027J

w

net force

= AK =K, -0 = 4FAs

/4

net force

=4(26N)(11.6m)=| 1.21kJ

Picture the Problem Because the center of mass of the hoop is at its center, we can use

Newton’s second law to relate the acceleration of the hoop to the net force acting on it.

The distance moved by the center of the hoop can be determined using a constant-

acceleration equation, as can the angular velocity of the hoop.

(a) Using a constant-acceleration
equation, relate the distance the
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center of the travels in 3 s to the
acceleration of its center of mass:

Relate the acceleration of the center _F
of mass of the hoop to the net force m
acting on it:

Substitute to obtain: F(At)

)

2m
Substitute numerical values and ’
IEA)(EL) I pry
evaluate As: 2(1 5 kg)
(b) Relate the angular velocity of the o =a At
hoop to its angular acceleration and
the elapsed time:
Use Newton’s 2™ law to relate the o = Lot _ FR _ F
angular acceleration of the hoop to I  mR*> mR
the net torque acting on it:
Substitute to obtain: o= FAt
mR

Substitute numerical values and = (5 N)(3 S) — 15 4rad/s
evaluate @: (1 5 kg)(0.65 m)
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Picture the Problem Let R represent the radius of the grinding wheel, M its mass, r the
radius of the handle, and m the mass of the load attached to the handle. In the absence of
information to the contrary, we’ll treat the 25-kg load as though it were concentrated at a
point. Let the zero of gravitational potential energy be where the 25-kg load is at its
lowest point. We’ll apply Newton’s 2™ law and the conservation of mechanical energy to
determine the initial angular acceleration and the maximum angular velocity of the

wheel.
(a) Use Newton’s 2™ law to relate o= Toet _ mgr
the acceleration of the wheel to the 1 %MR2 + mr?

net torque acting on it:



Substitute numerical values and
evaluate a:

(b) Use the conservation of
mechanical energy to relate the
initial potential energy of the load to
its kinetic energy and the rotational
kinetic energy of the wheel when
the load is directly below the center
of mass of the wheel:

Substitute and solve for w:

Substitute numerical values and

evaluate w:
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Picture the Problem Let the smaller block
have the dimensions shown in the diagram.
Then the length, height, and width of the
larger block are S/, Sh,and Sw,

respectively. Let the numeral 1 denote the
smaller block and the numeral 2 the larger
block and express the ratios of the surface
areas, masses, and moments of inertia of
the two blocks.

(a) Express the ratio of the surface
areas of the two blocks:

Rotation 709

_ (25kg)(9.81m/s?)(0.65m)
“ 7 1 (60ke)(0.45m) + (25kg)(0.65m)’

=| 9.58rad/s’

AK +AU =0
or, because K; = U;= 0,
K T Kire —U; =0.

f,trans f,rot

1 2411 2) .52 —
5 my +7(7MR )a) -mgr =0,
1 2 .2 1 2 .2 _
smr-w” + ;MR 0" —mgr=0,

and
dmer
w:\f 2 £ 2
2mr- + MR

_ \/ 4(25kg)(9.81m/s7)(0.65m)
2(25kg)(0.65m)’ +(60kg)(0.45m)’

4.38rad/s

w

A, 2(Sw)(S¢)+2(S¢)(Sh)+2(Sw)(Sh)

i R
4 2wl +20h+2wh
S’ (2wl +20h+2wh)
2wl +20h+2wh

=S*
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(b) Express the ratio of the masses M, _pV, V,_ (Sw)(SE )(Sh)
of the two blocks: L pV T, wlh
_S'(wth) _rg
wlh
(c) Express the ratio of the moments I. M [(S 5)2 + (S h)z]
of inertia, about the axis shown in 2=L . : 7 3
the diagram, of the two blocks: 1, nM, V +h J
M, e n?] (m, )
M, |¢P+rt] M,
In part (b) we showed that: M, g’
1
Substitute to obtain: 1, ( 3\ (a2 5
L_¢)s)-[5
1
122 e

Picture the Problem We can derive the perpendicular-axis theorem for planar objects by
following the step-by-step procedure outlined in the problem.

(a) and (b) L =[rdm=[(*+y?)dm
= szdm+'[y2dm
=1+,

(¢) Let the z axis be the axis of I =1,

rotation of the disk. By symmetry:

Express 1, in terms of /. I =21,

Letting M represent the mass of the I =11 = %(% MR? ) =| L MR*
disk, solve for /,:

123 e

Picture the Problem Let the zero of gravitational potential energy be at the center of the
disk when it is directly below the pivot. The initial gravitational potential energy of the
disk is transformed into rotational kinetic energy when its center of mass is directly
below the pivot. We can use Newton’s 2™ law to relate the force exerted by the pivot to
the weight of the disk and the centripetal force acting on it at its lowest point.
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(a) Use the conservation of AK +AU =0
mechanical energy to relate the or, because K; = Ur= 0,
initial potential energy of the disk to Kiw—-U; =0

its kinetic energy when its center of
mass is directly below the pivot:

Substitute for K¢, and U : Llw® —Mgr=0 (1)
Use the parallel-axis theorem to I=1_ +Mh*

relate the moment of inertia of the or

disk about the pivot to its moment of I = % Mr? + Mr? = % M2

inertia with respect to an axis
through its center of mass:

Solve equation (1) for @ and | |4g
substitute for / to obtain: o= 3
(b) Letting F represent the force F.,.=F-Mg= Mro?

exerted by the pivot, use Newton’s
2" law to express the net force
acting on the swinging disk as it
passes through its lowest point:

Solve for F and simplify to obtain:

F = Mg + Mr&® =Mg+Mr§—g
r

=Mg+3Mg=| Mg
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Picture the Problem The diagram shows a

vertical cross-piece. Because we’ll need to

take moments about the point of rotation

(point P), we’ll need to use the parallel- .
axis theorem to find the moments of inertia

of the two parts of this composite structure.

Let the numeral 1 denote the vertical

member and the numeral 2 the horizontal ¢
member. We can apply Newton’s 2" law

in rotational form to the structure to

express its angular acceleration in terms of

the net torque causing it to fall and its Y
moment of inertia with respect to point P.
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(a) Taking clockwise rotation to be
positive (this is the direction the
structure is going to rotate), apply

ZTZIPCZZ

Solve for a to obtain:

Convert /,,/,,and wto SI units:

Using Table 9-1 and the parallel-
axis theorem, express the moment of
inertia of the vertical member about
an axis through point P:

Substitute numerical values and
evaluate [ p:

Using the parallel-axis theorem,
express the moment of inertia of the
horizontal member about an axis
through point P:

Solve for d:

Substitute numerical values and evaluate d:

ng[%j - mlg(%j =1,a

o= m,gl, —mgw

21,
or
_ g(myt, —mw) (1)
21, +1,p)
(= 12fix—B 3 66m,
3.281ft
0, =6ftx— M _ 1 83m, and
3.281ft
w=2ftx— ™ _0.610m
3.281ft
W2
Iy :%mlﬁ +m1(5)

— Lp2 4 14,2
—ml(§€1+2W)

1,, = (350kg)[t (3.66m¥ +4(0.610m |
=1.60x10°kg - m?

+m,d’ )

From Table 9-1 we have:

Substitute in equation (2) to obtain:

d =[3.66m+4(0.610m)]> +[1(1.83m)—0.610m]* =3.86m

_ 1 2
Ly =1 m, !

_ 1 2 2
L, =m0 +myd

= mz(%ézz +d2)
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Evaluate Ly L, =(175kg)}s (1.83m) + (3.86m )|
=2.66x10"kg-m’

Substitute in equation (1) and evaluate o

L (9.81m/s* J[175kg)(1.83m) - (350kg)(0.61m)] _ XTI

2(1.60 +2.66)x10° kg - m’

(b) Express the magnitude of the a=aR
acceleration of the sparrow: where R is the distance of the sparrow from
the point of rotation and

R =0, +w) +(0, —w)

Solve for R: Rz\/(€1+w)2+(£2—w)2

Substitute numerical values and evaluate R:

R=+(3.66m+0.610my +(1.83m—0.610m)* =4.44m

Substitute numerical values and evaluate a: 4 = ((), 123rad/s> )(4,44 m)

=|0.546m/s’
(c) Refer to the diagram to express a, l+w
in terms of a: a,=acost=a
Substitute numerical values and 3.66m+0.61m
evaluate a,: a, = (0‘546 m/sz)

4.44m

0.525m/s’
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Picture the Problem Let the zero of
gravitational potential energy be at the
bottom of the incline. The initial potential
energy of the spool is transformed into
rotational and translational kinetic energy
when the spool reaches the bottom of the
incline. We can apply the conservation of
mechanical energy to find an expression
for its speed at that location. The force
diagram shows the forces acting on the
spool when there is enough friction to keep
it from slipping. We’ll use Newton’s 2™
law in both translational and rotational
form to derive an expression for the static
friction force.

(a) In the absence of friction, the
forces acting on the spool will be its
weight, the normal force exerted by
the incline, and the tension in the
string. A component of its weight will
cause the spool to accelerate down the
incline and the tension in the string
will exert a torque that will cause
counterclockwise rotation of the
spool.

Use the conservation of mechanical
energy to relate the speed of the center
of mass of the spool at the bottom of
the slope to its initial potential energy:
K

Substitute for K and U;:

f,trans » f,rot
Substitute for @ and solve for v to

obtain:

The spool will move down the plane
at constant acceleration, spinning in

a counterclockwise direction as string

unwinds.
AK +AU =0
or, because K; = U;= 0,
K +K; ,-U. =0.

f,trans f,rot

MV + 2 Iw® —MgDsin0=0 (1)

2

14 .
gmw2+gl;;—M@Dmn9=o

and
. 2MgDsin @
a I
M +—
7.2
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(b) Apply Newton’s 2™ law to the spool: ZFx =Mgsin@-T—-f =0

Dz, =Tr—fR=0
Eliminate 7 between these equations to Mgsind o
) f. =| —=—=— |, up the incline.
obtain: s R
1+ —
r
126 o

Picture the Problem While the angular acceleration of the rod is the same at each point
along its length, the linear acceleration and, hence, the force exerted on each coin by the
rod, varies along its length. We can relate this force the linear acceleration of the rod
through Newton’s 2™ law and the angular acceleration of the rod.

Letting x be the distance from the F,=mg-F (X ) = ma(x)
pivot, use Newton’s 2™ law to or
express the force F acting on a coin: F(x) - m(g _ a(x)) (1)
Use Newton’s 2™ law to relate the Mg £
angular acceleration of the system to a = Doet _ 2 _ 3_3
the net torque acting on it: 1 %MLz 2L
Relate a(x) and o a(x) — g = x 3g = gx

2(1.5m)
Substitute in equation (1) to obtain: F (x ) = m(g - gx) = mg(l - x)
Evaluate F(0.25 m): F(0.25m)=mg(1-0.25m)=| 0.75mg
Evaluate £(0.5 m): F(0.5m)=mg(1-0.5m)=| 0.5mg
Evaluate 7(0.75 m): F(0.75m) = mg(1-0.75m)=| 0.25mg
Evaluate F(1 m): F(im)=F(1.25m)=F(1.5m)=[0]
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Picture the Problem The diagram shows the force the hand supporting the meterstick
exerts at the pivot point and the force the earth exerts on the meterstick acting at the
center of mass. We can relate the angular acceleration to the acceleration of the end of the
meterstick using @ = Lo and use Newton’s 2" law in rotational form to relate & to the
moment of inertia of the meterstick.



716 Chapter 9

1 'Fh.md

L/2 cm
P 1 | —x
Mg
(a) Relate the acceleration of the far a=La €))
end of the meterstick to the angular
acceleration of the meterstick:
= L
Apply z 7, =1, to the Mg(_j —Ia
meterstick: 2
Solve for a _ MgL
21,
From Table 9-1, for a rod pivoted at 1 5
one end, we have: I, = EML
Substitute to obtain: _ 3MgL 3 3g
oM 2L
Substitute in equation (1) to obtain: 3g
a=—=
2
Substitute numerical values and 3(9.81m/s>
evaluate a: = iZ—) =|14.7m/s>
(b) Express the acceleration of a 3g
point on the meterstick a distance x a=ox= Zx
from the pivot point:
Express the condition that the a>g
meterstick leaves the penny behind:
Substitute to obtain: 3g
—=x>g
2L
Solve for and evaluate x: 2L 2(1 m)

>—=——"=|66.7cm
3
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Picture the Problem Let m represent the 0.2-kg mass, M the 0.8-kg mass of the cylinder,
L the 1.8-m length, and x + Ax the distance from the center of the objects whose mass is

m. We can use Newton’s 2™ law to relate the radial forces on the masses to the spring’s

stiffness constant and use the work-energy theorem to find the work done as the system

accelerates to its final angular speed.

(a) Express the net inward force
acting on each of the 0.2-kg masses:

Solve for k:

Substitute numerical values and
evaluate k:

(b) Using the work-energy theorem,
relate the work done to the change
in energy of the system:

Express [ as the sum of the moments
of inertia of the cylinder and the
masses:

From Table 9-1 we have, for a solid
cylinder about a diameter through
its center:

For a disk (thin cylinder), L is small
and:

Apply the parallel-axis theorem to obtain:

Substitute to obtain:

Substitute numerical values and evaluate I:

ZFradial = kAx = m(x + AX)Q)Z

- m(x + A)c)a)2
Ax
‘e (0.2kg)(0.8m)(24rad/s)’
0.4m
=| 230 N/m
W = Krot + A(]spring
110+ Lk(Ax) @
2 2
I1=1,+1,,

=1 Mr* + 5 ML +21,

_1 2,1 2
I=5mr" +35mL

where L is the length of the cylinder.

2 2
I, =+mr-+mx

m

I=iMr* +5 ML +2(%mr2 +mx2)

=L Mr* +L ML + Zm(%r2 +x2)
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I =1(0.8kg)(0.2m) +5(0.8kg)(1.8my +2(0.2kg)[:(0.2m) +(0.8m |

=0.492N-m’

Substitute in equation (1) to obtain:

W =1(0.492N-m?)(24rad/s)’ +1(230N/m)(0.4m)* =[ 1607

129 e

Picture the Problem Let m represent the 0.2-kg mass, M the 0.8-kg mass of the cylinder,
L the 1.8-m length, and x + Ax the distance from the center of the objects whose mass is

m. We can use Newton’s 2™ law to relate the radial forces on the masses to the spring’s

stiffness constant and use the work-energy theorem to find the work done as the system

accelerates to its final angular speed.

Using the work-energy theorem,
relate the work done to the change
in energy of the system:

Express [ as the sum of the moments
of inertia of the cylinder and the
masses:

From Table 9-1 we have, for a solid
cylinder about a diameter through
its center:

For a disk (thin cylinder), L is small
and:

Apply the parallel-axis theorem to
obtain:

Substitute to obtain:

Substitute numerical values and evaluate I

I
=0.492N-m’

W=K,_+AU

spring

1
=11o® +Lk(Ax) .

I=1,+1,,
=i Mr* + LML +21,

— 241 2
I=5mr”+35mlL

where L is the length of the cylinder.

1(0.8kg)(0.2m) +£(0.8kg)(1.8m) +2(0.2kg)[+ (0.2my +(0.8m ]



Express the net inward force acting
on each of the 0.2-kg masses:

Solve for w:

Substitute numerical values and

evaluate w:

Substitute numerical values in
equation (1) to obtain:
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Picture the Problem The force diagram
shows the forces acting on the cylinder.
Because F causes the cylinder to rotate
clockwise, f, which opposes this motion, is
to the right. We can use Newton’s 2™ law
in both translational and rotational forms to
relate the linear and angular accelerations
to the forces acting on the cylinder.

(a) Use Newton’s 2™ law to relate the
angular acceleration of the center of
mass of the cylinder to F:

Use Newton’s 2™ law to relate the
acceleration of the center of mass of
the cylinder to F:

Express the rolling-without-slipping
condition to the accelerations:

(b) Take the point of contact with the
floor as the "pivot” point, express the
net torque about that point, and solve
for o

Rotation 719

Z radial — kAx m(x + Ax)a;z

oo

(60N/m)(0.4m)
(0.2kg)(0.8m)

=12.2rad/s

W =1(0.492N-m?)(12.2rad/s)’

+1(60N/m)(0.4m)’
=|41.4]
/ M \\
1_ L P\
\< [V /
'\f,;
a Tnet FR _ 2_F
I  1MR* MR
Fnet F
acm = =
M M
o = Zem _ i =| 2«
R MR
. =2FR=la
and
2FR
oa=—-
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Express the moment of inertia of the
cylinder with respect to the pivot

point:

Substitute to obtain:

Express the linear acceleration of the
cylinder:

Apply Newton’s 2™ law to the forces
acting on the cylinder:

Solve for f:

131 e-

I=1MR* + MR* =3 MR’
g o 2R _ 4F
3MR®  3MR
a.,, =Ra= AF
3M

ZEYT:F+f:MaCm

f:Macm—F:%F—F

=| 1 F in the positive x direction.

Picture the Problem As the load falls, mechanical energy is conserved. As in Example
9-7, choose the initial potential energy to be zero. Apply conservation of mechanical

energy to obtain an expression for the speed of the bucket as a function of its position and
use the given expression for ¢ to determine the time required for the bucket to travel a

distance y.

Apply conservation of mechanical energy:

Express the total potential energy
when the bucket has fallen a
distance y:

Assume the cable is uniform and
express m_'in terms of m,, y, and L:

Substitute to obtain:

U:+K, =U,+K,=0+0=0 (1)

U = Ubf + Ucf +U ¢

=—mgy — mc'g(%)

where m_'is the mass of the hanging part
of the cable.
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Noting that bucket, cable, and rim of K. =K, ,+K,;+K,
the winch have the same speed v,
express the total kinetic energy when

the bucket is falling with speed v: 5 , AV
=tmy” +im’ + 3 (MR )2

_ 1 2,1 2,01 2
=smv" +5my° +5lo;

— 1 241 241 2
=smv- +smy- +5 My

Substitute in equation (1) to obtain: m gyz
—mgy — CZ—L +1my

1 2,1 2 _
+smy +3Mv" =0

2

Solve for v: 2
2
V= L

M +2m+2m,

A spreadsheet solution is shown below. The formulas used to calculate the quantities in
the columns are as follows:

Cell Formula/Content Algebraic Form
D9 0 Yo
D10 D9+$B$8 y+Ay
E9 0 Vo
E10 | ((4*$B$3*$B$7*D10+2*$B$7*D10"2/(2*$B$5))/ 2m_g)?
($B$1+2*$B$3+2*$B$4))"0.5 4mgy + 72
M +2m+2m,
F10 F9+$B$8/((E10+E9)/2) v o4y
tn_l ( n—1 n jA
J9 0.5*$B$7*HO"2 %gﬁ
A B C D E F G H I J
1 M= 10 kg
2 R=]0.5 m
3 m=|5 kg
4 mc= | 3.5 kg
5 L=1]10 m
6
7 g=|9.81 | m/s"2
8 dy=| 0.1 m y v(y) | t(y) t(y) y 1/2gt"2
9 0.0 0.00 | 0.00 0.00| 0.0 0.00
10 0.1 0.85] 0.23 023 ] 0.1 0.27
11 0.2 1.21 ] 0.33 033] 0.2 0.54
12 0.3 148 | 0.41 041] 03 0.81
13 0.4 1.71 | 0.47 047 | 04 1.08
15 0.5 191 | 0.52 052 0.5 1.35
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105 9.6 9.03 ] 2.24 2241 9.6 24.61
106 9.7 9.08 | 2.25 2251 9.7 24.85
107 9.8 9.13 | 2.26 226 | 9.8 25.09
108 9.9 9.19 | 227 2271 99 25.34
109 10.0 | 924 | 2.28 228 ] 10.0 | 25.58

The solid line on the graph shown below shows the position y of the bucket when it is in
free fall and the dashed line shows y under the conditions modeled in this problem.

20

18 /
16

3 ——— /
— free fall /

12

10

y (m)

2/
0 == = - "

0.0 0.4 0.8 12 1.6 2.0
t(s)
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Picture the Problem The pictorial
representation shows the forces acting on
the cylinder when it is stationary. First, we
note that if the tension is small, then there
can be no slipping, and the system must
roll. Now consider the point of contact of
the cylinder with the surface as the “pivot”
point. If 7 about that point is zero, the
system will not roll. This will occur if the
line of action of the tension passes through
the pivot point.

From the diagram we see that:
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Picture the Problem Free-body diagrams

for the pulley and the two blocks are shown .
to the right. Choose a coordinate system in o

which the direction of motion of the block
whose mass is M (downward) is the
positive y direction. We can use the given

T, T,

relationship 7' = Te” ““%to relate the

tensions in the rope on either side of the
pulley and apply Newton’s 2™ law in both
rotational form (to the pulley) and
translational form (to the blocks) to obtain
a system of equations that we can solve ne
simultaneously for a, Ty, T, and M.

(@)Use T"_, = Te"’ to evaluate T .= (ION)e(°'3)” =|25.7N
the maximum tension required to

prevent the rope from slipping on

the pulley:

(¢) Given that the angle of wrap is 7 T, =Te"" =2.57T, (1)
radians, express 7, in terms of 77:

Because the rope doesn’t slip, we
can relate the angular acceleration,

a, of the pulley to the acceleration, a
a, of the hanging masses by: a=—
Apply ZFy = ma, to the two 1T, —mg =ma ()
blocks to obtain: and

Mg T, = Ma 3)
Apply ZZ' = [ to the pulley to (T2 —Tl)r =13 @)
obtain: r
Substitute for 75 from equation (1) a
in equation (4) to obtain: (2-57T1 -T )” =1 -
Solve for T and substitute I 0.35kg-m’
numerical values to obtain: T =

T15772 0 T 157(0.15m) - (5)
=(9.91kg)a

Substitute in equation (2) to obtain: (9'91 kg)a —mg =ma
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Solve for and evaluate a: mg g
a = =
991kg-m 9.9lkg ,
m
9.81m/s* 3
= —9.91kg » =11.10m/s
lkg
(b) Solve equation (3) for M: M T,
= p—
Substitute in equation (5) to find 7;: T = (9.91kg)(1.10m/52)= 109N
Substitute in equation (1) to find T5: T, = (2,57)(10_9 N) =28 0N
Evaluate M:
valuate _ 228.ON _—[321kg
9.81m/s” —1.10m/s

134 oo
Picture the Problem When the tension is horizontal, the cylinder will roll forward and
the friction force will be in the direction of T. We can use Newton’s 2™ law to obtain

equations that we can solve simultaneously for a and f.

(a) Apply Newton’s 2™ law to the ZFx =T+ f=ma (D
cylinder: and
Yr=Tr-fR=Ia )

Substitute for / and « in equation (2) Tr - fR = L mR> 2 1 mRa 3)
to obtain: 2 ?
Sol tion (3) for f: Tr

olve equation (3) for f: fz?—%ma )
Substitute equation (4) in equation g = 2_T 1+ r 5)
(1) and solve for a: 3m R
Substitute equation (5) in equation | T(2r {
(4) to obtain: /= 3R

(b) Equation (4) gives the 2T | r
acceleration of the center of mass: 3m *
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T
(c) Express the condition that a > —: 2—T 1+ Lj > z = 2(1 + Lj >1
m 3m R m R
or
r>|1iR
@If r>3R: £ >0,i.e., in the direction of T.
135 eee

Picture the Problem The system is shown
in the drawing in two positions, with angles
6y and @ with the vertical. The drawing also
shows all the forces that act on the stick.
These forces result in a rotation of the
stick—and its center of mass—about the
pivot, and a tangential acceleration of the
center of mass. We’ll apply the
conservation of mechanical energy and
Newton’s 2™ law to relate the radial and

tangential forces acting on the stick.

Use the conservation of mechanical K. -K +U,-U;=0
energy to relate the kinetic energy of or, because K; =0,

th.e stick Whe'n it mak.es an z.mgle 0 _%10)2 N Mg£c050 —Mg£cos 9, =0
with the vertical and its initial 2 2

potential energy:

. 2. 3
Substitute for / and solve for &' W’ = —g(cosé’ oS 90)

Express the centripetal force acting F =M £ o>

C
on the center of mass:

L3
:METg(cosﬁ—cosﬁo)

3M,
= 2g (cos8 —cosb,)
Express the radial component of Mg : (Mg)ra 4l = Mg cosO

Express the total radial force at the Fy=F;+ (M2)adial
hinge:
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=3%(cos<9—cosﬁo)+Mgcos6’

=| L Mg(5cos@—3cosé,)

Relate the tangential acceleration of a,=5 La
the center of mass to its angular
acceleration:

Use Newton’s 2" law to relate the M. L .
. _ g —sinf 3osin 6
angular acceleration of the stick to the o = Tnet _ 2 _Jgsm
net torque acting on it: 1 mr 2L
Express a, in terms of o a,=1 La= 3 gsinf=gsin0+ F /M
Solve for F to obtain: Fi=|—1Mgsin @ |where the minus sign

indicates that the force is directed

oppositely to the tangential component of

Mg.



