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Chapter 10 
Conservation of Angular Momentum 
 
Conceptual Problems 
 
*1 •  
(a) True. The cross product of the vectors A

r
and B

r
is defined to be .ˆsin nBA φAB=×

rr
 

If A
r

and B
r

are parallel, sinφ = 0. 
 
(b) True. By definition, ωr is along the axis. 
 
(c) True. The direction of a torque exerted by a force is determined by the definition of 
the cross product. 

  
2 •  
Determine the Concept The cross product of the vectors A

r
and B

r
is defined to be 

.ˆsin nBA φAB=×
rr

 Hence, the cross product is a maximum when sinφ = 1. This 

condition is satisfied provided A
r

and B
r

are perpendicular. correct. is )(c  

 
3 •  
Determine the Concept L

r
and p

r
 are related according to .prL

rrr
×= From this 

definition of the cross product, L
r

and p
r

are perpendicular; i.e., the angle between them 

is 90°. 
 

4 •  
Determine the Concept L

r
and p

r
 are related according to .prL

rrr
×= Because the 

motion is along a line that passes through point P, r = 0 and so is L. correct. is )(b  

 
*5 ••  
Determine the Concept L

r
and p

r
 are related according to .prL

rrr
×=  

 
(a) Because L

r
 is directly proportional 

to :p
r

 

 

. doubles  Doubling Lp
rr

 

(b) Because L
r

 is directly proportional 
to :rr  

. doubles  Doubling Lr
rr
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6 ••  
Determine the Concept The figure shows 
a particle moving with constant speed in a 
straight line (i.e., with constant velocity 
and constant linear momentum). The 
magnitude of L is given by rpsinφ = 
mv(rsinφ). 

 
  
Referring to the diagram, note that the distance rsinφ from P to the line along which the 

particle is moving is constant. Hence, mv(rsinφ) is constant and so constant. is L
r

 

 
7 •  
False. The net torque acting on a rotating system equals the change in the system’s 
angular momentum; i.e., dtdL=netτ , where L = Iω. Hence, if netτ is zero, all we can say 

for sure is that the angular momentum (the product of I and ω) is constant.  If I changes, 
so mustω. 
 
*8 ••  
Determine the Concept Yes, you can.  Imagine rotating the top half of your body with 
arms flat at sides through a (roughly) 90° angle.  Because the net angular momentum of 
the system is 0, the bottom half of your body rotates in the opposite direction.  Now 
extend your arms out and rotate the top half of your body back.  Because the moment of 
inertia of the top half of your body is larger than it was previously, the angle which the 
bottom half of your body rotates through will be smaller, leading to a net rotation.  You 
can repeat this process as necessary to rotate through any arbitrary angle. 
 
9 •  
Determine the Concept If L is constant, we know that the net torque acting on  
the system is zero. There may be multiple constant or time-dependent torques acting on 
the system as long as the net torque is zero. correct. is )(e  

 
10 ••  
Determine the Concept No. In order to do work, a force must act over some distance. In 
each ″inelastic collision″ the force of static friction does not act through any distance. 
  
11 ••  
Determine the Concept It is easier to crawl radially outward. In fact, a radially inward 
force is required just to prevent you from sliding outward. 
  
*12 ••  
Determine the Concept The pull that the student exerts on the block is at right angles to 
its motion and exerts no torque (recall that Frτ rrr

×= and θτ sinrF= ). Therefore, we 
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can conclude that the angular momentum of the block is conserved. The student does, 
however, do work in displacing the block in the direction of the radial force and so the 
block’s energy increases. correct. is )(b  

 
*13 ••  
Determine the Concept The hardboiled egg is solid inside, so everything rotates with a 
uniform velocity.  By contrast, it is difficult to get the viscous fluid inside a raw egg to 
start rotating; however, once it is rotating, stopping the shell will not stop the motion of 
the interior fluid, and the egg may start rotating again after momentarily stopping for this 
reason. 
 
14 • 
False. The relationship dtdLτ

rr
=  describes the motion of a gyroscope independently of 

whether it is spinning. 
 

15 • 
Picture the Problem We can divide the expression for the kinetic energy of the object by 
the expression for its angular momentum to obtain an expression for K as a function of I 
and L. 
  
Express the rotational kinetic 
energy of the object: 
 

2
2
1 ωIK =  

Relate the angular momentum of 
the object to its moment of inertia 
and angular velocity: 
 

ωIL =  

Divide the first of these equations 
by the second and solve for K to 
obtain: 

I
LK
2

2

=  and so correct. is )(b  

 
 
16 •  
Determine the Concept The purpose of the second smaller rotor is to prevent the body 
of the helicopter from rotating. If the rear rotor fails, the body of the helicopter will tend 
to rotate on the main axis due to angular momentum being conserved. 
 
17 ••   
Determine the Concept One can use a right-hand rule to determine the direction of the 
torque required to turn the angular momentum vector from east to south. Letting the 
fingers of your right hand point east, rotate your wrist until your fingers point south. Note 
that your thumb points downward. correct. is )(b  
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18 ••    
Determine the Concept In turning east, the man redirects the angular momentum vector 
from north to east by exerting a clockwise torque (viewed from above) on the gyroscope. 
As a consequence of this torque, the front end of the suitcase will dip downward. 

correct. is )(d  

 
19 ••  
(a) The lifting of the nose of the plane rotates the angular momentum vector upward. It 
veers to the right in response to the torque associated with the lifting of the nose. 
 
(b) The angular momentum vector is rotated to the right when the plane turns to the right. 
In turning to the right, the torque points down. The nose will move downward. 
 
20 ••   
Determine the Concept If L

r
 points up and the car travels over a hill or through a 

valley, the force on the wheels on one side (or the other) will increase and car will tend to 
tip. If L

r
 points forward and car turns left or right, the front (or rear) of the car will tend 

to lift. These problems can be averted by having two identical flywheels that rotate on the 
same shaft in opposite directions. 
 
21 ••  
Determine the Concept The rotational kinetic energy of the woman-plus-stool system is 
given by .222

2
1

rot ILIK == ω  Because L is constant (angular momentum is conserved) 

and her moment of inertia is greater with her arms extended, correct. is )(b  

  
*22 ••  
Determine the Concept Consider the 
overhead view of a tether pole and ball 
shown in the adjoining figure.  The ball 
rotates counterclockwise. The torque 
about the center of the pole is clockwise 
and of magnitude RT, where R is the 
pole’s radius and T is the tension.  So L 
must decrease and correct. is )(e   

  
23 ••  
Determine the Concept The center of mass of the rod-and-putty system moves in a 
straight line, and the system rotates about its center of mass. 
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24 •  
(a) True. The net external torque acting a system equals the rate of change of the angular 

momentum of the system; i.e.,
dt
dLτ
r

r
=∑

i
exti, . 

(b) False. If the net torque on a body is zero, its angular momentum is constant but not 
necessarily zero. 
 
Estimation and Approximation 
 
*25 ••  
Picture the Problem Because we have no information regarding the mass of the skater, 
we’ll assume that her body mass (not including her arms) is 50 kg and that each arm has a 
mass of 4 kg. Let’s also assume that her arms are 1 m long and that her body is 
cylindrical with a radius of 20 cm. Because the net external torque acting on her is zero, 
her angular momentum will remain constant during her pirouette. 
 
Express the conservation of her angular 
momentum during her pirouette: 

fi LL =  

or 
inarmsinarmsoutarmsoutarms ωω II =       (1) 

 
Express her total moment of inertia 
with her arms out: 
 

armsbodyoutarms III +=  

Treating her body as though it is 
cylindrical, calculate its moment of 
inertia of her body, minus her arms: 
 

( )( )
2

2
2
12

2
1

body

mkg00.1

m0.2kg50

⋅=

== mrI
 

Modeling her arms as though they 
are rods, calculate their moment of 
inertia when she has them out: 
 

( )( )[ ]
2

2
3
1

arms

mkg67.2

m1kg42

⋅=

=I
 

Substitute to determine her total 
moment of inertia with her arms out: 2

22
outarms

mkg67.3

mkg67.2mkg00.1

⋅=

⋅+⋅=I
 

 
Express her total moment of inertia 
with her arms in: ( )( )[ ]

2

22

armsbodyiarms

mkg32.1
m0.2kg42mkg00.1

⋅=

+⋅=

+= III n
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Solve equation (1) for inarmsω and 

substitute to obtain: 

( )

rev/s17.4

rev/s5.1
mkg32.1
mkg3.67

2

2

outarms
inarms

outarms
inarms

=

⋅
⋅

=

= ωω
I
I

 

 
26 ••  
Picture the Problem We can express the period of the earth’s rotation in terms of its 
angular velocity of rotation and relate its angular velocity to its angular momentum and 
moment of inertia with respect to an axis through its center. We can differentiate this 
expression with respect to I and then use differentials to approximate the changes in I and 
T. 
 
Express the period of the earth’s 
rotation in terms of its angular 
velocity of rotation: 
 

ω
π2

=T  

Relate the earth’s angular velocity of 
rotation to its angular momentum 
and moment of inertia: 
 

I
L

=ω  

Substitute to obtain: 
L

IT π2
=  

 
Find dT/dI: 

I
T

LdI
dT

==
π2

 

 
Solve for dT/T and approximate ∆T: 

I
dI

T
dT

= or T
I
IT ∆

≈∆  

 
Substitute for ∆I and I to obtain: 

T
M
mT

RM
mrT

E
2
EE5

2

2
3
2

3
5

=≈∆  

 
Substitute numerical values and 
evaluate ∆T: 

( )
( ) ( )

s552.0
h

s3600
d

h24d1039.6

d1039.6

d1
kg1063
kg102.35

6

6

24

19

=

×××=

×=

×
×

=∆

−

−

T
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27 •  
Picture the Problem We can use L = mvr to find the angular momentum of the particle. 
In (b) we can solve the equation ( )hll 1+=L for ( )1+ll and the approximate value of 

l . 
 
(a) Use the definition of angular 
momentum to obtain: ( )( )( )

/smkg102.40

m104m/s103kg102
28

333

⋅×=

×××=

=

−

−−−

mvrL
 

 
(b) Solve the equation 

( )hll 1+=L for ( )1+ll : 
( ) 2

2

1
h

ll
L

=+  

 
Substitute numerical values and 
evaluate ( )1+ll : ( )

52

2

34

28

1022.5

sJ011.05
/smkg102.401

×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅×

⋅×
=+ −

−

ll
 

 
Because l >>1, approximate its 
value with the square root of 

( )1+ll : 

 

261029.2 ×≈l  

(c)

.1102 
and102between  atedifferentican  experiment no because physics
 cmacroscopiin  noticednot  is momentumangular  ofon quantizati The

26

26

+×=

×=

l

l  

 
*28 ••    
Picture the Problem We can use conservation of angular momentum in part (a) to relate 
the before-and-after collapse rotation rates of the sun. In part (b), we can express the 
fractional change in the rotational kinetic energy of the sun as it collapses into a neutron 
star to decide whether its rotational kinetic energy is greater initially or after the collapse. 
 
(a) Use conservation of angular 
momentum to relate the angular 
momenta of the sun before and after 
its collapse: 
 

aabb ωω II =                                 (1) 

Using the given formula, 
approximate the moment of inertia 
Ib of the sun before collapse: ( ) ( )

246

2530

2
sunb

mkg1069.5
km106.96kg1099.1059.0

059.0

⋅×=

××=

= MRI
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Find the moment of inertia Ia of the 
sun when it has collapsed into a 
spherical neutron star of radius 10 
km and uniform mass distribution: 
 

( )( )
237

230
5
2

2
5
2

a

mkg1096.7

km10kg1099.1

⋅×=

×=

= MRI

 

Substitute in equation (1) and solve 
for ωa to obtain: 

b
8

b237

246

b
a

b
a

1015.7

mkg1096.7
mkg1069.5

ω

ωωω

×=

⋅×
⋅×

==
I
I

 

 
 

Given that ωb = 1 rev/25 d, evaluate 
ωa: 
 

rev/d1086.2

d25
rev11015.7

7

8
a

×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=ω

 

 

smaller. getssun   theas decreases which energy, potential nalgravitatio
of expense at the comesenergy  kinetic rotational additional The

 
 
Note that the rotational period decreases by the same factor of Ib/Ia and becomes: 
 

s1002.3

s3600
h1

h24
d1

rev
rad2

d
rev1086.2

22 3

7a
a

−×=
××××

== πT π
ω
π

 

 
(b) Express the fractional change in 
the sun’s rotational kinetic energy as 
a consequence of its collapse and 
simplify to obtain: 
 

1

1

1

2
bb

2
aa

2
bb2

1

2
aa2

1

b

a

b

ba

b

−=

−=

−=
−

=
∆

ω
ω

ω
ω

I
I

I
I

K
K

K
KK

K
K

 

 
Substitute numerical values and evaluate ∆K/Kb: 
 

8
27

8
b

1015.71
drev/251

rev/d102.86
1015.7

1
×=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ×
⎟
⎠
⎞

⎜
⎝
⎛

×
=

∆
K
K

 (i.e., the rotational kinetic 

energy increases by a factor of approximately 7×108.) 
 
29 ••  
Picture the Problem We can solve 2CMRI = for C and substitute numerical values in 
order to determine an experimental value of C for the earth. We can then compare this 
value to those for a spherical shell and a sphere in which the mass is uniformly 
distributed to decide whether the earth’s mass density is greatest near its core or near its 
crust.  
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(a) Express the moment of inertia of 
the earth in terms of the constant C: 
 

2CMRI =  

Solve for C to obtain: 
2MR

IC =  

 
Substitute numerical values and 
evaluate C: 
 ( )( )

331.0

km6370kg105.98
mkg108.03

224

237

=

×
⋅×

=C
 

 
(b) If all of the mass were in the 
crust, the  moment of inertia of the 
earth would be that of a thin 
spherical shell: 
 

2
3
2

shell spherical MRI =  

If the mass of the earth were 
uniformly distributed throughout its 
volume, its moment of inertia would 
be: 
 

2
5
2

sphere solid MRI =  

earth.  theofcenter  the
near greater  bemust density  mass  the0.4,  ally experiment Because <C

 

 
*30 ••  
Picture the Problem Let’s estimate that the diver with arms extended over head is about 
2.5 m long and has a mass M = 80 kg. We’ll also assume that it is reasonable to model 
the diver as a uniform stick rotating about its center of mass. From the photo, it appears 
that he sprang about 3 m in the air, and that the diving board was about 3 m high. We can 
use these assumptions and estimated quantities, together with their definitions, to 
estimate ω and L. 
 
Express the diver’s angular velocity 
ω and angular momentum L: 
 

t∆
∆

=
θω                                  (1) 

and 
ωIL =                                    (2) 

 
Using a constant-acceleration 
equation, express his time in the air: 
 

g
y

g
y

ttt

downup

m 6 fallm 3 rise

22 ∆
+

∆
=

∆+∆=∆

 

 
Substitute numerical values and 
evaluate ∆t: 

( ) ( ) s89.1
m/s9.81
m62

m/s9.81
m32

22 =+=∆t  

 
Estimate the angle through which he 
rotated in 1.89 s: 

radrev5.0 πθ =≈∆  
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Substitute in equation (1) and evaluate 
ω: rad/s66.1

s89.1
rad

==
πω  

 
Use the ″stick rotating about an axis 
through its center of mass″ model to 
approximate the moment of inertia 
of the diver: 
 

2
12
1 MLI =  

Substitute in equation (2) to obtain: 
 

ω2
12
1 MLL =  

Substitute numerical values and 
evaluate L: 

( )( ) ( )
/smkg70/smkg2.69

rad/s1.66m2.5kg80
22

2
12
1

⋅≈⋅=

=L
 

 
Remarks: We can check the reasonableness of this estimation in another way.  
Because he rose about 3 m in the air, the initial impulse acting on him must be about 
600 kg⋅m/s (i.e., I = ∆p = Mvi).  If we estimate that the lever arm of the force is 
roughly l  = 1.5 m, and the angle between the force exerted by the board and a line 
running from his feet to the center of mass is about 5°, we obtain °= sin5IL l ≈ 78 
kg⋅m2/s, which is not too bad considering the approximations made here. 
 
31 ••  
Picture the Problem First we assume a spherical diver whose mass M = 80 kg and 
whose diameter, when curled into a ball, is 1 m. We can estimate his angular velocity 
when he has curled himself into a ball from the ratio of his angular momentum to his 
moment of inertia. To estimate his angular momentum, we’ll guess that the lever arml of 
the force that launches him from the diving board is about 1.5 m and that the angle 
between the force exerted by the board and a line running from his feet to the center of 
mass is about 5°. 
 
Express the diver’s angular velocity 
ω when he curls himself into a ball 
in mid-dive: 
 

I
L

=ω                                  (1) 

 

Using a constant-acceleration 
equation, relate the speed with 
which he left the diving board v0 to 
his maximum height ∆y and our 
estimate of his angle with the 
vertical direction: 
 

yav yy ∆+= 20 2
0  

where 
°= 5cos00 vv y  

Solve for v0: 

°
∆

=
5cos

2
20

ygv  

 
Substitute numerical values and 
evaluate v0: 

( )( )
m/s7.70

5cos
m3m/s9.812 2

0 =
°

=v  
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Approximate the impulse acting on 
the diver to launch him with the 
speed v0: 
 

0MvpI =∆=  
 

Letting l represent the lever arm of 
the force acting on the diver as he 
leaves the diving board, express his 
angular momentum: 
 

°=°= 5sin5sin 0ll MvIL  

Use the ″uniform sphere″ model to 
approximate the moment of inertia 
of the diver: 
 

2
5
2 MRI =  

Substitute in equation (1) to obtain: 
 2

0
2

5
2
0

2
5sin55sin

R
v

MR
Mv °

=
°

=
llω  

 
Substitute numerical values and 
evaluate ω: 

( )( )
( )

rad/s10.1

m0.52
5sinm1.5m/s7.705

2

=

°
=ω

 

  
*32 ••  
Picture the Problem We’ll assume that he launches himself at an angle of 45° with the 
horizontal with his arms spread wide, and then pulls them in to increase his rotational 
speed during the jump.  We’ll also assume that we can model him as a 2-m long cylinder 
with an average radius of 0.15 m and a mass of 60 kg. We can then find his take-off 
speed and ″air time″ using constant-acceleration equations, and use the latter, together 
with the definition of rotational velocity, to find his initial rotational velocity. Finally, we 
can apply conservation of angular momentum to find his initial angular momentum. 
 
Using a constant-acceleration 
equation, relate his takeoff speed v0 to 
his maximum elevation ∆y: 
 

yavv yy ∆+= 22
0

2  

or, because v0y = v0sin45°, v = 0, and  
ay = − g, 

ygv ∆−°= 245sin0 22
0  

 
Solve for v0 to obtain: 
 

°
∆

=
°

∆
=

45sin
2

45sin
2

20
ygygv  

 
Substitute numerical values and 
evaluate v0: 

( )( )
m/s4.85

sin45
m0.6m/s9.812 2

0 =
°

=v  

 
Use its definition to express 
Goebel’s angular velocity: 
 t∆

∆
=

θω  

Use a constant-acceleration 
equation to express Goebel’s ″air 
time″ ∆t: g

ytt ∆
=∆=∆

222 m 0.6 rise  



Chapter 10    
 

 

738 

 
Substitute numerical values and 
evaluate ∆t: 

( ) s699.0
m/s9.81

m6.022 2 ==∆t  

 
Substitute numerical values and 
evaluate ω: rad/s0.36

rev
rad2π

s0.699
rev4

=×=ω  

 
Use conservation of angular 
momentum to relate his take-off 
angular velocity ω0 to his average 
angular velocity ω as he performs a 
quadruple Lutz: 
 

ωω II =00  
 

Assuming that he can change his 
angular momentum by a factor of 2 
by pulling his arms in, solve for and 
evaluate ω0: 
 

( ) rad/s18.0rad/s36
2
1

0
0 === ωω

I
I

 

Express his take-off angular 
momentum: 

000 ωIL =  
 

Assuming that we can model him as 
a solid cylinder of length l  with an 
average radius r and mass m, 
express his moment of inertia with 
arms drawn in (his take-off 
configuration): 
 

( ) 22
2
1

0 2 mrmrI ==  
where the factor of 2 represents our 
assumption that he can double his moment 
of inertia by extending his arms. 

Substitute to obtain: 
 0

2
0 ωmrL =  

Substitute numerical values and 
evaluate L0: 

( )( ) ( )
/smkg3.24

rad/s18m0.15kg60
2

2
0

⋅=

=L
 

 
Vector Nature of Rotation 
 
33 •  
Picture the Problem We can express F

r
and r

r
in terms of the unit vectors  î  and ĵ and 

then use the definition of the cross product to find .τr  
 
Express F

r
in terms of F and the unit 

vector :î  
 

iF ˆF−=
r

 

Express r
r

in terms of R and the unit 
vector :ĵ  

 

jr ˆR=
r
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Calculate the cross product of r
r

and 
:F

r
 

( )
( ) kji

ijFrτ
ˆˆˆ

ˆˆ

FRFR

FR

=×=

−×=×=
rrr

 

 
34 •  
Picture the Problem We can find the torque is the cross product of r

r
and .F

r
 

 
Compute the cross product of rr and :F

r
 ( )( )

( ) ( )
k

jjji

jjiFrτ

ˆ

ˆˆˆˆ

ˆˆˆ

mgx

mgymgx

mgyx

−=

×−×−=

−+=×=
rrr

 

 
35 •   
Picture the Problem The cross product of the  vectors jiA ˆˆ

yx AA +=
r

 

and jiB ˆˆ
yx BB +=

r
is given by    

( ) ( ) ( ) ( )jjijjiiiBA ˆˆˆˆˆˆˆˆ ×+×+×+×=× yyxyyxxx BABABABA
rr

 

              ( ) ( ) ( ) ( )0ˆˆ0 yyxyyxxx BABABABA +−++= kk  

              ( ) ( )kk ˆˆ −+= xyyx BABA  

 
(a) Find A

r
× B
r

 for A
r

 = 4 î  and  
B
r

 = 6 î  + ĵ6 : 
( )

( ) ( )
( ) kk

jiii

jiiBA

ˆ24ˆ24024

ˆˆ24ˆˆ24

ˆ6ˆ6ˆ4

=+=

×+×=

+×=×
rr

 

 
(b) Find A

r
× B
r

 for A
r

 = 4 î  and  
B
r

 = 6 î + 6 k̂ : 
( )

( ) ( )
( ) ( ) jj

kiii

kiiBA

ˆ24ˆ24024

ˆˆ24ˆˆ24

ˆ6ˆ6ˆ4

−=−+=

×+×=

+×=×
rr

 

 

(c) Find A
r

× B
r

 for A
r

= 2 î  + ĵ3   

and B
r

=3 î + ĵ2 :  

( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( ) ( )
k

kk

jj

ijjiii

jijiBA

ˆ13

06ˆ9ˆ406

ˆˆ6

ˆˆ9ˆˆ4ˆˆ6

ˆ2ˆ3ˆ3ˆ2

=

+−−+−=

×+

×−×+×−=

+−×+=×
rr
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*36 •  
Picture the Problem The magnitude of A

r
× B
r

is given by θsinAB . 

  
Equate the magnitudes of A

r
× B
r

 
and BA

rr
⋅ : 

θθ cossin ABAB =  

θθ cossin =∴  

or 
1tan ±=θ  

 
Solve for θ to obtain: °±°±=±= − 135or451tan 1θ  

 
37 ••   
Picture the Problem Let rr be in the xy  
plane. Then ωr  points in the positive z  
direction. We can establish the results  
called for in this problem by forming the 
appropriate cross products and by  
differentiating .vr  

 
 

(a) Express ωr using unit vectors: kω ˆω=
r

 

 
Express r

r
using unit vectors: ir ˆr=

r
 

 
Form the cross product of ω

r
and :rr  ( )

j

jikikrω
ˆ

ˆˆˆˆˆ

v

rrr

=

=×=×=× ωωω
rr

 

 
 rωv

rrr
×=∴  

 
(b) Differentiate v

r
with respect to t to  

express a
r

: 
( )

( )
ct

t

aa
rωωa

vωrω

rωrω

rωva

rr

rrrr

rrr
r

r
rr

r

rr
r

r

+=
××+=

×+×=

×+×=

×==

dt
d

dt
d

dt
d

dt
d

dt
d

 

where ( )rωωa rrrr
××=c  

and ct and aa rr
are the tangential and  



Conservation of Angular Momentum 
 

 

741

centripetal accelerations, respectively. 
 

38 ••  
Picture the Problem Because Bz = 0, we can express B

r
as jiB ˆˆ

yx BB +=
r

and form its 

cross product with A
r

 to determine Bx and By. 
 
Express B

r
in terms of its components: jiB ˆˆ

yx BB +=
r

                          (1) 

 
Express A

r
× B
r

: ( ) kkjiiBA ˆ12ˆ4ˆˆˆ4 ==+×=× yyx BBB
rr

 

 
Solve for By: 3=yB  

 
Relate B to Bx and By: 222

yx BBB +=  

 
Solve for and evaluate Bx: 435 2222 =−=−= yx BBB  

 
Substitute in equation (1): jiB ˆ3ˆ4 +=

r
 

 
39 •  
Picture the Problem We can write B

r
in the form kjiB ˆˆˆ

zyx BBB ++=
r

and use the dot 

product of A
r

and B
r

to find By and their cross product to find Bx and Bz. 
 

Express B
r

in terms of its components: kjiB ˆˆˆ
zyx BBB ++=

r
                    (1) 

 
Evaluate A

r
⋅ :B
r

 123 ==⋅ yBBA
rr

 

and 
By = 4 
 

Evaluate A
r

× :B
r

 ( )
ik

kjijBA
ˆ3ˆ3

ˆˆ4ˆˆ3

zx

zx

BB

BB

+−=

++×=×
rr

 

 
Because A

r
× B
r

 = 9 :î  Bx = 0 and Bz = 3. 
 

Substitute in equation (1) to obtain: kjB ˆ3ˆ4 +=
r
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40 ••  
Picture the Problem The dot product of A

r
with the cross product of B

r
and C

r
is a scalar 

quantity and can be expressed in determinant form as 

zyx

zyx

zyx

ccc
bbb
aaa

. We can expand this 

determinant by minors to show that it is equivalent to )( CBA
rrr

×⋅ , )( BAC
rrr

×⋅ , and 

)( ACB
rrr

×⋅ . 
 
The dot product of A

r
with the cross 

product of B
r

and C
r

is a scalar 
quantity and can be expressed in 
determinant form as: 
 

zyx

zyx

zyx

ccc
bbb
aaa

=×⋅ )( CBA
rrr

 

 
Expand the determinant by minors 
to obtain: 
 

xyzyxz

zxyxzy

yzxzyx

zyx

zyx

zyx

cbacba

cbacba

cbacba
ccc
bbb
aaa

−+

−+

−=

   (1) 

 
Evaluate the cross product of B

r
and 

C
r

to obtain: 
 

( )
( ) ( )kj

iCB
ˆˆ

ˆ

xyyxzxxz

yzzy

cbcbcbcb

cbcb

−+−+

−=×
rr

 

 
Form the dot product of A

r
with 

B
r

× C
r

to obtain: 
 

( )

xyzyxz

zxyxzy

yzxzyx

cbacba

cbacba

cbacba

−+

−+

−=×⋅ CBA
rrr

         (2) 

 
Because (1) and (2) are the same, 
we can conclude that: 
 

zyx

zyx

zyx

ccc
bbb
aaa

=×⋅ )( CBA
rrr

 

 
Proceed as above to establish that: 

zyx

zyx

zyx

ccc
bbb
aaa

=×⋅ )( BAC
rrr

 

and 
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zyx

zyx

zyx

ccc
bbb
aaa

=×⋅ )( ACB
rrr

 

 
41 ••  
Picture the Problem Let, without loss of generality, the vector C

r
lie along the x axis and 

the vector B
r

lie in the xy plane as shown below to the left. The diagram to the right 
shows the parallelepiped spanned by the three vectors. We can apply the definitions of 
the cross- and dot-products to show that  ( )CBA

rrr
×⋅  is the volume of the parallelepiped. 

 

 
 
Express the cross-product of B

r
and :C

r
 ( )( )kCB ˆsin −=× θBC

rr
 

and 
( )

ramparallelog  theof area

sin

=

=× CB θCB
rr

 

 
Form the dot-product of A

r
with the 

cross-product of B
r

and C
r

to obtain: 
( ) ( )

( )( )
( )( )

ipedparallelep

heightbase of area
cossin

cossin

V

ABC
CBA

=

=
=
=×⋅

φθ
φθCBA

rrr

 

 
*42 ••  
Picture the Problem Draw the triangle 
using the three vectors as shown below. 
Note that .CBA

rrr
=+   We can find the 

magnitude of the cross product of A
r

and 
B
r

 and of A
r

and C
r

and then use the cross 
product of A

r
and ,C

r
 using ,CBA

rrr
=+  to 

show that cABbAC sinsin = or  
B/sin b = C/ sin c. Proceeding similarly, we 
can extend the law of sines to the third side 
of the triangle and the angle opposite it. 
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Express the magnitude of the cross 
product of A

r
and :B

r
 

 

cABsin=× BA
rr

 

Express the magnitude of the cross 
product of A

r
and :C

r
 

 

bAC sin=×CA
rr

 

Form the cross product of A
r

with 
C
r

to obtain: 
 

( )

BA

BAAA

BAACA

rr

rrrr

rrrrr

×=

×+×=

+×=×

 

because 0=× AA
rr

. 
 

Because :BACA
rrrr

×=×  BACA
rrrr

×=×  

and 
cABbAC sinsin =  

 
Simplify and rewrite this expression 
to obtain: c

C
b

B
sinsin

=  

 
Proceed similarly to extend this 
result to the law of sines: c

C
b

B
a

A
sinsinsin

==  

 
Angular Momentum 
 
43 •  
Picture the Problem L

r
and p

r
 are related according to .prL

rrr
×=  If L

r
= 0, then 

examination of the magnitude of pr rr
× will allow us to conclude that 0sin =φ  and that 

the particle is moving either directly toward the point, directly away from the point, or 
through the point. 

   
Because L

r
= 0: 0=×=×=× vrvrpr

rrrrrr
mm  

or 
0=× vr rr

 
 

Express the magnitude of :vr rr
×  0sin ==× φrvvr rr

 

 
Because neither r nor v is zero: 0sin =φ  

where φ is the angle between r
r

and .vr  
 

Solve for φ: °°== − 180or00sin 1φ  

 



Conservation of Angular Momentum 
 

 

745

44 •  
Picture the Problem We can use their definitions to calculate the angular momentum 
and moment of inertia of the particle and the relationship between L, I, and ω to 
determine its angular speed.  

 
(a) Express and evaluate the 
magnitude of :L

r
 

( )( )( )
/smkg28.0

m4m/s3.5kg2
2⋅=

== mvrL
 

 
(b) Express the moment of inertia of 
the particle with respect to an axis 
through the center of the circle in 
which it is moving: 
 

( )( ) 222 mkg32m4kg2 ⋅=== mrI  

 

(c) Relate the angular speed of the 
particle to its angular momentum 
and solve for and evaluate ω: 

2
2

2

rad/s0.875
mkg32

/smkg28.0
=

⋅
⋅

==
I
Lω

 
45 •   
Picture the Problem We can use the definition of angular momentum to calculate the 
angular momentum of this particle and the relationship between its angular momentum 
and angular speed to describe the variation in its angular speed with time.  

 
(a) Express the angular momentum 
of the particle as a function of its 
mass, speed, and distance of its path 
from the reference point: 

( )( )( )
/smkg54.0

sin90m/s4.5kg2m6
sin

2⋅=

°=
= θrmvL

 

 
(b) Because L = mr2ω:  1

2r
∝ω  and 

recedes.it  as
decreases andpoint   theapproaches

particle  theas increases  ω
 

 
*46 ••  
Picture the Problem We can use the formula for the area of a triangle to find the area 
swept out at t = t1, add this area to the area swept out in time dt, and then differentiate this 
expression with respect to time to obtain the given expression for dA/dt.  
 
Express the area swept out at t = t1: 12

1
112

1
1 cos bxbrA == θ  

where θl is the angle between 1r
r

and v
r

and 
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x1 is the component of 1r
r

 in the direction of 
vr . 
 

Express the area swept out at  
t = t1 + dt: 

( )
( )vdtxb

dxxbdAAA
+=

+=+=

12
1

12
1

1  

 
Differentiate with respect to t: constant2

1
2
1 === bv

dt
dxb

dt
dA

 

 
Because rsinθ = b: ( ) ( )

m
L

rp
m

vrbv

2

sin
2
1sin2

1
2
1

=

== θθ
 

 
47 ••  
Picture the Problem We can find the total angular momentum of the coin from the sum 
of its spin and orbital angular momenta. 
(a) Express the spin angular 
momentum of the coin: 
 

spincmspin ωIL =  

From Problem 9-44: 2
4
1 MRI =  

 
Substitute for I to obtain: spin

2
4
1

spin ωMRL =  

 
Substitute numerical values and 
evaluate Lspin: 

( )( )

/smkg1033.1

rev
rad2

s
rev10

m0.0075kg0.015

25

2
4
1

spin

⋅×=

⎟
⎠
⎞

⎜
⎝
⎛ ××

=

−

π

L

 

 
(b) Express and evaluate the total 
angular momentum of the coin: /smkg1033.1

0
25

spinspinorbit

⋅×=

+=+=
−

LLLL
 

 
(c) From Problem 10-14: 0orbit =L  

and  
/smkg1033.1 25 ⋅×= −L  

 
(d) Express the total angular 
momentum of the coin: 

spinorbit LLL +=  
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Find the orbital momentum of the 
coin: ( )( )( )

/smkg107.50
m0.1m/s0.05kg0.015

25

orbit

⋅×±=

±=
±=

−

MvRL
 

where the ± is a consequence of the fact 
that the coin’s direction is not specified. 
 

Substitute to obtain: 

/smkg1033.1
/smkg1050.7

25

25

⋅×+

⋅×±=
−

−L
 

 
The possible values for L are: /smkg1083.8 25 ⋅×= −L  

or 
/smkg1017.6 25 ⋅×−= −L  

 
48 ••  
Picture the Problem Both the forces acting on the particles exert torques with respect to 
an axis perpendicular to the page and through point O and the net torque about this axis is 
their vector sum. 

 
Express the net torque about an axis 
perpendicular to the page and 
through point O: ( ) 121

2211
i

inet

Frr

FrFrττ
rrr

rrrrrr

×−=

×+×== ∑
 

because 12 FF
rr

−=  

 
Because 21 rr rr

− points along 1F
r

− : ( ) 0121 =×− Frr
rrr

 

  
Torque and Angular Momentum 
 
49 •  
Picture the Problem The angular momentum of the particle changes because a net 
torque acts on it. Because we know how the angular momentum depends on time, we can 
find the net torque acting on the particle by differentiating its angular momentum. We 
can use a constant-acceleration equation and Newton’s 2nd law to relate the angular speed 
of the particle to its angular acceleration. 

 
(a) Relate the magnitude of the 
torque acting on the particle to the 
rate at which its angular momentum 
changes: 

( )[ ]

mN00.4

mN4net

⋅=

⋅== t
dt
d

dt
dLτ

 

 



Chapter 10    
 

 

748 

(b) Using a constant-acceleration 
equation, relate the angular speed of 
the particle to its acceleration and 
time-in-motion: 
 

tαωω += 0  

where ω0 = 0 

Use Newton’s 2nd law to relate the 
angular acceleration of the particle 
to  
the net torque acting on it: 
 

2
netnet

mrI
ττα ==  

Substitute to obtain: t
mr 2

netτω =  

 
Substitute numerical values and 
evaluate ω: 

( )
( )( )
( )  rad/s0.192

m3.4kg8.1
mN4

2

2

t

t

=

⋅
=ω

 

provided t is in seconds. 
 
50 ••  
Picture the Problem The angular momentum of the cylinder changes because a net 
torque acts on it. We can find the angular momentum at t = 25 s from its definition and 
the net torque acting on the cylinder from the rate at which the angular momentum is 
changing. The magnitude of the frictional force acting on the rim can be found using the 
definition of torque. 
 
(a) Use its definition to express the 
angular momentum of the cylinder: 
 

ωω 2
2
1 mrIL ==  

 

Substitute numerical values and 
evaluate L: 

( )( )

/smkg377

s60
min1

rev
rad2

min
rev500

m0.4kg90

2

2
2
1

⋅=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×××

=

π

L

 

 

(b) Express and evaluate 
dt
dL

: ( )

22

2

/smkg15.1

s25
/smkg377

⋅=

⋅
=

dt
dL

 

 
(c) Because the torque acting on the 
uniform cylinder is constant, the rate 

22/smkg15.1 ⋅==
dt
dLτ  
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of change of the angular momentum 
is constant and hence the 
instantaneous rate of change of the 
angular momentum at any instant is 
equal to the average rate of change 
over the time during which the 
torque acts: 
 
(d) Using the definition of torque 
that relates the applied force to its 
lever arm, express the magnitude of 
the frictional force f acting on the 
rim: 

N37.7
m0.4

/smkg15.1 22

=
⋅

==
l

τf  

 
*51 ••  
Picture the Problem Let the system include the pulley, string, and the blocks and 
assume that the mass of the string is negligible. The angular momentum of this system 
changes because a net torque acts on it.  

 
(a) Express the net torque about the 
center of mass of the pulley: ( )12

12net

sin

sin

mmRg

gRmgRm

−=

−=

θ

θτ
 

where we have taken clockwise to be 
positive to be consistent with a positive 
upward velocity of the block whose mass is 
m1 as indicated in the figure. 
 

(b) Express the total angular 
momentum of the system about an 
axis through the center of the 
pulley: 

⎟
⎠
⎞

⎜
⎝
⎛ ++=

++=

212

21

mm
R
IvR

vRmvRmIL ω

 

 
(c) Express τ as the time derivative 
of the angular momentum: 

⎟
⎠
⎞

⎜
⎝
⎛ ++=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ++==

212

212

mm
R
IaR

mm
R
IvR

dt
d

dt
dLτ

 

 
Equate this result to that of part (a) 
and solve for a to obtain: 

( )

212

12 sin

mm
R
I

mmga
++

−
=

θ
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52 ••  
Picture the Problem The forces resulting from the release of gas from the jets will exert 
a torque on the spaceship that will slow and eventually stop its rotation. We can relate 
this net torque to the angular momentum of the spaceship and to the time the jets must 
fire. 

 
Relate the firing time of the jets to  
the desired change in angular  
momentum: 
 

netnet τ
ω

τ
∆

=
∆

=∆
ILt  

Express the magnitude of the net 
torque exerted by the jets: 
 

FR2net =τ  

Letting ∆m/∆t′ represent the mass of  
gas per unit time exhausted from the  
jets, relate the force exerted by the 
 gas on the spaceship to the rate at  
which the gas escapes: 
 

v
t
mF
'∆

∆
=  

Substitute and solve for ∆t to obtain: 

vR
t
m

It

'
2

∆
∆
∆

=∆
ω

 

 
Substitute numerical values and evaluate ∆t: 
 

( )
( )( )( ) s52.4

m3m/s800kg/s102
s60

min1
rev

rad2
min
rev6mkg4000

2

2

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××⋅

=∆ −

π

t  

 
53 ••  
Picture the Problem We can use constant-acceleration equations to express the 
projectile’s position and velocity coordinates as functions of time. We can use these 
coordinates to express the particle’s position and velocity vectors r

r
and .vr  Using its 

definition, we can express the projectile’s angular momentum L
r

as a function of time and 
then differentiate this expression to obtain .dtdL

r
 Finally, we can use the definition of 

the torque, relative to an origin located at the launch position, the gravitational force 
exerts on the projectile to express τr and complete the demonstration that .τL rr

=dtd  
 
Using its definition, express the 
angular momentum vector L

r
 of the 

projectile: 
 

vrL rrr
m×=                                    (1) 

Using constant-acceleration ( )tVtvx x θcos0 ==  
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equations, express the position 
coordinates of the projectile as a 
function of time: 
 

and 

( ) 2
2
1

2
2
1

00

sin gttV

tatvyy yy

−=

++=

θ
 

 
Express the projectile’s position 
vector :rr  
 

( )[ ] ( )[ ] jir ˆsinˆcos 2
2
1 gttVtV −+= θθ

r
 

Using constant-acceleration 
equations, express the velocity of 
the projectile as a function of time: 
 

θcos0 Vvv xx ==  
and 

gtV
tavv yyy

−=

+=

θsin
0  

 
Express the projectile’s velocity 
vector :vr  
 

[ ] [ ] jiv ˆsinˆcos gtVV −+= θθ
r

 

Substitute in equation (1) to obtain: ( )[ ] ( )[ ]{ }
[ ] [ ]{ }

( )k
ji

jiL

ˆcos

ˆsinˆcos

ˆsinˆcos

2
2
1

2
2
1

θ

θθ

θθ

Vmgt

gtVVm

gttVtV

−=

−+×

−+=
r

 

 
Differentiate L

r
with respect to t to obtain: ( )

( )k

kL

ˆcos

ˆcos2
2
1

θ

θ

mgtV

Vmgt
dt
d

dt
d

−=

−=
r

         (2) 

 
Using its definition, express the 
torque acting on the projectile: 
 

( )
( )[ ] ( )[ ]

( ) j

ji

jrτ

ˆ

ˆsinˆcos

ˆ
2

2
1

mg

gttVtV

mg

−×

−+=

−×=

θθ

rr

 

or 
( )kτ ˆcosθmgtV−=

r
                    (3) 

 
Comparing equations (2) and (3) we 
see that: τL rr

=
dt
d

 

 
Conservation of Angular Momentum 
 
*54 •  
Picture the Problem Let m represent the mass of the planet and apply the definition of 
torque to find the torque produced by the gravitational force of attraction. We can use 
Newton’s 2nd law of motion in the form dtdLτ

rr
= to show that L

r
is constant and apply 

conservation of angular momentum to the motion of the planet at points A and B. 
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(a) Express the torque produced by 
the gravitational force of attraction 
of the sun for the planet: 
 

.ofdirection the

along acts  because  0

r

FFrτ
r

rrrr
=×=

 

(b) Because 0=τr : 
constant0 =×=⇒= vrLL rrr

r

m
dt
d

 

 
Noting that at points A and B 

rv=× vr rr
, express the 

relationship between the distances 
from the sun and the speeds of the 
planets: 

2211 vrvr =  

or 

1

2

2

1

r
r

v
v

=  

 
55 ••  
Picture the Problem Let the system consist of you, the extended weights, and the 
platform. Because the net external torque acting on this system is zero, its angular 
momentum remains constant during the pulling in of the weights. 
 
(a) Using conservation of angular 
momentum, relate the initial and 
final angular speeds of the system to 
its initial and final moments of 
inertia: 
 

ffii ωω II =  

Solve for fω : 
i

f

i
f ωω

I
I

=  

 
Substitute numerical values and 
evaluate fω : ( ) rev/s5.00rev/s1.5

mkg1.8
mkg6

2

2

f =
⋅

⋅
=ω  

 
(b) Express the change in the kinetic 
energy of the system: 
 

2
ii2

12
ff2

1
if ωω IIKKK −=−=∆  

 

Substitute numerical values and 
evaluate ∆K: ( )

( )

J622

rev
rad2

s
rev1.5mkg6

rev
rad2

s
rev5mkg1.8

2
2

2
1

2
2

2
1

=

⎟
⎠
⎞

⎜
⎝
⎛ ×⋅−

⎟
⎠
⎞

⎜
⎝
⎛ ×⋅=∆

π

πK
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(c) 
man.  theofenergy  internal  thefrom

 comesenergy   thesystem, on the work doesagent  external no Because
 

 
*56 •• 
Picture the Problem Let the system consist of the blob of putty and the turntable. 
Because the net external torque acting on this system is zero, its angular momentum 
remains constant when the blob of putty falls onto the turntable. 
 
(a) Using conservation of angular 
momentum, relate the initial and 
final angular speeds of the turntable 
to its initial and final moments of 
inertia and solve for ωf: 
 

ffi0 ωω II =  

and 

i
f

0
f ωω

I
I

=  

Express the final rotational inertia of 
the turntable-plus-blob: 
 

2
0blob0f mRIIII +=+=  

 

Substitute and simplify to obtain: 
i

0

2i2
0

0
f

1

1 ωωω

I
mRmRI

I

+
=

+
=  

 
(b) If the blob flies off tangentially to the turntable, its angular momentum doesn’t 
change (with respect to an axis through the center of turntable). Because there is no 
external torque acting on the blob-turntable system, the total angular momentum of the 
system will remain constant and the angular momentum of the turntable will not change. 
Because the moment of inertia of the table hasn’t changed either, the turntable will 
continue to spin at f ωω =' . 

 
57 ••  
Picture the Problem Because the net external torque acting on the Lazy Susan-
cockroach system is zero, the net angular momentum of the system is constant (equal to 
zero because the Lazy Susan is initially at rest) and we can use conservation of angular 
momentum to find the angular velocity ω of the Lazy Susan. The speed of the cockroach 
relative to the floor vf is the difference between its speed with respect to the Lazy Susan 
and the speed of the Lazy Susan at the location of the cockroach with respect to the floor. 
 
Relate the speed of the cockroach 
with respect to the floor vf to the 
speed of the Lazy Susan at the 
location of the cockroach: 
 

rvv ω−=f                              (1) 

Use conservation of angular 
momentum to obtain: 
 

0CLS =− LL  
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Express the angular momentum of 
the Lazy Susan: 
 

ωω 2
2
1

LSLS MRIL ==  

Express the angular momentum of 
the cockroach: 
 

⎟
⎠
⎞

⎜
⎝
⎛ −== ωω

r
vmrIL 2

CCC  

 
Substitute to obtain: 
 022

2
1 =⎟

⎠
⎞

⎜
⎝
⎛ −− ωω

r
vmrMR  

 
Solve for ω to obtain: 
 22 2

2
mrMR

mrv
+

=ω  

 
Substitute in equation (1): 

22

2

f 2
2

mrMR
vmrvv

+
−=

 

 
Substitute numerical values and  evaluate vf: 
 

( )( ) ( )
( )( ) ( )( )

mm/s67.9
m08.0kg015.02m15.0m25.0

m/s01.0m08.0kg0.0152m/s01.0 22

2

f =
+

−=v

 

 
 
*58 ••  
Picture the Problem The net external torque acting on this system is zero and so we 
know that angular momentum is conserved as these disks are brought together. Let the 
numeral 1 refer to the disk to the left and the numeral 2 to the disk to the right. Let the 
angular momentum of the disk with the larger radius be positive. 
 
Using conservation of angular 
momentum, relate the initial angular 
speeds of the disks to their common 
final speed and to their  moments of 
inertia: 
 

ffii ωω II =  

or 
( ) f210201 ωωω IIII +=−  

Solve for ωf: 
0

21

21
f ωω

II
II

+
−

=  

 
Express I1 and I2: ( ) 22

2
1

1 22 mrrmI ==  

and 
2

2
1

2 mrI =  

 
Substitute and simplify to obtain: 

05
3

02
2
12

2
2
12

f 2
2

ωωω =
+
−

=
mrmr
mrmr
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59 ••  
Picture the Problem We can express the angular momentum and kinetic energy of the 
block directly from their definitions. The tension in the string provides the centripetal 
force required for the uniform circular motion and can be expressed using Newton’s 2nd 
law. Finally, we can use the work-kinetic energy theorem to express the work required to 
reduce the radius of the circle by a factor of two. 
 
(a) Express the initial angular 
momentum of the block: 
 

000 mvrL =  

(b) Express the initial kinetic energy 
of the block: 
 

2
02

1
0 mvK =  

(c) Using Newton’s 2nd law, relate the 
tension in the string to the centripetal 
force required for the circular motion: 
 

0

2
0

c r
vmFT ==  

Use the work-kinetic energy theorem 
to relate the required work to the 
change in the kinetic energy of the 
block: 

( ) 2
0

2
0

2
0

2
02

1

2
0

0f

2
0

0

2
0

f

2
0

0

2
0

f

2
f

0f

3
21

2

1
222

22

mr
L

mrrm
L

II
L

I
L

I
L

I
L

I
LKKKW

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=−=

−=−=∆=

 

 
Substitute the result from part (a) and 
simplify to obtain: 

2
03

2 mvW −=  

 
*60 ••  
Picture the Problem Because the force exerted by the rubber band is parallel to the 
position vector of the point mass, the net external torque acting on it is zero and we can 
use the conservation of angular momentum to determine the speeds of the ball at points B 
and C. We’ll use mechanical energy conservation to find b by relating the kinetic and 
elastic potential energies at A and B. 
 
(a) Use conservation of momentum 
to relate the angular momenta at 
points A, B and C: 

CBA LLL ==  

or 
CCBBAA rmvrmvrmv ==  

 
Solve for vB in terms of vA: 

B

A
AB r

rvv =  
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Substitute numerical values and 
evaluate vB: 
 

( ) m/s2.40
m1
m0.6m/s4 ==Bv  

Solve for vC in terms of vA: 

C

A
AC r

rvv =  

 
Substitute numerical values and 
evaluate vC: 
 

( ) m/s00.4
m6.0
m0.6m/s4 ==Cv  

(b) Use conservation of mechanical 
energy between points A and B to 
relate the kinetic energy of the point 
mass and the energy stored in the 
stretched rubber band: 
 

BA EE =  

or 
2

2
12

2
12

2
12

2
1

BBAA brmvbrmv +=+  

Solve for b: ( )
22

22

BA

AB

rr
vvmb

−
−

=  

 
Substitute numerical values and evaluate b: ( ) ( ) ( )[ ]

( ) ( )
N/m20.3

m1m0.6
m/s4m/s2.4kg2.0

22

22

=

−
−

=b
 

 
Quantization of Angular Momentum 
 
*61 •  
Picture the Problem The electron’s spin 
angular momentum vector is related to its z 
component as shown in the diagram. 

 
 
Using trigonometry, relate the 
magnitude of sr to its z component: 

°== − 7.54
75.0

cos 2
1

1

h

h
θ  

 
62 ••   
Picture the Problem Equation 10-27a describes the quantization of rotational energy. 
We can show that the energy difference between a given state and the next higher state is 
proportional to 1+l by using Equation 10-27a to express the energy difference. 
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From Equation 10-27a we have: ( ) r01 EK += lll  

 
Using this equation, express the 
difference between one rotational 
state and the next higher state: 

( )( ) ( )
( ) r0

r0r0

12

121

E

EEE

+=

+−++=∆

l

llll
 

  
63 ••  
Picture the Problem The rotational energies of HBr molecule are related to l  and 

r0E according to ( ) r01 EK += lll  where .22
r0 IE h=  

 
(a) Express and evaluate the moment 
of inertia of the H atom: ( ) ( )

247

2927

2
p

mkg103.46

m100.144kg101.67

⋅×=

××=

=

−

−−

rmI

 

 
(b) Relate the rotational energies to 
l and r0E : 

 

( ) r01 EK += lll  

Evaluate r0E : ( )
( )

meV0.996
J101.60

eV1J101.59

mkg103.462
sJ101.05

2

19
22

247

2342

r0

=
×

××=

⋅×
⋅×

==

−
−

−

−

I
E h

 

 
Evaluate E for l = 1: ( )( ) meV1.99meV0.996111 =+=E  

 
Evaluate E for l = 2: ( )( )

meV98.5

meV0.9961222

=

+=E
 

 
Evaluate E for l = 3: ( )( )

meV0.21

meV0.9961333

=

+=E
 

 
64 ••  
Picture the Problem We can use the definition of the moment of inertia of point 
particles to calculate the rotational inertia of the nitrogen molecule. The rotational 
energies of nitrogen molecule are related to l  and r0E according 

to ( ) r01 EK += lll where .22
r0 IE h=  

 



Chapter 10    
 

 

758 

(a) Using a rigid dumbbell model, 
express and evaluate the moment of 
inertia of the nitrogen molecule 
about its center of mass: 
 

2
N

2
N

2
N

i

2
ii

2 rm

rmrmrmI

=

+== ∑
 

 

Substitute numerical values and evaluate I: ( )( )( )
246

21127

mkg101.41

m105.5kg101.66142

⋅×=

××=
−

−−I
 

 
(b) Relate the rotational energies to 
l and r0E : 

 

( ) r01 EE += lll  

Evaluate r0E : ( )
( )

meV0.244
J101.60

eV1J1091.3

mkg1041.12
sJ101.05

2

19
23

246

2342

r0

=
×

××=

⋅×
⋅×

==

−
−

−

−

I
E h

 

 
Substitute to obtain: ( ) meV1244.0 += lllE  

 
*65 ••  
Picture the Problem We can obtain an expression for the speed of the nitrogen molecule 
by equating its translational and rotational kinetic energies and solving for v. Because this 
expression includes the moment of inertia I of the nitrogen molecule, we can use the 
definition of the moment of inertia to express I for a dumbbell model of the nitrogen 
molecule. The rotational energies of a nitrogen molecule depend on the quantum number 
l according to ( ) .2/12/ 22 IILE hlll +==  

 
Equate the rotational kinetic energy 
of the nitrogen molecule in its l = 1 
quantum state and its translational 
kinetic energy: 
 

2
N2

1
1 vmE =                               (1) 

Express the rotational energy levels 
of the nitrogen molecule: 
 

( )
II

LE
2

1
2

22 hll
l

+
==  

For l = 1: 
 

( )
II

E
22

1 2
111 hh

=
+

=  
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Substitute in equation (1): 
 

2
N2

1
2

vm
I

=
h

 

 
Solve for v to obtain: 
 Im

v
N

22h
=                                   (2) 

 
Using a rigid dumbbell model, 
express the moment of inertia of the 
nitrogen molecule about its center of 
mass: 
 

2
N

2
N

2
N

i

2
ii 2 rmrmrmrmI =+== ∑  

and 
22

NN 2 rmIm =  

 
Substitute in equation (2): 

rmrm
v

N
22

N

2

2
2 hh

==  

 
Substitute numerical values and evaluate v: 

( ) ( )
m/s5.82

m105.5kg101.6641
sJ10055.1

1127

34

=

××
⋅×

= −−

−

v
 

 
Collision Problems 
 
66 ••  
Picture the Problem Let the zero of gravitational potential energy be at the elevation of 
the rod. Because the net external torque acting on this system is zero, we know that 
angular momentum is conserved in the collision. We’ll use the definition of angular 
momentum to express the angular momentum just after the collision and conservation of 
mechanical energy to determine the speed of the ball just before it makes its perfectly 
inelastic collision with the rod.  
 
Use conservation of angular 
momentum to relate the angular 
momentum before the collision to 
the angular momentum just after the 
perfectly inelastic collision: 
 

mvr
LL

=
= if  

Use conservation of mechanical 
energy to relate the kinetic energy of 
the ball just before impact to its 
initial potential energy: 
 

0ifif =−+− UUKK  

or, because Ki = Uf = 0, 
0if =−UK  

Letting h represent the distance the ghv 2=  
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ball falls, substitute for 
if and UK and solve for v to 

obtain: 
 
Substitute for v to obtain: ghmrL 2f =  

 
Substitute numerical values and 
evaluate Lf: 

( )( ) ( )( )
sJ14.0

m1.2m/s9.812m0.9kg3.2 2
f

⋅=

=L

 
 
*67 ••   
Picture the Problem Because there are no external forces or torques acting on the 
system defined in the problem statement, both linear and angular momentum are 
conserved in the collision and the velocity of the center of mass after the collision is the 
same as before the collision. Let the direction the blob of putty is moving initially be the 
positive x direction and toward the top of the page in the figure be the positive y 
direction. 
 
Using its definition, express the 
location of the center of mass relative 
to the center of the bar: 
 

 cm mM
mdy

+
= below the center of the bar. 

Using its definition, express the 
velocity of the center of mass: 
 

mM
mvv
+

=cm  

Using the definition of L in terms of I 
and ω, express ω: 
 

cm

cm

I
L

=ω                         (1) 

Express the angular momentum about 
the center of mass: 

( )

mM
mMvd

mM
mddmv

ydmvL

+
=⎟

⎠
⎞

⎜
⎝
⎛

+
−=

−= cmcm

 

 
Using the parallel axis theorem, 
express the moment of inertia of the 
system relative to its center of mass: 
 

( )2
cm

2
cm

2
12
1

cm ydmMyMLI −++=  

 

Substitute for ycm and simplify to obtain: 
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( )
( )

( ) ( )
( )

( )

mM
mMd

ML

mM

mMdmM
ML

mM

dmM

mM

dMm
ML

mM
mdmMd

m
mM

dMm
ML

mM
md

dm
mM

md
MMLI

+
+=

+

+
+=

+
+

+
+=

+
−+

+
+

+=

+
−+

+
+=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

2
2

2

2
2

2

22

2

22
2

2

2

22
2

22
2

12
1

12
1

12
1

12
1

12
1

cm

 

 
Substitute for Icm and Lcm in equation 
(1) and simplify to obtain: ( ) 22

12
1 MmdmMML

mMvd
++

=ω  

  
Remarks: You can verify the expression for Icm by letting m → 0 to obtain 

2
cm MLI 12

1= and letting M → 0 to obtain Icm = 0. 
 
68 ••  
Picture the Problem Because there are no external forces or torques acting on the 
system defined in the statement of Problem 67, both linear and angular momentum are 
conserved in the collision and the velocity of the center of mass after the collision is the 
same as before the collision. Kinetic energy is also conserved as the collision of the hard 
sphere with the bar is elastic. Let the direction the sphere is moving initially be the 
positive x direction and toward the top of the page in the figure be the positive y direction 
and v′ and V′ be the final velocities of the objects whose masses are m and M, 
respectively. 
 
Apply conservation of linear 
momentum to obtain: 

fi pp =  

or 
'' MVmvmv +=                            (1) 

 
Apply conservation of angular 
momentum to obtain: 

fi LL =  

or 
ω2

12
1' MLdmvmvd +=                (2) 

 
Set v′ = 0 in equation (1) and solve 
for V ′: M

mvV' =                                        (3) 

 
Use conservation of mechanical 
energy to relate the kinetic energies 
of translation and rotation before 

fi KK =  

or 
( ) 22
12
1

2
12

2
12

2
1 ' ωMLMVmv +=      (4) 
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and after the elastic collision: 
 
Substitute (2) and (3) in (4) and 
simplify to obtain: ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= 2

2121
L
d

M
m

M
m

 

 
Solve for d: 

m
mMLd

12
−

=  

 
69 •• 
Picture the Problem Let the zero of 
gravitational potential energy be a distance 
x below the pivot as shown in the diagram. 
Because the net external torque acting on 
the system is zero, angular momentum is 
conserved in this perfectly inelastic 
collision. We can also use conservation of 
mechanical energy to relate the initial 
kinetic energy of the system after the 
collision to its potential energy at the top of 
its swing. 

 

 
Using conservation of mechanical 
energy, relate the rotational kinetic 
energy of the system just after the 
collision to its gravitational potential 
energy when it has swung through 
an angle θ: 
 

0=∆+∆ UK  
or, because Kf = Ui = 0, 

0fi =+− UK  

and 

( )θω cos1
2

2
2
1 −⎟

⎠
⎞

⎜
⎝
⎛ += mgxdMgI   (1) 

Apply conservation of momentum to 
the collision: 

fi LL =  

or 
( )[ ]ωω mdMdIdmv 22

3
1 8.08.0 +==  

 
Solve for ω to obtain: 

22
3
1 64.0

8.0
mdMd

dmv
+

=ω                    (2) 

 
Express the moment of inertia of the 
system about the pivot: 
 

( )
2

3
12

2
3
12

64.0

8.0

Mdmd

MddmI

+=

+=
                     (3) 
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Substitute equations (2) and (3) in 
equation (1) and simplify to obtain: 
 

( )

( )
22

3
1

2

64.0
32.0

cos1
2

mdMd
dmv

mgddMg

+
=

−⎟
⎠
⎞

⎜
⎝
⎛ + θ

 

 
Solve for v: 
 

( ) ( ) ( )
2

22
3
1

32.0
cos164.08.05.0

dm
gmdMdmMv θ−++

=  

 
Evaluate v for θ = 90° to obtain: 
 

( )( )
2

22
3
1

32.0
64.08.05.0

Lm
gmdMdmMv ++

=  

 
70 ••  
Picture the Problem Let the zero of 
gravitational potential energy be a distance 
x below the pivot as shown in the diagram. 
Because the net external torque acting on 
the system is zero, angular momentum is 
conserved in this perfectly inelastic 
collision. We can also use conservation of 
mechanical energy to relate the initial 
kinetic energy of the system after the 
collision to its potential energy at the top of 
its swing.  
 
Using conservation of mechanical 
energy, relate the rotational kinetic 
energy of the system just after the 
collision to its gravitational potential 
energy when it has swung through an 
angle θ : 
 

0ifif =−+− UUKK  

or, because Kf = Ui = 0, 
0fi =+− UK  

and 

( )θω cos1
2

2
2
1 −⎟

⎠
⎞

⎜
⎝
⎛ += mgxdMgI   (1) 

Apply conservation of momentum to 
the collision: 

fi LL =  

or 

( )[ ]ω
ω

mdMd

Idmv
22

3
1 8.0

8.0

+=

=
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Solve for ω to obtain: 
22

2
1 64.0

8.0
mdMd

dmv
+

=ω                    (2) 

 
Express the moment of inertia of the 
system about the pivot: 

( )
( )

( ) ( )[ ]( )
2

2
3
1

2
3
1

2
3
12

mkg0.660

m1.2kg0.8kg0.30.64

64.0

8.0

⋅=

+=

+=

+=

dMm

MddmI

 

 
Substitute equation (2) in equation (1) 
and simplify to obtain: 
 

( )

( )
I
dmv

dmgdMg

232.0

cos18.0
2

=

−⎟
⎠
⎞

⎜
⎝
⎛ + θ

 

 
Solve for v: ( )( )

232.0
cos18.05.0

dm
ImMgv θ−+

=  

 
Substitute numerical values and evaluate v for θ = 60° to obtain: 
 

( ) ( ) ( )[ ]( )( )
( )( )

m/s74.7
kg0.3m1.20.32

mkg0.6605.0kg0.30.8kg0.80.5m/s9.81
2

22

=
⋅+

=v  

 
71 ••  
Picture the Problem Let the length of the uniform stick be l. We can use the impulse-
change in momentum theorem to express the velocity of the center of mass of the stick. 
By expressing the velocity V of the end of the stick in terms of the velocity of the center 
of mass and applying the angular impulse-change in angular momentum theorem we can 
find the angular velocity of the stick and, hence, the velocity of the end of the stick. 
 
(a) Apply the impulse-change in 
momentum theorem to obtain: 

ppppK =−=∆= 0  
or, because p0 = 0 and p = Mvcm, 

cmMvK =  
 

Solve for vcm to obtain: 
 M

Kv =cm  

 
(b) Relate the velocity V of the end 
of the stick to the velocity of the 
center of mass vcm: 
 

( )l2
1

cmm of c  torelcm ω+=+= vvvV      (1) 

Relate the angular impulse to the 
change in the angular momentum of 
the stick: 

( ) ωcm02
1 ILLLK =−=∆=l  

or, because L0 = 0, 
( ) ωcm2

1 IK =l  
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Refer to Table 9-1 to find the 
moment of inertia of the stick with 
respect to its center of mass: 
 

2
12
1

cm lMI =  

Substitute to obtain: ( ) ω2
12
1

2
1 ll MK =  

 
Solve for ω: 

lM
K6

=ω  

 
Substitute in equation (1) to obtain: 

M
K

M
K

M
KV 4

2
6

=⎟
⎠
⎞

⎜
⎝
⎛+=

l

l
 

 
(c) Relate the velocity V′ of the other 
end of the stick to the velocity of the 
center of mass vcm: 
 

( )

M
K

M
K

M
K

vvvV

2
2

6
2
1

cmm of c  torelcm

−=⎟
⎠
⎞

⎜
⎝
⎛−=

−=−=

l

l

lω
      

 
(d) Letting x be the distance from the 
center of mass toward the end not 
struck, express the condition that the 
point at x is at rest: 
 

0cm =− xv ω  

Solve for x to obtain: 
 06

=− x
M

K
M
K

l
 

 
Solve for x to obtain: 

l

l

6
1

6 ==

M
K

M
K

x  

 
 Note that for a meter stick struck at the 

100-cm mark, the stationary point would 
be at the 33.3-cm mark. 
 

Remarks: You can easily check this result by placing a meterstick on the floor and 
giving it a sharp blow at the 100-cm mark. 
 
72 ••  
Picture the Problem Because the net external torque acting on the system is zero, 
angular momentum is conserved in this perfectly inelastic collision. 
 
(a) Use its definition to express the 
total angular momentum of the disk 
and projectile just before impact: 
 

bvmL 0p0 =  
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(b) Use conservation of angular 
momentum to relate the angular 
momenta just before and just after 
the collision: 
 

ωILL ==0  and 
I

L0=ω  

 

Express the moment of inertia of the 
disk + projectile: 
 

2
p

2
2
1 bmMRI +=  

Substitute to obtain: 
2

p
2

0p

2
2

bmMR
bvm

+
=ω  

 
(c) Express the kinetic energy of the 
system after impact in terms of its 
angular momentum: 

( )
( )

( )
2

p
2

2
0p

2
p

2
2
1

2
0p

2

f

2

22

bmMR
bvm

bmMR
bvm

I
LK

+
=

+
==

 

 
(d) Express the difference between 
the initial and final kinetic energies, 
substitute, and simplify to obtain: 

( )

2

2
p

2
0p2

1

2
p

2

2
0p2

0p2
1

fi

2
1

2

MR
bm

vm

bmMR
bvm

vm

KKE

−
=

+
−=

−=∆

 

 
*73 ••   
Picture the Problem Because the net external torque acting on the system is zero, 
angular momentum is conserved in this perfectly inelastic collision. The rod, on its 
downward swing, acquires rotational kinetic energy. Angular momentum is conserved in 
the perfectly inelastic collision with the particle and the rotational kinetic of the after-
collision system is then transformed into gravitational potential energy as the rod-plus-
particle swing upward. Let the zero of gravitational potential energy be at a distance L1 
below the pivot and use both angular momentum and mechanical energy conservation to 
relate the distances L1 and L2 and the masses M and m. 
 
Use conservation of energy to relate 
the initial and final potential energy 
of the rod to its rotational kinetic 
energy just before it collides with the 
particle: 

0ifif =−+− UUKK  

or, because Ki = 0, 
0iff =−+ UUK  
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Substitute for Kf, Uf, and Ui to 
obtain: 

( ) 0
2 1

122
13

1
2
1 =−+ MgLLMgML ω  

 
Solve for ω: 

1

3
L
g

=ω  

 
Letting ω′ represent the angular 
speed of the rod-and-particle system 
just after impact, use conservation of 
angular momentum to relate the 
angular momenta before and after 
the collision: 
 

fi LL =  

or 
( ) ( ) '2

2
2
13

12
13

1 ωω mLMLML +=  

Solve for ω′: 
ωω 2

2
2
13

1

2
13

1

'
mLML

ML
+

=  

 
Use conservation of energy to relate 
the rotational kinetic energy of the 
rod-plus-particle just after their 
collision to their potential energy 
when they have swung through an 
angle θmax: 
 

0ifif =−+− UUKK  

or, because Kf = 0, 
( )( )

( ) 0cos1
cos1'

max2

max12
12

2
1

=−+

−+−

θ
θω

mgL
LMgI

  (1) 

Express the moment of inertia of the 
system with respect to the pivot: 
 

2
2

2
13

1 mLMLI +=  

Substitute for θmax, I and ω′ in 
equation (1): 

( )
( ) 212

1
2
2

2
13

1

22
13

1

1

3
mgLLMg

mLML

ML
L
g

+=
+

     

 
Simplify to obtain: 3

21
2
22

2
1

3
1 632 L

M
mLLLL

M
mL ++=      (2) 

 
Simplify equation (2) by letting  
α = m/M and β = L2/L1 to obtain: 
 

01236 232 =−++ αβββα  

Substitute for α and simplify to 
obtain the cubic equation in β: 
 

034912 23 =−++ βββ  

Use the solver function* of your 
calculator to find the only real value 

349.0=β  
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of β: 
 

 

*Remarks: Most graphing calculators have a ″solver″ feature. One can solve the 
cubic equation using either the ″graph″ and ″trace″ capabilities or the ″solver″ 
feature. The root given above was found using SOLVER on a TI-85. 
 
74 ••    
Picture the Problem Because the net external torque acting on the system is zero, 
angular momentum is conserved in this perfectly inelastic collision. The rod, on its 
downward swing, acquires rotational kinetic energy. Angular momentum is conserved in 
the perfectly inelastic collision with the particle and the rotational kinetic energy of the 
after-collision system is then transformed into gravitational potential energy as the rod-
plus-particle swing upward. Let the zero of gravitational potential energy be at a distance 
L1 below the pivot and use both angular momentum and mechanical energy conservation 
to relate the distances L1 and L2 and the mass M to m. 
 
(a) Use conservation of energy to 
relate the initial and final potential 
energy of the rod to its rotational 
kinetic energy just before it collides 
with the particle: 
 

0ifif =−+− UUKK  

or, because Ki = 0, 
0iff =−+ UUK  

Substitute for Kf, Uf, and Ui to 
obtain: 

( ) 0
2 1

122
13

1
2
1 =−+ MgLLMgML ω  

 
Solve for ω: 

1

3
L
g

=ω  

 
Letting ω′ represent the angular 
speed of the system after impact, 
use conservation of angular 
momentum to relate the angular 
momenta before and after the 
collision: 
 

fi LL =  

or 
( ) ( ) '2

2
2
13

12
13

1 ωω mLMLML +=           (1) 

Solve for ω′: 

1
2
2

2
13

1

2
13

1

2
2

2
13

1

2
13

1

3

'

L
g

mLML
ML

mLML
ML

+
=

+
= ωω
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Substitute numerical values to obtain: ( )( )
( )( ) ( )

( )

( )

m

m

m

64.0kg0.960
s/kg75.4

m64.0mkg0.960
s/mkg75.4

m2.1
m/s81.93

m8.0m2.1kg2
m2.1kg2'

22

2

2

22
3
1

2
3
1

+
=

+⋅
⋅

=

×

+
=ω

 

 
Use conservation of energy to relate 
the rotational kinetic energy of the 
rod-plus-particle just after their 
collision to their potential energy 
when they have swung through an 
angle θmax: 
 

0ifif =−+− UUKK  

or, because Kf = 0, 
 0ifi =−+− UUK         

Substitute for Ki, Uf, and Ui to 
obtain: 

( )( )
( ) 0cos1

cos1'

max2

max12
12

2
1

=−+
−+−

θ
θω

mgL
LMgI

 

 
Express the moment of inertia of the 
system with respect to the pivot: 
 

2
2

2
13

1 mLMLI +=  

Substitute for θmax, I and ω′ in 
equation (1) and simplify to obtain: 
 

( ) ( )21

2
2
1

2.0
64.0kg960.0

kg/s75.4 mLMLg
m

+=
+

       

Substitute for M, L1 and L2 and 
simplify to obtain: 
 

0901.800.32 =−+ mm  

Solve the quadratic equation for its 
positive root: 
 

kg84.1=m  

(b) The energy dissipated in the 
inelastic collision is: 
 

fi UUE −=∆                         (2) 

Express Ui: 
2

1
i

LMgU =  

 
Express Uf: ( ) ⎟

⎠
⎞

⎜
⎝
⎛ +−= 2

1
maxf 2

cos1 mLLMgU θ  
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Substitute in equation (2) to obtain: 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ +−−

=∆

2
1

max

1

2
cos1

2

mLLMg

LMgE

θ
 

 
Substitute numerical values and evaluate ∆E: 
 

( )( )( )

( )( ) ( )( ) ( )( )

J51.6

m0.8kg1.85
2

m1.2kg2m/s9.81cos371

2
m1.2m/s9.81kg2

2

2

f

=

⎟
⎠
⎞

⎜
⎝
⎛ +°−−

=U

 

 
75 ••  
Picture the Problem Let ωi and ωf be the angular velocities of the rod immediately 
before and immediately after the inelastic collision with the mass m. Let ω0 be the initial 
angular velocity of the rod. Choose the zero of gravitational potential energy be at a 
distance L1 below the pivot. We apply energy conservation to determine ωf and 
conservation of angular momentum to determine ωi. We’ll apply energy conservation to 
determine ω0. Finally, we’ll find the energies of the system immediately before and after 
the collision and the energy dissipated. 
 
Express the energy dissipated in the 
inelastic collision: 
 

fi UUE −=∆                                (1) 

Use energy conservation to relate 
the kinetic energy of the system 
immediately after the collision to its 
potential energy after a 180° 
rotation: 
 

0ifif =−+− UUKK  

or, because Kf = Ktop = 0 and Ki = Kbottom, 
0bottomtopbottom =−+− UUK           

Substitute for Kbottom, Utop, and 
Ubottom to obtain: 
 

( )
( ) 02112

1

2112
32

f2
1

=−−−
+++−
LLmgMgL
LLmgMgLIω

       

Simplify to obtain: 
 

02 21
2
f2

1 =++− mgLMgLIω         (2) 

Express I: 2
2

2
13

1 mLMLI +=  

 
Substitute for I in equation (2) and 
solve for ωf to obtain: 

( )
2
2

2
13

1
21

f
22
mLML

mLMLg
+
+

=ω  
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Substitute numerical values and evaluate ωf: 
 

( ) ( )( ) ( )( )[ ]
( )( ) ( )( )

rad/s00.7
m0.8kg0.4m1.2kg0.75

m0.8kg0.42m1.2kg0.75m/s9.812
22

3
1

2

f =
+

+
=ω  

 
Use conservation of angular 
momentum to relate the angular 
momentum of the system just before 
the collision to its angular 
momentum just after the collision: 
 

fi LL =  

or  
ffii ωω II =  

Substitute for Ii and If and solve for 
ωi: 

( ) ( ) f
2
2

2
13

1
i

2
13

1 ωω mLMLML +=  

and 

f

2

1

2
i

31 ωω
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

L
L

M
m

 

 
Substitute numerical values and 
evaluate ωi: 

( ) ( )

rad/s0.12

rad/s7.00
m1.2
m0.8

kg0.75
kg0.431

2

i

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=ω

 

 
Apply conservation of mechanical 
energy to relate the initial rotational 
kinetic energy of the rod to its 
rotational kinetic energy just before 
its collision with the particle: 
 

0ifif =−+− UUKK  

 

Substitute to obtain: ( ) ( )
0

2
1

12
0

2
13

1
2
12

i
2
13

1
2
1

=−

+−

MgL

LMgMLML ωω
 

 
Solve for ω0: 

1

2
i0

3
L
g

−= ωω  

 
Substitute numerical values and 
evaluate ω0: ( ) ( )

rad/s10.9

m1.2
m/s9.813

rad/s12
2

2
0

=

−=ω
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Substitute in equation (1) to express 
the energy dissipated in the collision: 
 

( ) 21
2
i

2
13

1
2
1 2mgLMgLMLE +−=∆ ω  

Substitute numerical values and evaluate ∆E: 
 

( )( ) ( ) ( ) ( )( ) ( )( )[ ]
J8.10

m0.8kg0.42m1.2kg0.75m/s9.81rad/s12m1.2kg0.75 222
6
1

=

+−=∆E

 
 
76 •••  
Picture the Problem Let v be the speed of the particle immediately after the collision 
and ωi and ωf be the angular velocities of the rod immediately before and immediately 
after the elastic collision with the mass m. Choose the zero of gravitational potential 
energy be at a distance L1 below the pivot. Because the net external torque acting on the 
system is zero, angular momentum is conserved in this elastic collision. The rod, on its 
downward swing, acquires rotational kinetic energy. Angular momentum is conserved in 
the elastic collision with the particle and the kinetic energy of the after-collision system is 
then transformed into gravitational potential energy as the rod-plus-particle swing 
upward. Let the zero of gravitational potential energy be at a distance L1 below the pivot 
and use both angular momentum and mechanical energy conservation to relate the 
distances L1 and L2 and the mass M to m.  
 
Use energy conservation to relate the 
energies of the system immediately 
before and after the elastic collision: 
 

0ifif =−+− UUKK  

or, because Ki = 0, 
0iff =−+ UUK           

Substitute for Kf, Uf, and Ui to obtain: ( ) 0
2

cos1
2

1
max

12
2
1 =−−+

L
Mg

L
Mgmv θ  

 
Solve for mv2: max1

2 cosθMgLmv =                 (1) 

 
Apply conservation of energy to 
express the angular speed of the rod 
just before the collision: 

0ifif =−+− UUKK  

or, because Ki = 0, 
0iff =−+ UUK  

 
Substitute for Kf, Uf, and Ui to obtain: ( ) 0

2 1
12

i
2
13

1
2
1 =−+ MgLLMgML ω  

 
Solve for ωi: 

1
i

3
L
g

=ω  
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Apply conservation of energy to the 
rod after the collision: 
 

( ) ( ) 0cos1
2 max

12
f

2
13

1
2
1 =−− θω LMgML  

Solve for ωf: 

1
f

6.0
L

g
=ω  

 
Apply conservation of angular 
momentum to the collision: 

fi LL =  

or 
( ) ( ) 2f

2
13

1
i

2
13

1 mvLMLML += ωω     

               
Solve for mv: ( )

2

fi
2
13

1

L
MLmv ωω −

=          

 
Substitute for ωf and ωI to obtain: 
 

2

11

2
1

3

6.03

L
L

g
L
gML

mv
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

=      (2) 

 
Divide equation (1) by equation (2) 
to eliminate m and solve for v: 

11

max2

2

11

2
1

max1

6.03
cos3

3

6.03
cos

gLgL
gL

L
L

g
L
gML

MgLv

−
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

θ

θ

 

 
Substitute numerical values and evaluate v: 
 

( ) ( )
( ) ( ) ( )( )

m/s72.5
m2.1m/s81.96.0m2.1m/s81.93

37cosm8.0m/s81.93
22

2

=
−

°
=v  

 
Solve equation (1) for m: 

2
max1 cos

v
MgLm θ

=  

 
Substitute for v in the expression for 
mv and solve for m: 
 

( )( )( )
( )

kg575.0

m/s72.5
37cosm2.1m/s81.9kg2

2

2

=

°
=m

 

 
Because the collision was elastic: 0=∆E  
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77 ••   
Picture the Problem We can determine the angular momentum of the wheel and the 
angular velocity of its precession from their definitions. The period of the precessional 
motion can be found from its angular velocity and the angular momentum associated with 
the motion of the center of mass from its definition. 
 
(a) Using the definition of angular 
momentum, express the angular 
momentum of the spinning wheel: 
 

ωωω 22 R
g
wMRIL ===  

 

Substitute numerical values and 
evaluate L: 

( )

sJ1.18

rev
rad2

s
rev12

m0.28
m/s9.81
N30 2

2

⋅=

⎟
⎠
⎞

⎜
⎝
⎛ ××

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

π

L

 

 
(b) Using its definition, express the 
angular velocity of precession: L

MgD
dt
d

==
φωp  

 
Substitute numerical values and 
evaluate ωp: 
 

( )( ) rad/s0.414
sJ18.1

m0.25N30
p =

⋅
=ω  

(c) Express the period of the 
precessional motion as a function of 
the angular velocity of precession: 
 

s2.15
rad/s414.0

22

p

===
π

ω
πT  

 

(d) Express the angular momentum 
of the center of mass due to the 
precession: 
 

p
2

pcmp ωω MDIL ==  

 

Substitute numerical values and 
evaluate Lp: 

( ) ( )

sJ0791.0

rad/s414.0m0.25
m/s9.81
N30 2

2p

⋅=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=L

 

The direction of Lp is either up or down, 
depending on the direction of L. 

 
*78 ••  
Picture the Problem The angular velocity of precession can be found from its definition. 
Both the speed and acceleration of the center of mass during precession are related to the 
angular velocity of precession. We can use Newton’s 2nd law to find the vertical and 
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horizontal components of the force exerted by the pivot. 
 
(a) Using its definition, express the angular velocity of precession: 
 

s
2

s
2

2
1

ss
p

2
ωωω

φω
R

gD
MR
MgD

I
MgD

dt
d

====  

 
Substitute numerical values and evaluate ωp: 
 

( ) ( )

( )
rad/s27.3

s60
min1

rev
rad2π

min
rev700m0.064

m0.05m/s9.812
2

2

p =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××

=ω  

 
(b) Express the speed of the center 
of mass in terms of its angular 
velocity of precession: 
 

( )( )
m/s0.164

rad/s3.27m0.05pcm

=

== ωDv
 

(c) Relate the acceleration of the 
center of mass to its angular velocity 
of precession: 
 

( )( )
2

22
pcm

m/s0.535

rad/s3.27m0.05

=

== ωDa
 

(d) Use Newton’s 2nd law to relate 
the  vertical component of the force 
exerted by the pivot to the weight of 
the disk: 
 

( )( )
N24.5

m/s9.81kg2.5 2
v

=

== MgF
 

Relate the horizontal component of 
the force exerted by the pivot to the 
acceleration of the center of mass: 

( )( )
N34.1

m/s535.0kg2.5 2
cmv

=

== MaF
 

 
General Problems 
 
79 •  
Picture the Problem While the 3-kg particle is moving in a straight line, it has angular 
momentum given by prL

rrr
×= where r

r
is its position vector and p

r
is its linear 

momentum. The torque due to the applied force is given by .Frτ
rrr

×=  
 
(a) Express the angular momentum 
of the particle: 
 

prL
rrr

×=  

Express the vectors rr and pr : ( ) ( ) jir ˆm3.5ˆm12 +=
r
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and 
( )( )

( )i

iip
ˆm/skg9

ˆm/s3kg3ˆ

⋅=

== mvr

 

 
Substitute and simplify to find L

r
: ( ) ( )[ ] ( )

( )( )
( )k

ij

ijiL

ˆ/smkg7.47

ˆˆ/smkg7.47

ˆm/skg9ˆm3.5ˆm12

2

2

⋅−=

×⋅=

⋅×+=
r

 

 
(b) Using its definition, express the 
torque due to the force: 
 

Frτ
rrr

×=  

Substitute and simplify to find τr : ( ) ( )[ ] ( )
( )( )
( )k

ij

ijiτ

ˆmN9.15

ˆˆmN9.15

ˆN3ˆm3.5ˆm12

⋅=

×⋅−=

−×+=
r

 

 
80 •  
Picture the Problem The angular momentum of the particle is given by 

prL
rrr

×= where r
r

is its position vector and p
r

is its linear momentum. The torque acting 

on the particle is given by .dtdLτ
rr

=  

 
Express the angular momentum of 
the particle: 

dt
dm

mm
rr

vrvrprL
r

r

rrrrrrr

×=

×=×=×=
 

 

Evaluate 
dt
drr

: jr ˆ6t
dt
d

=
r

 

 
Substitute and simplify to find L

r
: ( ) ( ) ( ){ }[ ]

( )
( )k

j

jiL

ˆsJ0.72

ˆm/s6

ˆm/s3ˆm4kg3 22

⋅=

×

+=

t

t

t
r

 

 
Find the torque due to the force: ( )[ ]

( )k

kLτ

ˆmN0.72

ˆsJ0.72

⋅=

⋅== t
dt
d

dt
d
r

r
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81 ••  
Picture the Problem The ice skaters rotate about their center of mass; a point we can 
locate using its definition. Knowing the location of the center of mass we can determine 
their moment of inertia with respect to an axis through this point. The angular momentum 
of the system is then given by ωcmIL =  and its kinetic energy can be found 

from .2 cm
2 ILK =  

 
(a) Express the angular momentum 
of the system about the center of 
mass of the skaters: 
 

ωcmIL =  

Using its definition, locate the center 
of mass, relative to the 85-kg skater, 
of the system: 
 

( )( ) ( )( )

m0.668
kg85kg55

0kg85m1.7kg55
cm

=
+

+
=x

 

Calculate cmI : ( )( )
( )( )

2

2

2
cm

mkg5.96
m0.668kg85

m0.668m1.7kg55

⋅=

+

−=I

 

 
Substitute to determine L: ( )

sJ243

rev
rad2π

s2.5
rev1mkg96.5 2

⋅=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×⋅=L

 

 
(b) Relate the total kinetic energy of 
the system to its angular momentum 
and evaluate K: 
 

cm

2

2I
LK =  

Substitute numerical values and 
evaluate K: 

( )
( ) J306

mkg96.52
sJ243

2

2

=
⋅

⋅
=K  
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*82 ••  
Picture the Problem Let the origin of the 
coordinate system be at the pivot (point P). 
The diagram shows the forces acting on the 
ball. We’ll apply Newton’s 2nd law to the 
ball to determine its speed. We’ll then use 
the derivative of its position vector to 
express its velocity and the definition of 
angular momentum to show that L

r
has 

both horizontal and vertical components. 
We can use the derivative of L

r
with 

respect to time to show that the rate at 
which the angular momentum of the ball 
changes is equal to the torque, relative to 
the pivot point, acting on it.  
  
(a) Express the angular momentum 
of the ball about the point of support: 
 

vrprL
rrrrr

×=×= m                         (1) 

Apply Newton’s 2nd law to the ball: ∑ ==
θ

θ
sin

sin
2

r
vmTFx  

and 

∑ =−= 0cos mgTFz θ  

 
Eliminate T between these equations 
and solve for v: 
 

θθ tansinrgv =  

 

Substitute numerical values and 
evaluate v: 
 

( )( )
m/s2.06

tan30sin30m/s9.81m1.5 2

=

°°=v
 

Express the position vector of the 
ball: 

( ) ( )
( ) k

jir
ˆ30cosm5.1

ˆsinˆcos30sinm5.1

°−

+°= tt ωω
r

 

where .k̂ωω =  
 

Find the velocity of the ball: 

( )( )ji

rv

ˆcosˆsinm/s75.0 tt
dt
d

ωωω +−=

=
r

r

 

 
Evaluate ω: 

( ) rad/s75.2
30sinm5.1

m/s06.2
=

°
=ω  
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Substitute for ω to obtain: 
 

( )( )jiv ˆcosˆsinm/s06.2 tt ωω +−=
r

 

Substitute in equation (1) and evaluate L
r

: 
 

( ) ( ) ( ) ( )[ ]
( )[ ( )]

( )[ ] sJˆ09.3ˆsinˆcos36.5

ˆcosˆsinm/s06.2

ˆ30cosm5.1ˆsinˆcos30sinm5.1kg2

⋅++=

+−×

°−+°=

kji

ji

kjiL

tt

tt

tt

ωω

ωω

ωω
r

 

 
The horizontal component of L

r
is: 

 
( ) sJˆsinˆcos36.5 ⋅+ ji tt ωω  

The vertical component of L
r

is: 
 

sJˆ09.3 ⋅k  

(b) Evaluate 
dt
dL
r

: ( )[ ] Jˆcosˆsin36.5 jiL tt
dt
d ωωω +−=
r

 

 

Evaluate the magnitude of 
dt
dL
r

: ( )( )

mN7.14

rad/s75.2smN36.5

⋅=

⋅⋅=
dt
dL
r

 

 
Express the magnitude of the torque 
exerted by gravity about the point of 
support: 
 

θτ sinmgr=  

Substitute numerical values and 
evaluate τ : 

( )( )( )
mN7.14

30sinm1.5m/s9.81kg2 2

⋅=

°=τ
 

 
83 ••  
Picture the Problem In part (a) we need to decide whether a net torque acts on the 
object. In part (b) the issue is whether any external forces act on the object. In part (c) we 
can apply the definition of kinetic energy to find the speed of the object when the 
unwrapped length has shortened to r/2. 
 
(a) Consider the overhead view of the 
cylindrical post and the object shown in 
the adjoining figure.  The object rotates 
counterclockwise. The torque about the 
center of the cylinder is clockwise and 
of magnitude RT, where R is the radius 
of the cylinder and T is the tension.  So  
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L must decrease. 
 

decreases.  No, L  

(b) Because, in this frictionless 
environment, no net external forces 
act on the object: 
 

constant. isenergy  kinetic Its  

(c) Express the kinetic energy of the 
object as it spirals inward: 

( ) 2
2
1

2

2
2

2
12

2
1 mv

r
vmrIK === ω  

 
 

constant.)
remainsenergy  kinetic (The .0v

 

 
84 ••  
Picture the Problem Because the net torque acting on the system is zero; we can use 
conservation of angular momentum to relate the initial and final angular velocities of the 
system. 
 
Using conservation of angular 
momentum, relate the initial and 
final angular velocities to the initial 
and final moments of inertia: 
 

fi LL =  

or 
ffii ωω II =  

Solve for ωi: ωωω
f

i
i

f

i
f I

I
I
I

==  

 
Express Ii: ( )2

4
12

10
1

i 2 lmMLI +=  

 
Express If: ( )2

4
12

10
1

f 2 mLMLI +=  

 
Substitute to express fω in terms of ω : ( )

( )

ω

ωω

mM
L

mM

mLML
mML

5

5

2
2

2

2

2
4
12

10
1

2
4
12

10
1

f

+

+
=

+
+

=

l

l

 

 
Express the initial kinetic energy of 
the system: 

( )[ ]
( ) 222

20
1

22
4
12

10
1

2
12

i2
1

i

5

2

ω

ωω

l

l

mML

mMLIK

+=

+==
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Express the final kinetic energy of the system and simplify to obtain: 
 

( )[ ] ( )

( )

( ) 2
22

222

20
1

2

22

20
1

2

2

2

22
20
1

2
f

22
20
12

f
2

4
12

10
1

2
12

ff2
1

f

5
5

5

5

5

5
5

52

ω

ωω

ωωω

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
+

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+

+
+=

+=+==

mLML
mML

mM
L

mML

mM
L

mM
mLML

mLMLmLMLIK

l

ll

 

 
85 ••  
Determine the Concept Yes. The net external torque is zero and angular momentum is 
conserved as the system evolves from its initial to its final state. Because the disks come 
to the same final position, the initial and final configurations are the same as in Problem 
84. Therefore, the answers are the same as for Problem 84. 
 
86 ••   
Picture the Problem Because the net torque acting on the system is zero; we can use 
conservation of angular momentum to relate the initial and final angular velocities of the 
system. 
 
Using conservation of angular 
momentum, relate the initial and 
final angular velocities to the initial 
and final moments of inertia: 
 

fi LL =  

or 
ffii ωω II =  

Solve for ωf: ωωω
f

i
i

f

i
f I

I
I
I

==                       (1) 

 
Relate the tension in the string to the 
angular speed of the system and 
solve for and evaluate ω: 

22

2
ωω lmmrT ==  

and 
( )

( )( )
rad/s30.0

m0.6kg0.4
N10822

=

==
lm

Tω
 

 



Chapter 10    
 

 

782 

Express and evaluate Ii: ( )
( )( ) ( )( )

2

2
2
12

10
1

2
4
12

10
1

i

mkg0.392

m0.6kg0.4m2kg0.8

2

⋅=

+=

+= lmMLI

 
Express and evaluate If: ( )

( )( ) ( )( )
2

2
2
12

10
1

2
4
12

10
1

f

mkg12.1

m2kg0.4m2kg0.8

2

⋅=

+=

+= mLMLI

 

 
Substitute in equation (1) and solve 
for fω : ( )

rad/s5.10

rad/s0.30
mkg1.12
mkg392.0

2

2

f

i
f

=

⋅
⋅

== ωω
I
I

 

 
Express and evaluate the initial 
kinetic energy of the system: ( )( )

J176

rad/s0.30mkg392.0 22
2
1

2
i2

1
i

=

⋅=

= ωIK

 

 
Express and evaluate the final kinetic 
energy of the system: ( )( )

J7.61

rad/s10.5mkg1.12 22
2
1

2
ff2

1
f

=

⋅=

= ωIK

 

 
87 ••  
Picture the Problem Until the inelastic collision of the cylindrical objects at the ends of 
the cylinder, both angular momentum and energy are conserved. Let K’ represent the 
kinetic energy of the system just before the disks reach the end of the cylinder and use 
conservation of energy to relate the initial and final kinetic energies to the final radial 
velocity. 
 
Using conservation of mechanical 
energy, relate the initial and final 
kinetic energies of the disks: 
 

'i KK =  

or 
( )2

r2
12

ff2
12

i2
1 2mvII += ωω  

Solve for vr: 

m
II

v
2

2
ff

2
i

r
ωω −

=                      (1) 

 
Using conservation of angular 
momentum, relate the initial and 
final angular velocities to the initial 

fi LL =  

or 
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and final moments of inertia: 
 

ffii ωω II =  

Solve for fω : ωωω
f

i

f

i
f I

I
I
I

==  

 
Express Ii: ( )2

4
12

10
1

i 2 lmMLI +=  

 
Express If: ( )2

4
12

10
1

f 2 mLMLI +=  

 
Substitute to obtain fω in terms of ω : ( )

( )
ω

ωω

22

22

2
4
12

10
1

2
4
12

10
1

f

5
5

2
2

mLML
mML

mLML
mML

+
+

=

+
+

=

l

l

 

 
Substitute in equation (1) and 
simplify to obtain: 

( )22
r 2

l
l

−= L
L

v ω
 

 
 
88 ••   
Picture the Problem Because the net torque acting on the system is zero, we can use 
conservation of angular momentum to relate the initial and final angular velocities and 
the initial and final kinetic energy of the system. 
 
Using conservation of angular 
momentum, relate the initial and 
final angular velocities to the initial 
and final moments of inertia: 
 

fi LL =  

or 
ffii ωω II =  

Solve for fω : ωωω
f

i
i

f

i
f I

I
I
I

==                     (1) 

 
Relate the tension in the string to the 
angular speed of the system:  

22

2
ωω lmmrT ==  

 
Solve for ω: 

lm
T2

=ω  

 
Substitute numerical values and 
evaluate ω: 

( )
( )( ) rad/s30.0

m0.6kg0.4
N1082

==ω  
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Express and evaluate Ii: ( )
( )( ) ( )( )

2

2
2
12

10
1

2
4
12

10
1

i

mkg0.392

m0.6kg0.4m2kg0.8

2

⋅=

+=

+= lmMLI

 
Letting L′ represent the final 
separation of the disks, express and 
evaluate If: 

( )
( )( ) ( )( )

2

2
2
12

10
1

2
4
12

10
1

f

mkg832.0

m6.1kg0.4m2kg0.8

'2

⋅=

+=

+= mLMLI

 
Substitute in equation (1) and solve 
for fω : ( )

rad/s1.14

rad/s0.30
mkg832.0
mkg392.0

2

2

f

i
f

=
⋅
⋅

== ωω
I
I

 

 
Express and evaluate the initial 
kinetic energy of the system: ( )( )

J176

rad/s0.30mkg392.0 22
2
1

2
i2

1
i

=

⋅=

= ωIK

 

 
Express and evaluate the final 
kinetic energy of the system: ( )( )

J7.82

rad/s1.41mkg832.0 22
2
1

2
ff2

1
f

=

⋅=

= ωIK

 

 
The energy dissipated in friction is: 

J93.3

J82.7J176fi

=

−=−=∆ KKE
 

 
*89 ••  
Picture the Problem The drawing shows 
an elliptical orbit. The triangular element 
of the area is ( ) .2

2
1

2
1 θθ drrdrdA ==  

 
 

Differentiate dA with respect to t to 
obtain: 

ωθ 2
2
12

2
1 r

dt
dr

dt
dA

==  

 
Because the gravitational force acts 
along the line joining the two 
objects, τ  = 0 and: 
 

constant

2

=
= ωmrL  
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Eliminate r2ω between the two 
equations to obtain: 

constant
2

==
m
L

dt
dA

 

 
90 ••  
Picture the Problem Let x be the radial distance each disk moves outward. Because the 
net torque acting on the system is zero, we can use conservation of angular momentum to 
relate the initial and final angular velocities to the initial and final moments of inertia. 
We’ll assume that the disks are thin enough so that we can ignore their lengths in 
expressing their moments of inertia. 
 
Use conservation of angular 
momentum to relate the initial and 
final angular velocities of the disks: 
 

fi LL =  

or 
ffii ωω II =  

Solve for ωf: 
i

f

i
f ωω

I
I

=                                 (1) 

 
Express the initial moment of inertia 
of the system: 
 

diskcyli 2III +=  

Express the moment of inertia of the 
cylinder: ( )

( ) ( ) ( )[ ]
2

22
12
1

22
12
1

2
2
12

12
1

cyl

mkg0.232

m0.26m1.8kg0.8

6

⋅=

+=

+=

+=

RLM

MRMLI

 

 
Letting l represent the distance of 
the clamped disks from the center of 
rotation and ignoring the thickness 
of each disk (we’re told they are 
thin), use the parallel-axis theorem 
to express the moment of inertia of 
each disk: 
 

( )
( ) ( ) ( )[ ]

2

22
4
1

22
4
1

22
4
1

disk

mkg0340.0

m4.04m2.0kg2.0

4

⋅=

+=

+=

+=

l

l

rm

mmrI

 

 

With the disks clamped: 

( )
2

22

diskcyli

mkg300.0
mkg0340.02mkg232.0

2

⋅=

⋅+⋅=

+= III
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With the disks unclamped, l = 0.6 m 
and: 

( )
( ) ( ) ( )[ ]

2

22
4
1

22
4
1

disk

mkg0740.0

m6.04m2.0kg2.0

4

⋅=

+=

+= lrmI

 

 
Express and evaluate the final 
moment of inertia of the system: ( )

2

22

diskcylf

mkg380.0
mkg0740.02mkg232.0

2

⋅=

⋅+⋅=

+= III

 

 
Substitute in equation (1) to 
determine ωf: 

( )

rad/s32.6

rad/s8
mkg380.0
mkg300.0

2

2

f

=

⋅
⋅

=ω
 

 
Express the energy dissipated in 
friction: ( )2

2
12

ff2
12

ii2
1

fi

kxII

EEE

+−=

−=∆

ωω
 

 
Apply Newton’s 2nd law to each 
disk when they are in their final 
positions: 
 

∑ == 2
radial ωmrkxF  

Solve for k: 
x

mrk
2ω

=  

 
Substitute numerical values and 
evaluate k: 

( )( )( )

N/m24.0
m0.2

rad/s6.32m0.6kg0.2 2

=

=k
 

 
Express the energy dissipated in friction: 

( )2
2
12

ff2
12

ii2
1

fifr

kxII

EEW

+−=

−=

ωω
 

 
Substitute numerical values and evaluate Wfr: 
 

( )( ) ( )( ) ( )( )
J1.53

m0.2N/m24rad/s32.6mkg380.0rad/s8mkg0.300 2
2
122

2
122

2
1

fr

=

−⋅−⋅=W
 

 
91 ••  
Picture the Problem Let the letters d, m, and r denote the disk and the letters t, M, and R 
the turntable. We can use conservation of angular momentum to relate the final angular 
speed of the turntable to the initial angular speed of the Euler disk and the moments of 
inertia of the turntable and the disk. In part (b) we’ll need to use the parallel-axis theorem 



Conservation of Angular Momentum 
 

 

787

to express the moment of inertia of the disk with respect to the rotational axis of the 
turntable. You can find the moments of inertia of the disk in its two orientations and that 
of the turntable in Table 9-1. 
 
(a) Use conservation of angular 
momentum to relate the initial and 
final angular momenta of the 
system: 
 

tftfdfdfdidi ωωω III +=  

Because ωtf = ωdf: 
 

tftftfdfdidi ωωω III +=  

Solve for ωtf: 
di

tfdf

di
tf ωω

II
I
+

=                       (1) 

 
Ignoring the negligible thickness of 
the disk, express its initial moment 
of inertia: 
 

2
4
1

di mrI =  

Express the final moment of inertia 
of the disk: 
 

2
2
1

df mrI =  

Express the final moment of inertia 
of the turntable: 
 

2
2
1

tf MRI =  

Substitute in equation (1) to obtain: 

di

2

2

di2
2
12

2
1

2
4
1

tf

22

1 ω

ωω

mr
MR

MRmr
mr

+
=

+
=

          (2) 

 
Express ωdi in rad/s: 

rad/s
s60

min1
rev

rad2
min
rev30di ππω =××=  

 
Substitute numerical values in 
equation (2) and evaluate ωtf: ( )( )

( )( )
rad/s228.0

m0.125kg0.5
m0.25kg0.73522

rad/s

2

2tf

=

+
=

πω

 

 
(b) Use the parallel-axis theorem to 
express the final moment of inertia 
of the disk when it is a distance L 
from the center of the turntable: 
 

( )22
2
122

2
1

df LrmmLmrI +=+=  
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Substitute in equation (1) to obtain: 

( )
di

2

2

2

2

di2
2
122

2
1

2
4
1

tf

242

1 ω

ωω

mr
MR

r
L

MRLrm
mr

++
=

++
=

 

 
Substitute numerical values and evaluate ωtf: 
 

( )
( )

( )( )
( )( )

rad/s192.0

m0.125kg0.5
m0.25kg0.7352

m0.125
m0.142

rad/s

2

2

2

2tf =
++

=
πω  

 
92 ••  
Picture the Problem We can express the period of the earth’s rotation in terms of its 
angular velocity of rotation and relate its angular velocity to its angular momentum and 
moment of inertia with respect to an axis through its center. We can differentiate this 
expression with respect to T and then use differentials to approximate the changes in r 
and T. 
 
(a) Express the period of the earth’s 
rotation in terms of its angular 
velocity of rotation: 

 

ω
π2

=T  

Relate the earth’s angular velocity 
of rotation to its angular momentum 
and moment of inertia: 
 

2
5
2 mr

L
I
L

==ω  

Substitute and simplify to obtain: ( ) 2
2

5
2

5
42

r
L
m

L
mr

T ππ
==  

 
(b) Find dT/dr: 

r
Tr

r
Tr

L
m

dr
dT 22

5
42 2 =⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=

π
 

 
Solve for dT/T: 

r
dr

T
dT 2= or

r
r

T
T ∆

≈
∆ 2  

 
(c) Using the equation we just 
derived, substitute for the change in 
the period of the earth: 
 

r
r

T
T ∆

==×=
∆ 2

1460
1

d365.24
y1

y
d4

1
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Solve for and evaluate ∆r: 
( ) ( )

km18.2

14602
km1037.6

14602

3

=

×
==∆

rr
 

 
*93 ••  
Picture the Problem Let ωP be the angular velocity of precession of the earth-as-
gyroscope, ωs its angular velocity about its spin axis, and I its moment of inertia with 
respect to an axis through its poles, and relate ωP to ωs and I using its definition. 
 
Use its definition to express the 
precession rate of the earth as a giant 
gyroscope: 
 

L
τω =P  

Substitute for I and solve for τ: PP ωωωτ IL ==  
 

Express the angular velocity ωs of 
the earth about its spin axis: T

πω 2
= where T is the period of rotation of 

the earth. 
 

Substitute to obtain: 
 T

I P2 ωπτ =  

 
Substitute numerical values and evaluateτ: 
 

( ) ( ) mN1047.4

h
s3600

d
h24d1

s1066.7mkg1003.82 22
112237

⋅×=
××

×⋅×
=

−−πτ  

 
94 •••  
Picture the Problem The applied torque accelerates the system and increases the tension 
in the string until it breaks. The work done before the string breaks is the change in the 
kinetic energy of the system. We can use Newton’s 2nd law to relate the breaking tension 
to the angular velocity of the system at the instant the string breaks. Once the applied 
torque is removed, angular momentum is conserved. 
 
Express the work done before the 
string breaks: 
 

2
ff2

1
f ωIKKW ==∆=                        (1) 

Express the moment of inertia of the 
system (see Table 9-1): 

( )
( )( ) ( )

( ) 22

22
12
1

22
cylcyl12

1
mcyl

kg0.8mkg256.0

kg4.02m1.6kg1.2

22

x

x

mxLMxIIII

+⋅=

+=

+==+=
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Evaluate If = I(0.4 m): ( )
( )( )

2

22

f

mkg384.0
m4.0kg0.8mkg256.0

m4.0

⋅=

+⋅=

= II

 

 
Using Newton’s 2nd law, relate the 
forces acting on a disk to its angular 
velocity: 
 

∑ == 2
fradial ωmrTF  

where T is the tension in the string at which 
it breaks. 

Solve for ωf: 

mr
T

=fω  

 
Substitute numerical values and 
evaluate ωf: ( )( ) rad/s0.25

m0.4kg0.4
N100

f ==ω  

 
Substitute in equation (1) to express 
the work done before the string 
breaks: 
 

2
ff2

1 ωIW =  

Substitute numerical values and 
evaluate W: 

( )( )
J120

rad/s25mkg0.384 22
2
1

=

⋅=W
 

 
With the applied torque removed, 
angular momentum is conserved and 
we can express the angular 
momentum as a function of x:  
 

( ) ( )xxI
IL

ω
ω

=
= ff  

Solve for ( )xω : ( ) ( )xI
Ix ffωω =  

 
Substitute numerical values to obtain: ( ) ( )( )

( )

( ) 22

22

2

kg0.8mkg0.256
sJ60.9

kg0.8mkg0.256
rad/s25mkg0.384

x

x
x

+⋅
⋅

=

+⋅
⋅

=ω
 

 
95 •••  
Picture the Problem The applied torque accelerates the system and increases the tension 
in the string until it breaks. The work done before the string breaks is the change in the 
kinetic energy of the system. We can use Newton’s 2nd law to relate the breaking tension 
to the angular velocity of the system at the instant the string breaks. Once the applied 
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torque is removed, angular momentum is conserved. 
 
Express the work done before the 
string breaks: 
 

2
ff2

1
f ωIKKW ==∆=                (1) 

Express the moment of inertia of the 
system (see Table 9-1): 
 

( ) 22
cylcyl12

1
mcyl 22 mxLMxIIII +==+=  

Substitute numerical values to 
obtain: 
 

( )( ) ( )
( ) 22

22
12
1

kg0.8mkg256.0

kg4.02m1.6kg1.2

x

xI

+⋅=

+=
 

 
Evaluate If = I(0.4 m): ( )

( )( )
2

22

f

mkg384.0
m4.0kg0.8mkg256.0

m4.0

⋅=

+⋅=

= II

 

 
Using Newton’s 2nd law, relate the 
forces acting on a disk to its angular 
velocity: 
 

∑ == 2
frad ωmrTF  

where T is the tension in the string at which 
it breaks. 

Solve for ωf: 

mr
T

=fω  

 
Substitute numerical values and 
evaluate ωf: 
 

( )( ) rad/s0.25
m0.4kg0.4

N100
f ==ω  

With the applied torque removed, 
angular momentum is conserved and 
we can express the angular 
momentum as a function of x:  
 

( ) ( )xxI
IL

ω
ω

=
= ff  

Solve for ( )xω : ( ) ( )xI
I

x ff ωω =  

 
Substitute numerical values and simplify to obtain: 
 

( ) ( )( )
( ) ( ) 2222

2

kg0.8mkg0.256
sJ60.9

kg0.8mkg0.256
rad/s25mkg0.384

xx
x

+⋅
⋅

=
+⋅

⋅
=ω  

 
Evaluate ( )m8.0ω : 
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( )
( )( )

rad/s5.12
m0.8kg0.8mkg0.256

sJ9.60m8.0 22 =
+⋅

⋅
=ω  

 
Remarks: Note that this is the angular velocity in both instances. Because the disks 
leave the cylinder with a tangential velocity of Lω2

1 , the angular momentum of the 

system remains constant. 
 
96 ••• 
Picture the Problem The applied torque accelerates the system and increases the tension 
in the string until it breaks. The work done before the string breaks is the change in the 
kinetic energy of the system. We can use Newton’s 2nd law to relate the breaking tension 
to the angular velocity of the system at the instant the string breaks. Once the applied 
torque is removed, angular momentum is conserved. 
 
Express the work done before the 
string breaks: 
 

2
ff2

1
f ωIKKW ==∆=               (1) 

Using the parallel axis theorem and 
treating the disks as thin disks, 
express the moment of inertia of the 
system (see Table 9-1): 
 

( )
( )

( ) ( )22
4
122

12
1

22
4
12

2
12

12
1

mcyl

26

2

2

xRmRLM

mxmRMRML

IIxI

+++=

+++=

+=

 

Substitute numerical values to 
obtain: 

( ) ( ) ( ) ( )[ ]
( ) ( )[ ]

( ) 22

22
4
1

22
12
1

kg0.8mkg384.0

m4.0kg4.02

m4.06m1.6kg1.2

x

x

xI

+⋅=

++

+=

 

 
Evaluate If = I(0.4 m): ( )

( )( )
2

22

f

mkg512.0
m4.0kg0.8mkg384.0

m4.0

⋅=

+⋅=

= II

 

 
Using Newton’s 2nd law, relate the 
forces acting on a disk to its angular 
velocity: 
 

∑ == 2
frad ωmrTF  

where T is the tension in the string at which 
it breaks. 

Solve for ωf: 

mr
T

=fω  

 
Substitute numerical values and 
evaluate ωf: ( )( ) rad/s0.25

m0.4kg0.4
N100

f ==ω  
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Substitute in equation (1) to express 
the work done before the string 
breaks: 
 

2
ff2

1 ωIW =  

Substitute numerical values and 
evaluate W: 

( )( )
J160

rad/s25mkg0.512 22
2
1

=

⋅=W
 

 
With the applied torque removed, 
angular momentum is conserved and 
we can express the angular 
momentum as a function of x:  
 

( ) ( )xxI
IL

ω
ω

=
= ff  

Solve for ( )xω : ( ) ( )xI
Ix ffωω =  

 
Substitute numerical values to obtain: ( ) ( )( )

( )

( ) 22

22

2

kg0.8mkg0.384
sJ8.12

kg0.8mkg0.384
rad/s25mkg0.512

x

x
x

+⋅
⋅

=

+⋅
⋅

=ω
 

 
*97 •••  
Picture the Problem Let the origin of the coordinate system be at the center of the pulley 
with the upward direction positive. Let λ be the linear density (mass per unit length) of 
the rope and L1 and L2 the lengths of the hanging parts of the rope. We can use 
conservation of mechanical energy to find the angular velocity of the pulley when the 
difference in height between the two ends of the rope is  
7.2 m.  
 
(a) Apply conservation of energy to 
relate the final kinetic energy of the 
system to the change in potential 
energy: 
 

0=∆+∆ UK  
or, because Ki = 0, 

0=∆+ UK                                  (1) 

Express the change in potential 
energy of the system: ( ) ( )

( ) ( )[ ]
( ) ( )

( ) ( )[ ]2
2i

2
1i

2
2f

2
1f2

1

2
2i

2
1i2

12
2f

2
1f2

1

2i2i2
1

1i1i2
1

2f2f2
1

1f1f2
1

if

LLLLg

gLLgLL

gLLgLL
gLLgLL

UUU

+−+−=

+++−=

−−−
−−=

−=∆

λ

λλ

λλ
λλ
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Because L1 + L2 = 7.4 m,  
L2i – L1i = 0.6 m, and  
L2f – L1f = 7.2 m, we obtain: 
 

L1i = 3.4 m, L2i = 4.0 m,  
L1f = 0.1 m, and L2f = 7.3 m. 
 

Substitute numerical values and 
evaluate ∆U: 

( )( )
( ) ( )[

( ) ( ) ]
J75.75

m4m3.4

m7.3m0.1

m/s9.81kg/m0.6

22

22

2
2
1

−=
−−

+×

−=∆U

 

 
Express the kinetic energy of the 
system when the difference in 
height between the two ends of the 
rope is 7.2 m: 

( )
( ) 22

p2
1

2
1

22
2
122

p2
1

2
1

2
2
12

p2
1

ω

ωω

ω

RMM

MRRM

MvIK

+=

+=

+=

 

 
Substitute numerical values and 
simplify: ( )[ ]

( ) 22

2
2

2
1

2
1

mkg1076.0
2

m2.1kg8.4kg2.2

ω

ω
π

⋅=

⎟
⎠
⎞

⎜
⎝
⎛+=K

 

 
Substitute in equation (1) and solve 
for ω: 

( ) 0J75.75mkg1076.0 22 =−⋅ ω  

and 

rad/s5.26
mkg1076.0

J75.75
2 =

⋅
=ω  

 
(b) Noting that the moment arm of 
each portion of the rope is the same, 
express the total angular momentum 
of the system: 
 

( )
( ) ω

ω

ωω

2
rp2

1

2
r

2
p2

1

2
rprp

RMM

RMRM

RMILLL

+=

+=

+=+=

        (2) 

Letting θ be the angle through which 
the pulley has turned, express U(θ): 
 

( ) ( ) ( )[ ] gRLRLU λθθθ 2
2i

2
1i2

1 ++−−=  

Express ∆U and simplify to obtain: ( ) ( )
( ) ( )[ ]

( )
( ) gRLLgR

gLL

gRLRL

UUUUU

θλλθ

λ

λθθ

θ

2ii1
22

2
i2

2
1i2

1

2
2i

2
1i2

1

if 0

−+−=

++

++−−=

−=−=∆

 

 
Assuming that, at t = 0, L1i ≈ L2i:  gRU λθ 22−≈∆  
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Substitute for K and ∆U in equation 
(1) to obtain: 
 

( ) 0mkg1076.0 2222 =−⋅ gR λθω  

Solve for ω: 
2

22

mkg1076.0 ⋅
=

gR λθω  

 
Substitute numerical values to 
obtain: 
 

( )( )

( )θ

θπω

1-

2

2
2

s41.1

mkg1076.0

m/s9.81kg/m0.6
2

m2.1

=

⋅

⎟
⎠
⎞

⎜
⎝
⎛

=  

 
Express ω as the rate of change of  
θ : 

( )θθ 1s41.1 −=
dt
d

⇒ ( )dtd 1s41.1 −=
θ
θ

 

 
Integrate θ  from 0 to θ to obtain: ( )t1s41.1ln −=θ  

 
Transform from logarithmic to 
exponential form to obtain: 
 

( ) ( )tet
1s41.1 −

=θ  

Differentiate to express ω as a 
function of time: 

( ) ( ) ( )te
dt
dt

1s41.11s41.1
−−==

θω  

 
Substitute for ω in equation (2) to 
obtain: 
 

( ) ( ) ( )teRMML
1s41.112

rp2
1 s41.1

−−+=  

Substitute numerical values and evaluate L: 
 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )tt eeL
11 s41.12s41.11

2

2
1 s/mkg303.0s41.1

2
m2.1kg4.8kg2.2

−−

⋅=⎟
⎠
⎞

⎜
⎝
⎛+= −

π
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