Chapter 10
Conservation of Angular Momentum

Conceptual Problems

*1 °
(a) True. The cross product of the vectors Aand B is defined to be Ax B = ABsin Pn.
If Aand B are parallel, sing = 0.

(b) True. By definition, @ is along the axis.

(c) True. The direction of a torque exerted by a force is determined by the definition of
the cross product.

2 °
Determine the Concept The cross product of the vectors Aand B is defined to be

Ax B = ABsin ¢ n. Hence, the cross product is a maximum when sing = 1. This

condition is satisfied provided Aand B are perpendicular. | (c)1s correct.

3 .
Determine the Concept L and p are related according to L=¥Fx p. From this
definition of the cross product, Land p are perpendicular; i.e., the angle between them
is 90°.

4 °

Determine the Concept Land P are related according to L=Fx P. Because the

motion is along a line that passes through point P, =0 and so is L. | () is correct.

*5 oo

Determine the Concept L and p are related according to L = 7 x p.

(a) Because L is directly proportional Doubling p doubles L.
to p:
(b) Because L is directly proportional Doubling 7 doubles L.
to 7 :
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6 oo
Determine the Concept The figure shows

a particle moving with constant speed in a o - -
straight line (i.e., with constant velocity |
. rsin ¢
and constant linear momentum). The |
|

magnitude of L is given by rpsing =

mv(rsing).

Referring to the diagram, note that the distance rsing from P to the line along which the

particle is moving is constant. Hence, mv(rsing) is constant and so | L is constant.

7 °
False. The net torque acting on a rotating system equals the change in the system’s

angular momentum; i.e.,7_, = dL/ dt , where L = Iw. Hence, if 7__ is zero, all we can say

net net

for sure is that the angular momentum (the product of / and w) is constant. If / changes,
SO must@.

*8 oo

Determine the Concept Yes, you can. Imagine rotating the top half of your body with
arms flat at sides through a (roughly) 90° angle. Because the net angular momentum of
the system is 0, the bottom half of your body rotates in the opposite direction. Now
extend your arms out and rotate the top half of your body back. Because the moment of
inertia of the top half of your body is larger than it was previously, the angle which the
bottom half of your body rotates through will be smaller, leading to a net rotation. You
can repeat this process as necessary to rotate through any arbitrary angle.

9 °
Determine the Concept If L is constant, we know that the nef torque acting on
the system is zero. There may be multiple constant or time-dependent torques acting on

the system as long as the net torque is zero. | (e) is correct.

10 oo
Determine the Concept No. In order to do work, a force must act over some distance. In
each "inelastic collision” the force of static friction does not act through any distance.

11 oo
Determine the Concept It is easier to crawl radially outward. In fact, a radially inward
force is required just to prevent you from sliding outward.

*12 oo
Determine the Concept The pull that the student exerts on the block is at right angles to
its motion and exerts no torque (recall that T=FxFand T=rFsinf ). Therefore, we
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can conclude that the angular momentum of the block is conserved. The student does,
however, do work in displacing the block in the direction of the radial force and so the

block’s energy increases. | (b) is correct.

*13 oo

Determine the Concept The hardboiled egg is solid inside, so everything rotates with a
uniform velocity. By contrast, it is difficult to get the viscous fluid inside a raw egg to
start rotating; however, once it is rotating, stopping the shell will not stop the motion of
the interior fluid, and the egg may start rotating again after momentarily stopping for this
reason.

14 -
False. The relationship 7 = di/ dt describes the motion of a gyroscope independently of

whether it is spinning.

15 -

Picture the Problem We can divide the expression for the kinetic energy of the object by
the expression for its angular momentum to obtain an expression for K as a function of /
and L.

Express the rotational kinetic K=1Iw
energy of the object:
Relate the angular momentum of L=1w

the object to its moment of inertia
and angular velocity:

Divide the first of these equations

K =— and so| (b)is correct.
21

by the second and solve for K to
obtain:

16 -

Determine the Concept The purpose of the second smaller rotor is to prevent the body
of the helicopter from rotating. If the rear rotor fails, the body of the helicopter will tend
to rotate on the main axis due to angular momentum being conserved.

17 oo

Determine the Concept One can use a right-hand rule to determine the direction of the
torque required to turn the angular momentum vector from east to south. Letting the
fingers of your right hand point east, rotate your wrist until your fingers point south. Note

that your thumb points downward. | () is correct.
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18 oo

Determine the Concept In turning east, the man redirects the angular momentum vector
from north to east by exerting a clockwise torque (viewed from above) on the gyroscope.
As a consequence of this torque, the front end of the suitcase will dip downward.

(d)1s correct.

19 oo
(a) The lifting of the nose of the plane rotates the angular momentum vector upward. It
veers to the right in response to the torque associated with the lifting of the nose.

(b) The angular momentum vector is rotated to the right when the plane turns to the right.
In turning to the right, the torque points down. The nose will move downward.

20 oo

Determine the Concept If L points up and the car travels over a hill or through a
valley, the force on the wheels on one side (or the other) will increase and car will tend to
tip. If L points forward and car turns left or right, the front (or rear) of the car will tend
to lift. These problems can be averted by having two identical flywheels that rotate on the
same shaft in opposite directions.

21 oo
Determine the Concept The rotational kinetic energy of the woman-plus-stool system is
givenby K, =411 o’ =T / 21. Because L is constant (angular momentum is conserved)

and her moment of inertia is greater with her arms extended, | (b) is correct.

%2) oo
Determine the Concept Consider the
overhead view of a tether pole and ball
shown in the adjoining figure. The ball
rotates counterclockwise. The torque
about the center of the pole is clockwise
and of magnitude RT, where R is the
pole’s radius and T is the tension. So L

must decrease and | (e) is correct.

23 oo
Determine the Concept The center of mass of the rod-and-putty system moves in a
straight line, and the system rotates about its center of mass.



24 -
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(a) True. The net external torque acting a system equals the rate of change of the angular

i,ext

momentum of the system; i.e., z T =—
i

(b) False. If the net torque on a body is zero, its angular momentum is constant but not

necessarily zero.

Estimation and Approximation

25 o

Picture the Problem Because we have no information regarding the mass of the skater,

we’ll assume that her body mass (not including her arms) is 50 kg and that each arm has a

mass of 4 kg. Let’s also assume that her arms are 1 m long and that her body is

cylindrical with a radius of 20 cm. Because the net external torque acting on her is zero,

her angular momentum will remain constant during her pirouette.

Express the conservation of her angular

momentum during her pirouette:

Express her total moment of inertia
with her arms out:

Treating her body as though it is
cylindrical, calculate its moment of
inertia of her body, minus her arms:

Modeling her arms as though they
are rods, calculate their moment of

inertia when she has them out:

Substitute to determine her total

moment of inertia with her arms out:

Express her total moment of inertia
with her arms in:

L =1L,

or

Iam‘lsout a)arms out — Iarmsin a)arms in (l )
Iarms out — ]body + Iarms

]body = %mrz = %(SOkg)(Ozm)z
=1.00kg-m’

I = 2t (4kg)(1m |

=2.67kg-m’
I on =1.00kg-m* +2.67kg-m?
=3.67kg-m’
Iamlsin = Ibody + Iarms

~1.00kg - m? +2|(4kg)(0.2m) |
=1.32kg-m’
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Solve equation (1) for @, ;. and I .
substitute to obtain: armsin I arms out
3.67kg-m?*
= —gmz(l 5 reV/s)
1.32kg-m
=| 4.17rev/s

26 oo

Picture the Problem We can express the period of the earth’s rotation in terms of its
angular velocity of rotation and relate its angular velocity to its angular momentum and
moment of inertia with respect to an axis through its center. We can differentiate this
expression with respect to / and then use differentials to approximate the changes in / and
T.

Express the period of the earth’s 2z
rotation in terms of its angular [
velocity of rotation:

Relate the earth’s angular velocity of o= £
rotation to its angular momentum 1
and moment of inertia:
Substitute to obtain: T = 21

L
Find d7/dr: ar _2z _T

dl L 1

Solve for d7/T and approximate AT: dar _ ﬂorAT ~ HT
Substitute for Al and / to obtain: AT ~ 2§mr22 7= Sm T

5 M ERE M E
Substitute numerical values and AT = 5(2.3 x10" kg ( d)
evaluate AT: 3(6x10* kg

=6.39x10°d
24h 3600s

=6.39x10°dx=——x
d h

=|0.552s
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27 e
Picture the Problem We can use L = mvr to find the angular momentum of the particle.
In (b) we can solve the equation L = 4//(¢+1)a for / (K + 1) and the approximate value of

.
(@) Use the definition of angular L =mvr
momentum to obtain: = (2 x107 kg)(3 x10~ m/s)(4 x107 m)

=|2.40x10"°kg-m°/s

(b) Solve the equation ’ ( . 1) _ L_z
L=0(¢+1)nfor £(¢+1): h
Substitute numerical values and ( ) 2.40x10"kg-m?/s ?
. 0+1)=| =
evaluate K(K+1). 1.05x017T-s
=|5.22x107
Because ¢ >>1, approximate its {~|220%x10%

value with the square root of

o(0+1):

The quantization of angular momentum is not noticed in macroscopic

(¢)| physics because no experiment can differentiate between ¢ = 2 x10°°and
0=2x10" +1.

*28 oo

Picture the Problem We can use conservation of angular momentum in part (a) to relate
the before-and-after collapse rotation rates of the sun. In part (b), we can express the
fractional change in the rotational kinetic energy of the sun as it collapses into a neutron
star to decide whether its rotational kinetic energy is greater initially or after the collapse.

(a) Use conservation of angular Lo, =10, (1)
momentum to relate the angular

momenta of the sun before and after

its collapse:

Using the given formula, I, =0.059MR’
approximate the moment of inertia Sun )
I, of the sun before collapse: = 0.059(1 99x10% kg) (6.96 x10° km)

=5.69x10* kg-m*
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Find the moment of inertia 7, of the I, =2 MR’

sun when it has collapsed into a o 5

spherical neutron star of radius 10 =£1.99x10 kg)(IOkm)

km and uniform mass distribution: = 7.96x10" kg -m>

Substitute in t.zquation (1) and solve Y = I_b Y 5.69%10% kg- m2

for m, to obtain: a I T 5 96x10° ke- m2
=7.15x10° w,

Given that @, = 1 rev/25 d, evaluate 1

o w, =7.15x10 (;:dvj

=|2.86x10" rev/d

The additional rotational kinetic energy comes at the expense of

gravitational potential energy, which decreases as the sun gets smaller.

Note that the rotational period decreases by the same factor of //1, and becomes:

27 27

T ="= =3.02x107s
O, 5 g6x10" T rev. 27rrad 1d " 1h
d rev 24 h 3600s
(b) Express the fractional change in AK K,-K, K,
the sun’s rotational kinetic energy as = - = -1
. K K, K,
a consequence of its collapse and
simplify to obtain: v @ ]
110,
I 2
= aa’az -1
Iy,

Substitute numerical values and evaluate AK/Ky:

; 2
Ak :( : Sj 2:86x10_revid —1=|7.15x10* | (i.e., the rotational kinetic
K, 7.15x10 Irev/25d

energy increases by a factor of approximately 7x10%.)

29 oo

Picture the Problem We can solve / = CMR” for C and substitute numerical values in
order to determine an experimental value of C for the earth. We can then compare this
value to those for a spherical shell and a sphere in which the mass is uniformly
distributed to decide whether the earth’s mass density is greatest near its core or near its
crust.



(a) Express the moment of inertia of
the earth in terms of the constant C:

Solve for C to obtain:

Substitute numerical values and
evaluate C:

(b) If all of the mass were in the
crust, the moment of inertia of the
earth would be that of a thin
spherical shell:

If the mass of the earth were
uniformly distributed throughout its
volume, its moment of inertia would
be:
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I =CMR?
I
C=—:;
MR

8.03x10°" kg-m”’

C =
(5.98x10% kg )(6370km )’
=10.331
. =2 MR’
spherical shell 3

I

solid sphere

2
=2 MR

the center of the earth.

Because experimentally C < 0.4, the mass density must be greater near

%30 o

Picture the Problem Let’s estimate that the diver with arms extended over head is about
2.5 m long and has a mass M = 80 kg. We’ll also assume that it is reasonable to model
the diver as a uniform stick rotating about its center of mass. From the photo, it appears
that he sprang about 3 m in the air, and that the diving board was about 3 m high. We can
use these assumptions and estimated quantities, together with their definitions, to

estimate w and L.

Express the diver’s angular velocity
o and angular momentum L:

Using a constant-acceleration
equation, express his time in the air:

Substitute numerical values and
evaluate At:

Estimate the angle through which he
rotated in 1.89 s:

AO
w=2Y 1
A (1
and
L=Iw )
rise3m Al}fall()m

At = At +
— 2AyUP + 2Aydown
|\ g Vg

At:\/ 2(3m) +\/ 26m) _; g9,

9.81m/s’ 9.81m/s’

AB~0.5rev=rrad
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Substitute in equation (1) and evaluate zrad
w: W= =| 1.66rad/s
: 1.89s
Use the "stick rotating about an axis I = % MI?
through its center of mass” model to
approximate the moment of inertia
of the diver:
Substitute in equation (2) to obtain: L=% Mo
Substitute .numerical values and L=+ (80 kg)(2.5 m)z (1 .66rad/ S)
evaluate L:

69.2kg-m?’/s ~| 70kg-m?*/s

Remarks: We can check the reasonableness of this estimation in another way.
Because he rose about 3 m in the air, the initial impulse acting on him must be about
600 kg-m/s (i.e., I = Ap = Mv;). If we estimate that the lever arm of the force is
roughly / = 1.5 m, and the angle between the force exerted by the board and a line
running from his feet to the center of mass is about 5°, we obtain L = I/sin5°~ 78
kg-m?/s, which is not too bad considering the approximations made here.

31 oo

Picture the Problem First we assume a spherical diver whose mass M = 80 kg and
whose diameter, when curled into a ball, is 1 m. We can estimate his angular velocity
when he has curled himself into a ball from the ratio of his angular momentum to his
moment of inertia. To estimate his angular momentum, we’ll guess that the lever arm ¢ of
the force that launches him from the diving board is about 1.5 m and that the angle
between the force exerted by the board and a line running from his feet to the center of
mass is about 5°.

Express the diver’s angular velocity L
o when he curls himself into a ball “= 7 (1)
in mid-dive:
Using a constant-acceleration 0= ng +2a,Ay
equation, relate the speed with h
which he left the diving board v, to where .
his maximum height Ay and our Vo, = Vo COSS
estimate of his angle with the
vertical direction:
Solve for vy: 2gAy

Vo = o

cos” 5

Substitute numerical values and 2
evaluate vy: v, = \/2(9.81m/s )(3m) =7.70m/s

cos5°
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Approximate the impulse acting on I=Ap=My,

the diver to launch him with the

speed vy:

Letting ¢ represent the lever arm of L =1/sin5° = Mv,/sin 5°

the force acting on the diver as he
leaves the diving board, express his
angular momentum:

Use the "uniform sphere” model to 1= % MR?
approximate the moment of inertia
of the diver:

Substitute in equation (1) to obtain: e Mvylsin5°  5v /sin5°
- 2MR* 2R?
Substitute numerical values and 5(7.70 m/ s)(l 5 m)sin 5°
evaluate @ = 2(0.5 m)2
=| 10.1rad/s
%32 e

Picture the Problem We’ll assume that he launches himself at an angle of 45° with the
horizontal with his arms spread wide, and then pulls them in to increase his rotational
speed during the jump. We’ll also assume that we can model him as a 2-m long cylinder
with an average radius of 0.15 m and a mass of 60 kg. We can then find his take-off
speed and "air time" using constant-acceleration equations, and use the latter, together
with the definition of rotational velocity, to find his initial rotational velocity. Finally, we
can apply conservation of angular momentum to find his initial angular momentum.

Using a constant-acceleration vi=v +2a Ay
: . 0y y
equation, relate his takeoff speed v, to

. . . or, because vy, = v¢sind5°, v =0, and
his maximum elevation Ay: > oy — Vo > >

ay=-8

0=v, sin’ 45°—2gAy

Solve for v, to obtain: \/ 2gAy \/2 gAy
V., = =

0 sin?45°  sin45°
Substitute numerical values and 2
evaluate vy: Vv, = \/2(9'81#1/8 )(0.6m) =| 4.85m/s

sin45°

Use its definition to express AGQ
Goebel’s angular velocity: = E
Use a constant-acceleration 2Ay
equation to express Goebel’s "air At =2Atio6m = 2, —
time” At: g
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Substitute numerical values and 2(0.6m
evaluate A#: At =2 |—— =0.699s
9.81m/s

Substitute numerical values and 4rev  2mrad 36.0rad/
. = X = .Orad/s

evaluate w: 0.699s  rev

Use conservation of angular Iw,=1w

momentum to relate his take-off
angular velocity ay to his average
angular velocity w as he performs a
quadruple Lutz:

Assuming that he can change his
angular momentum by a factor of 2
by pulling his arms in, solve for and

W, = ia) = l(36 rad/s)=| 18.0rad/s
I 2

0

evaluate ay:

Express his take-off angular L, =10,
momentum:

Assuming that we can model him as I, = 2(% mrz): mr?

a solid cylinder of length ¢ with an
average radius 7 and mass m,
express his moment of inertia with
arms drawn in (his take-off

where the factor of 2 represents our
assumption that he can double his moment
of inertia by extending his arms.

configuration):
Substitute to obtain: L, =mr’o,
Substitute numerical values and L, = (60kg)(0.15m)*(18rad/s)

evaluate L,:

=|24.3kg-m’/s

Vector Nature of Rotation

33 -
Picture the Problem We can express F and F in terms of the unit vectors i and } and

then use the definition of the cross product to find 7.

Express F in terms of F and the unit F =—Fi
vector i :
Express F in terms of R and the unit F= Rj

vector j:
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Calculate the cross product of ¥ and T=rxF =FR (}x —i )
F: A R

= FR(i xj): FRk
34 o

Picture the Problem We can find the torque is the cross product of 7 and F.

Compute the cross product of 7 and F T=FxF= (x; + y})(— mg})
= —mgxli x j)-mgylix j)

=|- mgxk

35 -
Picture the Problem The cross product of the vectors A = Axf + Ay}

andE—B i+B }isgivenby
AxB = AB (l x1)+A By(l ><J)+A B (]Xl)+A B (JXJ)

= 4,B,(0)+ 4,B,(k)+ 4,8~ k)+ 4,8,(0)
= 4,8 () 8.(-)
(a) Find A x B for A =4i and Ax B =4i x(6i +6)
B=6i+6j: :24({x§)+24(zx1)
=24(0)+ 24k =| 24k
(b)Flnd AxB forA =4i and ;1><l§=4t¢><(61:+6l:’,)
B =6i+6k: = 24(7 x 7 )+ 24(3 x k)
=24(0 +24(—j')= —24j
(c)Find Ax B for A=2i +3j Ax B =(2i +3)x (31 +2])
and B =37 +2}: — 6l 7 )+ 4l x j)-9ljxi)
+6(jxj)

~6(0)+4(# )~ 9(~ £ )+ 6(0)

=| 13k
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*36

Picture the Problem The magnitude of AxBis given by|AB sin l9| .

Equate the magnitudes of AxB
and A-B:

Solve for @to obtain:

37 e

Picture the Problem Let r be in the xy
plane. Then @ points in the positive z
direction. We can establish the results
called for in this problem by forming the
appropriate cross products and by
differentiating v.

() Express @ using unit vectors:

Express F using unit vectors:

Form the cross product of @and F :

(b) Differentiate v with respect to # to
express d :

|AB sin 6?| = |AB cos t9|
|sin 6’| = |cos 6’|

or
tan@ = t1

@=tan'+1=| +£45° or +135°

where @, =| @ x (&% F)

and a, and a_are the tangential and
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centripetal accelerations, respectively.

38 e
Picture the Problem Because B, = 0, we can express BasB= Bxf + B},} and form its

cross product with ;1 to determine B, and B,

Express B in terms of its components: B= Bxf + B y}' (1)
Express A x B : AxB=4ix(Bi+B,j)=4Bk =12k
Solve for B, B, =3

Relate B to B, and B, B> =B+ By2

Solve for and evaluate B,: B, = \/BZ - By? = \/52 32 =4
Substitute in equation (1): B=|4i + 3}'

39 -

Picture the Problem We can write B in the form B = Bxf +B yj + leg and use the dot

product of A and B to find B, and their cross product to find B, and B..

Express B in terms of its components: B= Bxf + B},]A' + lee @8
Evaluate A-B: 2~B:3By=12
and
B,=4
Evaluate Ax B : Ax B :3jx(Bxf+4}'+BZI€)
=3B k+3B.i
Because AxB =9i : B,=0and B,=3.

Substitute in equation (1) to obtain: B=|4j+3k
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40 -
Picture the Problem The dot product of A with the cross product of B and C is a scalar
a, a, a,

quantity and can be expressed in determinant form as |b_ by b_|. We can expand this

C C C

X y z
determinant by minors to show that it is equivalent to A (E xC ), C- (;1 x B ), and
B-(CxA).

The dot product of A with the cross a, a, a,
product of B and C is a scalar A- ( B x 6‘) =|b, by b,
quantity and can be expressed in c ¢ ¢

determinant form as: x Ty 7z

Expand the determinant by minors

: a, a, a,
to obtain: ’
b, b, b|=abc.—abc,
¢, ¢ c.
tab.c.—abec. (1)
+ab.c,—ab.c,
Evaluate the cross product of B and BxC= (bycz —bc, );
€ to obtain: + (bzcx - bxcz )j + (bxcy - bycx )kt
Form the dot product of A with A- (E x C ): abc.—ab.c,
B x C to obtain: -
+ab.c.—abc, (2)

+abce, —abc,

Because (1) and (2) are the same,

we can conclude that: I R
A-(BxC)=\b, b, b,
¢, ¢ ¢

Proceed as above to establish that:

X v z
C-(AxB)=|b, b, b,
¢, ¢, c

and
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a, a, a,
B-(CxA)=|b, b, b
¢, ¢, c

41 o
Picture the Problem Let, without loss of generality, the vector C lie along the x axis and

the vector B lie in the xy plane as shown below to the left. The diagram to the right
shows the parallelepiped spanned by the three vectors. We can apply the definitions of

the cross- and dot-products to show that A (E x C ) is the volume of the parallelepiped.

| /
| /
Bsind /
' /
o | - X
c
Express the cross-product of B and C: BxC = (B Csin 09)(—12 )
and
‘l? X C" = (Bsing)C
= area of the parallelogram
Form the dot-product of A with the A (E xC ) = A(B sin H)C cos ¢
cross-product of B and C to obtain: = (BC sin .9)(,4 cos ¢)
— (area of base)(height)
= Vparallelepiped

*42 oo
Picture the Problem Draw the triangle
using the three vectors as shown below.

Note that A+ B = C. We can find the
magnitude of the cross product of A and
B and of A and C and then use the cross
product of Aand C , using A+B = 6, to
show that ACsinb = ABsinc or

B/sin b = C/ sin c. Proceeding similarly, we

can extend the law of sines to the third side
of the triangle and the angle opposite it.
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Express the magnitude of the cross ‘;1 % E‘ — ABsinc
product of A and B:

Express the magnitude of the cross ‘;1 y 6‘ — ACsinb
product of A and C :
Form the cross product of A with AxC = Ax (Q + #)
C to obtain: —Ax A+ Ax B
- AxB
because Ax A=0.
Because AXxC = AxB: ‘;lxé‘:‘;lxé‘
and

ACsinb = ABsinc

Simplify and rewrite this expression B C
to obtain: : =
sinb sinc
Proceed similarly to extend this A B C
result to the law of sines: : =— =—
sina sinb sinc

Angular Momentum

43 -
Picture the Problem L and p are related according to L=¥Fx p. If L= 0, then

examination of the magnitude of 7 x p will allow us to conclude thatsin¢ = 0 and that

the particle is moving either directly toward the point, directly away from the point, or

through the point.
Because L =0: Fxp=rxmy=mrxv=0
or
Frxv=0
Express the magnitude of ¥ xv : |17 X 17| =rvsing =0
Because neither 7 nor v is zero: sing =0

where ¢ is the angle between  and v.

Solve for ¢ p=sin" 0= 0° or 180°
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44 -

Picture the Problem We can use their definitions to calculate the angular momentum
and moment of inertia of the particle and the relationship between L, /, and @ to
determine its angular speed.

(a) Express and evaluate the L =mvr =(2kg)(3.5m/s)(4m)
magnitude of L: =| 28.0kg-m?/s
(b) Express the moment of inertia of I=mr’ =(2kg)(4m) =| 32kg-m’

the particle with respect to an axis
through the center of the circle in
which it is moving:

(¢) Relate the angular speed of the o L 28.0kg-m?/s
particle to its angular momentum B I B 32kg- m?

= 0.875rad/s?

and solve for and evaluate w:

45 -

Picture the Problem We can use the definition of angular momentum to calculate the
angular momentum of this particle and the relationship between its angular momentum
and angular speed to describe the variation in its angular speed with time.

(a) Express the angular momentum L =rmysin 6
of the particle as a function of its = (6 m)(Z kg)(4.5 m/ s)sin90°
mass, speed, and distance of its path ~[54.0kg- m2/s

from the reference point:

2 1
(b) Because L = mr- w: o — and
p

@ increases as the particle
approaches the point and decreases

as it recedes.

*46 oo

Picture the Problem We can use the formula for the area of a triangle to find the area
swept out at ¢ = ¢, add this area to the area swept out in time d?, and then differentiate this
expression with respect to time to obtain the given expression for dA4/dt.

Express the area swept out at 7 = #;: A =3brcos 6, =5bx,

where 4 is the angle between r and v and



746 Chapter 10

Express the area swept out at
t=t +dt:

Differentiate with respect to ¢:

Because rsin@= b:

47 o

x1 is the component of 7‘1 in the direction of

V.
A=A +dA=Lb(x, +dx)
= %b(x1 +vdt)
d_A = %b@ =1 bv = constant
dt dt

L1py = %(rsin@)v = L(VPSin‘g)
2m

Picture the Problem We can find the total angular momentum of the coin from the sum

of its spin and orbital angular momenta.

(a) Express the spin angular
momentum of the coin:

From Problem 9-44:

Substitute for / to obtain:

Substitute numerical values and

evaluate Lgpyin:

(b) Express and evaluate the total
angular momentum of the coin:

(¢) From Problem 10-14:

(d) Express the total angular
momentum of the coin:

L. =1_w

spin cm ~ spin
I=1MR’
_ 2
Lspin - %MR wspin
L, =+(0.015kg)(0.0075m)’
><(lore_v>< 27rradj
S rev

={1.33x10" kg-m?*/s

L=L, +L, =0+L

orbit spin spin

=11.33x10" kg-m?/s

Lorbit = O

and
L=]133x10"kg-m?’/s
L=L . +L

— orbit spin
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Find the orbital momentum of the L. =TMVR
coin: =+(0.015kg)(0.05m/s)(0.1m)

=+7.50x10"° kg-m?*/s

where the * is a consequence of the fact
that the coin’s direction is not specified.

Substitute to obtain: L =47.50x10"kg-m"/s
+1.33x107°kg-m*/s

The possible values for L are: L=]8.83x10"kg-m’/s

L=|-617x10"kg-m"/s

48 oo

Picture the Problem Both the forces acting on the particles exert torques with respect to
an axis perpendicular to the page and through point O and the net torque about this axis is
their vector sum.

Express the net torque about an axis T = Z T, =¥ xF, +TF, xF,
perpendicular to the page and i
through point O: = (fl - )X F,

Because ¥, —F, points along — F: (r1 —r, )x F1 =0

Torque and Angular Momentum

49 -

Picture the Problem The angular momentum of the particle changes because a net
torque acts on it. Because we know how the angular momentum depends on time, we can
find the net torque acting on the particle by differentiating its angular momentum. We
can use a constant-acceleration equation and Newton’s 2™ law to relate the angular speed
of the particle to its angular acceleration.

i dL d
(a) Relate.the magmtude. of the ;= _[( AN m) t]
torque acting on the particle to the dt dt
rate at which its angular momentum =| 4.00N-m

changes:
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(b) Using a constant-acceleration o=w,+at
equation, relate the angular speed of where @y = 0
the particle to its acceleration and

time-in-motion:

Use Newton’s 2™ law to relate the o = Thet _ Tret
angular acceleration of the particle I mr
to

the net torque acting on it:

Substitute to obtain: _ Toet
w = _Zt
mr
Substitute numerical values and o = (4 N- m)t
evaluate @: (1 8 kg)(3 4 m)2

= (0.192rad/s* )¢

provided ¢ is in seconds.

50 oo

Picture the Problem The angular momentum of the cylinder changes because a net
torque acts on it. We can find the angular momentum at ¢ = 25 s from its definition and
the net torque acting on the cylinder from the rate at which the angular momentum is
changing. The magnitude of the frictional force acting on the rim can be found using the
definition of torque.

(a) Use its definition to express the L=1w= %mrza)
angular momentum of the cylinder:

Substitute numerical values and L= %(90 kg)(0.4 m)2
evaluate L: )
«| 500 re'V o 2xrad y 1min
min rev 60s

=|377kg-m’/s

2
(b) Express and evaluate % : _dL — (377 kg-m~/ S)
dt dt 25s

=|15.1kg-m?*/s’

(c) Because the torque acting on the

dL
=4

. e =—=|15.1kg-m’/s’
uniform cylinder is constant, the rate dt
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of change of the angular momentum
is constant and hence the
instantaneous rate of change of the
angular momentum at any instant is
equal to the average rate of change
over the time during which the
torque acts:

Using the definiti ft
(d) s1ng € acrinition o orque — 377N

that relates the applied force to its - Z 0.4m
lever arm, express the magnitude of

the frictional force f'acting on the

rim:

*5] oo

Picture the Problem Let the system include the pulley, string, and the blocks and
assume that the mass of the string is negligible. The angular momentum of this system
changes because a net torque acts on it.

(a) Express the net torque about the 7. =Rm,gsin@—Rm,g
center of mass of the pulley:

=| Rg(m,sin@—m,)

where we have taken clockwise to be
positive to be consistent with a positive
upward velocity of the block whose mass is
m; as indicated in the figure.

(b) Express the total angular L=1I1w+myvR+m,vR

momentum of the system about an I

axis through the center of the = VR[? +m; + mzj

pulley:

(c) Express ras the time derivative dL d 1
T=—=—|VR| —+m +m,

of the angular momentum: dt dt R?

I
:aR[F'le +m2j

Equate this result to that of part (a) g(m2 sin@ —m, )

and solve for a to obtain:

P+m1+m2
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52 oo

Picture the Problem The forces resulting from the release of gas from the jets will exert

a torque on the spaceship that will slow and eventually stop its rotation. We can relate

this net torque to the angular momentum of the spaceship and to the time the jets must

fire.

Relate the firing time of the jets to
the desired change in angular
momentum:

Express the magnitude of the net
torque exerted by the jets:

Letting Am/At' represent the mass of
gas per unit time exhausted from the
jets, relate the force exerted by the
gas on the spaceship to the rate at
which the gas escapes:

Substitute and solve for Az to obtain:

Substitute numerical values and evaluate At:

Ar= AL _ 1A
z-net z-net

T = 2FR

F= A—mv
At'

At = —iAa’
22" R

At'

(4000kg - m’ )(6 -

At =

rev 2xrad lmin
X X
60s

rev ~[52.45

53 oo

2102 kg/s )(800m/s)(3m)

Picture the Problem We can use constant-acceleration equations to express the
projectile’s position and velocity coordinates as functions of time. We can use these
coordinates to express the particle’s position and velocity vectors ¥ and v. Using its

definition, we can express the projectile’s angular momentum L as a function of time and

then differentiate this expression to obtain di/ dt. Finally, we can use the definition of

the torque, relative to an origin located at the launch position, the gravitational force

exerts on the projectile to express 7 and complete the demonstration that di/ dt=r.

Using its definition, express the

angular momentum vector L of the
projectile:

Using constant-acceleration

L=rxmy

(1

x=v,t=(VcosO)t



equations, express the position
coordinates of the projectile as a
function of time:

Express the projectile’s position
vector 7 :
Using constant-acceleration

equations, express the velocity of
the projectile as a function of time:

Express the projectile’s velocity
vector v :

Substitute in equation (1) to obtain:

Differentiate L with respect to ¢ to obtain:

Using its definition, express the
torque acting on the projectile:

Comparing equations (2) and (3) we
see that:
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and
y=y,+ voyt+%ayt2

=(Vsin @)t —1 gt?

F=[(VcosO)li + [(V sin@) — 1L gr’ ]}

v. =V, =Vcosd
and
v, =V, + ayt

=Vsinf— gt

Vv =[VcosOi +[Vsin0 - gt]j

L= {[(Vcos 0)1]i + [(VSiH o)t _%gtz]}}
xm{[VcosH]f+[VSin9—gf]j}
- (—%mgtchosé?)l;

dL d
dr - drt

= (—mgtV cos (9)1:’,

( Lmgt’V cos 9) )

T =7 x(-mg)j
= [(V cos0)1] 1+[Vsm9 )t —1Lgt ]]
x(~mg)j

or

T =(—mgthost9)l€ (3)
dL -

— =T

dt

Conservation of Angular Momentum

*54

Picture the Problem Let m represent the mass of the planet and apply the definition of

torque to find the torque produced by the gravitational force of attraction. We can use

Newton’s 2" law of motion in the form 7 = di/ dt to show that L is constant and apply

conservation of angular momentum to the motion of the planet at points 4 and B.
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(a) Express the torque produced by
the gravitational force of attraction
of the sun for the planet:

(b) Because T =0:

Noting that at points 4 and B
|17 X 17| = rv, express the

relationship between the distances
from the sun and the speeds of the

planets:

55 oo

T=FxF =| 0 |because F acts along

the direction of 7.

dL - -
—=0= L =r xmv =constant
dt

nv, =nv,

or

M |

V, n

Picture the Problem Let the system consist of you, the extended weights, and the

platform. Because the net external torque acting on this system is zero, its angular

momentum remains constant during the pulling in of the weights.

(a) Using conservation of angular
momentum, relate the initial and
final angular speeds of the system to
its initial and final moments of
inertia:

Solve for w,:

Substitute numerical values and
evaluate @;:

(b) Express the change in the kinetic
energy of the system:

Substitute numerical values and
evaluate AK:

Lo, =10,
Ii
W, = —,
If
2
@, :6kg—mz(1.5rev/s): 5.00rev/s
1.8kg-m

AK =K, -K, =110} -1 Lo}

1 1

. >\ - rev  2mwrad ?
AK = 1(1.8kg-m’ )| 57 x
S rev

2
—%(6kg-m2)(l.5reTVx 27;;:(1 j

=|622]
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Because no external agent does work on the system, the energy comes
(c) .

from the internal energy of the man.
*560 oo

Picture the Problem Let the system consist of the blob of putty and the turntable.
Because the net external torque acting on this system is zero, its angular momentum
remains constant when the blob of putty falls onto the turntable.

(a) Using conservation of angular lyo, =1 .0,

momentum, relate the initial and and

final angular speeds of the turntable I,
e W; = — o,

to its initial and final moments of I,

inertia and solve for wy:

Express the final rotational inertia of I, =1,+1,,=1,+mR’
the turntable-plus-blob:

Substitute and simplify to obtain: I, o = 1

(b) If the blob flies off tangentially to the turntable, its angular momentum doesn’t
change (with respect to an axis through the center of turntable). Because there is no
external torque acting on the blob-turntable system, the total angular momentum of the
system will remain constant and the angular momentum of the turntable will not change.
Because the moment of inertia of the table hasn’t changed either, the turntable will

continue to spin at| @' = @,

57 e
Picture the Problem Because the net external torque acting on the Lazy Susan-
cockroach system is zero, the net angular momentum of the system is constant (equal to
zero because the Lazy Susan is initially at rest) and we can use conservation of angular
momentum to find the angular velocity w of the Lazy Susan. The speed of the cockroach
relative to the floor v is the difference between its speed with respect to the Lazy Susan
and the speed of the Lazy Susan at the location of the cockroach with respect to the floor.

Relate the speed of the cockroach Ve =V—ar (1)
with respect to the floor v¢ to the

speed of the Lazy Susan at the

location of the cockroach:

Use conservation of angular L,—L.=0
momentum to obtain:
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Express the angular momentum of L.=1.wo=1MRw
LS LS 2
the Lazy Susan:

Express the angular momentum of (v
the cockroach: Lo=1.0.=mr’| ——o

Substitute to obtain:

’
Solve for wto obtain: B 2mry
MR* + 2mr
Substitute in equation (1): 2ty
Ve =V— >
MR~ +2mr

Substitute numerical values and evaluate vy

=| 9.67mm/s

2(0.015kg)(0.08m)*(0.01m/s)
2

=0.01m/s—
N ’ (0.25m)(0.15m)* +2(0.015kg)(0.08 m)’

%58 oo

Picture the Problem The net external torque acting on this system is zero and so we
know that angular momentum is conserved as these disks are brought together. Let the
numeral 1 refer to the disk to the left and the numeral 2 to the disk to the right. Let the
angular momentum of the disk with the larger radius be positive.

Using conservation of angular Lo, =10,
momentum, relate the initial angular or
speeds of the disks to their common lLo,-1,0,= (I1 +1, )a)f
final speed and to their moments of
inertia:
Solve for wx: I, -1
“ w; =——>0,
I, +1,
. 1 2 2
Express /; and I,: I, = Em(Zr) =2mr
and
I, =1imr
Substitute and simplify to obtain: 2mr? —Lmr? 3
W =——"—0,=| 2O,
2mr® +Lmr 5 2
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Picture the Problem We can express the angular momentum and kinetic energy of the

block directly from their definitions. The tension in the string provides the centripetal

. . . . . d
force required for the uniform circular motion and can be expressed using Newton’s 2"

law. Finally, we can use the work-kinetic energy theorem to express the work required to

reduce the radius of the circle by a factor of two.

(a) Express the initial angular
momentum of the block:

(b) Express the initial kinetic energy
of the block:

(¢) Using Newton’s 2™ law, relate the
tension in the string to the centripetal
force required for the circular motion:

Use the work-kinetic energy theorem
to relate the required work to the
change in the kinetic energy of the
block:

Substitute the result from part (a) and
simplify to obtain:

%60 o

L, =|rymv,

2

o
2 2
Wonk—k K= L
21, 21,

21, 21, 2\I,-1I,

L1 )24
2 \m(Lr, ) —mr} 3 mry

_|_2 2
W =| —5mv,

Picture the Problem Because the force exerted by the rubber band is parallel to the

position vector of the point mass, the net external torque acting on it is zero and we can

use the conservation of angular momentum to determine the speeds of the ball at points B

and C. We’ll use mechanical energy conservation to find b by relating the kinetic and

elastic potential energies at 4 and B.
(a) Use conservation of momentum

to relate the angular momenta at
points 4, B and C:

Solve for vz in terms of v:

or
My, ¥, = mvgly = mMvI

7
g

Vg =V,
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i i 0.6m
Substitute numerical values and v, = ( Am /s) 2 40m/s
evaluate vz: 1m
Solve for v¢ in terms of v: R
Ve =Va—
e
Substitute numerical values and V. = ( Am /s) 0.6m [ 2.00m/s
evaluate v¢: ¢ 0.6m
(b) Use conservation of mechanical E,=E,
energy between points 4 and B to or
relate the kinetic energy of the point Imvi +1br; =Ltmv; +1br;
mass and the energy stored in the
stretched rubber band:
Solve for b: b= m!vf9 —vi )
=Ty

Substitute numerical values and evaluate b: (0.2 kg)|(2.4 m/ 5)2 - (4 m/ s)2 |
b= 2 2
(0.6 m) - (1 m)

=|3.20N/m
Quantization of Angular Momentum
*61 o
Picture the Problem The electron’s spin T L3
) . Ll /
angular momentum vector is related to its z i /
component as shown in the diagram. /
////"34:\\
— / -\QI'\
e,/ =
v
Using trigonometry, relate the P
g trigonometry 6 =cos —=2 =|54.7°
magnitude of § to its z component: J0.75h

62 oo
Picture the Problem Equation 10-27a describes the quantization of rotational energy.
We can show that the energy difference between a given state and the next higher state is
proportional to ¢ +1by using Equation 10-27a to express the energy difference.
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From Equation 10-27a we have: K, =/ (ﬁ + l)EOr
Using this equation, express the AE = (ﬁ + 1)(€ + 2)EOr - £(€ + I)EOr
difference between one rotational _ 2( n 1) E

Or

state and the next higher state:

63 oo
Picture the Problem The rotational energies of HBr molecule are related to ¢ and
E, accordingto K, = f(ﬁ + l)EOr where £, = h2/21.

(a) Express and evaluate the moment I = mpr2

= (1.67x10?"kg) (0.144x10™ m)’
—|3.46x10" kg-m’

of inertia of the H atom:

(b) Relate the rotational energies to K, =1 (ﬁ + l)E or
land E, :
Evaluate £, : h? (1 05x107*7J. 5)2
E = — = ’
" 21 2(3.46x10" kg-m?)
=1.59%x107% Jxle—vw
1.60x107"J
=0.996meV
Evaluate E for (= 1: E, =(1+1)(0.996meV)=| 1.99meV
Evaluate E for /=2: E, = 2(2 + 1)(0.996 meV)
=|5.98meV
Evaluate E for (= 3: E, =3(3+1)(0.996meV)
=|12.0meV

64 oo

Picture the Problem We can use the definition of the moment of inertia of point
particles to calculate the rotational inertia of the nitrogen molecule. The rotational
energies of nitrogen molecule are related to ¢/ and £ according

toK, = E(Z + I)EOr where £, = h2/2[.
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(a) Using a rigid dumbbell model, I= Z:miri2 =myr’ +myr’
express and evaluate the moment of i

inertia of the nitrogen molecule = 2myr’

about its center of mass:

Substitute numerical values and evaluate I: | — 2(14)(1 66x107 kg )(5.5 %107 m)2

=|1.41x10* kg-m?

(b) Relate the rotational energies to E, = (¢ +1)E,,
fand E
Evaluate £, : h? (1 05x107*7J. 5)2
E = — = .
21 2(1.41x10% kg-m?)
=3.91x107% Jxle—vw
1.60x107"J
=0.244meV
Substitute to obtain: E, = 0_244£(£ + 1) meV

*6S oo

Picture the Problem We can obtain an expression for the speed of the nitrogen molecule
by equating its translational and rotational kinetic energies and solving for v. Because this
expression includes the moment of inertia / of the nitrogen molecule, we can use the
definition of the moment of inertia to express / for a dumbbell model of the nitrogen
molecule. The rotational energies of a nitrogen molecule depend on the quantum number

¢ according to E, = I* /21 = 0(¢ +1)h* /21.

Equate the rotational kinetic energy E =5myw D
of the nitrogen molecule in its £ = 1
quantum state and its translational

kinetic energy:

Express the rotational energy levels E - r _ f(ﬁ + l)h2

of the nitrogen molecule: L1 27

For /= 1: (1+1)n* _ »?
El = =



Substitute in equation (1):

Solve for v to obtain:

Using a rigid dumbbell model,
express the moment of inertia of the
nitrogen molecule about its center of

mass:

Substitute in equation (2):

Substitute numerical values and evaluate v:

Collision Problems

66 oo
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_1
——szV

2h?
= 2
v ‘/le )

_ 2 _ 2 2 _
I—Z:miri =myr” +myr’ =2myr

1

2

and
_ 2.2
my I =2myr

2n’ h
Vv = _—

2.2
2myrT myr

b 1.055x107*J -5
14(1.66 %107 kg ) (5.5x107" m)

=| &82.5m/s

Picture the Problem Let the zero of gravitational potential energy be at the elevation of

the rod. Because the net external torque acting on this system is zero, we know that

angular momentum is conserved in the collision. We’ll use the definition of angular

momentum to express the angular momentum just after the collision and conservation of

mechanical energy to determine the speed of the ball just before it makes its perfectly

inelastic collision with the rod.

Use conservation of angular
momentum to relate the angular
momentum before the collision to
the angular momentum just after the
perfectly inelastic collision:

Use conservation of mechanical
energy to relate the kinetic energy of
the ball just before impact to its
initial potential energy:

Letting 4 represent the distance the

L =L

1

= mvr

K.-K +U,-U, =0
or, because K; = U;= 0,

K,-U, =0

v=4/2gh
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ball falls, substitute for
K, and U, and solve for v to

obtain:

Substitute for v to obtain:

Substitute numerical values and
evaluate L¢:

67 oo

L. =mry/2gh

L, =(3.2kg)(0.9m)y/2(9.81m/s)(1.2m)
=[14.07-s

Picture the Problem Because there are no external forces or torques acting on the

system defined in the problem statement, both linear and angular momentum are

conserved in the collision and the velocity of the center of mass after the collision is the

same as before the collision. Let the direction the blob of putty is moving initially be the

positive x direction and toward the top of the page in the figure be the positive y

direction.

Using its definition, express the
location of the center of mass relative
to the center of the bar:

Using its definition, express the
velocity of the center of mass:

Using the definition of L in terms of /
and o, express @:

Express the angular momentum about
the center of mass:

Using the parallel axis theorem,
express the moment of inertia of the
system relative to its center of mass:

Substitute for y., and simplify to obtain:

d
Ve = m below the center of the bar.
M +m
my
va =
M+m
1




d
I, =ML +M( ~

M+m
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2 2
j +m[d— md j
M+m

d(M+m)—md 2

|
S
S

(M+m
2,2

2 Mn12a’2 [
+ 5 +m

de

M +m j

2 (M + m)mMa’2

|
=
S
+

)

2 Mm~d
(M+m)2
2, md®

=ML +
M +m

Substitute for I, and L., in equation
(1) and simplify to obtain:

(M+m)

(M + m)2

mMvd
&ML (M +m)+ Mmd®

S
I

Remarks: You can verify the expression for I, by letting m — 0 to obtain
I = I—IZML2 and letting M — 0 to obtain I, = 0.

cm

68 oo

Picture the Problem Because there are no external forces or torques acting on the

system defined in the statement of Problem 67, both linear and angular momentum are

conserved in the collision and the velocity of the center of mass after the collision is the

same as before the collision. Kinetic energy is also conserved as the collision of the hard

sphere with the bar is elastic. Let the direction the sphere is moving initially be the

positive x direction and toward the top of the page in the figure be the positive y direction

and v/ and V” be the final velocities of the objects whose masses are m and M,

respectively.

Apply conservation of linear
momentum to obtain:

Apply conservation of angular
momentum to obtain:

Set v/ =0 in equation (1) and solve
for V"

Use conservation of mechanical
energy to relate the kinetic energies
of translation and rotation before

b = Py

or

my =mv'+MJV" (1)

L =1L,

or

mvd = mv'd +5 ML @ ()
my

V'=— 3
v; (3)

K, =K,

or
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and after the elastic collision:

Substitute (2) and (3) in (4) and L 12m( d*
simplify to obtain: M + M\ 2
Solve for d: _
J=lr M —m
12m

69 oo
Picture the Problem Let the zero of
gravitational potential energy be a distance
x below the pivot as shown in the diagram.
Because the net external torque acting on
the system is zero, angular momentum is
conserved in this perfectly inelastic
collision. We can also use conservation of
mechanical energy to relate the initial
kinetic energy of the system after the
collision to its potential energy at the top of

its swing.
Using conservation of mechanical AK +AU =0
energy, relate the rotational kinetic or, because K;= U;= 0,
energy of the system just after the -K,+U; =0
collision to its gravitational potential and
energy when it has swung through Lo d
an angle 0 o =| Mg 5 + mgx (1 cos@) (1)
Apply conservation of momentum to L =L,
the collision: or
0.8dmv = Ioo = |t Md® +(0.84 F oo
Solve for @ to obtain: _ 0.8dmv
o= 5 5 2)
T Md” +0.64md
Express the moment of inertia of the 1= m(0.8d )2 +1Md? 3)

system about the pivot: — 0.64md> +%Md2
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Subst.ltute equatlo?s (2? and (3) 1T1 Mg 1 + mgd (1 o8 0)
equation (1) and simplify to obtain: 2
0.32(dmv)’

L Md* +0.64md”

Solve for v:

e \/ (0.5M +0.8m) (1 Md* +0.64md? )g(1 - cos 6)
- 0.32dm*

Evaluate v for 8= 90° to obtain:

\/ (0.5M +0.8m)(L Md> +0.64md* g

V=
0.32Lm’

70 e

Picture the Problem Let the zero of

gravitational potential energy be a distance

x below the pivot as shown in the diagram.

Because the net external torque acting on ¥ cos 6
the system is zero, angular momentum is ;
conserved in this perfectly inelastic

collision. We can also use conservation of
mechanical energy to relate the initial Ug=0
kinetic energy of the system after the
collision to its potential energy at the top of

its swing.

Using conservation of mechanical K,-K,+U;,-U, =0

energy, relate the rotational kinetic or, because K¢ = U;= 0,

energy of the system just after the -K, +U,; =0

collision to its gravitational potential and

energy when it has swung through an 5 d

angle 0: +lo” = Mg5+mgx (l—cosé?) (1)
Apply conservation of momentum to L =L,

the collision: or

0.8dmv = 1w
= [1Ma? +(0.84) m)o
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Solve for w to obtain:

Express the moment of inertia of the
system about the pivot:

Substitute equation (2) in equation (1)
and simplify to obtain:

Solve for v:

0.8dmv
0=—" 5 2
S Md* +0.64md

I=m(0.84) +1iMd’
=(0.64m+1M)d’
= [0.64(0.3kg)+1(0.8kg)](1.2mY’
=0.660kg-m’

(Mg% + 0.8dmgj(l —cos6)

_0.32(dmv)’
T

_ \/ 2(0.5M +0.8m)(1—cosO)I
0.32dm’

Substitute numerical values and evaluate v for 8= 60° to obtain:

=|7.74m/s

b \/ (9.81m/5%)[0.5(0.8kg)+0.8(0.3kg)](0.5)(0.660kg - m?)
- 0.32(1.2m)(0.3kg )’
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Picture the Problem Let the length of the uniform stick be /. We can use the impulse-
change in momentum theorem to express the velocity of the center of mass of the stick.
By expressing the velocity ¥ of the end of the stick in terms of the velocity of the center
of mass and applying the angular impulse-change in angular momentum theorem we can
find the angular velocity of the stick and, hence, the velocity of the end of the stick.

(a) Apply the impulse-change in
momentum theorem to obtain:

Solve for v, to obtain:

(b) Relate the velocity V of the end
of the stick to the velocity of the
center of mass v p,:

Relate the angular impulse to the
change in the angular momentum of
the stick:

K=Ap=p-p,=p
or, because pp = 0 and p = Mv.p,

K=Myv,,
K
vcm = o
M

— — 1
V_vcm+vreltocofm —ch+a)(3€) (1)

KEo)=AL=L-L,=1, 0
or, because Ly =0,
K(E0)= 1,0
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Refer to Table 9-1 to find the I =L M
. . . . cm 12

moment of inertia of the stick with

respect to its center of mass:

Substitute to obtain: K(% g) =L MPw
Solve for w: 6K
0=—
MY
Substitute in equation (1) to obtain: K 6K/ 4K
M (ﬁj 2 M
(c) Relate the velocity V” of the other V=v,_ —Vioeorm = Vem — a)(% g)
end of the stick to the velocity of the
center of mass vgp,: — £_ 6_K ﬁ = _2_K
M \M/?)2 M
(d) Letting x be the distance from the Vg —x=0

center of mass toward the end not
struck, express the condition that the
point at x is at rest:

Solve for x to obtain: K 6K
E— __x —_—
M M/
Solve for x to obtain: K
- M _[1y
TTek L
Mt

Note that for a meter stick struck at the
100-cm mark, the stationary point would
be at the 33.3-cm mark.

Remarks: You can easily check this result by placing a meterstick on the floor and
giving it a sharp blow at the 100-cm mark.
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Picture the Problem Because the net external torque acting on the system is zero,
angular momentum is conserved in this perfectly inelastic collision.

(a) Use its definition to express the Ly, =|myvb

total angular momentum of the disk
and projectile just before impact:
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(b) Use conservation of angular
momentum to relate the angular
momenta just before and just after
the collision:

Express the moment of inertia of the
disk + projectile:

Substitute to obtain:

(c) Express the kinetic energy of the
system after impact in terms of its
angular momentum:

(d) Express the difference between
the initial and final kinetic energies,
substitute, and simplify to obtain:

73 e

L

Ly=L=load o=—"

I =1MR* +m b’

2m vyb
MR? +2m b*

_L_z_ (mpvob)2
"2 20 MR +m b

(mpvob)z
MR® +2m b’

Picture the Problem Because the net external torque acting on the system is zero,

angular momentum is conserved in this perfectly inelastic collision. The rod, on its

downward swing, acquires rotational kinetic energy. Angular momentum is conserved in

the perfectly inelastic collision with the particle and the rotational kinetic of the after-

collision system is then transformed into gravitational potential energy as the rod-plus-

particle swing upward. Let the zero of gravitational potential energy be at a distance L,

below the pivot and use both angular momentum and mechanical energy conservation to

relate the distances L, and L, and the masses M and m.

Use conservation of energy to relate
the initial and final potential energy
of the rod to its rotational kinetic

energy just before it collides with the

particle:

K. —K. +U,-U, =0

or, because K; =0,

K. +U,-U, =0



Substitute for K, Uy, and U, to
obtain:

Solve for w:

Letting w’represent the angular
speed of the rod-and-particle system
just after impact, use conservation of
angular momentum to relate the
angular momenta before and after
the collision:

Solve for w*

Use conservation of energy to relate
the rotational kinetic energy of the
rod-plus-particle just after their
collision to their potential energy
when they have swung through an
angle Onax:

Express the moment of inertia of the
system with respect to the pivot:

Substitute for Gax, [ and @’in
equation (1):

Simplify to obtain:

Simplify equation (2) by letting

a=m/M and = L,/L, to obtain:

Substitute for & and simplify to
obtain the cubic equation in £

Use the solver function* of your
calculator to find the only real value
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L
%(%MLf)a)2+Mg?1—Mng =0

(ML} ) = (ML + m3 )

Lo
LML +mL,
K, -K,+U,-U, =0
or, because K;= 0,
—Llw” +Mg(% L, )(1 —cos6, )
+mgL,(1—cos@,_ )

I=1ML +mlL;

3 Lgl (L mzz )

= Mg(LL)+mglL
%ML?""WIL% g(2 l) g 2

L= 2%LfL2 +312L, + 6%@ 2)

6’ +3p> +2af-1=0

128’ +96%>+48-3=0

B=|0349

1
:0()
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of B

*Remarks: Most graphing calculators have a "solver” feature. One can solve the
cubic equation using either the "graph” and "trace” capabilities or the "solver”
feature. The root given above was found using SOLVER on a TI-85.

74 e

Picture the Problem Because the net external torque acting on the system is zero,
angular momentum is conserved in this perfectly inelastic collision. The rod, on its
downward swing, acquires rotational kinetic energy. Angular momentum is conserved in
the perfectly inelastic collision with the particle and the rotational kinetic energy of the
after-collision system is then transformed into gravitational potential energy as the rod-
plus-particle swing upward. Let the zero of gravitational potential energy be at a distance
L, below the pivot and use both angular momentum and mechanical energy conservation
to relate the distances L, and L, and the mass M to m.

(a) Use conservation of energy to
relate the initial and final potential
energy of the rod to its rotational

kinetic energy just before it collides

with the particle:

Substitute for Ky, Uy, and U; to
obtain:

K. -K +U,-U,=0
or, because K; =0,
K, +U,-U;=0

Solve for w: 3g
o0=_|—=
Ll
Letting ’represent the angular L =L,
speed of the system after impact, or

use conservation of angular
momentum to relate the angular
momenta before and after the

collision:
Solve for " » LML
LMLy + mL
ML |3g



Substitute numerical values to obtain:

Use conservation of energy to relate
the rotational kinetic energy of the
rod-plus-particle just after their
collision to their potential energy
when they have swung through an
angle Onax:

Substitute for K;, Uz, and U; to
obtain:

Express the moment of inertia of the
system with respect to the pivot:

Substitute for G.x, [ and @’in
equation (1) and simplify to obtain:

Substitute for M, L, and L, and
simplify to obtain:

Solve the quadratic equation for its
positive root:

(b) The energy dissipated in the
inelastic collision is:

Express U:

Express Uk
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e 1(2kg)(1.2m)’

12kg)(1.2m) +m(0.8m)’
3(9.81m/s?
1.2m
_ 475kg-m’/s
0.960kg-m” +(0.64m? Jm
_ 4.75kg/s
0.960kg +0.64m

K.-K +U,-U, =0
or, because K;= 0,

-K,+U,-U, =0

11w +Mg(L L )(1-cosb,, )

max

+mgL,(1-cosf,, )=0

max

I=1ML +mlL;

1(4.75kg/s)
0.960kg +0.64m

m* +3.00m—-8.901=0

m =|1.84kg
AE =U;-U; )
L
U =Mo—L
i g >

max

U, =(1-cosé )g[M%+mL2j

=0.2g(ML, +mL,)
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Substitute in equation (2) to obtain: AE = Mg ﬂ

—(1-cos@ )g(M%—i—msz

max

Substitute numerical values and evaluate AE:

(2kg)(9.81m/s?)(1.2m)
2

~(1- cos37°)(9.81m/s2)(w +(1.85 kg)(0.8m)j

U, =

=1 6.51J

75 e
Picture the Problem Let @; and @x be the angular velocities of the rod immediately
before and immediately after the inelastic collision with the mass m. Let ay be the initial
angular velocity of the rod. Choose the zero of gravitational potential energy be at a
distance L; below the pivot. We apply energy conservation to determine @rand
conservation of angular momentum to determine . We’ll apply energy conservation to
determine ay. Finally, we’ll find the energies of the system immediately before and after
the collision and the energy dissipated.

Express the energy dissipated in the AE =U; -U; (1)
inelastic collision:

Use energy conservation to relate K, -K,+U,-U,=0

the kinetic energy of the system or, because K; = Kiop = 0 and K; = Kpotiom,
immediately after the collision to its = Kootiom T Utop = Upottom =0

potential energy after a 180°

rotation:

Substitute for Kpotom, Usop> and — LI} +3 MgL, +mg(L, +L,)

Ubottom 10 Obtain: _ %Mng _ mg(Ll _ Lz) =0
Simplify to obtain: —Llw} + MgL, +2mgL, =0 (2)
Express I: I =ML} +mL,

Substitute for 7 in equation (2) and ]2 g(ML, +2mL,)
solve for ax to obtain: @ = LML +mL,
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Substitute numerical values and evaluate wy:

2
o 2(9.81m/5%)[(0.75 kg)(i 2m)+2(0.4 kg)(g.s M) - 00 rads
1(0.75kg)(1.2m)* +(0.4kg)(0.8m)
Use conservation of angular L =L,
momentum to relate the angular or
momentum of the system just before Lo, = 1,0,
the collision to its angular
momentum just after the collision:
Substitute for /;and /; and solve for (% ML )a)i = (% ML +mL )a)f
@ and
2
. = 1_|_3_m i A
M\ L
Substitute numerical values and _l 3(0_ 4 kg) 0.8m 2 (7 00 1ad/ )
evaluate o A= 0 5kg (T2m ) |
=12.0rad/s
Apply conservation of mechanical K, -K +U,-U, =0

energy to relate the initial rotational
kinetic energy of the rod to its
rotational kinetic energy just before
its collision with the particle:

. - L
Substitute to obtain: 1 (% ML ) -1 (% MI2 )a)g + Mggl

-MgL, =0
Solve for ay: 3
o a)o — a)iz __g
L 1
Substitute numerical values and 5 3(9'81 m/s> )
evaluate ax: W, = (12 rad/ S) T lom

=|10.9rad/s
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Substitute in equation (1) to express
the energy dissipated in the collision:

Substitute numerical values and evaluate AE:

AE =} (L ML} )o? — MgL, +2mgL,

AE =1(0.75kg)(1.2m Y (12rad/s) —(9.81m/s? ) [(0.75kg)(1.2m)+2(0.4kg)(0.8m)]

=110.8J
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Picture the Problem Let v be the speed of the particle immediately after the collision

and o, and ar be the angular velocities of the rod immediately before and immediately

after the elastic collision with the mass m. Choose the zero of gravitational potential

energy be at a distance L, below the pivot. Because the net external torque acting on the

system is zero, angular momentum is conserved in this elastic collision. The rod, on its

downward swing, acquires rotational kinetic energy. Angular momentum is conserved in

the elastic collision with the particle and the kinetic energy of the after-collision system is

then transformed into gravitational potential energy as the rod-plus-particle swing

upward. Let the zero of gravitational potential energy be at a distance L, below the pivot

and use both angular momentum and mechanical energy conservation to relate the

distances L and L, and the mass M to m.

Use energy conservation to relate the
energies of the system immediately
before and after the elastic collision:

Substitute for Ky, Uy, and U, to obtain:

Solve for mv*:

Apply conservation of energy to
express the angular speed of the rod
just before the collision:

Substitute for Ky, Uy, and U, to obtain:

Solve for w;:

K. —K,+U;-U, =0
or, because K; =0,
K. +U,-U, =0
L L
Lmy? +Mg71(l—cos¢9max)—Mg?1=0

mv’ = MgL, cos®, . (1)
K, -K +U,-U, =0

or, because K; =0,
K. +U,-U, =0

1ML )o? +Mg%—Mng -0



Apply conservation of energy to the
rod after the collision:

Solve for wy:

Apply conservation of angular
momentum to the collision:

Solve for mv:

Substitute for wr and @ to obtain:

Divide equation (1) by equation (2)
to eliminate m and solve for v:

Substitute numerical values and evaluate v:

3(9.81m/s?) (0.8m)cos 37°
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%(%ML?)(O? —Mg%(l_cosemax): 0
o = 0.6g
\ L,

(%ML? )a)i = (%ML% )a)f +mvL,

%ML? (a)i — W )
L,

MLf 3£ B 0.6g
Ll Ll
my = (2
3L,
. MgL, cos@, .
MLf ?ﬁ B 0.6g
Ll Ll
3L,

3gL,cosb_ .

" el —J0.64L,

my =

=5.72m/s

J3(9.81m/s) (1.2m) —/0.6(9.81m/s* )(1.2m)

Solve equation (1) for m:

Substitute for v in the expression for
myv and solve for m:

Because the collision was elastic:

Mgl
m = M8Ly 08 Oy

2
v

(2 kg)(9.81m/s2 )(1 2m)cos37°
(5.72m/s)’

=] 0.575kg

0
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77 oo

Picture the Problem We can determine the angular momentum of the wheel and the

angular velocity of its precession from their definitions. The period of the precessional

motion can be found from its angular velocity and the angular momentum associated with

the motion of the center of mass from its definition.

(a) Using the definition of angular
momentum, express the angular
momentum of the spinning wheel:

Substitute numerical values and
evaluate L:

(b) Using its definition, express the
angular velocity of precession:

Substitute numerical values and
evaluate @,:

(c) Express the period of the
precessional motion as a function of
the angular velocity of precession:

(d) Express the angular momentum
of the center of mass due to the

precession:

Substitute numerical values and

evaluate Ly

*7T8 oo

L=I1w=MRw-=

I 30N :
9.81m/s

w
~R’w

g

J(o.zgm)2

X(lzﬂx 27rradj
S rev

=|18.1J-s

o =%zMgD
Podt L

. =
P 18.1J-s

27 27

p

2
L =1,0 =MD

30N
" 19.81m/s®

=10.0791J-s

(30N)(0.25m)

o 04ldrads

=| 0.414rad/s

15.2s

p

L = —j(0.25m)2(0.414rad/s)

The direction of L, is either up or down,

depending on the direction of L.

Picture the Problem The angular velocity of precession can be found from its definition.

Both the speed and acceleration of the center of mass during precession are related to the

angular velocity of precession. We can use Newton’s 2" law to find the vertical and
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horizontal components of the force exerted by the pivot.

(a) Using its definition, express the angular velocity of precession:

_d¢ _MgD  MgD _ 2gD

T dt Lo, MRe, Ro,

Substitute numerical values and evaluate a,:

2
. 2(9.81m/s?) (0.05m) e

p .
(O.O64m)2 700 rey o 2nrad 5 Imin
min  rev 60s

(b) Express the speed of the center Vem = Do, = (0.05 m)(3.27 rad/ s)
of mass in terms of its angular ~[0.164m/s
velocity of precession:
(c) Relate the acceleration of the a,, = Da)}f = (0,05 m)(3,27 rad/s)2
center of mass to its angular velocity 3

. =|0.535m/s
of precession:
(d) Use Newton’s 2" law to relate F, =Mg= (2.5 kg)(9.8 lm/sz)
the vertical component of the force _[245N
exerted by the pivot to the weight of
the disk:
Relate the horizontal component of F =Ma, = (2.5 kg)(0.535 m/ sz)
the force exerted by the pivot to the _[134N

acceleration of the center of mass:
General Problems

79 -
Picture the Problem While the 3-kg particle is moving in a straight line, it has angular

momentum given by L = F x p where 7 is its position vector and p is its linear

momentum. The torque due to the applied force is given by T = F x F.

(a) Express the angular momentum L=Fx P
of the particle:

Express the vectors ¥ and p: F= (12m)f + (5,3 m)}
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Substitute and simplify to find L:

(b) Using its definition, express the
torque due to the force:

Substitute and simplify to find 7 :

80 -

and
p =mvi =(3kg)(3m/s)i
= (9kg- m/s)f

A
.

L=|12m)i +(5.3m)jx (9kg-m/s)i
= (47.7kg-m2/s)(}'xf)
= —(47.7kg‘m2/s)12

T=FxF

7 = |12m)i +(5.3m)j|x(-3N)7

A
.

— —(15.9N-m)(jxi)
=| (159N -m)k

Picture the Problem The angular momentum of the particle is given by

L =¥ x p where F is its position vector and p is its linear momentum. The torque acting

on the particle is given by T = di/ dt.

Express the angular momentum of
the particle:

r
Evaluate —:
dt

Substitute and simplify to find L:

Find the torque due to the force:

L=|Gkg){@m)i + (2 mis?)j ]
X (6tm/s)}'
(72.0¢1 -5 )k

7=""="72.0¢1-5)k
T 7 dt( t] s)]

(72.0N-m)k
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Picture the Problem The ice skaters rotate about their center of mass; a point we can

locate using its definition. Knowing the location of the center of mass we can determine

their moment of inertia with respect to an axis through this point. The angular momentum
of the system is then given by L = /_ @ and its kinetic energy can be found

fromK = 1*/21, .

(a) Express the angular momentum
of the system about the center of
mass of the skaters:

Using its definition, locate the center
of mass, relative to the 85-kg skater,
of the system:

Calculate 7 :

Substitute to determine L:

(b) Relate the total kinetic energy of
the system to its angular momentum
and evaluate K:

Substitute numerical values and
evaluate K:

_ (55kg)(1.7m)+(85kg)(0)
o 55kg +85kg

=0.668m

I, =(55kg)(1.7m—0.668m)’
+(85kg)(0.668m)’
=96.5kg-m’

L= (96.5kg~m2) lrﬂ>< 2nrad
2.5s rev

=|243J-s

K= =1 306]
2‘96.5kg-m ’
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Picture the Problem Let the origin of the
coordinate system be at the pivot (point P).
The diagram shows the forces acting on the
ball. We’ll apply Newton’s 2™ law to the
ball to determine its speed. We’ll then use
the derivative of its position vector to
express its velocity and the definition of
angular momentum to show that L has
both horizontal and vertical components.
We can use the derivative of L with
respect to time to show that the rate at
which the angular momentum of the ball
changes is equal to the torque, relative to
the pivot point, acting on it.

(a) Express the angular momentum
of the ball about the point of support:

Apply Newton’s 2™ law to the ball:

Eliminate 7 between these equations

and solve for v:

Substitute numerical values and

evaluate v:

Express the position vector of the
ball:

Find the velocity of the ball:

Evaluate w:

L=rxp=mrxv (1)

2
v

ZFX =Tsinf =m—
rsin@

and

ZFZ =Tcosf@-mg=0

v =,/rgsinftand

v =1/(1.5m)(9.81m/s’ ) sin30°tan30°
=2.06m/s

7 =(1.5m)sin 30°(cos ot i +sin a)t})
—(1.5m)cos 30°%

where @ = wk.

. dr
V=—
dt
= (O.7Sa)m/s)(— sin @t i +cos a)t})
® = _206mfs 2.75rad/s

(1.5m)sin 30°
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Substitute for w to obtain: v = (2.06 m/ S)(— sin et i +cos a)t})

Substitute in equation (1) and evaluate L:

L=(2 kg)l(l 5m)sin 30°(cos ot § +sin ot j)— (1.5m)cos 30°I€J
X [(2.06 rn/s)(— sin i +cos ot })]
= [5.36(cos wti +sin a)t})+ 3.0912]] -8

The horizontal component of Lis: 5_36((305 Wi + sin ot j)] .S
The vertical component of Lis: 3.09k7]-s
L L o X
(b) Evaluate aL : aL = [5.36&)(— sin @t i +cos a)t])] J
dt dt
i -
Evaluate the magnitude of = : aL = (5.36N -m- S)(2.75 rad/s)
=|147N-m
Express the magnitude of the torque T =mgrsinf
exerted by gravity about the point of
support:
Substitute numerical values and r=(2 kg)(9.8 1m/s® )(1 .5m)sin 30°
evaluate 7: _[147N-m
83 oo

Picture the Problem In part (a) we need to decide whether a net torque acts on the
object. In part () the issue is whether any external forces act on the object. In part (c) we
can apply the definition of kinetic energy to find the speed of the object when the
unwrapped length has shortened to 7/2.

(a) Consider the overhead view of the
cylindrical post and the object shown in
the adjoining figure. The object rotates
counterclockwise. The torque about the
center of the cylinder is clockwise and

=~

of magnitude RT, where R is the radius
of the cylinder and T is the tension. So

\\
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L must decrease.

(b) Because, in this frictionless
environment, no net external forces

act on the object:

(c) Express the kinetic energy of the
object as it spirals inward:

84 oo

No, L decreases.

Its kinetic energy is constant.

v,- (The kinetic energy remains

constant.)

Picture the Problem Because the net torque acting on the system is zero; we can use

conservation of angular momentum to relate the initial and final angular velocities of the

system.

Using conservation of angular
momentum, relate the initial and
final angular velocities to the initial

and final moments of inertia:

Solve for w;:

Express I;:

Express If:

Substitute to express @, in terms of @ :

Express the initial kinetic energy of
the system:

L =L,
or
Lo, =10,
i I;
o, =0 ="0
J
£ £

I =ML +2(tme?)
I, =L M +2(tml?)

LM +2(ime?)
M+ 2t mi?)”

K, =110 = L[ M1+ 2(tme* )|’
= | &ML +5m? )o?
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Express the final kinetic energy of the system and simplify to obtain:

K, = 11,0} = L[ M + 24 mI? )|? = 3 (ML +5mI? )}

= (ML + 5mD) !

=| L
20

MI* +5ml?

{(MLZ +5m€2)2:| v

85 oo

MJrSIni2

2 /2 2]
[ML+5m]
L

M +5m

Determine the Concept Yes. The net external torque is zero and angular momentum is

conserved as the system evolves from its initial to its final state. Because the disks come

to the same final position, the initial and final configurations are the same as in Problem

84. Therefore, the answers are the same as for Problem 84.

86 oo

Picture the Problem Because the net torque acting on the system is zero; we can use

conservation of angular momentum to relate the initial and final angular velocities of the

system.

Using conservation of angular
momentum, relate the initial and
final angular velocities to the initial
and final moments of inertia:

Solve for wx:

Relate the tension in the string to the
angular speed of the system and
solve for and evaluate :

L =1L

or

Lo, =10,
I I

0, =0 ="0 (1)
If If

T =mro* = mga)2

and

~ \/ﬁ _ [ 2(108N)
“= W‘\/ (0.4kg)(0.6m)

=1| 30.0rad/s
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Express and evaluate /;:

Express and evaluate /Iy

Substitute in equation (1) and solve
for w, :

Express and evaluate the initial
kinetic energy of the system:

Express and evaluate the final kinetic
energy of the system:

87 oo

I, = 5 ML +2(5me?)
=1(0.8kg)(2m)’ +1(0.4kg)(0.6m)’
=0.392kg-m’

I, =5 ME +2(5mI?)
= 1(0.8kg)(2m)’ +1(0.4kg)(2mY’
=1.12kg-m’

2
w, = La) = MB0.0rad/s)
I, 1.12kg-m

=|10.5rad/s

K =il0’
= 1(0.392kg-m*)(30.0rad/s)
=1176J
— 1 2

Ky =310
— 1(1.12kg - m?)(10.5rad/s )’
=| 61.7J

Picture the Problem Until the inelastic collision of the cylindrical objects at the ends of

the cylinder, both angular momentum and energy are conserved. Let K’ represent the

kinetic energy of the system just before the disks reach the end of the cylinder and use

conservation of energy to relate the initial and final kinetic energies to the final radial

velocity.

Using conservation of mechanical
energy, relate the initial and final
kinetic energies of the disks:

Solve for v;:

Using conservation of angular
momentum, relate the initial and
final angular velocities to the initial

Lo’ -1,0]
Vo= ()



and final moments of inertia:

Solve for w; :

Express I;:

Express It

Substitute to obtain @, in terms of @ :

Substitute in equation (1) and
simplify to obtain:

88 oo
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Lo, =10,

I =+ ML +2(tme?)
I, =+ML?+2(&mL?)

LM +2(ime?)

O, = a
C M +2(im?)
_ ML’ +5m¢? »

ML +5mL’
v =| L2 2 _p
2L

Picture the Problem Because the net torque acting on the system is zero, we can use

conservation of angular momentum to relate the initial and final angular velocities and

the initial and final kinetic energy of the system.

Using conservation of angular
momentum, relate the initial and
final angular velocities to the initial
and final moments of inertia:

Solve for w; :

Relate the tension in the string to the
angular speed of the system:

Solve for w:

Substitute numerical values and
evaluate w:

L =1L,

or

Lo, =10,

©, = i ® = i ® (1)
f If i If

=| 30.0rad/s
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Express and evaluate /;:

Letting L' represent the final
separation of the disks, express and
evaluate /¢

Substitute in equation (1) and solve
for w, :

Express and evaluate the initial
kinetic energy of the system:

Express and evaluate the final
kinetic energy of the system:

The energy dissipated in friction is:

*809 oo
Picture the Problem The drawing shows
an elliptical orbit. The triangular element

of the area is d4 = Lr(rd@)=1rd6.

Differentiate dA with respect to ¢ to
obtain:

Because the gravitational force acts
along the line joining the two
objects, 7 =0 and:

I =MD +2(3me?)

1

= 5(0.8kg)(2m) +1(0.4kg)(0.6m)’

=0.392kg-m’

I, =5 M +2(kmL?)

= +(0.8kg)2m) +1(0.4kg)(1.6m)’

=0.832kg-m’

I o 0.392kg-m’
I, 0.832kg-m’

176J

82.7]

AE=K -K, =176]-82.7]
=[93.37]

dA_, ,d0 _,

—=1 =1lr‘w
d * dr
L=mr’w

= constant

(30.0rad/s)



Eliminate 7 @ between the two
equations to obtain:

90 oo
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dA L
— =| — = constant

dt 2m

Picture the Problem Let x be the radial distance each disk moves outward. Because the

net torque acting on the system is zero, we can use conservation of angular momentum to

relate the initial and final angular velocities to the initial and final moments of inertia.

We’ll assume that the disks are thin enough so that we can ignore their lengths in

expressing their moments of inertia.

Use conservation of angular
momentum to relate the initial and
final angular velocities of the disks:

Solve for wy:

Express the initial moment of inertia
of the system:

Express the moment of inertia of the
cylinder:

Letting / represent the distance of
the clamped disks from the center of
rotation and ignoring the thickness
of each disk (we’re told they are
thin), use the parallel-axis theorem
to express the moment of inertia of
each disk:

With the disks clamped:

L =L,

or

Lo, =10,

w, = /i 1) (1)
f 1. i

I :Icy] + 21 i

Icyl :%MLZ +%MR2

=L M(2” +6R?)
= 1(0.8kg)|(1.8m)’ +6(0.2m)’ ]
—0.232kg-m’

Ly = tmr® + ml?

= %m(r2 + 4€2)

=1(0.2 kg)[(o.z m) +4(0.4 m)Z]
=0.0340kg-m’

I = Icyl + 21 i
—0.232kg-m’ +2(0.0340kg - m”)
=0.300kg - m’



786 Chapter 10

With the disks unclamped, /= 0.6 m Iy =1m (r +4/ )
and: - 1(0.2kg)|(0.2m)* +4(0.6m) ]
=0.0740kg-m’
Express and evaluate the final Iy =1,+ 21 g
moment of inertia of the system: =0.232kg- m?2 + 2(0.0740 kg - m2)
=0.380kg-m’
Substitute i tion (1) t 0.300kg-m®
du myemﬁequalon( ) to o = g m2 (8rad/s)
etermine @y 0.380kg-m
=| 6.32rad/s
Express the energy dissipated in AE =E, - E;
friction: =3lo; _(%Ifa)fz +%kx2)
Apply Newton’s 2" law to each Z F g = kx=mro’
disk when they are in their final
positions:
Solve for : = mro’
X

. . 2
Substitute numerical values and i = (0_2 kg)(0.6 m)(6,32 rad/s)
evaluate k: B 0.2m

=24.0N/m

Express the energy dissipated in friction: W, =E —-E;
1w 2
2

2 (11,07 + k)
Substitute numerical values and evaluate W;:

W, =1(0.300kg - m*)(8rad/s)’ —1(0.380kg-m?)(6.32rad/s)’ — 1 (24 N/m)(0.2m
=[1.53]

9] oo

Picture the Problem Let the letters d, m, and r denote the disk and the letters ¢, M, and R
the turntable. We can use conservation of angular momentum to relate the final angular
speed of the turntable to the initial angular speed of the Euler disk and the moments of
inertia of the turntable and the disk. In part () we’ll need to use the parallel-axis theorem
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to express the moment of inertia of the disk with respect to the rotational axis of the
turntable. You can find the moments of inertia of the disk in its two orientations and that
of the turntable in Table 9-1.

(a) Use conservation of angular Loy =1 04+ 10,
momentum to relate the initial and
final angular momenta of the

system:
Because myy= aur: Loy =10 + 10
Solve for ay: I
O =~y (1)

]df + ]tf
Ignoring the negligible thickness of I;,=1 mr’
the disk, express its initial moment b
of inertia:
Express the final moment of inertia I, =Ltmr’
of the disk: ?
Express the final moment of inertia I, =1 MR’
of the turntable: v
Substitute in equation (1) to obtain: 1y

_ 4
WO =T 52 i
S mr + 7 MR
1 2
MR* ¢
24+2—
mr
Express wqi in rad/s: re 2zrad 1min
*P ! w,; =30 .V SEALN = rrrad/s
min  rev 60s
Substitute numerical values in rrad/s
: . W =
equation (2) and evaluate @y tf ) (0.73 5k g)(0.2 5 m)2
(0.5kg)(0.125m)’
=| 0.228rad/s

(b) Use the parallel-axis theorem to I,=1 mrt +ml? = m(% P+ LZ)

express the final moment of inertia
of the disk when it is a distance L
from the center of the turntable:
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Substitute in equation (1) to obtain:

W, = amr w
ol ) MR
- 2 2 i
2+ 4% +2 MR2
r mr
Substitute numerical values and evaluate @y:
zrad/s

o, = =1|0.192rad/s
! 5o q (01m) (0.735kg)(0.25m)
(0.125m)  (0.5kg)(0.125m)’

92

Picture the Problem We can express the period of the earth’s rotation in terms of its

angular velocity of rotation and relate its angular velocity to its angular momentum and

moment of inertia with respect to an axis through its center. We can differentiate this

expression with respect to 7 and then use differentials to approximate the changes in r

and T.
(a) Express the period of the earth’s 7= 2_7T
rotation in terms of its angular w
velocity of rotation:
Relate the earth’s angular velocity o= L _ L
of rotation to its angular momentum I imr
and moment of inertia:
Substitute and simplify to obtain: T 277(% mr’ ) _ 4rm ,
L SL
(b) Find dT/dr: dar _ (4zm o2 T r_Z_T
dr 5L r’ r
Solve for dT/T: dT dr AT Ar
—=2—or| —=~2—
T r T r
(¢) Using the equation we just AT _ 4+d y ly _ 1 _ Ar
derived, substitute for the change in T y 365.24d 1460 r

the period of the earth:
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Solve for and evaluate Ar: B r _6.37x 10° km
2(1460)  2(1460)
=|2.18km
*Q3 oo

Picture the Problem Let wp be the angular velocity of precession of the earth-as-
gyroscope, @ its angular velocity about its spin axis, and / its moment of inertia with
respect to an axis through its poles, and relate ap to @, and 7 using its definition.

Use its definition to express the T
precession rate of the earth as a giant Wp =—
gyroscope:

Substitute for / and solve for 7. 7 =Lw, =low,

Express the angular velocity @y of

2 : . .
the earth about its spin axis: = 7where T is the period of rotation of

the earth.
Substitute to obtain: 27 w,
z‘ = —

T

Substitute numerical values and evaluate 7

__27(8.03x107kg-m’) (7.66x10"5™!)

ldx 24h y 3600s
d h

=|4.47x10? N-m

04 oo
Picture the Problem The applied torque accelerates the system and increases the tension
in the string until it breaks. The work done before the string breaks is the change in the
kinetic energy of the system. We can use Newton’s 2™ law to relate the breaking tension
to the angular velocity of the system at the instant the string breaks. Once the applied
torque is removed, angular momentum is conserved.

Express the work done before the W=AK=K, =110} (1)

string breaks:

o +20, =1(x) =L ML, +2mx°
system (see Table 9-1): _ ﬁ(l.Zkg)(Iﬁm)Z + 2(0.4kg)x2

=0.256kg-m” +(0.8kg)x’

Express the moment of inertia of the I1=1
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Evaluate Iy = 1(0.4 m):

Using Newton’s 2™ law, relate the
forces acting on a disk to its angular
velocity:

Solve for wy:

Substitute numerical values and
evaluate o

Substitute in equation (1) to express
the work done before the string
breaks:

Substitute numerical values and
evaluate V-

With the applied torque removed,
angular momentum is conserved and
we can express the angular
momentum as a function of x:

Solve for a)(x) :

Substitute numerical values to obtain:

95 ooe

I, =1(0.4m)
=0.256kg-m” +(0.8kg)(0.4m)’
=0.384kg-m’

o 2
ZFradial =T =mro;

where T is the tension in the string at which
it breaks.

_ |
mr
100N =25.0rad/s
(0.4kg)(0.4m)

lo,

[

W =

o=
-

w =1(0.384kg - m?)(25rad/s)
=[1207

L=1I 0,

= 1(x)o(x)

o) = Le

I(x)

(0.384kg - m?)(25rad/s)
ox)= 2s6kg 2
. g-m’ +(0.8kg)x
9.607-s
0.256kg-m” +(0.8kg)x’

Picture the Problem The applied torque accelerates the system and increases the tension

in the string until it breaks. The work done before the string breaks is the change in the

kinetic energy of the system. We can use Newton’s 2™ law to relate the breaking tension

to the angular velocity of the system at the instant the string breaks. Once the applied
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torque is removed, angular momentum is conserved.

Express the work done before the W=AK=K, =31 OF (1)
string breaks:

Express the moment of inertia of the I=1,+2I, =1 (x)=5M cylLiyl +2mx’

system (see Table 9-1):

Substitute numerical values to I = ﬁ(] 2 kg)(l .6 m)2 + 2(0,4 kg)x2
obtain: =0.256kg-m> +(0.8kg)x’
Evaluate 7; = /(0.4 m): I, =1(0.4m)
=0.256kg-m” +(0.8kg)(0.4m)’
=0.384kg-m’
Using Newton’s 2" law, relate the ZFmd =T =mro;
forces. acting on a disk to its angular where T'is the tension in the string at which
velocity: it breaks.
Solve for wy: T
W = |—
mr
Substitute numerical values and 100N
‘ = .| ————— =25.0rad/s
evaluate ax: (0.4kg)(0.4m)
With the applied torque removed, L=1I 0,
angular momentum is conserved and =1 (x)a)(x)

we can express the angular
momentum as a function of x:

Solve for a)(x): a)(x) YR

Substitute numerical values and simplify to obtain:

0.256kg-m> +(0.8kg)x>  0.256kg-m> +(0.8kg )x?

ofx) = 0384ke 1’ )25 rads) 9.607 -5

Evaluate a)(O.Sm):
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9.60J-s

@(0.8m)

" 0.256kg-m’ +(0.8kg)(0.8m)

=|12.5rad/s

Remarks: Note that this is the angular velocity in both instances. Because the disks
leave the cylinder with a tangential velocity of J Lo, the angular momentum of the

system remains constant.

96 ooe

Picture the Problem The applied torque accelerates the system and increases the tension

in the string until it breaks. The work done before the string breaks is the change in the

kinetic energy of the system. We can use Newton’s 2™ law to relate the breaking tension

to the angular velocity of the system at the instant the string breaks. Once the applied

torque is removed, angular momentum is conserved.

Express the work done before the
string breaks:

Using the parallel axis theorem and
treating the disks as thin disks,
express the moment of inertia of the
system (see Table 9-1):

Substitute numerical values to
obtain:

Evaluate /r= 1(0.4 m):

Using Newton’s 2™ law, relate the
forces acting on a disk to its angular
velocity:

Solve for wy:

Substitute numerical values and
evaluate @

W=AK=K, =110} (1)

I(x)=1,+2I,
= 5 ML+ MR +2(tmR* + mx*)
= s M(2 +6R? )+ 2m(L R +x)

1(x)= % (.2kg)|1.6m) +6(0.4m) |
+2(0.4kg) [%(O.4m)2 + xz]
=0.384kg-m”® +(0.8kg x>

I, =1(0.4m)
=0.384kg-m” +(0.8kg)(0.4m)’
=0.512kg-m’

ZFrad =T =mro;

where T is the tension in the string at which
it breaks.

W = [—
mr

100N
= |——~———— =25.0rad/
“r \/(0.41<g)(0.4m) raas
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Substitute in equation (1) to express W=4%I fa)f2

the work done before the string

breaks:

Substitute numerical values and W=1% (0,5 12kg-m’ )(25 rad/ s)2
evaluate W: _[16071

With the applied torque removed, L=1I o

angular momentum is conserved and =1 (x)a)(x)

we can express the angular

momentum as a function of x:

Solve for a)(x): a)(x) _ [ .o,

Substitute numerical values to obtain: a)(x) _ (0.5 12kg-m? )(25 rad/ s)
0.384kg-m” +(0.8kg)x>
12.87)-s
0.384kg-m? +(0.8kg x>

*Q7  eee
Picture the Problem Let the origin of the coordinate system be at the center of the pulley
with the upward direction positive. Let A be the linear density (mass per unit length) of
the rope and L, and L, the lengths of the hanging parts of the rope. We can use
conservation of mechanical energy to find the angular velocity of the pulley when the
difference in height between the two ends of the rope is

7.2 m.

(a) Apply conservation of energy to AK +AU =0

relate the final kinetic energy of the or, because K; =0,

system to the change in potential K+AU =0 (1)
energy:

Express the change in potential AU =U; -Uj;

energy of the system: =1L (L,A)g—1L,(L,A)g

_[_%Lli(l‘liﬂ“)g —3 Ly (ini)g]
= _%(Lff +L§f)ﬂ’g +%(L12i +L§i)j‘g
= _%/1 g[(Lff + L;f )_ (lei + Lii )]
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Because L; + L, =7.4m,
Ly —Ly;=0.6 m, and
Lyr— Lis="7.2 m, we obtain:

Substitute numerical values and
evaluate AU:

Express the kinetic energy of the
system when the difference in
height between the two ends of the
rope is 7.2 m:

Substitute numerical values and
simplify:

Substitute in equation (1) and solve
for w

(b) Noting that the moment arm of
each portion of the rope is the same,
express the total angular momentum
of the system:

Letting @be the angle through which
the pulley has turned, express U(6):

Express AU and simplify to obtain:

Assuming that, at t =0, Ly; = Ly;:

Lh: 34 m, L2i =40 m,
Lis=0.1 m, and L,r=7.3 m.

AU =—-1(0.6kg/m)(9.81m/s? )
<[(0.1m) +(7.3m)
~(3.4m) —(4m}]

= -75.75]

K=1I & +1 MV
MR )’ +3 MR
LM, +

)22

o)~ *c

17
2
1
2
1
2

AI —

K

1[1(2.2kg)+4.8kg] (1 2m) o
2

=(0.1076kg-m* )’

(0.1076kg-m? Jo® 75751 = 0

and
ﬂ 26.5rad/s
0.1076kg - m*

L=L,+L =1,0+MRo
—(LM R+ MR o 2)
— (LM, + M, R0

U(H): _%I(Lli - Rg)z + (in + R@)ZJAg

AU =U,-U, =U(0)-U(0)
= —%[(Lli ~RO) +(L, +R0)2](1g
+H(B+ 2 g
=-R&°Ag+(L,—L,)ROAg

AU ~-R*0*Ag
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Substitute for K and AU in equation ((). 1076kg - m* )0)2 ~R6°2g=0
(1) to obtain:

Solve for w: Y R26’2/1g
0.1076kg-m’

Substitute numerical values to 12m
obtain: ( j (0.6kg/m)(9.81m/s”)
2
= 5 0
0.1076kg-m
=(1.415")0
Express w as the rate of change of ﬁ _ (1 415 )6’ N ﬁ _ (1 415! )dt
6. dt . '
Integrate @ from 0 to &to obtain: Inf = (1 41s™ )t
Transform from logarithmic to 9(;) = e(l a5
exponential form to obtain:
Differentiate to express was a a)(t) _ de _ (1 415 )e(l 4157
function of time: dt
Substitute for @ in equation (2) to L= (%Mp +M, )Rz(l 4157 )e(l-‘“s’l)f

obtain:

Substitute numerical values and evaluate L:

L =[3(2.2kg)+(4. 8kg)][122 = ) (L4157 )el15"F|=[ (0,303 kg - m? /5)el '+ F
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