Chapter 11
Gravity

Conceptual Problems

*1 °

(a) False. Kepler’s law of equal areas is a consequence of the fact that the
gravitational force acts along the line joining two bodies but is independent
of the manner in which the force varies with distance.

(b) True. The periods of the planets vary with the three-halves power of their distances
from the sun. So the shorter the distance from the sun, the shorter the period of the
planet’s motion.

2 .
Determine the Concept We can apply Newton’s 2™ law and the law of gravity to the
satellite to obtain an expression for its speed as a function of the radius of its orbit.

Apply Newton’s 2™ law to the z GMm v

s . Fojg =——=m—
satellite to obtain: radial r? r

where M is the mass of the object the
satellite is orbiting and m is the mass of the

satellite.
Solve for v to obtain: GM
Vv =
r
Thus the speed of the satellite is
independent of its mass and: (c) is correct.

3 (L]
Picture the Problem The acceleration due to gravity varies inversely with the square of
the distance from the center of the moon.

Express the dependence of the , 1
acceleration due to the gravity of the r
moon on the distance from its

center:
Express the dependence of the q o 1
acceleration due to the gravity of the Rl\z,I

moon at its surface on its radius:

829
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Divide the first of these expressions a Rfd
by the second to obtain: a
Solve for a': , R} R},
a'=—ra=—"5a=qa
r (4RM )

and| (d)1is correct.

4 .
Determine the Concept Measurement of G is difficult because masses accessible in the
laboratory are very small compared to the mass of the earth.

5 .
Determine the Concept The escape speed for a planet is given by v, = /2Gm/R .

Between v, depends on the square root of M, doubling M increases the escape speed by a
factor of +/2 and (a) s correct.

6 (L]

Determine the Concept We can take careful measurements of its position in order to
determine whether its trajectory is an ellipse, a hyperbola, or a parabola. If the path is an
ellipse, it will return; if its path is hyperbolic or parabolic, it will not return.

7 (L]

Determine the Concept The gravitational field is proportional to the mass within the
sphere of radius 7 and inversely proportional to the square of 7, i.e., proportional

tor’ / r=r.

*8 °

Determine the Concept Let m represent the mass of Mercury, Mg the mass of the sun, v
the orbital speed of Mercury, and R the mean orbital radius of Mercury. We can use
Newton’s 2™ law of motion to relate the gravitational force acting on the Mercury to its
orbital speed.

Use Newton’s 2™ law to relate the r GM m v
= =m—
gravitational force acting on net R? R
Mercury to its orbital speed:
Simplify to obtain: Ly = 1 GMgm | ( GMSmj
2 -2 )
R
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or | K=-1U

Gravity 831

Picture the Problem We can use the definition of the gravitational field to express the
ratio of the student’s weight at an elevation of two earth radii to her weight at the surface

of the earth.

Express the weight of the student at
the surface of the earth:

Express the weight of the student at
an elevation of two earth radii:

Express the ratio of w' to w:

10 oo

GM  m
w=mg=——1
RE
W' _ mg! GMEm
(R, )
GM m
, 2
% = S]\IZ 271 = é and | (d)is correct.
Ry

Determine the Concept One such machine would be a balance wheel with weights
attached to the rim with half of them shielded using Cavourite. The weights on one side
would be pulled down by the force of gravity, while the other side would not, leading to
rotation, which can be converted into useful work, in violation of the law of the

conservation of energy.

Estimation and Approximation

1 -

Picture the Problem To approximate the mass of the galaxy we’ll assume the galactic
center to be a point mass with the sun in orbit about it and apply Kepler’s 3™ law.

Using Kepler’s 3™ law, relate the
period of the sun 7 to its mean
distance r from the center of the
galaxy:

3
7 )

Solve for—2 to obtain:
T

4’
T2 = 47[2 7‘3 = ]\]4\45 7’3
GM galaxy G galaxy
M

G M galaxy M galaxy

r M, M,

TZZ 4 B 4
M GM

S S
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If we measure distances in AU and 472 . pe ~ Mgalaxy
times in years: GM. =land — = M.
Substitute numerical values and 4 3
evaluate Moyyjaxy/Ms: (3 x10* LY x 63><10AUJ
galaxy —
M, (250x10°y)’
=1.08x10"
or
_ 11
calaxy = 1.08x10" M

*12 o0e
Picture the Problem We can use Kepler’s 3™ law to find the size of the semi-major axis
of the planet’s orbit and the conservation of momentum to find its mass.

(a) Using Kepler’s 3" law, relate the 5 A7t ;
period of this planet T to the length T = G]W— r
of its semi-major axis: lota Draconis
dn”
M.
G M Tota Draconis
MS
A’
GM., 3
=—> —7r
M Tota Draconis
MS
If we measure time in years, 47t 1
. : . _ 2 _ 3
distances in AU, and masses in MG land T~ = v "
terms of the mass of the sun: s ~—lota Draconis.
MS
Solve for r to obtain:
olve forrto obtaii 7 =3 Mlota Draconis T2
MS
Substitute numerical values and
evaluate 7 r= 3\/ (%J(I 5 y)2 =|133AU
MS
(b) Apply conservation of mv =M, V

ota Draconis
momentum to the planet (mass m

and speed v) and the star (mass M,
Draconis and speed V) to obtain:
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Solve for m to obtain: V
m=M

Tota Draconis
v

Use its definition to find the speed Ad 2
of the orbiting planet: V= A_t = T
11
27{1 33AUx 1.5><10m]

1.50y

365.25d 24h 3600s
X X X
y d h

=2.65x10*m/s

Substitute numerical values and
evaluate 12 m= Mlota Draconis

296 m/s
2.65x10* m/s

= 001 12M Iota Draconis
=0.0112(1.05M_,,)
=0.0112(1.05)(1.99x10* kg)

=2.34x10% kg
Express m in terms of the mass M, m 2.34x10% ke
of Jupiter: = —— =123
M, 190x10"" kg
or
m=|12.3M,

Remarks: A more sophisticated analysis, using the eccentricity of the orbit, leads to
a lower bound of 8.7 Jovian masses. (Only a lower bound can be established, as the
plane of the orbit is not known.)

13 eee

Picture the Problem We can apply Newton’s law of gravity to estimate the maximum
angular velocity which the sun can have if it is to stay together and use the definition of
angular momentum to find the orbital angular momenta of Jupiter and Saturn. In part (c)
we can relate the final angular velocity of the sun to its initial angular velocity, its
moment of inertia, and the orbital angular momenta of Jupiter and Saturn.

(a) G.ravity must supply the MR < GMm
centripetal force which keeps an RZ
element of the sun’s mass m rotating

. . . or
around it. Letting the radius of the

, 2 GM

sun be R, apply Newton’s law of O R<—;
gravity to an element of mass m to ) _
obtain: where we’ve used the inequality because

we’re estimating the maximum angular
velocity which the sun can have if it is to
stay together.
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Solve for w: GM

Substitute numerical values and evaluate w:

=] 6.28x10*rad/s

< [6.673x10"" N-m*/kg® )[1.99x10" kg)
(6.96x10°m)

Calculate the period of this motion 2 2
from its angular velocity: =

o  628x10" rad/s

1h
=1.00x10* s x =| 2.78h
3600s

(b) Express the orbital angular L, =mryv,and Ly = mgryvg
momenta of Jupiter and Saturn:
Express the orbital speeds of Jupiter 2w 2wy
and Saturn in terms of their periods Vi = and vg = T
and distances from the sun: ! s

. s 2 2
Substitute to obtain: L - 27 m,r, d 1= 27 mgr;

) T

Substitute numerical values and evaluate L; and Lg:

22(318M, )7 _ 27(318)(5.98x10* kg )(778x10° m)’

L, =

T, 365.25d 24h 3600s
11.9yx X X
y d h
=11.93x10¥ kg-m?/s
and
_2(05aM, ) _ 27(95.1)(5.98x10* ke )(1430x10° m)’
= =
T, 29.5yx365'25dx24hx36008
y d h
=| 7.85x10% kg-m?/s
Express the angular momentum of L,
the sun as a fraction of the sum of /= ﬁ
the angular momenta of Jupiter and s
Saturn: 1.91x10*" kg-m?*/s

(19.3+7.85)x10* kg-m*/s
=|0.703%




(c) Relate the final angular
momentum of the sun to its initial
angular momentum and the angular
momenta of Jupiter and Saturn:

Solve for @k to obtain:

Substitute for oy and Igy,:

Substitute numerical values and evaluate wy:

27
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Li=L+L+L
or

I 0 =1,0 +L + L

sun sun "1

L, +Lg
)y = W, +
Isun
27 L+ L
@y = + 3
71sun 0059M sun Rsun

(19.3+7.85)x10* kg-m?/s

Wy =

h

=1 4.80x10*rad/s

_l’_
30dx 240 36005 0.059(1.99x10* kg )(6.96x10° m)’
d

Note that this result is about 76% of the maximum possible rotation allowed by gravity

that we calculated in part (a).
Kepler’s Laws

14 -

Picture the Problem We can use the relationship between the semi-major axis and the
distances of closest approach and greatest separation, together with Kepler’s 3 law, to
find the greatest separation of Alex-Casey from the sun.

Letting x represent the greatest
distance from the sun, express the
relationship between x, the distance
of closest approach, and its semi-
major axis R:

Solve for x to obtain:
Apply Kepler’s 3" law, with the
period 7' measured in years and R in

AU to obtain:

Solve for R:

Substitute numerical values and
evaluate R:

Substitute in equation (1) and
evaluate R:

R o XT0.1AU
2
x=2R-0.1AU (1)
T’ =R
R:3 T2

R=3/(127.4y) =253AU

x=2(253AU)-0.1AU =| 50.5AU
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15 -
Picture the Problem We can use Kepler’s 3" law to relate the period of Uranus to its

mean distance from the sun.

Using Kepler’s 3™ law, relate the T* =Cr’

period of Uranus to its mean 4r
where C =

2

=2.973x10" s*/m*.

distance from the sun:

Solve for T: T =+Cr?

Substitute numerical values and evaluate T:

T =(2.973x10™ s/m*) (2.87x10° m}

th 1 Iy _gaoy
3600s  24h  365.25d

=2.651x10° sx

16 -
Picture the Problem We can use Kepler’s 3" law to relate the period of Hektor to its

mean distance from the sun.

Using Kepler’s 3™ law, relate the T* =Cr’

period of Hektor to its mean Ar
where C =

2

_ 19 23
distance from the sun: =2.973%10" s"/m".

Solve for T: T =+Cr?

Substitute numerical values and evaluate 7"

1 3
r= \/ (2973x10™ >/’ )(5.16 AU MJ

=3.713x10%sx

th X ld X 1y =|11.8y
3600s 24h 365.25d

17 e
Picture the Problem Kepler’s 3™ law relates the period of Icarus to the length of its
semimajor axis. The aphelion distance r, is related to the perihelion distance r, and the
semimajor axis by, +7, = 2a.



(a) Using Kepler’s 3" law, relate the
period of Icarus to the length of its
semimajor axis:

Solve for a:

Substitute numerical values and

evaluate a:

(b) Use the definition of the
eccentricity of an ellipse to
determine the perihelion distance of
Icarus:

Express the relationship between 7,
and r, for an ellipse:

Solve for and evaluate r,:

18 oo
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T*=Ca’

2
M 5 973%107% s’

where C =

S

T2
c

a=3

365.25d 24h 3600s)
1.1y x X X
3 y d h

a =
2.973x10™" s*/m’

=[1.59x10" m

A :a(l—e)
=(1.59x10" m)(1-0.83)
=12.71x10"" m

n,+r,=2a

n,=2a-r,
=2(1.59%10" m)-2.71x10"" m
=12.91x10" m

Picture the Problem The Hohmann transfer orbit is shown in the diagram. We can apply
Kepler’s 3™ law to relate the time-in-orbit to the period of the spacecraft in its Hohmann
Earth-to-Mars orbit. The period of this orbit is, in turn, a function of its semi-major axis
which we can find from the average of the lengths of the semi-major axes of the Earth

and Mars orbits.

Earth

Sun

X
~ — Hohman?

Y
N
O
ATty
‘—g\‘i\"'\/
=
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Using Kepler’s 3 law, relate the T2 = R?
period T of the spacecraft to the
semi-major axis of its orbit:

Solve for T to obtain: 7 =JR?
Relate the transit time to the period 17 _ 1. p3
of this orbit: lip =37 =3VR
Express the semi-major axis of the 1.52AU+1.00AU
Hohmann transfer orbit in terms of R= ) =1.26AU
the mean sun-Mars and sun-Earth
distances:
Substitute numerical values and 1 3
evaluate Zp: Lip =2 (1'26AU)
365.24d
=0.707yx——=| 258 d
ly
*19 (1]

Picture the Problem We can use a property of lines tangent to a circle and radii drawn to
the point of contact to show that » = 90°. Once we’ve established that b is a right angle
we can use the definition of the sine function to relate the distance from the sun to Venus
to the distance from the sun to the earth.

(a) The line from earth to Venus'’ b=1]90°
orbit is tangent to the orbit of Venus
at the point of maximum extension.
Venus will appear closer to the sun
in earth’s sky when it passes the line
drawn from earth and tangent to its
orbit. Hence:

(b) Using trigonometry, relate the . dgy

distance from the sun to Venus dsy Sina =—=-

to the angle a: SE

Solve for dsy: dy, =dg sina

Substitute numerical values and dg, = (1 AU)sin 47° =] 0.731AU
evaluate dgy:

Remarks: The correct distance from the sun to Venus is closer to 0.723 AU.

20 e

Picture the Problem Because the gravitational force the Earth exerts on the moon is
along the line joining their centers, the net torque acting on the moon is zero and its
angular momentum is conserved in its orbit about the Earth. Because energy is also
conserved, we can combine these two expressions to solve for either v, or v, initially and



Gravity 339

then substitute in the conservation of angular momentum equation to find the other.

Letting m be the mass of the moon, my r, =mv,r,
apply conservation of angular or ne
momentum to the moon at apogee Vo=
and perigee to obtain: pip - Tata
Solve for v,: %
v, =2y, ()
rﬂ
Apply conservation of energy to the 1 , GMm 1 , GMm
moon-earth system to obtain: Sy, = =5jmy, -
2 r, 2 7,
or
1, GM 1 , GM
—y - = _Va —
27 2 r,
Substitute for v, to obtain: l . GM B l 7’_,, ) GM
2" o, 2\, 7 r,
2
_ 117, S GM
r(l ra
Solve fi to obtain:
olve for v, to obtain . ZGM{ ) ]
’ r, \1+r,/r,
Substitute numerical values and evaluate v,
2(6.673x10™"" N-m*/kg* ) (5.98x10** k 1
, = | 6673 = gg)( <10” ke) — | =[1.09 km/s
b 3.576x10°m 1_'_3.576><10 m
4.064x10°m
Substitute numerical values in 3.576x10° m

(1.09km/s)

equation (1) and evaluate v,:

y =—— 4/
“ 4.064x10°m
=1 0.959 km/s

Newton’s Law of Gravity

*21 (L]

Picture the Problem We can use Kepler’s 3™ law to find the mass of Jupiter in part ().
In part (b) we can express the centripetal accelerations of Europa and Callisto and
compare their ratio to the square of the ratio of their distances from the center of Jupiter
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to show that the given data is consistent with an inverse square law for gravity.

(a) Assuming a circular orbit, apply
Kepler’s 3™ law to the motion of
Europa to obtain:

Solve for the mass of Jupiter:

Substitute numerical values and
evaluate M;:

(b) Express the centripetal
acceleration of both of the moons to
obtain:

Using this result, express the
centripetal accelerations of Europa
and Callisto:

Substitute numerical values and
evaluate ag:

Substitute numerical values and
evaluate ac:

Evaluate the ratio of these
accelerations:

2
=27 g
GM,
4r’
M=
E
- Ar?
' (6.673x107" N-m?/kg? )
(6.71x10° m)
2
(3.55dx24hx36}?08j

=11.90x10*" kg |, a resultin

excellent agreement with the
accepted value of 1.902x10” kg.

27rR2
vi \ T ) _47°R

R R T’
where R and T are the radii and periods of
their motion.

2 2
a, _ ARy ZRE and a, _ A7 Re ZRC
TE TC
47°(6.71x10° m)
ag =

[(3.55d)(241/d)(3600s/h )]
=1 0.282m/s’

o __ 4r(18.8x10°m)
“ [(16.7d)(24/d)(3600s/h )

=| 0.0356m/s’

2
g _ 0.282m/s2 _79]
a. 0.0356m/s
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Evaluate the square of the ratio of 2 8 )\’
the distance of Callisto divided by (&j - (w} = 7.85
the distance of Europa to obtain: Ry, 6.71x10"m

The close agreement (within 1%) of our last two calculations strongly supports

the conclusion that the gravitational force varies inversely with the square of

the distance.

*22 o

Determine the Concept The weight of anything, including astronauts, is the reading of a
scale from which the object is suspended or on which it rests. If the scale reads zero, then
we say the object is "weightless.” The pull of the earth’s gravity, on the other hand,
depends on the local value of the acceleration of gravity and we can use Newton’s law of
gravity to find this acceleration at the elevation of the shuttle.

(a) Apply Newton’s law of GmM
gravitation to an astronaut of mass ME shutte = m
m in a shuttle at a distance /# above E
the surface of the earth:

Solve for gnue: . GM,
(h+R.)

Eshuttle =

Substitute numerical values and evaluate gguyge:

(6.673x 10" N-m*/kg®)(5.98 x10* kg)
(400km + 6370 km)’

=] 8.71m/s?

g shuttle —

Because they are in "free fall" everything on the shuttle is falling toward

(b)| the center of the earth with exactly the same acceleration, so the astronauts

will seem to be "weightless."

23 -
Picture the Problem We can use Kepler’s 3™ law to relate the periods of the moons of
Saturn to their mean distances from its center.

(a) Using Kepler’s 3" law, relate the 72 Ar’
= r
period of Mimas to its mean MoGoM S M
distance from the center of Saturn:
Solve for Ty: 4r°
1T\, = Iy
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(b) Using Kepler’s 3" law, relate the
period of Titan to its mean distance GM s

from the center of Saturn:

Substitute numerical values and evaluate Ty:

2 8
- dr (1.86x10 II_ll)j 100

(5.69x10* kg )(6.6726x 107 N-m?/kg? )

Solve for ry: T:GM,
]/‘T =3 >
4r

Substitute numerical values and evaluate rr:
(1.38x10°s)(6.6726x10™" N -m?/kg?)(5.69 x 10> kg)
7 =3 e =1 1.22x10° m
7

24
Picture the Problem We can use Kepler’s 3™ law to relate the period of the moon to the
mass of the earth and the mean earth-moon distance.

(a) Using Kepler’s 3™ law, relate the T2 = Ar’ 3
period of the moon to its mean orbital " GM . m
radius:
Solve for Mg: M. = Ar?
E 2 'm
GT

Substitute numerical values and evaluate Mg:

2 8 3
My = 4r°(3.84x10"m| " ~=6.02x10% kg

Remarks: This analysis neglects the mass of the moon; consequently the mass
calculated here is slightly too great.

25
Picture the Problem We can use Kepler’s 3™ law to relate the period of the earth to the
mass of the sun and the mean earth-sun distance.
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(a) Using Kepler’s 3" law, relate the 77 4r? 3
period of the earth to its mean E oM s E
orbital radius:
Solve for Ms: 472
olve for Mg M, = 722FE3
GT;

Substitute numerical values and evaluate Ms:

47°(1.496x10" m )’

365.25d 24h 3600s)
X X X
y d h

Mg =

(6.6726x10™" N~m2/kg2)(ly

=[1.99x10" kg

*26 -
Picture the Problem We can relate the acceleration of an object at any elevation to its
acceleration at the surface of the earth through the law of gravity and Newton’s 2™ law of

motion.
i i GmM
Letting a re.present.the écceleratlon Z F. = g — ma
due to gravity at this altitude (Rg) (2 R, )
and m the mass of the object, apply and
Newton’s 2" law and the law of GM
. - = < 1)
gravity to obtain: a 2 (
(2R;)
Apply Newton’s 2™ law to the same GmM
. .. ZFradial = ;. —mg
object when it is at the surface of the R;
earth: and
GM
g= 2
Ry
Divide equation (1) by equation (2) a Ré
and solve for a: g B 4Ré
and
a=1g=1(9.81m/s’)=[245m/s
27 o

Picture the Problem Your weight is the local gravitational force exerted on you. We can
use the definition of density to relate the mass of the planet to the mass of earth and the
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law of gravity to relate your weight on the planet to your weight on earth.

Using the definition of density, M, =pV.=%p R
relate the mass of the earth to its
radius:
Relate the mass of the planet to its M,=pV,=%p R,
radius: 3
=4p7(10R;)
Divide the second of these equations M, % P 71-(1 OR, )3
. = p

by the first to express Mp in terms of M, ip ﬂRé
MEI

and

M, =10°M,
Letting w' represent your weight on W = GmM, Gm(l 0’ M E)
the planet, use the law of gravity to le (l OR, )2
relate w' to your weight on earth: GmM

—10E [ 10w
E

where w is your weight on earth.

28 o

Picture the Problem We can relate the acceleration due to gravity of a test object at the
surface of the new planet to the acceleration due to gravity at the surface of the earth
through use of the law of gravity and Newton’s 2™ law of motion.

Letting @ represent the acceleration Z _GmM, ma
due to gravity at the surface of this radial (% R, )2
new planet and m the mass of a test and
object, apply Newton’s 2™ law and GM
the law of gravity to obtain: a=- Ez
(E RE )
Simplify this expression to obtain: a=4 GM —4g =392 m/s>

29 -
Picture the Problem We can use conservation of angular momentum to relate the
planet’s speeds at aphelion and perihelion.

Using conservation of angular L =L,
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momentum, relate the angular or
momenta of the planet at aphelion my,r, =my,r,
and perihelion:

Solve for the planet’s speed at b= Volo

aphelion: a r,

Substitute numerical values and by - (5 x10* m/ S)(l 0x10° m)

evaluate v,: a 2.2x10°m
=12.27%x10*m/s

30

Picture the Problem We can use Newton’s law of gravity to express the gravitational
force acting on an object at the surface of the neutron star in terms of the weight of the
object. We can then simplify this expression be dividing out the mass of the object ...
leaving an expression for the acceleration due to gravity at the surface of the neutron star.

Apply Newton’s law of gravity to an GM yvomsiar
object of mass m at the surface of R2 =mg

the neutron star to obtain: Neutron Star _
where g represents the acceleration due to

gravity at the surface of the neutron star.

Solve for g and substitute for the GM \vonstar G(l .60M Sun)
mass of the neutron star: &= RZ = RZ
Neutron Star Neutron Star

Substitute numerical values and evaluate g:

.- 1.60(6.673x 10" N - m?/kg? [1.99x10* kg)

; =11.93x10" m/s’
(10.5 km)

*31 e
Picture the Problem We can use conservation of angular momentum to relate the
asteroid’s aphelion and perihelion distances.

Using conservation of angular L, =1L,

momentum, relate the angular or

momenta of the asteroid at aphelion mv,r, =mv,r,

and perihelion:

Solve for and evaluate the ratio of N Yy _ 20km/s M
the asteroid’s aphelion and r, v, l4km/s

perihelion distances:
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32 oo

Picture the Problem We’ll use the law of gravity to find the gravitational force acting on
the satellite. The application of Newton’s 2™ law will lead us to the speed of the satellite

and its period can be found from its definition.

(a) Letting m represent the mass of
the satellite and /4 its elevation, use
the law of gravity to express the
gravitational force acting on it:

Substitute numerical values and
evaluate F:

(b) Using Newton’s 2™ law, relate
the gravitational force acting on the
satellite to its centripetal
acceleration:

Solve for v:

Substitute numerical values and
evaluate v:

(c) Express the period of the
satellite:

Substitute numerical values and
evaluate 7"

GmM, mR. g

F = =
* (R, +h) (R +h)
mg
:7
1+—
( REJ
P Mg _ (300kg)(9.81N/kg)
* nY 5x10'm
1+ e
R, 6.37x10°m
=|37.6N
Vz
F'g =m7
m

V:JB76BO@37xufm+5xuﬂm)

300kg
=|2.66 km/s
T 2xr
\%

27(6.37x10° m +5x10" m)
2.66x10° m/s

=1.33x10°sx th _ 36.9h

36005
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Picture the Problem We can determine the maximum range at which an object with a

given mass can be detected by substituting the equation for the gravitational field in the

expression for the resolution of the meter and solving for the distance. Differentiating

g(r) with respect to r, separating variables to obtain dg/g, and approximating Ar with dr

will allow us to determine the vertical change in the position of the gravity meter in the

earth’s gravitational field is detectable.

(a) Express the gravitational field of
the earth:

Express the gravitational field due
to the mass m (assumed to be a point
mass) of your friend and relate it to
the resolution of the meter:

Solve for r:

Substitute numerical values and
evaluate r:

(b) Differentiate g(7) and simplify to
obtain:

Separate variables to obtain:

Approximating dr with Ar, evaluate
Ar with » = Rg:

34 e

_GM,
gE Ré
Gm _ 11 GM

g(r)=r—2=10 Ygp =10 ”R—EZE

11
F=R. 10" m

ME

10"(80kg)

r=1637x10°m
( ) 5.98x10* kg

=|7.37m

dr re r

d_g_—2Gm_ 2(ij 2

d_g:_ ﬂzlo—ll

g r
Ar =-4(10™)(6.37x10° m]
=3.19x10° m
=1 0.0319mm

Picture the Problem We can use the law of gravity and Newton’s 2™ law to relate the
force exerted on the planet by the star to its orbital speed and the definition of the period

to relate it to the radius of the orbit.
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Using the law of gravity and r KMm v

Newton’s 2™ law, relate the force r r
exerted on the planet by the star to
its centripetal acceleration:

Solve for v* to obtain: v =KM
Express the period of the planet: T 2rr _ 2rr _ 2r -
v JKM KM
or
T ocr

*35 oo

Picture the Problem We can use the definitions of the gravitational fields at the surfaces
of the earth and the moon to express the accelerations due to gravity at these locations in
terms of the average densities of the earth and the moon. Expressing the ratio of these
accelerations will lead us to the ratio of the densities.

Express the acceleration due to _GM, GpV, Gp,4rnR;
gravity at the surface of the earth in 8e = Ré Bl Ré a Ré
terms of the earth’s average density: —4Gpy7 R,
Express the acceleration due to gu =3GpuT Ry,
gravity at the surface of the moon in
terms of the moon’s average
density:
Divide the second of these equations v _ Pum Ry,
by the first to obtain: g Pr R
R

Solve for 'O—M: Pu _Ene

Pr Pe &Ry
Substitute numerical values and Py (1 .62m/s’ )(6.37 x10° m)

B 2 6

ovaluate M o (9.81m/s?)(1.738x10° m)

P -1 0.605
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Measurement of G
36 .

Picture the Problem We can use the law of gravity to find the forces of attraction
between the two masses and the definition of torque to determine the balancing torque

required.

(a) Use the law of gravity to express Fe Gmm,
the force of attraction between the r?
two masses:

Substitute numerical values and evaluate F:

—11 2 2
. (6.6726x10"" N-m /kgz)(IOkg)(0.0lkg) BEyrwr=r
(0.06m)
(b) Use its definition to find the T=2Fr= 2(1 .85x107° N)(O.lm)
torque exerted by the suspension to 37010 N-m

balance these forces:

Gravitational and Inertial Mass

37 .
Picture the Problem Newton’s 2™ law of motion relates the masses and accelerations of
these objects to their common accelerating force.

(a) Apply Newton’s 2™ law to the F=ma,
standard object:

Apply Newton’s 2™ law to the F=mja,
object of unknown mass:

Eliminate F between these two m. =4

equations and solve for m,: ? a, !

Substitute numerical values and m, = 2.6587 m/ 822 ( ): 227ke
evaluate m;: 1.1705m/s

(b) Itis the inertial mass of m,.
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38 -
Picture the Problem Newton’s 2™ law of motion relates the weights of these two objects
to their masses and the acceleration due to gravity.

(a) Apply Newton’s 2™ law to the Fo=w=mg
standard object:
Apply Newton’s 2" law to the Foo=w, =m,g

object of unknown mass:

Eliminate g between these two . = Wy m

equations and solve for m,: ? w, 1

Substitute numerical values and _ 56.6 N (1 Kk ): 5.77kg

evaluate m;: > 98IN

®) Since this result is determined by the effect on m, of the earth's
gravitational field, it is the gravitational mass of m,.

*39 .

Picture the Problem Noting that g, ~ g, ~ g, let the acceleration of gravity on the first
object be g1, and on the second be g,. We can use a constant-acceleration equation to
express the difference in the distances fallen by each object and then relate the average
distance fallen by the two objects to obtain an expression from which we can
approximate the distance they would have to fall before we might measure a difference in
their fall distances greater than 1 mm.

Express the difference Ad in the Ad=d, —d,
distances fallen by the two objects in
time #:
Express the distances fallen by each =Llgf?
. . 1 =281
of the objects in time #:
and
d, =38t ’
Substitute to obtain: Ad = %glﬁ —%gzl‘z — %(gl _ gz) 2
Relate the average distance d fallen d=1gt’
by the two objects to their time of or
fall:
a o_2d
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Substitute to obtain:
Ad ~iag2d - g8
g g
Solve for d to obtain: g
d=Ad-=-
Ag

Substitute numerical values and evaluate d: ;7 _ (1 0 m)(l 02 ) ~[10°m

Gravitational Potential Energy

40 -

Picture the Problem Choosing the zero of gravitational potential energy to be at infinite
separation yields, as the potential energy of a two-body system in which the objects are
separated by a distance r, U (r) =—GMm/r, where M and m are the masses of the two
bodies. In order for an object to just escape a gravitational field from a particular
location, it must have enough kinetic energy so that its total energy is zero.

(a) Letting U(w) = 0, express the U(r) = - GM  m )
gravitational potential energy of the r
earth-object system:
Substitute for GMg and simplify to GM _ m ngm

btain: U(RE):_ - =—2t—=—mgR,
obtain: R, Ry

Substitute numerical values and evaluate U(Rg):

U(R,)=—-(100kg)(9.81N/kg)(6.37x10°m)=] —6.25x10°J

(b) Evaluate equation (1) with » = 2Rg: _GMym _ gRém
2R, 2R,

= _% ngE

UQ2R, )=

Substitute numerical values and evaluate U(2Rg):

U(2R, )= -1(100kg)(9.81N/kg)(6.37x10° m)=[ =3.12x10°J

(c) Express the condition that an Ko (2RE )"’ U(ZRE ) =0
object must satisfy in order to or
escape from the earth’s gravitational Tmvl, + U(2 R, ) =0

esc
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field from a height Rg above its

surface:
Solve for veg: [— 2Ui2RE )

v = —_—

€sc m
Substitute numerical values and i 9
) V. = 2( 3.12x10 J) =] 7.90km/s

evaluate veg: esc 100kg
41 .

Picture the Problem In order for an object to just escape a gravitational field from a
particular location, an amount of work must be done on it that is equal to its potential
energy in its initial position.

Express the work needed to remove W=AU=U,; -U,
the point mass from the surface of or, because Uy= 0,
the sphere to a point a very large W =AU =-U, (1)

distance away:

Express the initial potential energy U =_ GMm,

of the system: ' R

Substitute in equation (1) to obtain: W GMm,
R

42

Picture the Problem Let the zero of gravitational potential energy be at infinity and let
m represent the mass of the spacecraft. We’ll use conservation of energy to relate the
initial kinetic and potential energies to the final potential energy of the earth-spacecraft

system.

Use conservation of energy to relate K. —K,+U;-U, =0

the initial kinetic and potential or, because K; =0,

energies of the system to its final -K (RE )+ U (ZRE ) -U (RE ) =0 (1)

energy when the spacecraft is one
earth radius above the surface of the
planet:



Express the potential energy of the
spacecraft-and-earth system when
the spacecraft is at a distance » from
the surface of the earth:

Substitute in equation (1) to obtain:

Solve for v:

Substitute numerical values and evaluate v:

*43 e

Gravity 353

Ly’ — GM m N GM . m _
? 2R, R,

2
v=1/(9.81m/5%)(6.37x10°m)
=| 7.91km/s

0

Picture the Problem Let the zero of gravitational potential energy be at infinity and let

m represent the mass of the object. We’ll use conservation of energy to relate the initial

potential energy of the object-earth system to the final potential and kinetic energies.

Use conservation of energy to relate
the initial potential energy of the
system to its energy as the object is
about to strike the earth:

Express the potential energy of the
object-earth system when the object
is at a distance » from the surface of
the earth:

Substitute in equation (1) to obtain:

Solve for v:

K, -K +U,-U,=0

or, because K; =0,

K(RE )+ U(RE )_ U(RE + h) =0 (D
where / is the initial height above the
earth’s surface.

_GMym
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Substitute numerical values and evaluate v:

2(9.81m/s?)(6.37x10° m)(4x10° m)

=| 6.94km/s

»

44 o

6.37x10°m+4x10°m

Picture the Problem Let the zero of gravitational potential energy be at infinity, m

represent the mass of the object, and /# the maximum height reached by the object. We’ll

use conservation of energy to relate the initial potential and kinetic energies of the object-

ecarth system to the final potential energy.

Use conservation of energy to relate
the initial potential energy of the
system to its energy as the object is
about to strike the earth:

Express the potential energy of the
object-earth system when the object
is at a distance » from the surface of
the earth:

Substitute in equation (1) to obtain:

Solve for A:

Substitute numerical values and evaluate A:

45 oo

K. -K +U,-U, =0

or, because K;= 0,

K(RE )"’ U(RE)_ U(RE + h) =0 (D
where £ is the initial height above the
earth’s surface.

_GMym

U(r):

2 R,  R.+h
— RE
"= 28R,
TE 1
1%
5o 6.37x10°m
2(9.81m/s”)(6.37x10°m)
(4x10°mJ
=[935km

Picture the Problem When the point mass is inside the spherical shell, there is no mass
between it and the center of the shell. On the other hand, when the point mass is outside

the spherical shell we can use the law of gravity to express the force acting on it. In ()

we can derive U(r) from F(r).
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(a) The force exerted by the shell on lfinsi o = @
a point mass my when m, is inside
the shell is:

The force exerted by the shell on a - GMm, ¢

3 . . . =m a =
point mass m, when m, is outside outside o9 2

the shell is:

where F is radially outward from the center
of the spherical shell.

(b) Use its definition to express U(r) U (r) _ _j' Fdr=G Mmoj.r_z dr

for r>R: :
_| _GMm,
r
When r =R: U(R): _ GMmO
R
- - d
(¢) For r <R, F=0 and: _U:0:> U = constant
dr
(d) Because U is continuous, then for U (r) _U ( R) _|_ GMm,
r<R: R
(e) A sketch of U(r) with
GMmy = 1 is shown to the right: r
GMm =1 /
U //
46

Picture the Problem The escape speed from a planet is related to its mass according to
v, =+/2GM /R , where M and R represent the mass and radius of the planet,

respectively.



856 Chapter 11

Express the escape speed from Saturn: 2GM )
\% =
e.S RS
Express the escape speed from Earth: 2GM )
v =
e.E RE
Divide equation (1) by equation (2) 2GM
to obtain: Ves R, |R, M,
Vek 2GM Ry My
RE
Substitute numerical values and Vg 1 95.2 317
-] — X = .
Ve. Vg 947 1
Ve.E
Solve for and evaluate v, s: Vs =3.17v  =3.1 7(1 1.2 km/s)

=| 35.5km/s

47
Picture the Problem The escape speed from the moon or the earth is given by
=.2GM / R , where M and R represent the masses and radii of the moon or the earth.

Express the escape speed from the moon: 2GM

Ves = =28n R, (D
Express the escape speed from earth: 2GM

Vep = =42¢g 2
Divide equation (1) by equation (2) Je.R. g.R.
to obtain: Vg \/ g:R 2Ry
Solve for ve g.R.

ve.m = —ve.E

gr Ry

Substitute numerical values and v, =+/(0.166)0.273)(11.2km/s)

evaluate v p:

=| 2.38km/s
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Picture the Problem We’ll consider a rocket of mass m which is initially on the surface
of the earth (mass M and radius R) and compare the kinetic energy needed to get the
rocket to its escape velocity with its kinetic energy in a low circular orbit around the
earth. We can use conservation of energy to find the escape kinetic energy and Newton’s
law of gravity to derive an expression for the low earth-orbit kinetic energy.

Apply conservation of energy to K,-K,+U,-U,=0
relate the initial energy of the rocket
to its escape kinetic energy:

Letting the zero of gravitational -K, -U, =0
potential energy be at infinity we

or
have Ur= K¢= 0 and: M)

K, =y, =SMm

R

Apply Newton’s law of gravity to GMm V2
the rocket in orbit at the surface of R =m E
the earth to obtain:
Rewrite this equation to express the | ,  GMm
low-orbit kinetic energy E, of the K,=3mv" = 2R
rocket:
Express the ratio of K, to K. GMm

K 2R 1

C=—=t_=——= K =|2K_|,
K, GMm 2 ¢ o |
R

asserted by Heinlein.

49 e

Picture the Problem Let the zero of gravitational potential energy be at infinity, m
represent the mass of the particle, and the subscript E refer to the earth. When the particle
is very far from the earth, the gravitational potential energy of the earth-particle system
will be zero. We’ll use conservation of energy to relate the initial potential and kinetic
energies of the particle-earth system to the final kinetic energy of the particle.

Use conservation of energy to relate K. —K,+U;-U, =0
the initial energy of the system to its or, because Ur=0,
energy when the particle is very K (oo) -K (RE )— U (RE ) =0 (1)

from the earth:

Substitute in equation (1) to obtain: GM . .m
q 1 L2 —Im(2v, ) + —E==0

E
or, because GM |, = gRé ,

1 2 1 2 —
smv, —>mv°- +mgR, =0



858 Chapter 11

Solve for vy:

Substitute numerical values and evaluate v,

v, = w/2i2vf - gR; ’

v, = \/2[2(1 1.2x10° m/s) —(9.81m/s?)(6.37x10° m)J =[19.4kmy/s

50 oo

Picture the Problem Let the zero of gravitational potential energy be at infinity, m

represent the mass of the particle, and the subscript E refer to the earth. When the particle

is very far from the earth, the gravitational potential energy of the earth-particle system

will be zero. We’ll use conservation of energy to relate the initial potential and kinetic

energies of the particle-earth system to the final kinetic energy of the particle.

Use conservation of energy to relate
the initial energy of the system to its
energy when the particle is very far
away:

Substitute in equation (1) to obtain:

Solve for v;:

Substitute numerical values and evaluate v;:

K,—K. +U,-U, =0

or, because Uy =0,

K(eo)-K(Ry)-U(R)=0 (1)
Iy —Lmv! + GMem _ 0
RE

or, because GM |, = gRé ,

1 2 1 2 —
smv, —>mv, +mgR, =0

v, = 1/vi +2gR,

v, =(11.2x10° m/s) +2(0.81m/s?)(6.37x10° m) =] 15.8km/s

51 oo

Picture the Problem We can use the definition of kinetic energy to find the energy
necessary to launch a 1-kg object from the earth at escape speed.

(a) Using the definition of kinetic
energy, find the energy required to
launch a 1-kg object from the
surface of the earth at escape speed:

K

o=

-
1(1kg)(11.2x10° m/sf
62.7M]




(b) Using the conversion factor
1 kW-h=3.6 MJ, convert 62.7 MJ
to kW-h:

(c) Express the cost of this project in
terms of the mass of the astronaut:

Substitute numerical values and find
the cost:

52 oo
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1kW -h
3.6 MJ

=|17.4kW-h

K =62.7MJ x

required energy

Cost = rate x X mass
kg
Cost = $0.10 ><17.41<W-h(80kg)
kW -h kg
=| $139

Picture the Problem Let m represent the mass of the body that is projected vertically
from the surface of the earth. We’ll begin by using conservation of energy under the

assumption that the gravitational field is constant to determine

H'. We’ll apply conservation of energy a second time, with the zero of gravitational

potential energy at infinity, to express H. Finally, we’ll solve these two equations

simultaneously to express H in terms of H'.

Assuming the gravitational field to
be constant and letting the zero of
potential energy be at the surface of
the earth, apply conservation of
energy to relate the initial kinetic
energy and the final potential energy
of the object-earth system:

Substitute for K; and Ur and solve
for H':

Letting the zero of gravitational
potential energy be at infinity, use
conservation of energy to relate the
initial kinetic energy and the final
potential energy of the object-earth
system:

K. —K,+U;-U =0
or, because K;= U; =0,
-K,+U; =0

—1mv’ +mgH' =0
and

H=— (1)

K.-K,+U,-U,=0
or, because K; =0,

-K,+U;-U,=0
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Substitute to obtain:

Solve for v*:

Substitute in equation (1) to obtain:

Solve for H:

Orbits

53 [T}

, GMm GMm
- + =0
R.+H R,

H
=20R
& E(RE+HJ
H' =R, Ll
R.+H
5| _HR;
R, —H'

Picture the Problem We can use its definition to express the period of the spacecraft’s
motion and apply Newton’s 2" law to the spacecraft to determine its orbital velocity. We

can then use this orbital velocity to calculate the kinetic energy of the spacecraft. We can

relate the spacecraft’s angular momentum to its kinetic energy and moment of inertia.

(a) Express the period of the
spacecraft’s orbit about the earth:

Use Newton’s 2™ law to relate the
gravitational force acting on the
spacecraft to its orbital speed:

Solve for v to obtain:

Substitute for v in our expression for
T to obtain:

_27R _2z(3R,) 67R,
B v B v - v

T

where v is the orbital speed of the
spacecratft.

_GMym " v
radial (3RE )2 3RE
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Substitute numerical values and

6
T=6\/§Tt 6.37x10°m

evaluate T: 9.81m/s>
lh
=2.631x10*sx =|7.31h
3600s

(b) Using its definition, express the K=1mv*=1m(lgR.)
spacecraft’s kinetic energy:

Substitute numerical values and K =1(100 kg)(9.8 1m/s? )(6.37 x10° m)
evaluate K: —_[1.04GJ
(c) Express the kinetic energy of the K= r
spacecraft in terms of its angular Y
momentum:
Solve for L: L=+2IK
Express the moment of inertia of the I=m(3R, )
spacecraft with respect to an axis

p p =9mR;

through the center of the earth:

Substitute and solve for L: L= /ISmREK = 3R+ [2mK

Substitute numerical values and evaluate L:

L =3(6.37x10°m)\/2(100kg)(1.04x10° 1) =[ 8.72x10™ J -5

*B4 e

Picture the Problem Let the origin of our coordinate system be at the center of the earth
and let the positive x direction be toward the moon. We can apply the definition of center
of mass to find the center of mass of the earth-moon system and find the "orbital” speed
of the earth using x., as the radius of its motion and the period of the moon as the period
of this motion of the earth.

(a) Us1r}g its definition, express the . = Moxg +m . Xooon
x coordinate of the center of mass of em —
the earth-moon system:

M, +m

moon

Substitute numerical values and evaluate xp:
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_ M, (0)+(7.36x10” ke)3.82x10° m) _ i
o 5.98x10* kg +7.36x10* kg :

Note that, because the radius of the earth is 6.37x10° m, the center of mass is actually
located about 1700 km below the surface of the earth.

(b) Express the "orbital” speed of _ 2mx,

the earth in terms of the radius of its V= T

circular orbit and its period of

rotation:

Substitute numerical values and 2 7[(4.64 x10° m)

evaluate v: V= A 3600s 12.4m/s
27.3dx 4 X N

55  ee

Picture the Problem We can express the energy difference between these two orbits in
terms of the total energy of a satellite at each elevation. The application of Newton’s 2™
law to the force acting on a satellite will allow us to express the total energy of each
satellite as function of its mass, the radius of the earth, and its orbital radius.

Express the energy difference: AE=E,, —E (1)

Express the total energy of an E, =K+U

orbiting satellite: L, GMym 2
= Emv - R

where R is the orbital radius.

Apply Newton’s 2" law to a _GMym v’
satellite to relate the gravitational mdial o p2 T p
force to the orbital speed: or
gRy _ v’
R® R
Simplify and solve for v*: 0= gRé
R

_1,, S8R gRim _ mgR;
R R 2R

Substitute in equation (2) to obtain:




Substitute in equation (1) and
simplify to obtain:

Substitute numerical values and evaluate AE:

Gravity

2

_ ngé " mgR;
2R 2R 00

geo

_ mgR. [ 1 1
2 RIOOO R

geo

1 1

863

AE =4(500kg)(9.81N /kg)(6.37x10° m)’ [7 37x10°m  4.22x10’ mJ =[11.167]
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Picture the Problem We can use Kepler’s 3™ law to relate the periods of the moon and

Earth, in their orbits about the earth and the sun, to their mean distances from the objects
about which they are in orbit. We can solve these equations for the masses of the sun and
the earth and then divide one by the other to establish a value for the ratio of the mass of

the sun to the mass of the earth.
Using Kepler’s 3™ law, relate the

period of the moon to its mean
distance from the earth:

Using Kepler’s 3" law, relate the
period of the earth to its mean
distance from the sun:

Solve equation (1) for Mg:

Solve equation (2) for M,:

Divide equation (4) by equation (3)
and simplify to obtain:

Substitute numerical values and
evaluate M/ Mg:

2
=2y (1)
GM,

where ry, 1s the distance between the
centers of the earth and the moon.

47
o 1 )

where 7 1s the distance between the
centers of the earth and the sun.

T} =

ar*
= 7 3
ookt )
4r*
s =ﬁr§ 4)
E

<

3 2
s | e || Tn
rm TE

M, (15x10"m Y[ 273d Y
3.82x10°m | | 365.24d

=13.38x10°

X

<
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Express the difference between this . 3.38x10° =3.33x10°

value and the measured value of Yo diff = 3.33%x10°

3.33x10%: S
=11.50%

The Gravitational Field

57
Picture the Problem The gravitational field at any point is defined by § = F / m.

_ (I;Z)i [ (4N/ke)i

Using its definition, express the

dg=

3|

gravitational field at a point in space:

*58
Picture the Problem The gravitational field at any point is defined by § = F / m.

Using its definition, express the o F

gravitational field at a point in 9= m

space:

Solve for F and substitute for m and F = mgQ

g to obtain: — (0.004kg)(2.5x10 N/kg)j
= (10*N)j

59 e

Picture the Problem We can use the definition of the gravitational field due to a point
mass to find the x and y components of the field at the origin and then add these
components to find the resultant field. We can find the magnitude of the field from its

components using the Pythagorean theorem.

(a) Express the gravitational field g = Gm P

due to the point mass at x = L: r

Express the gravitational field due § = Gm =

to the point mass at y = L: Yo

Add the two fields to obtain: . Gm: Gm :
9=0.40,= iy
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(b) Find the magnitude of § : - — Gm Gm
G=Nere =\
Gm
=2
60 oo

Picture the Problem We can find the net force acting on m by superposition of the
forces due to each of the objects arrayed on the circular arc. Once we have expressed the
net force, we can find the gravitational field at the center of curvature from its definition.

(a) Express the net force acting on m: F = Fxf +F, j €))
Express F: F. = Gi\/gm _ ijzm n G]\/ﬁm cos45°
R R R
- GMzm cos45°
R
=0
Express F): F = G]Wzm ijzm sin 45°
" R R
+ ]\4277’1 sin 45°
R
= Glgm (2sin45°+1)
Substitute numerical values and Foo (6.673 x107"'N-m*/ kgz)
evaluate F);: r (0.1mY’
x (3kg)(2kg)(2sin45° +1)
=9.67x10°N
Substitute in equation (1) to obtain: E=|0i+ (9.67 %1078 N)j
(b) Using its definition, express § at _ E 0i+ (9.67 %1078 N)j
the center of curvature of the arc: 9= Z - 2kg

~

(4.83x10™ N/kg)]
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Picture the Problem The configuration of
point masses is shown to the right. The
gravitational field at any point can be
found by superimposing the fields due to
each of the point masses.

(a) Express the gravitational field at
x =2 m as the sum of the fields due to
the point masses m; and m;:

Express §,and @, :

Substitute in equation (1) to obtain:

Substitute numerical values and
evaluate §:

(b) Express ¢, and §,:

Substitute in equation (1) to obtain:

©
0 2 12
g=0,t0, (1)
— ml.'\ _ mZ.A
g, =- zlandgzz =1
X1 Xy

R
Gm, ~ Gm, =

- | |

X (2951)2

G P

= _x_lz(ml _%mz)l

_ 6.6726x107"' N-m*/kg’

. (m)
x[2kg -4 (4ke)] T
=| (~1.67x10™" N/kg) i
g, :_G11211 i and d, =—Gn212 ]
X X5
g=_Imi_Gmy
g= x12 | x22 |
__Gm - Gm e
2x,)  x

~

G
= __2(%””1 +mz)'
)
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Substitute numerical values and - 6.6726x 107" N-m®/kg’
evaluate §: 9= (6 m)Z
x[L(2kg)+4ke]i

=| (-8.34x10"> N/kg)i

(c) Express the condition that § = 0: Gm, Gm,
¥ (6-x)
or
2 4
2 2 = 0
X (6 - x)
Express this quadratic equation in x> +12x =36 =0, where x is in meters.
standard form:
Solve the equation to obtain: x=2.48m and x =-14.5m
From the diagram it is clear that the x=|2.48m
physically meaningful root is the
positive one at:
62 oo
Picture the Problem To show that the maximum value of |g | for the field of Example

11-7 occurs at the points x =t a/ \/E , we can differentiate g, with respect to x and set

the derivative equal to zero.

From Example 11-7: _ 2GMx
8: = _( N 2 \3/2
X +a )

Differentiate g, with respect to x and set the derivative equal to zero to find extreme
values:

% = —2GM[(X2 +a’ )_3/2 — 3x2(x2 +a? )_5/2]= 0 for extrema.
x

Solve for x to obtain:

a
+ -
V2
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Remarks: To establish that this value for x corresponds to a relative maximum, we
need to either evaluate the second derivative of gy at x =+ a/\/z or examine the

graphof (g |atx == al\/Efor concavity downward.

63 oo

Picture the Problem We can find the mass of the rod by integrating dm over its length.
The gravitational field at xo > L can be found by integrating d{ at x, over the length of the

rod.

(a) Express the total mass of the

M :j.ﬂ,dx: Cj.xdx: %CL2
0 0

stick:
(b) Express the gravitational field d6 = Gdm - GAldx -
. g=- == > |
due to an element of the stick of (xo - x) (xo - x)
mass dm: GCxdx »
(xo - x)

Integrate this expression over the _ g dx -

s P . §=-GC| i
length of the stick to obtain: d (xo _ x)z

ZGM XO L o~
5 In - i
L x,—L x,—L
64 00

Picture the Problem Choose a mass element dm of the rod of thickness dx at a distance x
from the origin. All such elements produce a gravitational field at a point P located a
distance x,, > 1 L from the origin. We can calculate the total field by integrating the

magnitude of the field produced by dm from x = —L/2 to x = +L/2.

(a) Express the gravitational field at dg. = Gdm :
P due to the element dm: ! r’
: M
Relate dm to dx: dm =L gy
L
Express the distance r between dm r=Xy—X

and point P in terms of x and xo:

Substitute these results to express B GM R
dg, in terms of x and x: - )2 dx gl
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(b) Integrate to find the total field: _ GM LJ/-Z dx :
x T 2
L 7, (xo - x)
L/2
] om { 1 }
L |xy—x],,
| GM -
x; -+
(¢) Use the definition of § to = - GMm, -
- =m = —-——-—
express F : o9 xg -+
(d) Factor xé from the denominator § =— GM 3
of our expression for §, to obtain: i . ZLI B L ]
0
4x;
For xo >> L the second term in _ GM -
: . 9. ——=|
parentheses is very small and: X,

which is the gravitational field of a point
mass M located at the origin.

g due to Spherical Objects

65
Picture the Problem The gravitational field inside a spherical shell is zero and the field
at the surface of and outside the shell is given by g = GM / r.

(a) Because 0.5 m < R: g= @
(b) Because 1.9 m < R: g= @
(c) Because 2.5 m > R: g= G];l
,
_(6.6726x10""N-m*/kg’ ) (300kg)

(2.5m)’
3.20x10”° N/kg
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66 o

Determine the Concept The gravitational attraction is zero. The gravitational field inside
the 2 m shell due to that shell is zero; therefore, it exerts no force on the 1 m shell, and,
by Newton’s 3™ law, that shell exerts no force on the larger shell.

*67 o
Picture the Problem The gravitational field and acceleration of gravity at the surface of
a sphere given by g = GM / R?, where R is the radius of the sphere and M is its mass.

Express the acceleration of gravity g = GM

on the surface of Si: 'R

Express the acceleration of gravity g, = GM

on the surface of S,: R

Divide the second of these equations GM

by the first to obtain: % _ GR]\; =lor| g =g,
1 2

68 e

Picture the Problem The gravitational field and acceleration of gravity at the surface of
a sphere given by g = GM / R*, where R is the radius of the sphere and M is its mass.

Express the acceleration of gravity on
the surface of S;:

Express the acceleration of gravity on
the surface of Sy:

Divide the second of these equations
by the first to obtain:

Solve for g»:

Remarks: The accelerations depend only on the masses and radii because the points

_GM
gl Rlz
_GM
gz R22
GM
g8 _ R _R
& GM Rz2
R}
R
8, = R_zzgl

of interest are outside spherically symmetric distributions of mass.
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69 oo
Picture the Problem The magnitude of the gravitational force is F' = mg where g inside a
spherical shell is zero and outside is given by g = GM / r.

(@) At r = 3a, the masses of both F=mg=m G(M1 + Mz)
spheres contribute to g: (3a)2
_| Gm(M, +M,)
9a’

(b) Atr =1.9a, g due to M, =0: Feme=m GM, | GmM,

&M loay | 361a
(c) Atr =0.9a,g=0: F=|0
70 e
Picture the Problem The configuration is M, y

shown on the right. The centers of the
spheres are indicated by the center-lines.
The x coordinates of the mass m for parts

M,
(a), (b), and (c) are indicated along the x @1; a .-
axis. The magnitude of the gravitational 0,9:/( . 20 e
force is /' = mg where g inside a spherical

shell is zero and outside is given

GM
byg = -
r
(a) Express the force acting on the F= m(g xt8& zx)

object whose mass is m:

Find g, at x = 3a: g :GM1 :GMI
1x (3a)2 9a2

Find g, at x = 3a: g, = GM, _ GM,
' (3¢-0.8a) 4.84a’
Substitute to obtain: Fe (GM . GM, j
- >t 2
9a 4.84a

[ ]

a’ 9 484
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(b) Find g», at x = 1.9a: g, = GM, _ GM,
* (1.94-08a) 121a°
Find g, at x = 1.9a: g,=0
Substitute to obtain: GmM,
Feme = e
(c) Atx=0.9a, g1, =2, =0: F = @

g Inside Solid Spheres

*71 e

Picture the Problem The "weight" as measured by a spring scale will be the normal
force which the spring scale presses up against you. There are two forces acting on you
as you stand at a distance » from the center of the planet: the normal force (Fy) and the
force of gravity (mg). Because you are in equilibrium under the influence of these forces,
your weight (the scale reading or normal force) will be equal to the gravitational force
acting on you. We can use Newton’s law of gravity to express this force.

(a) Express the force of gravity GM (r)m
acting on you when you are a F,= 2 (D
distance » from the center of the
earth:
Using the definition of density, M (r) M (r)
express the density of the earth P= V(r) % JE
between you and the center of the 3
earth and the density of the earth as and
a whole: p:ME: My
3

Ve s7R
Because we’re assuming the earth to M (r) M,
of um-form—densr[y and perfectly iy - i R
spherical:

or

Substitute in equation (1) and )
simplify to obtain: GM (R] m
r




Apply Newton’s law of gravity to
yourself at the surface of the earth to
obtain:

Substitute to obtain:

(b) Apply Newton’s 2™ law to your
body to obtain:

Solve for your "effective weight”
(i.e., what a spring scale will
measure) Fy:

(c) We can decide whether the
change in mass with distance from
the center of the earth or the
rotational effect is more important
by examining the ratio of the two
terms in the expression for your
effective weight:

Substitute numerical values and
evaluate this ratio:

Gravity
mg = GM m
R2
or
— GME
g= R

where g is the magnitude of free-fall
acceleration at the surface of the earth.

F, = ne .

R
i.e., the force of gravity on you is
proportional to your distance from the
center of the earth.

r
F - ng =-mro’

873

Fy =%r—mm)2 = (E—ma)zjr

R

Note that this equation tells us that your

effective weight increases linearly with

distance from the center of the earth. The

second term can be interpreted as a
"centrifugal force" pushing out, which
increases the farther you get from the
center of the earth.

mg g ,
R _R__8 _gT
mro®  @° R[Z}z’jz 47°R

T

2
- (9.81m/s2)(24hx36008j
g

47°R B
=291

47*(6370km)

the rotational effect.

The change in the mass between you and the center of the earth as

you move away from the center is 291 times more important than
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72 e

Picture the Problem We can find the loss in weight at this depth by taking the difference
between the weight of the student at the surface of the earth and her weight at a depth d =
15 km. To find the gravitational field at depth d, we’ll use its definition and the mass of
the earth that is between the bottom of the shaft and the center of the earth. We’ll assume
(incorrectly) that the density of the earth is constant.

Express the loss in weight: Aw = w(R,.) - w(R) (1)
Express the mass M inside M=pV=4% pﬂ(RE —d )3
R :RE —d:
Express the mass of the earth: M, = pV, =% pnR;
Divide the first of these equations M 3 p7r(RE -d )3 (RE -d )3
by the second to obtain: M, - 4 pﬂRé B Ré
Solve for M: R, -dY
M = ME ( E ; )
RE
Express the gravitational field at GM GM, (RE —d )3 )
R =R;—d: A T (R, —d) R} .
Express the gravitational field at GM
R =Rg: R}
Divide equation (2) by equation (3) GM, (RE -d )3
to obtain: g _ (R.—dY R} _Ry—d
43 GM, Ry
Ry
Solve for g: R, —d
£ g=— 545
Ry
E the weight of the student at R —d
xpress the weight of the student a w(R)zmg(R)z = g
R :RE —d: RE
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Substitute in equation (1) to obtain: d mg.d
Aw=mg, —|1-—|mg, =——
Ry Ry
Substitute numerical values and Aw = (800 N)(15 km) —[1.88N
evaluate Aw: 6370km
73 (L]

Picture the Problem We can use the hint to find the gravitational field along the x axis.

USil’lg the hinta CXpress g(X) : g(x) = gsolid sphere + ghollow sphere
Substitute for solid sphere and ( ) GM solid sphere GM hollow sphere
xX)=
Shollow sphere and simplify to obtain: £ x2 (x ~1 R)2
3
_Gpliz®) G il R)]
2 2
x (x~1R)

drp,R* | 1 1
=G L | 5-———
3 )% 8(x-1R)

74 (1 1]

Picture the Problem The diagram shows
the portion of the solid sphere in which the
hollow sphere is embedded. @, is the field
due to the solid sphere of radius R and
density py and @, is the field due to the
sphere of radius /2R and negative density
po centered at 2R. We can find the

resultant field by adding the x and y
components of ¢, and g, .

Use its definition to express |§1| : |g |_ GM  Gp)V drp, G
2 r 3r?
_ArpyrG
3
Find the x and y components of §, : (xj 4r7p,Gx
=—gcosf=—-g|— |=—T"T—
8ix =& 8 P 3

and
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Use its definition to express|§2| :

Express the x and y components of §, :

Add the x components to obtain the
x component of the resultant field:

Add the y components to obtain the
y component of the resultant field:

Express ( in vector form and

evaluate |§ | :

75 (1 1]

zj:_m
r 3

where the negative signs indicate that the

81, =& sin9:—g1(

field points inward.

. GM, GpV, 4nprG
|92|: 5 = =

2 2
r r, 3r,

4rp,r,G

3
where 7, = \/(x—%R)z +y?

x—1RY 4zp,G(x-1R)
81 =& =
7, 3

y 47p,Gy
b= f2)- 0

7 3

g =&t 8
__ 4np,Gx N 47p,G(x -1 R)
3 3
_ 2mp,GR
=
where the negative sign indicates that the

field points inward.

gy =g1y +g2y
_ 4rp,Gy N 4rp,Gy ~0
3 3
— f ° 2 R fa
G=gi+G,j= (—Mjl
3

and

~ 27m0,GR

§=| =

Picture the Problem The gravitational field will exert an inward radial force on the
objects in the tunnel. We can relate this force to the angular velocity of the planet by

using Newton’s 2™ law of motion.



Letting 7 be the distance from the
objects to the center of the planet,
use Newton’s 2™ law to relate the
gravitational force acting on the
objects to their angular velocity:

Solve for w to obtain:

Use its definition to express g:

Substitute in equation (1) and simplify:

76 (1 1]
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F.= Fg =mro’
or
mg =mro’
o= (1)
r
_GM _Gp)V _4mp,r’G
r r 3r?
_AmpyrG
3
4rp,rG
o= 3 _ 4rp,G
r 3

Picture the Problem Because we’re given the mass of the sphere, we can find C by

expressing the mass of the sphere in terms of C. We can use its definition to find the

gravitational field of the sphere both inside and outside its surface.

(a) Express the mass of a differential

element of the sphere:

Integrate to express the mass of the
sphere in terms of C:

Solve for C:

Substitute numerical values and
evaluate C:

(b) Use its definition to express the

gravitational field of the sphere at a
distance from its center greater than
its radius:

dm=pdV = p(47z rzdr)

M =4z CTm’r =(s0m*)rC
0

M

€= (50m?)r

o 101kg
(50m?)r

6.436kg/m’
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(1) Forr>5m:

Use its definition to express the
gravitational field of the sphere at a
distance from its center less than its
radius:

(2) Forr<5m:

- (6.6726x107"' N-m’/kg?) (1011kg)

2
r

6.75x10™ N/kg

2
r

j4ﬂr2pdr j47rr2£dr
g:GO =G> d

2 2
r r

47ZCI rdr
=G—2 — =22GC

2
r

g =27(6.6726x107"" N - m*/kg?)
x(6.436kg/m*)
={2.70x107° N/kg

Remarks: Note that g is continuous at r =5 m.

*77 (X1}

Picture the Problem We can use conservation of energy to relate the work done by the

gravitational field to the speed of the small object as it strikes the bottom of the hole.

Because we’re given the mass of the sphere, we can find C by expressing the mass of the
sphere in terms of C. We can then use its definition to find the gravitational field of the
sphere inside its surface. The work done by the field equals the negative of the change in

the potential energy of the system as the small object falls in the hole.

Use conservation of energy to relate
the work done by the gravitational
field to the speed of the small object
as it strikes the bottom of the hole:

Solve for v:

Express the mass of a differential
element of the sphere:

K, —K +AU =0

or, because K; =0 and W =—-AU,

W =1mv’

where v is the speed with which the object

strikes the bottom of the hole and W is the
work done by the gravitational field.

v=1/2—W (D
m

dm=pdV = p(47z rzdr)
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Integrate to express the mass of the
sphere in terms of C:

M :47rCTrdr = (SOmZ)ﬂC
0

Solve for and evaluate C: M 1011kg
C= 2 - 2
(50m )72 (SOm )72'
= 6.436kg/m’

Use its definition to express the , , C
P I4ﬂr2pdr j47rr2—dr
0

gravitational field of the sphere at a

r
_ 0 _
distance from its center less than its g=G 2 =G 2
radius: .
4z C| rdr
=G—2—=22GC
r
Express the work done on the small W 3m y (2 )
object by the gravitational force - _5'[ mgar =\m)mg
acting on it:
Substitute in equation (1) and 22 27 GC
impli q~ M V= ( m)m( i ): (8m)7rGC
simplify to obtain: m

Substitute numerical values and evaluate v:

v=1/(8m)r(6.6726x10" N-m?/kg? )(6.436 kg/m* ) =[ 0.104mm/s

78 (1 1]

Picture the Problem The spherical deposit of heavy metals will increase the
gravitational field at the surface of the earth. We can express this increase in terms of the
difference in densities of the deposit and the earth and then form the quotient Ag/g.

Express Ag due to the spherical deposit: Ag = GAZA/I )

r

Express the mass of the spherical deposit: ~ M = ApV = Ap(% TR’ ) =47 Ap R’

Substitute in equation (1): Ag = LG Ap R’
- 2
r
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Express Ag/g: LG Ap R’
Ag _ 2 _AGrApR’
g gr’
Substitute numerical values and evaluate Ag/g:
Ag _ 47(6.6726x10" N-m*/kg’) (5000kg/m’ ) (1000m)' _ 5o
g (9.81N/kg)(2000m )’ -
*79 00

Picture the Problem The force of attraction of the small sphere of mass m to the lead

sphere is the sum of the forces due to the solid sphere ( IES) and the cavities ( IEC ) of

negative mass.

(a) Express the force of attraction:

Use the law of gravity to express the
force due to the solid sphere:

Express the magnitude of the force
acting on the small sphere due to

one cavity:

Relate the negative mass of a cavity
to the mass of the sphere before
hollowing:

Letting &be the angle between the x
axis and the line joining the center
of the small sphere to the center of
either cavity, use the law of gravity
to express the force due to the two
cavities:

Express cos@:

F=F +F. (1)
= GMm -
Fo=-"0

GM'm

where M' is the negative mass of a cavity.

we-pr = 3a(2]

= —i(tmpR) =M

IEC _ 2 GMm
R2
8(@12 +J
4

because, by symmetry, the y components

cos@i

add to zero.
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Substitute to obtain: E GMm d :
c = > ;
4(612 + Rj d* + Rf
4 4
B GMmd ~
- R 3/2
4[6[2 + ]
4
Substitute in equation (1) and simplify: E__ GMm £y GMmd :
- d? R 3/2
A d>+——
4
- p -
| GMm 1— T |A
- d> R 3/2
- 4 —J
(b) Evaluate Fatd=R: _ R |
= GMm T f
F(R)=- ! — |l
R
(- 4 -
~| —0.821GMm;

80 oo

Picture the Problem Let R be the size of the cluster, and N the total number of stars in it.
We can apply Newton’s law of gravity and the 2™ law of motion to relate the net force
(which depends on the number of stars N(r) in a sphere whose radius is equal to the
distance between the star of interest and the center of the cluster) acting on a star at a
distance r from the center of the cluster to its speed. We can use the definition of density,
in conjunction with the assumption of uniform distribution of the starts within the cluster,
to find N(r) and, ultimately, express the orbital speed v of a star in terms of the total mass
of the cluster.

Using Newton’s law of gravity and GN(r\M? 12
2" law, express the force acting on F(r)= —52) =M —

a star at a distance » from the center . r o
of the cluster- where N(r) is the number of stars within a

distance r of the center of the cluster and M
is the mass of an individual star.
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Using the uniform distribution N (r)M NM
assumption and the definition of P==7 3 =3 TR
3 3

density, relate the number of stars

N(r) within a distance r of the center or
of the cluster to the total number N N( )_ N P
of stars in the cluster: r)= F
Substitute to obtain: GNM? 3 e
L M=
R
or
2
GNM — =V
R
Solve for v to obtain: GNM
v=r I = vor

i.e., the mean velocity v of a star in
a circular orbit around the center
of the cluster increases linearly

with distance » from the center.

General Problems

*81 -
Picture the Problem We can use Kepler’s 3" law to relate Pluto’s period to its mean

distance from the sun.

Using Kepler’s 3™ law, relate the T*=Cr’

eriod of Pluto to its mean distance 47
P where C = j\; =2.973x107" s*/m’.

from the sun:

Solve for T: T =+ Cr?

Substitute numerical values and evaluate 7"

1 3
T :\/(2-973><10‘19 sz/m3)(39.5AUx1'502$j

th 1d_ 1y
3600s  24h° 365.25d

=7.864x10° s x

=[ 249y
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82 -

Picture the Problem Consider an object of mass m at the surface of the earth. We can
relate the weight of this object to the gravitational field of the earth and to the mass of the
earth.

Using Newton’s 2" law, relate the GM .m
weight of an object at the surface of Ré

the earth to the gravitational force
acting on it:

Solve for Mg: M, - gR;

G
Substitute numerical values and (9.81N/ kg)(6.37 x10° m)z
evaluate Mg: My = 6.6726x10""' N-m?*/kg’

=|5.97x10* kg

83 oo
Picture the Problem The work you must do against gravity to move the particle from a
distance r to 7, is the negative of the change in the particle’s gravitational potential

energy.

(a) Relate the work you must do to

W=-AU = —Tngr = GMEm’j—

i

_GMEm[L_lj
nLon

tdr
the change in the gravitational 72
. , N
potential energy of the earth-particle
system:

(b) Substitute gR; for GMp, Ry, for (1 1
. W =| mgR;| —— (D
71, and Rg + A for r, to obtain:
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(c) Rewrite equation (1) with a
common denominator and simplify
to obtain:

84 oo

Picture the Problem The gravitational field outside a uniform sphere is given by

~
~

mgh

when 4 << Rj.

g=—-GM / r* and the field inside the sphere by g = —(GM / R3)r.

(a) Express g outside the sphere:

Find the mass of the sphere:

Substitute and simplify to obtain:

Substitute numerical values and evaluate g:

GM

(6.673x10™"' N-m’ /kg® ) (2000kg/m® ) (100m)’

(IS

2
r

(b) Express the gravitational field
inside the uniform sphere:

Substitute numerical values and evaluate g:

g =—47(2000kg/m*)(6.6726x 10" N-m?/kg* ) =

r
GM  GplizR)
R R
=—3rnpGr

—(5.59x107 N/kg-
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85 L 1]
Picture the Problem We can use Kepler’s 3™ law to relate the period of the satellite to
its mean distance from the center of Jupiter.

Use Kepler’s 3" law to relate th 4r°
sej epler’s aW or'eae e 77 T (R1+h)3
period of the satellite to its mean M,
distance from the center of Jupiter:
Solve for A: T GM
h=3 > L —R, (1)
4
Express the mass of Jupiter in terms M, =320M
of the mass of the earth:
Express the volume of Jupiter in v, =13201
terms of the mass of the earth:
Express the volumes of Jupiter and R, = 1320 R

Earth in terms of their radii and
solve for R;:

Substitute in equation (1) to obtain: 2
quation (1) h:3/T Giszg)ME}_3 1320R.
4

Express the period of the satellite in I'=9h+50min
seconds: — 9hx 3600s 50 minx 695
min
=3.54x10"s

Substitute numerical values and evaluate A:

. 3\/ (3.54x10*s)"(6.6726x 10" N-m”/kg? )320(5.98 x10* kg )}
B A’

~3/1320(6.37x10° m)

={8.96x10"m
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86 oo

Picture the Problem Let m represent the mass of the spacecraft. From Kepler’s 3™ law
we know that its period will be a minimum when it is in orbit just above the surface of

the moon. We’ll use Newton’s 2™ law to relate the angular velocity of the spacecraft to
the gravitational force acting on it.

Relate the period of the spacecraft to T = 2_7T )
its angular velocity: @

Using Newton’s 2™ law of motion, Z _ GM  ;m R
relate the gravitational force acting redial Rl\z,I M
on the spacecraft when it is in orbit

at the surface of the moon to the

angular velocity of the spacecraft:

Solve for w: G4 7rpR3

Substitute in equation (1) and T 2 kY2
simplify to obtain: min \/% Grp \pG

Substitute numerical values and evaluate Ty,:

Toin = S - = 65035 =| 1h 48 min
(6.6726x10™" N-m?/kg? )(3340kg/m* )

87 oo

Picture the Problem We can use conservation of energy to establish a relationship
between the height / to which the projectile will rise and its initial speed. The application
of Newton’s 2™ law will relate the orbital speed, which is equal to the initial speed of the
projectile, to the mass and radius of the moon.

Use conservation of energy to relate K,-K,+U,-U;=0
the initial energies of the projectile or, because K; = 0,

GM,,m GM,m
my* — M+ M_ —

to its final energy: )
? R,+h R,




Solve for A:

Use Newton’s 2™ law to relate
velocity of the satellite to the
gravitational force acting on it:

Solve for v*:

Substitute for v* in equation (1) and
simplify to obtain:

*88 e
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h=R—1 (1)

3 VR,
2GM

GM ,,m v
Z radial — m

Ry, Ry,
. _GM,
RM
h=R ;1—1 =R=|1.70Mm
1-=
2

Picture the Problem If we assume the astronauts experience a constant acceleration in
the barrel of the cannon, we can use a constant-acceleration equation to relate their exit
speed (the escape speed from the earth) to the acceleration they would need to undergo in
order to reach that speed. We can use conservation of energy to express their escape
speed in terms of the mass and radius of the earth and then substitute in the constant-
acceleration equation to find their acceleration. To find the balance point between the
earth and the moon we can equate the gravitational forces exerted by the earth and the

moon at that point.

(a) Assuming constant acceleration
down the cannon barrel, relate the
ship’s speed as it exits the barrel to
the length of the barrel and the
acceleration required to get the ship
to escape speed:

Solve for the acceleration:

Use conservation of energy to relate
the initial energy of astronaut’s ship
to its energy when it has escaped the
earth’s gravitational field:

When the ship has escaped the
earth’s gravitational field:

v =2aA/l

where / is the length of the cannon.

2
1%

= 1
e M
AK +AU =0

or
K,—K +U;,-U, =0

K, =U;,=0
and

~K,~U, =0
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Solve for v’ to obtain:

Substitute in equation (1) to obtain:

Substitute numerical values and
evaluate a:

(b) Let the distance from the center
of the earth to the center of the
moon be R, and the distance from
the center of the spaceship to the
earth be x. If M is the mass of the
earth and m the mass of the moon,
the forces will balance out when:

Solve for x to obtain:

Substitute numerical values and
evaluate x:

or
—Limy? —(— GMEmj =0
R
where m is the mass of the spaceship.
vf _ 2GM
R

g GM

A/R

a= (6.673 x107"'N- mz/kgz)
(5.98x10* k)
X
(274m)(6370 km)
=2.29x10° m/s’
= 23,300g

Survival is extremely unlikely!

GM  Gm
x _(R—x)2
or

X R—x

M

where we’ve ignored the negative solution,
as it doesn't indicate a point between the

two bodies.
R
X=—r—
1+ m
\ M
_ 3.84x10°m
N 7.36x107 kg
5.98x10* kg

=|3.46x10°m

(©)

No it is not. During the entire trip, the astronauts would be in free - fall,

and so would not seem to weigh anything.
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Picture the Problem Let the origin of our coordinate system be at the center of mass of
the binary star system and let the distances of the stars from their center of mass be 7, and
2. The period of rotation is related to the angular velocity of the star system and we can
use Newton’s 2™ law of motion to relate this velocity to the separation of the stars.

Relate the square of the period of the 77— 4r’ 0
motion of the stars to their angular  w?
velocity:
Using Newton’s 2™ law of motion, Gm,m
8 .. . zFradial =—122:mz”2a)2
relate the gravitational force acting (;»1 + ;»2)
on the star whose mass is m, to the
angular velocity of the system:
Solve for &/: ) Gm,
O =—— (2)
r (" 1t )
From the definition of the center of my, = myr, 3)
mass we have: where r =1, +r, 4
Eliminate »; from equations (3) and - rm,
(4) and solve for r: ? m, +m,
Eliminate », from equations (3) and .= rm,
(4) and solve for r;: 1 m, +m,
Substitute for 7 and 7, in equation o = G(ml + mz)
(2) to obtain: e
Finally, substitute in equation (1) 5 4r° 473
d simplify: = =
and simplify: G(m1 + mz) G(ml 4 mz)
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Picture the Problem Because the two-particle system has zero initial energy and zero
initial linear momentum; we can use energy and momentum conservation to obtain
simultaneous equations in the variables r, v; and v,. We’ll assume that initial separation
distance of the particles and their final separation r is large compared to the size of the
particles so that we can treat them as though they are point particles.

Use conservation of energy to relate E =E,
the speeds of the particles when or
their separation distance is 7: Gmm
P 0=1mv’ +1imy; ———=% (1)
r

Use conservation of linear P = Dy
momentum to obtain a second or
relationship between the speeds of 0=myv, +m,v, 2)
the particles and their masses:
Solve equation (2) for v; and ) mf 2Gmm,

: . . . vy|my +— | =—— 3)
substitute in equation (1) to obtain: m, r

Solve equation (3) for v,:

Solve equation (2) for v, and
substitute for v, to obtain:

*Q1 oo

Picture the Problem We can find the orbital speeds of the planets from their distance
from the center of mass of the system and the period of their motion. Application of
Kepler’s 3" law will allow us to express the period of their motion 7 in terms of the
effective mass of the system ... which we can find from its definition.

Express the orbital speeds of the 27R

planets in terms of their period 7: v T

where R is the distance to the center of
mass of the four-planet system.

Apply Kepler’s 3" law to express 42
the period of the planets: T=|—R
GMeff
where M. 1s the effective mass of the four
planets.



Substitute to obtain:

The distance of each planet from the
effective mass is:

Find M. from its definition:

Substitute for R and M, to obtain:

92 oo
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- 27R _|GM
4z’ R
GMeff

R= O
2

1 1 1 1 1
=t —t—t+—

My M M M M

and

Meff:%M

| [Y26Mm

4a

Picture the Problem Let r represent the separation of the particle from the center of the
earth and assume a uniform density for the earth. The work required to lift the particle

from the center of the earth to its surface is the integral of the gravitational force function.

This function can be found from the law of gravity and by relating the mass of the earth

between the particle and the center of the earth to the earth’s mass. We can use the work-

kinetic energy theorem to find the speed with which the particle, when released from the

surface of the earth, will strike the center of the earth. Finally, the energy required for the

particle to escape the earth from the center of the earth is the sum of the energy required

to get it to the surface of the earth and the kinetic energy it must have to escape from the

surface of the earth.

(a) Express the work required to lift
the particle from the center of the
earth to the earth’s surface:

Using the law of gravity, express the
force acting on the particle as a
function of its distance from the
center of the earth:

Express the ratio of M to Mg:

RE
W= der (1)
0
where F is the gravitational force acting on
the particle.
GmM
F= 2 )

where M is the mass of a sphere whose
radius is 7.
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Substitute for M in equation (2) to obtain:

Substitute for F in equation (1) and
evaluate the integral:

(b) Use the work-kinetic energy
theorem to relate the kinetic energy
of the particle as it reaches the
center of the earth to the work done
on it in moving it to the surface of
the earth:

Substitute for  and solve for v:

(c) Express the total energy required
for the particle to escape when
projected from the center of the
earth:

Substitute for 7 and solve for veg:

Substitute numerical values and

evaluate Ve

03 oo

Ry R, Ry
mg ¢ mR
W:—gjrdr: EM %
E 0 2
W =AK =L1mv’
V= \/gRE

_ 1 2
E. = W+3mve

2
=Llmy

2 esc
where v, is the escape speed from the
surface of the earth.

vesc = V 3gRE

V.. =+/3(9.81N/kg)(6.37x10° m)
=|13.7km/s

Picture the Problem We need to find the gravitational field in three regions:

I"<R1,R1<I"<R2, andr>R2.

For r <R;:

For > R,, g(r) is the field of a mass
M centered at the origin:

For Ry <r<R,, g(r) is determined
by the mass within the shell of
radius r:

[0

GM
glr)=| —
r
G
g(r)= r—m (1)

where m =3 7p (r3 —Rf) (2)
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Express the density of the spherical
shell:

Substitute for p in equation (2) and M (r3 — Rf)
m —_— 7
simplify to obtain: R} - R;

Substitute for m in equation (1) to G]w(,ﬂ3 _ Rf)
obtain: g(r)=

A graph of g, with Ry =2, R, =3,
and GM = 1 is shown to the right. 010

94 e

Picture the Problem A ring of radius R is
shown to the right. Choose a coordinate
system in which the origin is at the center
of the ring and x axis is as shown. An
element of length dL and mass dm is

responsible for the field dg at a distance x
from the center of the ring. We can express
the x component of dg and then integrate
over the circumference of the ring to find

the total field as a function of x.

(a) Express the differential dg Gdm
gravitational field at a distance x R +x
from the center of the ring in terms
of the mass of elemental length dL:

Relate the mass of the element to its dm = AdL
length: where A is the linear density of the ring.

Substitute to obtain: do — GAdL
R? +x*
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By symmetry, the y and z dg =dgcosd
components of g vanish. Express the GAdL
=——-—-cosf

x component of dg: R? +x2

i X
Referring to the figure, express cosé cosd =

R* +x7

Substitute to obtain: do — GAdL X _ GAxdL

M GM xdL
Because 4 = ——: dg. = —
27 R 27zR(R2 +x2)
Integrate to find : GM 22R
e Oy
27 R(R* +x° )"

_ GM
- (R 2 42 )3/2 X

A plot of g, is shown to the right. The

curve is normalized for R =1 and ’\\

GM=1.

(b) Differentiate g(x) with respect to x and set the derivative equal to zero to identify

extreme values:

3/2
9 _ Gy (xz +R2) S G) (x2 +R*)"*(2x) | = 0 for extrema
dx (R2 +x2)
Simplify to obtain: (x2 +R2)3/2 —3x2(x2 +R2)1/2 =0

Solve for x to obtain:
x =

;R
2

Because the curve is concave downward,
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Picture the Problem The diagram shows a
segment of the wire of length dx and mass
dm = Adx at a distance x from the origin of
our coordinate system. We can find the
magnitude of the gravitational field at a
distance » from the wire from the resultant
gravitational force acting on a particle of
mass m' located at point P and then
integrating over the length of the wire.

Express the gravitational force
acting on a particle of mass m' at a
distance » from the wire due to the
segment of the wire of length dx:

Using Newton’s law of gravity,
express dF:

Substitute and simplify to express
the gravitational field due to the
segment of the wire of length dx:

By symmetry, the segment on the
opposite side of the origin at the
same distance from the origin will
cancel out all but the radial
component of the field, so the
gravitational field will be given by:

Gravity 895

we can conclude that this result
corresponds to a maximum. Note that this
result agrees with our graphical maximum.

Integrate dg from x' = —o0 to x' = +o0 to obtain:

GAr

j——————ﬂw—szT

96 (1 1]

T
I—‘ < dm = Adx
| P
| J/fe/
r {‘v rd
| 5
e
» dF
|
P
dF =m'dg
or
dg d—F:
m
JF — Gn;?dx
or, because R* = x* + 77,
¢F=5¥2@?
X +r
GAdx
do =
5+
GAdx
dg = R cos @
_ GAdx r
Xt x4
- G_ﬂw/zdx
(x2 +r2)3
C26A] x| 262
NEE r

Picture the Problem We can use the relationship between the angular velocity of an
orbiting object and its tangential velocity to express the speeds vi, and v, of the
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innermost and outermost portions of the ring. In part (b) we can use Newton’s law of
gravity, in conjunction with the 2™ law of motion, to relate the tangential speed of a
chunk of the ring to the gravitational force acting on it. As in part (a), once we know vj,
and v,y, we can express the difference between them to obtain the desired results.

(a) Express the speed of a point in
the ring at a distance R’ from the
center of the planet under the
assumption that the ring is solid and
rotates with an angular velocity w:

Express the speeds vy, and v, of the
innermost and outermost portions of
the ring:

Express the difference between vy
and vy,:

(b) Assume that a chunk of the ring
is moving in a circular orbit around
the center of the planet under the
force of gravity. Then, we can find
its velocity by equating the force of
gravity to the centripetal force
needed to keep it in orbit:

Substitute for R’ to express Vo

Expand binomially to obtain:

Proceed similarly to obtain, for v;,:

v(R') = wR
vin = (R - %l")a)
and

v r
=@wr=—r=|v—
R
GMm_mv2
R|2 - Rv
or

|GM
v=,|—
Rl

where M is the mass of the planet and R'
the distance from the center.

_\/ GM | GM

out 1,

R+1r R1+1L
2R

/GM( 117
vout =5 1____
R 22R
+ higher order terms)

. /G_M(l_lij

R 4 R

GM( lrj

Vo, & | 1 ——
R 4 R
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Express the difference between v, and vi,:

/GM( lrj /GM( lrj /GM( lrj
Vout_vinz 5 1___ A 5 1+__ Ao | A S
R 4 R R 4 R R 2R

GM 17
and, because v=,/——, Vv, —V, ®| ———V
R 2R
97 (1]

Picture the Problem Let U= 0 at x = co. The potential energy of an element of the stick
dm and the point mass m, is given by the definition of gravitational potential energy:
dU = —Gmydm/r where r is the separation of dm and m,.

(a) Express the potential energy of dU = — Gm,dm
the masses mg and dm: Xy —X
The mass dm is proportional to the dm = Adx
size of the element dx: M
where 4 =—.

L
Substitute these results to express JU - GmyAdx |  GMmdx
dU in terms of x: - Xy —X B L(xo - x)

(b) Integrate to find the total potential energy for the system:

L/2
U=- GMm, e _ GMm, {ln(xo —%) - ln(x0 +§ﬂ

L ;. xy—x L
_| _GMm, X, +L/2
L x,—L/2

(c) Because x is a general point along the x axis:

__dU _ Gmm, 1
F(xo)_ dxo - L £ L

Simplify this expression to obtain: Gmm,,

s /4
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in agreement with the result of Example
11-8.

*08  eee

Picture the Problem Choose a mass element dm of the rod of thickness dx at a distance x
from the origin. All such elements of the rod experience a gravitational force dF’ due to
presence of the sphere centered at the origin. We can find the total gravitational force of
attraction experienced by the rod by integrating dF fromx =atox =a + L.

Express the gravitational force dF' dF = GMdm
acting on the element of the rod of x’
mass dm:
Express dm in terms of the mass m dm = m dx
and length L of the rod: L
Substitute to obtain: dF = GMm dx
L x°
Integrate dFF fromx =atox =a+ . GMm “+ 2y GMm 17"
L to find the total gravitational force L T L ;
acting on the rod: -
s | GMm
a(a + L)

99 00
Picture the Problem The semicircular rod

M f”*
is shown in the figure. We’ll use an '
L
element of length Rd@ = —d@ whose M

T

M
mass dM is—d@ . By symmetry, F\, =0. R
Vd

We’ll first find dF and then integrate over
6 from —7/2 to /2.

Express dF: JF - GmdM
x Rz
= GMim dfcosl
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Integrate dF, over @ from —7/2 to 7/2: Mm "¢ 27w GM,
s Fx:ﬂG2 ” Jcos@dezﬂ
-z/2 L
Substitute numerical values and evaluate F:
—-11 2 2
F 27(6.6726x10™"' N-m ke )20kg)(0.1kg) _ 5N
“ (5m)
*100 eee

Picture the Problem We can begin by expressing the forces exerted by the sun and the
moon on a body of water of mass m and taking the ratio of these forces. In (b) we’ll
simply follow the given directions and in (c) we can approximate differential quantities
with finite quantities to establish the given ratio.

(a) Express the force exerted by the Fo GM m
sun on a body of water of mass m: > rsz
Express the force exerted by the Fo- GM m
moon on a body of water of mass m: " ”ni
Divide the first of these equations F Mr rﬁ
by the second and simplify to F M_r
obtain:
Substitute numerical values and F, (1 99%10° kg)(3.84 x10° m)z
evaluate this ratio: F - (7 36102 kg)(l 50%10'" m)z
=177
dF F 2 F
(b) Find —: d_:_%:_z_
dr dr r r
dF
Solve for the ratio —: ar == 2@
F r

(c) Express the change in force AF
for a small change in distance Ar: r
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Express AF:

Express AF :

Divide the first of these equations
by the second and simplify:

Substitute numerical values and
evaluate this ratio:

101 -

3
MSrm

3
M r;

.
because —> =1.
Ar

m

AF, _ (1.99x10" kg)(3.84x10° m)
AF,  (7.36x102kg)(1.50x10" m)’
~[0.454

Picture the Problem Let Mys be the mass of the Neutron Star and m the mass of each
robot. We can use Newton’s law of gravity to express the difference in the tidal-like
forces acting on the coupled robots. Expanding the expression for the force on the robot
further from the Neutron Star binomially will lead us to an expression for the distance at
which the breaking tension in the connecting cord will be exceeded.

(a) | the cableits acceleration would be greater than that of the upper robot, and

The gravitational force is greater on the lower robot, so if it were not for

they would separate. In opposing this separation the cable is stressed.




(b) Letting the separation of the two
robots be Ar, and the distance from
the center of the star to the lower
robot be r, use Newton’s law of
gravity to express the difference in
the forces acting on the robots:

Expand the expression in the square
brackets binomially to obtain:

Substitute to obtain:

Letting Fg be the breaking tension
of the cord, substitute for F}j4. and
solve for the value of »
corresponding to the breaking strain
being exceeded:

Substitute numerical values and evaluate r:

Gravity
GMjm GM;m
Eide = P - B
r (r + Ar)
1 1
=GMym

_ A
r
Eide ~ 2Gjl\iNSm Ar

220 km

5[ 26:673x107IN - mke? J1.99x10" ke)(Ike)
25KN

901



902 Chapter 11



