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Chapter 11 
Gravity 
 
Conceptual Problems 
 
*1 • 
(a) False. Kepler’s law of equal areas is a consequence of the fact that the  
gravitational force acts along the line joining two bodies but is independent  
of the manner in which the force varies with distance. 
 
(b) True. The periods of the planets vary with the three-halves power of their distances 
from the sun. So the shorter the distance from the sun, the shorter the period of the 
planet’s motion. 
 
2 •  
Determine the Concept We can apply Newton’s 2nd law and the law of gravity to the 
satellite to obtain an expression for its speed as a function of the radius of its orbit. 

 
Apply Newton’s 2nd law to the 
satellite to obtain: ∑ ==

r
vm

r
GMmF

2

2radial  

where M is the mass of the object the  
satellite is orbiting and m is the mass of the 
satellite. 
 

Solve for v to obtain: 

r
GMv =  

Thus the speed of the satellite is 
independent of its mass and:  

 
correct. is )(c  

  
3 ••  
Picture the Problem The acceleration due to gravity varies inversely with the square of 
the distance from the center of the moon. 
 
Express the dependence of the 
acceleration due to the gravity of the 
moon on the distance from its 
center: 
 

2
1
r

a' ∝  

Express the dependence of the 
acceleration due to the gravity of the 
moon at its surface on its radius: 
 

2
M

1
R

a ∝  
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Divide the first of these expressions 
by the second to obtain:  
 

2

2
M

r
R

a
a'

=  

Solve for a′: 
( )

aa
R
Ra

r
Ra' 16

1
2

M

2
M

2

2
M

4
===  

and correct. is )(d  

 
4 •  
Determine the Concept Measurement of G is difficult because masses accessible in the 
laboratory are very small compared to the mass of the earth. 
 
5 •  
Determine the Concept The escape speed for a planet is given by RGmv 2e = . 

Between ve depends on the square root of M, doubling M increases the escape speed by a 
factor of 2 and correct. is )( a  

 
6 ••  
Determine the Concept We can take careful measurements of its position in order to 
determine whether its trajectory is an ellipse, a hyperbola, or a parabola. If the path is an 
ellipse, it will return; if its path is hyperbolic or parabolic, it will not return. 
 
7 •• 
Determine the Concept The gravitational field is proportional to the mass within the 
sphere of radius r and inversely proportional to the square of r, i.e., proportional 
to .23 rrr =  

 
*8 •    
Determine the Concept Let m represent the mass of Mercury, MS the mass of the sun, v 
the orbital speed of Mercury, and R the mean orbital radius of Mercury. We can use 
Newton’s 2nd law of motion to relate the gravitational force acting on the Mercury to its 
orbital speed. 
 
Use Newton’s 2nd law to relate the 
gravitational force acting on 
Mercury to its orbital speed: 
 

R
vm

R
mGMF

2

2
S

net ==  

Simplify to obtain: 

U
R

mGM
R

mGMmv

2
1

S
2
1S

2
12

2
1

−=

⎟
⎠
⎞

⎜
⎝
⎛−−==
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or UK 2
1−=  

 
9 ••   
Picture the Problem We can use the definition of the gravitational field to express the 
ratio of the student’s weight at an elevation of two earth radii to her weight at the surface 
of the earth. 
 
Express the weight of the student at 
the surface of the earth: 
 

2
E

E

R
mGMmgw ==  

Express the weight of the student at 
an elevation of two earth radii: 
 

( )2E

E

3R
mGMmg'w' ==  

Express the ratio of w′ to w: 
( )

9
13

2
E

E

2
E

E

==

R
mGM

R
mGM

w
w'

and correct. is )(d  

 
10 ••  
Determine the Concept One such machine would be a balance wheel with weights 
attached to the rim with half of them shielded using Cavourite.  The weights on one side 
would be pulled down by the force of gravity, while the other side would not, leading to 
rotation, which can be converted into useful work, in violation of the law of the 
conservation of energy. 
 
Estimation and Approximation 
 
11  •  
Picture the Problem To approximate the mass of the galaxy we’ll assume the galactic 
center to be a point mass with the sun in orbit about it and apply Kepler’s 3rd law.  
 
Using Kepler’s 3rd law, relate the 
period of the sun T to its mean 
distance r from the center of the 
galaxy: 
 

3

s

galaxy

s

2

3

galaxy

2
2

4
4 r

M
M

G

Mr
GM

T

π
π

==  

 

Solve for 2

3

T
r

to obtain: 

 

s

2
s

galaxy

s

2
s

galaxy

2

3

44
GM

M
M

M

M
M

G

T
r

ππ
==  
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If we measure distances in AU and 
times in years: 
 

14

s

2

=
GM
π

and 
s

galaxy
2

3

M
M

T
r

=  

 
Substitute numerical values and 
evaluate Mgalaxy/Ms: 

( )
11

26

34
4

s

galaxy

1008.1
y10250
LY

AU106.3LY103

×=

×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
××

=
M

M
 

or 

s
11

galaxy 1008.1 MM ×=  

 
*12 •••  
Picture the Problem We can use Kepler’s 3rd law to find the size of the semi-major axis 
of the planet’s orbit and the conservation of momentum to find its mass. 
 
(a) Using Kepler’s 3rd law, relate the 
period of this planet T to the length r 
of its semi-major axis: 
 

3

s

Draconis Iota

s

2

3

s

Draconis Iota

s

2

3

Draconis Iota

2
2

4

4

4

r

M
M

GM

r

M
MG

M

r
GM

T

π

π

π

=

=

=

 

 
If we measure time in years, 
distances in AU, and masses in 
terms of the mass of the sun: 
  

14

s

2

=
MG
π

and 3

s

Draconis Iota

2 1 r

M
MT =  

 
Solve for r to obtain: 
 3

2

s

Draconis Iota T
M

Mr =  

 
Substitute numerical values and 
evaluate r: ( ) AU33.1y5.105.1

3
2

s

s =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

M
Mr  

 
(b) Apply conservation of 
momentum to the planet (mass m 
and speed v) and the star (mass MIota 

Draconis and speed V) to obtain: 
 

VMmv Draconis Iota=  
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Solve for m to obtain: 
 v

VMm Draconis Iota=  

 
Use its definition to find the speed 
of the orbiting planet: 
 

m/s1065.2
h

s3600
d

h24
y

d365.25y1.50

AU
m101.5AU1.332

2

4

11

×=

×××

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
×

=

=
∆
∆

=

π

T
r

t
dv π

 

 
Substitute numerical values and 
evaluate v: 

( )
( )( )

kg1034.2
kg1099.105.10112.0

05.10112.0
0112.0

m/s102.65
m/s296

28

30
sun

Draconis Iota

4Draconis Iota

×=

×=

=
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

=

M
M

Mm

 

 
Express m in terms of the mass MJ 
of Jupiter: 
 

3.21
kg1090.1
kg1034.2

27

28

J

=
×
×

=
M
m

 

or 

J3.12 Mm =  

 
Remarks: A more sophisticated analysis, using the eccentricity of the orbit, leads to 
a lower bound of 8.7 Jovian masses.  (Only a lower bound can be established, as the 
plane of the orbit is not known.) 
 
13 •••  
Picture the Problem We can apply Newton’s law of gravity to estimate the maximum 
angular velocity which the sun can have if it is to stay together and use the definition of 
angular momentum to find the orbital angular momenta of Jupiter and Saturn. In part (c) 
we can relate the final angular velocity of the sun to its initial angular velocity, its 
moment of inertia, and the orbital angular momenta of Jupiter and Saturn. 
 
(a) Gravity must supply the 
centripetal force which keeps an 
element of the sun’s mass m rotating 
around it. Letting the radius of the 
sun be R, apply Newton’s law of 
gravity to an element of mass m to 
obtain: 
 

2
2

R
GMmRm <ω  

or 

ω2R <
GM
R2  

where we’ve used the inequality because 
we’re estimating the maximum angular 
velocity which the sun can have if it is to 
stay together. 
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Solve for ω: 
3R

GM
<ω  

 
Substitute numerical values and evaluate ω: 
 

( )( )
( ) rad/s1028.6

m106.96
kg1099.1/kgmN10673.6 4

38

302211
−

−

×=
×

×⋅×
<ω  

 
Calculate the period of this motion 
from its angular velocity: 

h78.2
s3600

h1s1000.1

rad/s1028.6
22

4

4

=××=

×
== −

π
ω
πT

 

 
(b) Express the orbital angular 
momenta of Jupiter and Saturn: 
 

JJJJ vrmL = and SSSS vrmL =  
 

Express the orbital speeds of Jupiter 
and Saturn in terms of their periods 
and distances from the sun: 
 

J

J
J

2
T

rv π
=  and 

S

S
S

2
T

rv π
=  

 
Substitute to obtain: 

J

2
JJ

J
2

T
rmL π

= and 
S

2
SS

S
2

T
rmL π

=  

 
Substitute numerical values and evaluate LJ and LS: 
 

( ) ( )( )( )

/smkg1093.1

h
s3600

d
h24

y
d365.25y9.11

m10778kg1098.531823182

243

2924

J

2
JE

J

⋅×=

×××

××
==

ππ
T

rML
 

and 
( ) ( )( )( )

/smkg1085.7

h
s3600

d
h24

y
d365.25y5.29

m101430kg1098.51.9521.952

242

2924

S

2
SE

S

⋅×=

×××

××
==

ππ
T

rML
 

 
Express the angular momentum of 
the sun as a fraction of the sum of 
the angular momenta of Jupiter and 
Saturn: 
 ( )

%703.0

/smkg1085.73.19
/smkg1091.1

242

241
SJ

sun

=

⋅×+
⋅×

=

+
=

LL
Lf
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(c) Relate the final angular 
momentum of the sun to its initial 
angular momentum and the angular 
momenta of Jupiter and Saturn: 
 

SJif LLLL ++=  
or 

SJisunfsun LLII ++= ωω  

Solve for ωf to obtain: 

sun

SJ
if I

LL +
+=ωω  

 
Substitute for ωI and Isun: 

2
sunsun

SJ

sun
f 059.0

2
RM

LL
T

+
+=

πω  

 
Substitute numerical values and evaluate ωf: 
 

( )
( )( )

rad/s1080.4

m1096.6kg1099.1059.0
/smkg1085.73.19

h
s3600

d
h24d03

2

4

2830

242

f

−×=

××

⋅×+
+

××
=

πω
 

Note that this result is about 76% of the maximum possible rotation allowed by gravity 
that we calculated in part (a). 
 
Kepler’s Laws 
 
14 •  
Picture the Problem We can use the relationship between the semi-major axis and the 
distances of closest approach and greatest separation, together with Kepler’s 3rd law, to 
find the greatest separation of Alex-Casey from the sun. 
 
Letting x represent the greatest 
distance from the sun, express the 
relationship between x, the distance 
of closest approach, and its semi-
major axis R: 
 

2
AU1.0+

=
xR                         

Solve for x to obtain: 
 

AU1.02 −= Rx                        (1) 

Apply Kepler’s 3rd law, with the 
period T measured in years and R in 
AU to obtain: 
 

32 RT =  

Solve for R: 3 2TR =  
 

Substitute numerical values and 
evaluate R: 
 

( ) AU3.25y4.1273 2 ==R  

Substitute in equation (1) and 
evaluate R: 

( ) AU5.50AU1.0AU3.252 =−=x  
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15 •  
Picture the Problem We can use Kepler’s 3rd law to relate the period of Uranus to its 
mean distance from the sun. 

 
Using Kepler’s 3rd law, relate the 
period of Uranus to its mean 
distance from the sun:  

32 CrT =  

where 3219-

s

2

/ms102.9734
×==

GM
C π

. 

  
Solve for T: 3CrT =  

 
Substitute numerical values and evaluate T: 
 

( ) ( )
y0.84

d365.25
y1

h24
d1

s3600
h1s01651.2

m1087.2/ms10973.2

9

3123219

=××××=

××= −T
 

 
16 •  
Picture the Problem We can use Kepler’s 3rd law to relate the period of Hektor to its 
mean distance from the sun. 

 
Using Kepler’s 3rd law, relate the 
period of Hektor to its mean 
distance from the sun:  

32 CrT =  

where 3219-

s

2

/ms102.9734
×==

GM
C π

.  

 
Solve for T: 3CrT =  

 
Substitute numerical values and evaluate T: 
 

( )

y8.11
d365.25

y1
h24

d1
s3600

h1s01713.3

AU
m101.50AU16.5/ms10973.2

8

311
3219

=××××=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
××= −T

 

 
17 ••  
Picture the Problem Kepler’s 3rd law relates the period of Icarus to the length of its 
semimajor axis. The aphelion distance ra is related to the perihelion distance rp and the 
semimajor axis by .2pa arr =+  
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(a) Using Kepler’s 3rd law, relate the 
period of Icarus to the length of its 
semimajor axis: 

32 CaT =  

where 3219

s

2

/ms102.9734 −×==
GM

C π
.  

 
Solve for a: 

3
2

C
Ta =  

 
Substitute numerical values and 
evaluate a: 

m1059.1

/ms10973.2
h

s3600
d

h24
y

d365.25.1y1

11

3

3219

2

×=

×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×××

= −a  

 
(b) Use the definition of the 
eccentricity of an ellipse to 
determine the perihelion distance of 
Icarus: 

( )
( )( )

m1071.2

83.01m1059.1

1

10

11

p

×=

−×=

−= ear

 

 
Express the relationship between rp 
and ra for an ellipse: 

arr 2pa =+  

 
 

Solve for and evaluate ra: 

( )
m1091.2

m1071.2m1059.12

2

11

1011

pa

×=

×−×=

−= rar

 

 
18 ••  
Picture the Problem The Hohmann transfer orbit is shown in the diagram. We can apply 
Kepler’s 3rd law to relate the time-in-orbit to the period of the spacecraft in its Hohmann 
Earth-to-Mars orbit. The period of this orbit is, in turn, a function of its semi-major axis 
which we can find from the average of the lengths of the semi-major axes of the Earth 
and Mars orbits. 
 

 



          Chapter 11 
      

 

838 

Using Kepler’s 3rd law, relate the 
period T of the spacecraft to the 
semi-major axis of its orbit: 
 

32 RT =  

Solve for T to obtain: 
 

3RT =  

Relate the transit time to the period 
of this orbit: 
 

3
2
1

2
1

trip RTt ==  

Express the semi-major axis of the 
Hohmann transfer orbit in terms of 
the mean sun-Mars and sun-Earth 
distances: 
 

AU1.26
2

AU1.00AU1.52
=

+
=R  

Substitute numerical values and 
evaluate ttrip: 

( )

d258
y1

d365.24y707.0

AU26.1 3
2
1

trip

=×=

=t
 

 
*19 ••  
Picture the Problem We can use a property of lines tangent to a circle and radii drawn to 
the point of contact to show that b = 90°.  Once we’ve established that b is a right angle 
we can use the definition of the sine function to relate the distance from the sun to Venus 
to the distance from the sun to the earth. 
 
(a) The line from earth to Venus' 
orbit is tangent to the orbit of Venus 
at the point of maximum extension. 
Venus will appear closer to the sun 
in earth’s sky when it passes the line 
drawn from earth and tangent to its 
orbit. Hence: 
 

°= 90b  

(b) Using trigonometry, relate the 
distance from the sun to Venus dSV 
to the angle a: 
 

SE

SVsin
d
da =

 
 

Solve for dSV: add sinSESV =  
 
 

Substitute numerical values and 
evaluate dSV: 
 

( ) AU731.074sinAU1SV =°=d  

Remarks: The correct distance from the sun to Venus is closer to 0.723 AU. 
 
20 ••  
Picture the Problem Because the gravitational force the Earth exerts on the moon is 
along the line joining their centers, the net torque acting on the moon is zero and its 
angular momentum is conserved in its orbit about the Earth. Because energy is also 
conserved, we can combine these two expressions to solve for either vp or va initially and 
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then substitute in the conservation of angular momentum equation to find the other. 
 
Letting m be the mass of the moon, 
apply conservation of angular 
momentum to the moon at apogee 
and perigee to obtain: 
 

aapp rmvrmv =  
or 
v prp = va ra  

Solve for va: 
 p

a

p
a v

r
r

v =                                 (1) 

 
Apply conservation of energy to the 
moon-earth system to obtain: 

a
a

p
p r

GMmmv
r

GMmmv −=− 22

2
1

2
1

 

or 

a
a

p
p r

GMv
r

GMv −=− 22

2
1

2
1

 
 

Substitute for va to obtain: 
 

a
p

a

p

a
p

a

p

p
p

r
GMv

r
r

r
GMv

r
r

r
GMv

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

2
2

2
2

2
1

2
1

2
1

 

 
Solve for vp to obtain: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
=

app
p rrr

GMv
1

12

 
 

Substitute numerical values and evaluate vp: 
 

( ) ( ) km/s09.1

m10064.4
m10576.31

1
m10576.3

kg1098.5/kgmN10673.62

8

88

242211

=
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

×
×

+×
×⋅×

=
−

pv

 
Substitute numerical values in 
equation (1) and evaluate va: ( )

km/s959.0

km/s1.09
m10064.4
m10576.3

8

8

=

×
×

=av
 

 
Newton’s Law of Gravity 

 
*21 ••  
Picture the Problem We can use Kepler’s 3rd law to find the mass of Jupiter in part (a). 
In part (b) we can express the centripetal accelerations of Europa and Callisto and 
compare their ratio to the square of the ratio of their distances from the center of Jupiter 
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to show that the given data is consistent with an inverse square law for gravity. 
 
(a) Assuming a circular orbit, apply 
Kepler’s 3rd law to the motion of 
Europa to obtain: 
 

3
E

J

2
2

E
4 R
GM

T π
=  

Solve for the mass of Jupiter: 
 3

E2
E

2

J
4 R
GT

M π
=  

 
Substitute numerical values and 
evaluate MJ: 
 ( )

( )

.kg101.902 of  valueaccepted
with theagreement excellent 

inresult  a ,kg1090.1

h
s3600

d
h24d3.55

m106.71

/kgmN10673.6
4

27

27

2

38

2211

2

J

×

×=

⎟
⎠
⎞

⎜
⎝
⎛ ××

×
×

⋅×
= −

πM

 

 
(b) Express the centripetal 
acceleration of both of the moons to 
obtain: 
  2

2

2

2 4
2

T
R

R
T

R

R
v π

π

=
⎟
⎠
⎞

⎜
⎝
⎛

=  

where R and T are the radii and periods of 
their motion. 
 

Using this result, express the 
centripetal accelerations of Europa 
and Callisto: 
 

2
E

E
2

E
4

T
Ra π

=  and 2
C

C
2

C
4

T
Ra π

=  

 
Substitute numerical values and 
evaluate aE:  

( )
( )( )( )[ ]

2

2

82

E

m/s282.0

s/h3600h/d24d55.3
m1071.64

=

×
=

πa
 

 
Substitute numerical values and 
evaluate aC: 
 

( )
( )( )( )[ ]

2

2

82

C

m/s0356.0

s/h3600h/d24d7.16
m108.184

=

×
=

πa
 

 
Evaluate the ratio of these 
accelerations: 
 

91.7
m/s0356.0
m/s282.0

2

2

C

E ==
a
a
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Evaluate the square of the ratio of 
the distance of Callisto divided by 
the distance of Europa to obtain: 
 

85.7
m1071.6
m108.18

2

8

82

E

C =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×
×

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
R
R

 

distance. the
 of square with theinversely   variesforce nalgravitatio  that theconclusion the

supportsstrongly  nscalculatio last twoour  of 1%)(within agreement  close The
 

 
*22 • 
Determine the Concept The weight of anything, including astronauts, is the reading of a 
scale from which the object is suspended or on which it rests. If the scale reads zero, then 
we say the object is ″weightless.″ The pull of the earth’s gravity, on the other hand, 
depends on the local value of the acceleration of gravity and we can use Newton’s law of 
gravity to find this acceleration at the elevation of the shuttle. 
 
(a) Apply Newton’s law of 
gravitation to an astronaut of mass 
m in a shuttle at a distance h above 
the surface of the earth: 
 

( )2E

E
shuttle Rh

GmMmg
+

=  

Solve for gshuttle: 

( )2E

E
shuttle Rh

GMg
+

=  

 
Substitute numerical values and evaluate gshuttle: 
 

( )( )
( )

2
2

242211

shuttle m/s71.8
km6370km400

kg1098.5/kgmN10673.6
=

+
×⋅×

=
−

g  

 

(b)
."weightless" be  toseem will

 astronauts  theso on,accelerati same eexactly th earth with  theofcenter  the
  towardfalling is shuttle on the everything fall" free"in  are they Because

 

 
23 •  
Picture the Problem We can use Kepler’s 3rd law to relate the periods of the moons of 
Saturn to their mean distances from its center.  

 
(a) Using Kepler’s 3rd law, relate the 
period of Mimas to its mean 
distance from the center of Saturn: 

3
M

S

2
2

M
4 r

GM
T π

=                             

 
Solve for TM: 3

M
S

2

M
4 r
GM

T π
=  
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(b) Using Kepler’s 3rd law, relate the 
period of Titan to its mean distance 
from the center of Saturn: 
 

3
T

S

2
2

T
4 r

GM
T π

=  

Substitute numerical values and evaluate TM: 
 

( )
( )( ) s1018.8

/kgmN106726.6kg1069.5
m1086.14 4

221126

382

M ×=
⋅××

×
= −

πT  

 
Solve for rT: 

3
2

S
2

T
T 4π

GMTr =  

 
Substitute numerical values and evaluate rT: 
 

( ) ( )( ) m1022.1
4

kg1069.5/kgmN106726.6s1038.1 93
2

26221126

T ×=
×⋅××

=
−

π
r  

 
24 • 
Picture the Problem We can use Kepler’s 3rd law to relate the period of the moon to the 
mass of the earth and the mean earth-moon distance.  

 
(a) Using Kepler’s 3rd law, relate the 
period of the moon to its mean orbital 
radius: 

3
m

E

2
2

m
4 r

GM
T π

=                             

 
Solve for ME: 3

m2
m

2

E
4 r
GT

M π
=  

 
Substitute numerical values and evaluate ME: 
 

( )
( )

kg1002.6

h
s3600

d
h24d3.27/kgmN106.6726

m103.844 24
2

2211

382

E ×=

⎟
⎠
⎞

⎜
⎝
⎛ ××⋅×

×
=

−

πM  

 
Remarks: This analysis neglects the mass of the moon; consequently the mass 
calculated here is slightly too great. 
 
25 •  
Picture the Problem We can use Kepler’s 3rd law to relate the period of the earth to the 
mass of the sun and the mean earth-sun distance. 
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(a) Using Kepler’s 3rd law, relate the 
period of the earth to its mean 
orbital radius: 

3
E

S

2
2

E
4 r

GM
T π

=                             

 
Solve for MS: 3

E2
E

2

S
4 r
GT

M π
=  

 
Substitute numerical values and evaluate MS: 
 

( )
( )

kg1099.1

h
s3600

d
h24

y
d365.25y1/kgmN106.6726

m10496.14

30

2
2211

3112

S

×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×××⋅×

×
=

−

πM

 

 
*26 •  
Picture the Problem We can relate the acceleration of an object at any elevation to its 
acceleration at the surface of the earth through the law of gravity and Newton’s 2nd law of 
motion. 

 
Letting a represent the acceleration 
due to gravity at this altitude (RE) 
and m the mass of the object, apply 
Newton’s 2nd law and the law of 
gravity to obtain:  

( )∑ == ma
R

GmMF 2
E

E
radial 2

 

and 

( )2
E

E

2R
GMa =                                 (1) 

 
Apply Newton’s 2nd law to the same 
object when it is at the surface of the 
earth: 

∑ == mg
R

GmMF 2
E

E
radial  

and 

2
E

E

R
GMg =                                   (2) 

 
Divide equation (1) by equation (2) 
and solve for a: 2

E

2
E

4R
R

g
a
=  

and 
( ) 22

4
1

4
1 m/s2.45m/s9.81 === ga  

 
27 •  
Picture the Problem Your weight is the local gravitational force exerted on you. We can 
use the definition of density to relate the mass of the planet to the mass of earth and the 
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law of gravity to relate your weight on the planet to your weight on earth. 
 

Using the definition of density, 
relate the mass of the earth to its 
radius: 
 

3
E3

4
EE RVM πρρ ==  

Relate the mass of the planet to its 
radius: ( )3E3

4

3
P3

4
PP

10R

RVM

πρ

πρρ

=

==
 

 
Divide the second of these equations 
by the first to express MP in terms of 
ME: 

( )
3
E3

4

3
E3

4

E

P 10
R
R

M
M

πρ
πρ

ρ=  

and 

E
3

P 10 MM =  

 
Letting w′ represent your weight on 
the planet, use the law of gravity to 
relate w′ to your weight on earth: 

( )
( )

w
R

GmM
R

MGm
R

GmMw'

1010

10
10

2
E

E

2
E

E
3

2
P

P

==

==
 

where w is your weight on earth. 
 
28 •  
Picture the Problem We can relate the acceleration due to gravity of a test object at the 
surface of the new planet to the acceleration due to gravity at the surface of the earth 
through use of the law of gravity and Newton’s 2nd law of motion. 

 
Letting a represent the acceleration 
due to gravity at the surface of this 
new planet and m the mass of a test 
object, apply Newton’s 2nd law and 
the law of gravity to obtain:  

( )∑ == ma
R

GmM
F 2

E2
1

E
radial  

and 

( )2E2
1

E

R
GM

a =   

 
Simplify this expression to obtain: 2

2
E

E m/s2.3944 === g
R

GMa  

 
29 •  
Picture the Problem We can use conservation of angular momentum to relate the 
planet’s speeds at aphelion and perihelion. 

 
Using conservation of angular pa LL =  
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momentum, relate the angular 
momenta of the planet at aphelion  
and perihelion: 
 

or 
aapp rmvrmv =  

Solve for the planet’s speed at 
aphelion: 

a

pp
a r

rv
v =  

 
Substitute numerical values and 
evaluate va: 

( )( )

m/s1027.2

m102.2
m101.0m/s105

4

15

154

a

×=

×
××

=v
 

 
30 •  
Picture the Problem We can use Newton’s law of gravity to express the gravitational 
force acting on an object at the surface of the neutron star in terms of the weight of the 
object. We can then simplify this expression be dividing out the mass of the object … 
leaving an expression for the acceleration due to gravity at the surface of the neutron star. 
 
Apply Newton’s law of gravity to an 
object of mass m at the surface of 
the neutron star to obtain: 
 

mg
R

mGM
=2

StarNeutron 

StarNeutron  

where g represents the acceleration due to 
gravity at the surface of the neutron star. 

Solve for g and substitute for the 
mass of the neutron star: 
 

( )
2

StarNeutron 

sun
2

StarNeutron 

StarNeutron 60.1
R

MG
R

GMg ==  

 
Substitute numerical values and evaluate g: 
 

( )( )
( )

212
2

302211

m/s1093.1
km10.5

kg1099.1/kgmN10673.660.1
×=

×⋅×
=

−

g  

 
*31 ••  
Picture the Problem We can use conservation of angular momentum to relate the 
asteroid’s aphelion and perihelion distances. 

 
Using conservation of angular 
momentum, relate the angular 
momenta of the asteroid at aphelion 
and perihelion: 
 

pa LL =  

or 
aapp rmvrmv =  

Solve for and evaluate the ratio of 
the asteroid’s aphelion and 
perihelion distances: 

43.1
km/s14
km/s20

a

p

p

a ===
v
v

r
r
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32 ••  
Picture the Problem We’ll use the law of gravity to find the gravitational force acting on 
the satellite. The application of Newton’s 2nd law will lead us to the speed of the satellite 
and its period can be found from its definition. 

 
(a) Letting m represent the mass of 
the satellite and h its elevation, use 
the law of gravity to express the 
gravitational force acting on it: 

( ) ( )

2

E

2
E

2
E

2
E

E
g

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

+
=

+
=

R
h

mg
hR
gmR

hR
GmMF

 

 
Substitute numerical values and 
evaluate Fg: 

( )( )

N6.37

m106.37
m1051

N/kg9.81kg300

1
2

6

72

E

g

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

×
+

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

R
h

mgF

 

 
(b) Using Newton’s 2nd law, relate 
the gravitational force acting on the 
satellite to its centripetal 
acceleration: 
 

r
vmF

2

g =  

Solve for v: 

m
rF

v g=  

 
Substitute numerical values and 
evaluate v: 

( )( )

km/s2.66

kg300
m105m106.37N37.6 76

=

×+×
=v

 

 
(c) Express the period of the 
satellite: 
 

v
rT π2

=  

Substitute numerical values and 
evaluate T: 

( )

h9.36
s3600

h1s1033.1

m/s102.66
m105m106.372

5

3

76

=××=

×
×+×

=
πT
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*33 ••  
Picture the Problem We can determine the maximum range at which an object with a 
given mass can be detected by substituting the equation for the gravitational field in the 
expression for the resolution of the meter and solving for the distance. Differentiating 
g(r) with respect to r, separating variables to obtain dg/g, and approximating ∆r with dr 
will allow us to determine the vertical change in the position of the gravity meter in the 
earth’s gravitational field is detectable. 

 
(a) Express the gravitational field of 
the earth: 2

E

E
E R

GMg =  

 
Express the gravitational field due 
to the mass m (assumed to be a point 
mass) of your friend and relate it to 
the resolution of the meter: 
 

( ) 2
E

E11
E

11
2 1010

R
GMg

r
Gmrg −− ===  

Solve for r: 

E

11

E
10

M
mRr =  

 
Substitute numerical values and 
evaluate r: ( ) ( )

m37.7

kg105.98
kg8010m106.37 24

11
6

=

×
×=r

 

 
(b) Differentiate g(r) and simplify to 
obtain: 

g
rr

Gm
rr

Gm
dr
dg 222

23 −=⎟
⎠
⎞

⎜
⎝
⎛−=

−
=  

 
Separate variables to obtain: 11102 −=−=

r
dr

g
dg

 

 
Approximating dr with ∆r, evaluate 
∆r with r = RE: 

( )( )

mm0319.0

m1019.3

m1037.610
5

611
2
1

=

×=

×−=∆
−

−r

 

 
34 ••   
Picture the Problem We can use the law of gravity and Newton’s 2nd law to relate the 
force exerted on the planet by the star to its orbital speed and the definition of the period 
to relate it to the radius of the orbit. 
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Using the law of gravity and 
Newton’s 2nd law, relate the force 
exerted on the planet by the star to 
its centripetal acceleration: 
 

r
vm

r
KMmF

2

net ==  

Solve for v2 to obtain: 
 

KMv =2  

Express the period of the planet: r
KMKM

r
v

rT πππ 222
===  

or  
rT ∝  

 
*35 ••  
Picture the Problem We can use the definitions of the gravitational fields at the surfaces 
of the earth and the moon to express the accelerations due to gravity at these locations in 
terms of the average densities of the earth and the moon. Expressing the ratio of these 
accelerations will lead us to the ratio of the densities. 

 
Express the acceleration due to 
gravity at the surface of the earth in 
terms of the earth’s average density: 

EE3
4

2
E

3
E3

4
E

2
E

EE
2
E

E
E

RG
R

RG
R

VG
R

GMg

πρ

πρρ

=

===
 

 
Express the acceleration due to 
gravity at the surface of the moon in 
terms of the moon’s average 
density: 
 

MM3
4

M RGg πρ=  

Divide the second of these equations 
by the first to obtain: EE

MM

E

M

R
R

g
g

ρ
ρ

=  

 

Solve for 
E

M

ρ
ρ

: 
ME

EM

E

M

Rg
Rg

=
ρ
ρ

 

 
Substitute numerical values and 

evaluate 
E

M

ρ
ρ

: 

( )( )
( )( )

605.0

m101.738m/s9.81
m106.37m/s1.62

62

62

E

M

=

×
×

=
ρ
ρ
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Measurement of G 
 
36 •  
Picture the Problem We can use the law of gravity to find the forces of attraction 
between the two masses and the definition of torque to determine the balancing torque 
required. 

 
(a) Use the law of gravity to express 
the force of attraction between the 
two masses: 
 

2
21

r
mGmF =  

 

Substitute numerical values and evaluate F: 
 

( )( )( )
( )

N1085.1
m0.06

kg0.01kg10/kgmN106.6726 9
2

2211
−

−

×=
⋅×

=F  

 
(b) Use its definition to find the 
torque exerted by the suspension to 
balance these forces: 

( )( )
mN103.70

m0.1N1085.122
10

9

⋅×=

×==
−

−Frτ
 

 
Gravitational and Inertial Mass 
 
37 •  
Picture the Problem Newton’s 2nd law of motion relates the masses and accelerations of 
these objects to their common accelerating force. 
 
(a) Apply Newton’s 2nd law to the 
standard object: 
 

11amF =  

Apply Newton’s 2nd law to the 
object of unknown mass: 
 

22amF =  

Eliminate F between these two 
equations and solve for m2: 

1
2

1
2 m

a
am =  

 
Substitute numerical values and 
evaluate m2: 

( ) kg2.27kg1
m/s1.1705
m/s2.6587

2

2

2 ==m  

 
(b) . of mass   theisIt 2minertial  
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38 •  
Picture the Problem Newton’s 2nd law of motion relates the weights of these two objects 
to their masses and the acceleration due to gravity. 
 
(a) Apply Newton’s 2nd law to the 
standard object: 
 

gmwF 11net ==  

Apply Newton’s 2nd law to the 
object of unknown mass: 
 

gmwF 22net ==  

Eliminate g between these two 
equations and solve for m2: 

1
1

2
2 m

w
wm =  

 
Substitute numerical values and 
evaluate m2: 

( ) kg77.5kg1
N9.81
N56.6

2 ==m  

 

(b) 
. of mass   theisit  field, nalgravitatio

 searth'  theof on effect  by the determined isresult   thisSince

2

2

mnalgravitatio
m

 

 
*39   •  
Picture the Problem Noting that g1 ~ g2 ~ g, let the acceleration of gravity on the first 
object be g1, and on the second be g2. We can use a constant-acceleration equation to 
express the difference in the distances fallen by each object and then relate the average 
distance fallen by the two objects to obtain an expression from which we can 
approximate the distance they would have to fall before we might measure a difference in 
their fall distances greater than 1 mm. 
 
Express the difference ∆d in the 
distances fallen by the two objects in 
time t: 
 

21 ddd −=∆  

Express the distances fallen by each 
of the objects in time t: 
 

2
12

1
1 tgd =  

and 
2

22
1

2 tgd =  
 

Substitute to obtain: 
 

( ) 2
212

12
22

12
12

1 tggtgtgd −=−=∆  

Relate the average distance d fallen 
by the two objects to their time of 
fall: 
  

2
2
1 gtd =  

or 

g
dt 22 =  
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Substitute to obtain: 
 g

gd
g
dgd ∆
=∆≈∆

2
2
1  

 
Solve for d to obtain: 

g
gdd
∆

∆=  

 
Substitute numerical values and evaluate d: ( )( ) m1010m10 9123 == −d  

 
Gravitational Potential Energy 
 
40 •  
Picture the Problem Choosing the zero of gravitational potential energy to be at infinite 
separation yields, as the potential energy of a two-body system in which the objects are 
separated by a distance r, ( ) rGMmrU −= , where M and m are the masses of the two 

bodies. In order for an object to just escape a gravitational field from a particular 
location, it must have enough kinetic energy so that its total energy is zero. 
 
(a) Letting U(∞) = 0, express the 
gravitational potential energy of the 
earth-object system:  
 

( )
r

mGM
rU E−=                     (1) 

Substitute for GME and simplify to 
obtain: 

( ) E
E

2
E

E

E
E mgR

R
mgR

R
mGMRU −=−=−=  

 
Substitute numerical values and evaluate U(RE): 
 

( ) ( )( )( ) J106.25m106.37kg/N9.81kg100 96
E ×−=×−=RU  

 
(b) Evaluate equation (1) with r = 2RE: ( )

E2
1

E

2
E

E

E
E 22

2

mgR
R

mgR
R

mGMRU

−=

−=−=
 

 
Substitute numerical values and evaluate U(2RE): 
 

( ) ( )( )( ) J1012.3m106.37kg/N9.81kg1002 96
2
1

E ×−=×−=RU  

 
(c) Express the condition that an 
object must satisfy in order to 
escape from the earth’s gravitational 

( ) ( ) 022 EEesc =+ RURK  

or 
( ) 02 E

2
esc2

1 =+ RUmv  
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field from a height RE above its 
surface: 
 
Solve for vesc: ( )

m
RUv E

esc
22−

=  

 
Substitute numerical values and 
evaluate vesc: 

( ) km/s7.90
kg100

J103.122 9

esc =
×−−

=v

 
 
41 •  
Picture the Problem In order for an object to just escape a gravitational field from a 
particular location, an amount of work must be done on it that is equal to its potential 
energy in its initial position. 
 
Express the work needed to remove 
the point mass from the surface of 
the sphere to a point a very large 
distance away: 
 

if UUUW −=∆=  

or, because Uf = 0, 
iUUW −=∆=                           (1) 

Express the initial potential energy 
of the system: 
 

R
GMm

U 0
i −=  

Substitute in equation (1) to obtain: 

R
GMm

W 0=  

 
42 •  
Picture the Problem Let the zero of gravitational potential energy be at infinity and let 
m represent the mass of the spacecraft. We’ll use conservation of energy to relate the 
initial kinetic and potential energies to the final potential energy of the earth-spacecraft 
system. 
 
Use conservation of energy to relate 
the initial kinetic and potential 
energies of the system to its final 
energy when the spacecraft is one 
earth radius above the surface of the 
planet: 
 

0ifif =−+− UUKK  

or, because Kf = 0, 
( ) ( ) ( ) 02 EEE =−+− RURURK          (1) 
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Express the potential energy of the 
spacecraft-and-earth system when 
the spacecraft is at a distance r  from 
the surface of the earth: 
 

( )
r

mGM
rU E−=  

Substitute in equation (1) to obtain: 0
2 E

E

E

E2
2
1 =+−−

R
mGM

R
mGMmv  

 
Solve for v: 

E
E

2
E

E

E gR
R
gR

R
GMv ===  

 
Substitute numerical values and evaluate v: ( )( )

km/s7.91

m106.37m/s9.81 62

=

×=v
 

 
*43 ••  
Picture the Problem Let the zero of gravitational potential energy be at infinity and let 
m represent the mass of the object. We’ll use conservation of energy to relate the initial 
potential energy of the object-earth system to the final potential and kinetic energies.  
 
Use conservation of energy to relate 
the initial potential energy of the 
system to its energy as the object is 
about to strike the earth: 

0ifif =−+− UUKK  

or, because Ki = 0, 
( ) ( ) ( ) 0EEE =+−+ hRURURK      (1) 

where h is the initial height above the 
earth’s surface. 
 

Express the potential energy of the 
object-earth system when the object 
is at a distance r  from the surface of 
the earth: 
 

( )
r

mGM
rU E−=  

Substitute in equation (1) to obtain: 0
E

E

E

E2
2
1 =

+
+−

hR
mGM

R
mGM

mv  

 
Solve for v: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=

hR
hgR

hR
GM

R
GMv

E
E

E

E

E

E

2

2
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Substitute numerical values and evaluate v: 
 

( )( )( ) km/s94.6
m104m106.37

m104m106.37m/s9.812
66

662

=
×+×

××
=v  

 
44 ••  
Picture the Problem Let the zero of gravitational potential energy be at infinity, m 
represent the mass of the object, and h the maximum height reached by the object. We’ll 
use conservation of energy to relate the initial potential and kinetic energies of the object-
earth system to the final potential energy.  
 
Use conservation of energy to relate 
the initial potential energy of the 
system to its energy as the object is 
about to strike the earth: 

0ifif =−+− UUKK  

or, because Kf = 0, 
( ) ( ) ( ) 0EEE =+−+ hRURURK     (1) 

where h is the initial height above the 
earth’s surface. 
 

Express the potential energy of the 
object-earth system when the object 
is at a distance r  from the surface of 
the earth: 

( )
r

mGM
rU E−=  

Substitute in equation (1) to obtain: 0
E

E

E

E2
2
1 =

+
+−

hR
mGM

R
mGM

mv  

 
Solve for h: 

12
2

E

E

−
=

v
gR

Rh  

 
Substitute numerical values and evaluate h: 

( )( )
( )

km359

1
m104

m106.37m/s9.812
m106.37

23

62

6

=

−
×

×
×

=h

 

 
45 ••  
Picture the Problem When the point mass is inside the spherical shell, there is no mass 
between it and the center of the shell. On the other hand, when the point mass is outside 
the spherical shell we can use the law of gravity to express the force acting on it. In (b) 
we can derive U(r) from F(r).  
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(a) The force exerted by the shell on 
a point mass m0 when m0 is inside 
the shell is: 
 

0inside =F
r

 

The force exerted by the shell on a 
point mass m0 when m0 is outside 
the shell is: 

rgF ˆ
2

0
0outside r

GMmm −==
rr

 

where r̂ is radially outward from the center 
of the spherical shell. 
 

(b) Use its definition to express U(r) 
for  r > R: 

( )

r
GMm

drrGMmdrFrU
rr

r

0

2
0   

−=

=−= ∫∫
∞

−

∞  

 
When r = R: ( )

R
GMmRU 0−=  

 
(c) For r < R, F = 0 and: constant0 =⇒= U

dr
dU

 

 
(d) Because U is continuous, then for 
r < R: 

( ) ( )
R

GMmRUrU 0−==  

 
(e) A sketch of U(r) with  
GMm0 = 1 is shown to the right: 

GMm 0 = 1

r

U

 
 
46 •  
Picture the Problem The escape speed from a planet is related to its mass according to 

RGMv 2e = , where M and R represent the mass and radius of the planet, 

respectively. 
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Express the escape speed from Saturn: 

S

S
e.S

2
R

GM
v =             (1) 

 
Express the escape speed from Earth: 

E

E
e.E

2
R

GM
v =             (2) 

 
Divide equation (1) by equation (2) 
to obtain: 

E

S

S

E

E

E

S

S

e.E

e.S

2

2

M
M

R
R

R
GM
R

GM

v
v

⋅==  

 
Substitute numerical values and 

evaluate 
e.E

e.S

v
v

: 

 

17.3
1

2.95
47.9
1

e.E

e.S =×=
v
v

 

Solve for and evaluate ve,S: ( )
km/s5.35

km/s2.1117.317.3 e.Ee.S

=

== vv
 

 
47 •  
Picture the Problem The escape speed from the moon or the earth is given by 

RGMv 2e = , where M and R represent the masses and radii of the moon or the earth. 

 
Express the escape speed from the moon: 

mm
m

m
e.S 22 Rg

R
GMv ==             (1) 

 
Express the escape speed from earth: 

EE
E

E
e.E 22 Rg

R
GMv ==              (2) 

 
Divide equation (1) by equation (2) 
to obtain: 

EE

mm

EE

mm

e.E

e.m

Rg
Rg

Rg
Rg

v
v

==  

 
Solve for ve,m: 

e.E
EE

mm
e.m v

Rg
Rgv =  

 
Substitute numerical values and 
evaluate ve,m: 

( )( )( )
km/s38.2

km/s2.11273.0166.0e.m

=

=v
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*48 • 
Picture the Problem We’ll consider a rocket of mass m which is initially on the surface 
of the earth (mass M and radius R) and compare the kinetic energy needed to get the 
rocket to its escape velocity with its kinetic energy in a low circular orbit around the 
earth. We can use conservation of energy to find the escape kinetic energy and Newton’s 
law of gravity to derive an expression for the low earth-orbit kinetic energy. 
 
Apply conservation of energy to 
relate the initial energy of the rocket 
to its escape kinetic energy: 
 

0ifif =−+− UUKK  

Letting the zero of gravitational 
potential energy be at infinity we 
have Uf = Kf = 0 and: 
 

0ii =−− UK  
or 

R
GMmUK =−= ie  

 
Apply Newton’s law of gravity to 
the rocket in orbit at the surface of 
the earth to obtain: 
 

R
vm

R
GMm 2

2 =  

 
 

Rewrite this equation to express the 
low-orbit kinetic energy Eo of the 
rocket: R

GMmmvK
2

2
2
1

o ==  

Express the ratio of Ko to Ke: 

2
12

e

o ==

R
GMm

R
GMm

K
K

⇒ oe 2KK = , as 

asserted by Heinlein. 
 
49 ••  
Picture the Problem Let the zero of gravitational potential energy be at infinity, m 
represent the mass of the particle, and the subscript E refer to the earth. When the particle 
is very far from the earth, the gravitational potential energy of the earth-particle system 
will be zero. We’ll use conservation of energy to relate the initial potential and kinetic 
energies of the particle-earth system to the final kinetic energy of the particle.  
 
Use conservation of energy to relate 
the initial energy of the system to its 
energy when the particle is very 
from the earth: 
 

0ifif =−+− UUKK  

or, because Uf = 0, 
( ) ( ) ( ) 0EE =−−∞ RURKK          (1) 

 

Substitute in equation (1) to obtain: ( ) 02
E

E2
e2

12
2
1 =+−∞ R

mGM
vmmv  

or, because 2
EE gRGM = , 

0E
2

2
12

2
1 =+−∞ mgRmvmv  



          Chapter 11 
      

 

858 

Solve for v∞: ( )E
2
e22 gRvv −=∞  

 
Substitute numerical values and evaluate v∞: 
 

( ) ( )( )[ ] km/s4.19m106.37m/s9.81m/s1011.222 6223 =×−×=∞v  

 
50 ••  
Picture the Problem Let the zero of gravitational potential energy be at infinity, m 
represent the mass of the particle, and the subscript E refer to the earth. When the particle 
is very far from the earth, the gravitational potential energy of the earth-particle system 
will be zero. We’ll use conservation of energy to relate the initial potential and kinetic 
energies of the particle-earth system to the final kinetic energy of the particle.  
 
Use conservation of energy to relate 
the initial energy of the system to its 
energy when the particle is very far 
away: 

0ifif =−+− UUKK  

or, because Uf = 0, 
( ) ( ) ( ) 0EE =−−∞ RURKK          (1) 

 
Substitute in equation (1) to obtain: 0

E

E2
i2

12
2
1 =+−∞ R

mGM
mvmv  

or, because 2
EE gRGM = , 

0E
2
i2

12
2
1 =+−∞ mgRmvmv  

 
Solve for vi: E

2
i 2gRvv += ∞  

 
Substitute numerical values and evaluate vi: 
 

( ) ( )( ) km/s8.15m106.37m/s9.812m/s1011.2 6223
i =×+×=v  

 
51 •• 
Picture the Problem We can use the definition of kinetic energy to find the energy 
necessary to launch a 1-kg object from the earth at escape speed. 
 
(a) Using the definition of kinetic 
energy, find the energy required to 
launch a 1-kg object from the 
surface of the earth at escape speed: 
 

( )( )
MJ62.7

m/s1011.2kg1 23
2
1

2
e2

1

=

×=

= mvK
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(b) Using the conversion factor  
1 kW⋅h = 3.6 MJ, convert 62.7 MJ 
to kW⋅h: hkW4.17

MJ3.6
hkW1MJ7.62

⋅=

⋅
×=K

 

 
(c) Express the cost of this project in 
terms of the mass of the astronaut: 
 

mass
kg

energyrequiredrateCost ××=  

Substitute numerical values and find 
the cost: 

( )

$139

kg80
kg

hkW17.4
h kW

$0.10Cost

=

⋅
×

⋅
=

 

 
52 ••  
Picture the Problem Let m represent the mass of the body that is projected vertically 
from the surface of the earth. We’ll begin by using conservation of energy under the 
assumption that the gravitational field is constant to determine 
H ′. We’ll apply conservation of energy a second time, with the zero of gravitational 
potential energy at infinity, to express H. Finally, we’ll solve these two equations 
simultaneously to express H in terms of H ′. 
Assuming the gravitational field to 
be constant and letting the zero of 
potential energy be at the surface of 
the earth, apply conservation of 
energy to relate the initial kinetic 
energy and the final potential energy 
of the object-earth system: 
 

0ifif =−+− UUKK  

or, because Kf = Ui = 0, 
0fi =+− UK  

Substitute for Ki and Uf and solve 
for H ′:  

02
2
1 =+− mgH'mv  

and 

g
vH'
2

2

=                            (1) 

 
Letting the zero of gravitational 
potential energy be at infinity, use 
conservation of energy to relate the 
initial kinetic energy and the final 
potential energy of the object-earth 
system: 
 

0ifif =−+− UUKK  

or, because Kf  = 0, 
0ifi =−+− UUK  
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Substitute to obtain: 0
EE

2
2
1 =+

+
−−

R
GMm

HR
GMmmv  

or 

0
E

2
E

E

2
E2

2
1 =+

+
−−

R
gR

HR
gRv  

 
Solve for v2: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=

HR
HgR

HRR
gRv

E
E

EE

2
E

2

2

112
 

 
Substitute in equation (1) to obtain: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
HR

HRH'
E

E  

 
Solve for H: 

H'R
H'RH
−

=
E

E  

Orbits 
 
53 ••  
Picture the Problem We can use its definition to express the period of the spacecraft’s 
motion and apply Newton’s 2nd law to the spacecraft to determine its orbital velocity. We 
can then use this orbital velocity to calculate the kinetic energy of the spacecraft. We can 
relate the spacecraft’s angular momentum to its kinetic energy and moment of inertia. 
 
(a) Express the period of the 
spacecraft’s orbit about the earth: 

( )
v
R

v
R

v
RT EE 6322 πππ

===  

where v is the orbital speed of the 
spacecraft. 
 

Use Newton’s 2nd law to relate the 
gravitational force acting on the 
spacecraft to its orbital speed: 
 

( ) E

2

2
E

E
radial 33 R

vm
R

mGM
F ==  

Solve for v to obtain: 

3
EgRv =  

 
Substitute for v in our expression for 
T to obtain: g

RT E36 π=  
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Substitute numerical values and 
evaluate T: 

h7.31
s3600

h1s102.631

m/s9.81
m106.37π36

4

2

6

=××=

×
=T

 

 
(b) Using its definition, express the 
spacecraft’s kinetic energy: 
 

( )E3
1

2
12

2
1 gRmmvK ==  

 

Substitute numerical values and 
evaluate K: 

( )( )( )
GJ 1.04

m106.37m/s9.81kg100 62
6
1

=

×=K
 

 
(c) Express the kinetic energy of the 
spacecraft in terms of its angular 
momentum: 
 

I
LK
2

2

=  

Solve for L: IKL 2=  
 

Express the moment of inertia of the 
spacecraft with respect to an axis 
through the center of the earth: 
 

( )
2
E

2
E

9

3

mR

RmI

=

=
 

Substitute and solve for L: mKRKmRL 2318 E
2
E ==  

 
Substitute numerical values and evaluate L: 
 

( ) ( )( ) sJ108.72J101.04kg1002m106.373 1296 ⋅×=××=L  

 
*54 •  
Picture the Problem Let the origin of our coordinate system be at the center of the earth 
and let the positive x direction be toward the moon. We can apply the definition of center 
of mass to find the center of mass of the earth-moon system and find the ″orbital″ speed 
of the earth using xcm as the radius of its motion and the period of the moon as the period 
of this motion of the earth. 
 
(a) Using its definition, express the 
x coordinate of the center of mass of 
the earth-moon system: 
 

moonE

moonmoonEE
cm mM

xmxMx
+
+

=  

Substitute numerical values and evaluate xcm: 
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( ) ( )( ) m1064.4
kg1036.7kg1098.5

m1082.3kg1036.70 6
2224

822
E

cm ×=
×+×

××+
=

Mx  

 
Note that, because the radius of the earth is 6.37×106 m, the center of mass is actually 
located about 1700 km below the surface of the earth. 
 
(b) Express the ″orbital″ speed of 
the earth in terms of the radius of its 
circular orbit and its period of 
rotation: 
 

T
xv cm2π

=  

Substitute numerical values and 
evaluate v: 
 

( ) m/s4.12

h
s3600

d
h24d3.27

m1064.42 6

=
××

×
=

πv  

 
55 ••  
Picture the Problem We can express the energy difference between these two orbits in 
terms of the total energy of a satellite at each elevation. The application of Newton’s 2nd 
law to the force acting on a satellite will allow us to express the total energy of each 
satellite as function of its mass, the radius of the earth, and its orbital radius. 
 
Express the energy difference: 1000geo EEE −=∆                      (1) 

 
Express the total energy of an 
orbiting satellite: 

R
mGMmv

UKE

E2
2
1

tot

−=

+=
             (2) 

where R is the orbital radius. 
 

Apply Newton’s 2nd law to a 
satellite to relate the gravitational 
force to the orbital speed: 

R
vm

R
mGMF

2

2
E

radial ==  

or 

R
v

R
gR 2

2

2
E =  

 
Simplify and solve for v2: 

R
gRv

2
E2 =  

 
Substitute in equation (2) to obtain: 

R
mgR

R
mgR

R
gRmE

2

2
E

2
E

2
E

2
1

tot −=−=  
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Substitute in equation (1) and 
simplify to obtain: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

+−=∆

geo1000

2
E

1000

2
E

geo

2
E

11
2

22

RR
mgR

R
mgR

R
mgRE

 

 
Substitute numerical values and evaluate ∆E: 
 

( )( )( ) GJ1.11
m104.22

1
m1037.7

1m106.37kg/N9.81kg500 76

26
2
1 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×

−
×

×=∆E  

 
56  ••  
Picture the Problem We can use Kepler’s 3rd law to relate the periods of the moon and 
Earth, in their orbits about the earth and the sun, to their mean distances from the objects 
about which they are in orbit. We can solve these equations for the masses of the sun and 
the earth and then divide one by the other to establish a value for the ratio of the mass of 
the sun to the mass of the earth. 
 
Using Kepler’s 3rd law, relate the 
period of the moon to its mean 
distance from the earth: 
 

3
m

E

2
2

m
4 r

GM
T π

=                           (1) 

where rm is the distance between the 
centers of the earth and the moon. 
 

Using Kepler’s 3rd law, relate the 
period of the earth to its mean 
distance from the sun: 
 

3
E

s

2
2

E
4 r
GM

T π
=                          (2) 

where rE is the distance between the 
centers of the earth and the sun. 
 

Solve equation (1) for ME: 
3

m2
m

2

E
4 r
GT

M π
=                          (3) 

 
Solve equation (2) for Ms: 3

E2
E

2

s
4 r
GT

M π
=                           (4) 

 
Divide equation (4) by equation (3) 
and simplify to obtain: 

2

E

m

3

m

E

E

s
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

T
T

r
r

M
M

 

 
Substitute numerical values and 
evaluate Ms/ME: 

5

23

8

11

E

s

1038.3

d24.365
d3.27

m1082.3
m105.1

×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×
×

=
M
M
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Express the difference between this 
value and the measured value of 
3.33×105: 

%50.1
103.33

103.33103.38diff% 5

55

=
×

×−×
=

 

 
The Gravitational Field 
 
57 •  
Picture the Problem The gravitational field at any point is defined by .mFg

rr
=  

 
Using its definition, express the 
gravitational field at a point in space: 

( ) ( )iiFg ˆN/kg4
kg3

ˆN12
===

m

r
r

 

 
*58 •  
Picture the Problem The gravitational field at any point is defined by .mFg

rr
=  

 
Using its definition, express the 
gravitational field at a point in 
space: 
 

m
Fg
r

r
=  

Solve for F
r

and substitute for m and 
g
r

to obtain: ( )( )
( )j

j

gF

ˆ10

ˆN/kg102.5kg004.0
8

6

N

m

−

−

=

×=

=
rr

 

59 ••  
Picture the Problem We can use the definition of the gravitational field due to a point 
mass to find the x and y components of the field at the origin and then add these 
components to find the resultant field. We can find the magnitude of the field from its 
components using the Pythagorean theorem. 
 
(a) Express the gravitational field 
due to the point mass at x = L: 
 

ig ˆ
2L

Gm
x =
r

 

Express the gravitational field due 
to the point mass at y = L: 

jg ˆ
2L

Gm
y =
r

 

 
Add the two fields to obtain: 

jiggg ˆˆ
22 L

Gm
L

Gm
yx +=+=
rrr
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(b) Find the magnitude of :g
r

 

2

22
22

2
L

Gm
L

Gm
L

Gmgg yx

=

+=+=gr

 

 
60 ••  
Picture the Problem We can find the net force acting on m by superposition of the 
forces due to each of the objects arrayed on the circular arc. Once we have expressed the 
net force, we can find the gravitational field at the center of curvature from its definition. 
 
(a) Express the net force acting on m: 
 

jiF ˆˆ
yx FF +=

r
                         (1) 

Express Fx: 

0

45cos

45cos

2

222

=

°−

°+−=

R
GMm

R
GMm

R
GMm

R
GMmFx

 

Express Fy: 

( )145sin2

45sin

45sin

2

2

22

+°=

°+

°+=

R
GMm

R
GMm

R
GMm

R
GMmFy

 

Substitute numerical values and 
evaluate Fy: 
 

( )
( )

( )( )( )
N1067.9

145sin2kg2kg3
m1.0

kg/mN10673.6

8

2

2211

−

−

×=

+°×

⋅×
=yF

 

Substitute in equation (1) to obtain: ( )jiF ˆN1067.9ˆ0 8−×+=
r

 

 
(b) Using its definition, express g

r
at 

the center of curvature of the arc: 
( )

( )j

jiFg

ˆN/kg1083.4

kg2

ˆN1067.9ˆ0

8

8

−

−

×=

×+
==

m

r
r
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61 ••  
Picture the Problem The configuration of 
point masses is shown to the right. The 
gravitational field at any point can be 
found by superimposing the fields due to 
each of the point masses. 

 
 

 
(a) Express the gravitational field at  
x = 2 m as the sum of the fields due to 
the point masses m1 and m2: 
 

21 ggg
rrr

+=                              (1) 

Express 1g
r

and :2g
r

 ig ˆ
2
1

1
1 x

Gm
−=

r
 and ig ˆ

2
2

2
2 x

Gm
=

r
 

 
Substitute in equation (1) to obtain: 

( )

( )i

ii

iig

ˆ

ˆ
2

ˆ

ˆˆ

24
1

12
1

2
1

2
2
1

1

2
2

2
2
1

1

mm
x
G

x
Gm

x
Gm

x
Gm

x
Gm

−−=

+−=

+−=
r

 

 
Substitute numerical values and 
evaluate g

r
: 

 
( )
( )[ ]

( ) i

i

g

ˆN/kg1067.1

ˆkg4kg2

m2
/kgmN106726.6

11

4
1

2

2211

−

−

×−=

−×

⋅×
−=

r

 

 
(b) Express 1gr and 2gr : ig ˆ

2
1

1
1 x

Gm
−=

r
 and ig ˆ

2
2

2
2 x

Gm
−=

r
 

 
Substitute in equation (1) to obtain: 

( )

( )i

ii

iig

ˆ

ˆˆ
2

ˆˆ

214
1

2
2

2
2

2
2

2

1

2
2

2
2
1

1

mm
x
G

x
Gm

x
Gm

x
Gm

x
Gm

+−=

−−=

−−=
r
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Substitute numerical values and 
evaluate g

r
: ( )

( )[ ]
( )i

i

g

ˆN/kg1034.8

ˆkg4kg2

m6
/kgmN106726.6

12

4
1

2

2211

−

−

×−=

+×

⋅×
−=

r

 

 
(c) Express the condition that g

r
= 0: 

( )
0

6 2
2

2
1 =

−
−

x
Gm

x
Gm

 

or 

( )
0

6
42

22 =
−

−
xx

 

 
Express this quadratic equation in 
standard form: 
 

036122 =−+ xx , where x is in meters. 

Solve the equation to obtain: 
 

m5.14andm48.2 −== xx  

From the diagram it is clear that the 
physically meaningful root is the 
positive one at: 

m48.2=x  

 
62 ••  
Picture the Problem To show that the maximum value of xg for the field of Example 

11-7 occurs at the points ,ax 2±=  we can differentiate gx with respect to x and set 

the derivative equal to zero. 
 
From Example 11-7: 

( ) 2/322

2
ax

GMxg x
+

−=  

 
Differentiate gx with respect to x and set the derivative equal to zero to find extreme 
values: 
 

( ) ( )[ ] extrema.for  032 2/52222/322 =+−+−=
−− axxaxGM

dx
dgx  

 
Solve for x to obtain: 

2
ax ±=  
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Remarks: To establish that this value for x corresponds to a relative maximum, we 
need to either evaluate the second derivative of gx at x = ± a/ 2  or examine the 
graph of xg at x = ± a/ 2 for concavity downward. 

  
63 ••   
Picture the Problem We can find the mass of the rod by integrating dm over its length. 
The gravitational field at x0 > L can be found by integrating g

r
d at x0 over the length of the 

rod. 
 
(a) Express the total mass of the 
stick: 

 

2
2
1

00

CLxdxCdxM
LL

=== ∫∫ λ  

(b) Express the gravitational field 
due to an element of the stick of 
mass dm: 

( ) ( )

( )
i

iig

ˆ

ˆˆ

2
0

2
0

2
0

xx
GCxdx

xx
dxG

xx
Gdmd

−
−=

−
−=

−
−=

λr

 

 
Integrate this expression over the 
length of the stick to obtain: ( )

i

ig

ˆln2

ˆ

00

0
2

0
2

0

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

−
−= ∫

Lx
L

Lx
x

L
GM

xx
xdxGC

Lr

 

64 •••  
Picture the Problem Choose a mass element dm of the rod of thickness dx at a distance x 
from the origin. All such elements produce a gravitational field at a point P located a 
distance Lx 2

1
0 > from the origin. We can calculate the total field by integrating the 

magnitude of the field produced by dm from x = −L/2 to x = +L/2.      
 
(a) Express the gravitational field at 
P due to the element dm: 

ig ˆ
2r

Gdmd x −=
r

 

 
Relate dm to dx: dx

L
Mdm =  

 
Express the distance r between dm 
and point P in terms of x and x0: 
 

xxr −= 0  

Substitute these results to express 
xdgr  in terms of x and x0: ( )

ig ˆ
2

0 ⎭
⎬
⎫

⎩
⎨
⎧

−
−= dx

xxL
GMd x

r
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(b) Integrate to find the total field: 

( )

i

i

ig

ˆ

ˆ1

ˆ

2
4
12

0

2/

2/0

2/

2/
2

0

Lx
GM

xxL
GM

xx
dx

L
GM

L

L

L

L
x

−
−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−

−=

−
−=

−

−
∫

r

 

 
(c) Use the definition of g

r
to 

express :F
r

 
igF ˆ

2
4
12

0

0
0 Lx

GMmm
−

−==
rr

 

 
(d) Factor 2

0x from the denominator 
of our expression for xgr to obtain: 

ig ˆ

4
1 2

0

2
2
0 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−=

x
Lx

GM
x
r

 

 
For x0 >> L the second term in 
parentheses is very small and: 

ig ˆ
2
0x

GM
x −≈
r

 

which is the gravitational field of a point 
mass M located at the origin. 

 
gr  due to Spherical Objects 

 
65 •  
Picture the Problem The gravitational field inside a spherical shell is zero and the field 
at the surface of and outside the shell is given by 2rGMg = . 

 
(a) Because 0.5 m < R: 0=g  

 
(b) Because 1.9 m < R: 0=g  

 
(c) Because 2.5 m > R: 

( ) ( )
( )

N/kg1020.3

m2.5
kg300/kgmN106.6726

9

2

2211

2

−

−

×=

⋅×
=

=
r

GMg
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66 •  
Determine the Concept The gravitational attraction is zero. The gravitational field inside 
the 2 m shell due to that shell is zero; therefore,  it exerts no force on the 1 m shell, and, 
by Newton’s 3rd law, that shell exerts no force on the larger shell. 
 
*67 •  
Picture the Problem The gravitational field and acceleration of gravity at the surface of 
a sphere given by ,2RGMg =  where R is the radius of the sphere and M is its mass. 

 
Express the acceleration of gravity 
on the surface of S1: 
 

21 R
GMg =  

Express the acceleration of gravity 
on the surface of S2: 22 R

GMg =  

 
Divide the second of these equations 
by the first to obtain: 1

2

2

1

2 ==

R
GM
R

GM

g
g

or 21 gg =  

 
68 ••  
Picture the Problem The gravitational field and acceleration of gravity at the surface of 
a sphere given by ,2RGMg =  where R is the radius of the sphere and M is its mass. 

Express the acceleration of gravity on 
the surface of S1: 
 

2
1

1 R
GMg =  

Express the acceleration of gravity on 
the surface of S2: 2

2
2 R

GMg =  

 
Divide the second of these equations 
by the first to obtain: 

2
2

2
1

2
1

2
2

1

2

R
R

R
GM
R

GM

g
g

==  

 
Solve for g2: 

12
2

2
1

2 g
R
R

g =  

 
Remarks: The accelerations depend only on the masses and radii because the points 
of interest are outside spherically symmetric distributions of mass. 
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69 ••  
Picture the Problem The magnitude of the gravitational force is F = mg where g inside a 
spherical shell is zero and outside is given by .2rGMg =  

 
(a) At r = 3a, the masses of both 
spheres contribute to g: 

( )
( )

( )
2

21

2
21

9

3

a
MMGm

a
MMGmmgF

+
=

+
==

 

 
(b) At r = 1.9a, g due to M2 = 0: 

( ) 2
1

2
1

61.39.1 a
GmM

a
GMmmgF ===  

 
(c) At r = 0.9a, g = 0: 0=F  

 
70 ••  
Picture the Problem The configuration is 
shown on the right. The centers of the 
spheres are indicated by the center-lines. 
The x coordinates of the mass m for parts 
(a), (b), and (c) are indicated along the x 
axis. The magnitude of the gravitational 
force is F = mg where g inside a spherical 
shell is zero and outside is given 

by 2r
GMg = .  

 
(a) Express the force acting on the 
object whose mass is m:  

( )xx ggmF 21 +=  

 
 

Find g1x at x = 3a: 
( ) 2

1
2
1

1 93 a
GM

a
GMg x ==  

 
Find g2x at x = 3a: 

( ) 2
2

2
2

2 84.48.03 a
GM

aa
GMg x =
−

=  

 
Substitute to obtain: 

⎟
⎠
⎞

⎜
⎝
⎛ +=

⎟
⎠
⎞

⎜
⎝
⎛ +=

84.49

84.49

21
2

2
2

2
1

MM
a
Gm

a
GM

a
GMmF
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(b) Find g2x at x = 1.9a: 

( ) 2
2

2
2

2 21.18.09.1 a
GM

aa
GMg x =
−

=  

 
Find g1x at x = 1.9a: 01 =xg  

 
Substitute to obtain: 

2
2

21.1 a
GmMmgF ==  

 
(c) At x = 0.9a, g1x = g2x = 0: 0=F  

 
gr Inside Solid Spheres 

 
*71 ••  
Picture the Problem The "weight" as measured by a spring scale will be the normal 
force which the spring scale presses up against you.  There are two forces acting on you 
as you stand at a distance r from the center of the planet:  the normal force (FN) and the 
force of gravity (mg). Because you are in equilibrium under the influence of these forces, 
your weight (the scale reading or normal force) will be equal to the gravitational force 
acting on you. We can use Newton’s law of gravity to express this force. 
 
(a) Express the force of gravity 
acting on you when you are a 
distance r from the center of the 
earth: 
 

2
)(

r
mrGMFg =                    (1) 

Using the definition of density, 
express the density of the earth 
between you and the center of the 
earth and the density of the earth as 
a whole: 
  

( )
( )

( )
3

3
4 r

rM
rV
rM

π
ρ ==  

and 

3
3
4

E

E

E

R
M

V
M

π
ρ ==  

 
Because we’re assuming the earth to 
of uniform-density and perfectly 
spherical: 

( )
3

3
4

E
3

3
4 R

M
r
rM

ππ
=  

or 

( )
3

E ⎟
⎠
⎞

⎜
⎝
⎛=

R
rMrM  

 
Substitute in equation (1) and 
simplify to obtain: 

R
r

R
mGM

r

m
R
rGM

Fg 2
E

2

3

E

=
⎟
⎠
⎞

⎜
⎝
⎛

=  
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Apply Newton’s law of gravity to 
yourself at the surface of the earth to 
obtain: 
 

2
E

R
mGMmg =  

or 

2
E

R
GMg =  

where g is the magnitude of free-fall 
acceleration at the surface of the earth. 
 

Substitute to obtain:  
r

R
mgFg =  

i.e., the force of gravity on you is 
proportional to your distance from the 
center of the earth. 
 

(b) Apply Newton’s 2nd law to your 
body to obtain: 
 

2
N ωmr

R
rmgF −=−  

Solve for your ″effective weight″ 
(i.e., what a spring scale will 
measure) FN: 

rm
R

mgmrr
R

mgF ⎟
⎠
⎞

⎜
⎝
⎛ −=−= 22

N ωω  

Note that this equation tells us that your 
effective weight increases linearly with 
distance from the center of the earth. The 
second term can be interpreted as a 
"centrifugal force" pushing out, which 
increases the farther you get from the 
center of the earth. 
 

(c) We can decide whether the 
change in mass with distance from 
the center of the earth or the 
rotational effect is more important 
by examining the ratio of the two 
terms in the expression for your 
effective weight: 
 

R
gT

T
R

gR
g

mr

r
R

mg

2

2

222 42 ππωω
=

⎟
⎠
⎞

⎜
⎝
⎛

==  

 
 

Substitute numerical values and 
evaluate this ratio: ( )

( )
291

km63704π
h

s3600h24m/s9.81

4 2

2
2

2

2

=

⎟
⎠
⎞

⎜
⎝
⎛ ×

=
R

gT
π

 

 

effect. rotational the
than important  more  times291 iscenter   thefromaway  moveyou 

asearth   theofcenter   theandyou between  mass in the change The
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72 ••  
Picture the Problem We can find the loss in weight at this depth by taking the difference 
between the weight of the student at the surface of the earth and her weight at a depth d = 
15 km. To find the gravitational field at depth d, we’ll use its definition and the mass of 
the earth that is between the bottom of the shaft and the center of the earth. We’ll assume 
(incorrectly) that the density of the earth is constant. 
 
Express the loss in weight: ( )RwRww −=∆ )( E                          (1) 

 
Express the mass M inside  
R =RE – d: 
 

( )3E3
4 dRVM −== ρπρ  

 

Express the mass of the earth: 3
E3

4
EE RVM ρπρ ==  

 
Divide the first of these equations 
by the second to obtain: 

( ) ( )
3
E

3
E

3
E3

4

3
E3

4

E R
dR

R
dR

M
M −

=
−

=
ρπ

ρπ
 

 
Solve for M: ( )

3
E

3
E

E R
dRMM −

=  

 
Express the gravitational field at  
R =RE – d: 

( )
( ) 2

E
2

E

3
EE

2 RdR
dRGM

R
GMg

−
−

==              (2) 

 
Express the gravitational field at  
R =RE: 2

E

E
E R

GMg =                                        (3) 

 
Divide equation (2) by equation (3) 
to obtain: 

( )
( )

E

E

2
E

E

2
E

2
E

3
EE

E R
dR

R
GM

RdR
dRGM

g
g −

=
−

−

=  

 
Solve for g: 

E
E

E g
R

dRg −
=  

 
Express the weight of the student at  
R =RE – d: 

( ) ( )

E
E

E
E

E

R
1 mgd

mg
R

dRRmgRw

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−
==
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Substitute in equation (1) to obtain: 

E

E
E

E
E R

1
R

dmgmgdmgw =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=∆  

 
Substitute numerical values and 
evaluate ∆w: 

( )( ) N88.1
km6370

km15N800
==∆w  

 
73 ••  
Picture the Problem We can use the hint to find the gravitational field along the x axis. 
 
Using the hint, express ( )xg : ( ) spherehollowspheresolid ggxg +=  

 
Substitute for gsolid sphere and  
ghollow sphere and simplify to obtain: 

( )
( )

( ) ( )[ ]
( )

( ) ⎥⎦
⎤

⎢
⎣

⎡

−
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

−
−

+=

−
+=

2
2
12

3
0

2
2
1

3
2
1

3
4

0
2

3
3
4

0

2
2
1

spherehollow
2

spheresolid

8
11

3
4

Rxx
RG

Rx
RG

x
RG

Rx
GM

x
GM

xg

πρ

πρπρ
 

 
74 •••  
Picture the Problem The diagram shows 
the portion of the solid sphere in which the 
hollow sphere is embedded. 1gr is the field 

due to the solid sphere of radius R and 
density ρ0 and 2gr is the field due to the 

sphere of radius ½R and negative density 
ρ0 centered at ½R. We can find the 
resultant field by adding the x and y 
components of 1gr and 2gr . 

 
 
Use its definition to express 1g

r
: 

3
4

3
4

0

2

3
0

2
0

21

rG
r

Gr
r

VG
r

GM

πρ

πρρ

=

===gr

 

 
Find the x and y components of 1gr : 

3
4cos 0

111
Gx

r
xggg x

πρθ −=⎟
⎠
⎞

⎜
⎝
⎛−=−=  

and 
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3
4sin 0

111
Gy

r
yggg y

πρθ −=⎟
⎠
⎞

⎜
⎝
⎛−=−=  

where the negative signs indicate that the 
field points inward. 
 

Use its definition to express 2gr : 

3
4

3
4

20

2
2

3
20

2
2

20
2

2
2

Gr
r

Gr
r

VG
r

GM

πρ

πρρ

=

===gr

 

where ( ) 22
2
1

2 yRxr +−=  

 
Express the x and y components of :2gr  ( )

3
4 2

1
0

2

2
1

22
RxG

r
Rx

gg x
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

πρ
 

3
4 0

2
22

Gy
r
ygg y

πρ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

 
Add the x components to obtain the 
x component of the resultant field: ( )

3
2

3
4

3
4

0

2
1

00

21

GR

RxGGx
ggg xxx

πρ

πρπρ

−=

−
+−=

+=

 

where the negative sign indicates that the 
field points inward. 
 

Add the y components to obtain the 
y component of the resultant field: 

0
3

4
3

4 00

21

=+−=

+=

GyGy

ggg yyy

πρπρ  

 
Express g

r
in vector form and 

evaluate gr : ijig ˆ
3

2ˆˆ 0 ⎟
⎠
⎞

⎜
⎝
⎛−=+=

GRGg yx
πρr

 

and 

3
2 0GRπρ

=g
r

 

 
75 •••  
Picture the Problem The gravitational field will exert an inward radial force on the 
objects in the tunnel. We can relate this force to the angular velocity of the planet by 
using Newton’s 2nd law of motion. 
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Letting r be the distance from the 
objects to the center of the planet, 
use Newton’s 2nd law to relate the 
gravitational force acting on the 
objects to their angular velocity: 
 

2
gnet ωmrFF ==  

or 
2ωmrmg =  

Solve for ω to obtain: 

r
g

=ω                                   (1) 

 
Use its definition to express g: 

3
4

3
4

0

2

3
0

2
0

2

rG
r

Gr
r

VG
r

GMg

πρ

πρρ

=

===
 

 
Substitute in equation (1) and simplify: 

3
43

4
0

0
G

r

rG
πρ

πρ

ω ==  

 
76 •••  
Picture the Problem Because we’re given the mass of the sphere, we can find C by 
expressing the mass of the sphere in terms of C. We can use its definition to find the 
gravitational field of the sphere both inside and outside its surface. 
 
(a) Express the mass of a differential 
element of the sphere: 
 

( )drrdVdm 24πρρ ==  

Integrate to express the mass of the 
sphere in terms of C: ( ) CrdrCM ππ 2

m5

0

m504 == ∫  

 
Solve for C: 

( )π2m50
MC =  

 
Substitute numerical values and 
evaluate C: ( )

2
2 kg/m436.6

m50
kg1011

==
π

C  

 
(b) Use its definition to express the 
gravitational field of the sphere at a 
distance from its center greater than 
its radius: 

2r
GMg =  



          Chapter 11 
      

 

878 

 
(1) For r > 5 m: ( ) ( )

2

8

2

2211

N/kg1075.6

kg1011/kgmN106.6726

r

r
g

−

−

×
=

⋅×
=

 
Use its definition to express the 
gravitational field of the sphere at a 
distance from its center less than its 
radius: 

GC
r

drrC
G

r

dr
r
Cr

G
r

drr
Gg

r

rr

π
π

πρπ

2
4

44

2
0

2
0

2

2
0

2

==

==

∫

∫∫

 

 
(2) For r < 5 m: ( )

( )
N/kg1070.2

kg/m6.436
/kgmN106726.62

9

2

2211

−

−

×=

×

⋅×= πg
 

Remarks: Note that g is continuous at r = 5 m. 
 
*77 •••  
Picture the Problem We can use conservation of energy to relate the work done by the 
gravitational field to the speed of the small object as it strikes the bottom of the hole. 
Because we’re given the mass of the sphere, we can find C by expressing the mass of the 
sphere in terms of C. We can then use its definition to find the gravitational field of the 
sphere inside its surface. The work done by the field equals the negative of the change in 
the potential energy of the system as the small object falls in the hole. 
 
Use conservation of energy to relate  
the work done by the gravitational  
field to the speed of the small object  
as it strikes the bottom of the hole: 

0if =∆+− UKK  

or, because Ki = 0 and W = −∆U, 
2

2
1 mvW =  

where v is the speed with which the object 
strikes the bottom of the hole and W is the 
work done by the gravitational field. 
 

Solve for v: 

m
Wv 2

=                          (1) 

 
Express the mass of a differential 
element of the sphere: 
 

( )drrdVdm 24πρρ ==  
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Integrate to express the mass of the 
sphere in terms of C: ( ) CrdrCM ππ 2

m5

0

m504 == ∫  

 
Solve for and evaluate C: 

( ) ( )
2

22

kg/m436.6
m50

kg1011
m50

=

==
ππ

MC
 

 
Use its definition to express the 
gravitational field of the sphere at a 
distance from its center less than its 
radius: 

GC
r

drrC
G

r

dr
r
Cr

G
r

drr
Gg

r

rr

π
π

πρπ

2
4

44

2
0

2
0

2

2
0

2

==

==

∫

∫∫

 

 
Express the work done on the small 
object by the gravitational force 
acting on it: 

( )mgmgdrW m2
m3

m5

=−= ∫  

 
Substitute in equation (1) and 
simplify to obtain: 
 

( ) ( ) ( ) GC
m

GCmv ππ m82m22
==  

Substitute numerical values and evaluate v: 
 

( ) ( )( ) mm/s104.0kg/m436.6/kgmN106726.6m8 22211 =⋅×= −πv  

 
78 •••  
Picture the Problem The spherical deposit of heavy metals will increase the 
gravitational field at the surface of the earth. We can express this increase in terms of the 
difference in densities of the deposit and the earth and then form the quotient ∆g/g. 
 
Express ∆g due to the spherical deposit: 

2r
MGg ∆

=∆                     (1) 

 
Express the mass of the spherical deposit: 
 

( ) 3
3
43

3
4 RRVM ρππρρ ∆=∆=∆=  

Substitute in equation (1): 
2

3
3
4

r
RG

g
ρπ ∆

=∆  
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Express ∆g/g: 

2

3
3
42

3
3
4

gr
RG

g
r

RG

g
g ρπ

ρπ
∆

=

∆

=
∆

 

 
Substitute numerical values and evaluate ∆g/g: 

( ) ( ) ( )
( )( )

5
2

332211
3
4

1056.3
m2000N/kg81.9

m1000kg/m5000/kgmN106726.6 −
−

×=
⋅×

=
∆ π
g
g

 

 
*79 •••  
Picture the Problem The force of attraction of the small sphere of mass m to the lead 
sphere is the sum of the forces due to the solid sphere ( SF

r
) and the cavities ( CF

r
) of 

negative mass. 
 
(a) Express the force of attraction: CS FFF

rrr
+=                     (1) 

 
Use the law of gravity to express the 
force due to the solid sphere: 

iF ˆ
2S d

GMm
−=

r
 

 
Express the magnitude of the force 
acting on the small sphere due to 
one cavity: 

2
2

C

2
⎟
⎠
⎞

⎜
⎝
⎛+

=
Rd

GM'mF  

where M′ is the negative mass of a cavity. 
 

Relate the negative mass of a cavity 
to the mass of the sphere before 
hollowing: ( ) MR

RVM'

8
13

3
4

8
1

3

3
4

2

−=−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=−=

πρ

πρρ
 

 
Letting θ be the angle between the x 
axis and the line joining the center 
of the small sphere to the center of 
either cavity, use the law of gravity 
to express the force due to the two 
cavities: 
 

iF ˆcos

4
8

2
2

2
C θ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
Rd

GMmr
 

because, by symmetry, the y components 
add to zero. 

Express cosθ : 

4

cos
2

2 Rd

d

+

=θ  
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Substitute to obtain: 

i

iF

ˆ

4
4

ˆ

44
4

2/32
2

2
2

2
2

C

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

Rd

GMmd

Rd

d
Rd

GMmr

 

 
Substitute in equation (1) and simplify: 

i

iiF

ˆ

4

41

ˆ

4
4

ˆ

2/32
2

3

2

2/32
2

2

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

+

−−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+−=

Rd

d

d
GMm

Rd

GMmd
d

GMmr

 

 
(b) Evaluate F

r
at d = R: 

( )

i

iF

ˆ821.0

ˆ

4

41

2

2/32
2

3

2

R
GMm

RR

R

R
GMmR

−=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

+

−−=
r

 

 
80 ••   
Picture the Problem Let R be the size of the cluster, and N the total number of stars in it.  
We can apply Newton’s law of gravity and the 2nd law of motion to relate the net force 
(which depends on the number of stars N(r) in a sphere whose radius is equal to the 
distance between the star of interest and the center of the cluster) acting on a star at a 
distance r from the center of the cluster to its speed. We can use the definition of density, 
in conjunction with the assumption of uniform distribution of the starts within the cluster, 
to find N(r) and, ultimately, express the orbital speed v of a star in terms of the total mass 
of the cluster. 
 
Using Newton’s law of gravity and 
2nd law, express the force acting on 
a star at a distance r from the center 
of the cluster: 
 

( )
r
vM

r
MrGNrF

2

2

2

)( ==  

where N(r) is the number of stars within a 
distance r of the center of the cluster and M 
is the mass of an individual star. 
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Using the uniform distribution 
assumption and the definition of 
density, relate the number of stars 
N(r) within a distance r of the center 
of the cluster to the total number N 
of stars in the cluster: 
 

( )
3

3
43

3
4 R

NM
r
MrN

ππ
ρ ==  

or 

( ) 3

3

R
rNrN =  

Substitute to obtain: 
 r

vM
R
r

r
GNM 2

3

3

2

2

=  

or 

2
3

2

v
R
rGNM =  

 
Solve for v to obtain: 

3R
GNMrv = ⇒ rv ∝  

center.  thefrom  distancewith 
linearly increasescluster   theof

center  thearoundorbit circular  a
instar  a of ity mean veloc  thei.e.,

r

v

 

 
General Problems 

 
*81 •  
Picture the Problem We can use Kepler’s 3rd law to relate Pluto’s period to its mean 
distance from the sun. 

 
Using Kepler’s 3rd law, relate the 
period of Pluto to its mean distance 
from the sun:  

32 CrT =  

where 3219

s

2

/ms102.9734 −×==
GM

C π
.  

 
Solve for T: 3CrT =  

 
Substitute numerical values and evaluate T: 
 

( )

y249

d365.25
y1

h24
d1

s3600
h1s01864.7

AU
m101.50AU5.39/ms10973.2

9

311
3219

=

××××=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
××= −T

 

 



Gravity 
        

 

883

82 •  
Picture the Problem Consider an object of mass m at the surface of the earth. We can 
relate the weight of this object to the gravitational field of the earth and to the mass of the 
earth.  

 
Using Newton’s 2nd law, relate the 
weight of an object at the surface of 
the earth to the gravitational force 
acting on it: 
 

2
E

E

R
mGMmgw ==  

Solve for ME: 
G

2
E

E
gRM =  

 
Substitute numerical values and 
evaluate ME: 

( )( )

kg1097.5

/kgmN106.6726
m106.37kg/N9.81

24

2211

26

E

×=

⋅×
×

= −M
 

 
83 ••  
Picture the Problem The work you must do against gravity to move the particle from a 
distance r1 to r2 is the negative of the change in the particle’s gravitational potential 
energy. 
 
(a) Relate the work you must do to 
the change in the gravitational 
potential energy of the earth-particle 
system: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

=−=∆−= ∫∫

21
E

12
E

2Eg

11

11

2

1

2

1

rr
mGM

rr
mGM

r
drmGMdrFUW

r

r

r

r

 

 
(b) Substitute 2

EgR for GME, RE for 

r1, and RE + h for r2 to obtain: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=
hRR

mgRW
EE

2
E

11
        (1) 
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(c) Rewrite equation (1) with a 
common denominator and simplify 
to obtain: 

( )

mgh

R
hmgh

hR
Rmgh

hRR
RhRmgRW

≈

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−+

=

E

E

E

EE

EE2
E

1

1
 

when h << RE. 
 
84 ••  
Picture the Problem The gravitational field outside a uniform sphere is given by 

2rGMg −=  and the field inside the sphere by ( ) .3 rRGMg −=  

 
(a) Express g outside the sphere: 

2r
GMg −=  

 
Find the mass of the sphere: ( )3

3
4 RVM πρρ ==  

 
Substitute and simplify to obtain: ( )

2

3

3
4

2

3
3
4

r
RG

r
RGg ρπρ

−=−=  

 
Substitute numerical values and evaluate g: 
 

( ) ( ) ( )
2

2

2

332211

3
4 /kgmN559.0m100kg/m2000kg/mN10673.6

rr
g ⋅

−=
⋅×

−=
−

 

 
(b) Express the gravitational field 
inside the uniform sphere: 
 

( )

Gr

r
R

RGr
R

GMg

ρπ

πρ

3
4

3

3
3
4

3

−=

−=−=
 

 
Substitute numerical values and evaluate g: 
 

( )( ) ( )rrg mN/kg1059.5/kgmN106.6726kg/m2000 722113
3
4 ⋅×−=⋅×−= −−π  
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85 ••  
Picture the Problem We can use Kepler’s 3rd law to relate the period of the satellite to 
its mean distance from the center of Jupiter. 
 
Use Kepler’s 3rd law to relate the 
period of the satellite to its mean 
distance from the center of Jupiter: 
 

( )3J
J

2
2 4 hR

GM
T +=

π
 

Solve for h: 
J

3
2

J
2

4
R

GMT
h −=

π
            (1) 

 
Express the mass of Jupiter in terms 
of the mass of the earth: 
 

EJ 320MM =  

Express the volume of Jupiter in 
terms of the mass of the earth: 
 

EJ 1320VV =  

Express the volumes of Jupiter and 
Earth in terms of their radii and 
solve for RJ: 
 

E
3

J 1320RR =  

Substitute in equation (1) to obtain: { }
E

33
2

E
2

1320
4
320 RMGTh −=
π

 

 
Express the period of the satellite in 
seconds: 

s1054.3
min

s60min50
h

s3600h9

min50h9

4×=

×+×=

+=T

 

 
Substitute numerical values and evaluate h: 
 

( ) ( ) ( ){ }

( )
m1096.8

m1037.61320
4

kg1098.5320/kgmN106726.6s1054.3

7

63

3
2

24221124

×=

×−

×⋅××
=

−

π
h
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86 ••  
Picture the Problem Let m represent the mass of the spacecraft. From Kepler’s 3rd law 
we know that its period will be a minimum when it is in orbit just above the surface of 
the moon. We’ll use Newton’s 2nd law to relate the angular velocity of the spacecraft to 
the gravitational force acting on it. 
 
Relate the period of the spacecraft to 
its angular velocity: 
 

ω
π2

=T                    (1) 

Using Newton’s 2nd law of motion, 
relate the gravitational force acting 
on the spacecraft when it is in orbit 
at the surface of the moon to the 
angular velocity of the spacecraft: 
 

∑ == 2
M2

M

M
radial ωmR

R
mGMF  

Solve for ω: ( )

ρπ

ρπω

G

R
RG

R
GM

3
4

3
M

3
M3

4

3
M

M

=

==
 

 
Substitute in equation (1) and 
simplify to obtain: GG

T
ρ
π

ρπ
π 32

3
4min ==  

 
Substitute numerical values and evaluate Tmin: 
 

( )( ) min 48h 1s6503
kg/m3340/kgmN106726.6

3
32211min ==

⋅×
= −

πT  

 
87 ••  
Picture the Problem We can use conservation of energy to establish a relationship 
between the height h to which the projectile will rise and its initial speed. The application 
of Newton’s 2nd law will relate the orbital speed, which is equal to the initial speed of the 
projectile, to the mass and radius of the moon. 
 
Use conservation of energy to relate 
the initial energies of the projectile 
to its final energy: 

0ifif =−+− UUKK  

or, because Kf = 0, 

0
M

M

M

M2
2
1 =+

+
−−

R
mGM

hR
mGMmv  
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Solve for h: 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
−

= 1

2
1

1

M

M
2

GM
Rv

Rh                    (1) 

 
Use Newton’s 2nd law to relate 
velocity of the satellite to the 
gravitational force acting on it: 
 

∑ ==
M

2

2
M

M
radial R

vm
R

mGMF  

Solve for v2: 

M

M2

R
GMv =  

 
Substitute for v2 in equation (1) and 
simplify to obtain: Mm70.11

2
11

1
==

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−
−

= RRh  

 
*88 ••  
Picture the Problem If we assume the astronauts experience a constant acceleration in 
the barrel of the cannon, we can use a constant-acceleration equation to relate their exit 
speed (the escape speed from the earth) to the acceleration they would need to undergo in 
order to reach that speed. We can use conservation of energy to express their escape 
speed in terms of the mass and radius of the earth and then substitute in the constant-
acceleration equation to find their acceleration. To find the balance point between the 
earth and the moon we can equate the gravitational forces exerted by the earth and the 
moon at that point. 
 
(a) Assuming constant acceleration 
down the cannon barrel, relate the 
ship’s speed as it exits the barrel to 
the length of the barrel and the 
acceleration required to get the ship 
to escape speed: 
 

l∆= av 22
e  

where l is the length of the cannon. 

Solve for the acceleration: 
 

l∆
=

2

2
eva                                   (1) 

 
Use conservation of energy to relate 
the initial energy of astronaut’s ship 
to its energy when it has escaped the 
earth’s gravitational field: 
 

0=∆+∆ UK  
or 

0ifif =−+− UUKK  

When the ship has escaped the 
earth’s gravitational field: 

0ff ==UK  
and 

0ii =−− UK  
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or 

0E2
e2

1 =⎟
⎠
⎞

⎜
⎝
⎛−−−

R
mGMmv  

where m is the mass of the spaceship. 
 

Solve for 2
ev  to obtain: 

R
GMv E2

e
2

=  

 
Substitute in equation (1) to obtain: 
 R

GMa
l∆

= E  

 
Substitute numerical values and 
evaluate a: 

( )
( )

( )( )

g

a

300,23
m/s1029.2

km6370m274
kg105.98

/kgmN10673.6

25

24

2211

≈
×=

×
×

⋅×= −

 

unlikely!extremely  is Survival  

 
(b) Let the distance from the center 
of the earth to the center of the 
moon be R, and the distance from 
the center of the spaceship to the 
earth be x.  If M is the mass of the 
earth and m the mass of the moon, 
the forces will balance out when: 

22 )( xR
Gm

x
GM

−
=  

or 

m
xR

M
x −

=  

where we’ve ignored the negative solution, 
as it doesn't indicate a point between the 
two bodies. 
 

Solve for x to obtain: 

M
m

Rx
+

=
1

 

 
Substitute numerical values and 
evaluate x: 

m1046.3

kg105.98
kg107.361

m1084.3

8

24

22

8

×=

×
×

+

×
=x

 

 

(c) 
anything. weigh  toseemnot   wouldso and

fall,-freein  be  wouldastronauts  the trip,entire  theDuring not. isit  No
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89 ••   
Picture the Problem Let the origin of our coordinate system be at the center of mass of 
the binary star system and let the distances of the stars from their center of mass be r1 and 
r2. The period of rotation is related to the angular velocity of the star system and we can 
use Newton’s 2nd law of motion to relate this velocity to the separation of the stars. 
 
Relate the square of the period of the 
motion of the stars to their angular 
velocity: 
 

2

2
2 4

ω
π

=T                                        (1) 

Using Newton’s 2nd law of motion, 
relate the gravitational force acting 
on the star whose mass is m2 to the 
angular velocity of the system: 
 

( )∑ =
+

= 2
222

21

21
radial ωrm

rr
mGmF  

Solve for ω2: 
( )2

212

12

rrr
Gm
+

=ω                              (2) 

 
From the definition of the center of 
mass we have: 

2211 rmrm =                                       (3) 
where 21 rrr +=                               (4) 

 
Eliminate r1 from equations (3) and 
(4) and solve for r2: 
 

21

1
2 mm

rmr
+

=  

Eliminate r2 from equations (3) and 
(4) and solve for r1: 
 

21

2
1 mm

rmr
+

=  

Substitute for r1 and r2 in equation 
(2) to obtain: 
 

( )
3

212

r
mmG +

=ω  

Finally, substitute in equation (1) 
and simplify: ( ) ( )21

32

3
21

2
2 44

mmG
r

r
mmGT

+
=

+
=

ππ
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90 ••  
Picture the Problem Because the two-particle system has zero initial energy and zero 
initial linear momentum; we can use energy and momentum conservation to obtain 
simultaneous equations in the variables r, v1 and v2. We’ll assume that initial separation 
distance of the particles and their final separation r is large compared to the size of the 
particles so that we can treat them as though they are point particles. 
 
Use conservation of energy to relate 
the speeds of the particles when 
their separation distance is r: 

fi EE =  

or 

r
mGmvmvm 212

222
12

112
10 −+=         (1) 

 
Use conservation of linear 
momentum to obtain a second 
relationship between the speeds of 
the particles and their masses: 
 

fi pp =  

or 
22110 vmvm +=                               (2) 

Solve equation (2) for v1 and 
substitute in equation (1) to obtain: r

mGm
m
mmv 21

1

2
2

2
2
2

2
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+               (3) 

 
Solve equation (3) for v2: 

( )21

2
1

2
2

mmr
Gmv
+

=  

 
Solve equation (2) for v1 and 
substitute for v2 to obtain: ( )21

2
2

1
2

mmr
Gmv
+

=  

 
*91 ••  
Picture the Problem We can find the orbital speeds of the planets from their distance 
from the center of mass of the system and the period of their motion. Application of  
Kepler’s 3rd law will allow us to express the period of their motion T in terms of the 
effective mass of the system … which we can find from its definition.  

 
Express the orbital speeds of the 
planets in terms of their period T: 
 T

Rv π2
=  

where R is the distance to the center of 
mass of the four-planet system. 
 

Apply Kepler’s 3rd law to express 
the period of the planets: 3

eff

24 R
GM

T π
=  

where Meff is the effective mass of the four 
planets.  
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Substitute to obtain: 
 

R
GM

R
GM

Rv eff

3

eff

24
2

==
π
π

 

 
The distance of each planet from the 
effective mass is: 
 2

aR =  

Find Meff from its definition: 
 MMMMM

11111

eff

+++=  

and 
MM 4

1
eff =  

 
Substitute for R and Meff to obtain: 

a
GMv
4
2

=  

 
92 ••  
Picture the Problem Let r represent the separation of the particle from the center of the 
earth and assume a uniform density for the earth. The work required to lift the particle 
from the center of the earth to its surface is the integral of the gravitational force function. 
This function can be found from the law of gravity and by relating the mass of the earth 
between the particle and the center of the earth to the earth’s mass. We can use the work-
kinetic energy theorem to find the speed with which the particle, when released from the 
surface of the earth, will strike the center of the earth. Finally, the energy required for the 
particle to escape the earth from the center of the earth is the sum of the energy required 
to get it to the surface of the earth and the kinetic energy it must have to escape from the 
surface of the earth.  
 
(a) Express the work required to lift 
the particle from the center of the 
earth to the earth’s surface: 

∫=
E

0

R

FdrW                (1) 

where F is the gravitational force acting on 
the particle. 
 

Using the law of gravity, express the 
force acting on the particle as a 
function of its distance from the 
center of the earth: 
 

2r
GmMF =                 (2) 

where M is the mass of a sphere whose 
radius is r. 

Express the ratio of M to ME: ( )
( )3

E3
4

3
3
4

E R
r

M
M

πρ
πρ

=   ⇒ 3
E

3

E R
rMM =            
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Substitute for M in equation (2) to obtain: 
r

R
mgr

R
mgRr

R
GmMF

E
3
E

2
E

3
E

E ===  

 
Substitute for F in equation (1) and 
evaluate the integral: 2

E

0E

E gmRrdr
R
mgW

R

== ∫  

 
(b) Use the work-kinetic energy 
theorem to relate the kinetic energy 
of the particle as it reaches the 
center of the earth to the work done 
on it in moving it to the surface of 
the earth: 
 

2
2
1 mvKW =∆=  

 

Substitute for W and solve for v: 
EgRv =  

 
(c) Express the total energy required 
for the particle to escape when 
projected from the center of the 
earth: 

2
esc2

1

2
e2

1
esc

mv

mvWE

=

+=
 

where ve is the escape speed from the 
surface of the earth. 
 

Substitute for W and solve for vesc: Eesc 3gRv =  

 
Substitute numerical values and 
evaluate vesc: 

( )( )
km/s7.13

m106.37N/kg9.813 6
esc

=

×=v
 

 
93 ••   
Picture the Problem We need to find the gravitational field in three regions:  
r < R1, R1 < r < R2, and r > R2. 
 
For r < R1: 0=g  

 
For r > R2, g(r) is the field of a mass 
M centered at the origin: 
 

( ) 2r
GMrg =  

For R1 < r < R2, g(r) is determined 
by the mass within the shell of 
radius r: 

( ) 2r
Gmrg =                                   (1) 

where ( )3
1

3
3
4 Rrm −= πρ              (2) 
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Express the density of the spherical 
shell: ( )3

1
3
23

4 RR
M

V
M

−
==

π
ρ  

 
Substitute for ρ in equation (2) and 
simplify to obtain: 

( )
3
1

3
2

3
1

3

RR
RrMm

−
−

=  

 
Substitute for m in equation (1) to 
obtain: ( ) ( )

( )3
1

3
2

2

3
1

3

RRr
RrGM

rg
−
−

=  

 
A graph of gr with R1 = 2, R2 = 3, 
and GM = 1 is shown to the right. 
   

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 1 2 3 4 5 6 7 8

r

g r

 
 
94 ••   
Picture the Problem A ring of radius R is 
shown to the right. Choose a coordinate 
system in which the origin is at the center 
of the ring and x axis is as shown. An 
element of length dL and mass dm is 
responsible for the field dg at a distance x 
from the center of the ring. We can express 
the x component of dg and then integrate 
over the circumference of the ring to find 
the total field as a function of x.   
 
(a) Express the differential 
gravitational field at a distance x 
from the center of the ring in terms 
of the mass of elemental length dL:  
 

22 xR
Gdmdg
+

=  

Relate the mass of the element to its 
length: 

dLdm λ=  

where λ is the linear density of the ring. 
 

Substitute to obtain: 
22 xR

dLGdg
+

=
λ
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By symmetry, the y and z 
components of g vanish. Express the 
x component of dg: 
 

θλ
θ

cos

cos

22 xR
dLG

dgdg x

+
=

=
 

Referring to the figure, express cosθ 
: 22

cos
xR

x
+

=θ  

 
Substitute to obtain: 

( ) 2/3222222 xR
xdLG

xR
x

xR
dLGdgx

+
=

+
×

+
=

λλ

 
 

Because 
R

M
π

λ
2

= : 
( ) 2/3222 xRR

xdLGMdg x
+

=
π

 

 
Integrate to find g(x): ( )

( )

( )
x

xR

GM

dL
xRR

xGMxg
R

2/322

2

0
2/3222

+
=

+
= ∫

π

π
 

 
A plot of gx is shown to the right. The 
curve is normalized for R = 1 and  
GM = 1. 
 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

x

g x

 
(b) Differentiate g(x) with respect to x and set the derivative equal to zero to identify 
extreme values: 
 

( ) ( )
( ) ( ) ( ) extremafor  022/122

322
2
32/322

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

+

−+
= xRx

xR
xRxGM

dx
dg

 

 
Simplify to obtain: ( ) ( ) 03 2/12222/322 =+−+ RxxRx  

 
Solve for x to obtain: 

2
Rx ±=   

Because the curve is concave downward, 
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we can conclude that this result 
corresponds to a maximum. Note that this 
result agrees with our graphical maximum. 

 
95 •••  
Picture the Problem The diagram shows a 
segment of the wire of length dx and mass 
dm = λdx at a distance x from the origin of 
our coordinate system. We can find the 
magnitude of the gravitational field at a 
distance r from the wire from the resultant 
gravitational force acting on a particle of 
mass m′ located at point P and then 
integrating over the length of the wire.   
 
Express the gravitational force 
acting on a particle of mass m′ at a 
distance r from the wire due to the 
segment of the wire of length dx: 
 

m'dgdF =  
or 

m'
dFdg =  

Using Newton’s law of gravity, 
express dF: 
 

2R
dxGm'dF λ

=  

or, because 222 rxR += , 

22 rx
dxGm'dF

+
=

λ
 

 
Substitute and simplify to express 
the gravitational field due to the 
segment of the wire of length dx: 
 

22 rx
dxGdg
+

=
λ

 

By symmetry, the segment on the 
opposite side of the origin at the 
same distance from the origin will 
cancel out all but the radial 
component of the field, so the 
gravitational field will be given by: 

( ) dx
rx
rG

rx
r

rx
dxG
rx

dxGdg

2322

2222

22 cos

+
=

++
=

+
=

λ

λ

θλ

 

 
Integrate dg from x′ = −∞ to x′ = +∞ to obtain: 
 

( ) ( ) r
G

rx
x

r
Gdx

rx
rGdx

rx
rGg λλλλ 2

'
2'

'
2'

' 0
22

0
2/3222/322

=⎥
⎦

⎤
⎢
⎣

⎡

+
=

+
=

+
=

∞∞∞

∞−
∫∫  

 
96 •••  
Picture the Problem We can use the relationship between the angular velocity of an 
orbiting object and its tangential velocity to express the speeds vin and vout of the 
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innermost and outermost portions of the ring. In part (b) we can use Newton’s law of 
gravity, in conjunction with the 2nd law of motion, to relate the tangential speed of a 
chunk of the ring to the gravitational force acting on it. As in part (a), once we know vin 
and vout, we can express the difference between them to obtain the desired results. 
 
(a) Express the speed of a point in 
the ring at a distance R′ from the 
center of the planet under the 
assumption that the ring is solid and 
rotates with an angular velocity ω: 
 

( ) RRv ω='  

Express the speeds vin and vout of the 
innermost and outermost portions of 
the ring: 

( )ωrRv 2
1

in −=  
and 

( )ωrRv 2
1

out +=  
 

Express the difference between vout 
and vin:  

( ) ( )

R
rvr

R
vr

rRrRvv

===

−−+=−

ω

ωω 2
1

2
1

inout

 

 
(b) Assume that a chunk of the ring 
is moving in a circular orbit around 
the center of the planet under the 
force of gravity.  Then, we can find 
its velocity by equating the force of 
gravity to the centripetal force 
needed to keep it in orbit: 
 

''

2

2 R
mv

R
GMm

=  

or 

'R
GMv =   

where M is the mass of the planet and R' 
the distance from the center. 
 

Substitute for R′ to express vout: 

21

2
1out

2
11

2
11

−

⎟
⎠
⎞

⎜
⎝
⎛ +=

⎟
⎠
⎞

⎜
⎝
⎛ +

=
+

=

R
r

R
GM

R
rR

GM
rR

GMv

 

 
Expand binomially to obtain: 
 

)

⎟
⎠
⎞

⎜
⎝
⎛ −≈

+

⎜
⎝
⎛ −=

R
r

R
GM

R
r

R
GMv

4
11

sorder termhigher 
2
1

2
11out

 

 
Proceed similarly to obtain, for vin: 

⎟
⎠
⎞

⎜
⎝
⎛ +≈

R
r

R
GMv

4
11in  
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Express the difference between vout and vin:   
 

⎟
⎠
⎞

⎜
⎝
⎛−=⎟

⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛ −≈−

R
r

R
GM

R
r

R
GM

R
r

R
GMvv

2
1

4
11

4
11inout  

and, because 
R

GMv = , v
R
rvv

2
1

inout −≈−  

 
97  •••  
Picture the Problem Let U = 0 at x = ∞. The potential energy of an element of the stick 
dm and the point mass m0 is given by the definition of gravitational potential energy: 

rdmGmdU 0−=  where r is the separation of dm and m0. 

 
(a) Express the potential energy of 
the masses m0 and dm: xx

dmGm
dU

−
−=

0

0  

 
The mass dm is proportional to the 
size of the element dx: 

dxdm λ=  

where 
L
M

=λ . 

 
Substitute these results to express 
dU in terms of x: ( )xxL

dxGMm
xx
dxGmdU

−
−=

−
−=

0

0

0

0λ  

 
(b) Integrate to find the total potential energy for the system: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛ −=

−
−= ∫

−

2
2ln

2
ln

2
ln

0

00

00
0

2/

2/ 0

0

Lx
Lx

L
GMm

LxLx
L

GMm
xx

dx
L

GMmU
L

L
 

 
(c) Because x0 is a general point along the x axis: 
 

( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

+
=−=

2

1

2

1

00

0

0
0 LxLxL

Gmm
dx
dUxF  

 
Simplify this expression to obtain: ( )

422
0

0 Lx
GmmxF
−

−=  
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in agreement with the result of Example 
11-8. 

 
*98 •••   
Picture the Problem Choose a mass element dm of the rod of thickness dx at a distance x 
from the origin. All such elements of the rod experience a gravitational force dF due to 
presence of the sphere centered at the origin. We can find the total gravitational force of 
attraction experienced by the rod by integrating dF from x = a to x = a + L.      
 
Express the gravitational force dF  
acting on the element of the rod of 
mass dm: 
 

2x
GMdmdF =  

Express dm in terms of the mass m 
and length L of the rod: 

dx
L
mdm =  

 
Substitute to obtain: 
 2x

dx
L

GMmdF =  

 
Integrate dF  from x = a to x = a + 
L to find the total gravitational force 
acting on the rod: 

( )Laa
GMm

xL
GMmdxx

L
GMmF

La

a

La

a

+
=

⎥⎦
⎤

⎢⎣
⎡−==

++
−∫

12

 

 
99 •••   
Picture the Problem The semicircular rod 
is shown in the figure. We’ll use an 

element of length θ
π

θ dLRd =  whose 

mass dM is θ
π

dM
. By symmetry, 0=yF . 

We’ll first find dFx and then integrate over 
θ from −π/2 to π/2.  
 
Express dFx: 

θθ

π
π

cos2

2

d
L

GMm
R

GmdMdFx

⎟
⎠
⎞

⎜
⎝
⎛

=

=
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Integrate dFx over θ from −π/2 to π/2: 
2

2/

2/
2

2cos
L
GMmd

L
GMmFx

πθθπ π

π

== ∫
−

 

 
Substitute numerical values and evaluate Fx: 
 

( )( )( )
( )

pN5.33
m5

kg0.1kg20/kgmN106.67262
2

2211

=
⋅×

=
−πFx  

 
*100 •••   
Picture the Problem We can begin by expressing the forces exerted by the sun and the 
moon on a body of water of mass m and taking the ratio of these forces. In (b) we’ll 
simply follow the given directions and in (c) we can approximate differential quantities 
with finite quantities to establish the given ratio. 
 
(a) Express the force exerted by the 
sun on a body of water of mass m: 2

S

S
S r

mGM
F =  

 
Express the force exerted by the 
moon on a body of water of mass m: 2

m

m
m r

mGMF =  

 
Divide the first of these equations 
by the second and simplify to 
obtain: 

2
Sm

2
mS

m

S

rM
rM

F
F

=  

 
Substitute numerical values and 
evaluate this ratio: 

( )( )
( )( )
177

m101.50kg107.36
m103.84kg101.99

21122

2830

m

S

=

××

××
=

F
F

 

 

(b) Find 
dr
dF

: 
r
F

r
mGm

dr
dF 22

3
21 −=−=  

 

Solve for the ratio 
F

dF
: 

r
dr

F
dF 2−=  

 
(c) Express the change in force ∆F 
for a small change in distance ∆r: 

r
r
FF ∆−=∆ 2  
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Express SF∆ : 

S3
S

S

S
S

2
S

S

S

2

2

r
r

GmM

r
r
r

GmM

F

∆−=

∆−=∆
 

Express mF∆ : 
m3

m

m
m 2 r

r
GmMF ∆−=∆  

 
Divide the first of these equations 
by the second and simplify: 

3
Sm

3
mS

m

S
3

Sm

3
mS

m3
m

m

S3
S

S

m

S

rM
rM

r
r

rM
rM

r
r

M

r
r
M

F
F

=

∆
∆

=
∆

∆
=

∆
∆

 

because .1
m

S =
∆
∆

r
r

 

 
Substitute numerical values and 
evaluate this ratio: 

( )( )
( )( )

454.0

m101.50kg107.36
m103.84kg101.99

31122

3830

m

S

=

××

××
=

∆
∆

F
F

 

 
101 ••  
Picture the Problem Let MNS be the mass of the Neutron Star and m the mass of each 
robot. We can use Newton’s law of gravity to express the difference in the tidal-like 
forces acting on the coupled robots. Expanding the expression for the force on the robot 
further from the Neutron Star binomially will lead us to an expression for the distance at 
which the breaking tension in the connecting cord will be exceeded. 
 

(a) 
stressed. is cable  theseparation  thisopposingIn  separate. they would

and robot,upper   theofan that greater th be on wouldaccelerati its cable the
fornot  it were if so robot,lower  on thegreater  is force nalgravitatio The
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(b) Letting the separation of the two 
robots be ∆r, and the distance from 
the center of the star to the lower 
robot be r, use Newton’s law of 
gravity to express the difference in 
the forces acting on the robots: 
 

( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ∆
+−=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛ ∆
+

−=

∆+
−=

−2

2
NS

2
2

2NS

2
N

2
NS

tide

11

1

11

r
r

r
mGM

r
rr

r
mGM

rr
mGM

r
mGMF S

 

 
Expand the expression in the square 
brackets binomially to obtain: 
 

r
r

r
r

r
r

∆
=

⎟
⎠
⎞

⎜
⎝
⎛ ∆
−−≈⎟

⎠
⎞

⎜
⎝
⎛ ∆
+−

−

2

21111
2

 

 
Substitute to obtain: 

r
r

mGMF ∆≈ 3
NS

tide
2

 

 
Letting FB be the  breaking tension 
of the cord, substitute for Ftide and 
solve for the value of r 
corresponding to the breaking strain 
being exceeded: 
 

3 NS2 r
F

mGMr
B

∆=  

Substitute numerical values and evaluate r: 
 

( )( )( ) ( ) km220m1
kN25

kg1kg1099.1/kgmN10673.62
3

302211

=
×⋅×

=
−

r  

 



          Chapter 11 
      

 

902 

 


