Chapter 12
Static Equilibrium and Elasticity

Conceptual Problems

1 °
(a) False. The conditions 2117“1 =0 and Zi?l. = 0 must be satisfied.

(b) True. The necessary and sufficient conditions for static equilibrium are Z,Fz =0 and

Y7, =0.

(c) True. The conditions " F, =0 and ) 7, = 0 must be satisfied.

(d) False. An object is in equilibrium provided the conditions lej“, =0 and Z,i- =0are

satisfied.

2 .
False. The location of the center of gravity depends on the mass distribution.

3 °
No. The definition of the center of gravity does not require that there be any material at its
location.

4 .
Determine the Concept When the acceleration of gravity is not constant over an object,
the center of gravity is the pivot point for balance.

5 o
Determine the Concept This technique works because the center of mass must be
directly under the balance point. Thus, a line drawn straight downward will pass through
the center of mass, and another line drawn straight downward when the figure is hanging
from another point will also pass through the center of mass. The center of mass is where
the lines cross.

*6 °

Determine the Concept No. Because the floor can exert no horizontal force, neither can
the wall. Consequently, the friction force between the wall and the ladder is zero
regardless of the coefficient of friction between the wall and the ladder.
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7 °

Determine the Concept We know that equal lengths of aluminum and steel wire of the
same diameter will stretch different amounts when subjected to the same tension. Also,
because we are neglecting the mass of the wires, the tension in them is independent of

which one is closer to the roof and depends only on W. | (b) is correct.

8 .
Determine the Concept Yes; if it were otherwise, angular momentum conservation
would depend on the choice of coordinates.

*Q °
Determine the Concept The condition that the bar is in rotational equilibrium is that the
net torque acting on it be zero; i.e., RiM; = R,M,. This condition is satisfied provided R,

=R, and My = M,. | (c) is correct.

10 (1]
Determine the Concept You cannot stand up because your body’s center of gravity must
be above your feet.

*11  ee

Determine the Concept The tensile strengths of stone and concrete are at least an order
of magnitude lower than their compressive strengths, so you want to build compressive
structures to match their properties.

Estimation and Approximation

12 e
Picture the Problem The diagram to the 4
right shows the forces acting on the crate
as it is being lifted at its left end. Note that
when the crowbar lifts the crate, only half
the weight of the crate is supported by the
bar. Choose the coordinate system shown AE,
and let the subscript "pb” refer to the pry
bar. The diagram below shows the forces
acting on the pry bar as it is being used to B
lift the end of the crate.

=
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Assume that the maximum force F ' you can apply is 500 N (about 110 Ib). Let ¢ be the
distance between the points of contact of the steel bar with the floor and the crate, and let L
be the total length of the bar. Lacking information regarding the bend in pry bar at the
fulcrum, we’ll assume that it is small enough to be negligible. We can apply the condition
for rotational equilibrium to the pry bar and a condition for translational equilibrium to the
crate when its left end is on the verge of lifting.

Apply D F, =0to the crate:

Apply > 7 = 0to the crate about

an axis through point B and
perpendicular to the plane of the
page to obtain:

Solve for F;

Solve equation (1) for Fy, and
substitute for F, to obtain:

Apply > 7 = 0to the pry bar about

an axis through point A and
perpendicular to the plane of the
page to obtain:

Solve for L:

Substitute for Fy, to obtain:

Fy~W+F, =0 )
wF, —swl =0
F, =W

as noted in Picture the Problem.

Fo=W—iW =1W

F(L—0)-(F, =0
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Substitute numerical values and

, L =(0.1m)| 1+ 209N | _ 55 5em
evaluate L: 2(500 N)
*13 e

Picture the Problem We can derive this expression by imagining that we pull on an area 4
of the given material, expressing the force each spring will experience, finding the
fractional change in length of the springs, and substituting in the definition of Young’s
modulus.

(@) Express Young’s modulus: ¥ = F/A )
T ALJL
Express the elongation AL of each spring: F,
Y g pring AL = f @)
Express the force F; each spring will F
experience as a result of a force F Fy= N
acting on the area 4:
Express the number of springs N in
the area A4: N=—
a
Substitute to obtain: Fa?
F, =
A
Substitute in equation (2) to obtain, Fa?
for the extension of one spring: AL =
kA
Assuming that the springs AL, AL 1Fa® Fa
extend/compress linearly, express — === =—
the fractional extension of the L a akd k4
springs:
Substitute in equation (1) and simplify: F
4 _| %
"k
kA
(b) From our result in part (a): k=Ya
From Table 12-1: Y = 200GN/m? = 2x10" N/m?

Assuming that @ ~ 1 nm, evaluate &: k= (2><10“ N/mz)(lo‘g m)= 200 N/m
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Conditions for Equilibrium

14 -
Picture the Problem Let w; represent the
weight of the 28-kg child sitting at the left 2m “’
end of the board, w, the weight of the 40- p
kg child, and d the distance of the 40-kg R
child from the pivot point. We can apply “ X
the condition for rotational equilibrium to V2
find d.
Apply Zi = O about an axis through w1(2 m)— w,d =0
the pivot point P:
Solve for and evaluate d: g wi(2m) _ (28kg)g(2m) _[1am
W, (40 kg)g
15 -
Picture the Problem Let F; represent the N E
force exerted by the floor on Misako’s feet, By
F, the force exerted on her hands, and m . Gém
her mass. We can apply the condition for 0
rotational equilibrium to find F. l
mg
Apply Zi = O about an axis F2(1.5m)—mg(0.9m):0
through point 0:
Solve for F: Jo mg(0.9m)
?  15m
Substitute numerical values and o (54 kg)(9.81m/32X0.9 m)
evaluate F: 2 1.5m
=| 318N

*16 -
Picture the Problem Let F represent the force exerted by Misako’s biceps. To find F we
apply the condition for rotational equilibrium about a pivot chosen at the tip of her elbow.

Apply Z‘E = O about an axis (5cm)F - (286m)(18 N) =0
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through the pivot:

Solve for F: F = (28L)(18N) ={101N
scm

17 -

Picture the Problem Choose a coordinate system in which upward is the positive y
direction and to the right is the positive x direction and use the conditions for translational
equilibrium.

(a) Apply ZF =0 to the forces ZFx =—f.+Fsind=0 (1)

acting on the tip of the crutch: and
> F, =F,-Fcosd=0 (2

Solve equation (2) for F, and Sy = fomax = M, = 14, F, COSO
assuming that f; = f max, Obtain:

Substitute in equation (1) and solve U, =| tané
for us:

Taking long strides requires a large coefficient of static friction because
@ is large for long strides.

(b)

(¢) | If w issmall,i.e., thereisice on the surface, @ must be small to avoid slipping.

The Center of Gravity

18 -

Picture the Problem Let the weight of the automobile be w. Choose a coordinate system in
which the origin is at the point of contact of the front wheels with the ground and the
positive x axis includes the point of contact of the rear wheels with the ground. Apply the
definition of the center of gravity to find its location.

Use the definition of the center of gravity: — x W = ZWixi

=0.58w(0)+0.42w(2m)
=(0.84m)w
or, because W' =w, x, (w)=(0.84m)w



Solve for x4

*19 .

Picture the Problem The figures are
shown on the right. The center of mass for
each is indicated by a small +. At static
equilibrium, the center of gravity is
directly below the point of support.

20 oo

x., =|0.84m

Static Equilibrium and Elasticity =~ 909
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Picture the Problem Using the coordinate system indicated in the figure, we can apply
the definition of the center of gravity to determine xcq and ycg.

Apply the definition of the center of
gravity to find x4

Solve for xgy:

Apply the definition of the center of
gravity to find yc4:

Solve for ygy:

The coordinates of the center of
gravity are:

X W = Zwixl.
i

=(40N)(1a)+(60N)(34)
+(30N)(2a)+(50N)(Ea)
=(170N)a

or, because W =180 N,
X,y (180N)=(170N)a

= Ma =0.944a

o = 180N
ych = Zwiyi
=(40N)(1a)+(60N)(34)
+(30N)(2a)+(50N)(%a)
=(180N)a

or, because W =180 N,
¥5,(180N) = (180N)a

Yeg =4

(xcg’ycg): (0944a,a)
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21 e
Picture the Problem Let the origin of the coordinate system be at the lower left corner of
the plate and the positive x direction be to the right. Let « and 5 be the length and width of
the plate. Let o be the mass per unit area of the plate. Then the weight of the plate is given
by w = abog and that of the matter missing from the hole is —szog. Noting that, by

symmetry, yeq = b/2, we can apply the definition of the center of gravity to find xc.

Apply the definition of the center of X W = Zwixi
gravity to find xg: !
= (abog)(3a)- (R’ og)(a - R)
or, because
W= Wotate ~ Whote = (lbOg —ﬂRzog,

xglabog — iRy )= (abog) (3 a)

- (ﬂRZO')(a - R)
Solve for xy: 14°h - maR’ + 7R’

Xeg = 2
ab — 7R

The coordinates of the center of gravity
are: (xcg 1 Veg ) =

14a°h— maR’ + 7R* 1p
ab— nR? '

Some Examples of Static Equilibrium

22 .
Picture the Problem We can use the given definition of the mechanical advantage of a
lever and the condition for rotational equilibrium to show that M = x/X.

(a) Express the definition of F
mechanical advantage for a lever: = 7
Apply the condition for rotational xf—XF =0

equilibrium to the lever:

Solve for the ratio of F'to fto F x
obtain: f Ty

Substitute to obtain:

X
X

A shorter moment arm for the applied force is useful when one wishes to
(b) | move the load over a large distance using a short movement of the applied
force.




23 .
Picture the Problem The force diagram
shows the tension in the forestay, TF, the

tension in the backstay, TB, the

gravitational
force on the mastmg, and the force exerted

by the deck, FD. Let the origin of the

coordinate system be at the foot of the mast
with the positive x direction to the right and
the positive y direction upward. Because the
mast is in equilibrium, we can apply the
conditions for both translational and
rotational equilibrium to find the tension in
the backstay and the force that the deck
exerts on the mast.

Apply Z‘E = 0to the mast about an axis

through its foot and solve for Tg:

Find &, the angle of the forestay with the
vertical:

Substitute to obtain:

Apply the condition for translational
equilibrium in the x direction to the mast:

Apply the condition for translational
equilibrium in the y direction to the mast:

Static Equilibrium and Elasticity

-
mg

(4.88m)(L000 N )sin 6,

—(4.88m)T,sin45°=0

and
(LOOO N )sin 6.
Ig="———7"7T——-+
sin45°

g, = tant| 274M | _ 59 30
4.88m

7 _ (1000N)sin29.3° _
® sin45°

692N

D F, =F,c0s0+T,sin45°
—T.sin6: =0

or
F, cosd = (1000 N)sin29.3°

— (692 N)sin45°
~0

Y F, = F,sin0-T; cos 6,

—T5c0s45°—mg =0

or

911
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Because Fpcos@=0:

24 e

Picture the Problem The diagram shows
Mg, the weight of the beam, mg, the

weight of the student, and the force the
ledge exerts F, acting on the beam.
Because the beam is in equilibrium, we can
apply the condition for rotational
equilibrium to the beam to find the location
of the pivot point P that will allow the
student to walk to the end of the beam.

Apply > 7 =0 about an axis
through the pivot point P:

Solve for x:

*25 oo

Picture the Problem The diagram shows
w, the weight of the student, Fp, the
force exerted by the board at the pivot, and
F‘S, the force exerted by the scale, acting
on the student. Because the student is in
equilibrium, we can apply the condition for
rotational equilibrium to the student to find
the location of his center of gravity.

Apply > 7 =0 about an axis

F,sin @ = (1000 N)cos29.3°

+(692 N)cos45°
+(120kg)(9.81m/s?)
= 2539N
6=|90°|, F,=| 2.54kN
and

no block is required to prevent the
mast from moving.

—D{Sm—x‘—

mg
Mg

Mg(5m—x)—mgx =0

Lo M 5(300kg) _ i
M +m 300kg-+60kg

. K
Fl)
! X . 2 —x !
P

w
F(2m)-wx=0
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through the pivot point P:

Solve for x: = (2m)F,
w
Substitute numerical values and . (2m)(250N) _=[0728m
evaluate x: (70 kg)(9.81m/s )
26 o0

Picture the Problem The diagram shows
mg, the weight of the board, FH , the force
exerted by the hinge, Mg, the weight of

the block, and F, the force acting

vertically at the right end of the board.
Because the board is in equilibrium, we can
apply the condition for rotational
equilibrium to it to find the magnitude of
F.

() Apply > 7 =0 about an axis F[(3m)cos30°]- mg|(1.5m)cos30°]
through the hinge: — Mgl(0.8m)cos30°] =0
Solve for F: P m(1.5m)+M(0.8m)g
3m
Substitute numerical values and Fe (5kg)1.5m)+(60kg)0.8m)
evaluate F: 3m
x (9.81m/32)
=| 181N
(b) Apply > F, =0 to the board: F,—~Mg—-mg+F =0
Solve for and evaluate Fj: Fy,=Mg+mg—-F = (M + m)g -F

= (60kg +5kg)(9.81m/s? )-181N

=| 457N

913
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(¢) The force diagram showing the
force F acting at right angles to the
board is shown to the right:

Apply > 7 =0 about the hinge:

Solve for F:

Substitute numerical values and
evaluate F:

Apply D" F, =0 to the board:

Apply > F, =0 to the board:

Divide the first of these equations by
the second to obtain:

Solve for &

Substitute numerical values and evaluate @

F(3m)—mg[(1.5m)cos30°]
— Mg[(0.8m)cos30°]=0

e m(1.5 m)+M(0.8m)gCOS3OO
3m
- (5kg)(1.5m)+(60kg)(0.8m)
- 3m
x(9.81m/s? )cos30°

= 157N

F,sin@—-Mg—mg+ Fcos30°=0
or
F,sin@ = (M +m)g—Fcos30° (1)

F,cos0—Fsin30°=0
or
F,,cosé@ = F'sin30° (2)

F,sin@ (M +m)g—Fcos30°
F,,cosé F'sin30°

g tan- (M +m)g — F cos30°
Fsin30°
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2)_ o
0 — tan-L (65kg)(9.81m/s?) .(157 N)cos30 811
(157 N)sin30°
Substitute numerical values in F, - (157 N)sin30° _ 507N
equation (2) and evaluate Fy: cos81.1°
*27 o

Picture the Problem The planes are
frictionless; therefore, the force exerted by
each plane must be perpendicular to that
plane. Let 17“1 be the force exerted by the 30°

plane, and let 1’7“2 be the force exerted by the

60° plane. Choose a coordinate system in
which the positive x direction is to the right
and the positive y direction is upward.
Because the cylinder is in equilibrium, we
can use the conditions for translational
equilibrium to find the magnitudes of Fland

F,.

Apply D F, =0 to the cylinder: F;sin30°— F,sin60°=0 (1)
Apply D F, =0 to the cylinder: F;c0s30°+ F,cos60°—W =0 (2)
Solve equation (1) for Fy: F = \/§F2 3)
Substitute in equation (2) to obtain: \/§F2 co0s30°+ F, cos60° - =0
Solve for Fy: (\/5 c0s30°+cos 60")F2 =W

or

F, = v = %W

/[3¢0530° + c0s60°

Substitute in equation (3): F, = \/5(% W) — @W
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28 e
Picture the Problem The force diagram
shows the forces FH, Tz, and f‘l acting

on the strut. Choose a coordinate system
in which the positive x direction is to the
right and the positive y direction is
upward. Because the strut is in
equilibrium, we can apply the conditions
for translational and rotational equilibrium
to it.

(@)

The forces acting on the strut are the tensions 7, and T, and F,,, the
force exerted on the strut by the hinge.

(b) Apply > 7 =0 about an axis
through the hinge:

Solve for 7;:

(c) Apply D" F, =0 to the beam:

Apply D F, =0 to the beam:

Divide equation (2) by equation (1)
to obtain:

Solve for 4:

Express T in terms of Ty,

T,/sin30°-T,4 =0

T,, =T,sin30° =T,
or, because 77 = 80 N,
T,,=| 80N

F,,cos@—-T,c0s30°=0
or
F,, cos@ =T, cos30° (1)

F,sin@+T,sin30°-7, =0

or

F,sin@ =T, -T,sin30° @
=80N —7,sin30°

_ 80N -T,sin30°

~ T,c0s30°

tan @

0 — tan™ 80N —T,sin30°
T, cos30°

= _TZV = ?ON =160N
sin30° sin30°




Evaluate &

Substitute numerical values in equation
(1) and evaluate Fy:

29 oo

Picture the Problem The force diagram
shows the weight of the pirate, Mg, the

weight of the victim, mg, and the force

the deck exerts at the edge of the
ship, F acting at the fulcrum P. The
diagram also shows, for part (), the
weight of the plank acting through the
plank’s center of gravity.

(a) Apply Y 7 = Oat the pivot point P:

Solve for x:

(b) Apply Y7 = Oabout an axis
through the pivot point P:

Solve for x:

Substitute numerical values and
evaluate x:

Static Equilibrium and Elasticity =~ 917

. tan{so N — (160 N)sin 30 } o

(160 N)cos30°
" =M: 139N |to the
cos0°
right.
AF
- im—-x—— X
4 m l P l

urpg? .

J'H'g

Mg

Mg(8m—x)-mgx=0
or
M(@Bm-x)—mx=0

_ 8M 8(105kg) _5oom
M +m 105kg+63kg

Mg(8m-x)+ mpg(4m —x)-mgx=0

or
M(8m—x)+mp(4m—x)—mx:O

B 8M +4mp

X=—
M—i—m-i—mp

_ 8(105kg)+4(25kg)

= =1 4.87Tm
105kg + 63kg + 25kg
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30 e
Picture the Problem The drawing shows
the door and its two supports. The center of
gravity of the door is 0.8 m above (and
below) the hinge, and 0.4 m from the hinges
horizontally. Choose a coordinate system in
which the positive x direction is to the right
and the positive y direction is upward.
Denote the horizontal and vertical
components of the hinge force by Fiy, and
Fyy. Because the door is in equilibrium, we
can use the conditions for translational and
rotational equilibrium to determine the
horizontal forces exerted by the hinges.

Apply z{- = Qabout an axis through

the lower hinge:

Solve for Fun:

Substitute numerical values and
evaluate Fip:

Apply > F, =0 to the door and

solve for F',, :

ﬂFII\'

F, (1.6 m)— mg(0.4 m) =0

_ mg(0.4 m)
W 1.6m
(18kg)(9.81m/s?)(0.4m)
Fin = 1.6m
—| 441N
Fyy —Fy, =0
and
F',, =|44.1N

Note that the upper hinge pulls on the door
and the lower hinge pushes on it.



31 e
Picture the Problem The figure shows the
wheel on the verge of rolling over the edge
of the step. Note that, under this condition,
the normal force the floor exerts on the
wheel is zero. Choose the coordinate system
shown in the figure and apply the conditions
for translational equilibrium and the result
for F from Example 12-4 to the wheel.

Apply D" F =0 to the wheel:

Writef?‘l in vector form:

From Example 12-4 we have:

Substitute to obtain:

32 oo

Picture the Problem The diagram shows
the forces Fl and 17‘2 acting at the supports,
the weight of the board mg, acting at its

center of gravity, and the weight of the
diver Mg acting at the end of the diving

board. Because the board is in
equilibrium, we can apply the condition
for rotational equilibrium to find the
forces at the supports.

AppIyZ‘? = O about an axis through
the left support:

Static Equilibrium and Elasticity ~ 919

D F=F-F,=
and
SF, = Fy ~Mg =0

=—Fi +Mgj
_ MgJh(2R-h
~ R-h
I_‘:'lz nglh(ZR—h);;_FMg;
R—h
_ nglh(ZR—h)'; “
= i+ Mgj
h—R
E
0 1.2m 0.9m 21m

YMg

(1.2m)E, —(2.1m)mg —(4.2m)Mg = 0



920 Chapter 12

Solve for F: " (2.1m)m+(4.2m)M ¢
2 (1.2m)

Substitute numerical values and evaluate F5:

(2.1m)(30kg)+(4.2m)(70 kg)

F,= L2m) (9.81m/s?)=[ 2.92kN, compression
Applyz 7 = Oabout an axis through (1.2 m)Fl - (0.9 m)mg - (Sm)Mg =0
the right support:

Solve for F;: F = (0.9m)m+(@Bm)M 2

(1.2m)

Substitute numerical values and evaluate F:

0.9m)(30kg)+(3m)(70 kg)
(1.2m)

F, = ( (9.81m/s?) = [ 1.94kN, tension

33 e
Picture the Problem Let 7 be the tension in
the line attached to the wall and L be the
length of the strut. The figure includes w,
the weight of the strut, for part (5). Because
the strut is in equilibrium, we can use the
conditions for both rotational and
translational equilibrium to find the force
exerted on the strut by the hinge.

(a) Express the force exerted on the F = Fhf + FV} (1)
strut at the hinge:

Ignoring the weight of the strut, LT - (L coS 45°)W =0
apply )7 = Oat the hinge:

Solve for the tension in the line: T =W cos45° = (60 N )cos 45°
=42.43N

Apply 217“ =0 to the strut: ZE =F,—Tcos45°=0
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and
Y F,=F,+Tc0s45°— Mg =0

Solve for Fy: T, = T'cos45° = (42.43N)cos 45°
=30.0N

Solve for F: F, = Mg —Tcos45°
=60 N —(42.43N)cos45°
=30.0N

Substitute in equation (1) to obtain: F =[(30.0 N)f+ (30.0 N)}

(b) Including the weight of the strut,

L
LT —(Lcos45°)W —| —cos45 w=0
apply D7 = 0at the hinge: ( ) [2 jw

Solve for the tension in the line: T = (cos 45°) + (%cos 450J "

= (cos45°)(60N)+ G cos 45°j(2o N)
=495N
Apply ZF =0 to the strut: ZFX =F, -Tcos45°=0

and
D F,=F,+Tcos45°—W —w=0

Solve for Fy: T, = T cos45° = (49.5 N)cos 45°
=35.0N

Solve for F: F, =W +w-Tco0s45°
= 60N + 20N —(49.5N)cos45°
=45.0N

Substitute in equation (1) to obtain: (35.0N)i +(45.0N);j

es1
Il
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34 e

Picture the Problem Note that if the 60-kg mass is at the far left end of the plank, 7; and
T, are less than 1 kN. Let x be the distance of the 60-kg mass from T;. Because the plank is
in equilibrium, we can apply the condition for rotational equilibrium to relate the distance x

to the other distances and forces.

T
T,
A
-—,\'—b{
) i 1.5m ~ 1Im
0 I I
mg g
g

Apply > 7 = 0about an axis
through the left end of the plank:

Solve for x:

Substitute numerical values and
simplify to obtain:

Set 7> = 1 kN and evaluate x:

(5m)T, —(4m)m,g (2.5 m)mpg
-mygx=0

(5 m)T2 —(4 m)mbg—(Z m)mpg
mg

X =

(5m)7, —3.63kN-m
0.5886 kN

(5m)(LkN)—3.63kN -m
0.5886 kN

and | Julieissafefor 0 < x <2.33m.

=2.33m
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35 e
Picture the Problem The figure to the
right shows the forces acting on the
cylinder. Choose a coordinate system in
which the positive x direction is to the right
and the positive y direction is upward.
Because the cylinder is in equilibrium, we
can apply the conditions for translational
and

rotational equilibrium to find F;, and the
horizontal and vertical components of the
force the corner of the step exerts on the

F.n
cylinder.
(a) Apply Y7 =0 to the cylinder Mgl —F,(—~F(R-h)=0
about the step’s corner:
Solve for Fy: F. = Mg F(ZI; —h)
Express / as a function of R and /: /= \/RZ —(R _h)z _ «/2Rh _ 52
F(2R-h)
F =Mg - ———=
N2Rh - h*
_| Mg-F 2Rh—h
(b) Apply " F, =0 to the cylinder: —F,,+F=0
Solve for Fp: F..=F
(0 AppIyZFy = 0 to the cylinder: F,-Mg+F , =0

Solve for F: F,,=Mg-F,
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Substitute the result from part (a): h
£, =Mg—Mg—F

I
B!

36 oo

Picture the Problem The figure to the —
right shows the forces acting on the / \
cylinder. Because the cylinder is in

equilibrium, we can use the condition for
rotational equilibrium to express F, in I N A
terms of F. Because, to roll over the step, \ ‘| g CF, )

the cylinder must lift off the floor, we can

set F, = 0 in our expression relating F,
and F and solve for F.

Apply Z? =0 about the step’s corner: Mgl —F (- F(2R — h): 0
Solve for Fy: F. = Mg - F(ZI; —h)
Express / as a function of R and 4: /= \/RZ ~(R-n} = V2RK— 1
Substitute to obtain: F = Mg— F(2R-h)
’ V2Rh—h?
:Mg_F ?
To roll over the step, the cylinder 2R-h
must lift off the floor, i.e., F, = 0: 0=Mg-F i
Solve for F: h
F =
2R—-h

*37 oo

Picture the Problem The diagram shows the forces F; and F) that the fencer’s hand
exerts on the epee. We can use a condition for translational equilibrium to find the
upward force the fencer must exert on the epee when it is in equilibrium and the
definition of torque to determine the total torque exerted. In part (c) we can use the
conditions for translational and rotational equilibrium to obtain two equations in F; and
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F, that we can solve simultaneously. In part (@) we can apply Newton’s 2™ law in
rotational form and the condition for translational equilibrium to obtain two equations in
F, and F; that, again, we can solve simultaneously.

\E,

|<—'I2cm—u-

} 24 cm >

(a) Letting the upward force F-w=0
exerted by the fencer’s hand be F,

apply > F, = Oto the epee to
obtain:

Solve for and evaluate F: F=mg=(07 kg)(9.81m/sz): 6.87 N

(b) Express the torque due to the — /w=(0.24m 7N)=/165N-m
weight about the left end of the 7 =4w=(024m)(6.87N)=| 165

epee:

(c) Apply > F, =0to the epee to ~F+F,—-687N=0 (1)
obtain:

Apply ZTO = Oto obtain: —(0.02m)F, +(0.12m)F, -1.65N-m =0

Solve these equations F=/826N|andF =]15.1N
1=|8. , = : :

simultaneously to obtain:
Note that the force nearest the butt of the
epee is directed downward and the force
nearest the hand guard is directed upward.

38 e
Picture the Problem In the force diagram, the forces exerted by the hinges
are Fy’z, 17“%1, and Fx’lwhere the subscript 1 refers to the lower hinge. Because the gate

is in equilibrium, we can apply the conditions for translational and rotational equilibrium
to find the tension in the wire and the forces at the hinges.
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T
F._\.I‘_ U
€
if-‘.”.]
—r,
mg

|= t, =~|
(a) Apply Y7 = Oabout an axis 0, Tsin@+¢,Tcosd—(,mg=0
through the lower hinge and
perpendicular to the plane of the page:
Solve for T: T l,mg

¢,sin@+1¢,cosé
Substitute numerical values and T - (1.5m)(200N)
evaluate T (1.5m)sin 45° + (1.5m)cos 45°
=| 141N
(b) Apply >’ F, =0to the gate: F_,—Tcos45°=0
Solve for and evaluate F, ;: F., =Tcos45° = (141N )cos 45°
=1 99.7N

(c) Apply D" F, =0to the gate: F, +F,,+Tsin45°-mg =0
Because F,; and F,, cannot be F,,+F,,=mg—Tsin45°
determined independently, solve for =200N—-99.7N
and evaluate their sum: _100N

39 o000
Picture the Problem Let 7 = the tension in the wire; F,, = the normal force of the
surface; and f; max = usFn the maximum force of static friction. Letting the point at which
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the wire is attached to the log be the origin, the center of mass of the log is at (-1.838 m,
—0.797 m) and the point of contact with the floor is at (—-3.676 m, —1.594 m). Because the

log is in equilibrium, we can apply the conditions for translational and rotational

equilibrium.

Apply D" F, =0to the log:

Apply D" F, =0to the log:

Divide equation (1) by equation (2)

to obtain:

Apply > 7 = 0about an axis

through the origin:

Solve for F;

Tsind—f =0

or
T'sing = f;,max = /uan

Tcos@+F,—mg=0
or
Tcos@=mg—F,

Tsind  uF,
Tcos® mg-—F,

or

tomg = F, - uF, =

M)

(2)

©)
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Substitute numerical values and
evaluate Fj;

Substitute in equation (3) and
evaluate &

Substitute numerical values in
equation (1) and evaluate T:

40 oo

Picture the Problem Consider what
happens just as @increases beyond

6 max- Because the top of the block is fixed
by the cord, the block will in fact rotate
with only the lower right edge of the block
remaining in contact with the plane. It
follows that just prior to this slipping, Fy
and f; = usF, act at the lower right edge of
the block. Choose a coordinate system in
which up the incline is the positive x
direction and the direction of 1’7“n is the

positive y direction. Because the block is in
equilibrium, we can apply the conditions
for translational and rotational equilibrium.

Apply D" F, =0to the block:
Apply > F, =0to the block:

Apply > 7 = 0about an axis

through the lower right edge of the
block:

Eliminate F), between equations (1)
and (2) and solve for T:

- _ 1838(100kg)(9.81mis’)

) = 389N
3.676+1.594(0.6)

0.6
(L00kg)(9.81m/s*)
389N

6 =tan?

21.5°

(0.6)(389N)

sin21.5°

636N

T+ uF,—mgsind=0 (1)
F,—mgcos6 =0 2

La(mgcosd)+1b(mgsin@)—bT =0 (3)

T = mg(sin @ — u, cos )
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Substitute for 7 in equation (3): La(mgcos@)+1b(mgsin )
—b[mg(sin@ - u, cos@)|=0

Substitute 4a for b: La(mgcos6)+1(4a)(mgsin6)
—(4a)[mg(sin @ - u, cos@)]=0

Simplify to obtain: (1+8y5)COSt9—4sin¢9:O
Solve for &. 0 — tan™ 1+8u

Substitute numerical values and 0 —tant it 8(0.8) _T616°
evaluate 4:

%41 e

Picture the Problem The free-body diagram shown to the left below is for the weight
and the diagram to the right is for the boat. Because both are in equilibrium under the
influences of the forces acting on them, we can apply a condition for translational
equilibrium to find the tension in the chain.

mg

(a) Apply > F, =0to the boat: F,—Tcosf =0
Solve for T: T F,
cosé
Apply > F, =0to the weight: 2Tsind-100N =0 @
Substitute for 7" to obtain: 2F,tand—-100N =0
Solve for 9: 4 100N

0 =tan

d
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Substitute for Fy and evaluate 6
ubstitute for 4 and evaluate 0 = tan"t 100N _ 450
2(50N)
Solve equation (1) for T: 7o 100N
~ 2siné
Substitute for #and evaluate T
T = ﬂ =/ 70.7N
2sin 45°
(b) Use the diagram to the right to 2d
relate the sag Ay in the chain to the L] 0
angle @the chain makes with the
horizontal: A7
3L
sing = &
2
where L is the length of the chain.
Solve for Ay: Ay=1Lsing
Becaus_e the hori_zontal and vertical Ay = %(5 m)sin 45°=[1.77m
forces in the chain are equal, 6=
45° and:
(¢) Relate the distance d of the boat id d
from the dock to the angle @the cosg = 17
chain makes with the horizontal: 2
Solve for and evaluate d: d=LcosO = (5 m)cos 45° = 354m
(d) Relate the resultant tension in F?+F2., =(500 NY

the chain to the vertical component
of the tension F, and the maximum
drag force exerted on the boat by the

Solve for Fymax:
e Fy e =(BOONY - F?2
Because the vertical component of the _ 2 2 _
tension is 50 N: Fymax = \/(500 N) - (50 N) =[ 497N

42 e
Picture the Problem Choose a coordinate system in which the positive x axis is along
the rod and the positive y direction is normal to the rod. The rod and the forces acting on
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it are shown in the free-body diagram. The forces acting at the supports are denoted by
the numerals 1 and 2. The resultant forces at the supports are shown as dashed lines.
We’ll assume that the rod is on the verge of sliding. Because the x components of the
forces at the supports are friction forces, they are proportional to the normal, i.e., y,
components of the forces at the supports. Because the rod is in equilibrium, we can apply
the conditions for translational and rotational equilibrium.

Apply D7 = 0about an axis (,F,,—{,mgcosd =0
through the support at x = 2 m:

Solve for F,: o ¢,mgcosd
2y =T
2
Substitute numerical values and o (3m)(20kg)(0.81m/s? )cos 30°
evaluate F,: 2y 4m
=127.4N
Apply Zf:Oabout an axis (ﬁz—ﬁl)mgcose—ﬁzﬂ’y =0

through the support at x = 6 m:

Solve for Fy,: F o (ﬁz —Kl)mg cosé
L, =
g 2
Substitute numerical values and F o= (4m—3m)(20 kg)(9.81m/sz)
evaluate F; b 4m
x€0s30°

=42.48N
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Apply D" F, =0to the rail:
Assuming that the rod is on the
verge of sliding and that the
coefficient of static friction is the
same for both supports:

Divide the first of these equations
by the second and evaluate this ratio

to obtain:

Solve for F,,,:
Substitute in equation (1):
Solve for Fy,:

Substitute numerical values and
evaluate F ,:

Evaluate F,

Find the angle &, the force at
support 1 (x = 2 m) makes with the
rod:

Find the angle & the force at
support 2 makes with the rod:

Find the magnitude of 17“1:

F, . +F, —mgsin30°=0

F=ukF,
and
F, = ,ust,y

F, F, 4248N 1

F,, F,, 12714N 3

FZ = 3Fi,x

X

F,,+3F,, —mgsind=0

F,,=1mgsing

F,, =3(24.53N)=73.58N

14248N _
F, 24.53N

=/(24.53N)? +(42.48 N
~[49.1N

(1)

60.0°

60.0°
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Find the magnitude of F,: F,=\F; +F},
= /(7358 N)’ +(127.4N)?
~[147N

43 -

Picture the Problem The forces shown in the figure constitute a couple and will cause
the plate to experience a counterclockwise angular acceleration. We can find this net
torque by expressing the torque about either of the corners of the plate.

Sum the torques about an axis z,.. = b[(80N)cos30°]- a[(80 N )sin 30°]

through the upper left corner of the _ (69.3 N)b _ (40_0 N)a
plate to obtain:

44 -

Picture the Problem We can use the condition for translational equilibrium and the
definition of a couple to show that the force of static friction exerted by the surface and
the applied force constitute a couple. We can use the definition of torque to find the
torque exerted by the couple. We can use our result from (») to find the effective point of
application of the normal force when F = Mg/3 and the condition for rotational
equilibrium to find the greatest magnitude of F for which the cube will not tip.

(a) Apply Y F, =0to the stationary F+f=0

cube:

~.F =—f. and this pair of equal,
parallel,and oppositely directed
forces constitute a couple.

The torque of the couple is: Tooupte = | Fa
(b) Let x = the distance from the Mgx—Fa=0 1
point of application of £, to the or
center of the cube. Now, F, = Mg, = ﬂ
so applying Y7 = Oto the cube Mg
yields:
Substitute for F = Mg/3 to obtain: Mg

3 a

X = =| =
Mg 3
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(c¢) Solve equation (1) for F:
Noting that xyax = @/2, substitute to
express the condition that the cube
will tip:

45 oo

Picture the Problem We can find the perpendicular distance between the lines of action

Fo Mgx
a
a
Mg —
oM _ "2 | Mg
a a 2

of the two forces by following the outline given in the problem statement.

Express the vertical components of
the forces:

Express the horizontal components
of the forces:

Express the net torque acting on the
plate:

Letting D be the moment arm of the
couple, express the net torque acting
on the plate:

Equate these two expressions for zne:

Solve for D:

NE

Fcos30°=—F
2

Fsin30°:£
2

V31

Tt :—Fb—EFa =

nes 2

%F(\/gb—a)
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*)G oo
Picture the Problem Choose the y

coordinate system shown in the diagram " |

and let x be the coordinate of the thrust 0

point. The diagram to the right shows the \L )
forces acting on the wall. The normal force Faren

must balance out the weight of the wall and
the vertical component of the thrust from
the arch and the frictional force must l
balance out the horizontal component of .

the thrust. We can apply the conditions for o F
translational equilibrium to find f'and F,
and the condition for rotational equilibrium
to find the distance x from the origin of our 0 - —x
coordinate system at which F; acts. ‘

(a) Apply the conditions for ZFx =—f+F,;c050=0 (1)
translational equilibrium to the wall q
to obtain: an

sz:ﬂ_mg_F;rchSinezo (2)

Solve equation (1) for and evaluate f: f=F,,;c080 = (2 x10* N)COS 30°

=[17.3kN
Solve equation (2) for Fy: F,=mg+F,,sin@
Substitute numerical values and F = (3><104 kg)(9.81m/52)
evaluate £ " 4 )

+(2><10 N)sm 30°

=| 304kN
Apply D 7, =0 to the to the wall: xF, —+wmg — hF,, cos@ =0
Solve for x: re Twmg+hF, cosé

F

n

Substitute numerical values and evaluate x:

- H025m)Ex10" kgl 81mis - (Om) 210 N)oos30" _ e

304kN

(b)

If there were no thrust on the side of the wall, the normal force would act
through the center of mass, so making the weight larger compared to the
thrust must move the point of action of the normal force closer to the center.
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47 e
Picture the Problem Let 4 be the height of y
the structure, T be the thrust, #the angle i

from the horizontal of the thrust, m'g the ‘

weight of the wall above height y, N(x) the R & ;
normal force, fthe friction force the lower '_4__ y __L N
part of the wall exerts on the upper part, Tf

and w the width of the structure. We can mg

|
apply the conditions for translational and :
rotational equilibrium to the portion of the |
wall above the point at which the thrust is |
applied to obtain two equations that we can |
solve simultaneously for x. |

0

Apply ZFy = 0 to that fraction of the N(x)—TSin 0—-m'g =0
wall above height y:
Assuming the wall is of uniform m's  mg
density, express m'g in terms of mg: h—y - h
and
' Y
m'g =mg|ll-=
g =mg(1-7)
Substitute to obtain: . y
N(x)-Tsin6—mg 1—; =0
Solve for N(x):
*) N(x):TSinH+mg(1—%j
Apply Z{- = Oabout an axis xN(x)—(h —y)T cosé
through (0,y) and perpendicular to L 1 AN
the xy plane to obtain: AL
Solve for x to obtain: _ %mgw+hTCOSH(1—Xj
N(x) h

Substitute for N(x) to obtain: y
(Lmgw+hT cos@ -

X =

T'sin l9+mg(1—;:j

Substitute numerical values and simplify to obtain:
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X =

[1(38x10° kg )(0.81m/s?)(1.25 M)+ (10m)(2x 10* N)cosSO"](l—lOy

m

|

(2x10* N)sin 30°+ (3x10* kg )(9.81mis? ){1—

_ 3571m-3571y
30.43—-(2.943m*)y

Yy
10m

|

Solve for y: 35.71m - 30.

43x

3.571-(2.943m")x

937

The graph shown to the right was

plotted using a spreadsheet program:

» (m)

0.0 0.2 0.4

06
x (m)

0.8

12

Ladder Problems

*48 ee

Picture the Problem The ladder and the
forces acting on it at the critical moment of
slipping are shown in the diagram. Use the
coordinate system shown. Because the
ladder is in equilibrium, we can apply the
conditions for translational and rotational
equilibrium.

Using its definition, express us: Jsmax

Apply > 7 = 0about the bottom of

[(9m)cosd Mg +[(5m)cos O] mg

the ladder: ~[@om)sin@]F,, =0

Solve for Fy:

9m)M +(5m)m

_(
Fu = (1om)sin@

g

cosd

)
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Find the angle & 0 = cost 2.8m _ 73,740
10m
Evaluate F: P (9m)(70kg)+(5m)(22kg)
v (10m)sin73.74°
x(9.81m/s? )cos 73.74°
=211.7N
Apply D" F, =0to the ladder and Fo = foma =0
solve for f max: and

foma = Fag = 211.7N

Apply D" F, =0to the ladder: F —Mg-mg=0
Solve for Fy: F, = (M + m)g
= (70kg + 22kg)(9.81m/s?)
=902.5N
Subst_itute numerical values in 4 = 211.7N _ 0.035
equation (1) and evaluate us: 902.5N
49 o

Picture the Problem The ladder and the
forces acting on it are shown in the
diagram. Because the wall is smooth, the
force the wall exerts on the ladder must be
horizontal. Because the ladder is in
equilibrium, we can apply the conditions
for translational and rotational equilibrium
to it.

Apply > F, =0to the ladder and

solve for Fy:

Apply D" F, =0to the ladder and Fyy = fomax =02 fomax = Fw

solve for f max:

Apply D7 = 0about the bottom of Mgxcos@ - F, Lsind=0
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the ladder:

Solve for x: o FyLsin®  fimL

= tan@
Mgcosé Mg

= ’uS—F”Ltane = uLtan g

Mg
Referring to the figure, relate x to 4 and sing="
solve for A:
and
h=xsin@=| yLtandsin
50 oo

Picture the Problem The ladder and the
forces acting on it are shown in the
drawing. Choose a coordinate system in
which the positive x direction is to the right
and the positive y direction is upward.
Because the wall is smooth, the force the
wall exerts on the ladder must be
horizontal. Because the ladder is in
equilibrium, we can apply the conditions

dmg mg

for translational and rotational equilibrium. F o
Apply D" F, =0to the ladder and F —mg—4mg=0
solve for F,: and
F. =5mg
Apply D" F, =0to the ladder and Foy = fomm =0
solve for f; max: and
fs,max = FW

Apply > 7 = Oabout an axis mgécoséw 4mgl cos@—F, Lsin@ =0

through the bottom of the ladder:

Substitute for Fy and then f; ma and /= SugmgLsin @ —+mgLcosé
solve for /: 4mg cosO
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Simplify to obtain:

51 oo

Picture the Problem The ladder and the
forces acting on it are shown in the figure.
Because the ladder is separating from the
wall, the force the wall exerts on the ladder
is zero. Because the ladder is in
equilibrium, we can apply the conditions
for translational and rotational equilibrium.

To find the force required to pull the
ladder away from the wall, apply
D7 = 0about an axis through the

bottom of the ladder:

Solve for F:

Apply D" F, =0to the ladder:

Apply D" F, =0to the ladder:

Equate equations (1) and (2) and
substitute for F, to obtain:

Solve for ug:

0= (%tan H—EJL
4 8
(M tan 60° _le
4 8

=|0.849L

i.e., you can climb about 85% of the way to
the top of the ladder.

mg%cos@—%Fsin 6=0

or, because £ cosfd=——,
2 tan @

mgh L pgno=o
tang 2

2mgh

= 1)
Ltan@sind

F_fs,maXZO:F:f;,max:/uan (2)

F,.-mg=0=F, =mg

o — 2mgh
HE Ltan@sin@
[ 2
Hs Ltan@sin @
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Picture the Problem Assume that half the
man’s weight acts on each side of the
ladder. The force exerted by the frictionless
floor must be vertical. D is the separation
between the legs at the bottom and x is the
distance of the cross brace from the apex.
Because each leg of the ladder is in
equilibrium, we can apply the condition for
rotational equilibrium the right leg to relate
the tension in the cross brace to its distance
from the apex.

(a) By symmetry, each leg carries
half the total weight. So the force on
each leg is:

(b) Consider one of the ladder’s
legs and apply > 7 = 0about the

apex:
Solve for T

Using trigonometry, relate /# and 6
through the tangent function:
Solve for D to obtain:

Substitute and simplify to obtain:
Substitute numerical values and
evaluate T:

Apply > F, =0to the ladder and

solve for Fy:

Substitute to obtain:

Static Equilibrium and Elasticity

|

450N

F,—-Tx=0

r_ED
2x

D/2
tan%ezT/

D =2htan$6

7o 2Fhtan 30 _ Fhtan;0

2x X

_F.htan 0

X

T

F,—3w=0and F, =%w

n

_ whtan;6
2x

T

M)
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Substitute numerical values and
evaluate T

(¢) From equation (1) we can see

that, if x is increased, i.e., the brace

moved lower:

53 oo

Picture the Problem The figure shows the
forces acting on the ladder. Because the
wall is frictionless, the force the wall exerts
on the ladder is perpendicular to the wall.
Because the ladder is on the verge of
slipping, the static friction force is fs max-
Because the ladder is in equilibrium, we
can apply the conditions for translational

and rotational equilibrium.

Apply D" F, =0to the ladder:
Apply D" F, =0to the ladder:

Apply > 7 = 0about an axis
through the bottom of the ladder:

Substitute for F\ and F, and
simplify to obtain:

Solve for and evaluate &

Stress and Strain

*54 .

(900N)(4m)tan15°
2(2m) -

T will decrease.

241N

FW_j;,max:0:>FW:j;,max:ﬂan

F.-mg=0=F, =mg
L .
ngcose—LFW sind=0

20860 — pu,sind=0

¢9=tan‘1i:tan‘l L _ 59.0°

N 2(0.3)

Picture the Problem L is the unstretched length of the wire, F is the force acting on it, and

A is its cross-sectional area. The stretch in the wire AL is related to Young’s modulus by
Y = (F/A)/(AL/L). We can use Table 12-1 to find the numerical value of Young’s

modulus for steel.

Find the amount the wire is

stretched from Young’s modulus:

y Fl4
AL/L



Solve for AL:

Substitute for 7 and A4 to obtain:

Substitute numerical values and
evaluate AL:

55 e
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N
YA
AL = mng
Yrr
AL - (50kg)(0.81m/s )(5m)
27 x10" N/m? (2x10° m )?
=| 0.976 mm

Picture the Problem L is the unstretched length of the wire, F is the force acting on it, and
A is its cross-sectional area. The stretch in the wire AL is related to Young’s modulus by

Y =stress/strain =(F/4)/(AL/L).

(@) Express the maximum load in
terms of the wire’s breaking stress:

Substitute numerical values and
evaluate Fiax:

() Using the definition of Young’s
modulus, express the fractional

change in length of the copper wire:

56 e

F,. = breaking stressx 4
= breaking stress x z

F,. = (3x10° N/m?)z(0.21x10° m)?
=] 41.6N
_F/4 _15x10°N/m*
Y 1.1x10" N/m?
=1.36x10"° =| 0.136%

AL/L

Picture the Problem L is the unstretched length of the wire, F is the force acting on it, and
A is its cross-sectional area. The stretch in the wire AL is related to Young’s modulus by
Y =(F/A)/(AL/L). We can use Table 12-1 to find the numerical value of Young’s

modulus for steel.

Find the amount the wire is stretched

from Young’s modulus:

Solve for AL:

,_ Fla
AL/L
aL=fL

YA
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Substitute for  and 4 to obtain: AL — mgL
- 2
Yrr
Substitute numerical values and AL — (4 kg)(9.81m/52)(1.2 m)
evaluate AL: 27 x10" N/m? (0.3x10* m)’
=1 0.833mm

*57 .

Picture the Problem The shear stress, defined as the ratio of the shearing force to the area
over which it is applied, is related to the shear strain through the definition of the shear
shear stress  F,/A

modulus; M = — = .
shear strain  tané@

Using the definition of shear tan @ = F,
modulus, relate the angle of shear, & M.A
to the shear force and shear modulus:
Solve for 6 0 = tan~ F,
M A
Substitute numerical values and e 25N
¢ =tan 5 2 -4 a2

evaluate 6: (L.9x10° N/m? )(15x107 m?)

=| 5.01°
58  ee

Picture the Problem The stretch in the wire AL is related to Young’s modulus

byY = (F/A)/(AL/L) where L is the unstretched length of the wire, F is the force acting
on it, and 4 is its cross-sectional area. For a composite wire, the length under stress is the
unstressed length plus the sum of the elongations of the components of the wire.

Express the length of the composite wire L=3.00m+AL @
when it is supporting a mass of
5kg:
Express the change in length of the AL = ALgee + ALy,
composite wire: _F L, N F L,
A Ysteel A YAI

— E Lsteel + ﬂ
A\ Y., Yy

steel
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(5kg)(9.81mis?)
7(0.5x10° m)
= 6.245x10" N/m?

Find the stress in each wire: E
A

Substitute numerical values and evaluate AL:

AL = (6.245x10" Nfm?)[ ——Z2M LM ), 69,10 m
2x107 N/m*  0.7x10" N/m
Substitute in equation (1) and evaluate L: L=3.00m+1.81x107°m

=13.0018m

59 e
Picture the Problem We can use Hooke’s law and Young’s modulus to show that, if the
wire is considered to be a spring, the force constant k is given by

k= AY/L. By treating the wire as a spring we can show the energy stored in the wire is U =
YaFAL.

Express the relationship between the F =kAL
stretching force, the stiffness or
constant, and the elongation of a e
spring: AL
Using the definition of Young’s o AY )
modulus, express the ratio of the AL L
stretching force to the elongation of
the wire:
Equate these two expressions for i = AY
FIAL to obtain: | L
- - - AY
Treatmg_the wire as a spring, U = %k(AL)Z _ %—(AL)Z
express its stored energy: L
Solve equation (1) for F: Fe AYAL
L
Substitute in our expression for U to obtain: U=1 Ai;AL —[1FAL
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60 oo
Picture the Problem Let L' represent the stretched and L the unstretched length of the wire.
The stretch in the wire AL is related to Young’s modulus by Y = (F/A4)/(AL/L), where F is
the force acting on it, and 4 is its cross-sectional area. In problem 58 we showed that the
energy stored in the wire is U = %2FAL, where Y is Young’s modulus and AL is the amount
the wire has stretched.

(a) Express the stretched length of the L' =L+AL
wire:
Using the definition of Young’s N
modulus, express AL: AY
Substitute and simplify: I :L+£:L 1+i
AY AY
Solve for L: I LF
1+—
AY
Substitute numerical values and I 0.35m
evaluate L: 14 33N
- 2 11 2
7(0.1x10° m)*(2x10™ N/m?)
=|0.347Tm
(b) Using the expression from W =AU =35 FAL
Problem 59, express the work done =1(53N)(0.35m—0.347m)
in stretching the wire: _00795]
*G1  ee
Picture the Problem The table to the right Load F AL ALIF
summarizes the ratios AL/F for the (@ | (N | (m) (m/N
student’s data. Note that this ratio is 100 | 0.981 | 0.006 | 6.12x10°°
constant, to three significant figures, for 200 | 1.962 | 0.012 | 6.12x107°
loads less than or equal to 200 g. We can 300 | 2.943 | 0.019 | 6.46x1073
use this ratio to calculate Young’s modulus | 400 | 3.924 | 0.028 | 7.14x1073
for the rubber strip. 500 | 4.905 | 0.05 | 10.2x10°°
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(a) Referring to the table, we see AL —6.12x10° m/N
that for loads < 200 g:
Use the definition of Young’s Y- FL _ L
modulus to express Y: AAL Ag

F

Substitute numerical values and evaluate Y:

5x107%m

_ ) -
F = B0 m) %107 m) G12x10 miN) ~ Lo N/m

(b) Interpolate to determine the U=3FAL

stretch when the load is 150 g, and =1(0.15 kg)(9.81m/sz)(9 %1073 m)
se the expression from Problem 58,

1156 Te Express! . _[6.62m]

to express the energy stored in the

strip:

62 e
Picture the Problem The figure shows
the forces acting on the wire where it
passes over the nail. m represents the mass
of the mirror and 7 is the tension in the
supporting wires. The figure also shows
the geometry of the right triangle defined
by the support wires and the top of the
mirror frame. The distance « is fixed by

the geometry while # and L will change as y /

the mirror is suspended from the nail. s N
Express the distance between the h'=h+Ah O

nail and the top of the frame when =0.4m+Ah

the wire is under tension:

Apply ZQ = 0to the wire where it mg —2Tc0sd =0

passes over the supporting nail:

Solve for the tension in the wire: T mg

B 2coséd
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Substitute numerical values and
evaluate T

Using its definition, find the stress
in the wire:

Using the definition of Young’s
modulus, find the strain in the
hypotenuse of the right triangle
shown in the figure:

Using the Pythagorean theorem,
express the relationship between the
sides of the right triangle in the
figure:

Express the differential of this
equation:

Solve for and evaluate A#:

Substitute numerical values and
evaluate Ak:

Substitute in equation (1) to obtain:

63 oo

2
_(24Kkg)@81M/s°) _p
2 0.4m
0.85m
T 25.0N
stress = — = -
7(0.1x10%m)
=7.96x10% N/m?
. AL stress
strain = — =
L Y
8 2
_ 7'96X11? N/ M _3.98x10°
2x10"" N/m
a2+ h? =12

2aAa +2hAh =2LAL
or, because Aa =0,

hAh = LAL
2
ap=LAL _ L AL
K h L
2
Ah = m(3.98><10*3)= 7.19 mm
0.4m

h'=04m+7.19mm
=|40.72cm

Picture the Problem Let the numeral 1 denote the aluminum wire and the numeral 2 the
steel wire. Because their initial lengths and amount they stretch are the same, we can use
the definition of Young’s modulus to express the change in the lengths of each wire and
then equate these expressions to obtain an equation solvable for the ratio My/M,.

Using the definition of Young’s
modulus, express the change in

Mgl

AlYAI

1



length of the aluminum wire:

Using the definition of Young’s
modulus, express the change in
length of the steel wire:

Because the two wires stretch by the
same amount, equate AL; and AL,
and simplify:

Solve for the ratio Mi/M>:

Substitute numerical values and
evaluate My/M:

64 oo
Picture the Problem The free-body
diagram shows the forces acting on the ball
as it rotates around the post in a horizontal
plane. We can apply Newton’s 2™ law to
find the tension in the wire and use the
definition of Young’s modulus to find the
amount by which the aluminum wire
stretches.

Express the length of the wire under
tension to its unstretched length:

Apply > F, =0to the ball:

Solve for the tension in the wire:
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AL, = M,glL,
AZYsteeI
M, _ M,
AlYAI AZY;teel
M, _ AYy
MZ AZYsteeI
M, %(0.7 mm)’ (0.7 x10" N/m?)
M, %(O.Smm)2(2x10“N/m2)
_ (0.7mm)(0.7x10" N/m?)
(0.5mm) (2x10" N/m?)
=| 0.686
y
T
0
x— —
mg

L=L,+AL=0.7m+AL (1)

Tsind-mg=0

T="%
sin@
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Substitute numerical values and - (0.5 kg).(9.81m/sz) 563N

evaluate 7: sin5°

Using the definition of Young’s AL = FL

modulus, express AL: AY

Substitute numerical values and AL = (56.3N)(0.7m)

evaluate AL: %(1.6><10-3 m)?(0.7x10" N/m?)
=0.280mm

Substitute in equation (1) to obtain: L=0.7m+0.280mm =| 70.03cm

*65 oo

Picture the Problem We can use the definition of stress to calculate the failing stress of
the cable and the stress on the elevator cable. Note that the failing stress of the composite
cable is the same as the failing stress of the test sample.

Express the stress on the elevator cable: F 20kN
Stresscable = = —6 a2
A 12x107"m

=1.67x10" N/m?

Express the failing stress of the sample: F 1kN
Stressfailing T T Ao .106 2
A 0.2x107m

=0.500x10" N/m?

Because Stress,;;,, < Stress,., it will not support the elevator.

cable?

*GE  eoe
Picture the Problem Let the length of the sides of the rectangle be x, y and z. Then the
volume of the rectangle will be ¥ = xyz and we can express the new volume V' resulting
from the pulling in the x direction and the change in volume AV in terms of Ax, Ay, and
Az. Discarding the higher order terms in AV and dividing our equation by 7 and using the
given condition that Ay/y = Az/z will lead us to the given expression for Ay/y.

Express the new volume of the rectangular box when its sides change in length by Ax, Ay,
and Az:

V' = (x + Ax)(y + Ay)(z + Az) =Xxyz+ Ax(yz)+ Ay(xz)+ Az(xy)
+{ZAXAY + YAXAz + XAyAz + AxAyAz
where the terms in brackets are very small (i.e., second order or higher).
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Discard the second order and higher V' =V + Ax(yz)+ Ay(xz) + Az(xy)
terms to obtain: or
AV =V'—V = Ax(yz)+ Ay(xz) + Az(xy)

Because AV = 0: Ax(yz) = —[Ay(xz)+ Az(xy)]
Divide both sides of this equation by Ax | Ay N Az

V = xyz to obtain: x |y oz

Because Ayly = Az/z, our equation Ax _ _2& or Ay | 1A
becomes: X y y 2 x
67 oo

Picture the Problem We can evaluate the differential of the volume of the wire and,
using the assumptions that the volume of the wire does not change under stretching and
that the change in its length is small compared to its length, show that Ar/r = —(1/2) AL/L.

Express the volume of the wire: V = rr2L

Evaluate the differential of J'to dV = 7 r2dL + 27 rLdr

obtain:

Because dV = 0: 1dL
O=rdL+2Ldr = ﬂz——d—

r 2 L
Because AL << L, we can Ar 1AL
approximate the differential changes 7 = —ET

dr and dL with small changes Ar
and AL to obtain:

*G8  eee
Picture the Problem Because the volume of the thread remains constant during the
stretching process, we can equate the initial and final volumes to express rq in terms of r.
We can also use Young’s modulus to express the tension needed to break the thread in
terms of Y and r.

(a) Express the conservation of xr’L = nr’L,
volume during the stretching of the
spider’s silk:
Solve for r: _ L,

r=rya—

L

Substitute for L to obtain: L

r=r, |—— = 0.3167,
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(b) Express Young’s modulus in T/A Tlzr? 10T/7[ 2
terms of the breaking tension T ALL . ALJL ALL
Solve for T'to obtain:
T= %ijﬁ
Because AL/L = 9: - or rOZY
10

General Problems

69 -
Picture the Problem Because the board is in equilibrium, we can apply the conditions for
translational and rotational equilibrium to determine the forces exerted by the supports.

Apply Zi 7, = 0 about the right support: (2m)(360N)+(5m)(90N)—(10m)F, =0

Solve for and evaluate F: P (2m)(360N)+(5m)(90N)
=
10m

=[117N
Apply > F, = 0to the board: F, +F,-90N-360N=0
Solve for and evaluate F: Fr=—F +90N+360N

=-117N+90N + 360N

=| 333N

Remarks: We could just as easily found Fg by applying Zf = O about the left
support.

70 -

Picture the Problem Because the man-and-board system is in equilibrium, we can apply
the conditions for translational and rotational equilibrium to determine the forces exerted
by the supports. Let d represent the distance from the man’s feet to his center of gravity.

Apply > 7 = 0about an axis (845N)d —(1.88m)(445N) =0

through the man’s feet and
perpendicular to the page:
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Solve for and evaluate d: d= (L.88m)(445N) =0.990m

845N
99.0cm

No. Holding his head slightly above the board would not change the location of
his center of mass and so the scale readings would not change.

*71
Picture the Problem We can apply the balance condition Z? = 0 successively, starting

with the lowest part of the mobile, to find the value of each of the unknown weights.

Apply Z{- = Oabout an axis (3cm)(2N)—(4cm)w, =0

through the point of suspension of
the lowest part of the mobile:

Solve for and evaluate w: W, = (3cm)(2N) -[150N
4cm
Apply Zf = Oabout an axis (2cm)w, —(4cm)(2N+1.5N)=0

through the point of suspension of
the middle part of the mobile:

Solve for and evaluate w,: W, = (4cm)(2N+15N) ~[700N
2cm

Apply Z‘E = Oabout an axis (2cm)(10.5N)—(6¢cm)w, =0

through the point of suspension of

the top part of the mobile:

Solve for and evaluate ws: W, = (2 cm)(10.5 N) — 350N
6cm

72 .

Picture the Problem We can determine the ratio of L to 4 by noting the number of ropes
supporting the load whose mass is M.

the pulley to which the object whose ho
mass is M is fastened we can

(@) Noting that three ropes support L
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conclude that:

(b) Apply the Work—energy principle I/Vext = AEsystem = Al]block—tackle
to the block-tackle object to obtain: or

FL = Mgh
73 oo

Picture the Problem The figure shows the
equilateral triangle without the mass m, and
then the same triangle with the mass m and
rotated through an angle 6. Let the side
length of the triangle to be 2a. Then the
center of mass of the triangle is at a

distance of % from each vertex. As the

triangle rotates, its center of mass shifts

O, for 6 << 1. Also, the vertex to

V3
which m is attached moves toward the

plumb line by the distance d = 2a 6 c0s30°
= /340 (see the drawing).

Apply Z{- = O about an axis through mg(a —ﬁa&)—Mgﬁe ~0
the point of suspension: V3
Solve for m/M: 20

Substitute numerical values and 2(6°) 7 rad
evaluate m/M: m _ 180°
M 7 rad
3|1-+/3(6°
\/_[ i )( 180° ﬂ
=|0.148
74 e

Picture the Problem If the hexagon is to
roll rather than slide, the incline’s angle
must be such that the center of mass falls
just beyond the support base. From the



geometry of the hexagon, one can see that
the critical angle is 30°. The free-body
diagram shows the forces acting on the
hexagonal pencil when it is on the verge of
sliding. We can use Newton’s 2™ law to
relate the coefficient of static friction to the
angle of the incline for which rolling rather
than sliding occurs.

Apply D" F =0to the pencil:

Substitute fs max = usFn in equation (1):

Divide equation (3) by equation (2)
to obtain:

Thus, if the pencil is to roll rather
than slide when the pad is inclined:

75 e
Picture the Problem The box and the
forces acting on it are shown in the figure.
When the box is about to tip, F;, acts at its
edge, as indicated in the drawing. We can
use the definition of us and apply the
condition for rotational equilibrium in an
accelerated frame to relate £; to the weight
of the box and, hence, to the normal force.

Using its definition, express us:

Apply Z? = O about an axis through

the box’s center of mass:

Static Equilibrium and Elasticity

¥

f. F,

mg

> F, =mgsinf-f,,, =0 (1)
and

D> F,=F,-mgcosf =0 (2)
mgsing — u F, =0 (3)

tan @ =

U, >1an30° =| 0.577

2w
J mg

955
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Solve for the ratio £: £ = l

n K2
Substitute to obtain the condition for 4, >0.500
tipping:
Therefore, if the box is to slide: 1, <| 0.500
76 e

Picture the Problem Because the balance is in equilibrium, we can use the condition for
rotational equilibrium to relate the masses of the blocks to the lever arms of the balance
in the two configurations described in the problem statement.

Apply Zf =0 about an axis (1.5kg)L, = (1.95kg)L,

through the fulcrum:

Solve for the ratio Li/L: L _195kg _, 4
L, 15kg

Apply > 7 =0 about an axis (1.5kg)L, = ML,

through the fulcrum with 1.5 kg at
Ly:

Solve for and evaluate M: M (1.5kg)L, _15kg _1.5kg
L L/L, 130

1.15Kkg

*77 oo

Picture the Problem The figure shows the
location of the cube’s center of mass and
the forces acting on the cube. The opposing
couple is formed by the friction force fsmax e
and the force exerted by the wall. Because 7
the cube is in equilibrium, we can use the
condition for translational equilibrium to
establish that ;.. = F,and F, = Mg s ¢ e il

and the condition for rotational equilibrium 7
to relate the opposing couples.



Static Equilibrium and Elasticity =~ 957

Apply ZF =0 to the cube: ZF) =F -Mg=0=F, =Mg
and
D2 E=f-F=0=>F, =

Noting that £, _ and F,, forma fsmaxasSin0@—Mgd =0

§,max
couple, as do Fn and Mg, apply
D7 =0 about an axis though the

center of mass of the cube:

Referring to the diagram to the

right, note
a .
thatd = —sin(45°+8).
\/E ( ) f Mg

Substitute for d and f; max to Obtain:

. a .
Mgasin @ — Mg —-sin(45°+68)=0
H Mg g\/E ( )
or
. 1 .
sin@——=sin(45°+68)=0
ﬂs \/E ( )
Solve for us and simplify to obtain:
ys:;_sin(45°+9):;_(sin45°cos¢9+cos45°sin9)
J2sing J2sing

1 1 1 . 1
=——| —=C0sf+—=sind |=| =(cotfd+1
ﬁsine(ﬁ 7 J 5 (c0to+1)

78 e
Picture the Problem Because the meter stick is in equilibrium, we can apply the condition
for rotational equilibrium to find the maximum distance from the hinge at which the block
can be suspended.

Apply Zf =0 about an axis through the hinge to obtain:
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(Lm)(75N) - (0.5m)(5kg)(9.81m/s? Jcos 45° — (10 kg)(9.81m/s? )cos 45° = 0

Solve for and evaluate d:

(tm)(75N)-(0.5m)(5kg)(9.81m/s? )

45° = 0.831
(10kg)0.81mistJoos a5 il

79 oo

Picture the Problem Let m represent the
mass of the ladder and M the mass of the
person. The force diagram shows the forces
acting on the ladder for part (). From the
condition for translational equilibrium, we
can conclude that 7= F\, a result we’ll
need in part (b). Because the ladder is also
in rotational equilibrium, summing the
torques about the bottom of the ladder will

eliminate both F, and T. l<—fl.5 ]
(a) Apply zi 7, =0 about an axis (5m)F,, —(0.75m)(20 kg)(9.81m/sz)
through the bottom of the ladder: - (0.75 m)(80 kg)(9.81m/s2 ) =0
Solve for and evaluate Fiy: o (0.75m)(20 kg)(9.81m/52)
e 5m
, (0.75m)(80kg)(9.81m5”)
om
=|147N

(b) Solve for and evaluate

/- (6m)(200N)-(0.75m)(20 kg)(?.81m/sz) 0724
(1.5m)(80kg)(9.81m/s?)
Find the distance the 80-kg person can d = f(5m)=(0.724)5m)=| 3.62m

climb the ladder:
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Picture the Problem To "roll” the cube
one must raise its center of mass from y =
al2toy = ﬁa/Z , Where a is the cube

length. During this process the work done
is the change in the gravitational potential
energy of the cube. No additional work is
done on the cube as it "flops” down. We
can also use the definition of work to
express the work done in sliding the cube a
distance « along a horizontal surface and
then equate the two expressions to
determine u.

Express the work done in moving
the cube a distance a by raising its
center of mass from y = a/2

toy= \/Ea/Z and then letting the

cube flop down:

Letting f« represent the Kinetic
friction force, express the work done
in dragging the cube a distance a
along the surface at constant speed:

Equate these two expressions to obtain:

81 oo

Picture the Problem The free-body
diagram shows the forces acting on the
block when it is on the verge of sliding.
Because the block is in equilibrium, we can
use the conditions for translational
equilibrium to determine the minimum
angle for which the block will slide. The
diagram to the right of the FBD shows that
the condition for tipping is that the plumb
line from the center of mass pass outside of
the base. We can determine the tipping
angle from the geometry of the block under
this condition.

Static Equilibrium and Elasticity =~ 959

=0.207mga

W= fa=pmga

1, =] 0207
Yy
F,
/(Vf‘.“\(lx
x—
\
Hh]iding
Y
mg L mg
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Apply > F =0 to the block:

ZFx =mgsin esliding - fs,max 20

if the block is to slide, and

> F,=F,—mgcos0,

0

sliding —

Substitute for 7; max and eliminate £, s < 18N G,

between these equations to obtain:

Solve for the condition for sliding: Ouiaing > 1N~ 11, =tan™0.4 = 21.8°
i : 1

Using the geometry of the block, Oy > tan? 05¢ .01l _1g40

express the condition on @that must 1.5a 3

be satisfied if the block is to tip:

Because G;5ing < Ouiiing

the block will tip before it slides.

82 e
Picture the Problem Let m represent the
mass of the bar, M the mass of the
suspended object, F\ the vertical
component of the force the wall exerts on
the bar, F}, the horizontal component of the
force exerted the wall exerts on the bar,
and T the tension in the cable. The free-
body diagrams show these forces and their
points of application on the bar for parts (@)
and (b) of the problem. Because the bar is
in equilibrium, we can apply the conditions
for translational and rotational equilibrium
to relate the various forces and distances.

(a) Apply > 7, =0 about an axis
through the hinge:

Solve for T:

T =

(@)

(b)

(5m)7T —(7.5m)mg cos30°

~(15m)Mgcos30° =0

[(7.5m)m+(15m)M ] g cos30°
5m




Substitute numerical values and
evaluate T

Apply > F, =0 to the bar:

Solve the y equation for F:

Solve the x equation for Fi:

Find the magnitude of the force
exerted by the wall on the bar:

Find the direction of the force
exerted by the wall on the bar:

(b) Apply "7 =0 about the hinge:

Solve for T

Static Equilibrium and Elasticity

(7.5m)(85kg)+(15m)(360kg)
om

x(9.81m/s?)cos30°
=[10.3kN

T =

ZFy =F,+Tsin60°-—mg—-Mg =0

and
Y F,=F,—Tcos60°=0

F,=-Tsin60°+(m+M)g
= —(10.3kN)sin 60°
+(85kg+360Kkg)(9.81m/s?)
= —4.55kN

F, =T cos60° = (10.3kN )cos 60°
=5.15kN

F=\F}+F}

= /(- 4.55kNY +(5.15kN )

=|6.87kN
0 = tan £v _ ggnt Z4:20KN kN
F, 5.15kN
=[—a15°

i.e., 41.5° below the horizontal.

[(10m)sin 60°]T —(7.5m)mg cos30°
—(15m)Mgcos30° =0

r_ (7.5m)m+(15m)M

= 30°
(Lom)sineo®  ° €8

961
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Substitute numerical values and
evaluate T

Apply > F =0 to the bar:

Solve the y equation for F:

Solve the x equation for Fi:

Find the magnitude of the force
exerted by the wall on the bar:

Find the direction of the force
exerted by the wall on the bar:

83 oo

Picture the Problem The box and the
forces acting on it are shown in the figure.
When the box is about to tip, F;, acts at its
edge, as indicated in the drawing. We can
use the definition of us and apply the
condition for rotational equilibrium in an
accelerated frame to relate £; to the weight
of the box and, hence, to the normal force.

Using its definition, express us:

(7.5m)(85kg)+ (15m)(360kg)
(10m)sin60°

x(9.81m/s?)cos30°

=| 5.92kN

T =

>'F,=F,+Tcos60°-(85kg)g
—(360kg)g =0

and
Y F,=F,-Tsin60°=0

F, =—(5.92kN)cos60°

+(85kg+360kg)(9.81m/s? )
= 1.41kN

F, =T'sin60° = (5.92kN)sin 60°
=5.13kN

F=\F}+F}
= J(L41KN)? + (5.13kNY’
~[5.32kN

=|15.4°
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Apply > 7 = 0about an axis wf, —twF, =0

through the box’s center of mass:

Solve for the ratio £: £ = i
n F, 2
Substitute to obtain the condition for M, >0.500
tipping:
Therefore, if the box is to slide: 1, <| 0.500 |, as in Problem 75.

Remarks: The difference between problems 75 and 83 is that in 75 the maximum
acceleration before slipping is 0.5g, whereas in 88 it is
(0.5 cos9°- sin9°) = 0.337g.

*8/] oo
Picture the Problem Let the mass of the rod be represented by M. Because the rod is in
equilibrium, we can apply the condition for rotational equilibrium to relate the masses of
the objects placed on it to its mass.

Apply Z{- =0 about an axis (20cm)(2m +2g)—(40cm)m
through the pivot for the initial —(10cm)M =0
condition:

Solve for and evaluate M: (20cm)(2m +2g)—(40cm)m

M =
10cm

=| 4.009
Apply Z‘E = 0 about an axis (20cm)m —(10cm)M =0
through the pivot for the second
condition:
Solve for and evaluate : m = (Locm) M = 1M =[2.00g

20cm

*85 e

Picture the Problem Let the distance from the center of the meterstick of either finger be
x1 and x, and W the weight of the stick. Because the meterstick is in equilibrium, we can
apply the condition for rotational equilibrium to obtain expressions for the forces one’s
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fingers exert on the meterstick as functions of the distances x; and x, and the weight of the
meterstick . We can then explain the stop-and-start motion of one’s fingers as they are
brought closer together by considering the magnitudes of these forces in relationship the
coefficients of static and kinetic friction.

-
gl

X Xy

w

The stick remains balanced as long as the center of mass is between the
two fingers. For a balanced stick the normal force exerted by the finger
nearest the center of mass is greater than that exerted by the other
finger. Consequently, a larger static - frictional force can be exerted by
the finger closer to the center of mass, which means the slipping occurs
at the other finger.

(@)

(b) Apply Z{- = O about an axis through F, (xl + xz)— Wx, =0

point 1 to obtain:

Solve for F,to obtain: F=W X
X, +x,
Apply Z{- = O about an axis —Fl(x1 +x2)+ Wx,=0

through point 2 to obtain:

Solve for F; to obtain: E-w_"
X+ X,

The finger farthest from the center of mass will slide inward until the normal
force it exerts on the stick is sufficiently large to produce a kinetic - frictional
force exceeding the maximum static - frictional force exerted by the other
finger. At that point the finger that was not sliding begins to slide, the finger
that was sliding stops sliding, and the process is reversed. When one finger is
is slipping the other is not.
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Picture the Problem The drawing shows a
side view of the wall-and-picture system.
Because the frame’s width is not specified,
we assume it to be negligible. Note that
0.75, 0.4, and 0.85 form a Pythagorean
triad. Thus, the nail will be at the same
level as the top of the frame. We can apply
the condition for rotational equilibrium to
determine the force exerted by the wall.

Static Equilibrium and Elasticity =~ 965

(1.2 m)cos 5°

(«) Because the center of gravity of the picture is in front of the wall, the torque due to mg
about the nail must be balanced by an opposing torque due to the force of the wall on the
picture, acting horizontally. So thatZFx =0, the tension in the wire must have a

horizontal component, and the picture must therefore tilt forward.

(b) Apply > 7 =0about an axis

through the nail and parallel to the
wall to obtain:

Solve for and evaluate F:

87 oo
Picture the Problem The box car and rail
are shown in the drawing. At the critical
speed, the normal force is entirely on the
outside rail. The center of gravity is 0.775
m from that rail and 2.15 m above it.
Choose the coordinate system shown in the
figure. To find the speed at which this
situation prevails, we can apply the
conditions for static equilibrium in an
accelerated frame.

Apply > 7 = 0about an axis
through the center of gravity of the

~[(0.6m)sin5°](8kg)(9.81m/s?)
+[(1.2m)cos5°]F,, =0

o [(0.6m)sin5°](8kg)(9.81m/s?)
W (1.2m)cos5°
=13.43N
mg v
|
|
x I A

(0.775m)F, —(2.15m)f, =0 1)
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box car:

Apply D" F, =0to the box car and

solve for Fy:

Apply D" F, = mag, to the box:

Substitute in equation (1) to obtain:

Solve for v:

(a) Evaluate v for R = 150 m:

(b) Evaluate v for R = 240 m:

88 oo

Picture the Problem For neutral
equilibrium, the center of mass of the
system must be at the same height as the
feet of the tightrope walker. The system is
shown in the drawing. Let the origin of the
coordinate system be at the rope. We’ll
determine the distance d such that y¢, = 0.
We’ll then determine the angle 6
subtended by one half the long rod.

Express the y coordinate of the
center of mass of the system:

Set ym = 0 and solve for 4:

Relate the distances s and 4 and
solve for s:

F,—mg=0=F, =mg

=m—
s R

2

0.775m)me —(2.15m)m>—=0
( )mg —( ) 2

v =,/0.360Rg

v =4/0.360(150m)(9.81m/s?)
=|23.0m/s

v =+/0.360(240m)(9.81m/s?)
=|29.1m/s

20 kg 20 kg

R cos 0
7]
\ l

_ (68kg)(0.9m)-2(20kg)d
Fem 58kg + 40kg

d=1305m

s=0.65m+d=1955m



Static Equilibrium and Elasticity =~ 967

Relate s to R and & s = R(l— coS 19) (1)
Relate R and &to the half-length of RO=4m )
the rod:
Substitute in equation (1) to obtain: 1.955m = (4 m)l_ cos o

or

1-cosé _0.489
Use graphical or trial-and-error 0 =1.08rad
methods to solve for &:
Substitute in equation (2) to obtain: R= 4m _[370m

1.08rad '—

*80 eee

Picture the Problem Let the mass of each brick be m and number them as shown in the
diagrams for 3 bricks and 4 bricks below. Let ¢ denote the maximum offset of the nth
brick. Choose the coordinate system shown and apply the condition for rotational
equilibrium about an axis parallel to the z axis and passing through the point P at the
supporting edge of the nth brick.

y

:
|
2 ' 2
+ I +
p |
3 ' ' [
b I | N |
— = — = | e |
L+¢ L L+¢ 4 | | |
2 g |
— 44 o b — _ _
;Ll(/LTleu !
3L+¢ L+
() Apply Z{- = Qabout an axis mg [L—(%L-i—f)]—mgf =0

through P and parallel to the z axis to
bricks 1 and 2 for the 3-brick
arrangement shown above on the left:

Solve for / to obtain: { =

INT
N~
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(b) Apply "7 =0 about an axis mg[L—(SL+0)]+mg[L—-(3L+1)]

through P and parallel to the z axis —mg (%L +1 = L) =0
to bricks 1 and 2 for the 4-brick
arrangement shown above on the

right:

Solve for ¢ to obtain: (=%L

Continuing in this manner we L L L L L
obtain, as the successive offsets, the 2'4°6°'8" 21
sequence: wheren=1,2,3, ... N.
(c) Express the offset of the (n +1)st /=0 4 L

brick in terms of the offset of the nth T oy

brick:

A spreadsheet program to calculate the sum of the offsets as a function of » is shown
below. The formulas used to calculate the quantities in the columns are as follows:

Cell | Formula/Content | Algebraic Form
B5 B4+1 n+1l
C5 | C4+$B$1/(2*B5) L
£, +—
" 2n
A B C D
1 L=11 m
2
3 n offset
4 1 0.500
5 2 0.750
6 3 0.917
7 4 1.042
8 5 1.142
9 6 1.225
10 7 1.296
11 8 1.359
12 9 1.414
13 10 1.464
98 95 2.568
99 96 2.573
100 97 2.579
101 98 2.584
102 99 2.589
103 100 2.594
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From the table we see that /5 = | 1.142m, | ¢, = | 1.464m, | and

l100= | 2.594 m.

(d) Increasing N in the spreadsheet solution suggests that the sum of the individual offsets
continues to grow as N increases without bound. The series is, in fact, divergent and the
stack of bricks has no maximum offset or length.

Offset as a function of n

3.0

25

Offset

15 /
1.0

0.0

0 20 40 60 80 100

90 e
Picture the Problem The four forces
acting on the sphere: its weight, mg; the
normal force of the plane, Fy; the frictional
force, £, acting parallel to the plane; and the
tension in the string, 7, are shown in the
figure. Choose the coordinate system
shown. Because the sphere is in
equilibrium, we can apply the conditions
for translational and rotational equilibrium
to find 1, F,, and T.

(a) Apply "7 = Oabout an axis /R-TR=0=T=f
through the center of the sphere:

Apply D" F, =0to the sphere: f+Tcos6—Mgsind=0
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Substitute for f'and solve for T:

Substitute numerical values and
evaluate T

(b) Apply )" F, =0to the sphere:

Solve for Fy;

Substitute numerical values and
evaluate Fj;

(¢) In part (a) we showed that /= T:

91  eee
Picture the Problem Let L be the length of
each leg of the tripod. Applying the
Pythagorean theorem leads us to conclude
that the distance a shown in the figure is

\/gL and the distance b, the distance to the

centroid of the triangle ABC isg\/gL , and

. . L
the distance ¢ is— . These results allow

NE]

L
us to conclude thatcos @ = — . Because

NE

the tripod is in equilibrium, we can apply
the condition for translational equilibrium
to find the compressional forces in each
leg.

Letting Fc represent the compressional
force in a leg of the tripod, apply
> F =0to the apex of the tripod:

T Mgsiné
1+cosé

(3kg)(9.81m/s?)sin 30° _

T = 7.89N

1+ cos30°

F,—-Tsin@—-Mgcosd=0
F,=Tsin@+ Mgcosé

F, =(7.89N)sin30°
+(3kg)(0.81m/s? )cos30°
=| 294N

7.89N

3F.cosf—-mg =0



Static Equilibrium and Elasticity =~ 971

Solve for F¢: P
L=

3cosé

Solve for F¢:
: £ :m_g1=£mg
3x— 3
V3

Substitute numerical values and " ﬁ(lOOk )(9 _ 2)_ N
evaluate F¢: c —? g)\Y.olm/s” )=
92 e

Picture the Problem The forces that act
on the beam are its weight, mg; the force of
the cylinder, F¢, acting along the radius of
the cylinder; the normal force of the
ground, Fy,; and the friction force f; = usF.
The forces acting on the cylinder are its
weight, Mg; the force of the beam on the
cylinder, F¢, = F¢ in magnitude, acting
radially inward; the normal force of the
ground on the cylinder, F; and the force
of friction, fi. = us.Fnc. Choose the l _f f.
coordinate system shown in the figure and Fu

apply the conditions for rotational and

translational equilibrium.

EXPress tispeam-fioor iN terms of £ and Fi;: _ /.
Hs peam—floor — F (1)

EXPress s cylinder-floor IN t€rms of fi _ Je
and F,: ylinder-f Hs cylinder—floor _F_nc (2)
Apply Z{- = O about an axis [(10cm)cos @]mg —(15cm)F, =0
through the right end of the beam:
Solve for and evaluate F: F [(10cm)cos@]mg

‘ 15¢cm

_ [10c0s30°](5kg)(0.81m/s?)
15

=28.3N
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Apply D" F, =0to the beam:

Solve for F;

Apply > F, =0to the beam:

Solve for and evaluate f;:

F,, is the reaction force to FC :

Apply D' F, =0to the cylinder:

Solve for and evaluate Fi:

Apply D" F, =0to the cylinder:

Solve for and evaluate fs:

Substitute numerical values in
equations (1) and (2) and evaluate

MUs beam-floor and Ms cylinder-floor-

F, + F,cos(90° - 8)—mg =0

F, =mg—F,cos0
— (5kg)(9.81m/s? )~ (28.3N)cos30°
— 245N

— f.+ F,cos(90°—9)=0

f. = F,cos(90° - 0) = (28.3N)cos60°
=14.2N

Fy = F, =28.3N radially inward.
F,.—F,cos0—-Mg=0

F,. = F,cos0+ Mg
= (28.3N)c0s30° + (8kg)(9.81m/s?)
~103N

f..—F, cos(90°-6)=0

f.. = F, cos(90° - 6) = (28.3N)cos60°

=14.2N
14.2N
=———=|0.580
ﬂs,beam—ﬂoor 245 N
and
14.2N
/us,cylinder—floor = m = 0138
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93  eee
Picture the Problem The geometry of the
system is shown in the drawing. Let
upward be the positive y direction and to
the right be the positive x direction. Let the
angle between the vertical center line and

the line joining the two centers bed. Then

R— —
randtan&’: R-r

r w/R(Zr - R) .
The force exerted by the bottom of the
cylinder is just 2mg. Let F be the force that
the top sphere exerts on the lower sphere.
Because the spheres are in equilibrium, we
can apply the condition for translational .

sin@ =

equilibrium.
Apply D" F, =0to the spheres: F —mg—mg=0
Solve for Fy: F,=| 2mg
Because the cylinder wall is smooth, Fo|_m8
Fcos@= mg, and: | cos®
Express the x component of F: F.=Fsinfd=mgtand
Express the force that the wall of the F R-r
. =| mg—r—
cylinder exerts: w & [R(2r - R)

Remarks: Note that as » approaches R/2, F,,—».

*Q] eoe
Picture the Problem Consider a small rotational displacement, 66 of the cube from
equilibrium. This shifts the point of contact between cube and cylinder by R66, where R =
dl2. As a result of that motion, the cube itself is rotated through the same angle 66, and so
its center is shifted in the same direction by the amount (a/2) 66, neglecting higher order

terms in 60.
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off

If the displacement of the cube’s center of mass is less than that of the point of contact, the

torque about the point of contact is a restoring torque, and the cube will return to its
equilibrium position. If, on the other hand, (a/2) 568 > (d/2) 66, then the torque about the

point of contact due to mg is in the direction of 66, and will cause the displacement from
equilibrium to increase. We see that the minimum value of d/a for stable equilibrium is

dla=1.



