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Chapter 12 
Static Equilibrium and Elasticity 
 
Conceptual Problems 
 
1 • 
(a) False. The conditions ∑ =

i i 0F
r

 and ∑ =
i i 0τr  must be satisfied. 

 
(b) True. The necessary and sufficient conditions for static equilibrium are ∑ =

i i 0F
r

 and 

∑ =
i i 0τr . 

 
(c) True. The conditions ∑ =

i i 0F
r

 and ∑ =
i i 0τr must be satisfied. 

 
(d) False. An object is in equilibrium provided the conditions ∑ =

i i 0F
r

 and ∑ =
i i 0τr are 

satisfied. 
 

2 •  
False. The location of the center of gravity depends on the mass distribution. 
  
3 •  
No. The definition of the center of gravity does not require that there be any material at its 
location. 
 
4 •  
Determine the Concept When the acceleration of gravity is not constant over an object, 
the center of gravity is the pivot point for balance. 
 
5 ••  
Determine the Concept This technique works because the center of mass must be 
directly under the balance point. Thus, a line drawn straight downward will pass through 
the center of mass, and another line drawn straight downward when the figure is hanging 
from another point will also pass through the center of mass. The center of mass is where 
the lines cross. 

 
*6 •  
Determine the Concept No. Because the floor can exert no horizontal force, neither can 
the wall. Consequently, the friction force between the wall and the ladder is zero 
regardless of the coefficient of friction between the wall and the ladder.  
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7 •  
Determine the Concept We know that equal lengths of aluminum and steel wire of the 
same diameter will stretch different amounts when subjected to the same tension. Also, 
because we are neglecting the mass of the wires, the tension in them is independent of 
which one is closer to the roof and depends only on W. correct. is )(b  

 
8 •  
Determine the Concept Yes; if it were otherwise, angular momentum conservation 
would depend on the choice of coordinates. 
 
*9 •  
Determine the Concept The condition that the bar is in rotational equilibrium is that the 
net torque acting on it be zero; i.e., R1M1 = R2M2. This condition is satisfied provided R1 
= R2 and M1 = M2. correct. is )(c  

 
10 ••  
Determine the Concept You cannot stand up because your body’s center of gravity must 
be above your feet. 
 
*11 ••  
Determine the Concept The tensile strengths of stone and concrete are at least an order 
of magnitude lower than their compressive strengths, so you want to build compressive 
structures to match their properties. 
 
Estimation and Approximation 
 
12 ••  
Picture the Problem The diagram to the 
right shows the forces acting on the crate 
as it is being lifted at its left end. Note that 
when the crowbar lifts the crate, only half 
the weight of the crate is supported by the 
bar. Choose the coordinate system shown 
and let the subscript ″pb″ refer to the pry 
bar. The diagram below shows the forces 
acting on the pry bar as it is being used to 
lift the end of the crate. 
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Assume that the maximum force F ′ you can apply is 500 N (about 110 lb). Let l  be the 
distance between the points of contact of the steel bar with the floor and the crate, and let L 
be the total length of the bar. Lacking information regarding the bend in pry bar at the 
fulcrum, we’ll assume that it is small enough to be negligible. We can apply the condition 
for rotational equilibrium to the pry bar and a condition for translational equilibrium to the 
crate when its left end is on the verge of lifting. 
 
Apply ∑ = 0yF to the crate: 

 

0npb =+− FWF                     (1) 

Apply 0=∑τr to the crate about 

an axis through point B and 
perpendicular to the plane of the 
page to obtain: 
 

02
1

n =− wWwF  

Solve for Fn: WF 2
1

n =  

as noted in Picture the Problem. 
 

Solve equation (1) for Fpb and 
substitute for Fn to obtain: 
 

WWWF 2
1

2
1

pb =−=  

Apply 0=∑τr to the pry bar about 

an axis through point A and 
perpendicular to the plane of the 
page to obtain: 
 

 ( ) 0pb =−− FLF ll                  

 

Solve for L: 
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

F
F

L pb1l  

 
Substitute for Fpb to obtain: 
 

⎟
⎠
⎞

⎜
⎝
⎛ +=

F
WL
2

1l  
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Substitute numerical values and 
evaluate L: 
 

( ) ( ) cm0.55
N5002
N45001m1.0 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=L      

 
*13 ••  
Picture the Problem We can derive this expression by imagining that we pull on an area A 
of the given material, expressing the force each spring will experience, finding the 
fractional change in length of the springs, and substituting in the definition of Young’s 
modulus. 
 
(a) Express Young’s modulus: 
 LL

AFY
∆

=                              (1) 

 
Express the elongation ∆L of each spring: 
 k

FL s=∆                                 (2) 

Express the force Fs each spring will 
experience as a result of a force F 
acting on the area A: 
 

N
FF =s  

Express the number of springs N in 
the area A: 2a

AN =  

 
Substitute to obtain: 

A
FaF

2

s =  

 
Substitute in equation (2) to obtain, 
for the extension of one spring: kA

FaL
2

=∆  

 
Assuming that the springs 
extend/compress linearly, express 
the fractional extension of the 
springs: 
 

kA
Fa

kA
Fa

aa
L

L
L

==
∆

=
∆ 2

tot 1
 

Substitute in equation (1) and simplify: 

a
k

kA
Fa
A
F

Y ==  

 
(b) From our result in part (a):  Yak =  

 
From Table 12-1: 2112 N/m102GN/m200 ×==Y  

 
Assuming that a ~ 1 nm, evaluate k: ( )( ) N/m200m10N/m102 9211 =×= −k  
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Conditions for Equilibrium 
 
14 •  
Picture the Problem Let w1 represent the 
weight of the 28-kg child sitting at the left 
end of the board, w2 the weight of the 40-
kg child, and d the distance of the 40-kg 
child from the pivot point. We can apply 
the condition for rotational equilibrium to 
find d. 

 

 

 
Apply 0=∑τr about an axis through 

the pivot point P: 
 

( ) 02 21 =− dwmw  

Solve for and evaluate d: ( ) ( ) ( )
( ) m4.1

kg40
m2kg28m2

2

1 ===
g

g
w

wd  

 
15 •  
Picture the Problem Let F1 represent the 
force exerted by the floor on Misako’s feet, 
F2 the force exerted on her hands, and m 
her mass. We can apply the condition for 
rotational equilibrium to find F2. 

 
 

Apply 0=∑τr about an axis 

through point 0: 
 

( ) ( ) 0m9.0m5.12 =−mgF  

Solve for F2: ( )
m5.1

m9.0
2

mgF =  

 
Substitute numerical values and 
evaluate F2: 

( )( )( )

N318

m5.1
m9.0m/s81.9kg54 2

2

=

=F
 

 
*16  •  
Picture the Problem Let F represent the force exerted by Misako’s biceps. To find F we 
apply the condition for rotational equilibrium about a pivot chosen at the tip of her elbow. 

 
Apply 0=∑τr about an axis ( ) ( )( ) 0N18cm28cm5 =−F  
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through the pivot: 
 
Solve for F: ( )( ) N101

cm5
N18cm28

==F  

 
17 •  
Picture the Problem Choose a coordinate system in which upward is the positive y 
direction and to the right is the positive x direction and use the conditions for translational 
equilibrium. 

 
(a) Apply 0=∑F

r
 to the forces 

acting on the tip of the crutch: 

0sincs =+−=∑ θFfFx      (1) 

and 

∑ =−= 0coscn θFFFy        (2)  

 
Solve equation (2) for Fn and 
assuming that fs = fs,max, obtain: 
 

θµµ coscsnsmaxs,s FFff ===  

Substitute in equation (1) and solve 
for µs: 
 

θµ tans =  

(b) 
strides. longfor  large is  

becausefriction  static oft coefficien large a requires strides long Taking
θ

 

 
(c) slipping. avoid  tosmall bemust    surface, on the ice is  therei.e., small, is  If s θµ  

 
The Center of Gravity 
 
18 •  
Picture the Problem Let the weight of the automobile be w. Choose a coordinate system in 
which the origin is at the point of contact of the front wheels with the ground and the 
positive x axis includes the point of contact of the rear wheels with the ground. Apply the 
definition of the center of gravity to find its location. 

 
Use the definition of the center of gravity: 

( ) ( )
( )w

ww

xwWx
i

ii

m84.0
m242.0058.0

cg

=
+=

= ∑
 

or, because W = w, ( ) ( )wwx m84.0cg =  
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Solve for xcg: m84.0cg =x  

 
*19 •  
Picture the Problem The figures are 
shown on the right. The center of mass for 
each is indicated by a small +.  At static 
equilibrium, the center of gravity is 
directly below the point of support. 

 
20 ••  
Picture the Problem Using the coordinate system indicated in the figure, we can apply 
the definition of the center of gravity to determine xcg and ycg. 
 
Apply the definition of the center of 
gravity to find xcg: ( )( ) ( )( )

( )( ) ( )( )
( )a

aa
aa

xwWx
i

ii

N170
N50N30

N60N40

2
3

2
3

2
1

2
1

cg

=
++

+=

= ∑

 

or, because W = 180 N, 
( ) ( )ax N170N180cg =  

 
Solve for xcg: aax 944.0

N180
N170

cg ==  

 
Apply the definition of the center of 
gravity to find ycg: ( )( ) ( )( )

( )( ) ( )( )
( )a

aa
aa

ywWy
i

ii

N180
N50N30

N60N40

2
1

2
3

2
3

2
1

cg

=
++

+=

= ∑

 

or, because W = 180 N, 
( ) ( )ay N180N180cg =  

 
Solve for ycg: ay =cg  

 
The coordinates of the center of 
gravity are: 

( ) ( )aayx ,944.0, cgcg =  
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21 ••  
Picture the Problem Let the origin of the coordinate system be at the lower left corner of 
the plate and the positive x direction be to the right. Let a and b be the length and width of 
the plate. Let σ be the mass per unit area of the plate. Then the weight of the plate is given 
by w = abσg and that of the matter missing from the hole is .2 gR σπ−  Noting that, by 

symmetry, ycg = b/2, we can apply the definition of the center of gravity to find xcg. 
 

Apply the definition of the center of 
gravity to find xcg: 

( )( ) ( )( )RagRagab

xwWx
i

ii

−−=

= ∑
σπσ 2

2
1

cg
 

or, because 
 ,2

holeplate gRgabwwW σπσ −=−=  

( ) ( )( )
( )( )RaR

agabgRgabx

−−

=−

σπ

σσπσ
2

2
12

cg  

Solve for xcg: 
2

322
2
1

cg Rab
RaRbax

π
ππ

−
+−

=  

 
The coordinates of the center of gravity 
are: ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+−
= b

Rab
RaRbayx 2

1
2

322
2
1

cgcg ,,
π

ππ
 

 
Some Examples of Static Equilibrium 
 
22 •  
Picture the Problem We can use the given definition of the mechanical advantage of a 
lever and the condition for rotational equilibrium to show that M = x/X. 

 
(a) Express the definition of 
mechanical advantage for a lever: 
 f

FM =  

Apply the condition for rotational 
equilibrium to the lever: 
 

0=− XFxf  

Solve for the ratio of F to f to 
obtain: X

x
f
F
=  

 
Substitute to obtain: 
 X

xM =  

 

(b) 
force.

 applied  theofmovement short  a using distance large aover  load  themove
  to wishesone when useful is force applied for the armmoment shorter A 
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23 • 
Picture the Problem The force diagram 
shows the tension in the forestay, ,FT

r
 the 

tension in the backstay, ,BT
r

 the 

gravitational  
force on the mast ,grm  and the force exerted 

by the deck, .DF
r

 Let the origin of the 

coordinate system be at the foot of the mast 
with the positive x direction to the right and 
the positive y direction upward. Because the 
mast is in equilibrium, we can apply the 
conditions for both translational and 
rotational equilibrium to find the tension in 
the backstay and the force that the deck 
exerts on the mast.  

 
 

 

 
Apply 0=∑τr to the mast about an axis 

through its foot and solve for TB: 

( )( )
( ) 045sinm88.4

sinN1000m88.4

B

F

=°− T
θ

 

and 
( )

°
=

45sin
sinN1000 F

B
θT  

 
Find θF, the angle of the forestay with the 
vertical: °=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= − 3.29

m4.88
m2.74tan 1

Fθ  

 
Substitute to obtain: ( ) N692

45sin
3.29sinN1000

B =
°

°
=T  

 
Apply the condition for translational 
equilibrium in the x direction to the mast: 0sin

45sincos

FF

BD

=−

°+=∑
θ

θ

T
TFFx  

or 
( )
( )

0
sin45N692

sin29.3N1000cosD

≈
°−
°=θF

 

 
Apply the condition for translational 
equilibrium in the y direction to the mast: 045cos

cossin

B

FFD

=−°−

−=∑
mgT

TFFy θθ
 

or 
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( )
( )
( )( )
N2539

m/s9.81kg120
cos45N692

cos29.3N1000sin

2

D

=
+

°+
°=θF

 

 
Because FDcosθ = 0: °= 90θ , kN54.2D =F  

and 

moving. frommast 
eprevent th  torequired isblock  no

 

  
24 ••  
Picture the Problem The diagram shows 

,g
r

M  the weight of the beam, ,g
r

m  the 

weight of the student, and the force the 
ledge exerts ,F

r
 acting on the beam. 

Because the beam is in equilibrium, we can 
apply the condition for rotational 
equilibrium to the beam to find the location 
of the pivot point P that will allow the 
student to walk to the end of the beam. 

 

 
 
Apply 0=∑τr  about an axis 

through the pivot point P: 
 

( ) 0m5 =−− mgxxMg  

 

Solve for x: ( ) m4.17
kg60kg300

kg30055
=

+
=

+
=

mM
Mx  

 
*25 ••  
Picture the Problem The diagram shows 

,w
r

 the weight of the student, ,PF
r

 the 

force exerted by the board at the pivot, and 
,sF

r
 the force exerted by the scale, acting 

on the student. Because the student is in 
equilibrium, we can apply the condition for 
rotational equilibrium to the student to find 
the location of his center of gravity. 

 

 

 
Apply 0=∑τr  about an axis ( ) 0m2s =−wxF  
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through the pivot point P:  
Solve for x: ( )

w
Fx sm2

=  

 
Substitute numerical values and 
evaluate x: 

( )( )
( )( ) m728.0

m/s9.81kg70
N250m2

2 ==x  

 
26 ••  
Picture the Problem The diagram shows 

,g
r

m  the weight of the board, ,HF
r

the force 
exerted by the hinge, ,g

r
M  the weight of 

the block, and ,F
r

 the force acting 

vertically at the right end of the board. 
Because the board is in equilibrium, we can 
apply the condition for rotational 
equilibrium to it to find the magnitude of 

.F
r

  
 

(a) Apply 0=∑τr  about an axis 

through the hinge: 

( )[ ] ( )[ ]
( )[ ] 030cosm8.0

30cosm5.130cosm3
=°−
°−°

Mg
mgF

 

 
Solve for F: ( ) ( ) gMmF

m3
m8.0m5.1 +

=  

 
Substitute numerical values and 
evaluate F: 

( )( ) ( )( )

( )
N181

m/s81.9
m3

m0.8kg60m1.5kg5

2

=

×

+
=F

 

 
(b) Apply ∑ = 0yF  to the board: 

 

0H =+−− FmgMgF  

Solve for and evaluate FH: ( )
( )( )

N457

N181m/s9.81kg5kg60 2
H

=

−+=

−+=−+= FgmMFmgMgF
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(c) The force diagram showing the 
force F

r
 acting at right angles to the 

board is shown to the right: 

 
 

Apply 0=∑τr  about the hinge: ( ) ( )[ ]
( )[ ] 030cosm8.0

30cosm5.1m3
=°−

°−
Mg

mgF
 

 
Solve for F: ( ) ( )

°
+

= 30cos
m3

m8.0m5.1 gMmF  

 
Substitute numerical values and 
evaluate F: 

( )( ) ( )( )

( )
N157

30cosm/s81.9
m3

m0.8kg60m1.5kg5

2

=

°×

+
=F

 

 
Apply ∑ = 0yF  to the board: 030cossinH =°+−− FmgMgF θ  

or 
( ) °−+= 30cossinH FgmMF θ    (1) 

 
Apply ∑ = 0xF  to the board: 030sincosH =°− FF θ  

or 
°= 30sincosH FF θ                       (2) 

 
Divide the first of these equations by 
the second to obtain: 

( )
°

°−+
=

30sin
30cos

cos
sin

H

H

F
FgmM

F
F

θ
θ

 

 
Solve for θ: ( )

⎥⎦
⎤

⎢⎣
⎡

°
°−+

= −

30sin
30costan 1

F
FgmMθ  

 
Substitute numerical values and evaluate θ : 
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( )( ) ( )
( ) °=⎥

⎦

⎤
⎢
⎣

⎡
°

°−
= − 1.81

sin30N157
cos30N157m/s9.81kg65tan

2
1θ  

 
Substitute numerical values in 
equation (2) and evaluate FH: 

( ) N507
1.81cos

30sinN157
H =

°
°

=F  

 
*27 •  
Picture the Problem The planes are 
frictionless; therefore, the force exerted by 
each plane must be perpendicular to that 
plane. Let 1F

r
be the force exerted by the 30° 

plane, and let 2F
r

 be the force exerted by the 

60° plane. Choose a coordinate system in 
which the positive x direction is to the right 
and the positive y direction is upward. 
Because the cylinder is in equilibrium, we 
can use the conditions for translational 
equilibrium to find the magnitudes of 1F

r
and 

2F
r

. 

 
Apply ∑ = 0xF  to the cylinder: 

 

060sin30sin 21 =°−° FF             (1)    

Apply ∑ = 0yF  to the cylinder: 

 

060cos30cos 21 =−°+° WFF     (2) 

Solve equation (1) for F1: 
 

21 3FF =                                     (3) 

Substitute in equation (2) to obtain: 
 

060cos30cos3 22 =−°+° WFF  

Solve for F2: ( ) WF =°+° 260cos30cos3  

or 

WWF 2
1

2 60cos30cos3
=

°+°
=  

 
Substitute in equation (3): ( ) WWF 2

3
2
1

1 3 ==  
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28 ••  
Picture the Problem The force diagram  
shows the forces ,HF

r
 ,2T
r

 and 1T
r

 acting 

on the strut. Choose a coordinate system 
in which the positive x direction is to the 
right and the positive y direction is 
upward. Because the strut is in 
equilibrium, we can apply the conditions 
for translational and rotational equilibrium 
to it. 

 

 

 

(a) 
hinge. by thestrut  on the exerted force

 the, and  and   tensions thearestrut  on the acting forces The H21 FTT
rrr

 

 
(b) Apply 0=∑τr  about an axis 

through the hinge: 
 

030sin 12 =−° ll TT  

 

Solve for T1: 122v 30sin TTT =°=  

or, because T1 = 80 N, 
N802v =T  

 
(c) Apply ∑ = 0xF  to the beam: 030coscos 2H =°−TF θ  

or 
°= 30coscos 2H TF θ                     (1) 

 
Apply ∑ = 0yF  to the beam: 030sinsin 12H =−°+ TTF θ  

or 

°−=
°−=
30sinN80

30sinsin

2

21H

T
TTF θ

          (2) 

 
Divide equation (2) by equation (1) 
to obtain: °

°−
=

30cos
30sinN80tan

2

2

T
Tθ  

 
Solve for θ : 

⎥
⎦

⎤
⎢
⎣

⎡
°

°−
= −

30cos
30sinN80tan

2

21

T
Tθ  

 
Express T2 in terms of T2v: N160

30sin
N80

30sin
2v

2 =
°

=
°

=
TT  
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Evaluate θ: ( )
( ) °=⎥

⎦

⎤
⎢
⎣

⎡
°

°−
= − 0

30cosN160
30sinN160N80tan 1θ  

Substitute numerical values in equation 
(1) and evaluate FH: 

( ) N139
0cos

30cosN160
H =

°
°

=F to the 

right. 
 

29 ••  
Picture the Problem The force diagram  
shows the weight of the pirate, ,Mg

r
 the  

weight of the victim, ,mg
r

 and the force 

the deck exerts at the edge of the 
ship, F

r
acting at the fulcrum P. The 

diagram also shows, for part (b), the 
weight of the plank acting through the 
plank’s center of gravity.  

 
(a) Apply 0=∑τr at the pivot point P: ( ) 0m8 =−− mgxxMg  

or 
( ) 0m8 =−− mxxM  

 
Solve for x: ( ) m5.00

kg63kg105
kg10588

=
+

=
+

=
mM

Mx  

 
(b) Apply 0=∑τr about an axis 

through  the pivot point P: 

( ) ( ) 0m4-m8 p =−−+ mgxxgmxMg  

or 
( ) ( ) 0m4m8 p =−−+− mxxmxM  

 
Solve for x: 

p

p48
mmM

mM
x

++
+

=  

 
Substitute numerical values and 
evaluate x: 

( ) ( ) m87.4
kg25kg63kg105

kg254kg1058
=

++
+

=x  
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30 ••  
Picture the Problem The drawing shows 
the door and its two supports. The center of 
gravity of the door is 0.8 m above (and 
below) the hinge, and 0.4 m from the hinges 
horizontally. Choose a coordinate system in 
which the positive x direction is to the right 
and the positive y direction is upward. 
Denote the horizontal and vertical 
components of the hinge force by FHh and 
FHv. Because the door is in equilibrium, we 
can use the conditions for translational and 
rotational equilibrium to determine the 
horizontal forces exerted by the hinges. 

 

 
 

Apply 0=∑τr about an axis through 

the lower hinge: 
 

( ) ( ) 0m4.0m6.1Hh =−mgF  

 

Solve for FHh: ( )
m6.1

m4.0
Hh

mgF =  

 
Substitute numerical values and 
evaluate FHh: 

( )( )( )

N44.1

m1.6
m0.4m/s9.81kg18 2

Hh

=

=F
 

 
Apply ∑ = 0xF  to the door and 

solve for Hh'F  : 

0' HhHh =−FF  

and 
N1.44'Hh =F  

 
 Note that the upper hinge pulls on the door 

and the lower hinge pushes on it. 
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31 ••  
Picture the Problem The figure shows the 
wheel on the verge of rolling over the edge 
of the step. Note that, under this condition, 
the normal force the floor exerts on the 
wheel is zero. Choose the coordinate system 
shown in the figure and apply the conditions 
for translational equilibrium and the result 
for F from Example 12-4 to the wheel. 

 
 

Apply 0=∑F
r

 to the wheel: 01x =−=∑ FFFx  

and 

∑ =−= 01y MgFFy  

 
Write 1F

r
in vector form: 

ji

jiF
ˆˆ

ˆˆ
1y1x1

MgF

FF

+−=

+−=
r

 
 

From Example 12-4 we have: ( )
hR

hRhMgF
−

−
=

2
 

 
Substitute to obtain: ( )

( )
ji

jiF

ˆˆ2

ˆˆ2
1

Mg
Rh

hRhMg

Mg
hR

hRhMg

+
−

−
=

+
−

−
−=

r

 

 
32 ••  
Picture the Problem The diagram shows 
the forces 1F

r
and 2F

r
acting at the supports, 

the weight of the board ,grm  acting at its 

center of gravity, and the weight of the 
diver g

r
M acting at the end of the diving 

board. Because the board is in 
equilibrium, we can apply the condition 
for rotational equilibrium to find the 
forces at the supports.  

 

 
 

Apply 0=∑τr about an axis through 

the left support: 

( ) ( ) ( ) 0m2.4m1.2m2.1 2 =−− MgmgF  
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Solve for F2: ( ) ( )
( ) gMmF

m2.1
m2.4m1.2

2
+

=  

 
Substitute numerical values and evaluate F2: 
 

( )( ) ( )
( ) ( ) ncompressio kN,92.2m/s9.81

m2.1
kg) (70m2.4kg30m1.2 2

2 =
+

=F  

 
Apply 0=∑τr about an axis through 

the right support: 
 

( ) ( ) ( ) 0m3m9.0m2.1 1 =−− MgmgF  

 

Solve for F1: ( ) ( )
( ) gMmF

m2.1
m3m9.0

1
+

=  

 
Substitute numerical values and evaluate F1: 
 

( )( ) ( )
( ) ( )  tensionkN,94.1m/s9.81

m2.1
kg) (70m3kg30m9.0 2

1 =
+

=F  

 
33 ••  
Picture the Problem Let T be the tension in 
the line attached to the wall and L be the 
length of the strut. The figure includes w, 
the weight of the strut, for part (b). Because 
the strut is in equilibrium, we can use the 
conditions for both rotational and 
translational equilibrium to find the force 
exerted on the strut by the hinge. 
  

 
(a) Express the force exerted on the  
strut at the hinge: 
 

jiF ˆˆ
vh FF +=

r
                     (1) 

Ignoring the weight of the strut, 
apply 0=∑τr at the hinge: 

 

( ) 045cos =°− WLLT  

Solve for the tension in the line: ( )
N43.42

45cosN6045cos
=

°=°=WT
 

 
Apply 0=∑F

r
 to the strut: ∑ =°−= 045cosh TFFx  
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and 

∑ =−°+= 045cosv MgTFFy  

 
Solve for Fh: ( )

N0.30
45cosN43.4245cosh

=
°=°= TT

 

 
Solve for Fv: 

( )
N30.0

cos45N42.43N06
45cosv

=
°−=

°−= TMgF
 

 
Substitute in equation (1) to obtain: ( ) ( ) jiF ˆN0.30ˆN0.30 +=

r
 

 
(b) Including the weight of the strut,  
apply 0=∑τr at the hinge: 

( ) 045cos
2

45cos =⎟
⎠
⎞

⎜
⎝
⎛−°− wLWLLT  

 
Solve for the tension in the line: ( )

( )( ) ( )

N5.49

N2045cos
2
1N6045cos

45cos
2
145cos

=

⎟
⎠
⎞

⎜
⎝
⎛ °+°=

⎟
⎠
⎞

⎜
⎝
⎛ °+°= wWT

 

 
Apply 0=∑F

r
 to the strut: ∑ =°−= 045cosh TFFx  

and 

∑ =−−°+= 045cosv wWTFFy  

 
Solve for Fh: ( )

N0.35
45cosN5.4945cosh

=
°=°= TT

 

 
Solve for Fv: 

( )
N.054

cos45N5.94N20N06
45cosv

=
°−+=

°−+= TwWF
 

 
Substitute in equation (1) to obtain: ( ) ( ) jiF ˆN0.45ˆN0.35 +=

r
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34 ••  
Picture the Problem Note that if the 60-kg mass is at the far left end of the plank, T1 and 
T2 are less than 1 kN. Let x be the distance of the 60-kg mass from T1. Because the plank is 
in equilibrium, we can apply the condition for rotational equilibrium to relate the distance x 
to the other distances and forces. 
 

 
 
 
Apply 0=∑τr about an axis 

through the left end of the plank: 

( ) ( ) ( )
0

m5.2m4m5

J

pb2

=−

−−

gxm

gmgmT
 

 
Solve for x: ( ) ( ) ( )

gm
gmgmT

x
J

pb2 m2m4m5 −−
=  

 
Substitute numerical values and 
simplify to obtain: 
 

( )
kN5886.0

mkN63.3m5 2 ⋅−
=

Tx  

Set T2 = 1 kN and evaluate x: ( )( ) m33.2
kN5886.0

mkN63.3kN1m5
=

⋅−
=x  

and m.33.20for  safe is Julie << x  
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35 ••  
Picture the Problem The figure to the 
right shows the forces acting on the 
cylinder. Choose a coordinate system in 
which the positive x direction is to the right 
and the positive y direction is upward. 
Because the cylinder is in equilibrium, we 
can apply the conditions for translational 
and  
rotational equilibrium to find Fn and the  
horizontal and vertical components of the 
force the corner of the step exerts on the 
cylinder. 

 
 

(a) Apply 0=∑τr  to the cylinder 

about the step’s corner: 
 

( ) 02n =−−− hRFFMg ll  

Solve for Fn: ( )
l

hRFMgF −
−=

2
n

 
 

Express l as a function of R and h: ( ) 222 2 hRhhRR −=−−=l  

 
 ( )

h
hRFMg

hRh
hRFMgF

−
−=

−

−
−=

2

2
2

2n

 

 
(b) Apply ∑ = 0xF  to the cylinder: 0h,c =+− FF  

 
Solve for Fc,h: FF =h,c  

 
(c) Apply∑ = 0yF  to the cylinder: 0v,cn =+− FMgF  

 
Solve for Fc,v: nvc, FMgF −=  
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Substitute the result from part (a): 

h
hRF

h
hRFMgMgF

−
=

⎭
⎬
⎫

⎩
⎨
⎧ −

−−=

2

2
vc,

 

 
36 ••  
Picture the Problem The figure to the 
right shows the forces acting on the 
cylinder. Because the cylinder is in 
equilibrium, we can use the condition for 
rotational equilibrium to express Fn in 
terms of F. Because, to roll over the step, 
the cylinder must lift off the floor, we can 
set Fn = 0 in our expression relating Fn 
and F and solve for F.  

 
Apply 0=∑τr  about the step’s corner: 

 

( ) 02n =−−− hRFFMg ll  

 

Solve for Fn: ( )
l

hRFMgF −
−=

2
n

              

 
 

Express l as a function of R and h: ( ) 222 2 hRhhRR −=−−=l  

 
Substitute to obtain: ( )

h
hRFMg

hRh
hRFMgF

−
−=

−

−
−=

2
2

2
2n

 

 
To roll over the step, the cylinder 
must lift off the floor, i.e., Fn = 0: h

hRFMg −
−=

20  

 
Solve for F: 

hR
hMgF
−

=
2

 

 
*37 ••   
Picture the Problem The diagram shows the forces F1 and F2 that the fencer’s hand 
exerts on the epee. We can use a condition for translational equilibrium to find the 
upward force the fencer must exert on the epee when it is in equilibrium and the 
definition of torque to determine the total torque exerted.  In part (c) we can use the 
conditions for translational and rotational equilibrium to obtain two equations in F1 and 
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F2 that we can solve simultaneously. In part (d) we can apply Newton’s 2nd law in 
rotational form and the condition for translational equilibrium to obtain two equations in 
F1 and F2 that, again, we can solve simultaneously. 
 

 
 
(a)  Letting the upward force 
exerted by the fencer’s hand be F, 
apply 0=∑ yF to the epee to 
obtain: 
 

0=−WF  

Solve for and evaluate F: 
 

( )( ) N87.6m/s81.9kg7.0 2 === mgF
 

(b) Express the torque due to the 
weight about the left end of the 
epee: 
 

( )( ) mN65.1N87.6m24.0 ⋅=== wlτ
 

(c)  Apply 0=∑ yF to the epee to 
obtain: 
 

0N87.621 =−+− FF                (1) 

Apply 0
0
=∑τ to obtain: 

 

( ) ( ) 0mN65.1m12.0m02.0 21 =⋅−+− FF
 

Solve these equations 
simultaneously to obtain: 

N26.81 =F  and N1.152 =F . 

Note that the force nearest the butt of the 
epee is directed downward and the force 
nearest the hand guard is directed upward. 

 
38 ••  
Picture the Problem In the force diagram, the forces exerted by the hinges 
are ,2,yF

r
,1,yF

r
 and 1,xF

r
where the subscript 1 refers to the lower hinge. Because the gate 

is in equilibrium, we can apply the conditions for translational and rotational equilibrium 
to find the tension in the wire and the forces at the hinges. 
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(a) Apply 0=∑τr about an axis 

through the lower hinge and 
perpendicular to the plane of the page:  
 

0cossin 121 =−+ mgTT lll θθ  

 

Solve for T: 
 θθ cossin 21

1

ll

l

+
=

mgT  

 
Substitute numerical values and  
evaluate T: 

( )( )
( ) ( )

N141

45cosm5.145sinm5.1
N200m5.1

=

°+°
=T

 

 
(b) Apply ∑ = 0xF to the gate: 045cos1, =°−TFx  

 
Solve for and evaluate Fx,1: ( )

N7.99

45cosN14145cos1,

=

°=°= TFx
 

 
(c) Apply ∑ = 0yF to the gate: 045sin2,1, =−°++ mgTFF yy  

 
Because Fy,1 and Fy,2 cannot be 
determined independently, solve for 
and evaluate their sum: N100

N99.7N200

45sin2,1,

=

−=

°−=+ TmgFF yy

 

 
39 •••  
Picture the Problem Let T = the tension in the wire; Fn = the normal force of the 
surface; and fs,max = µsFn the maximum force of static friction. Letting the point at which 
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the wire is attached to the log be the origin, the center of mass of the log is at (−1.838 m, 
−0.797 m) and the point of contact with the floor is at (−3.676 m, −1.594 m). Because the 
log is in equilibrium, we can apply the conditions for translational and rotational 
equilibrium. 
 

 
 
Apply ∑ = 0xF to the log: 0sin maxs, =− fT θ       

or 
 nsmaxs,sin FfT µθ ==           (1) 

 
Apply ∑ = 0yF to the log: 0cos n =−+ mgFT θ   

or 
ncos FmgT −=θ                  (2) 

 
Divide equation (1) by equation (2) 
to obtain: n

ns

cos
sin

Fmg
F

T
T

−
=

µ
θ
θ

 

or 

1
tan

n

s1

−
= −

F
mg
µθ                      (3) 

 
Apply 0=∑τr about an axis 

through the origin: 
 

0ns3n12 =−− FFmg µlll  

 

Solve for Fn: 
 s31

2
n µll

l

+
=

mgF  
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Substitute numerical values and 
evaluate Fn: 

( )( )
( ) N389
0.61.5943.676

m/s9.81kg1001.838 2

n =
+

=F  

 
Substitute in equation (3) and 
evaluate θ: ( )( )

°=

−
= −

5.21

1
N893

m/s9.81kg100
6.0tan 2

1θ

 

 
Substitute numerical values in 
equation (1) and evaluate T: 

( )( ) N636
sin21.5

N3896.0
=

°
=T  

 
40 •••  
Picture the Problem Consider what 
happens just as θ increases beyond  
θ max. Because the top of the block is fixed 
by the cord, the block will in fact rotate 
with only the lower right edge of the block 
remaining in contact with the plane. It 
follows that just prior to this slipping, Fn 
and fs = µsFn act at the lower right edge of 
the block. Choose a coordinate system in 
which up the incline is the positive x 
direction and the direction of nF

r
is the 

positive y direction. Because the block is in 
equilibrium, we can apply the conditions 
for translational and rotational equilibrium. 

 

 

 
Apply ∑ = 0xF to the block: 0sinns =−+ θµ mgFT                      (1) 

 
Apply ∑ = 0yF to the block: 0cosn =− θmgF                                (2) 

 
Apply 0=∑τr about an axis 

through the lower right edge of the 
block: 
 

( ) ( ) 0sincos 2
1

2
1 =−+ bTmgbmga θθ (3) 

Eliminate Fn between equations (1) 
and (2) and solve for T: 
 

( )θµθ cossin s−= mgT  
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Substitute for T in equation (3): ( ) ( )
( )[ ] 0cossin

sincos

s

2
1

2
1

=−−

+

θµθ
θθ

mgb
mgbmga

 

 
Substitute 4a for b: ( ) ( )( )

( ) ( )[ ] 0cossin4
sin4cos

s

2
1

2
1

=−−
+

θµθ
θθ

mga
mgamga

 

 
Simplify to obtain: ( ) 0sin4cos81 s =−+ θθµ  

 
Solve for θ: 
 4

81tan s1 µθ +
= −  

 
Substitute numerical values and 
evaluate θ : 

( )
°=

+
= − 6.61

4
8.081tan 1θ  

 
*41 ••  
Picture the Problem The free-body diagram shown to the left below is for the weight 
and the diagram to the right is for the boat. Because both are in equilibrium under the 
influences of the forces acting on them, we can apply a condition for translational 
equilibrium to find the tension in the chain.  
 

 
 
(a)  Apply 0=∑ xF to the boat: 0cosd =− θTF  

 
Solve for T: 
 θcos

dFT =  

 
Apply 0=∑ yF to the weight: 0N100sin2 =−θT                (1) 

 
Substitute for T to obtain: 
 

0N100tan2 d =−θF  

Solve for θ : 
 

d

1

2
N100tan

F
−=θ  
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Substitute for Fd and evaluate θ : 
 ( ) °== − 45

N502
N100tan 1θ  

 
Solve equation (1) for T: 
 θsin2

N100
=T  

 
Substitute for θ and evaluate T: 
 N7.70

45sin2
N100

=
°

=T  

 
(b) Use the diagram to the right to 
relate the sag ∆y in the chain to the 
angle θ the chain makes with the 
horizontal: 
 

 

L
y

2
1

sin ∆
=θ   

where L is the length of the chain. 
 

Solve for ∆y: 
 

θsin2
1 Ly =∆  

Because the horizontal and vertical 
forces in the chain are equal, θ = 
45° and: 
 

( ) m77.145sinm52
1 =°=∆y  

(c)  Relate the distance d of the boat 
from the dock to the angle θ the 
chain makes with the horizontal: 
 

L
d

L
d
==

2
1
2
1

cosθ  

Solve for and evaluate d: ( ) m54.345cosm5cos =°== θLd  

 
(d)  Relate the resultant tension in 
the chain to the vertical component 
of the tension Fv and the maximum 
drag force exerted on the boat by the 
water Fd,max: 
 

( )22
maxd,

2
v N500=+ FF  

Solve for Fd,max: ( ) 2
v

2
maxd, N500 FF −=  

 
Because the vertical component of the 
tension is 50 N: ( ) ( ) N497N50N500 22

maxd, =−=F  

 
42 ••  
Picture the Problem Choose a coordinate system in which the positive x axis is along 
the rod and the positive y direction is normal to the rod. The rod and the forces acting on 
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it are shown in the free-body diagram. The forces acting at the supports are denoted by 
the numerals 1 and 2.  The resultant forces at the supports are shown as dashed lines. 
We’ll assume that the rod is on the verge of sliding. Because the x components of the 
forces at the supports are friction forces, they are proportional to the normal, i.e., y, 
components of the forces at the supports. Because the rod is in equilibrium, we can apply 
the conditions for translational and rotational equilibrium. 
 

 
 
Apply 0=∑τr about an axis 

through the support at x = 2 m: 
 

0cos1,22 =− θmgF y ll  

 

Solve for F2,y: 

2

1
,2

cos
l

l θmgF y =  

 
Substitute numerical values and 
evaluate F2,y: 

( )( )( )

N4.127
m4

30cosm/s9.81kg20m3 2

,2

=

°
=yF

 

 
Apply 0=∑τr about an axis 

through the support at x = 6 m: 
 

( ) 0cos ,1212 =−− yFmg lll θ  

 

Solve for F1,y: 
 

( )
2

12
,1

cos
l

ll θmgF y
−

=  

 
Substitute numerical values and 
evaluate F1,y: 

( )( )( )

N48.42
30cos

m4
m/s9.81kg20m3m4 2

,1

=
°×

−
=yF
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Apply ∑ = 0xF to the rail: 030sin,2,1 =°−+ mgFF xx                  (1) 

 
Assuming that the rod is on the 
verge of sliding and that the 
coefficient of static friction is the 
same for both supports: 
 

yFF ,1sx1, µ=  

and  
yFF ,2sx2, µ=  

Divide the first of these equations 
by the second and evaluate this ratio 
to obtain: 
 

3
1

N127.4
N48.42

,2

,1

,2

,1 ===
y

y

x

x

F
F

F
F

 

Solve for F2,x: xx FF ,1,2 3=  

 
Substitute in equation (1): 0sin3 ,1,1 =−+ θmgFF xx  

 
Solve for F1,x: θsin4

1
,1 mgF x =  

 
Substitute numerical values and 
evaluate F1,x: 

( )( )
N53.24

30sinm/s9.81kg20 2
4
1

,1

=

°=xF
 

 
Evaluate F2,x: ( ) N58.73N53.243,2 ==xF  

 
Find the angle θ1 the force at 
support 1 (x = 2 m) makes with the 
rod: 

°=== −− 0.60
N53.24
N48.42tantan 1

,1

,11
1

x

y

F
F

θ

 
 

Find the angle θ2 the force at 
support 2 makes with the rod: 

°=== −− 0.60
N58.73
N4.127tantan 1

,2

,21
2

x

y

F
F

θ

 
 

Find the magnitude of 1F
r

: 

( ) ( )
N49.1

N42.48N24.53 22

2
,1

2
,11

=

+=

+= yx FFF
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Find the magnitude of 2F
r

: 

( ) ( )
N471

N4.271N58.37 22

2
,2

2
,22

=

+=

+= yx FFF

 

 
43 •  
Picture the Problem The forces shown in the figure constitute a couple and will cause 
the plate to experience a counterclockwise angular acceleration. We can find this net 
torque by expressing the torque about either of the corners of the plate. 
 
Sum the torques about an axis 
through the upper left corner of the 
plate to obtain: 

( )[ ] ( )[ ]
( ) ( )ab

ab

N0.40N3.69

30sinN8030cosN80net

−=

°−°=τ

 
44 •  
Picture the Problem We can use the condition for translational equilibrium and the 
definition of a couple to show that the force of static friction exerted by the surface and 
the applied force constitute a couple. We can use the definition of torque to find the 
torque exerted by the couple. We can use our result from (b) to find the effective point of 
application of the normal force when F = Mg/3 and the condition for rotational 
equilibrium to find the greatest magnitude of F

r
 for which the cube will not tip. 

 
(a) Apply ∑ = 0xF

r
to the stationary 

cube: 
 

0s =+ fF
rr

 

 

couple. a constitute forces
 directed oppositely and parallel,

equal, ofpair   thisand sfF
rr

−=∴
 

 
The torque of the couple is: Fa=coupleτ  

 
(b) Let x = the distance from the 
point of application of Fn to the 
center of the cube. Now, Fn = Mg, 
so applying 0=∑τr to the cube 

yields:  

0=− FaMgx                         (1) 

or 

Mg
Fax =  

 
Substitute for F = Mg/3 to obtain: 

3
3 a
Mg

aMg

x ==  
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(c) Solve equation (1) for F: 
 a

MgxF =  

 
Noting that xmax = a/2, substitute to 
express the condition that the cube 
will tip: 2

2max Mg
a

aMg

a
MgxF ==>  

 
45 ••  
Picture the Problem We can find the perpendicular distance between the lines of action 
of the two forces by following the outline given in the problem statement. 
 
Express the vertical components of 
the forces: FF

2
330cos =°  

 
Express the horizontal components 
of the forces: 2

30sin FF =°  

 
Express the net torque acting on the 
plate: ( )abFFaFb −=−= 3

2
1

2
1

2
3

netτ  

 
Letting D be the moment arm of the 
couple, express the net torque acting 
on the plate: 
 

FD=netτ  

Equate these two expressions for τnet:  ( )abFFD −= 32
1  

 
Solve for D: ( )abD −= 32

1  
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*46 ••  
Picture the Problem Choose the 
coordinate system shown in the diagram 
and let x be the coordinate of the thrust 
point. The diagram to the right shows the 
forces acting on the wall. The normal force 
must balance out the weight of the wall and 
the vertical component of the thrust from 
the arch and the frictional force must 
balance out the horizontal component of 
the thrust. We can apply the conditions for 
translational equilibrium to find f and Fn 
and the condition for rotational equilibrium 
to find the distance x from the origin of our 
coordinate system at which Fn acts.  
 
(a)  Apply the conditions for 
translational equilibrium to the wall  
to obtain: 
 

∑ =+−= 0cosarch θFfFx                (1) 
and 

∑ =−−= 0sinarchn θFmgFFy        (2) 
 

Solve equation (1) for and evaluate f: ( )
kN3.17

30cosN102cos 4
arch

=

°×== θFf
 

 
Solve equation (2) for Fn: θsinarchn FmgF +=  

 
Substitute numerical values and 
evaluate Fn: 

( )( )
( )

kN304

30sinN102

m/s81.9kg103
4

24
n

=

°×+

×=F

 

 
Apply 0axis =∑ zτ  to the to the wall: 0cosarch2

1
n =−− θhFwmgxF  

 
Solve for x: 

n

arch2
1 cos

F
hFwmgx θ+

=  

 
Substitute numerical values and evaluate x: 
 

( )( )( ) ( )( ) m570.0
kN304

30cosN102m10m/s81.9kg103m25.1 424
2
1

=
°×+×

=x  

 
(b) 

center.  thecloser to force normal  theofaction  ofpoint   themovemust thrust 
  the tocomparedlarger  weight  themaking so mass, ofcenter  ethrough th

act   wouldforce normal  the wall, theof side on the thrust no  were thereIf
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47 ••  
Picture the Problem Let h be the height of 
the structure, T be the thrust, θ the angle 
from the horizontal of the thrust, m′g the 
weight of the wall above height y, N(x) the 
normal force, f the friction force the lower 
part of the wall exerts on the upper part, 
and w the width of the structure. We can 
apply the conditions for translational and 
rotational equilibrium to the portion of the 
wall above the point at which the thrust is 
applied to obtain two equations that we can 
solve simultaneously for x. 

 
 
Apply 0=∑ yF to that fraction of the 
wall above height y: 
 

( ) 0sin =−− m'gTxN θ  

Assuming the wall is of uniform 
density, express m′g in terms of mg: h

mg
yh

m'g
=

−
 

and 

⎟
⎠
⎞

⎜
⎝
⎛ −=

h
ymgm'g 1  

 
Substitute to obtain: 
 ( ) 01sin =⎟

⎠
⎞

⎜
⎝
⎛ −−−

h
ymgTxN θ  

 
Solve for N(x): 
 ( ) ⎟

⎠
⎞

⎜
⎝
⎛ −+=

h
ymgTxN 1sinθ  

 
Apply 0=∑τr about an axis 
through (0,y) and perpendicular to 
the xy plane to obtain: 
 

( ) ( )

01

cos

2
1 =⎟

⎠
⎞

⎜
⎝
⎛ −−

−−

h
ymgw

TyhxxN θ
 

 
Solve for x to obtain: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −

+
=

h
y

xN
hTmgwx 1cos2

1 θ
 

 
Substitute for N(x) to obtain: 

( )

⎟
⎠
⎞

⎜
⎝
⎛ −+

⎟
⎠
⎞

⎜
⎝
⎛ −+

=

h
ymgT

h
yhTmgw

x
1sin

1cos2
1

θ

θ
 

 
Substitute numerical values and simplify to obtain: 
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( )( )( ) ( )( )[ ]

( ) ( )( )

( )y
y

y

y

x

1-

244

424
2
1

m943.243.30
571.3m71.35

m10
1m/s81.9kg10330sinN102

m10
130cosN102m10m25.1m/s81.9kg103

−
−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×+°×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−°×+×

=
 

 
Solve for y: 
 ( )x

xy 1-m943.2571.3
43.30m71.35

−
−

=  

 
The graph shown to the right was 
plotted using a spreadsheet program: 

0

2

4

6

8

10

12

0.0 0.2 0.4 0.6 0.8 1.0 1.2

x  (m)

y 
(m

)

 
 
Ladder Problems 
 
*48 ••   
Picture the Problem The ladder and the 
forces acting on it at the critical moment of 
slipping are shown in the diagram. Use the 
coordinate system shown. Because the 
ladder is in equilibrium, we can apply the 
conditions for translational and rotational 
equilibrium. 

 
 
Using its definition, express µs: 

n

maxs,
s F

f
=µ                                       (1) 

 
Apply 0=∑τr about the bottom of 

the ladder: 

( )[ ] ( )[ ]
( )[ ] 0sinm10

cosm5cosm9

W =−
+

F
mgMg

θ
θθ

 

 
Solve for FW: ( ) ( )

( ) θ
θ

cos
sinm10

m5m9
W gmMF +
=  
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Find the angle θ: °== − 74.73
m10
m2.8cos 1θ  

 
Evaluate FW: ( )( ) ( )( )

( )
( )

N7.211
74.73cosm/s9.81

74.73sinm10
kg22m5kg70m9

2

W

=
°×

°
+

=F

 

 
Apply ∑ = 0xF to the ladder and 

solve for fs,max: 

0maxs,W =− fF  

and 
N7.211Wmaxs, == Ff  

 
Apply ∑ = 0yF to the ladder: 0n =−− mgMgF  

 
Solve for Fn: ( )

( )( )
N5.902

m/s9.81kg22kg70 2
n

=
+=

+= gmMF

 

 
Substitute numerical values in 
equation (1) and evaluate µs: 

235.0
N902.5
N211.7

s ==µ  

 
49 ••  
Picture the Problem The ladder and the 
forces acting on it are shown in the 
diagram. Because the wall is smooth, the 
force the wall exerts on the ladder must be 
horizontal. Because the ladder is in 
equilibrium, we can apply the conditions 
for translational and rotational equilibrium 
to it. 

 
 
Apply ∑ = 0yF to the ladder and 

solve for Fn: 
 

0n =−MgF ⇒ MgF =n  

 

Apply ∑ = 0xF to the ladder and 

solve for fs,max: 
 

0maxs,W =− fF ⇒ Wmaxs, Ff =  

 

Apply 0=∑τr about the bottom of  0sincos W =− θθ LFMgx  



Static Equilibrium and Elasticity 
           

 

939

the ladder: 
 
Solve for x: 

θµθµ

θ
θ
θ

tantan

tan
cos
sin

s
ns

maxs,W

L
Mg

LF
Mg

Lf
Mg

LFx

==

==
 

 
Referring to the figure, relate x to h and 
solve for h: x

h
=θsin  

and 
θθµθ sintansin sLxh ==  

 
50 ••  
Picture the Problem The ladder and the 
forces acting on it are shown in the 
drawing. Choose a coordinate system in 
which the positive x direction is to the right 
and the positive y direction is upward. 
Because the wall is smooth, the force the 
wall exerts on the ladder must be 
horizontal. Because the ladder is in 
equilibrium, we can apply the conditions 
for translational and rotational equilibrium.  
 
Apply ∑ = 0yF to the ladder and 

solve for Fn: 

04n =−− mgmgF  

and 
mgF 5n =  

 
Apply ∑ = 0xF to the ladder and 

solve for fs,max: 

0maxs,W =− fF  

and 
Wmaxs, Ff =  

 
Apply 0=∑τr about an axis 

through the bottom of the ladder: 
 

0sincos4cos
2 W =−+ θθθ LFmgLmg l  

Substitute for FW and then fs,max and 
solve for l: θ

θθµ
cos4

cossin5 2
1

s

mg
mgLmgL −

=l  
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Simplify to obtain: 

( )

L

L

L

849.0

8
160tan

4
45.05

8
1tan

4
5 s

=

⎟
⎠
⎞

⎜
⎝
⎛ −°=

⎟
⎠
⎞

⎜
⎝
⎛ −= θµ

l

 

i.e., you can climb about 85% of the way to 
the top of the ladder. 

 
51 ••  
Picture the Problem The ladder and the 
forces acting on it are shown in the figure. 
Because the ladder is separating from the 
wall, the force the wall exerts on the ladder 
is zero. Because the ladder is in 
equilibrium, we can apply the conditions 
for translational and rotational equilibrium. 
  

 
To find the force required to pull the 
ladder away from the wall, apply 

0=∑τr about an axis through the 

bottom of the ladder: 

0sin
2

cos
2

=− θθ FLLmg  

or, because 
θ

θ
tan

cos
2

hL
= , 

0sin
2tan

=− θ
θ

FLmgh
 

 
Solve for F: 

θθ sintan
2

L
mghF =                              (1) 

 
Apply ∑ = 0xF to the ladder: nsmaxs,maxs, 0 FfFfF µ==⇒=−    (2) 

 
Apply ∑ = 0yF to the ladder: mgFmgF =⇒=− nn 0  

 
Equate equations (1) and (2) and 
substitute for Fn to obtain: θθ

µ
sintan

2
s L

mghmg =  

 
Solve for µs: 

θθ
µ

sintan
2

s L
h

=  
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52 ••  
Picture the Problem Assume that half the 
man’s weight acts on each side of the 
ladder. The force exerted by the frictionless 
floor must be vertical. D is the separation 
between the legs at the bottom and x is the 
distance of the cross brace from the apex. 
Because each leg of the ladder is in 
equilibrium, we can apply the condition for 
rotational equilibrium the right leg to relate 
the tension in the cross brace to its distance 
from the apex.  
 
(a) By symmetry, each leg carries 
half the total weight. So the force on 
each leg is: 
 

 
N450  

(b) Consider one of the ladder’s 
legs and apply 0=∑τr about the 

apex: 

0
2n =−TxDF  

 

Solve for T: 
x
DFT

2
n=  

 
Using trigonometry, relate h and θ 
through the tangent function: 
 

h
D 2tan 2

1 =θ  

Solve for D to obtain: 
 

θ2
1tan2hD =  

Substitute and simplify to obtain: 
 x

hF
x

hFT θθ 2
1

n2
1

n tan
2
tan2

==  

 
Substitute numerical values and 
evaluate T: 
 

x
hFT θ2

1
n tan

=  

Apply 0=∑ yF to the ladder and 

solve for Fn: 
 

02
1

n =− wF and wF 2
1

n =  

Substitute to obtain: 
 x

whT
2
tan 2

1θ
=                            (1) 
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Substitute numerical values and 
evaluate T: 

( )( )
( ) N241

m22
15tanm4N900

=
°

=T  

(c) From equation (1) we can see 
that, if x is increased, i.e., the brace 
moved lower: 

decrease.  willT  

 
53 ••  
Picture the Problem The figure shows the 
forces acting on the ladder. Because the 
wall is frictionless, the force the wall exerts 
on the ladder is perpendicular to the wall. 
Because the ladder is on the verge of 
slipping, the static friction force is fs,max. 
Because the ladder is in equilibrium, we 
can apply the conditions for translational 
and rotational equilibrium.  
 
Apply ∑ = 0xF to the ladder: 

 

nsmaxs,Wmaxs,W 0 FfFfF µ==⇒=−     

Apply ∑ = 0yF to the ladder: 

 

mgFmgF =⇒=− nn 0  

Apply 0=∑τr about an axis 

through the bottom of the ladder: 
 

0sincos
2 W =− θθ LFLmg  

Substitute for FW and Fn and 
simplify to obtain: 
 

0sincos s2
1 =− θµθ  

Solve for and evaluate θ: 
( ) °=== −− 0.59

3.02
1tan

2
1tan 1

s

1

µ
θ  

 
Stress and Strain 
 
*54 •  
Picture the Problem L is the unstretched length of the wire, F is the force acting on it, and 
A is its cross-sectional area. The stretch in the wire ∆L is related to Young’s modulus by 

( ) ( ).LLAFY ∆=  We can use Table 12-1 to find the numerical value of Young’s 

modulus for steel. 
 
Find the amount the wire is 
stretched from Young’s modulus: LL

AFY
∆

=  
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Solve for ∆L: 

YA
FLL =∆  

 
Substitute for F and A to obtain: 

2rY
mgLL
π

=∆  

 
Substitute numerical values and 
evaluate ∆L: 

( )( )( )
( )

mm976.0

m102N/m102
m5m/s9.81kg50

23211

2

=

××
=∆

−π
L

 

 
55 •  
Picture the Problem L is the unstretched length of the wire, F is the force acting on it, and 
A is its cross-sectional area. The stretch in the wire ∆L is related to Young’s modulus by 

( ) ( ).strainstress LLAFY ∆==   

 
(a) Express the maximum load in 
terms of the wire’s breaking stress: 2

max

stressbreaking

stressbreaking

r

AF

π×=

×=
 

 
Substitute numerical values and 
evaluate Fmax: 
 

( ) ( )
N41.6

m100.21N/m103 2328
max

=

××= −πF
 

(b) Using the definition of Young’s 
modulus, express the fractional 
change in length of the copper wire: %136.01036.1

N/m101.1
N/m101.5

3

211

28

=×=

×
×

==∆

−

Y
AFLL

 

 
56 •  
Picture the Problem L is the unstretched length of the wire, F is the force acting on it, and 
A is its cross-sectional area. The stretch in the wire ∆L is related to Young’s modulus by 

( ) ( ).LLAFY ∆=  We can use Table 12-1 to find the numerical value of Young’s 

modulus for steel. 
 
Find the amount the wire is stretched 
from Young’s modulus: LL

AFY
∆

=  

 
Solve for ∆L: 

YA
FLL =∆  
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Substitute for F and A to obtain: 
2rY

mgLL
π

=∆  

Substitute numerical values and 
evaluate ∆L: 

( )( )( )
( )

mm833.0

m103.0N/m102
m2.1m/s9.81kg4

23211

2

=

××
=∆

−π
L

 

 
*57 •  
Picture the Problem The shear stress, defined as the ratio of the shearing force to the area 
over which it is applied, is related to the shear strain through the definition of the shear 

modulus; 
θtanstrainshear

stressshear s
s

AFM == .   

 
Using the definition of shear 
modulus, relate the angle of shear, θ 
to the shear force and shear modulus: 
 

AM
F

s

stan =θ  

Solve for θ : 
AM

F

s

s1tan−=θ  

 
Substitute numerical values and 
evaluate θ : ( )( )

°=

××
= −

−

01.5

m1015N/m101.9
N25tan 2425

1θ
 

 
58 ••  
Picture the Problem The stretch in the wire ∆L is related to Young’s modulus 
by ( ) ( )LLAFY ∆= , where L is the unstretched length of the wire, F is the force acting 

on it, and A is its cross-sectional area. For a composite wire, the length under stress is the 
unstressed length plus the sum of the elongations of the components of the wire. 
 
Express the length of the composite wire 
when it is supporting a mass of  
5 kg: 
 

LL ∆+= m00.3                        (1) 

Express the change in length of the 
composite wire: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

+=

∆+∆=∆

Al

Al

steel

steel

Al

Al

steel

steel

Alsteel

Y
L

Y
L

A
F

Y
L

A
F

Y
L

A
F

LLL
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Find the stress in each wire: ( )( )

( )
27

23

2

N/m10245.6
m100.5

m/s9.81kg5

×=

×
=

−πA
F

 

 
Substitute numerical values and evaluate ∆L: 
 

( ) m1081.1
N/m107.0

m1.5
N/m102
m1.5N/m10245.6 3

211211
27 −×=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×

+
×

×=∆L  

 
Substitute in equation (1) and evaluate L: 

m0018.3

m1081.1m00.3 3

=

×+= −L
 

 
59 ••  
Picture the Problem We can use Hooke’s law and Young’s modulus to show that, if the 
wire is considered to be a spring, the force constant k is given by  
k = AY/L. By treating the wire as a spring we can show the energy stored in the wire is U = 
½F∆L. 
 
Express the relationship between the 
stretching force, the stiffness 
constant, and the elongation of a 
spring: 

LkF ∆=  
or 

L
Fk
∆

=  

 
Using the definition of Young’s 
modulus, express the ratio of the 
stretching force to the elongation of 
the wire: 
 

L
AY

L
F

=
∆

                           (1) 

Equate these two expressions for 
F/∆L to obtain: 
 

L
AYk =  

Treating the wire as a spring, 
express its stored energy: 

( ) ( ) 2
2
12

2
1 L

L
AYLkU ∆=∆=  

 
Solve equation (1) for F: 

L
LAYF ∆

=  

 
Substitute in our expression for U to obtain: LFL

L
LAYU ∆=∆

∆
= 2

1
2
1  
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60 ••  
Picture the Problem Let L′ represent the stretched and L the unstretched length of the wire. 
The stretch in the wire ∆L is related to Young’s modulus by ( ) ( )LLAFY ∆= , where F is 

the force acting on it, and A is its cross-sectional area. In problem 58 we showed that the 
energy stored in the wire is U = ½F∆L, where Y is Young’s modulus and ∆L is the amount 
the wire has stretched. 
 
(a) Express the stretched length of the 
wire: 
 

LLL' ∆+=  

Using the definition of Young’s 
modulus, express ∆L: AY

LFL =∆  

 
Substitute and simplify: 

⎟
⎠
⎞

⎜
⎝
⎛ +=+=

AY
FL

AY
LFLL' 1  

 
Solve for L: 

AY
F

L'L
+

=
1

 

 
Substitute numerical values and 
evaluate L: 

( ) ( )
m347.0

N/m102m100.1
N531

m0.35

21123

=

××
+

=

−π

L

 

 
(b) Using the expression from 
Problem 59, express the work done 
in stretching the wire: 

( )( )
J0.0795

m0.347m0.35N532
1

2
1

=

−=
∆=∆= LFUW

 

 
*61 ••  
Picture the Problem The table to the right 
summarizes the ratios ∆L/F for the 
student’s data. Note that this ratio is 
constant, to three significant figures, for 
loads less than or equal to 200 g. We can 
use this ratio to calculate Young’s modulus 
for the rubber strip.  

Load F ∆L ∆L/F 
(g) (N) (m) (m/N 
100 0.981 0.006 6.12×10−3 
200 1.962 0.012 6.12×10−3 
300 2.943 0.019 6.46×10−3 
400 3.924 0.028 7.14×10−3 
500 4.905 0.05 10.2×10−3  
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(a) Referring to the table, we see 
that for loads ≤ 200 g: 
 

m/N1012.6 3−×=
∆
F
L

 

Use the definition of Young’s 
modulus to express Y: 

F
LA

L
LA

FLY
∆

=
∆

=  

 
Substitute numerical values and evaluate Y: 
 

( ) ( ) ( )
26

333

2

N/m1082.1
m/N106.12m101.5m103

m105
×=

×××
×

= −−−

−

Y  

 
(b) Interpolate to determine the 
stretch when the load is 150 g, and 
use the expression from Problem 58, 
to express the energy stored in the 
strip: 

( )( )( )
mJ62.6

m109m/s81.9kg0.15 32
2
1

2
1

=

×=

∆=
−

LFU

 

 
62 ••  
Picture the Problem The figure shows 
the forces acting on the wire where it 
passes over the nail. m represents the mass 
of the mirror and T is the tension in the 
supporting wires. The figure also shows 
the geometry of the right triangle defined 
by the support wires and the top of the 
mirror frame. The distance a is fixed by 
the geometry while h and L will change as 
the mirror is suspended from the nail.  
 
Express the distance between the 
nail and the top of the frame when 
the wire is under tension: 
 

h
hhh'
∆+=

∆+=
m4.0

                        (1) 

Apply ∑ = 0yF to the wire where it 

passes over the supporting nail: 
 

0cos2 =− θTmg  

Solve for the tension in the wire: 
θcos2

mgT =  
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Substitute numerical values and 
evaluate T: 

( )( ) N0.25

m0.85
m0.42

m/s9.81kg2.4 2

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=T  

 
Using its definition, find the stress 
in the wire: ( )

28

23

N/m1096.7
m101.0

N0.25stress

×=

×
==

−πA
T

 

 
Using the definition of Young’s 
modulus, find the strain in the 
hypotenuse of the right triangle 
shown in the figure:  

3
211

28

1098.3
N/m102

N/m1096.7

stressstrain

−×=
×
×

=

=
∆

=
YL

L

 

 
Using the Pythagorean theorem, 
express the relationship between the 
sides of the right triangle in the 
figure: 
 

222 Lha =+  

Express the differential of this 
equation: 

LLhhaa ∆=∆+∆ 222  
or, because ∆a = 0, 

LLhh ∆=∆  
 

Solve for and evaluate ∆h: 
L
L

h
L

h
LLh ∆

⋅=
∆

=∆
2

 

 
Substitute numerical values and 
evaluate ∆h: 
 

( ) ( ) mm 7.19103.98
m0.4
m0.85 3

2

=×=∆ −h  

Substitute in equation (1) to obtain: 

cm72.40

mm19.7m4.0

=

+=h'
 

 
63 ••  
Picture the Problem Let the numeral 1 denote the aluminum wire and the numeral 2 the 
steel wire. Because their initial lengths and amount they stretch are the same, we can use 
the definition of Young’s modulus to express the change in the lengths of each wire and 
then equate these expressions to obtain an equation solvable for the ratio M1/M2. 
 
Using the definition of Young’s 
modulus, express the change in Al1

11
1 YA

gLML =∆  
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length of the aluminum wire: 
 
Using the definition of Young’s 
modulus, express the change in 
length of the steel wire: 
 

steel2

22
2 YA

gLML =∆  

Because the two wires stretch by the 
same amount, equate ∆L1 and ∆L2 
and simplify: 
 

steel2

2

Al1

1

YA
M

YA
M

=  

Solve for the ratio M1/M2: 

steel2

Al1

2

1

YA
YA

M
M

=  

 
Substitute numerical values and 
evaluate M1/M2: 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

686.0

N/m102mm5.0
N/m107.0mm7.0

N/m102mm5.0
4

N/m107.0mm7.0
4

2112

2112

2112

2112

2

1

=

×
×

=

×

×
= π

π

M
M

 

 
64 ••  
Picture the Problem The free-body 
diagram shows the forces acting on the ball 
as it rotates around the post in a horizontal 
plane. We can apply Newton’s 2nd law to 
find the tension in the wire and use the 
definition of Young’s modulus to find the 
amount by which the aluminum wire 
stretches.  

 
Express the length of the wire under 
tension to its unstretched length: 
 

LLLL ∆+=∆+= m7.00       (1)                 

Apply ∑ = 0yF to the ball: 0sin =−mgT θ  

 
Solve for the tension in the wire: 

θsin
mgT =  
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Substitute numerical values and 
evaluate T: 
 

( )( ) N3.56
sin5

m/s9.81kg0.5 2

=
°

=T  

Using the definition of Young’s 
modulus, express ∆L: AY

FLL =∆  

 
Substitute numerical values and 
evaluate ∆L: 

( )( )
( ) ( )

mm280.0

N/m107.0m106.1
4

m0.7N56.3
21123

=

××
=∆

−πL
 

 
Substitute in equation (1) to obtain: cm03.70mm280.0m7.0 =+=L  

 
*65 ••  
Picture the Problem We can use the definition of stress to calculate the failing stress of 
the cable and the stress on the elevator cable. Note that the failing stress of the composite 
cable is the same as the failing stress of the test sample.  
 
Express the stress on the elevator cable: 
 

210

26cable

N/m1067.1
m102.1

kN20Stress

×=

×
== −A

F
 

 
Express the failing stress of the sample: 
 

210

26failing

N/m10500.0
m102.0

kN1Stress

×=

×
== −A

F
 

 
elevator. esupport thnot  it will ,StressStress Because cablefailing <  

 
*66 •••  
Picture the Problem Let the length of the sides of the rectangle be x, y and z.  Then the 
volume of the rectangle will be V = xyz and we can express the new volume V ′ resulting 
from the pulling in the x direction and the change in volume ∆V in terms of ∆x, ∆y, and 
∆z.  Discarding the higher order terms in ∆V and dividing our equation by V and using the 
given condition that ∆y/y = ∆z/z will lead us to the given expression for ∆y/y. 
 
Express the new volume of the rectangular box when its sides change in length by ∆x, ∆y, 
and ∆z: 
 

( )( )( ) ( ) ( ) ( )
}{ zyxzyxzxyyxz

xyzxzyyzxxyzzzyyxxV'
∆∆∆+∆∆+∆∆+∆∆+

∆+∆+∆+=∆+∆+∆+=
 

where the terms in brackets are very small (i.e., second  order or higher). 
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Discard the second order and higher 
terms to obtain: 
 

( ) ( ) ( )xyzxzyyzxVV' ∆+∆+∆+=  

or 
( ) ( ) ( )xyzxzyyzxVV'V ∆+∆+∆=−=∆  

 
Because ∆V = 0: ( ) ( ) ( )[ ]xyzxzyyzx ∆+∆−=∆  

 
Divide both sides of this equation by  
V = xyz to obtain: 
 

⎥
⎦

⎤
⎢
⎣

⎡ ∆
+

∆
−=

∆
z
z

y
y

x
x  

Because ∆y/y = ∆z/z, our equation 
becomes: y

y
x
x ∆

−=
∆ 2 or 

x
x

y
y ∆

−=
∆

2
1  

 
67 ••   
Picture the Problem We can evaluate the differential of the volume of the wire and, 
using the assumptions that the volume of the wire does not change under stretching and 
that the change in its length is small compared to its length, show that ∆r/r = −(1/2) ∆L/L. 
 
Express the volume of the wire: 
 

LrV 2π=  

Evaluate the differential of V to 
obtain: 
 

rLdrdLrdV ππ 22 +=  

Because dV = 0: 
LdrrdL 20 += ⇒ 

L
dL

r
dr

2
1

−=  

 
Because ∆L << L, we can 
approximate the differential changes 
dr and dL with small changes ∆r 
and ∆L to obtain: 

L
L

r
r ∆

−=
∆

2
1

 

 
*68 •••   
Picture the Problem Because the volume of the thread remains constant during the 
stretching process, we can equate the initial and final volumes to express r0 in terms of r. 
We can also use Young’s modulus to express the tension needed to break the thread in 
terms of Y and r0. 
 
(a) Express the conservation of 
volume during the stretching of the 
spider’s silk: 
 

0
2

0
2 LrLr ππ =  

Solve for r: 

L
Lrr 0

0=  

 
Substitute for L to obtain: 

0
0

0
0 316.0

10
r

L
Lrr ==  
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(b) Express Young’s modulus in 
terms of the breaking tension T: 
 LL

rT
LL
rT

LL
ATY

∆
=

∆
=

∆
=

2
0

2 10 ππ
 

Solve for T to obtain: 
 L

LYrT ∆
= 2

010
1 π  

 
Because ∆L/L = 9: 

10
9 2

0 YrT π
=  

 
General Problems 
 
69 •  
Picture the Problem Because the board is in equilibrium, we can apply the conditions for 
translational and rotational equilibrium to determine the forces exerted by the supports. 
 
Apply 0=∑i iτ

r
about the right support: 

 

( )( ) ( )( ) ( ) 0m10N90m5N360m2 L =−+ F
 

Solve for and evaluate FL: ( )( ) ( )( )

N117

m10
N90m5N360m2

L

=

+
=F

 

 
Apply ∑ = 0yF to the board: 0N360N90RL =−−+ FF  

 
Solve for and evaluate FR: 

N333

N360N90N117
N360N90LR

=

++−=
++−= FF

 

 
Remarks: We could just as easily found FR by applying 0=∑τr about the left 

support. 
 
70 •  
Picture the Problem Because the man-and-board system is in equilibrium, we can apply 
the conditions for translational and rotational equilibrium to determine the forces exerted 
by the supports. Let d represent the distance from the man’s feet to his center of gravity. 
 
Apply 0=∑τr about an axis 

through the man’s feet and 
perpendicular to the page: 
 

( ) ( )( ) 0N454m88.1N458 =−d  
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Solve for and evaluate d: ( )( )

cm0.99

m990.0
N845

N454m88.1

=

==d
 

 

 change.not   wouldreadings scale  theso and mass ofcenter  his
oflocation   thechangenot   wouldboard  theaboveslightly  head his Holding No.

 

 
*71 •  
Picture the Problem We can apply the balance condition 0=∑τr  successively, starting 

with the lowest part of the mobile, to find the value of each of the unknown weights. 
 
Apply 0=∑τr about an axis 

through  the point of suspension of 
the lowest part of the mobile: 
 

( )( ) ( ) 0cm4N2cm3 1 =− w  

Solve for and evaluate w1: ( )( ) N50.1
cm4

N2cm3
1 ==w  

 
Apply 0=∑τr about an axis 

through  the point of suspension of 
the middle part of the mobile: 
 

( ) ( )( ) 0N1.5N2cm4cm2 2 =+−w  

Solve for and evaluate w2: ( )( ) N00.7
cm2

N1.5N2cm4
2 =

+
=w  

 
Apply 0=∑τr about an axis 

through  the point of suspension of 
the top part of the mobile: 
 

( )( ) ( ) 0cm6N5.10cm2 3 =− w  

Solve for and evaluate w3: ( )( ) N50.3
cm6

N5.10cm2
3 ==w  

 
72 •  
Picture the Problem We can determine the ratio of L to h by noting the number of ropes 
supporting the load whose mass is M. 
 
(a) Noting that three ropes support 
the pulley to which the object whose 
mass is M is fastened we can 

3=
h
L
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conclude that: 
 
(b) Apply the work-energy principle 
to the block-tackle object to obtain: 

tackle-blocksystemext UEW ∆=∆=  

or 
MghFL =  

 
73 ••  
Picture the Problem The figure shows the 
equilateral triangle without the mass m, and 
then the same triangle with the mass m and 
rotated through an angle θ. Let the side 
length of the triangle to be 2a. Then the 
center of mass of the triangle is at a 

distance of 
3

2a
 from each vertex. As the 

triangle rotates, its center of mass shifts 

by
3

2a
θ, for θ  << 1. Also, the vertex to 

which m is attached moves toward the 
plumb line by the distance d = 2aθ cos30° 
= θa3  (see the drawing). 

 
 

 

 
Apply 0=∑τr about an axis through 

the point of suspension: 
 

( ) 0
3

23 =−− θθ aMgaamg  

Solve for m/M: 
( )θ
θ

313
2
−

=
M
m

 

 
Substitute numerical values and 
evaluate m/M: 

( )

( )

148.0

180
rad6313

180
rad62

=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

°
°−

⎟
⎠
⎞

⎜
⎝
⎛

°
°

=
π

π

M
m

 

 
74 ••  
Picture the Problem If the hexagon is to 
roll rather than slide, the incline’s angle 
must be such that the center of mass falls 
just beyond the support base. From the 
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geometry of the hexagon, one can see that 
the critical angle is 30°. The free-body 
diagram shows the forces acting on the 
hexagonal pencil when it is on the verge of 
sliding. We can use Newton’s 2nd law to 
relate the coefficient of static friction to the 
angle of the incline for which rolling rather 
than sliding occurs. 

 
  
Apply ∑ = 0F

r
to the pencil: 0sin maxs, =−=∑ fmgFx θ         (1) 

and 
0cosn =−=∑ θmgFFy            (2) 

 
Substitute fs,max = µsFn in equation (1): 0sin ns =− Fmg µθ                      (3) 

 
Divide equation (3) by equation (2) 
to obtain: 
 

stan µθ =  

Thus, if the pencil is to roll rather 
than slide when the pad is inclined: 
 

577.030tans =°≥µ  

 
75 ••  
Picture the Problem The box and the 
forces acting on it are shown in the figure. 
When the box is about to tip, Fn acts at its 
edge, as indicated in the drawing. We can 
use the definition of µs and apply the 
condition for rotational equilibrium in an 
accelerated frame to relate fs to the weight 
of the box and, hence, to the normal force.  
 
Using its definition, express µs: 

n

s
s F

f
≥µ  

 
Apply 0=∑τr about an axis through 

the box’s center of mass: 
 

0n2
1

s =− wFwf  
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Solve for the ratio 
n

s

F
f

: 
2
1

n

s =
F
f

 

 
Substitute to obtain the condition for 
tipping: 
 

500.0s ≥µ  

Therefore, if the box is to slide: 500.0s <µ  

 
76 ••  
Picture the Problem Because the balance is in equilibrium, we can use the condition for 
rotational equilibrium to relate the masses of the blocks to the lever arms of the balance 
in the two configurations described in the problem statement. 
 
Apply 0=∑τr  about an axis 

through the fulcrum: 
 

( ) ( ) 21 kg95.1kg5.1 LL =  

 

Solve for the ratio L1/L2: 30.1
kg5.1
kg95.1

2

1 ==
L
L

 

 
Apply 0=∑τr  about an axis 

through the fulcrum with 1.5 kg at 
L2: 
 

( ) 12kg5.1 MLL =  

Solve for and evaluate M: ( )

kg15.1

30.1
kg5.1kg5.1kg5.1

211

2

=

===
LLL

LM
 

 
*77 ••  
Picture the Problem The figure shows the 
location of the cube’s center of mass and 
the forces acting on the cube. The opposing 
couple is formed by the friction force fs,max 
and the force exerted by the wall. Because 
the cube is in equilibrium, we can use the 
condition for translational equilibrium to 
establish that Wmaxs, Ff = and  MgF =n  

and the condition for rotational equilibrium 
to relate the opposing couples.  
 



Static Equilibrium and Elasticity 
           

 

957

Apply 0=∑F
r

 to the cube: MgFMgFFy =⇒=−=∑ nn 0  

and 

sWs 0 fFFfF Wx =⇒=−=∑  

 
Noting that maxs,f

r
and WF

r
form a 

couple, as do nF
r

and ,g
r

M  apply 
0=∑τr  about an axis though the 

center of mass of the cube: 
 

0sinmaxs, =−Mgdaf θ  

Referring to the diagram to the 
right, note 

that ( )θ+°= 45sin
2

ad . 

 
Substitute for d and fs,max to obtain: ( ) 045sin

2
sins =+°− θθµ aMgMga  

or 

( ) 045sin
2

1sins =+°− θθµ  

 
Solve for µs and simplify to obtain: 
 

( ) ( )

( )1cot
2
1sin

2
1cos

2
1

sin2
1

sin45coscos45sin
sin2
145sin

sin2
1

s

+=⎟
⎠
⎞

⎜
⎝
⎛ +=

°+°=+°=

θθθ
θ

θθ
θ

θ
θ

µ
 

 
78 ••  
Picture the Problem Because the meter stick is in equilibrium, we can apply the condition 
for rotational equilibrium to find the maximum distance from the hinge at which the block 
can be suspended. 
 
Apply 0=∑τr  about an axis through the hinge to obtain: 
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( )( ) ( )( )( ) ( )( ) 045cosm/s9.81kg0145cosm/s9.81kg5m0.5N75m1 22 =°−°− d  

 
Solve for and evaluate d: 
 

( )( ) ( )( )( )
( )( ) m831.045cos

45cosm/s9.81kg01
m/s9.81kg5m0.5N75m1

2

2

=°
°

−
=d  

 
79 ••  
Picture the Problem Let m represent the 
mass of the ladder and M the mass of the 
person. The force diagram shows the forces 
acting on the ladder for part (b). From the 
condition for translational equilibrium, we 
can conclude that T = FW, a result we’ll 
need in part (b). Because the ladder is also 
in rotational equilibrium, summing the 
torques about the bottom of the ladder will 
eliminate both Fn and T. 

 
 
(a) Apply 0=∑i iτ

r
 about an axis 

through the bottom of the ladder: 

( ) ( )( )( )
( )( )( ) 0m/s9.81kg80m0.75

m/s9.81kg20m0.75m5
2

2
W

=−

−F
 

Solve for and evaluate FW: ( )( )( )

( )( )( )

N147

m5
m/s9.81kg80m0.75

m5
m/s9.81kg20m0.75

2

2

W

=

+

=F

 

 
(b) Solve for and evaluate f : 
 

( )( ) ( )( )( )
( )( )( ) 724.0

m/s9.81kg80m5.1
m/s9.81kg20m0.75N200m5

2

2

=
−

=f  

 
Find the distance the 80-kg person can 
climb the ladder: 

( ) ( )( ) m62.3m5724.0m5 === fd  
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*80 ••  
Picture the Problem To ″roll″ the cube 
one must raise its center of mass from y = 
a/2 to 22ay = , where a is the cube 

length. During this process the work done 
is the change in the gravitational potential 
energy of the cube. No additional work is 
done on the cube as it ″flops″ down. We 
can also use the definition of work to 
express the work done in sliding the cube a 
distance a along a horizontal surface and 
then equate the two expressions to 
determine µk. 

 

 

 
Express the work done in moving 
the cube a distance a by raising its 
center of mass from y = a/2 
to 22ay =  and then letting the 

cube flop down: 
 

( )
mga

mgaaamgW

207.0

12
222

2

=

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

 

Letting fk represent the kinetic 
friction force, express the work done 
in dragging the cube a distance a 
along the surface at constant speed: 
 

mgaafW kk µ==  

Equate these two expressions to obtain: 207.0k =µ  

 
81 ••  
Picture the Problem The free-body 
diagram shows the forces acting on the 
block when it is on the verge of sliding. 
Because the block is in equilibrium, we can 
use the conditions for translational 
equilibrium to determine the minimum 
angle for which the block will slide. The 
diagram to the right of the FBD shows that 
the condition for tipping is that the plumb 
line from the center of mass pass outside of 
the base. We can determine the tipping 
angle from the geometry of the block under 
this condition. 
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Apply 0=∑F

r
 to the block: 0sin maxs,sliding ≥−=∑ fmgFx θ  

if the block is to slide, and 

∑ =−= 0cos slidingn θmgFFy  

 
Substitute for fs,max and eliminate Fn 
between these equations to obtain: 
 

slidings tanθµ ≤  

Solve for the condition for sliding: °==≥ −− 8.214.0tantan 1
s

1
sliding µθ  

 
Using the geometry of the block, 
express the condition on θ that must 
be satisfied if the block is to tip: 
 

°==≥ −− 4.18
3
1tan

5.1
5.0tan 11

tipping a
aθ  

slides.it  before  tipblock will  the, Because slidingtipping θθ <  

 
82 ••  
Picture the Problem Let m represent the 
mass of the bar, M the mass of the 
suspended object, Fv the vertical 
component of the force the wall exerts on 
the bar, Fh the horizontal component of the 
force exerted the wall exerts on the bar, 
and T the tension in the cable. The free-
body diagrams show these forces and their 
points of application on the bar for parts (a) 
and (b) of the problem. Because the bar is 
in equilibrium, we can apply the conditions 
for translational and rotational equilibrium 
to relate the various forces and distances.   

 
  
(a) Apply 0=∑i iτ

r
 about an axis 

through the hinge: 

( ) ( )
( ) 030cosm15

30cosm5.7m5
=°−
°−

Mg
mgT

 

 
Solve for T: ( ) ( )[ ]

m5
30cosm15m5.7 °+

=
gMmT  
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Substitute numerical values and 
evaluate T: 

( )( ) ( )( )

( )
kN3.10

30cosm/s9.81
m5

kg360m15kg85m5.7

2

=

°×

+
=T

 

 
Apply 0=∑i iF

r
 to the bar: 060sinv =−−°+=∑ MgmgTFFy  

and 
060cosh =°−=∑ TFFx  

 
Solve the y equation for Fv: ( )

( )
( )( )
kN55.4

m/s81.9kg360kg85
60sinkN3.10

60sin

2

v

−=
++

°−=
++°−= gMmTF

 

 
Solve the x equation for Fh: ( )

kN15.5
60coskN3.1060cosh

=
°=°= TF

 

 
Find the magnitude of the force 
exerted by the wall on the bar: 

( ) ( )
kN6.87

kN5.15kN4.55 22

2
h

2
v

=

+−=

+= FFF

 

 
Find the direction of the force 
exerted by the wall on the bar: 

°−=

−
== −−

5.41

kN5.15
kN4.55tantan 1

h

v1

F
Fθ

 

i.e., 41.5° below the horizontal. 
 

(b) Apply 0=∑τr  about the hinge: ( )[ ] ( )
( ) 030cosm15

30cosm5.760sinm10
=°−

°−°
Mg

mgT
 

 
Solve for T: ( ) ( )

( ) °
°

+
= 30cos

60sinm10
m15m5.7 gMmT  
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Substitute numerical values and 
evaluate T: 

( )( ) ( )( )
( )

( )
kN92.5

30cosm/s81.9
60sinm10

kg360m15kg85m5.7

2

=

°×

°
+

=T

 

 
Apply 0=∑F

r
 to the bar: ( )

( ) 0kg360

kg8560cosv

=−

−°+=∑
g

gTFFy  

and 
060sinh =°−=∑ TFFx  

 
Solve the y equation for Fv: ( )

( )( )
kN41.1

m/s81.9kg360kg85

60coskN92.5
2

v

=
++

°−=F

 

 
Solve the x equation for Fh: ( )

kN13.5
60sinkN92.560sinh

=
°=°= TF

 

 
Find the magnitude of the force 
exerted by the wall on the bar: 

( ) ( )
kN32.5

kN5.13kN41.1 22

2
h

2
v

=

+=

+= FFF

 

Find the direction of the force 
exerted by the wall on the bar: °=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
== −− 4.15

kN5.13
kN1.41tantan 1

h

v1

F
Fθ  

i.e., 15.4° above the horizontal. 
 
83 ••  
Picture the Problem The box and the 
forces acting on it are shown in the figure. 
When the box is about to tip, Fn acts at its 
edge, as indicated in the drawing. We can 
use the definition of µs and apply the 
condition for rotational equilibrium in an 
accelerated frame to relate fs to the weight 
of the box and, hence, to the normal force. 

 
 
Using its definition, express µs: 

n

s
s F

f
≥µ  
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Apply 0=∑τr about an axis 

through the box’s center of mass: 
 

0n2
1

s =− wFwf  

Solve for the ratio 
n

s

F
f

: 
2
1

n

s =
F
f

 

 
Substitute to obtain the condition for 
tipping: 
 

500.0s ≥µ  

Therefore, if the box is to slide: 500.0s <µ , as in Problem 75. 

 
Remarks: The difference between problems 75 and 83 is that in 75 the maximum 
acceleration before slipping is 0.5g, whereas in 88 it is  
(0.5 cos9°− sin9°) = 0.337g. 
 
*84 ••  
Picture the Problem Let the mass of the rod be represented by M. Because the rod is in 
equilibrium, we can apply the condition for rotational equilibrium to relate the masses of 
the objects placed on it to its mass. 
 
Apply 0=∑τr  about an axis 

through the pivot for the initial 
condition: 
 

( )( ) ( )
( ) 0cm10

cm40g22cm20
=−

−+
M

mm
 

Solve for and evaluate M: ( )( ) ( )

g00.4

cm10
cm40g22cm20

=

−+
=

mmM
 

 
Apply 0=∑τr  about an axis 

through the pivot for the second 
condition: 
 

( ) ( ) 0cm10cm20 =− Mm  

Solve for and evaluate m: ( ) g00.2
cm20

cm10
2
1 === MMm  

 
*85 ••   
Picture the Problem Let the distance from the center of the meterstick of either finger be 
x1 and x2 and W the weight of the stick. Because the meterstick is in equilibrium, we can 
apply the condition for rotational equilibrium to obtain expressions for the forces one’s 
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fingers exert on the meterstick as functions of the distances x1 and x2 and the weight of the 
meterstick W. We can then explain the stop-and-start motion of one’s fingers as they are 
brought closer together by considering the magnitudes of these forces in relationship the 
coefficients of static and kinetic friction. 
 

 

 
 

(a)  

 finger.other  at the
occurs slipping  themeans which mass, ofcenter   thecloser tofinger  the

by exerted becan  force frictional-staticlarger  a ly,Consequent finger.
other  by the exertedan that greater th is mass ofcenter  enearest th

finger by the exerted force normal stick the balanced aFor  fingers. two
ebetween th is mass ofcenter   theas long as balanced remainsstick  The

 

 
(b) Apply 0=∑τr about an axis through 

point 1 to obtain: 
 

( ) 01212 =−+ WxxxF  

Solve for F2 to obtain: 
 21

1
2 xx

xWF
+

=  

 
Apply 0=∑τr about an axis 

through point 2 to obtain: 
 

( ) 02211 =++− WxxxF  

Solve for F1 to obtain: 
 21

2
1 xx

xWF
+

=  

 

 not. isother   theslipping is
isfinger  one When reversed. is process  theand sliding, stops sliding that was

finger   theslide,  tobegins slidingnot  t wasfinger tha point theAt that  finger.
other  by the exerted force frictional-static maximum  theexceeding force

 frictional-kinetic a produce  tolargely sufficient isstick  on the exertsit  force
 normal  theuntil inward slide  willmass ofcenter   thefromfarthest finger  The
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86 ••  
Picture the Problem The drawing shows a 
side view of the wall-and-picture system. 
Because the frame’s width is not specified, 
we assume it to be negligible. Note that 
0.75, 0.4, and 0.85 form a Pythagorean 
triad. Thus, the nail will be at the same 
level as the top of the frame. We can apply 
the condition for rotational equilibrium to 
determine the force exerted by the wall. 

 
 
(a) Because the center of gravity of the picture is in front of the wall, the torque due to mg 
about the nail must be balanced by an opposing torque due to the force of the wall on the 
picture, acting horizontally. So that∑ = 0xF , the tension in the wire must have a 

horizontal component, and the picture must therefore tilt forward. 
 
(b) Apply 0=∑τr about an axis 

through the nail and parallel to the 
wall to obtain: 
 

( )[ ]( )( )
( )[ ] 05cosm2.1

m/s81.9kg85sinm6.0

W

2

=°+
°−

F
 

 

Solve for and evaluate FW: ( )[ ]( )( )
( )

N43.3

5cosm2.1
m/s81.9kg85sinm6.0 2

W

=

°
°

=F
 

 
87 ••   
Picture the Problem The box car and rail 
are shown in the drawing. At the critical 
speed, the normal force is entirely on the 
outside rail. The center of gravity is 0.775 
m from that rail and 2.15 m above it. 
Choose the coordinate system shown in the 
figure. To find the speed at which this 
situation prevails, we can apply the 
conditions for static equilibrium in an 
accelerated frame. 

 

 
 
Apply 0=∑τr about an axis 

through the center of gravity of the 

( ) ( ) 0m15.2m775.0 sn =− fF           (1) 
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box car: 
 
Apply ∑ = 0yF to the box car and 

solve for Fn: 
 

mgFmgF =⇒=− nn 0  

Apply ∑ = cmmaFx to the box: 
R
vmf

2

s =  

 
Substitute in equation (1) to obtain: ( ) ( ) 0m15.2m775.0

2

=−
R
vmmg  

 
Solve for v: Rgv 360.0=  

 
(a) Evaluate v for R = 150 m: ( )( )

m/s0.23

m/s9.81m150360.0 2

=

=v
 

 
(b) Evaluate v for R = 240 m: ( )( )

m/s1.29

m/s9.81m240360.0 2

=

=v
 

 
88 ••  
Picture the Problem For neutral 
equilibrium, the center of mass of the 
system must be at the same height as the 
feet of the tightrope walker. The system is 
shown in the drawing. Let the origin of the 
coordinate system be at the rope. We’ll 
determine the distance d such that ycm = 0. 
We’ll then determine the angle θ  
subtended by one half the long rod.  
 
Express the y coordinate of the 
center of mass of the system: 
 

( )( ) ( )
kg40kg58

kg202m0.9kg58
cm +

−
=

dy  

Set ycm = 0 and solve for d: 
 

d = 1.305 m 

Relate the distances s and d and 
solve for s: 
 

s = 0.65 m + d = 1.955 m 
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Relate s to R and θ: ( )θcos1−= Rs                         (1) 

 
Relate R and θ to the half-length of 
the rod: 
 

m4=θR                                  (2)             

Substitute in equation (1) to obtain: ( )
θ

θcos1m4m955.1 −
=  

or 

489.0cos1
=

−
θ

θ
 

 
Use graphical or trial-and-error 
methods to solve for θ : 
 

rad08.1=θ  

Substitute in equation (2) to obtain: m70.3
rad1.08

m4
==R  

 
*89 •••  
Picture the Problem Let the mass of each brick be m and number them as shown in the 
diagrams for 3 bricks and 4 bricks below. Let l denote the maximum offset of the nth 
brick. Choose the coordinate system shown and apply the condition for rotational 
equilibrium about an axis parallel to the z axis and passing through the point P at the 
supporting edge of the nth brick. 
 

 
 
(a) Apply 0=∑τr about an axis 

through P and parallel to the z axis to 
bricks 1 and 2 for the 3-brick 
arrangement shown above on the left: 
 

( )[ ] 02
1 =−+− ll mgLLmg  

 

Solve for l to obtain: 
 

L4
1=l  
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(b) Apply 0=∑τr  about an axis 

through P and parallel to the z axis 
to bricks 1 and 2 for the 4-brick 
arrangement shown above on the 
right: 
 

( )[ ] ( )[ ]
( ) 04

5
4
3

2
1

=−+−

+−++−

LLmg
LLmgLLmg

l

ll
 

Solve for l to obtain: 
 

L6
1=l  

Continuing in this manner we 
obtain, as the successive offsets, the 
sequence: 
 

n
LLLLL
2

...,
8

,
6

,
4

,
2

 

where n = 1, 2, 3, … N. 
 

(c) Express the offset of the (n +1)st 
brick in terms of the offset of the nth 
brick: 
 

n
L

nn 21 +=+ ll  

A spreadsheet program to calculate the sum of the offsets as a function of n is shown 
below. The formulas used to calculate the quantities in the columns are as follows: 
 

Cell Formula/Content Algebraic Form
B5 B4+1 n + 1 
C5 C4+$B$1/(2*B5)

n
L

n 2
+l  

 
 

 A B C D 
1 L= 1 m  
2     
3  n offset  
4  1 0.500  
5  2 0.750  
6  3 0.917  
7  4 1.042  
8  5 1.142  
9  6 1.225  

10  7 1.296  
11  8 1.359  
12  9 1.414  
13  10 1.464  

     
98  95 2.568  
99  96 2.573  

100  97 2.579  
101  98 2.584  
102  99 2.589  
103  100 2.594   
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From the table we see that l5 = m,142.1 l10 = m,464.1  and  

l100 = m.594.2  

 
(d) Increasing N in the spreadsheet solution suggests that the sum of the individual offsets 
continues to grow as N increases without bound. The series is, in fact, divergent and the 
stack of bricks has no maximum offset or length.   

Offset as a function of n
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90 •••  
Picture the Problem The four forces 
acting on the sphere: its weight, mg; the 
normal force of the plane, Fn; the frictional 
force, f, acting parallel to the plane; and the 
tension in the string, T, are shown in the 
figure. Choose the coordinate system 
shown. Because the sphere is in 
equilibrium, we can apply the conditions 
for translational and rotational equilibrium 
to find f, Fn, and T.  

  
(a) Apply 0=∑τr about an axis 

through the center of the sphere: 
 

fTTRfR =⇒=− 0  

Apply ∑ = 0xF to the sphere: 0sincos =−+ θθ MgTf  
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Substitute for f and solve for T: 

θ
θ

cos1
sin

+
=

MgT  

 
Substitute numerical values and 
evaluate T: 

( )( ) N89.7
cos301

30sinm/s9.81kg3 2

=
°+

°
=T  

 
(b) Apply ∑ = 0yF to the sphere: 0cossinn =−− θθ MgTF  

Solve for Fn: θθ cossinn MgTF +=  

 
Substitute numerical values and 
evaluate Fn: 

( )
( )( )

N4.29

30cosm/s9.81kg3

sin30N7.89
2

n

=

°+

°=F

 

 
(c) In part (a) we showed that f = T: N89.7=f  

 
91 •••  
Picture the Problem Let L be the length of 
each leg of the tripod. Applying the 
Pythagorean theorem leads us to conclude 
that the distance a shown in the figure is 

L
2
3

and the distance b, the distance to the 

centroid of the triangle ABC is L
2
3

3
2

, and 

the distance c is
3

L
. These results allow 

us to conclude that
3

cos L
=θ . Because 

the tripod is in equilibrium, we can apply 
the condition for translational equilibrium 
to find the compressional forces in each 
leg. 

 
 
 

 

 
Letting FC represent the compressional 
force in a leg of the tripod, apply 

0=∑F
r

to the apex of the tripod: 

 

0cos3 C =−mgF θ  
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Solve for FC: 
 θcos3C

mgF =  

Solve for FC: 
mgmgF

3
3

3
13

C =
×

=  

 
Substitute numerical values and 
evaluate FC: ( )( ) N566m/s9.81kg100

3
3 2

C ==F  

 
92 ••  
Picture the Problem The forces that act 
on the beam are its weight, mg; the force of 
the cylinder, Fc, acting along the radius of 
the cylinder; the normal force of the 
ground, Fn; and the friction force fs = µsFn. 
The forces acting on the cylinder are its 
weight, Mg; the force of the beam on the 
cylinder, Fcb = Fc in magnitude, acting 
radially inward; the normal force of the 
ground on the cylinder, Fnc; and the force 
of friction, fsc = µscFnc. Choose the 
coordinate system shown in the figure and 
apply the conditions for rotational and 
translational equilibrium. 

 
 
 

 

 
Express µs,beam-floor in terms of  fs and Fn: 

n

s
floorbeams, F

f
=−µ                        (1) 

 
Express µs,cylinder-floor in terms of  fsc 
and Fnc: nc

sc
floorcylinders, F

f
=−µ                     (2) 

 
Apply 0=∑τr about an axis 

through the right end of the beam: 
 

( )[ ] ( ) 0cm15coscm10 c =− Fmgθ  

Solve for and evaluate Fc: ( )[ ]

[ ]( )( )

N3.28
15

m/s9.81kg530cos10
cm15
coscm10

2

c

=

°
=

=
mgF θ
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Apply ∑ = 0yF to the beam: ( ) 090coscn =−−°+ mgFF θ  

 
Solve for Fn: 

( )( ) ( )
N5.42

cos30N28.3m/s9.81kg5

cos
2

cn

=
°−=

−= θFmgF

 

 
Apply ∑ = 0xF to the beam: ( ) 090coscs =−°+− θFf  

 
Solve for and evaluate fs: ( ) ( )

N2.14
cos60N28.390coscs

=
°=−°= θFf

 

 

cbF
r

 is the reaction force to cF
r

: N3.28ccb == FF radially inward. 

 
Apply ∑ = 0yF to the cylinder: 0coscbnc =−− MgFF θ  

 
Solve for and evaluate Fnc: 

( ) ( )( )
N103

m/s9.81kg8cos30N28.3

cos
2

cbnc

=
+°=

+= MgFF θ

 

 
Apply ∑ = 0xF to the cylinder: ( ) 090coscbsc =−°− θFf  

 
Solve for and evaluate fsc: ( ) ( )

N14.2
cos60N28.390coscbsc

=
°=−°= θFf

 

 
Substitute numerical values in 
equations (1) and (2) and evaluate 
µs,beam-floor and µs,cylinder-floor: 

580.0
N24.5
N14.2

floorbeams, ==−µ  

and 

138.0
N031
N14.2

floorcylinders, ==−µ  
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93  •••  
Picture the Problem The geometry of the 
system is shown in the drawing. Let 
upward be the positive y direction and to 
the right be the positive x direction. Let the 
angle between the vertical center line and 
the line joining the two centers beθ. Then 

r
rR −

=θsin and
( )RrR

rR
−

−
=

2
tanθ . 

The force exerted by the bottom of the 
cylinder is just 2mg. Let F be the force that 
the top sphere exerts on the lower sphere. 
Because the spheres are in equilibrium, we 
can apply the condition for translational 
equilibrium.  
 
Apply ∑ = 0yF to the spheres: 0n =−− mgmgF  

 
Solve for Fn: mgF 2n =  

 
Because the cylinder wall is smooth,  
Fcosθ = mg, and: θcos

mgF =  

 
Express the x component of F: θθ tansin mgFFx ==  

 
Express the force that the wall of the 
cylinder exerts: ( )RrR

rRmgF
−

−
=

2W  

 
Remarks: Note that as r approaches R/2, Fw→∞. 
 
*94 •••  
Picture the Problem Consider a small rotational displacement, δθ of the cube from 
equilibrium. This shifts the point of contact between cube and cylinder by ,Rδθ  where R = 
d/2. As a result of that motion, the cube itself is rotated through the same angle ,δθ  and so 
its center is shifted in the same direction by the amount (a/2) ,δθ  neglecting higher order 
terms in .δθ  
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If the displacement of the cube’s center of mass is less than that of the point of contact, the 
torque about the point of contact is a restoring torque, and the cube will return to its 
equilibrium position. If, on the other hand, (a/2)δθ  > (d/2) ,δθ  then the torque about the 
point of contact due to mg is in the direction of ,δθ  and will cause the displacement from 
equilibrium to increase. We see that the minimum value of d/a for stable equilibrium is  
d/a = 1. 

 


