
975 

Chapter 13 
Fluids 
 
Conceptual Problems 
 
1 •  
Determine the Concept The absolute pressure is related to the gauge pressure according 
to P = Pgauge + Pat. While doubling the gauge pressure will increase the absolute pressure, 
we do not have enough information to say what the resulting absolute pressure will be. 
( ) correct. is e  

 
*2 •  

Determine the Concept No. In an environment where 0
2

geff =−=
r
vmFg , there is no 

buoyant force; there is no ″up″ or ″down.″ 
 
3 ••  
Determine the Concept As you lower the rock into the water, the upward force you 
exert on the rock plus the upward buoyant force on the rock balance its weight. When the 
thread breaks, there will be an additional downward force on the scale equal to the 
buoyant force on the rock (the water exerts the upward buoyant force on the rock and the 
reaction force is the force the rock exerts on the water … and hence on the scale). Let ρ 
represent the density of the water, V the volume of the rock, and wf the weight of the 
displaced water. Then the density of the rock is 3ρ. We can use Archimedes’ principle to 
find the additional force on the scale. 
 
Apply Archimedes’ principle to the rock: 
 

gVgmwB ffff ρ===  

Because Vf = Vrock: 
 
 

MggMgMB 3
1

rock 3
===

ρ
ρ

ρ
ρ  

and correct. is )(d  

 
4 ••  
Determine the Concept The density of water increases with depth and the buoyant force 
on the rock equals the weight of the displaced water. Because the weight of the displaced 
water depends on the density of the water, it follows that the buoyant force on the rock 
increases as it sinks. correct. is )(b  

  
5 •• 
Determine the Concept Nothing. The fish is in neutral buoyancy (that is, its density 
equals that water), so the upward acceleration of the fish is balanced by the downward 
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acceleration of the displaced water. 
 
*6 ••  
Determine the Concept Yes.  Because the volumes of the two objects are equal, the 
downward force on each side is reduced by the same amount when they are submerged, 
not in proportion to their masses. That is, if m1L1 = m2L2 and L1 ≠ L2, then (m1 − c)L1 ≠ 
(m2 − c)L2. 
 
7 ••  
Determine the Concept The buoyant forces acting on these submerged objects are equal 
to the weight of the water each displaces. The weight of the displaced water, in turn, is 
directly proportional to the volume of the submerged object. Because ρPb > ρCu, the 
volume of the copper must be greater than that of the lead and, hence, the buoyant force 
on the copper is greater than that on the lead. correct. is )(b  

 
8 ••  
Determine the Concept The buoyant forces acting on these submerged objects are equal 
to the weight of the water each displaces. The weight of the displaced water, in turn, is 
directly proportional to the volume of the submerged object. Because their volumes are 
the same, the buoyant forces on them must be the same. correct. is )(c  

 
9 •  
Determine the Concept It blows over the ball, reducing the pressure above the ball to 
below atmospheric pressure. 
 
10 •  
Determine the Concept From the equation of continuity (IV = Av = constant), we can 
conclude that, as the pipe narrows, the velocity of the fluid must increase. Using 
Bernoulli’s equation for constant elevation ( constant2

2
1 =+ vP ρ ), we can conclude 

that as the velocity of the fluid increases, the pressure must decrease. correct. is )(b  

 
*11 •  
Determine the Concept False. The buoyant force on a submerged object depends on the 
weight of the displaced fluid which, in turn, depends on the volume of the displaced fluid.
 
12 •  
Determine the Concept When the bottle is squeezed, the force is transmitted equally 
through the fluid, leading to a pressure increase on the air bubble in the diver.  The air 
bubble shrinks, and the loss in buoyancy is enough to sink the diver. 
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13 •  
Determine the Concept The buoyant force acting on the ice cubes equals the weight of 
the water they displace, i.e., .fff gVwB ρ==  When the ice melts the volume of water 

displaced by the ice cubes will occupy the space previously occupied by the submerged 
part of the ice cubes. Therefore, the water level remains constant. 
 
14 •  
Determine the Concept The density of salt water is greater than that of fresh water and 
so the buoyant force exerted on one in salt water is greater than in fresh water. 
  
15 ••  
Determine the Concept Because the pressure increases with depth, the object will be 
compressed and its density will increase. Its volume will decrease. Thus, it will sink to 
the bottom. 
 
16 ••  
Determine the Concept The force acting on the fluid is the difference in pressure 
between the wide and narrow parts times the area of the narrow part. 
 
17 ••  
Determine the Concept The drawing 
shows the beaker and a strip within the 
water. As is readily established by a simple 
demonstration, the surface of the water is 
not level while the beaker is accelerated, 
showing that there is a pressure gradient. 
That pressure gradient results in a net force 
on the small element shown in the figure. 

 

 

 
*18 ••  
Determine the Concept The water level in the pond will drop slightly. When the anchor 
is in the boat, the boat displaces enough water so that the buoyant force on it equals the 
sum of the weight of the boat, your weight, and the weight of the anchor. When you put 
the anchor overboard, it will displace its volume and the volume of water displaced by 
the boat will decrease.  
 
19 ••  
Determine the Concept From Bernoulli's principle, the opening above which the air 
flows faster will be at a lower pressure than the other one, which will cause a circulation 
of air in the tunnel from opening 1 toward opening 2.  It has been shown that enough air 
will circulate inside the tunnel even with the slightest breeze outside.  
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*20 •  
Determine the Concept The diagram that follows shows the forces exerted by the 
pressure of the liquid on the two cups to the left.  
 

 
 
Because the force is normal to the surface of the cup, there is a larger downward 
component to the net force on the cup on the left. Similarly, there will be less total force 
exerted by the fluid in the cup on the far right in the diagram in the problem statement. 
 
Density 
 
21 •  
Picture the Problem The mass of the cylinder is the product of its density and volume. 
The density of copper can be found in Figure 13-1. 
 
Using the definition of density, 
express the mass of the cylinder: 
 

( )hRVm 2πρρ ==  

Substitute numerical values and 
evaluate m: 

( )( )
( )

kg673.0

m106
m102kg/m1093.8

2

2233

=

××

××=
−

−πm
 

 
22 •  
Picture the Problem The mass of the sphere is the product of its density and volume. 
The density of lead can be found in Figure 13-1. 
 
Using the definition of density, 
express the mass of the sphere: 
 

( )3
3
4 RVm πρρ ==  

Substitute numerical values and 
evaluate m: 

( )( )
kg379.0

m102kg/m103.11 3233
3
4

=

××= −πm
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23 •  
Picture the Problem The mass of the air in the room is the product of its density and 
volume. The density of air can be found in Figure 13-1. 
 
Using the definition of density, 
express the mass of the air: 
 

LWHVm ρρ ==  

Substitute numerical values and 
evaluate m: 

( )( )( )( )
kg103

m4m5m4kg/m293.1 3

=

=m
 

 
*24 •  
Picture the Problem Let ρ0 represent the density of mercury at 0°C and ρ′ its density at 
80°C, and let m represent the mass of our sample at 0°C and m′ its mass at 80°C. We can 
use the definition of density to relate its value at the higher temperature to its value at the 
lower temperature and the amount spilled. 
 
Using its definition, express the 
density of the mercury at 80°C: V

m'' =ρ  

 
Express the mass of the mercury at 
80°C in terms of its mass at 0°C and 
the amount spilled at the higher 
temperature: V

m
V
m

V
m

V
mm'

∆
−=

∆
−=

∆−
=

0ρ

ρ

  
Substitute numerical values and 
evaluate ρ′: 

34

36

3
34

kg/m101263.1

m1060
kg101.47kg/m104563.1

×=

×
×

−×= −

−

'ρ
 

 
Pressure 
 
25 •  
Picture the Problem The pressure due to a column of height h of a liquid of density ρ is 
given by P = ρgh. 
 
Letting h represent the height of the 
column of mercury, express the 
pressure at its base: 
 

kPa101Hg =ghρ  

Solve for h: 
g

h
Hg

kPa101
ρ

=  
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Substitute numerical values and 
evaluate h: ( )( )

Hg ofin 8.29

m102.54
in1m0.757

m/s9.81kg/m1013.6
N/m101.01

2

233

25

=

×
×=

×
×

=

−

h

 

  
26 •  
Picture the Problem The pressure due to a column of height h of a liquid of density ρ is 
given by P = ρgh. 
 
(a) Express the pressure as a 
function of depth in the lake: 
 

ghPP waterat ρ+=  

Solve for and evaluate h: 
g

P
g
PP

g
PPh

water

at

water

atat

water

at 2
ρρρ

=
−

=
−

=

 

 
Substitute numerical values and 
evaluate h: ( )( )

m3.10

m/s81.9kg/m10
N/m1001.1

233

25

=

×
=h

 

 
(b) Proceed as in (a) with ρwater 
replaced by ρHg to obtain: 
 

g
P

g
PPh

Hg

at

Hg

atat2
ρρ

=
−

=  

Substitute numerical values and 
evaluate h: ( )( )

cm7.57

m/s9.81kg/m1013.6
N/m101.01

233

25

=

×
×

=h
 

 
*27 •  
Picture the Problem The pressure applied to an enclosed liquid is transmitted 
undiminished to every point in the fluid and to the walls of the container. Hence we can 
equate the pressure produced by the force applied to the piston to the pressure due to the 
weight of the automobile and solve for F. 
 
Express the pressure the weight of 
the automobile exerts on the shaft of 
the lift: 
 

shaft

auto
auto A

wP =
 

 

Express the pressure the force 
applied to the piston produces: pistonA

FP =  
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Because the pressures are the same, 
we can equate them to obtain: pistonshaft

auto

A
F

A
w

=  

 
Solve for F: 

shaft

piston
auto

shaft

piston
auto A

A
gm

A
A

wF ==  

 
Substitute numerical values and 
evaluate F: ( )( )

N230

cm8
cm1m/s9.81kg1500

2
2

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=F

 

 
28 ••  
Picture the Problem The pressure exerted by the woman’s heel on the floor is her 
weight divided by the area of her heel.  
 
Using its definition, express the 
pressure exerted on the floor by the 
woman’s heel: 
 

A
mg

A
w

A
FP ===  

Substitute numerical values and 
evaluate P: 

( )( )

atm2.45

kPa3.101
atm1N/m1049.5

m10
m/s9.81kg56

26

24

2

=

××=

= −P

 

 
*29 •  
Picture the Problem The required pressure ∆P is related to the change in volume ∆V and 

the initial volume V through the definition of the bulk modulus B; 
VV

PB
∆
∆

−= . 

 
Using the definition of the bulk 
modulus, relate the change in 
volume to the initial volume and the 
required pressure: 
 

VV
PB

∆
∆

−=  

Solve for ∆P: 
V
VBP ∆

−=∆  
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Substitute numerical values and 
evaluate ∆P: 

atm198

kPa101.325
atm1Pa1000.2

L1
L0.01Pa102.0

7

9

=

××=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
××−=∆P

 

 
30 •  
Picture the Problem The area of contact of each tire with the road is related to the 
weight on each tire and the pressure in the tire through the definition of pressure. 
 
Using the definition of gauge 
pressure, relate the area of contact to 
the pressure and the weight of the 
car: 
 

gauge

4
1

P
wA =  

Substitute numerical values and 
evaluate A: 

( )( )

( )( )

222

23

2
4
1

2
4
1

cm184m101.84

N/m10200
m/s9.81kg1500

kPa200
m/s9.81kg1500

=×=

×
=

=

−

A

 

 
31 ••  
Picture the Problem The force on the lid is related to pressure exerted by the water and 
the cross-sectional area of the column of water through the definition of density. We can 
find the mass of the water from the product of its density and volume. 
 
(a) Using the definition of pressure, 
express the force exerted on the lid: 
 

PAF =  

Express the pressure due to a column 
of water of height h: 
 

ghP waterρ=  

Substitute for P and A to obtain: 
 

2
water rghF πρ=  

Substitute numerical values: ( )( )
( ) ( )

kN14.8

m0.2m12

m/s9.81kg/m10
2

233

=

×

=

π

F
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(b) Relate the mass of the water to its 
density and volume: 
 

2
waterwater rhVm πρρ ==  

Substitute numerical values and 
evaluate m: 

( )( ) ( )
kg0.339

m103m12kg/m10 2333

=

×= −πm
 

 
32 ••  
Picture the Problem The minimum elevation of the bag h that will produce a pressure of 
at least 12 mmHg is related to this pressure and the density of the blood plasma 
through ghP bloodρ= . 

 
Using the definition of the pressure 
due to a column of liquid, relate the 
pressure at its base to its height: 
 

ghP bloodρ=  

Solve for h: 
g

Ph
bloodρ

=  

 
Substitute numerical values and 
evaluate h: 

( )( )
cm8.15m158.0

m/s9.81kg/m101.03
mmHg1

Pa133.32mmHg12

233

==

×

×
=h  

 
33 ••  
Picture the Problem The depth h below the surface at which you would be able to breath 
is related to the pressure at that depth and the density of water ρw through ghP wρ= . 

 
Express the pressure at a depth h 
and solve for h: 

ghP wρ=   
and 

g
Ph
wρ

=
 

 
Express the pressure at depth h in 
terms of the weight on your chest:  A

FP =  

 
Substitute to obtain: 

gA
Fh

wρ
=  
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Substitute numerical values and 
evaluate h: ( )( )( )

m0.453

m/s9.81kg/m10m0.09
N400

2332

=

=h
 

 
34 ••  
Picture the Problem Let A1 and A2 represent the cross-sectional areas of the large piston 
and the small piston, and F1 and F2 the forces exerted by the large and on the small 
piston, respectively. The work done by the large piston is W1 = F1h1 and that done on the 
small piston is W2 = F2h2. We’ll use Pascal’s principle and the equality of the volume of 
the displaced liquid in both pistons to show that W1 and W2 are equal. 
 
Express the work done in lifting the 
car a distance h: 
 

111 hFW =  

where F is the weight of the car. 

Using the definition of pressure, 
relate the forces F1 (= w) and F2 to 
the areas A1 and A2: 
 

2

2

1

1

A
F

A
F

=  

Solve for F1: 

2

1
21 A

AFF =  

 
Equate the volumes of the displaced 
fluid in the two pistons: 

2211 AhAh =  

 
 

Solve for h1: 

1

2
21 A

Ahh =  

 
Substitute in the expression for W1 
and simplify to obtain: 222

1

2
2

2

1
21 WhF

A
Ah

A
AFW ===  

 
35 •   
Picture the Problem Because the pressure 
varies with depth, we cannot simply 
multiply the pressure times the half-area of 
a side of the cube to find the force exerted 
by the water. We therefore consider the 
force exerted on a strip of width a, height 
dh, and area dA = adh at a depth h and 
integrate from h = 0 to h = a/2. The water 
pressure at depth h is Pat + ρgh. We can 

 



Fluids 
 

 

985

omit the atmospheric pressure because it is 
exerted on both sides of the wall of the 
cube. 
 
Express the force dF on the element 
of length a and height dh in terms of 
the net pressure ρgh: 
 

ghadhPdAdF ρ==  

Integrate from h = 0 to h = a/2: 

8

42
1

3

22

0

2

0

ga

agahdhgadFF
aa

ρ

ρρ

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=== ∫∫

 

 
*36 •••  
Picture the Problem The weight of the water in the vessel is the product of its mass and 
the gravitational field. Its mass, in turn, is related to its volume through the definition of 
density. The force the water exerts on the base of the container can be determined from 
the product of the pressure it creates and the area of the base. 
 
(a) Using the definition of density, 
relate the weight of the water to the 
volume it occupies: 
 

Vgmgw ρ==  

Substitute for V to obtain: hgrw 2
3
1πρ=  

 
Substitute numerical values and evaluate w: 
 

( ) ( ) ( ) ( ) N8.57m/s9.81m1025m1015kg/m10 222233
3
1 =××= −−πw  

 
(b) Using the definition of pressure, 
relate the force exerted by the water 
on the base of the vessel to the 
pressure it exerts and the area of the 
base: 
 

2rghPAF πρ==  

Substitute numerical values and evaluate F: 
 

( ) ( )( ) ( ) N173m1015m1025m/s9.81kg/m10 222233 =××= −− πF  
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 water.on the cone  theof  wallsslanting
 by the exerted force  theofcomponent  downward  theofresult   thealso

is base on the force downward The  tube.in the water  theof weight than the
greater much  is barrel Pascalson  force the way that same in the occurs This

 

 
Buoyancy 
 
*37 •  
Picture the Problem The scale’s reading will be the difference between the weight of the 
piece of copper in air and the buoyant force acting on it. 
 
Express the apparent weight w′ of 
the piece of copper: 
 

Bww' −=  

Using the definition of density and 
Archimedes’ principle, substitute for 
w and B to obtain: 
 

( )Vg
VgVgw'

wCu

wCu

ρρ
ρρ

−=
−=

 

Express w in terms of ρCu and V and 
solve for Vg: 
 

Cu
Cu ρ

ρ wVgVgw =⇒=  

Substitute to obtain: ( ) www' ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−=

Cu

w

Cu
wCu 1

ρ
ρ

ρ
ρρ  

 
Substitute numerical values and 
evaluate w′: 

( )( )

N4.36

m/s9.81kg0.5
9
11 2

=

⎟
⎠
⎞

⎜
⎝
⎛ −=w'

 

 
38 •  
Picture the Problem We can use the definition of density and Archimedes’ principle to 
find the density of the stone.  The difference between the weight of the stone in air and in 
water is the buoyant force acting on the stone.  
 
Using its definition, express the 
density of the stone: 
 

stone

stone
stone V

m
=ρ                          (1) 

Apply Archimedes’ principle to 
obtain: 
 

gVgmwB ffff ρ===  
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Solve for Vf: 
 g

BV
f

f ρ
=  

 
Because Vf = Vstone and ρf = ρwater: 
 g

BV
water

stone ρ
=  

 
Substitute in equation (1) and 
simplify to obtain: 
 

water
stone

water
stone

stone ρρρ
B

w
B

gm
==  

Substitute numerical values and 
evaluate ρstone: 

( )
33

33
stone

kg/m1000.3

kg/m10
N20N60

N60

×=

−
=ρ

 

 
39 •  
Picture the Problem We can use the definition of density and Archimedes’ principle to 
find the density of the unknown object.  The difference between the weight of the object 
in air and in water is the buoyant force acting on the object.  
 
(a) Using its definition, express the 
density of the object: 
 

object

object
object V

m
=ρ                          (1) 

Apply Archimedes’ principle to 
obtain: 
 

gVgmwB ffff ρ===  

 

Solve for Vf: 
 g

BV
f

f ρ
=  

 
Because Vf = Vobject and ρf = ρwater: 
 g

BV
water

object ρ
=  

 
Substitute in equation (1) and 
simplify to obtain: 
 

water
object

water
object

object ρρρ
B

w
B

gm
==  

Substitute numerical values and 
evaluate ρobject: 

( )
33

33
object

kg/m101.11

kg/m10
N4.55N5

N5

×=

−
=ρ

 

 

(b) 
lead. ofthat 

 toclosedensity  a has materialunknown   that thesee  we1,-13 Figure From
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40 •  
Picture the Problem We can use the definition of density and Archimedes’ principle to 
find the density of the unknown object.  The difference between the weight of the object 
in air and in water is the buoyant force acting on it.  
 
Using its definition, express the 
density of the metal: 
 

metal

metal
metal V

m
=ρ                          (1) 

Apply Archimedes’ principle to 
obtain: 
 

gVgmwB ffff ρ===  

 

Solve for Vf: 
 g

BV
f

f ρ
=  

 
Because Vf = Vmetal and ρf = ρwater: 
 g

BV
water

metal ρ
=  

 
Substitute in equation (1) and 
simplify to obtain: 
 

water
metal

water
metal

metal ρρρ
B

w
B

gm
==  

Substitute numerical values and 
evaluate ρmetal: 

( )
33

33
metal

kg/m1069.2

kg/m10
N56.6N90

0N9

×=

−
=ρ

 

 
41 ••  
Picture the Problem Let V be the volume of the object and V′ be the volume that is 
submerged when it floats. The weight of the object is ρVg and the buoyant force due to 
the water is ρwV′g. Because the floating object is translational equilibrium, we can use 

∑ = 0yF  to relate the buoyant forces acting on the object in the two liquids to its 

weight. 
 
Apply ∑ = 0yF to the object 

floating in water: 
 

0ww =−=− VgV'gmgV'g ρρρ    (1) 

Solve for ρ: 
V
V'

wρρ =  

 
Substitute numerical values and 
evaluate ρ: 

( ) 333 kg/m8008.0kg/m10 ==
V

Vρ  
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Apply ∑ = 0yF to the object 

floating in the second liquid and 
solve for mg: 
 

gVmg L72.0 ρ=  

Solve equation (1) for mg: 
 

Vgmg w8.0 ρ=  

Equate these two expressions to obtain: 
 

wL 8.072.0 ρρ =  

Substitute in the definition of 
specific gravity to obtain: 

11.1
72.0
8.0gravityspecific

w

L ===
ρ
ρ

 

 
*42 ••  
Picture the Problem We can use Archimedes’ principle to find the density of the 
unknown object.  The difference between the weight of the block in air and in the fluid is 
the buoyant force acting on the block.  
 
Apply Archimedes’ principle to obtain: 
 

gVgmwB ffff ρ===  

 
Solve for ρf: 
 gV

B
f

f =ρ  

 
Because Vf = VFe block: 
 Fe

block Feblock Fe
f ρρ

gm
B

gV
B

==  

 
Substitute numerical values and evaluate ρf: 
 

( )( )
( )( ) ( ) 3333

2

2

f kg/m1096.6kg/m1096.7
m/s81.9kg5

N16.6m/s81.9kg5
×=×

−
=ρ  

 
43 ••  
Picture the Problem The forces acting on the cork are B, the upward force due to the 
displacement of water, mg, the weight of the piece of cork, and Fs, the force exerted by 
the spring. The piece of cork is in equilibrium under the influence of these forces. 
 
Apply ∑ = 0yF to the piece of cork: 0s =−− FwB                          (1) 

or 
0scork =−− FVgB ρ                  (2) 

 
Express the buoyant force as a function 
of the density of water: 

VgwB wf ρ==  
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Solve for Vg: 

wρ
BVg =  

 
Substitute for Vg in equation (2): 0s

w
cork =−− FBB

ρ
ρ                  (3) 

 
Solve equation (1) for B: sFwB +=  

 
Substitute in equation (3) to obtain: 0s

w

s
corks =−

+
−+ FFwFw

ρ
ρ  

or 

0
w

s
cork =

+
−

ρ
ρ Fww  

 
Solve for ρcork: 

s
wcork Fw

w
+

= ρρ  

 
Substitute numerical values and 
evaluate ρcork: 

( )
3

33
cork

kg/m250

N0.855N0.285
N0.285kg/m10

=

+
=ρ

 

 
44 ••  
Picture the Problem Under minimum-volume conditions, the balloon will be in 
equilibrium. Let B represent the buoyant force acting on the balloon, wtot represent its 
total weight, and V its volume. The total weight is the sum of the weights of its basket, 
cargo, and helium in its balloon. 
 
Apply ∑ = 0yF to the balloon: 0tot =− wB  

 
Express the total weight of the balloon: Vgw Hetot N2000 ρ+=  

 
Express the buoyant force due to the 
displaced air: 
 

VgwB airf ρ==  

 

Substitute to obtain: 0N2000 Heair =−− VgVg ρρ  

 
Solve for V: 

( )gV
Heair

N2000
ρρ −

=  
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Substitute numerical values and evaluate V: 
 

( )( )
3

233 m183
m/s9.81kg/m0.178kg/m1.29

N2000
=

−
=V  

 
*45 ••  
Picture the Problem Let V = volume of diver, ρD the density of the diver, VPb the volume 
of added lead, and mPb the mass of lead. The diver is in equilibrium under the influence of 
his weight, the weight of the lead, and the buoyant force of the water. 
 
Apply ∑ = 0yF to the diver: 0PbD =−− wwB  

 
Substitute to obtain: 0PbDDPbDw =−−+ gmgVgV ρρ  

or 
0PbDDPbwDw =−−+ mVVV ρρρ  

 
Rewrite this expression in terms of 
masses and densities: 
 

0Pb
D

D
D

Pb

Pb
w

D

D
w =−−+ mmmm

ρ
ρ

ρ
ρ

ρ
ρ  

 
Solve for the mass of the lead: ( )

( )wPbD

DDwPb
Pb ρρρ

ρρρ
−

−
=

mm  

 
Substitute numerical values and evaluate mPb: 
 

( )( )( )
( )( ) kg89.3

kg/m10kg/m1011.3kg/m100.96
kg85kg/m100.96kg/m10kg/m1011.3

333333

333333

Pb =
−××

×−×
=m  

 
46 ••  
Picture the Problem The scale’s reading w′ is the difference between the weight of the 
aluminum block in air w and the buoyant force acting on it. The buoyant force is equal to 
the weight of the displaced fluid, which, in turn, is the product of its density and mass. 
We can apply a condition for equilibrium to relate the reading of the bottom scale to the 
weight of the beaker and its contents and the buoyant force acting on the block. 
 
Express the apparent weight w′ of the 
aluminum block: 
 

Bww' −=                                (1) 

Letting F be the reading of the bottom 
scale and choosing upward to be the 
positive y direction, apply 

0' tot =−+ gMwF                     (2) 



Chapter 13    
 

 

992 

0=∑ yF to the scale to obtain: 

 
Using the definition of density and 
Archimedes’ principle, substitute for 
w and B in equation (1) to obtain: 
 

( )Vg
VgVgw

wAl

wAl'
ρρ
ρρ

−=
−=

 

Express w in terms of ρAl and V and 
solve for Vg: 
 

Al
Al ρ

ρ wVgVgw =⇒=  

Substitute to obtain: ( ) www ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−=

Al

w

Al
wAl 1'

ρ
ρ

ρ
ρρ  

 
Substitute numerical values and 
evaluate w′: 

( )( )
N4.12

m/s9.81kg2

kg/m102.7
kg/m101'

2

33

33

=

×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

−=w

 

 
Solve equation (2) for F: 
 

'tot wgMF −=  

Substitute numerical values and 
evaluate the reading of the bottom 
scale: 

( )( )
N7.36

N12.4m/s9.81kg5 2

=

−=F
 

 
47 •••  
Picture the Problem Let V = displacement of ship in the two cases, m be the mass of 
ship without load, and ∆m be the load. The ship is in equilibrium under the influence of 
the buoyant force exerted by the water and its weight. We’ll apply the condition for 
floating in the two cases and solve the equations simultaneously to determine the loaded 
mass of the ship. 
 
Apply ∑ = 0yF to the ship in fresh water: 

 

0w =−mgVgρ                         (1) 

Apply ∑ = 0yF to the ship in salt water: 

 

( ) 0sw =∆+− gmmVgρ             (2) 

Solve equation (1) for Vg: 

wρ
mgVg =  

 
Substitute in equation (2) to obtain: ( ) 0

w
sw =∆+− gmmmg
ρ

ρ  
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Solve for m: 

wsw

w

ρρ
ρ
−
∆

=
mm  

 
Add ∆m to both sides of the 
equation and simplify to obtain: 

wsw

sw

wsw

w

wsw

w

1

ρρ
ρ

ρρ
ρ

ρρ
ρ

−
∆

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
∆=

∆+
−
∆

=∆+

m

m

mmmm

 

 
Substitute numerical values and 
evaluate m + ∆m: 

( )( )

( )( )

kg1046.2
1025.1

025.1kg106

025.1
025.1kg106

7

5
ww

w
5

×=

−
×

=

−
×

=∆+
ρρ

ρmm

 

 
*48 •••  
Picture the Problem For minimum liquid density, the bulb and its stem will be 
submerged. For maximum liquid density, only the bulb is submerged. In both cases the 
hydrometer will be in equilibrium under the influence of its weight and the buoyant force 
exerted by the liquids. 
 
(a) Apply ∑ = 0yF  to the hydrometer: 0=− wB  

 
Using Archimedes’ principle to express 
B, substitute to obtain: 
 

0totmin =− gmVgρ  

or 
( ) Pbglassstembulbmin mmVV +=+ρ  

 
Solve for mPb: ( ) glassstembulbminPb mVVm −+= ρ  

 
Substitute numerical values and evaluate mPb: 
 

( ) ( )( ) ( )

g7.14

kg106
m10

L1m005.0m15.0
4

L020.0kg/L9.0 3
33-

2
Pb

=

×−⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= −πm

 

 
(b) Apply  ∑ = 0yF  to the hydrometer: 0totmax =− gmVgρ  

or 
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Pbglassbulbmax mmV +=ρ  

 
Solve for ρmax: 

bulb

Pbglass
max V

mm +
=ρ  

 
Substitute numerical values and 
evaluate ρmax: 

kg/L04.1
mL20

g14.7g6
max =

+
=ρ  

 
49 •  
Picture the Problem We can relate the upward force exerted on the dam wall to the area 
over which it acts using APF g= and express Pg in terms of the depth of the water 

using ghP ρ=g . 
 
Using the definition of pressure, 
express the upward force exerted on 
the dam wall: 
 

APF g=  

Express the gauge pressure Pg of the 
water 5 m below the surface of the 
dam: 
 

ghP ρ=g  

Substitute to obtain: 
 

ghAF ρ=  

Substitute numerical values and 
evaluate F: 

( )( )( )( )
kN491

m10m5m/s81.9kg/m10 2233

=

=F
 

 
50 ••  
Picture the Problem The forces acting on 
the balloon are the buoyant force B, its 
weight mg, and a drag force FD. We can 
find the initial upward acceleration of the 
balloon by applying Newton’s 2nd law at 
the instant it is released. We can find the 
terminal velocity of the balloon by 
recognizing that when  
ay  = 0, the net force acting on the balloon 
will be zero.   
  
(a) Apply ∑ = yy maF to the 
balloon at the instant of its release to 
obtain: 
 

yamgmB balloonballoon =−  

Solve for ay: g
m

B
m

gmBay −=
−

=
balloonballoon

balloon  
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Using Archimedes principle, 
express the buoyant force B acting 
on the balloon: 
 

grgV

gVgmwB
3

air3
4

balloonair

ffff

πρρ

ρ

==

===
 

 
Substitute to obtain: 

yamgmgr balloonballoon
3

air3
4 =−πρ  

 
Solve for ay: 

g
m

r
ay ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= 1

balloon

3
air3

4 πρ
 

 
Substitute numerical values and 
evaluate ay: 
 

( )( )

( )
2

2

33
3
4

m/s4.45

m/s81.9

1
kg15

m5.2kg/m29.1

=

×

⎥
⎦

⎤
⎢
⎣

⎡
−=

π
ya

 

 
(b) Apply ∑ = yy maF to the 
balloon under terminal-speed 
conditions to obtain: 
 

02
t

2
2
1 =−− vrmgB ρπ  

 
 

Substitute for B: 
 

02
t

2
2
13

air3
4 =−− vrmggr ρππρ  

Solve for vt: ( )
ρπ

πρ
2

3
air3

4

t

2
r

gmr
v

−
=  

 
Substitute numerical values and evaluate v: 
 

( )( )[ ]( )
( ) ( ) m/s33.7

kg/m29.1m5.2
m/s81.9kg15m5.2kg/m29.12

32

233
3
4

t =
−

=
π

πv  

 
(c)  Relate the time required for the 
balloon to rise to 10 km to its 
terminal speed: 
 min7.22

s1364
m/s33.7

km10

=

===∆
tv

ht
 

 
Continuity and Bernoulli's Equation 
 
*51 ••  
Picture the Problem Let J represent the flow rate of the water. Then we can use J = Av 
to relate the flow rate to the cross-sectional area of the circular tap and the velocity of the 
water. In (b) we can use the equation of continuity to express the diameter of the stream 
7.5 cm below the tap and a constant-acceleration equation to find the velocity of the 
water at this distance. In (c) we can use a constant-acceleration equation to express the 
distance-to-turbulence in terms of the velocity of the water at turbulence vt and the 
definition of Reynolds number NR to relate vt to NR. 
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(a) Express the flow rate of the 
water in terms of the cross-sectional 
area A of the circular tap and the 
velocity v of the water: 
 

vdvrAvJ 2
4
12 ππ ===               (1) 

Solve for v: 
2

4
1 d

Jv
π

=  

 
Substitute numerical values and 
evaluate v: ( )

cm/s28.9
cm2.1

s/cm5.10
2

4
1

3

==
π

v  

 
(b) Apply the equation of continuity 
to the stream of water: 
 

iiiff vAAvAv ==  
or 

2
i

2
ff 44

dvdv ππ
=  

 
Solve for df: 
 i

f
f d

v
vd =                                     (2) 

 
Use a constant-acceleration equation 
to relate vf and v to the distance ∆h 
fallen by the water: 
 

hgvv ∆+= 222
f  

Solve for vf to obtain: 
 
 

hgvv ∆+= 22
f  

Substitute numerical values and 
evaluate vf: 

( ) ( )( )
cm/s122

cm5.7cm/s9812cm/s28.9 22
f

=

+=v

 
 

Substitute in equation (2) and 
evaluate df: ( ) cm331.0

cm/s122
cm/s28.9cm2.1f ==d  

 
(c)  Using a constant-acceleration 
equation, relate the fall-distance-to-
turbulence ∆d to its initial speed v 
and its speed vt when its flow 
becomes turbulent: 
 

dgvv ∆+= 222
t  

Solve for ∆d to obtain: 
 
 g

vvd
2

22
t −=∆                      (3) 

Express Reynolds number NR for 
turbulent flow: 
 η

ρ t
R

2 vrN =  
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From equation (1): 
 

tv
Jr
π

=  

 
Substitute to obtain: 
 

t

t
R

2
v

JvN
πη

ρ
=  

 
Solve for vt: 

J
Nv 2

22
R

t 4ρ
ηπ

=  

 
Substitute numerical values (see 
Figure 13-1 for the density of water 
and Table 13-1 for the coefficient of 
viscosity for water) and evaluate vt: 
 

( ) ( )
( ) ( )

m/s28.1
s/cm5.10kg/m104

sPa108.12300
3233

232

t

=

⋅×
=

−πv
 

 
Substitute in equation (3) and 
evaluate the fall-distance-to 
turbulence: 

( ) ( )
( )

cm31.8

cm/s9812
cm/s28.9cm/s128

2

22

=

−
=∆d

 

in reasonable agreement with everyday 
experience. 

 
52 •  
Picture the Problem Let A1 represent the cross-sectional area of the hose, A2 the cross-
sectional area of the nozzle, v1 the velocity of the water in the hose, and v2 the velocity of 
the water as it passes through the nozzle. We can use the continuity equation to find v2 
and Bernoulli’s equation for constant elevation to find the pressure at the pump. 
 
(a) Using the continuity equation, 
relate the speeds of the water to the 
diameter of the hose and the 
diameter of the nozzle: 

2211 vAvA =  

or 

2

2
2

1

2
1

44
vdvd ππ

=  

 
Solve for v2: 

12
2

2
1

2 v
d
dv =  

 
Substitute numerical values and 
evaluate v2: ( ) m/s0.65m/s0.65

cm0.3
cm3

2

2 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=v  

 
(b) Using Bernoulli’s equation for 
constant elevation, relate the 
pressure at the pump PP to the 

2
22

1
at

2
12

1
P vPvP ρρ +=+  
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atmospheric pressure and the 
velocities of the water in the hose 
and the nozzle: 
 

 
 
 

Solve for the pressure at the pump: ( )2
1

2
22

1
atP vvPP −+= ρ  

 
Substitute numerical values and evaluate PP: 
 

( ) ( ) ( )[ ]
atm21.9

kPa101.325
atm1Pa1021.2

m/s0.65m/s65kg/m10kPa101

6

2233
2
1

P

=××=

−+=P
 

 
53 •  
Picture the Problem Let A1 represent the cross-sectional area of the larger-diameter 
pipe, A2 the cross-sectional area of the smaller-diameter pipe, v1 the velocity of the water 
in the larger-diameter pipe, and v2 the velocity of the water in the smaller-diameter pipe. 
We can use the continuity equation to find v2 and Bernoulli’s equation for constant 
elevation to find the pressure in the smaller-diameter pipe. 
 
(a) Using the continuity equation, 
relate the velocities of the water to 
the diameters of the pipe: 

2211 vAvA =  

or 

2

2
2

1

2
1

44
vdvd ππ

=  

 
Solve for and evaluate v2: 

12
2

2
1

2 v
d
dv =  

 
Substitute numerical values and 
evaluate v2:  ( ) m/s0.12m/s3

2

12
1

1
2 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

d
dv  

 
(b) Using Bernoulli’s equation for 
constant elevation, relate the 
pressures in the two segments of the 
pipe to the velocities of the water in 
these segments: 

2
2w2

1
2

2
1w2

1
1 vPvP ρρ +=+  

 
 
 
 
 

Solve for P2: 
 ( )2

2
2
1w2

1
1

2
2w2

12
1w2

1
12

vvP

vvPP

−+=

−+=

ρ

ρρ
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Substitute numerical values and 
evaluate P2: 
 

( )
( ) ( )[ ]

kPa133

m/s12m/s3

kg/m10kPa200
22

33
2
1

2

=

−×

+=P

 

 
(c) Using the continuity equation, 
evaluate IV1: 
 

( )m/s3
44

2
1

1

2
1

11V1
dvdvAI ππ

===  

Using the continuity equation, 
express IV2: 2

2
2

22V2 4
vdvAI π

==  

 
Substitute numerical values and 
evaluate IV2: ( ) ( )m/s3

4
m/s12

4
2 2

1

2
1

V2
d

d

I π
π

=
⎟
⎠
⎞

⎜
⎝
⎛

=  

 
Thus, as we expected would be the 
case: 

V2V1 II =  

 
54 •  
Picture the Problem Let A1 represent the cross-sectional area of the 2-cm diameter pipe, 
A2 the cross-sectional area of the constricted pipe, v1 the velocity of the water in the 2-cm 
diameter pipe, and v2 the velocity of the water in the constricted pipe. We can use the 
continuity equation to express d2 in terms of d1 and to find v1 and Bernoulli’s equation for 
constant elevation to find the velocity of the water in the constricted pipe. 
 
Using the continuity equation, relate 
the volume flow rate in the 2-cm 
diameter pipe to the volume flow rate 
in the constricted pipe: 

2211 vAvA =  

or 

2

2
2

1

2
1

44
vdvd ππ

=  

 
Solve for d2: 

2

1
12 v

vdd =
 

 
Using the continuity equation, relate 
v1 to the volume flow rate IV: ( )

m/s91.8

4
m0.02

L/s80.2
2

1

V
1 ===

πA
Iv  

 
Using Bernoulli’s equation for 
constant elevation, relate the 
pressures in the two segments of the 
pipe to the velocities of the water in 

2
2w2

1
2

2
1w2

1
1 vPvP ρρ +=+  
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these segments: 
 

 

Solve for v2: ( ) 2
1

w

1
2

2 vPPv +
−

=
ρ

 

 
Substitute numerical values and 
evaluate v2: 

( ) ( )

m/s7.12

m/s8.91
kg/m10

kPa101kPa1422 2
332

=

+
−

=v

 
Substitute and evaluate d2: ( ) cm68.1

m/s12.7
m/s8.91cm22 ==d  

 
*55 ••  
Picture the Problem We can use the definition of the volume flow rate to find the 
volume flow rate of blood in an aorta and to find the total cross-sectional area of the 
capillaries. 
 
(a) Use the definition of the volume 
flow rate to find the volume flow 
rate through an aorta: 
 

AvI =V  

 
 

Substitute numerical values and 
evaluate IV: 

( )( )

L/min58.4

m10
L1

min
s60

s
m1063.7

m/s3.0m109

33

3
5

33
V

=

×××=

×=

−
−

−πI

 

 
(b) Use the definition of the volume 
flow rate to express the volume flow 
rate through the capillaries: 

capcapV vAI =  

 
 
 

Solve for the total cross-sectional 
area of the capillaries: cap

V
cap v

IA =  

 
Substitute numerical values and 
evaluate Acap: 

222

35

cap

cm763m107.63

m/s001.0
/sm107.63

=×=

×
=

−

−

A
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56 ••  
Picture the Problem We can apply Bernoulli’s equation to points a and b to determine 
the rate at which the water exits the tank. Because the diameter of the small pipe is much 
smaller than the diameter of the tank, we can neglect the velocity of the water at the point 
a. The distance the water travels once it exits the pipe is the product of its speed and the 
time required to fall the distance H – h. 
 
Express the distance x as a function of 
the exit speed of the water and the 
time to fall the distance H – h: 
 

tvx b∆=                         (1) 

Apply Bernoulli’s equation to the 
water at points a and b: 
 
 

( ) 2
w2

1
w

b
2

w2
1

w

b

aa

vhHg

PvgHP

ρρ

ρρ

+−+

=++
 

or, because va ≈ 0 and Pa = Pb = Pat, 
( ) 2

2
1

bvhHggH +−=  

 
Solve for vb: ghvb 2=  

 
Using a constant-acceleration 
equation, relate the time of fall to the 
distance of fall: 

( )22
1

0y tatvy ∆+∆=∆  

or, because v0y = 0, 
( )22

1 tghH ∆=−  

 
Solve for ∆t: ( )

g
hHt −

=∆
2

 

 
Substitute in equation (1) to obtain: ( ) ( )hHh

g
hHghx −=

−
= 222  

 
57 ••  
Picture the Problem Let the subscript 60 denote the 60-cm-radius pipe and the subscript 
30 denote the 30-cm-radius pipe. We can use Bernoulli’s equation for constant elevation 
to express P30 in terms of v60 and v30, the definition of volume flow rate to find v60 and the 
continuity equation to find v30. 
 
Using Bernoulli’s equation for 
constant elevation, relate the 
pressures in the two pipes to the 
velocities of the oil: 
 

2
302

1
30

2
602

1
60 vPvP ρρ +=+  
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Solve for P30: ( )2
30

2
602

1
6030 vvPP −+= ρ                  (1) 

 
Use the definition of volume flow 
rate to find v60: 

( )
m/s456.2

m6.0
s3600

h1
h24

day1
day
m102.4

2

3
5

60

V
60

=

×××
=

=

π

A
Iv

 

 
Using the continuity equation, relate 
the velocity of the oil in the half-
standard pipe to its velocity in the 
standard pipe: 
 

30306060 vAvA =  

 
 
 

Solve for and evaluate v30: ( )
( )

( )

m/s824.9

m/s456.2
m3.0
m6.0

2

2

60
30

60
30

=

==
π
πv

A
Av

 

 
Substitute numerical values in equation (1) and evaluate P30: 
 

( ) ( ) ( )[ ] kPa144m/s824.9m/s456.2kg/m800kPa180 223
2
1

30 =−+=P  

 
*58 ••  
Picture the Problem We’ll use its definition to relate the volume flow rate in the pipe to 
the velocity of the water and the result of Example 13-9 to find the velocity of the water. 
 
Using its definition, express the 
volume flow rate: 
  

1
2

11V vrvAI π==  

Using the result of Example 13-9, 
find the velocity of the water 
upstream from the Venturi meter: ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=
1

2

2
2

2
1

w

Hg
1

R
R

gh
v

ρ

ρ
 

 
Substitute numerical values and evaluate v1: 
 

( )( )( )

( )
m/s847.1

1
m0.056
m0.095kg/m10

m0.024m/s9.81kg/m1013.62
2

33

233

1 =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

×
=v  



Fluids 
 

 

1003

Substitute numerical values and 
evaluate IV: 

( ) ( )

L/s1.13

/sm10309.1

m/s1.847m095.0
4

32

2
V

=

×=

=

−

πI

 

 
59 ••  
Picture the Problem We can apply the definition of the volume flow rate to find the 
mass of water emerging from the hose in 1 s and the definition of momentum to find the 
momentum of the water. The force exerted on the water by the hose can be found from 
the rate at which the momentum of the water changes. 
 
(a) Using its definition, express the 
volume flow rate of the water 
emerging from the hose: 

 

Av
t

m
t
VI =

∆
∆

=
∆
∆

=
w

V ρ
 

 

Solve for ∆m: tAvm ∆=∆ wρ  

 
Substitute numerical values and 
evaluate ∆m: 

( ) ( )( )( )
kg/s2.21

s1kg/m10m/s30m015.0 332

=

=∆ πm

 
 

(b) Using its definition, express and 
evaluate the momentum of the 
water: 

( )( )
m/skg636

m/s30kg/s21.2

⋅=

=∆= mvp
 

 
(c) The vector diagrams are to the 
right: 

 
 

Express the change in momentum 
of the water: 
 

if ppp rrr
−=∆  

 

Substitute numerical values and 
evaluate ∆p: 
 

( ) ( )
( )

m/skg899

2m/skg636

m/skg636m/skg636 22

⋅=

⋅=

⋅+⋅=∆p
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Relate the force exerted on the water 
by the hose to the rate at which the 
water’s momentum changes and 
evaluate F: 

N899
s1

m/skg998
=

⋅
=

∆
∆

=
t
pF  

 
60 ••  
Picture the Problem Let the letter P denote the pump and the 2-cm diameter pipe and 
the letter N the 1-cm diameter nozzle. We’ll use Bernoulli’s equation to express the 
necessary pump pressure, the continuity equation to relate the velocity of the water 
coming out of the pump to its velocity at the nozzle, and a constant-acceleration equation 
to relate its velocity at the nozzle to the height to which the water rises.  
 
Using Bernoulli’s equation, relate the 
pressures, areas, and velocities in the 
pipe and nozzle: 

2
Nw2

1

NwN
2
Pw2

1
PwP

v

ghPvghP

ρ

ρρρ

+

+=++
 

or, because PN = Pat and hP = 0, 
2
Nw2

1
NwN

2
Pw2

1
P vghPvP ρρρ ++=+  

 
Solve for the pump pressure: ( )2

P
2
Nw2

1
NwatP vvghPP −++= ρρ         (1) 

 
Use the continuity equation to relate 
vP and vN to the cross-sectional areas 
of the pipe from the pump and the 
nozzle: 

NNPP vAvA =  

and 

N4
1

N

2

N2
P4

1

2
N4

1

N
P

N
P cm2

cm1

v

vv
d
dv

A
Av

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
===

π
π

 

 
Using a constant-acceleration 
equation, express the velocity of the 
water at the nozzle in terms of the 
desired height ∆h: 

hgvv ∆−= 222
N

 

or, because v = 0, 
hgv ∆= 22

N
 

 
Substitute in equation (1) to obtain: 
 

( )[ ] ( )
( )hhgP

hgghPhghgghPP
∆++=

∆++=∆−∆++=

16
15

Nwat

8
15

w2
1

Nwat16
1

w2
1

NwatP 22
ρ

ρρρρ
 

 
Substitute numerical values and evaluate PP: 
 

( )( ) ( )[ ] kPa241m12m3m/s9.81kg/m10kPa101 16
15233

P =++=P  
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61 •••  
Picture the Problem We can apply Bernoulli’s equation to points a and b to determine 
the rate at which the water exits the tank. Because the diameter of the small pipe is much 
smaller than the diameter of the tank, we can neglect the velocity of the water at the point 
a. The distance the water travels once it exits the pipe is the product of its velocity and 
the time required to fall the distance H – h. That there are two values of h that are 
equidistant from the point Hh 2

1= can be shown by solving the quadratic equation that 

relates x to h and H. That x is a maximum for this value of h can be established by 
treating x = f(h) as an extreme-value problem. 
 
(a) Express the distance x as a 
function of the exit speed of the 
water and the time to fall the 
distance H – h: 
 

tvx b∆=                                              (1) 

Apply Bernoulli’s equation to the 
water at points a and b: 
 
 

( )
2

w2
1

wb
2

w2
1

w

b

aa

v

hHgPvgHP

ρ

ρρρ

+

−+=++
 

or, because va ≈ 0 and Pa = Pb = Pat, 
( ) 2

2
1

bvhHggH +−=  

 
Solve for vb: ghvb 2=  

 
Using a constant-acceleration 
equation, relate the time of fall to 
the distance of fall: 

( )22
1

0y tatvy ∆+∆=∆  

or, because v0y = 0, 
( )22

1 tghH ∆=−  

 
Solve for ∆t: ( )

g
hHt −

=∆
2

 

 
Substitute in equation (1) to obtain: ( ) ( )hHh

g
hHghx −=

−
= 222   

 
(b) Square both sides of this 
equation and simplify to obtain: 
 

22 44 hhHx −=  or 044 22 =+− xHhh  
 

Solve this quadratic equation to 
obtain: 

22
2
1

2
1 xHHh −±=  
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Find the average of these two values 
for h: 
 H

xHHxHHh

2
1

22
2
122

2
1

av 2
=

−−+−+
=

 

 
(c) Differentiate 

( )hHhx −= 2 with respect to h:  
( )[ ] ( )

( )hHh
hH

hHhHh
dh
dx

−

−
=

−−⎟
⎠
⎞

⎜
⎝
⎛= −

2

2
2
12 2

1

 

 
Set the derivative equal to zero for 
extrema: 
 

( )
02

=
−

−
hHh

hH
                   

Solve for h to obtain: 
 

Hh 2
1=  

Evaluate ( )hHhx −= 2  with 
Hh 2

1= : 
( )

H

HHHx

=

−= 2
1

2
1

max 2
 

 
Remarks: To show that this value for h corresponds to a maximum, one can either 

show that 0<2

2

dh
xd

  at Hh 2
1= or confirm that the graph of f(h) at Hh 2

1= is 

concave downward. 
 
*62 ••  
Picture the Problem Let the numeral 1 denote the opening in the end of the inner pipe 
and the numeral 2 to one of the holes in the outer tube. We can apply Bernoulli’s 
principle at these locations and solve for the pressure difference between them. By 
equating this pressure difference to the pressure difference due to the height h of the 
liquid column we can express v as a function of ρ, ρg, g,  
and h. 

 
Apply Bernoulli’s principle at 
locations 1 and 2 to obtain: 
 

2
2g2

1
2

2
1g2

1
1 vPvP ρρ +=+  

where we’ve ignored the difference in 
elevation between the two openings. 
 

Solve for the pressure difference  
∆P = P1 − P2: 
 

2
1g2

12
2g2

1
21 vvPPP ρρ −=−=∆  

Express the velocity of the gas at 1: 01 =v because the gas is brought to a halt 
(i.e., is stagnant) at the opening to the inner 
pipe. 
 

Express the velocity of the gas at 2: vv =2 because the gas flows freely past 
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the holes in the outer ring. 
 

Substitute to obtain: 2
g2

1 vP ρ=∆  
 

Letting A be the cross-sectional area 
of the tube, express the pressure at a 
depth h in the column of liquid 
whose density is ρ1: 
 

A
B

A
w

PP −+= liquid displaced
21  

where AhgB gρ= is the buoyant force 
acting on the column of liquid of  
height h. 
 

Substitute to obtain: 
 

( )ghP
A
ghA

A
ghAPP

g2

g
21

ρρ

ρρ

−+=

−+=
 

or 
( )ghPPP g21 ρρ −=−=∆  

 
Equate these two expressions for 
∆P: 

( )ghv g
2

g2
1 ρρρ −=  

 
Solve for v2 to obtain: 
 

( )
g

g2 2
ρ

ρρ −
=

gh
v  

Note that the correction for buoyant force 
due to the displaced gas is very small and 
that, to a good approximation, 

.2
gρ
ρghv =  

 
Remarks: Pitot tubes are used to measure the airspeed of airplanes. 
 
63 ••  
Picture the Problem Let the letter ″a″ denote the entrance to the siphon tube and the 
letter ″b″ denote its exit. Assuming streamline flow between these points, we can apply 
Bernoulli’s equation to relate the entrance and exit speeds of the water flowing in the 
siphon to the pressures at either end, the density of the water, and the difference in 
elevation between the entrance and exit points. We can use the expression for the 
pressure as a function of depth in an incompressible fluid to find the pressure at the 
entrance to the tube in terms of its distance below the surface.  We’ll also use the 
equation of continuity to argue that, provided the surface area of the beaker is large 
compared to the area of the opening of the tube, the entrance speed of the water is 
approximately zero. 

 
(a) Apply Bernoulli’s equation at the 
entrance to the siphon tube (point a) 
and at its exit (point b): 
 

( )
( )dhHgvP

hHgvP

b −−++=

−++

ρρ

ρρ
2

2
1

b

2
a2

1
a    (1) 

where H is the height of the containers. 
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Apply the continuity equation to a 
point at the surface of the liquid in 
the container to the left and to point 
a: 
 

surfacesurfaceaa AvAv =  
or, because Aa << Asurface, 

0surfacea == vv  
 

Express the pressure at the inlet 
(point a) and the outlet (point b): 
 

( )hHgPP −+= ρatma  
and 

( )dhHgPP −−+= ρatmb  
 

Letting vb = v, substitute in equation 
(1) to obtain: 

( )
( )

( )dhHgv

dhHgP
gHhHgP

−−++

−−+=
+−+

ρρ

ρ
ρρ

2
2
1

atm

atm

 

or, upon simplification, 
( ) ( )

( )dhHgv
dhHggHhHg

−−++

−−=+−
2

2
1

 

 
Solve for v: gdv 2=  

 
(b) Relate the pressure at the highest 
part of the tube Ptop to the pressure 
at point b: 
 

( )
( ) 2

b2
1

atm

2
h2

1
top

vdhHgP

vhHgP

ρρ

ρρ

+−−+=

+−+
 

or, because vh = vb, 
gdPP ρ−= atmtop  

 
Remarks: If we let Ptop = 0, we can use this result to find the maximum theoretical 
height a siphon can lift water. 
 
Viscous Flow  
  
64 •  
Picture the Problem The required pressure difference can be found by applying 
Poiseuille’s law to the viscous flow of water through the horizontal tube. 
 
Using Poiseuille’s law, relate the 
pressure difference between the two 
ends of the tube to its length, radius, 
and the volume flow rate of the 
water: 
 

V4

8 I
r
LP

π
η

=∆  

Substitute numerical values and 
evaluate ∆P: 

( )( )
( ) ( )

kPa47.1

mL/s3.0
m106.0

m25.0smPa18
43

=

×

⋅
=∆

−π
P
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65 •  
Picture the Problem Because the pressure difference is unchanged, we can equate the 
expressions of Poiseuille’s law for the two tubes and solve for the diameter of the tube 
that would double the flow rate. 
 
Using Poiseuille’s law, express the 
pressure difference required for the 
radius and volume flow rate of 
Problem 64: 
 

V4

8 I
r
LP

π
η

=∆  

Express the pressure difference 
required for the radius r′ that would 
double the volume flow rate of 
Problem 57: 
 

( )V4 28 I
r'
LP

π
η

=∆  

Equate these equations and simplify 
to obtain: 

( ) V4V4
828 I

r
LI

r'
L

π
η

π
η

=  

or 

44
12
rr'

=  

 
Solve for r′: rr' 4 2=  

 
Express d ′: 
 

drr'd' 44 2222 ===  

Substitute numerical values and 
evaluate d ′: 

( ) mm43.1mm2.124 ==d'  

 
*66 •  
Picture the Problem We can apply Poiseuille’s law to relate the pressure drop across the 
capillary tube to the radius and length of the tube, the rate at which blood is flowing 
through it, and the viscosity of blood. 
 
Using Poiseuille’s law, relate the 
pressure drop to the length and 
diameter of the capillary tube, the 
volume flow rate of the blood, and 
the viscosity of the blood: 
 

V4

8 I
r
LP

π
η

=∆  

Solve for the viscosity of the blood: 

V

4

8LI
Pr ∆

=
πη  
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Using its definition, express the 
volume flow rate of the blood: 

vrvAI 2
capV π==  

 
Substitute and simplify: 

Lv
Pr

8

2∆
=η  

 
Substitute numerical values to obtain: ( ) ( )

( )

smPa98.3

s1
m10m108

kPa60.2m105.3
3

3

26

⋅=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

=
−

−

−

η

 

 
*67 •  
Picture the Problem We can use the definition of Reynolds number to find the velocity 
of a baseball at which the drag crisis occurs. 
 
Using its definition, relate Reynolds 
number to the velocity v of the 
baseball:  
 

η
ρvrN 2

R =  

Solve for v: 

ρ
η

r
Nv

2
R=  

 
Substitute numerical values (see 
Figure 13-1 for the density of air and 
Table 13-1 for the coefficient of 
viscosity for air) and evaluate v: 

( )( )
( )( )

mi/h93.4

m/s0.447
mi/h1m/s8.41

kg/m293.1m05.02
103smPa018.0

3

5

=

×=

×⋅
=v

 

 

game. in the role aplay  ellmay very w crisis drag this
 90s,-mid  to-low in the fastball a can throw pitchers leaguemajor most  Because

 
Remarks: This is a topic which has been fiercely debated by people who study the 
physics of baseball. 
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68 •••  
Picture the Problem Let the subscripts 
″f″ refer to ″displaced fluid”, ″s″ to 
″soda″, and ″g″ to the ″gas″ in the 
bubble. The free-body diagram shows 
the forces acting on the bubble prior to 
reaching its terminal velocity. We can 
apply Newton’s 2nd law, Stokes′ law, 
and Archimedes principle to express the 
terminal velocity of the bubble in terms 
of its radius, and the viscosity and 
density of water. 

 
 
Apply yy maF =∑ to the bubble to 
obtain: 
 

ymaFgmB =−− Dg  

Under terminal speed conditions: 0Dg =−− FgmB  
 

Using Archimedes principle, 
express the buoyant force B acting 
on the bubble: 
 

gVgV
gmwB

bubblesff

ff

ρρ ==
==

 

Express the mass of the gas bubble: 
 

bubblegggg VVm ρρ ==  
 

Substitute to obtain: 06 tbubblegbubblew =−− avgVgV πηρρ  
 

Solve for vt: ( )
a

gV
v

πη
ρρ

6
gsbubble

t

−
=  

 
Substitute for Vbubble and simplify: ( ) ( )

. since ,
9

2
9

2
6

gs
s

2

gs
2

gs
3

3
4

t

ρρ
η
ρ

η
ρρ

πη
ρρπ

>>≈

−
=

−
=

ga

ga
a

ga
v

 

 
Substitute numerical values and 
evaluate vt: 

( ) ( )
( )

( )
m/s333.0

kg/m101.1
sPa108.19
m/s81.9m105.02

33

3

223

t

=

××

⋅×
×

= −

−

v

 

 
Express the rise time ∆t in terms of 
the height of the soda glass h and the 
terminal speed of the bubble: 
 

tv
ht =∆  
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Assuming that a "typical" soda glass 
has a height of about 15 cm, 
evaluate ∆t: 
 

s450.0
m/s333.0
m15.0

==∆t  

Remarks: About half a second seems reasonable for the rise time of the bubble. 
 
General Problems 
 
*69 ••  
Picture the Problem We can solve the given equation for the coefficient of roundness C 
and substitute estimates/assumptions of typical masses and heights for adult males and 
females. 
 
Express the mass of a person as a 
function of C, ρ, and h: 
 

3hCM ρ=  

Solve for C: 
3h

MC
ρ

=  

 
Assuming that a "typical" adult 
male stands 5' 10" (1.78 m) and 
weighs 170 lbs (77 kg), then: 
 

( )( )
0137.0

m78.1kg/m10
kg77

333 ==C  

Assuming that a "typical" adult 
female stands 5' 4" (1.63 m) and 
weighs 110 lbs (50 kg), then: ( )( )

0115.0
m63.1kg/m10

kg50
333 ==C  

 
70 •  
Picture the Problem Let the letter ″s″ denote the shorter of the two men and the letter ″t″ 
the taller man. We can find the difference in weight of the two men using the relationship 
M = Cρh3 from Problem 69. 
 
Express the difference in weight of 
the two men: 
 ( )gMM

gMgMwww

st

stst

−=
−=−=∆

 

Express the masses of the two men: 
 

3
ss hCM ρ=  

and 
3
tt hCM ρ=  

 
Substitute to obtain: ( )

( ) gChh

ghChCw

ρ

ρρ
3
s

3
t

3
s

3
t

−=

−=∆
 

 
Assuming that a "typical" adult 
male stands 5' 10" (1.78 m) and 
weighs 170 lbs (77 kg), then: 
 

( )( )
0137.0

m78.1kg/m10
kg77

333 ==C  

Express the heights of the two men 
in SI units: 

m1.83cm/in54.2in72t =×=h  
and 
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 m1.75cm/in54.2in69s =×=h  
 

Substitute numerical values (assume 
that ρ = 103 kg/m3) and evaluate ∆w: 
 

( ) ( )[ ]
( )( )( )

lb2.23
N4.4482

lb1N103

m/s81.9kg/m100137.0
m75.1m83.1

233

33

=×=

×

−=∆w
 

 
71 •  
Determine the Concept The net force is zero. Neglecting the thickness of the table, the 
atmospheric pressure is the same above and below the surface of the table. 
 
72 •  
Picture the Problem The forces acting on 
the Ping-Pong ball, shown in the free-body 
diagram, are the buoyant force, the weight 
of the ball, and the tension in the string. 
Because the ball is in equilibrium under the 
influence of these forces, we can apply the 
condition for translational equilibrium to 
establish the relationship between them. 
We can also apply Archimedes’ principle 
to relate the buoyant force on the ball to its 
diameter.  

 
Apply ∑ = 0yF to the ball: 0=−− TmgB  

 
Using Archimedes’ principle, relate 
the buoyant force on the ball to its 
diameter: 
 

3
w6

1
ballwff dgVgmwB πρρ ====  

 

Substitute to obtain: 03
w6

1 =−− Tmgdπρ  

 
Solve for d: ( )

3

w

6
πρ

mgTd +
=  

 
Substitute numerical values and evaluate d: 
 

( )( )[ ]
( ) cm05.5

kg/m10
m/s9.81kg0.004N108.26

3
33

22

=
+×

=
−

π
d  
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73 •  
Picture the Problem Let ρ0 represent the density of seawater at the surface. We can use 
the definition of density and the fact that mass is constant to relate the fractional change 
in the density of water to its fractional change in volume. We can also use the definition 
of bulk modulus to relate the fractional change in density to the increase in pressure with 
depth and solve the resulting equation for the density at the depth at which the pressure is 
800 atm. 
 
Using the definition of density, 
relate the mass of a given volume of 
seawater to its volume: 
 

Vm ρ=  

Noting that the mass does not vary 
with depth, evaluate its differential: 
 

0=+ ρρ VddV  

Solve for dρ/ρ: 
V
dVd

−=
ρ
ρ

or
V
V∆

−≈
∆
ρ
ρ

 

 
Using the definition of the bulk 
modulus, relate ∆P to ∆ρ/ρ0: 0ρρ∆

∆
=

∆
∆

−=
P

VV
PB  

 
Solve ∆ρ: 

B
P∆

=−=∆ 0
0

ρρρρ  

 
Solve for ρ: 

⎟
⎠
⎞

⎜
⎝
⎛ ∆
+=

∆
+=

B
P

B
P 10

0
0 ρρρρ  

 
Substitute numerical values and evaluate ρ: 
 

( ) 3
29

5

3 kg/m1061
N/m102.3

atm1
Pa101.01atm800

1kg/m1025 =
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

×

×
×

+=ρ  
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74 •  
Picture the Problem When it is 
submerged, the block is in equilibrium 
under the influence of the buoyant force 
due to the water, the force exerted by the 
spring balance, and its weight. We can use 
the condition for translational equilibrium 
to relate the buoyant force to the weight of 
the block and the definition of density to 
express the weight of the block in terms of 
its density.  
  
Apply ∑ = 0yF to the block: 08.0 =−+ mgmgB ⇒ mgB 2.0=  

 
Substitute for B and m to obtain: gVgV blockblockblockw 2.0 ρρ =  

 
Solve for and evaluate ρblock: ( )

33

33w
block

kg/m105.00

kg/m105
2.0

×=

==
ρρ

 

 
*75 •  
Picture the Problem When the copper block is floating on a pool of mercury, it is in 
equilibrium under the influence of its weight and the buoyant force acting on it. We can 
apply the condition for translational equilibrium to relate these forces. We can find the 
fraction of the block that is submerged by applying Archimedes’ principle and the 
definition of density to express the forces in terms of the volume of the block and the 
volume of the displaced mercury. Let V represent the volume of the copper block, V′ the 
volume of the displaced mercury. Then the fraction submerged when the material is 
floated on water is V′/ V. Choose the upward direction to be the positive y direction. 
 
Apply ∑ = 0yF to the block: 

 

0=− wB , where B is the buoyant force and 
w is the weight of the block. 
 

Apply Archimedes’ principle and the 
definition of density to obtain: 
 

0CuHg =− VgV'g ρρ  

Solve for V′/ V: 

Hg

Cu

ρ
ρ

=
V
V'
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Substitute numerical values and 
evaluate V′/ V: 

%7.65657.0
kg/m106.13
kg/m1093.8

33

33

==
×
×

=
V
V'

 
76 •  
Picture the Problem When the block is floating on a pool of ethanol, it is in equilibrium 
under the influence of its weight and the buoyant force acting on it. We can apply the 
condition for translational equilibrium to relate these forces. We can find the fraction of 
the block that is submerged by applying Archimedes’ principle and the definition of 
density to express the forces in terms of the volume of the block and the volume of the 
displaced ethanol. Let V represent the volume of the copper block, V′ the volume of the 
displaced ethanol. Then the fraction of the volume of the block that will be submerged 
when the material is floated on water is V′/ V. Choose the upward direction to be the 
positive y direction. 
 
Apply ∑ = 0yF to the block 

floating on ethanol: 
 

0eth =− wB , where Beth is the buoyant 

force due to the ethanol and w is the weight 
of the block. 
 

Apply Archimedes’ principle to 
obtain: 
 

( )gVw 9.0ethρ=  

Apply ∑ = 0yF to the block 

floating on water: 
 

0w =− wB , where Bw is the buoyant force 

due to the water and w is the weight of the 
block. 
 

Apply Archimedes’ principle to obtain: 
 

V'gw wρ= , where V′ is the volume of the 

displaced water. 
 

Equate the two expressions for w  
and solve for V′/ V: w

eth9.0
ρ
ρ

=
V
V'

 

 
Substitute numerical values and 
evaluate V′/ V: 

( )

%5.72725.0

kg/m10
kg/m10806.09.0
33

33

==

×
=

V
V'

 

 
77 •  
Determine the Concept If you are floating, the density (or specific gravity) of the liquid 
in which you are floating is immaterial as you are in translational equilibrium under the 
influence of your weight and the buoyant force on your body. Thus, the buoyant force on 
your body is your weight in both (a) and (b). 
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78 •   
Picture the Problem Let m and V represent the mass and volume of your body. Because 
you are in translational equilibrium when you are floating, we can apply the condition for 
translational equilibrium and Archimedes’ principle to your body to express the 
dependence of the volume of water it displaces when it is fully submerged on your 
weight. Let the upward direction be the positive y direction. 
 
Apply ∑ = 0yF to your floating body: 

 

0=− mgB  

 

Use Archimedes’ principle to relate 
the density of water to your volume: 
 

( )gVgmwB 96.0wff ρ===  

 

Substitute to obtain: ( ) 096.0w =− mggVρ  

 
Solve for V: 

w96.0 ρ
mV =  

 
79 ••  
Picture the Problem Let m and V represent the mass and volume of the block of wood. 
Because the block is in translational equilibrium when it is floating, we can apply the 
condition for translational equilibrium and Archimedes’ principle to express the 
dependence of the volume of water it displaces when it is fully submerged on its weight. 
We’ll repeat this process for the situation in which the lead block is resting on the wood 
block with the latter fully submerged. Let the upward direction be the positive y direction. 
 
Apply ∑ = 0yF to floating block: 0=− mgB  

 
Use Archimedes’ principle to relate 
the density of water to the volume of 
the block of wood: 
 

( )gVgmwB 68.0wff ρ===  

 

Using the definition of density, 
express the weight of the block in 
terms of its density: 
 

Vgmg woodρ=  

 

Substitute to obtain: ( ) 068.0 woodw =− VggV ρρ  

 
Solve for and evaluate the density of 
the wood block: 

( )
3

33
wwood

kg/m680

kg/m1068.068.0

=

== ρρ
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Use the definition of density to find 
the volume of the wood: 

33

3
wood

wood

m102.206

kg/m680
kg1.5

−×=

==
ρ
mV

 

 
Apply ∑ = 0yF to the floating 

block when the lead block is placed 
on it: 

0' =− gmB' , where B′ is the new 

buoyant force on the block and m′ is the 
combined mass of the wood block and the 
lead block. 
 

Use Archimedes’ principle and the 
definition of density to obtain: 
 

( ) 0blockPbw =+− gmmVgρ  

 

Solve for the mass of the lead block: 
 

blockwPb mVm −= ρ  

 
Substitute numerical values and 
evaluate mPb: 

( )( )

kg0.706

kg1.5
m102.206kg/m10 3333

Pb

=

−
×= −m

 

 
*80 ••  
Picture the Problem The true mass of the Styrofoam cube is greater than that indicated 
by the balance due to the buoyant force acting on it. The balance is in rotational 
equilibrium under the influence of the buoyant and gravitational forces acting on the 
Styrofoam cube and the brass masses. Neglect the buoyancy of the brass masses. Let m 
and V represent the mass and volume of the cube and L the lever arm of the balance. 
 
Apply 0=∑ τr to the balance: 

 

( ) 0brass =−− gLmLBmg  

 
Use Archimedes’ principle to 
express the buoyant force on the 
Styrofoam cube as a function of 
volume and density of the air it 
displaces:  
 

VgB airρ=  

Substitute and simplify to obtain: 0brassair =−− mVm ρ  

 
Solve for m: brassair mVm += ρ  

 
Substitute numerical values and 
evaluate m: 

( )( )
g40.2kg104.02

kg1020m0.25kg/m1.293
2

333

=×=

×+=
−

−m
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81 ••  
Picture the Problem Let din and dout represent the inner and outer diameters of the 
copper shell and V′ the volume of the sphere that is submerged. Because the spherical 
shell is floating, it is in translational equilibrium and we can apply a condition for 
translational equilibrium to relate the buoyant force B due to the displaced water and its 
weight w. 
 
Apply ∑ = 0yF to the spherical shell: 

 

0=− wB  
 

Using Archimedes’ principle and the 
definition of w, substitute to obtain: 

0w =−mgV'gρ  

or 
0w =−mV'ρ                           (1) 

 
Express V′ as a function dout: 3

out
3
out 1262

1 ddV' ππ
==  

 
Express m in terms of din and dout: ( )

⎟
⎠
⎞

⎜
⎝
⎛ −=

−=

3
in

3
outCu

inoutCu

66
dd

VVm
ππρ

ρ
 

 
Substitute in equation (1) to obtain: 0

6612
3
in

3
outCu

3
outw =⎟

⎠
⎞

⎜
⎝
⎛ −− ddd ππρπρ  

 
Simplify: ( ) 0

2
1 3

in
3
outCu

3
outw =−− ddd ρρ  

 
Solve for din: 

3

Cu

w
outin 2

1
ρ
ρ

−= dd  

 
Substitute numerical values and 
evaluate din: 

( ) ( ) cm8.11
93.82

11cm12 3in =−=d  

 
82 ••  
Determine the Concept The additional weight on the beaker side equals the weight of 
the displaced water, i.e., 64 g. This is the mass that must be placed on the other cup to 
maintain balance. 
 
*83 ••  
Picture the Problem We can use the definition of Reynolds number and assume a value 
for NR of 1000 (well within the laminar flow range) to obtain a trial value for the radius 
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of the pipe. We’ll then use Poiseuille’s law to determine the pressure difference between 
the ends of the pipe that would be required to maintain a volume flow rate of 500 L/s. 
 
Use the definition of Reynolds 
number to relate NR to the radius of 
the pipe: 
 

η
ρvrN 2

R =  

 

Use the definition of IV to relate the 
volume flow rate of the pipe to its 
radius: 
 

vrAvI 2
V π==  ⇒ 2

V

r
Iv
π

=  

 

Substitute to obtain: 
r

IN
ηπ
ρ V

R
2

=  

 
Solve for r: 

R

V2
N
Ir

ηπ
ρ

=  

 
Substitute numerical values and evaluate r: ( )( )

( )( ) cm9.27
1000sPa8.0

/sm0.500kg/m7002 33

=
⋅

=
π

r  

 
Using Poiseuille’s law, relate the 
pressure difference between the ends 
of the pipe to its radius: 

V4
8 I

r
LP

π
η

=∆  

 
 

Substitute numerical values and 
evaluate ∆P: 

( )( )
( )

( )

atm0.83
Pa101.01325

atm1Pa1041.8

Pa1041.8

/sm500.0
m279.0

km50sPa0.88

5
6

6

3
4

=
×

××=

×=

⋅
=∆

π
P

 

This pressure is too large to maintain in the 
pipe. 
 

Evaluate ∆P for a pipe of 50 cm radius: ( )( )
( )

( )

atm04.8
Pa101.01325

atm1Pa1015.8

Pa1015.8

/sm500.0
m50.0

km50sPa0.88

5
5

5

3
4

=
×

××=

×=

⋅
=∆

π
P
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pipeline.
 for thediameter  reasonable a is m 1

 

 
84 ••  
Picture the Problem We’ll measure the height of the liquid–air interfaces relative to the 
centerline of the pipe. We can use the definition of the volume flow rate in a pipe to find 
the speed of the water at point A and the relationship between the gauge pressures at 
points A and C to determine the level of the liquid-air interface at A. We can use the 
continuity equation to express the speed of the water at B in terms of its speed at A and 
Bernoulli’s equation for constant elevation to find the gauge pressure at B. Finally, we 
can use the relationship between the gauge pressures at points A and B to find the level of 
the liquid-air interface at B. 
 
Relate the gauge pressure in the pipe 
at A to the height of the liquid-air 
interface at A: 

AAgauge, ghP ρ=  

where hA is measured from the center of 
the pipe. 
 

Solve for hA: 
g

P
h

ρ
Agauge,

A =  

 
Substitute numerical values and 
evaluate hA: 

( )( )
( )( )

m6.12

m/s9.81kg/m10
Pa/atm101.01atm1.22

233

5

A

=

×
=h

 

 
Determine the velocity of the water 
at A: ( )

m/s55.2
m02.0

4

/sm108.0
2

33

A

V
A =

×
==

−

πA
Iv  

 
Apply Bernoulli’s equation for 
constant elevation to relate PB and 
PA: 
 

2
B2

1
B

2
A2

1
A vPvP ρρ +=+              (1) 

 
 

Use the continuity equation to relate 
vB and vA: 
 

BBAA vAvA =  

Solve for vB: ( )
( ) AA2

2

A2
B

2
A

A
B

A
B 4

cm1
cm2 vvv

d
dv

A
Av ====  
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Substitute in equation (1) to obtain: 2
AB

2
A2

1
A 8 vPvP ρρ +=+  

 
Solve for PB: 2

A2
15

AB vPP ρ−=  

 
Substitute numerical values and 
evaluate PB: 

( )( )
( )( )

atm733.1
Pa101.01

atm1Pa1075.1

Pa1075.1

m/s2.55kg/m10

Pa/atm1001.1atm22.2

5
5

5

233
2

15

5
B

=
×

××=

×=

−

×=P

 

 
Relate the gauge pressure in the pipe 
at B to the height of the liquid-air 
interface at B: 
 

BBgauge, ghP ρ=  

 
 

Solve for hB: 
g

P
h

ρ
Bgauge,

B =  

 
Substitute numerical values and 
evaluate hB: 

( )[ ]
( )( )
m55.7

m/s9.81kg/m10
atm
Pa101.01atm11.733

233

5

B

=

⎟
⎠
⎞

⎜
⎝
⎛ ×−

=h  

 
85 ••  
Picture the Problem We’ll measure the height of the liquid–air interfaces relative to the 
centerline of the pipe. We can use the definition of the volume flow rate in a pipe to find 
the speed of the water at point A and the relationship between the gauge pressures at 
points A and C to determine the level of the liquid-air interface at A. We can use the 
continuity equation to express the speed of the water at B in terms of its speed at A and 
Bernoulli’s equation for constant elevation to find the gauge pressure at B. Finally, we 
can use the relationship between the gauge pressures at points A and B to find the level of 
the liquid-air interface at B. 
 
Relate the gauge pressure in the pipe 
at A to the height of the liquid-air 
interface at A: 

AAgauge, ghP ρ=  

where hA is measured from the center of 
the pipe. 
 

Solve for hA: 
g

P
h

ρ
Agauge,

A =  
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Substitute numerical values and 
evaluate hA: 

( )( )
( )( )

m6.12

m/s9.81kg/m10
Pa/atm101.01atm1.22

233

5

A

=

×
=h

 

 
Determine the velocity of the water 
at A: ( )

m/s91.1
m02.0

4

/sm106.0
2

33

A

V
A =

×
==

−

πA
Iv  

 
Use the continuity equation to relate 
vB and vA: 
 

BBAA vAvA =  

Solve for vB: ( )
( )

A

A2

2

A2
B

2
A

A
B

A
B

4
cm1
cm2

v

vv
d
dv

A
Av

=

===
 

 
Apply Bernoulli’s equation for 
constant elevation to relate PB and 
PA: 

2
B2

1
B

2
A2

1
A vPvP ρρ +=+              (1) 

 
 

Substitute in equation (1) to obtain: 2
AB

2
A2

1
A 8 vPvP ρρ +=+  

 
Solve for PB: 2

A2
15

AB vPP ρ−=  

 
Substitute numerical values and 
evaluate PB: 

( )( )
( )( )

atm95.1
Pa101.01

atm1Pa10969.1

Pa10969.1

m/s91.1kg/m10

Pa/atm1001.1atm22.2

5
5

5

233
2

15

5
B

=
×

××=

×=

−

×=P

 

 
Relate the gauge pressure in the pipe 
at B to the height of the liquid-air 
interface at B: 
 

BBgauge, ghP ρ=  

Solve for hB: 
g

P
h

ρ
Bgauge,

B =  
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Substitute numerical values and 
evaluate hB: 

( )[ ]
( )( )

m78.9

m/s9.81kg/m10
atm
Pa101.01atm11.95

233

5

B

=

⎟
⎠
⎞

⎜
⎝
⎛ ×−

=h  

 
*86 ••  
Picture the Problem Because it is not given, we’ll neglect the difference in height 
between the centers of the pipes at A and B. We can use the definition of the volume flow 
rate to find the speed of the water at A and Bernoulli’s equation for constant elevation to 
find its speed at B. Once we know the speed of the water at B, we can use the equation of 
continuity to find the diameter of the constriction at B. 
 
Use the definition of the volume 
flow rate to find vA: ( )

m/s59.1
m02.0

4

/sm105.0
2

33

A

V
A =

×
==

−

πA
Iv  

 
Use Bernoulli’s equation for 
constant elevation to relate the 
pressures and velocities at A and B: 
 

2
A2

1
A

2
B2

1
B vPvP ρρ +=+  

Solve for 2
Bv : 

 

( ) 2
A

BA2
B

2 vPPv +
−

=
ρ

 

 
Substitute numerical values and evaluate 2

Bv : 

 
( ) ( )[ ] ( ) 222

33

5
2
B /sm222m/s1.59

kg/m10
Pa/atm101.01atm0.11.1872

=+
×−

=v  

 
Using the continuity equation, relate 
the volume flow rate to the radius at 
B: 
 

B
2

BBBV vrvAI π==  

 

Solve for and evaluate rB: 

( ) mm27.3
m/s14.9

/sm100.5 33

B

V
B =

×
==

−

πv
Ir
π

and 
mm54.62 BB == rd  
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87 ••  
Picture the Problem Let V′ represent the volume of the buoy that is submerged and h′ 
the height of the submerged portion of the cylinder. We can find the fraction of the 
cylinder’s volume that is submerged by applying the condition for translational 
equilibrium to the buoy and using Archimedes’ principle. When the buoy is submerged it 
is in equilibrium under the influence of the tension T in the cable, the buoyant force due 
to the displaced water, and its weight. When the cable breaks, the net force acting on the 
buoy will accelerate it and we can use Newton’s 2nd law to find its acceleration. 
 
(a) Apply ∑ = 0yF  to the cylinder: 0=− wB  

 
Using Archimedes’ principle and the 
definition of weight, substitute for B 
and w: 
 

0sw =−mgV'gρ  

or 
0sw =−mgh'Agρ  

where A is the cross-sectional area of the 
buoy. 
 

Solve for and evaluate h′: 
A

mh'
swρ

=  

 
Substitute numerical values and 
evaluate h′: ( ) ( )

m920.0

m0.9
4
πkg/m101.025

kg600
233

=

×
=h'

 

 
Use h′ to find the height h of the 
buoy: 

m1.68m0.920m6.2 =−=− h'h  

 
Express the fraction of the volume 
of the cylinder that is above water: 

h
h'

hd

h'd

V
V'

V
V'V

−=

−=−=
−

1

4

411
2

2

π

π

 

 
Substitute numerical values to obtain: %6.64

m2.6
m0.9201 =−=

−
V

V'V
 

 
(b) Apply ∑ = 0yF to the 

submerged buoy: 
 

0=−− wTB  
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Solve for T and substitute for B and 
w to obtain: ( )gmV

mgVgwBT
−=

−=−=

sw

sw

ρ
ρ

 

 
Substitute numerical values and evaluate T: ( )[ ( ) ( )

]( )
kN7.10

m/s9.81kg600

m2.6m0.9
4

kg/m101.025

2

233

=

−

×=
πT

 

 
(c) Apply ∑ = 0yF to the buoy: mawB =−  

 
Substitute for B − w and solve for a to 
obtain: m

T
m

wBa =
−

=  

 
Substitute numerical values and evaluate a: 2m/s17.9

kg600
kN10.75

==a  

 
88 ••  
Picture the Problem Because the floating object is in equilibrium under the influence of 
the buoyant force acting on it and its weight; we can apply the condition for translational 
equilibrium to relate B and w. Let ∆h represent the change in elevation of the liquid level 
and Vf the volume of the displaced fluid.  
 
Apply ∑ = 0yF  to the floating 

object: 
 

0=− wB  
 

Using Archimedes’ principle and the 
definition of weight, substitute for B 
and w: 
 

0f0 =−mggVρ  

The volume of fluid displaced is the 
sum of the  volume displaced in the 
two vessels: 
 

hA
hAhAVVV AA

∆=
∆+∆=∆+∆=

4
33f  

Substitute for Vf to obtain: 04 0 =−∆ mghgAρ  

 
Solve for ∆h: 

04 ρA
mh =∆  
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89 ••  
Picture the Problem We can calculate the smallest pressure change ∆P that can be 
detected from the reading ∆h from .hgP ∆=∆ ρ  

 
Express and evaluate the pressure 
difference between the two columns 
of the manometer: 

( )( )
( )

Pa4415.0
m100.05

m/s9.81kg/m900
3

23

=
××

=

∆=∆

−

hgP ρ

 

 
Express this pressure in mmHg and 
µmHg: 

mHg31.3

mmHg1031.3

atm1
mmHg760

Pa101.01325
atm1Pa4415.0

3

5

µ=

×=

×

×
×=∆

−

P

 

 
90 ••  
Picture the Problem We can use the 
equality of the pressure at the bottom of the 
U-tube due to the water on one side and 
that due to the oil and water on the other to 
relate the various heights. Let h represent 
the height of the oil above the water. Then 
ho = h1w + h. 

 

 
  
Using the constancy of the amount 
of water, express the relationship 
between h1w and h2w:  
 

h1w + h2w = 56 cm 

Find the height of the oil-water 
interface: 

cm22.0cm34cm651w =−=h  

 
Express the equality of the pressure 
at the bottom of the two arms of the 
U tube: 
 

( ) ( ) oilwww 78.0cm22cm34 ghgg ρρρ +=  
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Solve for and evaluate hoil: ( ) ( )

( ) ( ) cm4.15
78.0

cm22cm34
78.0

cm22cm34

w

ww
oil

=
−

=

−
=

g
ggh

ρ
ρρ

 

 
Find the height of the air-oil 
interface ho: 

cm37.4cm15.422cmo =+=h  

 
91 ••  
Picture the Problem Let σL represent the 
specific gravity of the liquid. The specific 
gravity of the oil is σo = 0.8. We can use 
the equality of the pressure at the bottom of 
the U-tube due to the water on one side and 
that due to the oil and water on the other to 
relate the various heights. 

 
 
Express the equality of the pressure 
at the bottom of the two arms of the 
U tube: 
 

( ) ( )cm128.0cm7 wLL ghggh σσσ +−=  

Solve for and evaluate σL: ( ) ( )

37.1

cm7
cm128.0

cm7
cm128.0 w

L

=

==
σ

σ
 

 
92 ••  
Picture the Problem The block of wood is in translational equilibrium under the 
influence of the buoyant force due to the displaced water acting on it and on the lead 
block, its weight, and the weight of the lead block. We can use a condition for 
translational equilibrium and Archimedes’ principle to obtain a relationship between the 
mass of the lead block and the densities of water, wood, and lead and the mass of the 
wood block. 
 
Apply ∑ = 0yF to the block of wood: 

 

0PbwoodPbwood =−−+ gmgmBB  

 
Use Archimedes’ principle to 
express the buoyant force on the 
block of wood: 
 

gVB woodwwood ρ=  

 

Use Archimedes’ principle to gVB PbwPb ρ=  
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express the buoyant force on the 
lead block: 
 

 

Substitute and simplify to obtain: 0PbwoodPbwwoodw =−−+ mmVV ρρ  

 
Express the volume of the wood 
block in terms of its density and 
mass: 

wood

wood
wood ρ

mV =  

 
Express the volume of the lead 
block in terms of its density and 
mass: 

Pb

Pb
Pb ρ

mV =  

 
Substitute for Vwood and VPb: 0Pbwood

Pb

Pb
w

wood

wood
w =−−+ mmmm

ρ
ρ

ρ
ρ  

 
Solve for mPb: 

Pb

w

wood
wood

w

Pb

1

1

ρ
ρ

ρ
ρ

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
m

m  

 
Substitute numerical values and 
evaluate mPb: 

( )
kg235.0

3.11
11

kg5.01
7.0

1

Pb =
−

⎟
⎠
⎞

⎜
⎝
⎛ −

=m  

 
*93 ••  
Picture the Problem Because the balloon is in equilibrium under the influence of the 
buoyant force exerted by the air, the weight of its basket and load w, the weight of the 
skin of the balloon, and the weight of the helium. Choose upward to be the positive y 
direction and apply the condition for translational equilibrium to relate these forces. 
Archimedes’ principle relates the buoyant force on the balloon to the density of the air it 
displaces and the volume of the balloon.  
 
(a) Apply ∑ = 0yF to the balloon: 0Heskin =−−− wgmgmB  

 
Letting V represent the volume of the 
balloon, use Archimedes’ principle to 
express the buoyant force: 
 

0Heskinair =−−− wgmgmVgρ  

 

Substitute for mHe: 0Heskinair =−−− wVggmVg ρρ  
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Solve for V: 
 ( )g

wgmV
Heair

skin

ρρ −
+

=  

 
Substitute numerical values and 
evaluate V: 

( )( )
( )( )( )

3

23

2

m0.70

m/s9.81kg/m0.17861.293
N750m/s9.81kg1.5

=

−
+

=V
 

 
(b) Apply ∑ = maFy to the balloon: amgmB tottot =−  

 
Solve for a: g

m
Ba −=
tot

 

 
Assuming that the mass of the skin 
has not changed and letting V′ 
represent the doubled volume of the 
balloon, express mtot: 
 

skinHe
load

skinHeloadtot

' mV
g

w
mmmm

++=

++=

ρ
 

Substitute numerical values and evaluate mtot: 
 

( )( ) kg118kg1.5m140kg/m0.1786
m/s9.81
N900 33

2tot =++=m  

 
Express the buoyant force acting on 
the balloon: 
 

gVwB 'airfluid displaced ρ==  

 

Substitute numerical values and evaluate B: 
 

( )( )( )
kN78.1

m/s9.81m140kg/m1.293 233

=
=B

 

Substitute and evaluate a: 22 m/s27.5m/s9.81
kg118
kN1.78

=−=a  

 
94 ••  
Picture the Problem When the hollow sphere is completely submerged but floating, it is 
in translational equilibrium under the influence of a buoyant force and its weight. The 
buoyant force is given by Archimedes’ principle and the weight of the sphere is the sum 
of the weights of the hollow sphere and the material filling its center. 
 
Apply ∑ = 0yF to the hollow sphere: 0=−wB  
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Express the buoyant force acting on 
the hollow sphere: 

( )[ ]
gR

gRgVB
3

03
64

3
3
4

0sphere0 222

πρ

πρρ

=

==
 

 
Express the weight of the sphere 
when it’s hollow is filled with a 
material of density ρ′: 

( ){ }[ ] [ ]
gR'gR

gR'gRR

gVgVw

3
3
43

03
28

3
3
433

3
4

0

hollowspherehollow0

2

'

πρπρ

πρπρ

ρρ

+=

+−=

+=

 

 
Substitute to obtain: 03

3
43

03
283

03
64 =−− gR'gRgR πρπρπρ  

 
Solve for ρ′: 

09' ρρ =  

 
*95 ••  
Picture the Problem We can differentiate the function P(h) to show that it satisfies the 
differential equation dP/P = −C dh and in part (b) we can use the approximation e−x ≈ 1 – 
x and ∆h << h0 to establish the given result. 
 
(a) Differentiate P(h) = P0 e−Ch: 

P

eP
dh
dP Ch

C

C 0

−=

−= −

 

 
Separate variables to obtain: 

dh
P

dP C−=  

 
(b) Express P(h + ∆h): ( ) ( )

( ) h

hh

hh

ehP

eeP

ePhhP

∆−

∆−−

∆+−

=

=

=∆+

C

CC
0

C
0

 

 
For ∆h  << h0: 1

0

<<
∆
h
h

 

 
Let h0 = 1/C. Then: 1C <<∆h  

and 

0

C 1C1
h
hhe h ∆

−=∆−≈∆−  

 
Substitute to obtain: 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∆
−=∆+

0

1
h
hhPhhP  
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(c) Take the logarithm of both sides 
of the function P(h): hP

ePePP hh

Cln
lnlnlnln

0

C
0

C
0

−=
+== −−

 

 
Solve for C: 

⎟
⎠
⎞

⎜
⎝
⎛=

P
P

h
0ln1C  

 
Substitute numerical values and 
evaluate C: 

1

02
1

0

km126.0

2ln
km5.5

1ln
km5.5

1C

−=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

P
P

 

 
96 ••  
Picture the Problem Let V represent the volume of the submarine and V ′ the volume of 
seawater it displaces when it is on the surface. The submarine is in equilibrium in both 
parts of the problem. Hence we can apply the condition for translational equilibrium 
(neutral buoyancy) to the submarine to relate its weight to the buoyant force acting on it. 
We’ll also use Archimedes’ principle to connect the buoyant forces to the volume of 
seawater the submarine displaces. Let upward be the positive y direction. 
 
(a) Express f, the fraction of the 
submarine’s volume above the 
surface when the tanks are filled 
with air: 
 

V
V'

V
V'Vf −=

−
= 1                  (1) 

 

Apply ∑ = 0yF to the submarine 

when its tanks are full of air: 
 

0=− wB  

Use Archimedes’ principle to 
express the buoyant force on the 
submarine in terms of the volume of 
the displaced water: 
 

V'gB swρ=  

Substitute and solve for V′: 

swρ
mV' =  

 
Substitute in equation (1) to obtain: 

V
mf
sw

1
ρ

−=  
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Substitute numerical values and 
evaluate f: ( )( )

%44.21044.2

m102.4kg/m101.025
kg102.41

2

3333

6

=×=

××
×

−=

−

f
 

 
(b) Express the volume of seawater in 
terms of its mass and density: sw

sw
sw ρ

mV =                             (2) 

 
Apply ∑ = 0yF , the condition for 

neutral buoyancy, to the submarine: 
 

0swsub =−− wwB  

Use Archimedes’ principle to express 
the buoyant force on the submarine in 
terms of the volume of the displaced 
water: 
 

VgB swρ=  

Substitute to obtain: 0swsubsw =−− gmgmVgρ  

 
Solve for msw: subswsw mVm −= ρ  

 
Substitute for Vsw in equation (2) to obtain: 
 sw

sub

sw

subsw
sw ρρ

ρ mVmVV −=
−

=  

Substitute numerical values and 
evaluate Vsw: 

3

33

6
33

sw

m5.58

kg/m101.025
kg102.4m102.4

=

×
×

−×=V
 

 
97 ••  
Picture the Problem While the loaded crate is under the surface, it is in equilibrium 
under the influence of the tension in the cable, the buoyant force acting on the gold, and 
the gravitational force acting on the gold. The empty crate has neutral buoyancy. When 
the crate is out of the water, the buoyant force of the air is negligible and the tension in 
the cable is the sum of the weights of the crate, the gold bullion, and the seawater. 
 
(a) Apply ∑ = 0yF to the crate 

while it is below the surface: 
 

0AuAu =−+ wBT  

Solve for the tension in the cable: 
 

AuAu BwT −=  

Using Archimedes’ principle, relate 
the buoyant force acting on the gold 

gVB AuswAu ρ=  
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to its density and volume: 
 
Substitute for BAu and simplify to obtain: 
 

( ) gVT AuswAu ρρ −=  

Substitute numerical values and evaluate T: 
( )[ ( )]( )( )( )( )( )

kN9.33

m/s9.81m0.5m0.75m1.4.360kg/m101.025kg/m1019.3 23333

=

×−×=T
 

 
(b) 1. Apply ∑ = 0yF to the crate 

while it is being lifted to the deck of 
the ship with none of the seawater 
leaking out: 
 

0swcrateAu =−−− wwwT  

Substitute for the weights of the gold, 
crate, and seawater and solve for the 
tension in the cable and express: ( )gVmV

gVgmgV
wwwT

swswcrateAuAu

swswcrateAuAu

swcrateAu

ρρ
ρρ

++=
++=

++=
 

 
Substitute numerical values and evaluate T: 
 

( )( )( )( )( )[ ( )
( )( )( )( )]( )

kN8.39

m/s9.81m0.5m0.75m1.40.64
kg/m101.025kg32m0.5m0.75m1.40.36kg/m1019.3

2

3333

=

×

×++×=T
 

 
2. With the seawater term missing, 
the expression for the tension is: 

( )gmV
gmgV

wwT

crateAuAu

crateAuAu

crateAu

+=
+=

+=

ρ
ρ  

 
Substitute numerical values and evaluate T: 
 

( )( )( )( )( )[ ]( ) kN1.36m/s9.81kg32m0.5m0.75m1.40.36kg/m1019.3 233 =+×=T  

 
98 •••  
Picture the Problem In the three situations described in the problem the hydrometer will 
be in equilibrium under the influence of its weight and the buoyant force exerted by the 
liquids. We can use Archimedes’ principle to relate the buoyant force acting on the 
hydrometer to the density of the liquid in which it is floating and to its weight. 
 
(a) Find the volume of the bulb: ( ) 33

6
13

6
1

bulb cm238.7cm4.2 === ππdV  
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Find the volume of the tube: ( ) ( )

2

2
4
12

4
1

tube

cm836.8

cm20cm75.0

=

== ππ LdV
 

 
Apply ∑ = 0yF to the hydrometer 

just floating in the liquid: 
 

0Pbhyd =−− gmwB  

 

Substitute for B and wglass: 0Pbglasshydliq =−− gmgmgVρ  

 
Solve for mPb: hydhydliqPb mVm −= ρ  

 
Substitute numerical values and 
evaluate mPb: 

( )
( )

g26.5

g28.7
cm8.836cm7.238

g/cm178.0
33

3
Pb

=

−
+×

=m

 

 
(b) Letting V represent the volume 
of the hydrometer that is submerged, 
apply ∑ = 0yF to the hydrometer 

just floating in the liquid: 
 

0w =− mgVgρ  

Solve for V: 

w

Pbhyd

w ρρ
mmmV

+
==  

 
Substitute numerical values and 
evaluate V: 

3
3 cm54.12

g/cm1
5.26g7.28

=
+

=V  

 
Relate the volume of the hydrometer 
that is submerged to the volume of 
the bulb and the volume of the tube 
that is submerged: 
 

bulb
2
tube4

1 Vh'dV += π  

Solve for h′: 
2
tube4

1
bulb

d
VVh'

π
−

=  

 
Substitute numerical values and 
evaluate h′: ( )

cm0.12
cm75.0

cm238.7cm54.12
2

4
1

33

=
−

=
π

h'  
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Find the length of the tube that shows 
above the surface of the water: cm8.00

cm12.0cm20'cm20

=

−=−= hh
 

 
(c) Apply ∑ = 0yF to the 

hydrometer floating in the liquid of 
unknown specific gravity: 
 

0hydLL =− gmgVρ  

 

Solve for the density of the liquid: 

L

hyd
L V

m
=ρ  

 
Express the volume of the displaced 
liquid: 
 

'2
tube4

1
bulbL hdVV π+=  

 

Substitute numerical values and 
evaluate VL: 

( )
( )

3

2
4
13

L

cm68.10
cm12.2cm20

cm75.0cm238.7

=

−×

+= πV
 

 
Substitute for VL and mhyd  and 
evaluate ρL: 

3
3L g/cm174.1

cm10.68
g12.54

==ρ  

 
Express and evaluate the specific 
gravity of the liquid: 

17.1gravityspecific
L

w
liquid ==

ρ
ρ

 

 
99 •••    
Picture the Problem We can apply Bernoulli’s equation to the top of the keg and to the 
spigot opening to determine the rate at which the root beer exits the tank. Because the 
area of the spigot is much smaller than that of the keg, we can neglect the velocity of the 
root beer at the top of the keg. We’ll use the continuity equation to obtain an expression 
for the rate of change of the height of the root beer in the keg as a function of the its 
height and integrate this function to find h as a function of time. 
 
(a) Apply Bernoulli’s equation to the 
beer at the top of the keg and at the 
spigot: 
 
 

2
2beer2

1

2beer2
2
1beer2

1
beer1

v

ghPvghP

ρ

ρρρ

+

+=++
 

or, because v1 ≈ 0, h2 = 0, P1 = P2 = Pat, and 
h1 = h, 

2
22

1 vgh =  

 
Solve for v2: ghv 22 =  
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(b) Use the continuity equation to 
relate v1 and v2: 
 

2211 vAvA =  

Substitute −dh/dt for v1: 
221 vA

dt
dhA =−  

 
Substitute for v2 and solve for dh/dt 
to obtain: 

gh
A
A

dt
dh 2

1

2−=  

 
(c) Separate the variables in the 
differential equation: 

dt
h

dh
g
AA

=−
2

21  

 
Express the integral from h′ = H to 
h and t′ = 0 to t: ∫∫ =−

th

H

dt'
h

dh'
g
AA

0

21

'2
 

 
Evaluate the integral to obtain: ( ) thH

g
AA

=−−
2

21  

 
Solve for h: 2

1

2 2
2 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= tg

A
AHh  

 
(d) Solve h(t) for the time-to-drain 
t′: g

H
A
At' 2

2

1=  

 
Substitute numerical values and 
evaluate t′ 

( )

min 46h 1

s1039.6
m/s81.9
m22

10
3

2
1

4
1

=

×== − A
At'
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