Chapter 14
Oscillations

Conceptual Problems
1 .
Determine the Concept The acceleration of an oscillator of amplitude A and frequency

f is zero when it is passing through its equilibrium position and is a maximum when it is

at its turning points.

When V = Vpgy: a= @

When X = Xy a=w'A=|47°f*A

2 .
Determine the Concept The condition for simple harmonic motion is that there be a linear
restoring force; i.e., that F = —kx. Thus, the acceleration and displacement (when they are
not zero) are always oppositely directed. v and a can be in the same direction, as can v and

X.

3 .
(a) False. In simple harmonic motion, the period is independent of the amplitude.

(b) True. In simple harmonic motion, the frequency is the reciprocal of the period which,

in turn, is independent of the amplitude.

(c) True. The condition that the acceleration of a particle is proportional to the
displacement and oppositely directed is equivalent to requiring that there be a linear
restoring force; i.e., F = —kx < ma = —kx or a = — (k/m)x.

*4 .
Determine the Concept The energy of a simple harmonic oscillator varies as the square
of the amplitude of its motion. Hence, tripling the amplitude increases the energy by a
factor of 9.

5 o0
Picture the Problem The total energy of an object undergoing simple harmonic motion
is given by E,, =1 KA’, where k is the stiffness constant and A is the amplitude of the

motion. The potential energy of the oscillator when it is a distance X from its equilibrium
position is U (X) =1kx?,
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Express the ratio of the potential U (X) _ %kx2 _ X’
energy of the object when it is 2 cm T B %kA2 A
from the equilibrium position to its

total energy:

Evaluate this ratio for X =2 cm and U (2 cm) B (2 (;m)2 1
A=4cm: E., (4cm) 4

U(2cm)  (2cm) 1

E,.. (4 crn)2 )

and| (@) 1s correct.

6 .
() True. The factors determining the period of the object, i.e., its mass and the spring
constant, are independent of the oscillator’s orientation.

(b) True. The factors determining the maximum speed of the object, i.e., its amplitude
and angular frequency, are independent of the oscillator’s orientation.

7 .

False. In order for a simple pendulum to execute simple harmonic motion, the restoring
force must be linear. This condition is satisfied, at least approximately, for small initial
angular displacements.

8 .
True. In order for a simple pendulum to execute periodic motion, the restoring force must
be linear. This condition is satisfied for any initial angular displacement.

*Q oo

Determine the Concept Assume that the first cart is given an initial velocity v by the
blow. After the initial blow, there are no external forces acting on the carts, so their
center of mass moves at a constant velocity v/2. The two carts will oscillate about their
center of mass in simple harmonic motion where the amplitude of their velocity is v/2.
Therefore, when one cart has velocity v/2 with respect to the center of mass, the other
will have velocity —v/2. The velocity with respect to the laboratory frame of reference
will be +v and 0, respectively. Half a period later, the situation is reversed; one cart will
move as the other stops, and vice-versa.

*10 oo
Determine the Concept The period of a simple pendulum depends on the reciprocal of
the length of the pendulum. Increasing the length of the pendulum will decrease its period
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and the clock would run slow.

1 -
True. The mechanical energy of a damped, undriven oscillator varies with time according
to E = Eoeft/ * where E, is the oscillator’s energy att = 0 and 7 is the time constant.

12 -
(@) True. The amplitude of the motion of a driven oscillator depends on the driving ()

and natural (a) frequencies according to A= F / \/ mz(a)o2 — a)z)2 +b’w* . When

@®= ax, the amplitude of the motion is a maximum and is given by A = F, / vb’e?®.

(b) True. The width of the resonance curve (A®) depends on the Q value according to
Aa)/ w, = 1/ Q . Thus when Q is large, Aw is small and the resonance is sharp.

13 -
Determine the Concept Examples of driven oscillators include the pendulum of a clock,
a bowed violin string, and the membrane of any loudspeaker.

14 -
Determine the Concept The shattering of a crystal wineglass is a consequence of the

glass being driven at or near its resonant frequency. | (&) is correct.

*15 o
Determine the Concept We can use the expression for the frequency of a spring-and-
mass oscillator to determine the effect of the mass of the spring.

If m represents the mass of the 1 k
object attached to the spring in a - E m
spring-and-mass oscillator, the

frequency is given by:

If the mass of the spring is taken 1 k
into account, the effective mass is - o M.
greater than the mass of the object

alone.

f 1 |k

Divide the second of these equations 1 k
by the first and simplify to obtain: f 2 M. / m
meff

T
2z7.\m
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Solve for f ' m

Because f' varies inversely with the square root of m, taking into account the

effective mass of the spring predicts that the frequency will be reduced.

16 e
Determine the Concept The period of the lamp varies inversely with the square root of
the effective value of the local gravitational field.

1. greater than T, when B. the train rounds a curve of radius R with
speed V.
2. less than T, when D. the train goes over the crest of a hill of

radius of curvature R with constant speed.

3. equal to To when A. the train moves horizontally with
constant velocity.

C. the train climbs a hill of inclination & at
constant speed.

17 e
. 1 |k .
Picture the Problem We canuse f = 2— W to express the frequencies of the two
V4
mass-spring systems in terms of their masses. Dividing one of the equations by the other
will allow us to express My in terms of Mg.

Express the frequency of mass- 1 k
spring system A as a function of its AT\ M N
mass:

Express the frequency of mass- f 1 k
spring system B as a function of its B oz M s
mass:

Divide the second of these equations fB M,

by the first to obtain: f_A A M B

Solve for My: f 2 f 2
My=| 5| Mp=| | Mg =4My
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and | (d)is correct.

18 e

Picture the Problem We can relate the energies of the two mass-spring systems through
either E =1kA’or E =1 M®’A® and investigate the relationship between their
amplitudes by equating the expressions, substituting for M4, and expressing A, in terms
of AB.

Express the energy of mass-spring E, =1k, Al =1M, 0, A}
system A:

Express the energy of mass-spring E, =1k, Al =1 M 0 A
system B:

Divide the first of these equations E. - IM, 0 A}

by the second to obtain: E, o M Ba)é Aé

B 2MBa)f\Ai B Za)iAi

Substitute for M4 and simplify: 1
My opA

Solve for Ax: A — Wy A,
=
20,

NG

Without knowing how @, and wg, or k, and
kg, are related, we cannot simplify this

expression further. | (d) is correct.

19 oo
Picture the Problem We can express the energy of each system using E =7 kA® and,

because the energies are equal, equate them and solve for Aa.

Express the energy of mass-spring E, =1k, A}
system A in terms of the amplitude of
its motion:

Express the energy of mass-spring E; = % kBAé
system B in terms of the amplitude

of its motion:
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: 1 2 _
Because the energies of the two sk AL =
systems are equal we can equate
them to obtain:

Solve for Ax: kB

Substitute for k, and simplify to k A,
obtain: Ay = ; Ay :T
: 2Ky 2

and | (b) is correct.

20 e
Picture the Problem The period of a simple pendulum is independent of the mass of its

bob and is given by T = 27,/L/g.

Express the period of pendulum A: L,
T, =27 |—

g

Express the period of pendulum B: L;
Ty =27 |—

g

Divide the first of these equations by the L, T, 2
second and solve for La/Lg: L_
B

Substitute for T, and solve for Lg to (ZT 2
. L = B
obtain: A

and | (C)1is correct.

Estimation and Approximation

21 e
Picture the Problem The Q factor for this system is related to the decay constant ¢
through Q = @,z = 277/T and the amplitude of the child’s damped motion varies with

t/27

time according to A = Aje™'"". We can set the ratio of two displacements separated by

eight periods equal to 1/e to determine 7 in terms of T.

Express Q as a function of z: 2rt
press Q 0= w7 =2 (1)



Oscillations 1045

The amplitude of the oscillations A=Age"*
varies with time according to:

The amplitude after eight periods is: A= Aoef(”ST V2
Express and simplify the ratio Ag/A: A Aﬁef(t+8T yze _ 4T
A Aoe—t/Zr
Set this ratio equal to 1/e and solve e el = r=4T
for z:
Substitute in equation (1) and 27 (4T) _
Q= =|8r
evaluate Q: T
*20 oo

Picture the Problem Assume that an average length for an arm is about 0.8 m, and that it
can be treated as a uniform stick, pivoted at one end. We can use the expression for the
period of a physical pendulum to derive an expression for the period of the swinging arm.
When carrying a heavy briefcase, the mass is concentrated mostly at the end of the pivot
(i.e., in the briefcase), so we can treat the arm-plus-briefcase as a simple pendulum.

(a) Express the period of a uniform I
rod pivoted at one end: T=27n|——
P MgD
where | is the moment of inertia of the
stick about an axis through one end, M is
the mass of the stick, and D (= L/2) is the

distance from the end of the stick to its
center of mass.

Express the moment of inertia of the | =1 M L2

stick with respect to an axis through

its end:

Substitute the values for | and D to Ve

find T: T=2x &zzﬂ' &
Mg(} L) 39

Substitute numerical values and 2(0.8 m)

evaluate T: T=2x 7—) =|1.47s
3(9.81m/s?
L
g

(b) Express the period of a simple
pendulum: T'=2r

where L' is slightly longer than the arm
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length due to the size of the briefcase.

Assuming L' = 1 m, evaluate the Im
iod of the simple pendulum: T =27 | ——— =|2.01s
pene 9.81m/s’

From observation of people as they walk, these estimates seem reasonable.

Simple Harmonic Motion

23 e
Picture the Problem The position of the particle is given by X = Acos(a)t +0 ) where A

is the amplitude of the motion, @ is the angular frequency, and J is a phase constant.

(@) Use' the definition of @ to fo9 67rs” _[3.00Hz
determine f: 2r 27m

(b) Evaluate the reciprocal of the T = 1 _ 1 -1 0.333s
frequency: f 3.00Hz

(c) Compare X = (7 cm) cos 6t to A=|7.00cm

x = Acos(ot+6):

(d) x=0 when coswt=0:

Solve for t: t= T 0.0833s

Differentiate X to find v(t): V= i [(7 cm)cos 67zt]
dt

= —(427z cm/s)sin 6rt

Evaluate v(0.0833 s):

v(0.0833s) = (427 cm/s)sin 67(0.08335) < 0

Because v < 0, the particle is moving in the negative direction att =0.0833 s.

24 o
Picture the Problem The initial position of the oscillating particle is related to the
amplitude and phase constant of the motion by X, = Acoso where 0 < §<27.



(a) For xo =0:
(b) For xo =-A:
(c) For xo = A:

(d) When x = A/2:

*25 o
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coso =0

and

d=cos'0= £,3l
2 2

— A= Acosd

and

S=cos'(-1)=|x

A= Acoso

and

§=cos'(1)= @

= Acoso

N | >

and

5 =cos™” {lj =
2

Wy

Picture the Problem The position of the particle as a function of time is given
by X = ACOS(a)t + 5). Its velocity as a function of time is given by V= —A® Sin(a)t + 5)

and its acceleration by a = —A@’ Cos(a)t +0 ) The initial position and velocity give us

two equations from which to determine the amplitude A and phase constanto.

(a) Express the position, velocity,
and acceleration of the particle as a
function of t:

Find the angular frequency of the
particle’s motion:

Relate the initial position and
velocity to the amplitude and phase
constant:

Divide these equations to eliminate
A

x = Acos(at + &) (1)
vV =—Awsin(at +5) (2)
a=—Aw’ cos(wt + ) 3)

_27 AT i 49s
T
X, = Acoso
and
V, = —wAsino

X, Acoso
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Solve for ¢ and substitute numerical 1 v, O 0
. o=tan | ——— |=tan | ——— |=0
values to obtain: X,

Substitute in equation (1) to obtain: ¥ = (2 s Cm)cos[( 4T7r g j t}

= (25 cm)cosl(4. 1957 )tJ

(b) Substlmte in equation (2) to v _(25 cm{4—ﬂs_l j sinH4—ﬂs_l jt}
obtain: 3 3

=| —(105 cm/s)sin[(4.19s_l)tj
(c) Substitute in equation (3) to obtain: 4r ? Ar

a:—(250m —s | cos|| —s |t
3 3

= —(439cm/s2)cosl(4.l9s‘l)tJ

26 -

Picture the Problem The maximum speed and maximum acceleration of the particle in

are givenby V= Aw and @, = A@’. The particle’s position is given by

X = Acos(a)t + 5) where A=7 cm, o= 675", and & =0, and its velocity is given by
vV =—Awsin(at +5).

(2) Express Vi, in terms of A and w: V.. =Aw= (7 cm)(67z sfl)

=427rcm/s=|1.32m/s

(b) Express amay in terms of A and @: a_ =Aw’ = (7 cm)(6iz g! )2

=252z cm/s* =| 24.9m/s’

(c) When x=0: cosaot =0
and
-1 T 372'
ot=cos” 0=—,—
2 2
T (7
Evaluate v at ot = 5 : v=—Aw sm(zj =-Aw

i.e., the particle is moving to the left.



RY/4
Evaluate v at ot = 7 :

Solve for t:

27 oo
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V=—Aw sin(%[j =Aw

i.e., the particle is moving to the right.

3z 3z

t=—= =10.250s
2w 2‘67zs4i

Picture the Problem The position of the particle as a function of time is given by
X = Acos(a)t +0 ) Its velocity as a function of time is given by V= —A® sin(a)t +0 )

and its acceleration by a = —Aw’ Cos(a)t +0 ) The initial position and velocity give us

two equations from which to determine the amplitude A and phase constant 6.

(a) Express the position, velocity,
and acceleration of the particle as
functions of t:

Find the angular frequency of the
particle’s motion:

Relate the initial position and
velocity to the amplitude and phase
constant:

Divide these equations to eliminate
A

Solve for &

Substitute numerical values and
evaluate ¢o:

Use either the X, or vy equation (X, is
used here) to find the amplitude:

Substitute in equation (1) to obtain:

x = Acos(at +6) (1)
vV =—Awsin(at +5) (2)
a=-Ao’cos(wt+5)  (3)

a):z—ﬂ=4—7rs*1 =4.19s""
T 3

X, = Acoso

and

V, = —wAsin o

vV, —wAsind

L= — =-—@tan§

X, Acosod

5= tan| -2 ]
X, @

5= tan”| — 50cm/s _
(25cm)4.192s7)

=—0.445rad
A=K BM_pr7em

" coss cos(—0.445rad)

x =| (27.7cm)cos|(4.1957 Jt —0.445]
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(b) Substitute in equation (2) to obtain: V= _(27.7 cm{ 4_7[ Slj

X sin{[%{sljt - 0.445}

= | —(116cm/s)sin|(4.19s7 )t —0.445]

(c) Substitute in equation (3) to obtain:

dr : dr
a=—(27.7cm TS cos TS t—0.445

=| —(486cm/s” Jeos|(4.195 7' Jt—0.445]

28 e
Picture the Problem The position of the particle as a function of time is given
by X = ACOS(a)'[ +0 ) We’re given the amplitude A of the motion and can use the initial

position of the particle to determine the phase constant 6. Once we’ve determined these
quantities, we can express the distance traveled AX during any interval of time.

Express the position of the particle X= (12 cm)cos(a)t +0 ) 1)
as a function of t:

Find the angular frequency of the _ 2_7T _ 2_7T _r g
particle’s motion: T 8 4
Relate the initial position of the X, = Acoso
particle to the amplitude and phase
constant:

: X 0 7«
Solve for ¢ S=cos' 2 —cos' ~ =T

A A 2

Substitute in equation (1) to obtain: . (12 CIH)COS{[% s_ljt N %}



Express the distance the particle
travels in terms of ty and t;:

(a) Evaluate Ax fort;=2s,t;=1s:

(b) Evaluate Ax fort;=4s,t;=2s:

(c) Evaluate Ax fort;=1s,t;=0:
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AX =

(lZcm)cosK%S—l)tf +ﬂ
el
(zeme 5 5]

w73
(5 Jeor5]

=|(12cm){o -1}
=|12.0cm

sefaenfef ()]
{5 on5]

=|(12cm){-0.7071- 0}
=|8.49cm
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(d) Evaluate Ax fort;=2s,t;=1s:

29 oo

AX =

(2emfeod (257 )51
o 33

(12em){-1+0.7071]

3.51cm

Picture the Problem The position of the particle as a function of time is given
by X = (10 Cm)cos(a)t +0 ) We can determine the angular frequency o from the period

of the motion and the phase constant ¢ from the initial position and velocity. Once we’ve

determined these quantities, we can express the distance traveled AX during any interval

of time.

Express the position of the particle
as a function of t:

Find the angular frequency of the
particle’s motion:

Find the phase constant of the
motion:

Substitute in equation (1) to obtain:

(a) A graph of

X = (IOCm)cosK%sljt} is

shown to the right:

x = (10cm)cos(at + ) (1)
_2m _2m_7m o
T 8 4

X = (IOCm)cosH%s_l H

X (cm)

o
5

=
15}

o & A v o N » o ®

t(s)

(b) Express the distance the particle travels in terms of t; and t;:
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Ax =|(10 cm)cos{(%s_ljtf} - (lOcm)cosK%s_ljti}

- @)
=[10emN cos| [ Zs7 |t, [—cos| | Zs7 |t
4 4 i

Substitute numerical values in tr |t AX
equation (2) and evaluate AX in each (s) | (s) | (cm)
of the given time intervals to obtain: 110 2.93

21 111707

312 (707

4131293

*30 oo
Picture the Problem We can use the expression for the maximum acceleration of an
oscillator to relate the 10g military specification to the compliance frequency.

Express the maximum acceleration a_ =Aw’
of an oscillator:

Express the relationship between = 27f
the angular frequency and the
frequency of the vibrations:

Substitute to obtain: a,, =47’ Af’
Solve for f: fo 1 Ja,,.
AN
Substitute numerical values and 1 98.1m/s>
. =— | —————  =|129Hz
evaluate f: 27\1.5x107 m
31 oo

Picture the Problem The maximum speed and acceleration of the particle are given by
V... = Aw anda,_, = Aw’. The velocity and acceleration of the particle are given by

v=—Awsinwt and a = —Aw* cos at.
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(a) Find Vy,, from A and w:

Find a,,x from A and w:

(b) Use the equation for the position
of the particle to relate its position at
X = 1.5 m to the time t'to reach this
position:

Solve for 7z t':

Evaluate v when zt= 7t

Evaluate a when 7t = #t':

*32 oo

Vo = Ao =(2.5m)zs)

max

=| 7.85m/s

Ao’ =(2.5 m)(;z' s )2
=| 24.7m/s’

s}
I

1.5m = (2.5m)cos t'

' =cos 0.6 =0.9273rad

v=—(2.5m)zs" )sin(0.9273 rad)
=| —6.28m/s

where the minus sign indicates that the
particle is moving in the negative direction.

a=-(25 m)(;r s )2 c0s(0.9273rad)
=| -14.8m/s’

where the minus sign indicates that the
particle’s acceleration is in the negative
direction.

Picture the Problem We can use the formula for the cosine of the sum of two angles to
write X = Ay cos(at + 0) in the desired form. We can then evaluate X and dx/dt at t =0 to
relate A, and A, to the initial position and velocity of a particle undergoing simple

harmonic motion.

(a) Apply the trigonometric identity
cos(at + &) = cos wt cos § —sin wtsin &
to obtain:

x = A, cos(awt +5) = A [cos wtcos S
—sin otsin 5]
= —A, sino'sin ot

+ A, cosd cos wt

=| Asinat + A coswt

provided

A =-Ajsindoand A = A cosd
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(b) Att=0: x(0)=| Ajcosd = A,
Evaluate dx/dt:
valuate ax V:%:%[Assina)t+Accosa)t]

= Awcoswt — A wsin ot

Evaluate v(0) to obtain: V(0) = wA, =| — A sino

Simple Harmonic Motion and Circular Motion

33 -
Picture the Problem We can find the period of the motion from the time required for the
particle to travel completely around the circle. The frequency of the motion is the

reciprocal of its period and the X-component of the particle’s position is given
by X = Acos(at + 5).

(b) Use the definition of speed to T = 27 _ 27?(0-4 m) —[3 145
find the period of the motion: v 0.8m/s
1 1
(a) Because the frequency and the fo -[0318Hz
period are reciprocals of each other: T 3.14s
(c) Express the X component of the X= Acos(a)t +0 )
position of the particle:
Assuming that the particle is on the A=Acosd= S=cos'1=0

positive X axis at time t = 0:

Substitute for A, w, and Jto obtain: X= ACOS(Zﬂft)
= | (40cm)cos|(2s7' )t

*34
Picture the Problem We can find the period of the motion from the time required for the
particle to travel completely around the circle. The angular frequency of the motion is 27

times the reciprocal of its period and the X-component of the particle’s position is given
by X = Acos(at + 5).

(a) Use the definition of speed to V= 2nr _ 2 (15 Cm)
express and evaluate the speed of T 3s

=|31.4cm/s

the particle:
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b) E th 1 locity of 2 2
(b) xp?ess e angular velocity o a):_ﬂ': —ﬂrad/s
the particle: T 3
(c) Express the X component of the x = Acos(at + )
position of the particle:
Assuming that the particle is on the A=Acosd= S=cos'1=0

positive X axis at time t = 0:

Substitute to obtain:
x=|(15 cm)cos[%Z sljt

Energy in Simple Harmonic Motion

35 -
Picture the Problem The total energy of the object is given by E , =+ kA”, where A is

the amplitude of the object’s motion.

Express the total energy of the E, =1kA?
system:
Substitute numerical values and E, = %(4 5 kN/m)(O. 1 m)2 =1 225]

evaluate E:

36 -
Picture the Problem The total energy of an oscillating object can be expressed in terms
2

Its

of its kinetic energy as it passes through its equilibrium position: E_, =+mv; .
maximum speed, in turn, can be expressed in terms of its angular frequency and the

amplitude of its motion.

Express the total energy of the E=1mv

2 max

object in terms of its maximum
kinetic energy:

EXpress Vimax: V... = Ao =27Af

Substitute to obtain: E=1 m(27rAf )2 =2mA’zf?
Substitute numerical values and E = 2(3 kg)(O. 1 rn)2 2 (2.4 s )2
evaluate E:

=13.41]
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37 e
Picture the Problem The total mechanical energy of the oscillating object can be

expressed in terms of its kinetic energy as it passes through its equilibrium position:
E. =imv

o =5 MV . Its total energy is also given by E_ = LKA?. We can equate these
expressions to obtain an expression for A.

tot — 2

(a) Express the total mechanical E=Imv,,
energy of the object in terms of its
maximum kinetic energy:
Substitute numerical values and E= %(1 5 kg)(0.7 m/s)2 =|0.368]
evaluate E:
(b) Express the total energy of the E.,= % kA*
object in terms of the amplitude of
its motion:
Solve for A: Ao 2E,,
k

Substitute numerical values and 2(0.368]

ac [H0368) o
evaluate A: 500 N/m
38

Picture the Problem The total energy of the oscillating object can be expressed in terms
of its kinetic energy as it passes through its equilibrium position: E , =+ mv‘fm. Its total

energy is also given by E,, =1 KA’. We can solve the latter equation to find A and solve

the former equation for Vpy.

(a) Express the total energy of the Eo =2 KA’
object as a function of the amplitude
of its motion:

Solve for A: Ao 2E,,
k
Substitute numerical values and
A= M =|3.00cm
evaluate A: 2000 N/m
(b) Express the total energy of the Ew =7 mv2
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object in terms of its maximum

speed:
Solve for Viy: 2E

Vmax — tot

m
Substitut ical val d
ubstitute numerical values an v = 2 0-9J) =1 0.775m/s

evaluate Vi, - 3k
39 -

Picture the Problem The total energy of the object is given by E_, =5 kA*. We can
solve this equation for the force constant k and substitute the numerical data to determine
its value.

Express the total energy of the Eoi =2 kA?

oscillator as a function of the
amplitude of its motion:

Solve for k: Kk = 2E,,
= —A2
Substitute numerical values and Kk — 2(1 4] ) _ = 1 38KkN/m
evaluate k: (().045 m)
*40 oo

Picture the Problem The total energy of the object is given, in terms of its maximum

2
max *

kinetic energy by E,, = % mv We can express Vpax in terms of A and @ and, in turn,

express @ in terms of &, to obtain an expression for Ey in terms of 8.
Express the total energy of the E, =1imv
object in terms of its maximum

kinetic energy:

Relate the maximum speed of the Vou = A
object to its angular frequency:

Substitute to obtain: E =

Relate the maximum acceleration of a  =Aw’
the object to its angular frequency:
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a
a)Z ‘max
A
Substitute and simplify to obtain: E. =imA’ an:X —1mAa,_.
Substitute numerical values and Eo =3 (3kg)0.08 m)(3 50m/s’ )
evaluate E: _[0.4207
Springs
41 -

. : 1
Picture the Problem The frequency of the object’s motion is given by f = 2—1/ k/m.
V4

Its period is the reciprocal of its frequency. The maximum velocity and acceleration of an
object executing simple harmonic motion are V,, = Aw and a_, = A’ , respectively.

(a) The frequency of the motion is f 1 |k
given by: “ox\m
Substitute numerical values and
fo L [4SKNm o

evaluate f: 27\ 2.4kg

. . . 1 1
(b) The period of the motion to is T-__ —=[0.1455
the reciprocal of its frequency: f  6.89s
(c) Because the object is released A=10.100m

from rest after the spring to which it
is attached is stretched 10 cm:

(d) Express the object’s maximum Voo = A = 278A
speed:

27(6.895™)(0.1m) =[ 4.33m/s

Substitute numerical values and Y

evaluate V.

(e) Express the object’s maximum a =Aw =wv__ =27
acceleration:
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Substitute numerical values and A = 277(6.89 s )(4.33 m/s)
evaluate 8y — 187 m/s?

(f) The object first reaches its t=1T = %(() 145 s) =|36.3ms
equilibrium when:

Because the resultant force acting a= @

on the object as it passes through its
equilibrium point is zero, the
acceleration of the object is:

42 o
: : o 1
Picture the Problem The frequency of the object’s motion is given by f = 2—«/ k/m.
T

Its period is the reciprocal of its frequency. The maximum velocity and acceleration of an

object executing simple harmonic motionare V_, = A® and @ = Aw’, respectively.

max

(a) The frequency of the motion is f 1 |k
given by: B E E

Substitute numerical values and 1 [700N/m

=— =| 1.88Hz
evaluate f: 20 5kg

(b) The period of the motion is the T = l _ 1 0531s

reciprocal of its frequency: f 1.88s™

(c) Because the object is released A=|0.0800m
from rest after the spring to which it

is attached is stretched 8 cm:

(d) Express the object’s maximum V... = Ao =27A
speed:

Substitute numerical values and V. = 2;;(1_88 g )(()_08 m) =1 0.945m/s

ma:
evaluate V.

(e) Express the object’s maximum a =Aw =ov__ =2dv
acceleration:
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Substitute numerical values and A = 272(1 88s™ )(0.945 m/ s)
evaluate 8y 11 2m/s

(f) The object first reaches its t=1T =1(0.531s)=] 0.133s
equilibrium when:

Because the resultant force acting a= @

on the object as it passes through its
equilibrium point is zero, the
acceleration of the object is:

43 o
Picture the Problem The angular frequency, in terms of the force constant of the spring
and the mass of the oscillating object, is given by o = k/ M. The period of the motion is

the reciprocal of its frequency. The maximum velocity and acceleration of an object

executing simple harmonic motion are V. = Aw and a_,_ = Aw’, respectively.

max

(a) Relate the angular frequency of o = h
the motion to the force constant of m
the spring: or

k=mw®=47"f*m

Substitute numerical values to k = 472 (2_4 g )2 (3 kg) =| 682 N/m
obtain:
. . 1 1
(b) Relate the period of the motion T=o_._ _= 04175
to its frequency: f  24s
(c) Express the maximum speed of Vo = Ao = 2720A
the object:

Substitute numerical values and v

27(2.457)(0.1m) =] 1.51m/s

max

evaluate V.

(d) Express the maximum a, =Ao’ =47 f’A
acceleration of the object:

Substitute numerical values and a  =4r* (2_4 g )2 ((). 1 m) =|22.7m/s>
evaluate a,:
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*44 o

Picture the Problem We can find the frequency of vibration of the car-and-passenger

1

system using f =— M, where M is the total mass of the system. The spring

27

constant can be determined from the compressing force and the amount of compression.

Express the frequency of the car-
and-passenger system:

Express the spring constant:

Substitute to obtain:

Substitute numerical values and
evaluate f:

45

o bk
27 \ M
_F_mg
AX  AX

where m is the person’s mass.

_ 1 | mg
27\ MAX

1 \/ (85kg)(9.81m/s?)
(

" 27\ (2485kg)(2.35%10 > m)
=[0.601Hz

Picture the Problem We can relate the force constant k to the maximum acceleration by

. . 2 2 2
eliminating @™ between @” = k/ manda, = Aw . We can also express the frequency f

of the motion by substituting Ma./A forkin f =—_ [—

(a) Relate the angular frequency of
the motion to the force constant and
the mass of the oscillator:

Relate the object’s maximum
acceleration to its angular frequency
and amplitude and solve for the
square of the angular frequency:

Substitute to obtain:

1 |k
2z \m’
o = 5 ork = @’m
m
a_. =Aw’
or
a
0)2 — max 1
A (1)
k — mamax



Substitute numerical values and
evaluate k:

(b) Replace w in equation (1) by 2 zf
and solve for f to obtain:

Substitute numerical values and
evaluate f:

(c) The period of the motion is the
reciprocal of its frequency:

46
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2
_ (45 kg)(zim/s ) 3.08kN/m
3.8x10" m
f:L a'max
2 A
2
J L2t TeHs
27\ 3.8x107 m
T=2- 1 02405
f 4.16s

Picture the Problem We can find the frequency of the motion from its maximum speed

and the relationship between frequency and angular frequency. The mass of the object

can be found by eliminating o between @” =k/m and v = Aw.

(b) Express the object’s maximum
speed as a function of the frequency
of its motion:

Solve for f:

Substitute numerical values and
evaluate f:

(a) Relate the square of the angular
frequency of the motion to the force
constant and the mass of the object:

Eliminate @ between equations (1)
and (2) to obtain:

Substitute numerical values and
evaluate m:

(c) The period of the motion is the
reciprocal of its frequency:

V... = Ao =272A (1)
¢ Vo
27A

o 2204y

~ 27(5.8x102 m)

a)2=%:> m:% )
kA
m—v2

1.8x10° N/m)(5.8x102 m)’
o ) )
(2.2m/s)

1.25kg

T=1__ 1 _Tote6s
f 6.04s
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47 oo
Picture the Problem The maximum speed of the block is given by V. = A® and the

angular frequency of the motion is @ = k/ m = 5.48rad/s . We’ll assume that the

position of the block is given by X = Acos wt and solve for «t for x =4 cm and x = 0. We
can use these values for @t to find the time for the block to travel from X =4 cm to its
equilibrium position.

(a) Express the maximum speed of V.. =Ao
the block as a function of the
system’s angular frequency:

Substitute numerical values and Vi = (0.08 m)(5.48 rad/s)
evaluate V. _[0438m/s

(b) Assuming that X = Acos wt,

A 41
—=Acoswt = ot =cos™ —
evaluate at for X =4 cm = A/2: 2 2

Evaluate v for ot = 7/3: V=V, sinat = (0438 ms)sin”

= (O.438m/s)§ =10.379m/s

Express a as a function of V., and a=Aw’cosat = V. @cos ot
w:
Substitute numerical values and 4= (O. 438m /S) (5' 48rad /S)COS T
evaluate a:
=|1.20m/s*

(c) Evaluate ot for x = 0: 0= Acos at = ot = cos™ 0 :%

Let At = time to go from @t =7/3 to a)At—Z—Z—E

ot =7/2 . Then: 2 3 6

Solve for and evaluate At: Af = T T —195 5ms
6w  6(5.48rad/s)
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*48 e
Picture the Problem Choose a coordinate system in which upward is the positive y
direction. We can find the mass of the object using m = k/ ®” . We can apply a condition

for translational equilibrium to the object when it is at its equilibrium position to
determine the amount the spring has stretched from its natural length. Finally, we can use
the initial conditions to determine A and J and express X(t) and then differentiate this
expression to obtain Vv(t) and a(t).

(a) Express the angular frequency of L k
the system in terms of the mass of m w
the object fastened to the vertical

spring and solve for the mass of the

object:
Express ' in terms of f: o =47 f?
Substitute to obtain: m = k
A4r*f?
Substitute numerical values and _ 1800N/m 151k
= . o\ LL2iKke
evaluate m: 4;;2(5'5 s‘l)
(b) Letting AX represent the amount kAX-mg =0
the spring is stretched from its
natural length when the object is in
equilibrium, apply z F, =0 to the
object when it is in equilibrium:
Solve for Ax: AX = mg
k
Substitute numerical values and Ax = (1 Sl kg)(9.8 1m/s” ) _823mm
evaluate AX: 1800 N/m
(c) Express the position of the object x = Acos(at + &)

as a function of time:

Use the initial conditions
(Xo =-2.5 cm and vy = 0) to find &:

V,
S=tan'| ——> |=tan'0=r
WX,
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Evaluate w:

Substitute to obtain:

Differentiate x(t) to obtain v:

Differentiate v(t) to obtain a:

49 oo

\/7 ’1800N/m = 34.5rad/s
l. 51kg

=(2.5cm) cos (34.5rad/s t+7z]

=| —(2.5cm)cos|(34.5rad/s)t]

v=| (86.4cm/s)sin[(34.5rad/s)t]

a=|(29.8m/s? Jcos|(34.5rad/s)t]

Picture the Problem Let the system include the object and the spring. Then, the net
external force acting on the system is zero. Choose E; = 0 and apply the conservation of

mechanical energy to the system.

Express the period of the motion in
terms of its angular frequency:

Apply conservation of energy to the
system:

Substitute for U, and Ugpyying:

Solve for & = k/m:

Substitute numerical values and
evaluate @’

Substitute in equation (1) to obtain:

50 [T}

T=""2 (1)
w

E. =E;or 0:Ug+U

spring

0=-mgAx +Lk(Ax)’

0)2:£:_g
m AX
2
o’ :i—” 9'81m{25 = 574rad/s?
3.42x107m
T2 _T0262s

/574 rad/s’?

Picture the Problem Let the system include the object and the spring. Then the net
external force acting on the system is zero. Because the net force acting on the object

when it is at its equilibrium position is zero, we can apply a condition for translational

equilibrium to determine the distance from the starting point to the equilibrium position.

Letting E; = 0, we can apply conservation of energy to the system to determine how far

down the object moves before coming momentarily to rest. We can find the period of the
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motion and the maximum speed of the object from T =27z,/m/k and v, = Ak/m.

(a) Apply Z F, =0 to the object ky, —mg =0
when it is at the equilibrium
position:
Solve for Y: _mg

Yo=—7"

k
Substitut ical val d 1kg)(9.81m/s’
ubstitute numerical values an 0 :( g)( s ): 3.92cm

evaluate Yo: 250 N/m
(b) Apply conservation of energy to E =E
the system: or

0=U, +U_ .
Substitute for Uy and Ugpring: 0 =-mgy, +1ky;
Solve for ys: _2mg

Yo =——

k
Substitut ical val d 2(1kg)(9.81m/s?
ubstitute numerical values an - ( g)( S )= 7 350m

evaluate Yy 250 N/m
(c) Express the period T of the T m
motion in terms of the mass of the i K

object and the spring constant:

Substitute numerical values and lkg
] T=2n |———— =| 0.397s
evaluate T: 250 N/m

d) The object will be moving with k
(d) ] g v = Aw=A K

its maximum speed when it reaches max m

its equilibrium position:

Substitute numerical values and 2
v, =(3.92cm) [220N/m

evaluate V. kg

=|62.0cm/s




1068 Chapter 14

(e) The time required for the object to t= %T = %(0,397 5) =199.3ms
reach equilibrium is one-fourth of its

period:

51 e
Picture the Problem The stunt woman’s kinetic energy, after 2 s of flight, is
K,,=1% mvj .- We can evaluate this quantity as soon as we know how fast she is moving

after two seconds. Because her motion is oscillatory, her velocity as a function of time is
V(t) =-Aw Sin(a)t +0 ) We can find the amplitude of her motion from her distance of

fall and the angular frequency of her motion by applying conservation of energy to her
fall to the ground.

Express the kinetic energy of the Ky=1 mv;, (D)

stunt woman when she has fallen for

2s:

Express her velocity as a function of V(t) =-Aw Sin(a)'[ +0 )

time: where 0= 0 (she starts from rest with
positive displacement) and
A=1(192m)=96m
~V(t)=—(96m)wsin(at)  (2)

Letting E; = 0, use conservation of 0=U . T U asiic

energy to find the force constant of or

the elastic band: 0=-mgh +%kh2 =0

Solve for k: K = 2mg

h
Substitut ical val d 2(60kg)(9.81m/s’
ubstitute numerical values an K = ( g)( m/s )=6.13N/m

evaluate k: 192m

Express the angular frequency of k

her motion: @= m

Substitut ical val d
ubstitute numerical values an o= m —0.3207ad/s
evaluate w: 60kg



Substitute in equation (2) to obtain:

Evaluate v(2 s):

Substitute in equation (1) and
evaluate K(2 s):

*52 e

Picture the Problem The diagram shows
the stretched bungie cords supporting the
suitcase under equilibrium conditions. We

1 [k
canuse f =— =T to express the
27V M

frequency of the suitcase in terms of the
effective "spring” constant K¢ and apply a
condition for translational equilibrium to
the suitcase to find K.

Express the frequency of the
suitcase oscillator:

Apply z F, =0 to the suitcase to

obtain:

Solve for ke to obtain:

Substitute to obtain:

Substitute numerical values and
evaluate f:
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v(t) = —(96m)0.320rad/s)
x sin[(0.320rad/s )t]
= (30.7m/s)sin[(0.320 rad/s)t]

v(2s)=(30.7m/s)sin[(0.320rad/s)(2s)]
=18.3m/s

K(2s)=1(60kg)(18.3m/s)’ =| 10.1kJ

kx

kx

AR AAAAA AR
=
ANNARNUARAARUARRURRAARRARN
=

N
K\

b
'

Mg

R L
27V M

kx+kx—Mg=0

or

2kx — Mg =0
or

KpX—Mg =0
where K. = 2k

_Mg

eff

1 [9.81m/s®

=— 2.23Hz
2\ 0.05m
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53 e

Picture the Problem The frequency of the motion of the stone and block depends on the
force constant of the spring and the mass of the stone plus block. The force constant can
be determined from the equilibrium of the system when the spring is stretched
additionally by the addition of the stone to the mass. When the block is at the point of
maximum upward displacement, it is momentarily at rest and the net force acting on it is

its weight.
(a) Express the frequency of the ¢ 1 k
motion in terms of k and m: e m,,
where My is the total mass suspended from
the spring.
Apply Z F, =0 to the stone when kAy-mg =0
it is at its equilibrium position:
Solve for k: K= Md
Ay
Substitute numerical values and K = (0.03 kg)(9.8 1m/ sz) _ 5.80N/m
evaluate k: 0.05m
Substitute and evaluate f: 1 .
_ L [389Nm oo,
27\ 0.15kg
(b) The time to travel from its lowest t=1T = I 1 0502
=11 =—= =10.502s
point to its highest point is one-half its ? 2f 2‘0.997 s ’
period:
(C) When the stone is at a point of F.=Mmg= (0.03 kg)(9.8lm/sz)
maximum upward displacement: ~[0204N

54 e
Picture the Problem We can use the maximum acceleration of the oscillator
A = Aw’to eXpress amax in terms of A, k, and m. k can be determined from the

equilibrium of the system when the spring is stretched additionally by the addition of the
stone to the mass. If the stone is to remain in contact with the block, the block’s
maximum downward acceleration must not exceed g.



Express the maximum acceleration
in terms of the angular frequency
and amplitude of the motion:

Relate &’ to the force constant and
the mass of the stone:

Substitute to obtain:

Apply z F, =0 to the stone when
it is at its equilibrium position:
Solve for k:

Substitute numerical values and
evaluate k:

Substitute numerical values to
eXPress amax in terms of A:

Set anax = g and solve for Ay

Substitute for g and evaluate A

55 oo
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a’max = Aa)z
o’ =£
m
a’max = Ak
m
kAy —mg =0
k="9
Ay
2
0.05m
= AN (53 )0
0.15kg
g
s 393572
9.81m/s>
=227 _|25.0cm
A 39357

Picture the Problem The maximum height above the floor to which the object rises is
the sum of its initial distance from the floor and the amplitude of its motion. We can find

the amplitude of its motion by relating it to the object’s maximum speed. Because the

object initially travels downward, it will be three-fourths of the way through its cycle

when it first reaches its maximum height. We can find the minimum initial speed the

object would need to be given in order for the spring to become uncompressed by

applying conservation of energy.

(a) Relate h, the maximum height
above the floor to which the object
rises, to the amplitude of its motion:

h=A+50cm (1)
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Relate the maximum speed of the
object to the angular frequency and
amplitude of its motion and solve
for the amplitude:

Using its definition, express and
evaluate the force constant of the
spring:

Substitute numerical values in
equation (2) and evaluate A:

Substitute in equation (1) to obtain:

(b) Express the time required for the
object to reach its maximum height
the first time:

Express the period of the motion:

Substitute numerical values and
evaluate T:

Substitute to obtain:

(c) Because h < 8.0 cm:

Using conservation of energy and
letting U, be zero 5 cm above the
floor, relate the height to which the
object rises, Ay, to its initial kinetic
energy:

Because Ay =L -V, :

V. =Aw

max

or

m
A=V [— 2
Vmax k ( )

mg _ (2kg)0.81ms?)

K = = 654 N/m
Ay 0.03m
A=03m/ss |— 258 _166cm
N/m

h=1.66cm+5.00cm=| 6.66cm

t=%T

T=2x m
K

T2z |- 2K& 03475
654 N/m

t=23(0.347s)=| 0.261s

the spring is never uncompressed.

AK+AU, +AU_ =0

or, because K;=U; =0,

1mv? —mgAy +Lk(ay)
-3 (L - yi)2 =0

1mv; —mgay +Lk(Ay) —1k(ay) =0

and
Imv’ —mgAy =0



Solve for and evaluate v; for

Ay =3 cm:

*5G oo
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v, = /2gAy = /2(9.81m/s* (3 cm)
=0.767m/s

i.e., the minimum initial velocity that must

be given to the object for the spring to be
uncompressed at some time is

0.767m/s

Picture the Problem We can relate the elongation of the cable to the load on it using the
definition of Young’s modulus and use the expression for the frequency of a spring and

mass oscillator to find the oscillation frequency of the engine block at the end of the wire.

(a) Using the definition of
Young’s modulus, relate the
elongation of the cable to the

applied stress:

Solve for A/:

Substitute numerical values and

evaluate A/:

(b) Express the oscillation
frequency of the wire-engine block

system:

Express the effective "spring”

constant of the cable:

Substitute to obtain:

Substitute numerical values and

evaluate f:

y _ Stress _ F/A
strain ~ Al//

Ar= L _ Mgl
AY — AY

(950kg)(9.81m/s?)(2.5m)
(1.5cm*)(150GN/m? )

=(1.04mm

Al =

1 [9.81m/s?

=— |[———— =|15.5Hz
27z \ 1.04mm
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Energy of an Object on a Vertical Spring

57 e
Picture the Problem Let the origin of our coordinate system be at Yo, where Yj is the
equilibrium position of the object and let U, = 0 at this location. Because F,, = 0 at
equilibrium, the extension of the spring is then y, = mg/k, and the potential energy stored
in the spring is U = % kyg . A further extension of the spring by an amount Yy increases U

to Lk(y+y,) =L1ky? +kyy, + L ky2 = Lky® + mgy + L kyZ. Consequently, if we set
U= U, + U, =0, a further extension of the spring by y increases U, by 15ky* + mgy while
decreasing U, by mgy. Therefore, if U = 0 at the equilibrium position, the change in U is
given by + k(y')2 ,where Yy’ =Yy —Y,.

(a) Express the total energy of the E=1kA’
system:
Substitute numerical values and E = £(600N/m)(0.03m)’ =| 0.270]
evaluate E:
(b) Express and evaluate U, when U, =-mgA
the object is at its maximum =—(25 kg)(9.8 1m/s2 )(0.03 m)
downward displacement:
=|-0.736J
() When the object is at its U, =1kA’ + mgA
maximum downward displacement: =1 (600 N/ m)(0.03 m)z

+(2.5kg)(9.81m/s)(0.03m)

=|1.01J
(d) The object has its maximum K., =+kA* = %(600 N/m)(0.03 m)2
kinetic energy when it is passing _02701

through its equilibrium position:

58 e
Picture the Problem Let the origin of our coordinate system be at Yo, where Y, is the
equilibrium position of the object and let U, = 0 at this location. Because F,, = 0 at
equilibrium, the extension of the spring is then y, = mg/k, and the potential energy stored
in the springis U, =1 kyj . A further extension of the spring by an amount Yy increases U,

to %k(y +Y, )2 = 1ky? + kyy, ++Kky; = Lky® + mgy +1ky;. Consequently, if we set
U = U, + U, =0, a further extension of the spring by y increases U; by Y4ky” + mgy while



decreasing U, by mgy. Therefore, if U = 0 at the equilibrium position, the change in U is

given by 1 k(y')z, where y' =y — V.

(a) Express the total energy of the system:

Letting Ay represent the amount the
spring is stretched from its natural
length by the 1.5-kg object, apply
z F, =ma, to the object when it is

in its equilibrium position:

Solve for k:

Substitute for k to obtain:

Substitute numerical values and
evaluate E:

(b) Express U, when the object is at
its maximum downward
displacement:

Substitute numerical values and
evaluate U,:

(c) When the object is at its maximum
downward displacement:

Substitute numerical values and
evaluate Ug:
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E = LkA?
kAy —mg =0
L]
Ay
2
E- mgA
2Ay
e (s kg)(9.81m/s?)(0.022m)
B 2(0.028m)
=[0.127J
U, =-mgA

U, = —(1.5kg)(9.81m/s>)(0.022m)
=[=0.324]

U, =1kA* + mgA

U, =1(526N/m)(0.022mY’
+(1.5kg)(9.81m/s)(0.022m)
0.451]
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(d) The object has its maximum K, = T KA®
kinetic e.nergy when it is pa.s.sing —1 (52 6N /m)(0.022 m)z
through its equilibrium position:

=|0.127J

*5Q oo

Picture the Problem We can find the amplitude of the motion by relating it to the
maximum speed of the object. Let the origin of our coordinate system be at y,, where Y, is
the equilibrium position of the object and let U, = 0 at this location. Because F¢ = 0 at
equilibrium, the extension of the spring is then y, = mg/k, and the potential energy stored
in the springis U, =1 kyj . A further extension of the spring by an amount Yy increases U,

to & k(y + Y, )2 =1ky® +kyy, +1ky; =1ky? +mgy +1ky;. Consequently, if we set

U= U, + U, =0, a further extension of the spring by Yy increases U, by 15ky* + mgy while
decreasing U, by mgy. Therefore, if U = 0 at the equilibrium position, the change in U is

given by 4 (y’)z, where y' =y —VY.
(a) Relate the maximum speed of Viax = AQ

the object to the amplitude of its
motion:

Solve for A: v m
A — _max __ Vmax -
w \ k

Substitute numerical values and 1.2kg
' A=(0.3m/s) |[—=—S—=|1.90cm
evaluate A: 300N/m

(b) Express the energy of the object E=1kA’

at maximum displacement:

Substitute numerical values and E =1(300N/m)(0.019m)* ={ 0.0542]
evaluate E:

(c) At maximum displacement from U e = —mgA

equilibrium:

Substitute numerical values and U, = —(1 2 kg)(9.8 1m/s’ )(0.0 19 m)
evaluate U,: _[—02047

(d) Express the potential energy in U, =1kA* +mgA

S
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the spring when the object is at its
maximum downward displacement:

Substitute numerical values and U, = %(300 N/m)(0.019m)2
evaluate Us: +(1.2ke)(9.81m/5%)(0.019m)
=10.278]

Simple Pendulums
60 o

Picture the Problem We can determine the required length of the pendulum from the
expression for the period of a simple pendulum.

Express the period of a simple pendulum: L
T=2x|—
g

Solve for L: _Tg

Substitute numerical values and evaluate L: ? 2
L _(9) (Z.8zlm/s ) _reae
T

61 -
Picture the Problem We can find the period of the pendulum from T =27,/L/g

moon

where ¢, =+0 and L=6.21m.
Express the period of a simple L

T=27n|—
pendulum: oo
Substitute numerical values and Ton 6.2lm 22
evaluate T: g %19‘81 m/s’ ) g
62 o

Picture the Problem We can find the value of g at the location of the pendulum by
solving the equation T =27/ L/ g for g and evaluating it for the given length and

period.
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Express the period of a simple L
T=2x|—
pendulum: g
Solve for g: 4r°L
g= T2
Substitute numerical values and 47%(0.7m
g= Lz) =19.79m/s”
evaluate g: (1 68 s)
*63 e
Picture the Problem We canuse T =27,/L/g to find the period of this pendulum.
Express the period of a simple L
T=27|—
pendulum: g
Substitute numerical values and 34
T=2r |— _ =[117s
evaluate T: 9 81m/s>
64 oo
Picture the Problem The figure shows the
simple pendulum at maximum angular
displacement ¢. The total energy of the |
simple pendulum is equal to its initial Leosa, |
gravitational potential energy. We can |
apply the definition of gravitational |
potential energy and use the small-angle _ v
approximation to show that E ~ 1 mgLd;. L ow—"
= d}_i;; — —us=0
Express the total energy of the simple E=U_. displacement — mgh
pendulum at maximum displacement: - mgL[l — COS ¢0]
For ¢<< 1: cosg~1-1g

Substitute and simplify to obtain: E=mg L[l — (1 14 )] =|imgLg;
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Picture the Problem Because the cart is
accelerating down the incline, the period of
the simple pendulum will be given by

T = 27[1/L/geff where Q.gis less than g

by the acceleration of the cart. We can
apply Newton’s 2™ law to the cart to find
its acceleration down the incline and then
subtract this acceleration from g to find Qe

Express the period of a simple
pendulum in terms of its length and
the effective value of the
acceleration of gravity:

Relate gt to the acceleration of the
cart:

Apply Z F, = ma, to the cart and

solve for its acceleration:

Substitute to obtain:

66 oo

Picture the Problem The figure shows the
simple pendulum at maximum angular
displacement ¢. We can express the
angular position of the pendulum’s bob in
terms of its initial angular position and
time and differentiate this expression to
find the maximum speed of the bob. We
can use conservation of energy to find an
exact value for v, and the approximation
cosp~1-1 @* to show that this value

reduces to the former value for small ¢.

Oscillations 1079

mg

T=27n|—

g eff

O =0—2

mg sin &

and

=Mma

a=gsiné

T=2x
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(a) Relate the speed of the
pendulum’s bob to its angular
speed:

Express the angular position of the
pendulum as a function of time:

Differentiate this expression to
express the angular speed of the
pendulum:

Substitute in equation (1) to obtain:

Simplify V. to obtain:

(b) Use conservation of energy to
relate the potential energy of the
pendulum at point 1 to its kinetic
energy at point 2:

Substitute for K, and U;:

Express h in terms of L and ¢:

Substitute for h and solve for
V, = Vpax tO Obtain:

(c) For ¢y << 1:

Substitute in equation (2) to obtain:

(d) Express the difference in the
results from (a) and (b):

Using ¢ =0.20 rad and L = 1 m,
evaluate the result in (b):

v=L-"— (1)
¢ =@, cos wt
dé _

=—@,wsin wt
ot 9

V=-Lgwsnwt =-v_ sinot

Vmax = L¢0\/%: ¢0\/a

AK+AU =0
or, because K, =U, =0,

K,-U, =0

LImv; —mgh=0
h=L(1-cosg,)
Voo =| y20L(1=cosg,) | (@)
1-cosg, ~ 1 g

Vow = 2010 62) = | 4,4/0L

in agreement with our result in part (a).

AV =V ~ Vinax.b 3)

~ Ymax,a

Vowos =4 2(9.81m/s?)(1m)(1-cos0.2)
=0.6254m/s
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Using ¢hy=0.20 rad and L =1 m, Vs = (0.20rad)y/(9.81m/s% 1m)
evaluate the result in part (a): — 0.6264m/s
Substitute in equation (3) to obtain: Av =0.6264m/s —0.6254 m/s

=0.00Im/s =| 1.00mm/s

Physical Pendulums

67 -

Picture the Problem The period of this physical pendulum is given by

T =27,/1/MgD where | is the moment of inertia of the thin disk with respect to an
axis through its pivot point. We can use the parallel-axis theorem to express | in terms of

the moment of inertia of the disk with respect to its center of mass and the distance from

its center of mass to its pivot point.

Express the period of physical |
T=2r|——
pendulum: MgD
Using the parallel-axis theorem, find | =1, +MR*=1MR’ + MR’
the moment of inertia of the thin =3 MR?2

disk about an axis through the pivot
point:

Substitute to obtain: 3 2
T=2rx[* MR™ _ 2z 3R
MgR 29

Substitute numerical values and 3(0.2 m)
T=2x =|1.10s
evaluate T: 2‘9.8 1 m/s® )

68
Picture the Problem The period of this physical pendulum is given by
T =27,/1/MgD where | is the moment of inertia of the circular hoop with respect to an

axis through its pivot point. We can use the parallel-axis theorem to express | in terms of
the moment of inertia of the hoop with respect to its center of mass and the distance from
its center of mass to its pivot point.

Express the period of the physical T |
pendulum: MgD
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Using the parallel-axis theorem, find I =1, +MR’=MR* + MR* =2MR?
the moment of inertia of the circular
hoop about an axis through the pivot

point:
Substitute to obtain: 2
T=2x 2MR =2 E
MgR g
Substitute numerical values and
y ! v T =g | 20Sm) 5o
evaluate T: 9 81m/s?
69 o

Picture the Problem The period of a physical pendulum is given by
T =27,/1/MgD where | is its moment of inertia with respect to an axis through its

pivot point. We can solve this equation for | and evaluate it using the given numerical
data.

Express the period of the physical |

T=2r|——
pendulum: MgD
Solve for I: | = MgDT?

4’
Substitute numerical values and | — (3 kg)(9.8 1m/s’ )(0 1m)(2.6 S)2
evaluate I B 47
=| 0.504kg-m’

*70 oo

Picture the Problem We can use the expression for the period of a simple pendulum to
find the period of the clock.

(a) Express the period of a simple !
T=27_|—

pendulum: g

Substitute numerical values and 4m
T=2r|—=|4.0ls
evaluate T: 9.81m/s>

By effectively raising the center of mass of the pendulum, placing coins

b
© in the tray shortens the period.
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71 ee
Picture the Problem Let x be the distance of the pivot from the center of the rod, m the
mass at each end of the rod, and L the length of the rod. We can express the period of the
physical pendulum as a function of the distance X and then differentiate this expression

with respect to X to show that, when x = L/2, the period is a minimum.

(a) Express the period of a physical |
T=27n|——— (1)
pendulum: MgD
Express the moment of inertia of the L) LY 5
. . l,,=m —| +m —| =imL
dumbbell with respect to an axis em 2

through its center of mass:

Using the parallel-axis theorem, I =1, +2mx* =LimL’ +2mx’

express the moment of inertia of the
dumbbell with respect to an axis
through the pivot point:

Substitute in equation (1) to obtain: ImL2 +2mx?
T=2r1|>—F—
2mgx

2z %Lz—i-x2

Jo x @

112 2
_c.lz L™ +X
X
2
where C =—
Jg
Set dT/dx = 0 to find the condition for dT d [1Ll+x
minimum T: & = . & T = 0 fOI' extrema
. . . 2 112 2
Evaluate the derivative to obtain: 2X" — (Z L™+ X ) 0
112 2
X
. . 2 112 2
Because the denominator of this 2X° — (E L* + X ): 0
expression cannot be zero, it must be
true that:

Solve for X to obtain: X =

0=
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i.e., the period is a minimum when the
pivot point is at one of the masses.

(b) Substitute x = L/4 in equation (2) Teor /% 12+ (% |_)2 . /&
and simplify to obtain: lgL g
Substitute numerical values and 5(2m

. T=r|——"—5=|317s
evaluate T: 9.81m/s

Remarks: In (a), we’ve shown that x = L/2 corresponds to an extreme value; i.e., to
either a maximum or a minimum. To complete the demonstration that this value of
x corresponds to a minimum, we can either (1) show that d*7/dx’ evaluated at x =
L/2 is positive, or (2) graph T as a function of x and note that the graph is a
minimum at x = L/2.

72 e
Picture the Problem Let X be the distance of the pivot from the center of the rod. We’ll
express the period of the physical pendulum as a function of the distance X and then
differentiate this expression with respect to X to find the location of the pivot point that
minimizes the period of the physical pendulum.

Express the period of a physical |

pendulum: T=2r MgD M
Express the moment of inertia of the L 2 L 2 X 5
dumbbell with respect to an axis o = E mo E(zm)L
through it ter of :

rough its center of mass :%mLz
Using the parallel-axis theorem, I =1, +4mx’

h f inertia of th _ 2 2

express the moment of inertia ot the =2mL’ +4mx

dumbbell with respect to an axis
through the pivot point:

Substitute in equation (1) to obtain: 2ml2 +4mx3
T=27|——
4mgx

o |2 +4x

Jg X
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217 +4x
T=C,/[2———— where C -
X Jg
Set dT/dx = 0 to find the condition dT d [21%+4x?
for mini _ — =Cx—,/[2———— =0 for extrema
or minimum T: dx dx X
Evaluate the derivative to obtain: 8x* — (% L+ 4X2) 0
2 2
2 \/g L™ +4x
X
. . 2 212 2)_
Because the denominator of this 8X° — (3 L™ +4x )— 0
expression cannot be zero, it follows
that:
Solve for X to obtain: X = L
J6
. . . L L
The distance to the pivot point from d==__= _[00918L
the nearer mass is: 2 \/g

Remarks: We’ve shown that x = L/\/g corresponds to an extreme value; i.e., to
either a maximum or a minimum. To complete the demonstration that this value of
x corresponds to a minimum, we can either (1) show that d*T/dx* evaluated at

X = L/\/E is positive, or (2) graph T as a function of x and note that the graph is a

minimum at x = L/\/E

*73 oo

Picture the Problem Let x be the distance of the pivot from the center of the meter stick,
m the mass of the meter stick, and L its length. We’ll express the period of the meter stick
as a function of the distance X and then differentiate this expression with respect to X to
determine where the hole should be drilled to minimize the period.

Express the period of a physical |

T=27|—— (1)
pendulum: MgD
Express the moment of inertia of the I =5 mL?

meter stick with respect to its center
of mass:
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Using the parallel-axis theorem, =1, + mx’
express the moment of inertia of the _ % mL2 + mx2
meter stick with respect to the pivot
point:
Substitute in equation (1) to obtain: - 5 mL2 + mx2
- mgXx
2 2
_ 2r |5 L +x
Jol
s+
X
2
where C = —2
Jo
Set dT/dx = 0 to find the condition dT d [L12+x2
. ) — =Cx—,[12——— =0 for extrema
for minimum T: dx dx X
Evaluate the derivative to obtain: 2% — (ﬁ L+ XZ) 0
e \/112 L* +x?
X
Because the denominator of this 2x% — (% L’ + X2)= 0
expression cannot be zero, it follows
that:
Solve for and evaluate X to obtain: L 100cm _
X=——=——=289cm
V12 V12
The hole should be drilled at a distance: d=50cm-289cm=|21.1cm
from the center of the meter stick.
T4 e

Picture the Problem Let m represent the mass and r the radius of the uniform disk.
We’ll use the expression for the period of a physical pendulum and the parallel-axis
theorem to obtain a quadratic equation that we can solve for d. We will then treat our
expression for the period of the pendulum as an extreme-value problem, setting its
derivative equal to zero in order to determine the value for d that will minimize the

period.
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(a) Express the period of a physical |

T=2r|—
pendulum: mgd
Using the parallel-axis theorem, I=1_+md :
relate the moment of inertia with =1 mR2 + md>
respect to an axis through the hole
to the moment of inertia with
respect to the disk’s center of mass:
Substitute to obtain: 1mR? +md?
T=2r|}— q
mg
— ()
IR +
=Qr |2 -
gd
Square both sides of this equation, 4 gT?’ d+ R’ ~0
simplify, and substitute numerical 47? 2
values to obtain: or

d?—(1.553m)d +0.320m> =0

Solve the quadratic equation to d=|0245m

btain:
obtain The second root, d = 1.31 m, is too large to

be physically meaningful.

(b) Set the derivative of equation (1) dT 2z d [iR*+d?
equal to zero to find relative maxima dd - E dd d
and minima:
= O forextrema
Evaluate the derivative to obtain: 2d% - (% R?+d 2) 0
5 g? \/; R +d?
d
Because the denominator of this 2d% — (% R*+d 2): 0

fraction cannot be zero:

Solve this equation to obtain: R
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Evaluate equation (1) with
d= R/ /2 to obtain an expression

for the shortest possible period of
this physical pendulum:

Substitute numerical values and
evaluate T:

V2(0.8m)

9.81m/s>

T=2x

2.13s

Remarks: We’ve shown that d = R/\/E corresponds to an extreme value; i.e., to

either a maximum or a minimum. To complete the demonstration that this value of
d corresponds to a minimum, we can either (1) show that ¢*T/dd’ evaluated at
d= R/\/E IS positive, or (2) graph T as a function of d and note that the graph is a

minimum at d = R/\/E

75 (1 1]

Picture the Problem We can use the equation for the period of a physical pendulum and
the parallel-axis theorem to show that h; + h, = gT 2472,

Express the period of the physical
pendulum:

Using the parallel-axis theorem,
relate the moment of inertia with
respect to an axis through P, to the
moment of inertia with respect to
the disk’s center of mass:

Substitute to obtain:

Square both sides of this equation

and rearrange to obtain:

Because the period of oscillation is
the same for point P,:

Solve this equation for l.p,:

T=2x L
\/ mgd

I =1 +mh’
2
T_og .., +mh,
mgh,
2
mgTz _I°i+ mh,
4 |

(1



Substitute in equation (1) to obtain:

76 (1 1]
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2
maT™ _ MM, | oh
4r h,
or
gT’
h2 + h1 = 4—7[2

Picture the Problem We can find the period of the physical pendulum in terms of the
period of a simple pendulum by starting with T =27./1/mgL and applying the parallel-

axis theorem. Performing a binomial expansion for r << L on the radicand of our
expression for T will lead to T = To(1 + r¥/5L).

(a) Express the period of the
physical pendulum:

Using the parallel-axis theorem,
relate the moment of inertia of the
pendulum about an axis through its
center of mass to its moment of
inertia with respect to an axis
through its point of support:

Substitute and simplify to obtain:

(b) Using the binomial expansion,

22\
expand | 1+—| :

T=27|—
mgL
=1 +mL’
=2mr?’ +mL’
2 mr2 2 2,2 2
T smr-+mL o 5T +L
mgL gL
2 2
o =l P v LY (e
gl 5 g 5L
2r?
=| T\ /1+—
Vose

et (e ey
512 2052 ) 8512

+ higher - order terms

r.2
Rl+—
517

provided r << L
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Substitute in our result from (a) to r2
- T T,|1+—
obtain: 0 512
(c) Express the fractional error when AT T-T,_ T 1
the approximation T = T is used for T T, T,
this pendulum: r2 r2
=l+—-1=—+
5L 5L
Substitute numerical values and AT 2 i
al o _(2em) =1 0.008%
evaluate AT/T: T 5(1 00 Cm)z
For an error of 1%: r—22:0.01
5L
Solve for and evaluate r with r=_L+0.05= (1 00cm W0.05
L =100 cm: 22 4em
77 (11}

Picture the Problem The period of this physical pendulum is given by
T =27,/1/MgD. We can express its period as a function of the distance d by using the

definition of the center of mass of the pendulum to find D in terms of d and the parallel-
axis theorem to express | in terms of d. Solving the resulting quadratic equation yields d.
In (b), because the clock is losing 5 minutes per day, one would reposition the disk so
that the clock runs faster; i.e., so the pendulum has a shorter period. We can determine
the appropriate correction to make in the position of the disk by relating the fractional
time loss to the fractional change in its position.

(a) Express the period of the |

physical pendulum: T=27 m,,, gx
I 2
Solve for—: 1 = T79M (1)
Xcm Xcm 472'2
Express the moment of inertia of the I =1, +Md?>=1mL +1Mr*+Md*

physical pendulum, relative to an
axis through the pivot point, as a
function of d:
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Substitute numerical values and | = %(O 8kg )(2 m)2 +4 (l 2 kg)(O. 15 m)2
evaluate |: n (1 2k g)d 2
=1.0802kg-m” +(1.2kg)d>

Locate the center of mass of the (2 kg)Xcm = (0.8 kg)(l m)—i— (1 2 kg)d
physical pendulum relative to the and
pivot point: X, =0.4m+0.6d

Substitute in equation (1) to obtain:

1.0802kg - m® + (1.2kg)d* _ T*(9.81m/s° )(2ke)

— (0.49698kg - m/s*JT*  (2)

0.4m+0.6d 4’
Setting T = 2.5 s and solving for d d=11.63572m
ields:
yIeKs where we have kept more than three
significant figures for use in part (b).
(b) There are 1440 minutes per day. 1435T =1440T o0
If the clock loses 5 minutes per day, where Tpereet = 3.5 5.

then the period of the clock is
related to the perfect period of the

clock by:
Solve for and evaluate T: T= 1440 e = 1440 (3. SS)
1435 1435

=3.51220s
Substitute T =3.51220 s in equation d =3.40140m
(2) and solve for d to obtain:
Substitute T = 3.50 s in equation (2) d' =3.37825m
and solve for d ' to obtain:
Express the distance the disk needs Ad =d —d' =3.40140m—3.37825m
to be moved upward to correct the = 2.32¢m

period:
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*78  ee
Picture the Problem The period of a simple pendulum depends on its amplitude ¢,

2
accordingto T = 2”\/E|:1 + %sin2 l¢0 + L[ij sin* l¢0 + :l . We can
g

approximate T to the second-order term and express AT/T = (Tgow — Taccurate)/ T- Equating
this expression to AT/T calculated from the fractional daily loss of time will allow us to

solve for and evaluate the amplitude of the pendulum that corresponds to keeping perfect

time.
Express the fractional daily loss of £ _ 48s % lday N lh _ 48
time: T day 24h 3600s 86400
Approximate the period of the clock To9 L 1 1 .,1
to the second-order term: i 5 * ?sm E%
Express the difference in the periods AT =Ty — Toccurate
of the slow and accurate clocks:
x|k {1 +izsin2 l(8.4°)}
g 2 2

1 .51
—[1+7sm2 E%D
- ﬁ\/%[%sinzé(%g#’)

I .51
—?sm E%}
Divide both sides of this equation by AT _ lsinz 4.0°_ 1 sin’ 1 4
T to obtain:
AT 1 . 1. ,1 48

Substitute for — and simplify to —sin’4.2°——sin® — @ = ———

4 4 2 86400
obtain: and

sin%% =0.05605

Solve for ¢: @, =| 6.43°
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79 e
Picture the Problem The period of a simple pendulum depends on its amplitude ¢,

L}, 1 1 1(3) . ,1
accordingto T =27 |[—| 1+ —sin* =@, +—| = | sin* =g, +...|. We’ll approximate
g . { > % > [ 4j 5 # } pp

T to the second-order term and express AT/T = (Tgjow — Tcomeet)/ T. Equating this
expression to AT/T calculated from the fractional daily loss of time will allow us to solve
for and evaluate the amplitude of the pendulum that corresponds to keeping correct time.

Express the fractional daily loss of AT _ 5min y lday y lh _ 5
time: T day 24h 60min 1440
Approximate the period of the clock To9 L 1 1 .,1
to the second-order term: I v ?sm E%
g
Assuming that the amplitude of the AT =T ~ Teomeat
slow-running clock’s pendulum is L 1 1
: =27 |—<1—|1+—sin’ —¢
small enough to ignore, express the g 2 570
difference in the periods of the slow
and corrected clocks: =27 L —isinz l¢0
gL 2° 2

Divide both sides of this expression AT _ 1 sin’ 1 P
by T to obtain: T 4 27

AT 1. ,1 -5
Substitute for — and simplify to ——sin’ —¢, =——

T 4 2 1440
obtain: and

sin%¢0 =0.1178

Solve for ¢: ¢, =|13.5°

Damped Oscillations

80 -
Picture the Problem We can use the definition of the damping constant and its
dimensions to show that it has units of kg/s.

Using its definition, relate the decay m m
constant 7 to the damping constant b: T
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Substitute the units of m and 7 to
obtain:

81

Dimensionally, b = M ==
[T]

2

T
Picture the Problem For small damping, Q = q—r where AE/E is the fractional
P Q AE|/E cycle

energy loss per cycle.

Relate the Q factor to the fractional
energy loss per cycle:

Solve for and evaluate the fractional
energy loss per cycle:

82

o 2r
HAE|/chycle

(aEl/E),, = %” = % =[3.14%

Picture the Problem We can find the period of the oscillator from T = 27,/m/k and its

total initial energy from E, = § kA’ . The Q factor can be found from its definition

Q= 27[/ QAE| / E)cycle and the damping constant from Q = @,m/b.

(a) The period of the oscillator is
given by:

Substitute numerical values and
evaluate T:

(b) Relate the initial energy of the
oscillator to its amplitude:

Substitute numerical values and
evaluate E,:

(c) Relate the fractional rate at
which the energy decreases to the Q
value and evaluate Q:

Express the Q value in terms of b:

Solve for the damping constant b:

T =27r\/E
k

T=2x

0.444s

400N/m

o|'|'|
Il

D=
>

E, = £(400N/m)(0.03m)* =| 0.1807J

2r 2r
= == =[62
0 (AE|/E),,. o0.01 02
®,M
=
b= &M _ 27m
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Substitute numerical values and b— 27 (2 kg) —[0.0451kg/s
evaluate b: (0.444 s)(62 8)
83 e

Picture the Problem The amplitude of the oscillation at time tis A(t)= A "*" where

7=m/b is the decay constant. We’ll express the amplitudes one period apart and then
show that their ratio is constant.

Relate the amplitude of a given A(t) = Aoe_t/ 2
oscillation peak to the time at which
the peak occurs:

Express the amplitude of the Alt+T)=Ae ™" Vs
oscillation peak att' =t+ T:

Express the ratio of these A(t) _ Aoeft/ ZT 1)
consecutive peaks: A(t +T) B Aoe’(”T )2

=| constant
84 oo

Picture the Problem We can relate the fractional change in the energy of the oscillator
each cycle to the fractional change in its amplitude. Both the Q value and the decay
constant 7 can be found from their definitions.

2
(a) Relate the energy of the E=1kA

oscillator to its amplitude:

Take the differential of this dE = kAdA

relationship to obtain:

Divide both sides of this equation by dE _ kAdA _ 2d_A
E: E 1kaA A
Approximate dE and dA by AE and E = 2(5%) = [ 10%
AA and evaluate AE/E: E

(b) For small damping: |AE| T

E T

and
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(c) Using its definition, express and
evaluate Q:

85 e

r= 1235 305
|AE|/E  0.01
A=y =27 =27 (305)=[623
T 3s

Picture the Problem We can use the physical interpretation of Q for small damping

27

Q= q—r to find the fractional decrease in the energy of the oscillator each
AE|/E cycle

cycle.

(a) Express the fractional decrease in
energy each cycle as a function of the
Q factor and evaluate |AE| / E:

(b) Using the definition of the Q
factor, use Equation 14-35 to express
' as a function of Q:

Use the approximation

(1+x)" =~ 1+ ¥x for small X to obtain:

Express and evaluate @ — ax:

86 oo

AE
r 5 1/2
a)|:a)0 l_l[ E 2]}
| 4\ My,
r 1/2
=w,| 1- 12}
L 4Q
@ =w,|1- 12
L
: 1 1
W -0, =0, I_W - O__8Q2
B
8(20)°

=| —3.13x10*percent

Picture the Problem The amplitude of the spring-and-mass oscillator varies with time

-t/r

according to A = Aoe“/ *"and its energy according to E = E,e ™" .

(a) Express the amplitude of the
oscillations as a function of time:

A=(6cm)e




Evaluate the amplitude when t =2 s:

Evaluate the amplitude whent=4 s:

(b) Express the energy of the system
att=20:

Express the energy in the system at
t=2s:

The energy dissipated in the first 2 s is:

The energy dissipated in the second
2-s interval is:

Oscillations 1097

A(2s)=(6cm)e* = (6cm)e™?
3.64cm

A(4s) = (6 cm)e_“/45 = (6<:m)e_l
=|2.21cm

E(0)=E,e”* =E, =607J

E(2s)=Ee™"* =E,e"

AE,, =E, (1-e™)

= (37.97)(1-¢")=[ 24.07

*87 oo

Picture the Problem We can find the fractional loss of energy per cycle from the
physical interpretation of Q for small damping. We will also find a general expression for
the earth’s vibrational energy as a function of the number of cycles it has completed. We
can then solve this equation for the earth’s vibrational energy after any number of days.

(a) Express the fractional change in

—=—=——=1.57T%
energy as a function of Q: E Q 400
(b) Express the energy of the E-gli- E
damped oscillator after one cycle: : 0 E

Express the energy after two cycles:
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Generalizing to n cycles:
sone E -E (1—£] E,(1-0.0157)
E
=| E,(0.9843)"
(c) Express 2 d in terms of the 7d = 2dx 24h 60m
number of cycles; i.e., the number d h
of vibrations the earth will have — 72880 minx
experienced: 54 min
=53.3T
Evaluate E(2 d): E(2d)=E,(0.9843)" =| 0.430E,

88 e

Picture the Problem The diagram shows
1) the pendulum bob displaced through an
angle 6 and held in equilibrium by the
force exerted on it by the air from the fan
and 2) the bob accelerating, under the
influence of gravity, tension force, and
drag force, toward its equilibrium position.
We can apply Newton’s 2™ law to the bob
to obtain the differential equation of
motion of the damped pendulum and then -
use its solution to find the decay time
constant and the time required for the
amplitude of oscillation to decay to 1°.

a) Apply » 7 = la to the pendul : ?
@ pPyz 0 e penduiim —mgfs1n9+€Fd:I—d29
to obtain: dt
Express the moment of inertia of the | =me?

pendulum with respect to an axis
through its point of support:

Substitute for | and F4 to obtain: ,d 20
m{” ——+(bv+mg/sind =0
Because << 1 andv=/w= /dddt: 2 d?e de
dt? dt

or



The solution to this second-order
homogeneous differential equation
with constant coefficients is:

Apply 213 = Ma to the bob when

it is at its maximum angular
displacement to obtain:

Divide the X equation by the y
equation to obtain:

When the bob is in equilibrium, the
drag force on it equals Fg,y,:

Solve for m/b in the definition of
to obtain:

Substitute numerical values and
evaluate 7:

(b) From equation (1) we have:

When the amplitude has decreased
to 1°:

Take the natural logarithm of both
sides of the equation to obtain:

Solve for t:

Substitute for = and evaluate t:

Oscillations 1099

2
d f+b%+m6’=0
dt dt ¢

m

0 =6,e7* cos(w't +6) (1)
where ) is the maximum amplitude,
7= m/b is the time constant, and the

frequency @' = wy\/1-(b/2ma, ) .

> F, =F,, —Tsing, =0
and

ZFy =Tcosg,—mg =0

h = M = tane
mg Tcos6, °
or
F., = Mg tano,
bv = mg tan 6,

_m__V

b gtang,
7m/s

=| 8.16s

" [o.81m/s% Jtan 5°
Q= eoeft/Zr

592" =1°0r e V¥ = 0.2

t
——=1In(0.2
27 n( )

t =—271n(0.2)

t=-2(8.16s)In(0.2) = | 26.3s
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Driven Oscillations and Resonance

89 -
Picture the Problem The resonant frequency of a vibrating system depends on the mass
. . 1 .
of the system and on a “stiffness” constant according to f, = 2— — or, in the case of a
7 \m

1
simple pendulum oscillating with small-amplitude vibrations, f, = — g
" 2zVL

(a) For this spring-and-mass oscillator 1 [400N/m

) 0 = — 1.01Hz
we have: 27\ 10kg
b) For this spring-and-mass oscillator
(0) pring fOZL 800N/m _ > 01,
we have: 20 5kg
¢) For this simple pendulum we have: 2
(© ple p i _ 1 9.81m/s _[0352
27 2m
90 -

Picture the Problem We can use the physical interpretation of Q for small damping to
find the Q factor for this damped oscillator. The width of the resonance curve depends on
the Q factor according to Aw = @), / Q.

(a) Using the physical interpretation

2r
Q=
of Q for small damping, relate Q to ‘ AE| / E Lycle

the fractional loss of energy of the
damped oscillator per cycle:

Evaluate this expression for Q= 27 314
(AE|/E), . =2%: 0.02
cycle
(b) Relate the width of the Aw = Dy _ 2,
resonance curve to the Q value of Q Q
the oscillatory system:
Substitute numerical values and A = 27[!300 s ) [ 6.00rad/s
evaluate Aw: 3.14
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Picture the Problem The amplitude of the damped oscillations is related to the damping
constant, mass of the system, the amplitude of the driving force, and the natural and

FO
\/mz(a)g -’ )2 +b*w’

® = ®,. At resonance, the amplitude of the oscillations is A= F; / Vb’w® and the

. Resonance occurs when

driving frequencies through A =

width of the resonance curve is related to the damping constant and the mass of the
system according to Aw = b/m.

(a) Express the amplitude of the A= F
oscillations as a function of the \/ m2 ( 0 — )2 b2’
0

driving frequency:

Determi :
etermine @y @, = \/% = % =14.14rad/s
g

Evaluate the radicand in the (2 kg )2 [(1 4.14rad/ 5)2 - (1 Orad/ 5)2 ] ?

expression for A to obtain:

+(2kg/s) (10rad/s )’

=4.04x10"kg* /s
Substitute numerical values and A= 10N —[4.98cm
evaluate A: \/4.04><104 kg’ /s’ :
(b) Resonance occurs when: ®=w, =|14.1rad/s
(c) Express the amplitude of the A= F
motion at resonance: b*w;
Substitute numerical values and A= 10N —[354cm
evaluate A: \/ (2kg/s) (14.14rad/s)
(d) The width of the resonance Aw = b _ 2kg/s —[1.00rad/s
curve is: m 2kg :

92 e
Picture the Problem We’ll find a general expression for the damped oscillator’s energy
as a function of the number of cycles it has completed. We can then solve this equation
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for the number of cycles corresponding to the loss of half the oscillator’s energy. The Q
factor is related to the fractional energy loss per cycle through AE / E= 272'/ Q and the

width of the resonance curve is Aw = @, / Q where o is the oscillator’s natural angular

frequency.

(a) Express the energy of the damped
oscillator after one cycle:

Express the energy after two cycles:

Generalizing to n cycles:

Substitute numerical values:

Solve for n to obtain:

(b) Apply the physical interpretation
of Q for small damping to obtain:

(c) The width of the resonance curve

is given by:

Collisions

93 (1 1]

0.5E, = E,(1-0.035)"

or

0.5=(0.965)"

n=1005 95
In0.965

~ | 20 complete cycles.

Q= 2 _ 2 _ 180
AE/E  0.035
A @0 _ 2 _ 27(100Hz)
Q O 180
=| 3.49rad/s

Picture the Problem Let the system include the spring-and-mass oscillator and the

second object of mass m. Because the net external force acting on this system is zero,

momentum is conserved during the collision of the second object with the oscillator.

Because the collision is elastic, we can also apply conservation of energy. Let the

subscript 1 refer to the object attached to the spring and the subscript 2 identify the

second object.



(a) Using momentum conservation,
relate the speeds of the objects
before and after their collision:

Using conservation of energy,
obtain a second relationship
between the speeds of the objects
before and after their collision:

Solve equation (2) for szi :

Substitute for v,¢ from equation (1):

Because V,; # 0, it follows that:

(b) Because V,; = 0, we have, from
equation (1):

Because the object connected to the
spring was moving through its
equilibrium position at the time of
collision:

94 (11}
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MV, + MV,; = Mv,,
or

Vii T V5 = Vye (D

1 2 1 2 _ 1 2
2 MVy; +5 MV =5 MV;,

or
2 2 2
Vii V5 =V 2

Vai = Vor _Vlzi = (sz +Vli)(V2f _Vn)

V22i = (Vli +Vy +Vli)(vli +Vy _Vn)
= (2V11 +Vy )(Vzi) =2V,\V, + V22i

or
2v,.v,, =0

=, [o]

i.e., the second object must be initially at

rest.

Vo =Vy

Vi =V, = Ao = (0.1m)(40s™")
—[ 4.00m/s

Picture the Problem Let the system include the spring-and-mass oscillator and the

second object of mass m. Because the net external force acting on this system is zero,

momentum is conserved during the collision of the second object with the oscillator.

Because the collision is elastic, we can also apply conservation of energy. Let the

subscript 1 refer to the object attached to the spring and the subscript 2 identify the

second object.
Using momentum conservation,
relate the speeds of the objects

before and after their collision:

Using conservation of energy, obtain

mv,; +Mmv,, = mv,,
or

Vii Vo =V (1)

1 2 1 2 _ 1 2
2 MV +5 MV =5 MV,
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a second relationship between the or

speeds of the objects before and Ve VI =V, 2)
after their collision:

Solve equation (2) for V3, : Vi =V3 V= (sz +V,, )(sz —Vli)
Substitute for v, from equation (1): Vs, = (Vli +Vy, +V,, )(Vli +V,, —Vli)

= (2V11 + VZi)(VZi) =2V,Vy, + V22i

or
2v,v,, =0

Because V,; # 0, it follows that: v=V, =0
i.e., the second object must be initially at
rest.

Because the object connected to the V, =V, = Ao = (O. 1m)(40 S_l)

spring was moving through its =4m/s

equilibrium position at the time of

collision:

Express the total energy of the E=7 mvﬁ

system just before the collision:

Solve for m: M= %
Vii
i i 2(8J
Substitute numerical values and m = ( )2 =[1.00kg
evaluate m: (4m/s)
Relate the spring constant to the k=mao’

angular frequency of the oscillator:

Substitute numerical values and Kk = (1 kg)(40 g )2 —| 1.60kN/m
evaluate k:

05  ees

Picture the Problem Let the system include the spring-and-mass oscillator and the 1-kg
object. Because the net external force acting on this system is zero, momentum is
conserved during the collision of the second object with the oscillator. Let the subscript 1
refer to the 1-kg object and the subscript 2 to the 2-kg object. We can relate the amplitude
of the motion to the maximum speed of the oscillator (which we can find from
conservation of momentum) and the angular frequency of the oscillator, which we can
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determine from its definition. Once we have found the amplitudes and angular

frequencies for both collisions, we express the position of each as a function of time,

using the initial conditions to find the phase constants.

(a) Relate the amplitude of the
motion to the angular frequency and
maximum speed of the oscillator:

Because the 2-kg object is initially
at rest, the maximum speed of the
oscillator will be its speed
immediately after the collision. Use
conservation of momentum to relate
this maximum speed to the speed of
the 1-kg object before the collision:

Solve for V.

Substitute numerical values and

evaluate V.

Express the angular frequency of the
oscillator:

Substitute numerical values and
evaluate w:

Substitute in equation (1) and
evaluate A:

Express and evaluate the period of
the oscillator’s period:

(b) For an elastic collision:

Substitute numerical values and

evaluate V.

A= (1)

myvy; = (ml +m, )Vmax

v = lkg
" 1kg+2kg

k
w= /—
m, +m,
= w:14.14rad/s
3kg

_ 2m/s
14.14s™

(6m/s)=2m/s

=|{14.1cm

— = —10.444s

Vo = M(&n/s): 4m/s
3kg
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Using its definition, evaluate the
angular frequency of the oscillator:

Substitute in equation (1) and
evaluate A:

Express and evaluate the period of
the oscillator’s period:

(c) For the perfectly inelastic
collision:

Use the initial conditions to evaluate &

Substitute in equation (2) to obtain:

For the elastic collision:

Use the initial conditions to evaluate &

Substitute in equation (3) to obtain:

General Problems

9% -

A=————=|23.1cm
17.32s

T=2__ 27 _[0363s
o 17.32s

o= L= leTSZrad/S
m, 2kg

4m/s

x(t)=(14. lcm)cos[(14. Is™! )t +5] @

X(t)=(14. lcm)cos[(m.ls‘l J _ﬂ

=| (14. lcm)sin[(14. 1s™ )tJ

X(t)=(23.1cm)cos|(17.3s7' Jt+5| (3

x(t)= (23.lcm)cos{(l7.3 st _ﬂ

= (23.1cm)sin[(17.3s_l)tj

Picture the Problem The particle’s displacement is of the form X = Acos(a)t + 5). Thus,

we have A=0.4 m, w=3 rad/s, and 6= /4. We can find the frequency of the motion

from its angular frequency and the period from the frequency. The particle’s position at

t=0and t=0.5 s can be found directly from its displacement function.

(a) Express and evaluate the
frequency of the particle’s motion:

A 3rad/s
2 27

0.477Hz




Use the relationship between the
frequency and the period of the
particle’s motion to find its period:

(b) Using the expression for the
particle’s displacement, find its
position at t = 0:

(c) Using the expression for the
particle’s displacement, find its
position at t = 0.5 s:

97
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—=——=|2.09s

X(O) - (0,4 m)cos_(3 rad/s)(0)+ %}

= (0.4m)cos 1} =[0.283m

x(0)=(0.4m)cos| (3rad/s)0.5s)+ %}

(0.4m)cos[2.29rad]
-0.264m

Picture the Problem We can express the velocity of the particle by differentiating its

displacement with respect to time.

(a) Differentiate the particle’s
displacement to obtain:

(b) Evaluate the result in part (a) at
t=0:

(c) By inspection of the result in part
(@) (orfrom v =Aw):

(d) Substitute V.« for v to obtain:

dx
V=—
dt

:i{(0.4m)sin{(3 rad/s)uﬂ}

dt

_ —(1.2m/S)sin[(3rad/ S)”ﬂ

v(0)=—-(1.2 m/S)Sin{@ rad/s)0)+ %}

=—(1.2 m/s)sin{%}

=| —0.849m/s

v =[1.20m/s

1.2m/s = —(1 2 m/s)sin[(3 rad/s)t'+ %}

or

(3rad/s)t’ +% =sin"'(~1)= 377[
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Solve for t’ to obtain: tt=|131s

98 -

Picture the Problem Let Ay represent the amount by which the spring stretches. We’ll
apply a condition for equilibrium to the object to relate the amount the spring has
stretched to the angular frequency of its motion and then solve this equation for Ay.

Apply Zi F, =0 to the object kAy -mg =0

when it is in its equilibrium position of

and solve for the elongation of the Ay=—g= %
spring: @

Relate the angular frequency of the 2_7T
object’s motion to its period: T

Substitute to obtain: T 2
y = g

5.03m

Substitute numerical values and (4.
y =

P
75]
[
©
0]
p—
2
wn
S}
SN—"
Il

evaluate AX:

*09 e

Picture the Problem Compare the forces
acting on the particle to the right in Figure
14-36 with the forces shown acting on the
bob of the simple pendulum shown in the
free-body diagram to the right. Because
there is no friction, the only forces acting
on the particle are mg and the normal force
acting radially inward. In (b), we can think

|

|

|

|

|
of the particles as the bobs of simple |
pendulums of equal length. ~ =

S

-

mg

(a) The normal force is identical to the tension in a string of length r that keeps the
particle moving in a circular path and a component of mg provides, for small
displacements & or S,, the linear restoring force required for oscillatory motion.

(b) The particles meet at the bottom. Because S; and S, are both much smaller than r, the
particles behave like the bobs of simple pendulums of equal length; therefore they have
the same periods.
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100 e

Picture the Problem The diagram shows the ball when it is a horizontal distance X from
the bottom of the bowl. Note that we’ve chosen the zero of gravitational potential energy
to be at the bottom of the bowl. The total energy of the ball is the sum of its potential
energy and kinetic energies due to translation and rotation. Once we’ve obtained an
expression for the total energy of the rolling ball, we can require, because the surface is
frictionless, that the total energy of the sliding object be the same as that of the rolling
ball. Because the motion of the ball is simple harmonic motion, we can assume a solution
to its differential equation of motion and express the total energy of the ball in terms of
this assumed solution. Doing so will lead us to an expression that we can solve for the
oscillation frequency of the ball.

ﬂ

/ |

/\\—4 R cos #
|
|
| J

N

I (1 -cos6)

e = = U,=0

(a) Express the total energy E of the E=U+K=U+K_ . +K, 1)
ball:

Referring to the diagram shown U (x) = mgr(l —CoS 9)

above and assuming that R <<,
express the potential energy of the
ball when it is a horizontal distance
X from the bottom of the bowl:

Express cos@ as a power series: 0> 6*
cosfd=1——+—+..
2 4
For 6 << 1: 2
cosf~1——
2!
Substitute to obtain: 9>
2
U(x)=~ mg{l - (1 —;H =1mgré

ForR<<r: X
r
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Substitute to obtain:

Substitute in equation (1):

Because the ball is rolling without
slipping, v = R@. Substitute for o
and | to obtain:

Simplify to obtain:

(b) Because energy is conserved if
the side of the bowl is frictionless:

Because the motion is simple
harmonic motion, assume a solution
of the form:

Differentiate this assumed solution
with respect to time to obtain:

Substitute to obtain:

Express the condition the
E = constant:

Solve for w to obtain:

mgx’
U(x)=—2
() 2r
mgx> 1
E= +—mv’ +— o’
2r 2

2
magx 7
9 L

E= —
2r 10
2
= mgx +lmv2 = constant
2r 10

X = X, cos(at +6)

V = —X, sin(et + )

m
E= 2—? (x, cos(at +5))’
+ % m(— ax, sin(wt + &))°
2
_ Mg%, cos’(at + &)

2r
2

2
LR sin’ (@t + &)

2

mgx,  Tma’X; g9 _To

2r 10 r 5
o] [
r
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Picture the Problem Assume that the
plane is accelerating to the right with an
acceleration a,. The free-body diagram
shows the forces on the bob as seen in the
accelerated frame of the airplane. Let ¢’
represent the effective value of the
acceleration due to gravity. The period of
the yo-yo is given by

T =27,L/¢d

where ' is the effective value of the

acceleration due to gravity.

Express the period of your yo-yo L
pendulum as a function of the g'
effective value for the acceleration

due to gravity:

Using the FBD, relate g’ and g: mg = mg' cosf = g = g
cos@

Substitute to obtain: Lcos@

T=2x7

g

Substitute numerical values and 0.7 22°

T = oz |(07m)eos22° o
evaluate T: 9.8 1m/s?
102 e

LLLLS

Picture the Problem The diagram shows
the wire described in the problem statement
with an object of moment of inertia |
suspended from its end. We can apply
Newton’s 2™ law to the suspended object
to obtain its differential equation of

motion. By comparing this equation and its _ : )

solution to that of a simple harmonic

Oy G
oscillator, we can show that® = /x/1. O}/

Apply » 7 = la to the wire with d’
ppy-z 0 e\')v1re'w1 = la =1 20
the object of moment of inertia | on dt

its end: or
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The differential equation of simple
harmonic motion is:

Express the solution to equation (1):

103 e

Picture the Problem The diagram shows
the torsion balance described in the
problem statement. We can apply
Newton’s 2" law to the suspended object
to obtain its differential equation of
motion. By comparing this equation and its
solution to that of a simple harmonic
oscillator, we can obtain an equation that
we can solve for the torsion constant x.

Apply ZT = la to the torsion

pendulum:

The differential equation of simple
harmonic motion is:

Express the solution to equation (1):

Solve for x to obtain:

d?0 «
+—60=0 1
dt* 1 M
2
d—i(+a)zx =0
dt
where

X(t) = x, cos(awt — &) and @ = 2_I_—ﬂ

==

O(t) = 6, cos(wt — &) and @ =

//{3)
|fﬂ_,"""' :‘r /
/I

2
—kf=la=1 d f
dt
or
d?0 «
g 1970 M
2
d—i(+a)2X=O
dt
where

X(t) = x, cos(at + 5)and @ = 2_I_—ﬂ

O(t) = 9, cos(wt + 5)

and



Express the moment of inertia of the
torsion pendulum:
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2 2
| = 2m(£j _me
2 2

Substitute to obtain: o w’me> ~ 47>me? ~ 272 me?

2 2T*  T?

Substitute numerical values and
evaluate x:

27%(0.050kg)(0.05m)’
K= >
(80s)
=[3.86x10"" N-m/rad

*104 oo

Picture the Problem Choose a coordinate system in which the direction the cube is
initially displaced (downward) is the positive y direction. The figure shows the forces
acting on the cube when it is in equilibrium floating in the water and when it has been
pushed down a small distance y. We can find the period of its oscillatory motion from its
angular frequency. By applying Newton’s 2™ law to the cube, we can obtain its equation
of motion; from this equation we can determine the angular frequency of the cube’s
small-amplitude oscillations.

VE;
a FH J,
Y
a
mg Ymg

| |

| |

Y y

Express the period of oscillation in T= 2_72' )

terms of the angular frequency of 1)
the oscillations:

Apply Z F, = 0 to the cube when mg-F,=0

it is floating in the water:

Apply ZTy =ma, to the cube mg — |:I'3 =ma,

when it is pushed down a small
distance y:
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Eliminate mg between these
equations to obtain:

Fory<<1:

Rewrite the equation of motion as:

Solve for w:

Substitute in equation (1) to obtain:

105 e

F, —F; =ma,

AR, ~dF, =—pVg =-a’pgy =m (jjtZy
d’y 2
m—2>=-a
dt? Py
or
dzy__angy
dt’ m
where d- =—’y
dt?
oo
m
po2n [2n [m
NN
m

Picture the Problem Assume that the density of the earth p is constant and let m
represent the mass of the clock. We can decide the question of where the clock is more

accurate by applying the law of gravitation to the clock at a depth h below/above the

surface of the earth and at the earth’s surface and expressing the ratios of the acceleration

due to gravity below/above the surface of the earth to its value at the surface of the earth.

Express the gravitational force
acting on the clock when it is at a
depth h in a mine:

Express the gravitational force
acting on the clock at the surface of
the earth:

mg' = GM'm
(R, —h)

where M’ is the mass between the location

of the clock and the center of the earth.

GM:m
R:

mg =



Divide the first of these equations by
the second to obtain:

Express M ":

Express Mg:

Substitute to obtain:

Simplify and solve for g':

Express the gravitational force
acting on the clock when it is at an
elevation h:

Express the gravitational force
acting on the clock at the surface of

the earth:

Divide the first of these equations by
the second to obtain:

Solve for g"":

Oscillations 1115

GM'

g_(R-hf _M R

g GM. M.(R.-h)y
Re

or
h

‘=gl 1-— 1
g=9 REJ (1
mg" GM_m

R, +hY
mg—GMEm

Rg

GM,
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Comparing equations (1) and (2), we see that g' is closer to g than is g". Thus,

the error is greater if the clock is elevated.

106 e

Picture the Problem The figure shows
this system when it has an angular
displacement 6. The period of the system is
related to its angular frequency according
to T=24/w. We can find the equation of
motion of the system by applying
Newton’s 2™ law. By writing this equation
in terms of #and using a small-angle
approximation, we’ll find an expression for

o that we can use to express T.

(a) Express the period of the system
in terms of its angular frequency:

Apply ZF’ = Ma to the bob:

Eliminate T between the two
equations to obtain:

Noting that X = L& and
2
a,=La= Ld—f,
dt

eliminate the variable X in favor

of 6:

For << 1, tanf=~ O:

T=2
w

D F, =—kx—Tsind = Ma,
and

ZFy =T cosfd—-Mg=0

—kx—Mgtané = Ma,

2
ML(:jtf:—kLH—Mgtane
2
Mthf:—kLe—MgH
=—(kL +Mg)@
or
2
d f:—(i+gj9=—w29
dt M L

where

(1
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w- X9
M L
Substitute in equation (1) to obtain: T 2
k.9
M L
(b) When T=2sand M= 1 kg we 97— 2
have: 9
L
When T =1 s we have: 1= 2z
k+d
L
Solve these equations k =] 29.6 N/m

simultaneously to obtain:

107 -

Picture the Problem Applying Newton’s 2™ law to the first object as it is about to slip
will allow us to express i in terms of the maximum acceleration of the system which, in
turn, depends on the amplitude and angular frequency of the oscillatory motion.

(@) Apply D F, =ma, to the Fsmax = Mo

second object as it is about to slip:

Apply Z F, = 0to the second F,-mg=0
object:
Use f_ .. = uF, toeliminate um,g=m,a_

f, ma and F, between the two and

equations: U = Aax

g
Relate ‘Fhe max1@um acc.eleratlon of a_ = Ao’ = A
the oscillator to its amplitude and m, +m,

angular frequency:
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Substitute for a,,y to obtain: e Ak
’ (ml + m2 )g

) Ais unchanged. E is unchanged because E = 1kA®. @ is reduced by

increasing the total mass of the systemand T is increased.

108 e

Picture the Problem The diagram shows
the box hanging from the stretched spring
and the free-body diagram when the box is

in equilibrium. We can apply Z Fy =0 to

the box to derive an expression for x. In (b)
and (), we can proceed similarly to obtain
expressions for the effective spring
constant, the new equilibrium position of
the box, and frequency of oscillations when
the box is released.

mg
‘ 5

(a) Apply ZFV =0 to the box to k(x—xo)—mg =0

obtain:

Solve for X: mg

Substitute numerical values and (1 00kg )(9.8 1m/s? )
evaluate X: X=
500 N/m

=|2.46m

+0.5m

(b) Draw the free-body diagram for
the block with the two springs
exerting equal upward forces on it:

K(x = x,)

k(-“ - -\‘u)

X, $

mg

m

Apply ZFV =0 to the box to k(X—XO)+ k(X—XO)—mg =0

obtain: or
keff(X_XO)_mg =0 (1)

where
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K. = 2K
When the box is displaced from this k 2k
equilibrium position and released, o= |—%=]—
its motion is simple harmonic m m
motion and its frequency is given
by:
Substitute numerical values and 2(500 N/m
evaluate @ = W =| 3.16rad/s
(c) Solve equation (1) for x: mg
X=—=+X,
2k
Substitute numerical values and (1 00 kg)(9. 81 m/s? )
evaluate X: X= 2(500N/m) +0.5m
=[1.48m
109 e

Picture the Problem We’ll differentiate the expression for the period of simple

L
pendulum T =27 \/: with respect to ¢, separate the variables, and use a differential
g

L . A 1 Ag
approximation to establish that — ~ ———.
T 29
(a) Express the period of a simple T_9 L
pendulum in terms of its length and B E
the local value of the acceleration
due to gravity:
Differentiate this expression with dr _ d [272_ JL g ] — g
respect to g to obtain: dg dg
__T
29
Separate the variables to obtain: d_T _ _ld_g
T 29
Approximate dT and dg by AT and AT 1 Ag

Ag for Ag << g: T 2 g
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(b) Solve the result in part (a) for Ag:

Express AT/T:

Substitute and evaluate AQ:

110 e

Picture the Problem We can find the frequency of the vibrating system from its angular
frequency; this depends on the spring constant and the total mass involved in the motion.

AT

Ag =-20—

g g T

AT s 1d 1h

— =90 —Xx—-X

T d 24h 3600s
=-1.04%x107

Ag =—2(9.81m/s?)(~1.04x107)
=0.0204m/s> =| 2.04cm/s’

The energy of the system can be found from the amplitude of its motion.

(a) Relate the frequency of the
vibrating system to its angular
frequency:

Substitute numerical values and
evaluate f:

Express the total energy of the
system:

Substitute numerical values and
evaluate E:

(b) (1) The glue dissolves when the
spring is at maximum compression:

Relate the frequency to the system’s
new angular frequency:

Substitute numerical values and
evaluate f;:

Express the system’s new amplitude
as a function of the oscillator’s
maximum speed and its new angular
frequency:

foo 11k
27 27 \2m

L e DL Y T
27\ 2(0.6kg)

E = 1kA?

E =1(240N/m)(0.6m)* =| 43.2J

o _ 1k
"or 22\m
IZL 240N/m _ ==
2z\ 0.6kg
\' m
:M:V -
A a)l max k



Find the maximum speed of the
oscillator:

Substitute and evaluate A;:

Express and evaluate the energy of
the system:

(b) (2) The glue dissolves when the
spring is at maximum extension and
f, is the same as f;:

Because the second object is at rest,

the amplitude and energy of the
system are unchanged:

111 e
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Vo = A = 27A = 27(2.25571)(0.6m)

=8.48m/s
0.6kg
=(8.48m/s) | ———=—
A ( ) 40 N/m
=42.4cm

E, = 1kA? = 1(240N/m)(0.424 m)’
= 21.6J

f,=[3.18Hz

A, =A=[0.600m

and

E,=E=[432]

Picture the Problem Choose a coordinate system in which the positive X direction is to
the right and assume that the object is displaced to the right. In case (@), note that the two
springs undergo the same displacement whereas in (b) they experience the same force.

(a) Express the net force acting on
the object:

(b) Express the force acting on each

spring and solve for X,:

Express the total extension of the
springs:

Fnet = _klx - k2X = _(kl + kz )X = _keffx

where K =| K, +K,

F =-kxX K,X,
or
X, = K, X
2 M
K,
X, + X, =

eff
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Solve for Keg: K —_ F -k
T X, XX
kx, 1
= T
X +-—LX o+
k2 1 2
Take the reciprocal of both sides of 1 |1 N 1
the equation to obtain: K. - k. k,
*112 oo

Picture the Problem If the displacement of the block is y = A sin ai, its acceleration is
2p .
a=—wAsinat.

(a) At maximum upward extension, the block is momentarily at rest. Its downward
acceleration is g. The downward acceleration of the piston is @”A. Therefore, if @A > g,
the block will separate from the piston.

(b) Express the acceleration of the a=—-Aw®’sinwt
small block:
For @ A=3g and A= 15 cm: a=-3gsinwt =—g

Solve for t: 1 . _l(lj A . _1(1]
t=—sin | —|= . [—sIn | —
0] 3 39 3

Substitute numerical values and . 0.15m . ;1 0.0243
evaluate t: - 3‘9.81m/s2 jsm 3 L= :

113 e
Picture the Problem The plunger and ball are moving with their maximum speed as they
pass through their equilibrium position (X = 0). Once it has passed its equilibrium

position, the acceleration of the plunger becomes negative; therefore it begins to slow
down and the ball, continuing with speed Vs, separates from the plunger. We can find this
separation speed by equating it to the maximum speed of the plunger. Application of
conservation of energy to the motion of the plunger will allow us to express the distance
at which the plunger comes momentarily to rest.

(a) The ball will leave the plunger X = @
when the plunger is moving with its
maximum speed; i.e., at its
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equilibrium position:

(b) Express the speed of the ball V.=V _ =Aw=Xw0
upon separation in terms of the
maximum speed of the plunger:

The angular frequency is given by: k
w = _—
m, +m,
Substitute to obtain: k
Vo= X | ———
m, +m,

() Apply conservation of energy to Ki =K +U; -U; =0

the plunger: or, because K¢=U; =0,

Imv2 4+ L1kx? =
—amVv; +5kx =0

Solve for Xg: m
Xp = 4|2V
f k S
Substitute for vs and simplify to obtain: m
X =| X | ——
m, +m,

114 o

Picture the Problem Applying Newton’s 2™ law to the box as it is about to slip will
allow us to express z in terms of the maximum acceleration of the platform which, in
turn, depends on the amplitude and angular frequency of the oscillatory motion.

(a) Apply Z F, =ma, to the box fomax = M,

as it is about to slip:

Apply z F, =0 to the box: F,-mg=0
Use f_ .. = uF, toeliminate umg=ma,_,
f, ma and F, between the two and
. a
equations: g, = Smax
9

Relate the maximum acceleration of a  =Aw’
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the oscillator to its amplitude and
angular frequency:

Substitute for a,y : 3 Aw’ B 47° A
lLls g T 2 g

Substitute numerical values and 1 = 47t (0.4 m) _[235;
evaluate /4 © (0.8s) (9.81m/sz) :
(b) Solve the equation derived A - a9 pgT g
above for Ay Xt Art
Substitute numerical values and (0.4) (9. 81m/s” )(0 8s)’

. Amax = 2
evaluate A 4z

SIEE

115 eee
Picture the Problem In (b), we can use the condition F,. = dU/dx = 0 for stable
equilibrium to find the value of X = X, at stable equilibrium. In (C) and (d), we can simply
follow the outline provided in the problem statement. In (€), we can obtain the frequency

1 [k
from f = 2— — using the value for k from the potential function.
7 \m

(a) A graph of U(x) is shown to the right:

x/a

(b) Express the condition for equilibrium: = d_U —0

Differentiate U with respect to X: du d



Set this derivative equal to zero and
solve for X:

(c) Express U(Xy + ¢):

(d) Expand (1 + [ )_l to obtain:

Substitute in U(Xo + &):

(e) Express the potential energy of a
simple harmonic oscillator:

If the particle whose potential energy
is given in part (d) is to undergo
simple harmonic motion:

Oscillations 1125

! X, + &

X 1
—U0—°+—+X .
a a foy &
a a

or, because X = a,

U(x,+¢)=U, I+~ ——

i+ o+ (14 B) ]

Il
oC

£
where f =—
a

1+ )" =1+(-1) +—(_1)(_ 2)ﬂ2 +

2x1
~1-f+

U(X0+8):U0[1+,B+l—ﬂ+,32]
:Uo[2+ﬂ2]

2
&
:2U0 +UO?

82
=| constant +U, —
a

U = constant + L ke’

2U,
a2

k =
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Express the frequency of the simple
harmonic motion, substitute for k, and
simplify to obtain:

116 eee

el e
) 27za\/7

Picture the Problem Let m represent the mass of the cylindrical drum, R its radius, and k
the stiffness constant of the spring. We can find the angular frequency of the oscillations

by equating the maximum kinetic energy of the drum and the maximum energy stored in

the spring. We can then express the frequency of the system in terms of its angular

frequency. The application of Newton’s 2™ law, under on-the-verge-of-sliding conditions,

together with the introduction of the oscillator’s total energy, will lead us to an expression

for the minimum value of the coefficient of static friction.

(a) Express the frequency of
oscillation of the system for small
displacements from equilibrium:

Express the kinetic energy of the
drum and simplify to obtain:

Apply conservation of energy to
obtain:

Substitute Aw for Viax:

Solve for w:

Substitute in equation (1) to obtain:

Substitute numerical values and
evaluate f:

(b) Apply Z F, =0 to the drum to

f . (1

_1 2 1 2
K —3'60 +3mV

2
= %(%mRZX%j +1imv?

_3 2
=3mv

Koo =Smv2 =1kA?

max 4

Im(Aw) = LKA

2k
o=,
3m
(o1 [k
27\ 3m
¢ L [2(4000N/m) e
27\ 3(6kg)
KA—f _ =0

s, max

or



establish the condition that governs
slipping:

Using F, = mg, solve for s
Express the oscillator’s total energy
in terms of the amplitude of its

motion:

Substitute in equation (2) to obtain:

Substitute numerical values and
evaluate z4:

*117  oeee
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KA—uF =0

kA
My =— 2)

mg
E = 1kA’ = kA =/2Ek

V2Ek
M =

mg

= 2(59)(4000N/m) _ 370

(6kg)(9.81m/s°)

Picture the Problem The pictorial representation shows the two blocks connected by the
spring and displaced from their equilibrium positions. We can apply Newton’s 2™ law to
each of these coupled oscillators and solve the resulting equations simultaneously to
obtain the differential equation of motion of the coupled oscillators. We can then
compare this differential equation and its solution to the differential equation of motion
of the simple harmonic oscillator and its solution to show that the oscillation frequency is

w= (k/ ,u)l/ * where L =mim,/(m; + m,) is the reduced mass of the system.

Apply ZF =ma to the block

whose mass is m; and solve for its
acceleration:

Apply ZF =ma to the block

whose mass is m, and solve for its

m,g

d?x
k(Xl - Xz)_ ma, =m, 21

dt
or

d?x
a=—73>="=—(Xx—X
2
d-x,
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acceleration:

Subtract the first equation from the
second to obtain:

The reduced mass of the system is:

Substitute to obtain:

Compare this differential equation
with the differential equation of the
simple harmonic oscillator:

The solution to this equation is:

Express the solution to equation (1):

118 e

I 1 1 mm,
—=—+4—or u=
Mmoo m, m, +m,
2
ax_ Ky (M)
dt 7
d’x k
;=X
dt

X = X, cos(at +5)

where a)=1/£
m

X = X, cos(at +5)
k

where o =| [—

Y7,

Picture the Problem We can use @ = (k/,u)l/2 and ¢ = mm,/(m;+ m,) from Problem
117 to find the spring constant for the HCI molecule.

Use the result of Problem 118 to
relate the oscillation frequency to
the spring constant and reduced
mass of the HCI molecule:

Solve for k to obtain:

Express the reduced mass of the
HCI molecule:

Substitute to obtain:

k

w=_|—

7,

kK= puw
__mm,
m, +m,
m.m, e’
k: 1 2

m, +m,



Express the masses of the hydrogen
and Cl atoms:

Substitute numerical values and evaluate k:

o [1L67x107 kg)(5.92x10 kg )(8.969x10"s™ )

Oscillations 1129

m, =1 amu = 1.67x10%" kg
and
m, = 35.45 amu = 5.92x10° kg

=|13.1N/m

1.67x107" kg +5.92x10* kg

119 e

Picture the Problem In Problem 117, we derived an expression for the oscillation
frequency of a spring-and-two-block system as a function of the stiffness constant of the
spring and the reduced mass of the two blocks. We can solve this problem, assuming that
the "spring constant" does not change, by using the result of Problem 117 and the reduced
mass of a deuterium atom and a CI atom in the equation for the oscillation frequency.

Use the result of Problem 117 to
relate the oscillation frequency to
the spring constant and reduced
mass of the HCI molecule:

Express the reduced mass of the
HCl molecule:

Express the masses of the deuterium
and ClI atoms:

Evaluate the reduced mass of the
molecule:

Substitute numerical values and
evaluate w:

120 (X1}

k
w=_|—
U
m1m2
H=———
m, +m,

m, =2 amu = 3.34x10% kg
and
m, = 35.45 amu = 5.92x10% kg

(3.34x107 kg)(5.92x10™ kg
3.34x107 kg +5.92x10* kg

=3.16x10"" kg

13.1N/m
= -
3.16x107 kg

=1 6.44x10" rad/s

Picture the Problem The pictorial representation shows the block moving from right to
left with an instantaneous displacement X from its equilibrium position. The free-body
diagram shows the forces acting on the block during the half-cycles that it moves from
right to left. When the block is moving from left to right, the directions of the kinetic
friction force and the restoring force exerted by the spring are reversed. We can apply
Newton’s 2" law to these motions to obtain the differential equations given in the
problem statements and then use their solutions to plot the graph called for in (C).
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|

(a) Apply Z F, = ma, to the block

while it is moving to the left to
obtain:

Using f, = F, =g4mg, eliminate fy
in the differential equation of
motion:

Let X, = to obtain:

A /MY
K

The solution to the differential
equation is:

The initial conditions are:

Apply these conditions to obtain:

Solve these equations
simultaneously to obtain:

0 x A
|Y
Fn
kx .
fi; ’
mg
d?x
f —kx=m
k dtZ
d?x
m pre —kx + £, mg
or

2
md X :_k(x_ﬂk_m]
dt k

. d?x
dt?

or

d’x' k ,
—=——X'=-oX

dt m

provided X’ =X — Xo and

H# Mg _ M9
K ®*

Xy =

X' =X, cos(at + &)
and its derivative is
V' = —ax, sin(wt + &)

x'(0) = x—x,and v'(0)=0

x'(0)=x, cosd = x—x,
and

Vv'(0)= —ax, sins =0

0 =0and X; =X-X,
and
X' = (x—X, )cos at



(b) Apply D F =md to the block

while it is moving to the right to
obtain:

Using f, = wF, =14mg, eliminate f;
in the differential equation of
motion:

“,Mmg

Let X, = to obtain:

The solution to the differential
equation is:

The initial conditions are:

Apply these conditions to obtain:

Solve these equations
simultaneously to obtain:
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or
X:(X—Xo)cosa)t+x0 (D
d’x
— f—kx=m pre
d’x "
m dtz =—KX— Mg
or
2
mOI ;(:—k x + AMg
dt k
d*x
m-— =—k(x+x,)
or
dZX" k n 2 n
—=——X"=-'X
dt m
provided X" = X + Xy and
_| AMY _ 49
X, = ===
k 0]

X" = X, cos(at +5)
and its derivative is
V"' =—ax," sin(ot + )

x"(0)= x+x,and v"(0)=0

x"(0) = X" cos 5 = X+ X,
and

v'(0)=—ax;"sind =0

0 =0and X;' = X+X,

and
X" = (X + X, )cos at
or
X= (X + Xo)cos ot —X, )

(c) A spreadsheet program to calculate the position of the oscillator as a function of time

(equations (1) and (2)) is shown below. The constants used in the position functions (Xo =
I mand T =2 s were used for simplicity) and the formulas used to calculate the positions
are shown in the table. After each half-period, one must compute a new amplitude for the
oscillation, using the final value of the position from the last half-period.
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Cell Content/Formula Algebraic Form
Bl 1 Xo

B2 10 A

C7 C6+0.1 t+ At

D7 ($B$2-$B$1)*COS(PI()*C7)+$B$1 (A—x,)cos at + X,
D17 | (ABS($D$6+$B$1))*COS(PI()*C17)-$B$1 |X + x0| cos 7t — X,
D27 | (ABS($D$6—$B$1))*COS(PI()*C27)+$B$1 |x - x0| cos 7t + X,
D37 | (ABS($D$36+$B$1))*COS(PI()*C37)-$B$1 |x + x0| cos it — X,
D47 ($D$46-$B$1)*COS(PI()*C47)+$B$1 (x =X, )cos 7t + X,

A | B| C D
1 | x0= m
2 | A=|10
3
4 t X
5 () | (m)
6 0.0 | 10.00
7 0.1 | 9.56
8 0.2 | 8.28
9 03] 6.29
10 041 3.78
53 4.7 | 041
54 48 | 0.19
55 49| 0.05
56 5.0 0.00

The graph shown below was plotted using the data from columns C (t) and

D (x).

Note that the motion of the block ceases after five half - cycles.

X (m)
o

\\i//é\\
\ /D

\/

t(s)
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Picture the Problem The diagram shows the half-cylinder displaced from its equilibrium
position through an angle 6. The frequency of its motion will be found by expressing the
mechanical energy E in terms of #and dé@/dt. For small & we will obtain an equation of

2
the form E =1 k6 +11 (Z—fj . Differentiating both sides of this equation with respect

2
to time will lead to 0 = (K‘H +1 Mj—e, an equation that must be valid at all times.

dt* ) dt
Because the situation of interest to us requires that d@/dt is not always equal to zero, we
d’0 d’0 «

have 021{6’+|—2 or —-
dt dt

motion with @* = K‘/ | . The distance from O to the center of mass D, where, from

+—6 =0, the differential equation of simple harmonic

Problem 8-39, D = (4/37)R, and the distance from the contact point C to the center of
mass is r. Finally, we’ll take the potential energy to be zero where & is zero and assume
that there is no slipping.

Apply conservation of energy to obtain: E=U+K
1, (doY
=Mg(h-D)+- IC[EJ )
- 1
From Table 9 .1, the moment of oidestinger = —(ZM )Rz — MR2
inertia of a solid cylinder about an ’
axis perpendicular to its face and where M is the mass of the half-cylinder.

through its center is given by:
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Express the moment of inertia of the | 1 = 1 [MRz]
0, half cylinder 0~ E

half-cylinder about the same axis:

Use the parallel-axis theorem to l,=1_ +MD?
relate |, to lo:

Substitute for I, and solve for lgy: I, =1,- D’M
= 1 MR?> - D°M
2
-axi 1
Apply the parallel-axis theorem a l.=— MR2 — D2M + Mr2
second time to obtain an expression
for le: —M[Llr _pr?
2
Apply the law of cosines to obtain: r’ =R*>+D”—-2RDcos#

Substitute for r* in equation (2) to obtain:

1 3

l. = M(ERZ—DZ +R* + D2—2RD0056’) = MR2(5—2%cose

Substitute for h and ¢ in equation (1):

2
E-= MgD(l—cosH)-i—lMR2(§—220056’j[d—0j
2 2 "R dt

1
Use the small angle approximation cosé =~ 1— 592 to obtain:

2
E =L mgDe? +1MR2(3—2[2—92]j(d—‘9j
2 2 2 R dt

Because 62 << 2, we can neglect the 67 in the square brackets to obtain:

2
E = L mgDe? +1MR2(§—2EJ(d—9j
2 2 2 TR dt

Differentiating both sides with respect to time yields:

MR*
2

)

2



and
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2
0=MgDa %, MR{E—zEj(d—ej a9y
dt 2 "R dt ) dt

2
Rz{%_ng(zt?]—i_ gD =0,

d’e gD
e + 3 D =0,
R{_zj
2 R

the differential equation of simple harmonic motion with @° = ————.
o 3 D
R =——2—
2 R

Substitute for D to obtain: 4
o) =_ 37 9._ 8 9
{ 3 8 R \97-16)R
2 3x
Express the period of the motion in 2 97—-16 R
terms of w and simplify to obtain: W 8 g
| 778 F
g

*122 ooe

Picture the Problem The net force acting on the particle as it moves in the tunnel is the
X-component of the gravitational force acting on it. We can find the period of the particle
from the angular frequency of its motion. We can apply Newton’s 2™ law to the particle
in order to express o in terms of the radius of the earth and the acceleration due to gravity

at the surface of the earth.

(a) From the figure we see that: F.=F sin0=-— Gm':/l EpX
E r
GmM
=| — 3 X
RE

Because this force is a linear restoring
force, the motion of the particle is simple

harmonic motion.
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(b) Express the period of the particle T = 2_7T )
as a function of its angular w
frequency:
Apply Z F, = ma, to the particle: _ Gm|2/| Ey —ma
E
: GM
Solve for a: a=— 3EX:—a)2X
RE
where

f GM,
= >
RE
Use GM, = gR; to simplify w: gR;? g
= = _—
R VR
Substitute in equation (1) to obtain: 20t R
T="——=|21|"2%
9 g
RE
Substitute numerical values and 6.37 x10°
. T =27 |037A0M 556 10%
evaluate T: 9.81m/s>
=| 84.4min
123 eee
Picture the Problem The amplitude of a damped oscillator decays with time according
2
b

and then substitute in

to A= Aoe_(b/zm)t. We can find b/2m from @' = @, |1 -
2Mma,

the amplitude equation to find the factor by which the amplitude is decreased during each

oscillation. We’ll use our result from (@), together with the dependence of the energy of

the oscillator on the square of its amplitude, to find the factor by which its energy is

reduced during each oscillation.

(a) Express the variation in A= Aoe—(b/Zm)t 0
amplitude with time:



Relate the damped and undamped
frequencies of the oscillator:

Solve for b/2m:

Find the period of the damped
oscillations:

Substitute in equation (1) witht=T
to obtain:

(b) Express the energy of the
oscillator at time t = 0:

Express the energy of the oscillator
attime t=T:

Divide the second of these

equations by the first, simplify, and
substitute to evaluate E/E,:

124 oo
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(14-46)
b a)'2 2
— =, [1-— = w,/1-(0.9
om 0 a)g 0 ( )
= 0.4360,
_2r_ 2
o 090,
2z
A _ e(o.436w0)[09wﬂj _ g
Ay
=10.0478
E, =% g
E =LkA?

E, A
=['0.00228

E A (AY )
=2 2 (00477
R

Picture the Problem We can differentiate Equation 14-52 twice and substitute X and
d*x/dt* in Equation 14-51 to determine the condition that must be satisfied in order for
Equation 14-52 to be a solution of Equation 14-51.

The differential equation of motion
is Equation 14-51:

Its proposed solution is Equation
14-52:

Obtain the first and second
derivatives of X:

2
md—;(+ e Ma; X = F, cos ot
dt dt

x = Acos(wt — &)

o = —Awsin(ot - 5)
dt

and
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d’x
i ~Aw’ cos(at - &)

Substitute in the differential equation to obtain:
—MA®” cos(at — &) —bAwmsin(wt — &)+ mag Acos(wt — &) = F, cos at
Using trigonometric identities, expand Cos(a)t -0 ) and Sin(a)t -0 ) to obtain:

—MA®* (cos wt cos & + sin wt sin & )—bAw(sin wt cos 5§ — cos wt sin )

+Ma; A(cos ot cos & +sin wtsin 8 )= F, cos at
Factor MA(cos @t cos & +sin et sin §) from the first and third terms to obtain:
mA(a)(f -’ Xcos @t cos 8 + sin ot sin &) —bAw(sin ot cos § — cos wtsin § )= F, cos ot

Factor cos wt cosd from the first term on the left-hand side of the equation and
sinwtcosd from the 2™ term:

sin wtsin & coswtsin j

sin wt cos o

mA(a)g -’ Xcos wtcos 5)[1 +
cosawtcosd

j —bAw(sin wt cos 5)(1 -

= F, cosat

Simplify to obtain:

mA(a)g ~w° Xcos wtcos 5)(1+ tan wt tan 5 ) — bAw(sin wt cos 5{1 - ttan 5t j
an @

= F, cosat

Divide both sides of the equation by m(a)o2 .y ):

bA . tan o
A(cos @t cos 5 )1+ tan et tan 5 ) - > @ > (sin wt cos 5)(1 _ A j
M, —® tan ot
=
= ——cos ot
Mo, — o
The phase constant for a driven oscillator tan S = w

2

is given by Equation 14-54: mlw, — o’
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Substitute for tan o :

Alcos wt cos 5)(1 + tan ot m(a)?a—) e )) - m(atjf\f)a)z )(sin wtcosd)
ba
X l—miwg_a)2j = Ry cos wt
tan ot m(w? — )

Simplify to obtain:

F
A(cos wt cos 5)(1 +tan’ 5) = ﬁcos wt
mlw, — @

Use the trigonometric identity 1+ tan® § = =
cos” 0

— F()
cos’s  m(e} -a?)

Acos wt cos 5) cos wt

Simplify to obtain: Acos ot = F, cos 52 cos ot
M@, — @

Thus X = Acos(wt —&)is a A F,coso

solution to Equation 14-51 | m W} — @

provided:

*125 oo

Picture the Problem We can follow the step-by-step instructions provided in the
problem statement to obtain the desired results.

(a) Express the average power
delivered by a driving force to a
driven oscillator:

Express F as a function of time:

Express the position of the driven
oscillator as a function of time:

P=F-%=Fvcos6d
or, because A1is 0°,

P=Fv

F =F, cosat

x = Acos(at — J)
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Differentiate this expression with
respect to time to express the
velocity of the oscillator as a
function of time:

Substitute to express the average
power delivered to the driven
oscillator:

(b) Expand sin(a)t -0 ) to obtain:

Substitute in your result from (a)
and simplify to obtain:

(c) Integrate sin @ cos @ over one

period to determine <sin O cos <9> :

Integrate cos’ @ over one period to

determine <COS2 9> :

Substitute and simplify to express

P.:

vV =—Awsin(at - &)

P= (F0 cos a)t)[— Aw sin(a)t - 5)]

= | — AwF, cos wtsin(wt — )

sin(@t — &) = sin wtcos § — cos et sin &

P =-AwkF, cos a)t(sin wtcosd

—cos ot sin §)

AwF, sin J cos” at

— AwkF, cos § cos wt sin wt

[2r
<sin 6 cos t9> = S Isin 6 costd 9}

27[0

B 2z
= L lsin2 o :l
2

0

<cos2 <9> = iz_fcoszédé’

1 127z
=— —I(l+cos29)ﬂ9}
2 0

 ox 2
_ L %Id6?+%_|.cos26?d¢9}
0 0

1 1
= E(ﬂ- + O) = E
P, = AwkF,sin 5<cos2 a)t>
— Aok, cos 5<cos wtsin a)t>
=1 AwF, sin & — AwF, cos 5(0)
=| + AoF,sino




(d) Construct a triangle that is
consistent with

bw

tano = :
m(ew? — o”)

Using the triangle, express sind:

Using equation 14-53, reduce this
expression to the simpler form:

for w:

(e) Solve sino = b

Substitute in the expression for P,,
to eliminate @:

Substitute for sin o from (d) to
obtain Equation 14-55:

126 (X1}
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be

) bw
sind =
\/mz(a)g - a)z)z +b’w’
sinod = boA
I:O
w =isin5
bA

2

P = Fgin’s
2b

av

1 bo’F;
Pav =5
2 mz(a)g —wz)z +b’w’

Picture the Problem We can follow the step-by-step instructions given in the problem

statement to derive the given results.

(a) Express the condition on the
denominator of Equation 14-55
when the power input is half

its maximum value:

Factor the difference of two squares
to obtain:

(b) Use the approximation
o+ ay = 2a, to obtain:

mz(a)o2 —a)z)z +b’w’ =2b’w;
and, for a sharp resonance,

mz(w(f - a)z)z ~b’w]

m*[(w, - 0w, + )] ~b*w;

or

m*(w, - o) (0, + ©) ~b*®;

m*(@, - o) 20, ~b'e;
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Solve for ay — w: 0, — = ii 1)
2m
() Using its definition, express Q: Q- @M
b
Solve for b: b= @,m
Q
(d) Sub.stltute for b in equation (1) W, -o=1 Wy
to obtain: 2Q
Solve for w: w=a,* Wy
2Q
Express the two values of w: ,
@, =| Wy +——
2Q
and
o | o
2Q

Remarks: Note that the width of the resonance at half-power
SAw =0, —0_= wo/Q, in agreement with Equation 14-49.

127  eee

Picture the Problem We can find the equilibrium separation for the Morse potential by
setting dU/dr = 0 and solving for r. The second derivative of U will give the "spring
constant" for small displacements from equilibrium. In (C), we can use @ = 4/ k/ J7R

where K is our result from (b) and g is the reduced mass of a homonuclear diatomic
molecule, to find the oscillation frequency of the molecule.

(a) A spreadsheet program to calculate the Morse potential as a function of r is shown
below. The constants and cell formulas used to calculate the potential are shown in the
table.

Cell Content/Formula Algebraic Form
Bl 5 D

B2 0.2 B

C9 C8+0.1 r+Ar

D8 | SBSI*(1-EXP(-SBS2#(C8-$B$3)))'2 | plj _glr-n)|
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A B C D

1 D=5 eV

2 |Beta=[0.2 |nm’

3 0= 0.75 | nm

4

5

6 r U(r)
7 (nm) | (eV)
8 0.0 | 0.13095
9 0.1 |0.09637
10 0.2 | 0.06760
11 0.3 | 0.04434
12 0.4 |0.02629
235 22.7 | 4.87676
236 22.8 |1 4.87919
237 22.9 | 4.88156
238 23.0 | 4.88390
239 23.1 | 4.88618

The graph shown below was plotted using the data from columns C (r) and

D (U(r)).
0.6 - /
0.5

0.0 0.5 1.0 15 2.0 2.5 3.0

r (nm)

(b) Differentiate the Morse potential d_U _ i {D [1 _ e—ﬁ(r—ro)] 2 }
with respect to r to obtain: dr dr

= 21— ]

Set this derivative equal to zero for -2 ﬂD[l —e”’ (H")J =0
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extrema:

Solve for r to obtain:

Evaluate the second derivative of
U(r) to obtain:

Evaluate this derivative at r = ry:

Recall that the potential function for
a simple harmonic oscillator is:

Differentiate this expression twice to
obtain:

By comparison with equation (1) we
have:

(c) Express the oscillation frequency
of the diatomic molecule:

Express the reduced mass of the
homonuclear diatomic molecule:

Substitute and simplify to obtain:

Remarks: An alternative approach in (b) is the expand the Morse potential in a

Taylor series

r=r,

B8 oo

dr® dr
— 2ﬂ2 De A%

d?U
dr?

r=ry

=2/°D (1)

U

where u is the reduced mass of the
molecule.

mm, m’
ILI = = —_—
m+m, 2m

m
2

= 2’82D= 205

m
2

b
m

U(r)=Ul(r,)+(r-r, )U'(r0)+%(r —r, ) U""(r,)+ higher order terms

to obtain U(r) = ﬂZD(r —r, )2 . Comparing this expression to the energy of a spring-

and-mass oscillator we see that, as was obtained above, &k = 2/)’2D.



