Chapter 16
Superposition and Standing Waves

Conceptual Problems

*1 (1]
Picture the Problem We can use the speeds of the pulses to determine their positions at
the given times.
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Picture the Problem We can use the speeds of the pulses to determine their positions at
the given times.

3 .
Determine the Concept Beats are a consequence of the alternating constructive and
destructive interference of waves due to slightly different frequencies. The amplitudes of

the waves play no role in producing the beats. | () is correct.

4 .
(a) True. The harmonics for a string fixed at both ends are integral multiples of the
frequency of the fundamental mode (first harmonic).

(b) True. The harmonics for a string fixed at both ends are integral multiples of the
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frequency of the fundamental mode (first harmonic).

(c) True. If 7 is the length of the pipe and v the speed of sound, the excited harmonics are

givenby f, = nﬁ,where n=1,3,5...

5 (1]
Determine the Concept Standing waves are the consequence of the constructive
interference of waves that have the same amplitude and frequency but are traveling in

opposite directions. | (b) is correct.

*6 °

Determine the Concept Our ears and brain find frequencies which are small-integer
multiples of one another pleasing when played in combination. In particular, the ear
hears frequencies related by a factor of 2 (one octave) as identical. Thus, a violin sounds
much more "musical™ than the sound of a drum.

7 .

Picture the Problem The first harmonic
displacement-wave pattern in an organ pipe ~ -
open at both ends and vibrating in its S &
fundamental mode is represented in part (a) A g

of the diagram. Part (b) of the diagram = -
shows the wave pattern corresponding to
the fundamental frequency for a pipe of the
same length L that is closed at one end. P
Letting unprimed quantities refer to the A T

open pipe and primed quantities refer to the
closed pipe, we can relate the wavelength e

and, hence, the frequency of the —
fundamental modes using v = fA.

(a)

Express the frequency of the first £ v
.. . . 1

harmonic in the open pipe in terms A

of the speed and wavelength of the

waves:

2L

o~
I

Relate the length of the open pipe to
the wavelength of the fundamental
mode:
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Substitute to obtain: fo
bl

Express the frequency of the first £ v

harmonic in the closed pipe in terms ! A

of the speed and wavelength of the

waves:

Relate the length of the closed pipe A =4L

to the wavelength of the
fundamental mode:

Substitute to obtain: fro v _1lfvy1 ;

b4l 2\2L) 27
Substitute n|umerica| values and = 3(400 Hz)= 200 Hz
evaluate f':

and | (@) is correct.

8 oo

Picture the Problem The frequency of the fundamental mode of vibration is directly
proportional to the speed of waves on the string and inversely proportional to the
wavelength which, in turn, is directly proportional to the length of the string. By
expressing the fundamental frequency in terms of the length L of the string and the
tension F in it we can examine the various changes in lengths and tension to determine
which would halve it.

Express the dependence of the f = v

frequency of the fundamental mode ' A

of vibration of the string on its

wavelength:

Relate the length of the string to the A =2L

wavelength of the fundamental

mode:

Substitute to obtain: fo v
bl

Express the dependence of the speed F
of waves on the string on the tension "
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in the string:

Substitute to obtain: f 1 |F
oL Y7,

(a) Doubling the tension and the length would increase the frequency by a factor

of\/E/Z.

(b) Halving the tension and keeping the length fixed would decrease the frequency by a

factor of 1/ V2.

(c) Keeping the tension fixed and halving the length would double the frequency.
(c)iscorrect.

9 (1]
Determine the Concept We can relate the resonant frequencies of an organ pipe to the
speed of sound in air and the speed of sound to the absolute temperature.

Express the dependence of the _Vv
resonant frequencies on the speed of A
sound:

Relate the speed of sound to the IRT
temperature of the air: V= M

where y and R are constants, M is the
molar mass of the gas (air), and T is the
absolute temperature.

Substitute to obtain: - 1 [,RT
PAEY,

BecauseV oc /T, increasing the temperature increases the resonant frequencies.

*10 -
Determine the Concept Because the two waves move independently, neither impedes
the progress of the other.
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11 -

Determine the Concept No; the wavelength of a wave is related to its frequency and
speed of propagation (A = v/f). The frequency of the plucked string will be the same as
the wave it produces in air, but the speeds of the waves depend on the media in which
they are propagating. Because the velocities of propagation differ, the wavelengths will
not be the same.

12 o
Determine the Concept No; when averaged over a region in space including one or
more wavelengths, the energy is unchanged.

13 -

Determine the Concept When the edges of the glass vibrate, sound waves are produced
in the air in the glass. The resonance frequency of the air columns depends on the length
of the air column, which depends on how much water is in the glass.

14 e

Picture the Problem We can use v = fA to relate the frequency of the sound waves in the
organ pipes to the speed of sound in air, nitrogen, and helium. We can use

v=,RT / M to relate the speed of sound, and hence its frequency, to the properties of

the three gases.

Express the frequency of a given fo v

note as a function of its wavelength A

and the speed of sound:

Relate the speed of sound to the RT

absolute temperature and the molar V= M

mass of the gas used in the organ: where » depends on the kind of gas, R is a

constant, T is the absolute temperature, and
M is the molar mass.

Substitute to obtain: _1 |RT
FANY
For air in the organ pipes we have: 1 [7.RT
"2\ ™, .

When nitrogen is in the organ pipes:

1
Z M 2
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Express the ratio of equation (2) to sz In, M,
equation (1) and solve for f : - v M
2 air air N,
and
sz = fair ?/NZ Mair
7air M N,
Because yy, = 7,,and M, > My : fy, > fur

ie.,
f will increase for each organ pipe.

If helium were used, we’d have: Yie M
fHe = fair
7/air M He

Because y,,, > 7, and M, >> M ,.: foe >> T,

<

the effect will be even more

i.e.,
pronounced.

*15 e

Determine the Concept Increasing the tension on a piano wire increases the speed of the
waves. The wavelength of these waves is determined by the length of the wire. Because
the speed of the waves is the product of their wavelength and frequency, the wavelength

remains the same and the frequency increases. | (b) is correct.

16 oo
Determine the Concept If connected properly, the speakers will oscillate in phase and
interfere constructively. If connected incorrectly, they interfere destructively. It would be
difficult to detect the interference if the wavelength is short, less than the distance
between the ears of the observer. Thus, one should use bass notes of low frequency and
long wavelength.

17 oo

Determine the Concept The pitch is determined mostly by the resonant cavity of the
mouth; the frequency of sounds he makes is directly proportional to their speed. Because
Vhe > Vqir (See Equation 15-5), the resonance frequency is higher if helium is the gas in
the cavity.



Superposition and Standing Waves 1227

*18 e
Determine the Concept The light is being projected up from underneath the silk, so you
will see light where there is a gap and darkness where two threads overlap. Because the
two weaves have almost the same spatial period but not exactly identical (because the
two are stretched unequally), there will be places where, for large sections of the cloth,
the two weaves overlap in phase, leading to brightness, and large sections where the two
overlap 90° out of phase (i.e., thread on gap and vice versa) leading to darkness. This is
exactly the same idea as in the interference of two waves.

Estimation and Approximation

19 oo
Determine the Concept Pianos are tuned by ringing the tuning fork and the piano note
simultaneously and tuning the piano string until the beats are far apart; i.e., the time
between beats is very long. If we assume that 2 s is the maximum detectable period for
the beats, then one should be able to tune the piano string to at least 0.5 Hz.

*20 o
Picture the Problem We can use v = f;4; to express the resonance frequencies in the

organ pipes in terms of their wavelengths and L = n%, n=1,2,3,...to relate the length

of the pipes to the resonance wavelengths.

(a) Relate the fundamental f v
frequency of the pipe to its ' A
wavelength and the speed of sound:

Express the condition for LenZ n=123 1)
constructive interference in a pipe 2’ T
that is open at both ends:

Solve for A;: A =2L

Substitute and evaluate f;: f - v _ 340 m/_s2 _[227kHz
2L 2‘7.5)(10 m )

(b) Relate the resonance frequencies f o v

of the pipe to their wavelengths and ! A,

the speed of sound:

Solve equation (2) for Ay: 2L
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Substitute to obtain: o nl n 340m/s
T2l 2(7.5x107%m)
=n(2.27kHz)
Set f, = 20 kHz and evaluate n: e 20kHz _
227kHz

The eighth harmonic is within the range defined as audible. The ninth harmonic
might be heard by a person with very good hearing.

21 o0

Picture the Problem Assume a pipe length of 5 m and apply the standing-wave
resonance frequencies condition for a pipe that is open at both ends (the same conditions
hold for a string that is fixed at both ends).

Relate the resonance frequencies for fo v o
. ,=h—,n=123,..
a pipe open at both ends to the length
of the pipe:
Evaluate this expression for n = 1: f - 340m/s _ 34 0Hz
2(5m)
Express the dependence of the speed IRT
of sound in a gas on the temperature: V= M

where y and R are constants, M is the
molar mass, and T is the absolute
temperature.

Because Vv oc /T , the frequency will be somewhat higher in the summer.

Superposition and Interference

22 -
Picture the Problem We can use A =2y, c0s$¢ to find the amplitude of the resultant

wave.

(a) Evaluate the amplitude of the

A=2y,cosis =2(0.02 m)cos1 z
resultant wave when & = #/6: 2\ 6

=| 3.86cm
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(b) Proceed as in (a) with & = 7/3: A= 2y, cos 5 = 2(0.02 m)cos%(%)

=|3.46cm

23 -
Picture the Problem We can use A =2y, cos$¢ to find the amplitude of the resultant

wave.

Evaluate the amplitude of the

A=2y,cosis =2(0.05 m)cos1 z
resultant wave when & = #/2: 2\ 2

=| 7.07¢cm

*24 o
Picture the Problem The phase shift in the waves generated by these two sources is due
to their separation of 4/3. We can find the phase difference due to the path difference

AX .
fromo = 27[7 and then the amplitude of the resultant wave from A =2y, c0s$¢ .

Evaluate the phase difference o: 5= 27[& _ 27[/17/3 _ %7[

Find the amplitude of the resultant

1(2
=2y,c0s15=2Acos=| —
wave: A = 2¥0 €083 2 (3 ﬁj

= 2AcosZ =| A
3

25
Picture the Problem The phase shift in the waves generated by these two sources is due
to a path difference Ax =5.85 m —5.00 m = 0.85 m. We can find the phase difference due

. ) AX .
to this path difference from o = 27:7 and then the amplitude of the resultant wave

from A= 2y, cos3o.

(a) Find the phase difference due to 5= 27[&
the path difference:

Calculate the wavelength of the PR 340 m/s

= =3.4m
sound waves: f 100s™
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Substitute and evaluate & 5-2,98M _7 1 9000
34m 2

(b) Relate the amplitude of the
resultant wave to the amplitudes of
the interfering waves and the phase _ \/E A
difference between them:

1(x
A=2y,cosis=2Acos=| =

*26 o
Picture the Problem The diagram is shown below. Lines of constructive interference are
shown for path differences of 0, 4, 24, and 34.

Ad=0Ad=) rg=2)
d / Ad =3A

Ad=228d=2 1
\
\ \ | I r
|

Ad =3A
\

27 o
Picture the Problem The intensity at the point of interest is dependent on whether the
speakers are coherent and on the total phase difference in the waves arriving at the given

i A . .
point. We can use 0 = 27z—X to determine the phase difference 5, A= |2 P, cos%é‘| to

find the amplitude of the resultant wave, and the fact that the intensity | is proportional to
the square of the amplitude to find the intensity at P for the given conditions.

(a) Find the phase difference & 5= 27[%_/1 .
A
Find the amplitude of the resultant A=[2p,cosiz|=0
wave:
Because the intensity is proportional | = E
to A%

(b) The sources are incoherent and I =| 2l,




the intensities add:

(c) Express the total phase
difference:

Find the amplitude of the resultant
wave:

Because the intensity is proportional
to A%

28
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5tot =0,

sources

+ 5path difference

=7z+27rg=7r+27r(lj
A 2

=27

A=|2p,cosi(27)=2p,

2 2
=2, = (Zpg) 1, =[ 41,
Po Po

Picture the Problem The intensity at the point of interest is dependent on whether the
speakers are coherent and on the total phase difference in the waves arriving at the given

: A . :
point. We can use 0 = 27:7)( to determine the phase difference 5, A= |2 Po cos%§| to

find the amplitude of the resultant wave, and the fact that the intensity | is proportional to
the square of the amplitude to find the intensity at P for the given conditions.

(a) Find the phase difference &
Find the amplitude of the resultant
wave:

Because the intensity is proportional
to A%

(b) The sources are incoherent and
the intensities add:

(c) Express the total phase
difference:

Find the amplitude of the resultant

5:27z£:27z
A

A=|2p,cosi(27)=2p,

2 2
L (Zpg) 1, =] 41,

0 P
1 =21,
St = Ouuress +0

sources path difference

:7r+27r&:7r+27r(£j
A A

=3r

A=2p,cos$(37)=0
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wave:

Because the intensity is proportional
to A%

29

Picture the Problem Let P be the point located a distance r; from speaker 1 and a
distance r, from speaker 2. If the sound at point P is to be either a maximum or a
minimum, the difference in the distances to the speakers will have to be such that this

-[1]

difference compensates for the 90° out-of-phase condition of the speakers.

(a) Express the phase shift due to the
speakers in terms of a path difference:

Express the condition that r, —r, must

satisfy in order to compensate for this
path difference:

(b) In this case, the smallest difference
in path is again A/4, but now:

*30 oo
Picture the Problem The drawing shows a
generic point P located a distance r; from
source S; and a distance r, from source S,.
The sources are separated by a distance d
and we’re given that d < A/2. Because the
condition for destructive interference is
that 8 =nz wheren=1, 2, 3,..., we’ll
show that, with d < A/2, this condition
cannot be satisfied.

Relate the phase shift to the path
difference and the wavelength of the
sound:

Relate Artod and &

Substitute to obtain:

Ar:é‘sources — 90 Z:%i
360° 360°
n-n=|+4
n-r=+4
//
/
w iz’ 7
// /
P /
g /
r:“v\//
NN,
e
d| 5/
/
| /
s,V
5=277£
A
Ar <dsing <d
§<2ﬂdsm9 d

<2r—
A
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: A/2
Because d < 4/2 5<2;;L:;;
A
Express the condition for destructive o=nrx
interference: wheren=1, 2, 3,...

Because ¢ < 7, there is no complete destructive interference in any direction.

31 e
Picture the Problem Let the positive x direction be the direction of propagation of the
wave. We can express the phase difference in terms of the separation of the two points
and the wavelength of the wave and solve for A. In part (b) we can find the phase
difference by relating the time between displacements to the period of the wave. | in part
(c) we can use the relationship between the speed, frequency, and wavelength of a wave
to find its velocity.

(a) Relate the phase difference to the S=2r AX
wavelength of the wave:

Solve for and evaluate A: 1= Zﬂ& o scm _ 60.0cm
o 7/6
(b) Express and evaluate the period ;.1 1 _=25ms
of the wave: f 40s
R_elate the time between_the two 5ms = 1 T
displacements to the period of the
wave:
Express the phase difference 2r
A . o=|—
corresponding to one-fifth of a 5
period:
(c) Express the wave speed in terms v=fl= (405‘1)(0.6 m) =| 24.0m/s

of its frequency and wavelength:

32 oo

Picture the Problem Assume a distance of about 20 cm between your ears. When you
rotate your head through 90°, you introduce a path difference of 20 cm. We can apply the
equation for the phase difference due to a path difference to determine the change in
phase between the sounds received by your ears as you rotate your head through 90°.
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Express the phase difference due to S—2r 20cm
the rotation of your head through
90°:
Find the wavelength of the sound _ v _340 m_/ls _50em
waves: f 680s
- - . 2 m
Substitute to obtain: S—2r Ocm _ 0.8 rad
50cm

33 e
Picture the Problem Because the sound intensity diminishes as the observer moves,
parallel to a line through the sources, away from her initial position, we can conclude that
her initial position is one at which there is constructive interference of the sound coming
from the two sources. We can apply the condition for constructive interference to relate
the wavelength of the sound to the path difference at her initial position and the
relationship between the velocity, frequency, and wavelength of the waves to express this
path difference in terms of the frequency of the sources.

Express the condition for Ar=n4,n=123,.. (1)
constructive interference at

(40 m, 0):

Express the path difference Ar: Ar=r;—r,

Using the Pythagorean theorem, find
Ig:

Substitute for rg and evaluate Ar:

Substitute in equation (1) and solve
for A:

Using v = fA, express f in terms
of Aand n:

Evaluate f forn=1and 2:

r, =/(40m) +(2.4mYy

Ar = /(40m¥ +(2.4m)* —40m

=0.07194m
4= 0.07194m
n
Vv 340 m/s
f.=n =n
0.07194m 0.07194m

= (4726 Hz)n

f,=[4726Hz | and f, =] 9452Hz
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34 e
Picture the Problem Because the sound intensity increases as the observer moves,
parallel to a line through the sources, away from her initial position, we can conclude that
her initial position is one at which there is destructive interference of the sound coming
from the two sources. We can apply the condition for destructive interference to relate the
wavelength of the sound to the path difference at her initial position and the relationship
between the velocity, frequency, and wavelength of the waves to express this path
difference in terms of the frequency of the sources.

Express the condition for Ar = ni, Nn=135,.. (1)
destructive interference at (40 m, 0):
Express the path difference Ar: Ar=rgy—r,
Using the Pythagorean theorem, ry = \/(40 m)Z n (2.4m)2
find rg:
Substitute for rg and evaluate Ar: Al = \/(40 m)? +(2.4my —40m
=0.07194m
Substitute in equation (1) and solve q= 2(0.07194m) _0.1439m
for A: n n
Using v = fA, express f interms f—n v n 340m/s
of A: " 0.1439m 0.1439m
=(2363Hz)n
Evaluate f forn=1and 3: f, =| 2363Hz
and
f, =| 7089 Hz
*35 e

Picture the Problem We can use the trigonometric identity

cosA+cosB=2 cos[ At Bjcos( A; Bjto derive the expression given in (a) and the

speed of the envelope can be found from the second factor in this expression; i.e.,
fromcos[(Ak / 2)x - (Aw [ 2)t].
(a) Express the amplitude of the resultant wave function y(x,t):

y(x,t) = A(cos(k,x — oyt }+ cos(k,x — wst))
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A+B A-B
Use the trigonometric identity cos A+ cosB = 2COS( er jcos[ 5 j to obtain:

v

2 2

— ZA{COS( K ;kz x— ;wz tjcos( K ;kz x4+ 2= tﬂ

y(xt) = Z{COs kix—art +kpX ot kX - ot kX + a’zt}

2

Substitute wae = (@1 + @2)/2, Kave = (K1 + k2)/12, Ao = wy - a» and Ak = k; — k; to obtain:

ave ave

y(x,t) =| 2A[cos(k,, . x - @ t)cos(%kx—Athﬂ

(b) A spreadsheet program to calculate y(x,t) betweenOmand 50 matt=0,05s,and 1s
follows. The constants and cell formulas used are shown in the table.

Cell Content/Formula Algebraic Form
Bll B10+0.25 X + AX
C10 | COS($B$3*B10-$B$5*$C$9) y(x0)
+ COS($B$4*B10-$B$6*$C$9)
D10 | COS($B$3*B10-$B$5*$D$9) y(x,0.5 5)
+ COS($B$4*B10-$B$6*3$D$9)
E10 | COS($B$3*B10-$B$5*$ES9) y(x1s)
+ COS($B$4*B10—$B$6*SE$9)
A B C D E
1
2
3 | ki=|1 m™*
4 | k2=|08 |m'
5 [wl=]1 rad/s
6 |w2=10.9 rad/s
7 X 1 Yy(x0) | y(x,0559) | y(x,15)
8 (m)
9 0.000 | 2.000 4.000
10 0.00 | 2.000 | -0.643 | —-1.550
11 0.25 | 1.949 | -0.207 | -1.787
12 050 | 1.799 | 0.241 | -1.935
13 0.75 | 1.557 | 0.678 | -1.984
14 1.00 | 1.237 1.081 | -1.932
206 49.00 | 0.370 | -0.037 0.021
207 49.251 0.397 | 0.003 | —0.024
208 49.50 | 0.397 | 0.065 | —0.075
209 49.7510.364 | 0.145 | -0.124

210 50.00 | 0.298 0.237 —0.164
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The solid line is the graph of y(x,0), the dashed line that of y(x,0.5 s), and the dotted line is
the graph of y(x,1 s).

2.0

Ny / \’q\’""-. N

10 f(x,0)

os I\ b e M —f(x,055)
AN NegCA - -
0.0 » by : £ 4 ! !

-0.5

15

-10

154

-2.0

X (m)
(c) Express the speed of the v _ % 0w,
envelope: el Ak k, —k,
Substitute numerical values and o = 1rad/j—0-9 rafil/S _[0.500m/s
evaluate Venyelope: Im™-0.8m
36 oo
Picture the Problem The diagram shows
the two sources separated by a distance d S, o
and the path difference As. Because the A I\_ _____
lines from the sources to the distant point
are approximately parallel, the triangle ‘ \
shown in the diagram is approximately a \ \
right triangle and we can use trigonometry &
to express As in terms of d and 6. In the d
second part of the problem, we can apply a ‘ \
small-angle approximation to the larger ‘ \
triangle shown in Figure 16-29 to relate yp, ‘ /
to D and @ and then use the condition for
constructive interference to relate yy, to D, v ql As
w2

A, and d.

(a) Using the diagram, relate As to
the separation of the sources and the
angle &

sinezéand As~| dsing

(b) For € << 1, we can approximate As ~dtané
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sin@with tan@to obtain:

Referring to Figure 16-29, express tan g ~ Y
tan@in terms of y and D: D
Substitute to obtain: A ~ Wn
D
Express the condition on the phase 5= 2ﬂ§ —2m.m=123
difference for constructive ’ T
interference:
Substitute for As: o Ym —2am m=123..
DA

Simplify and solve for y: DA

Yo =| M——

d

37 e

Picture the Problem Because a maximum is heard at 0° and the sources are in phase, we
can conclude that the path difference is 0. Because the next maximum is heard at 23°, the
path difference to that position must be one wavelength. We can use the result of part (a)
of Problem 36 to relate the separation of the sources to the path difference and the angle
6. We’ll apply the condition for constructive interference to determine the angular
locations of other points of maximum intensity in the interference pattern.

Using the result of part (a) of Problem d = As
36, express the separation of the sing
sources in terms of As and &

Evaluate d with As = 2 and 6= 23°: q= AV
sin23°  fsin23°
_ 34E)1m_/s _18im
(4805 kin23°
Express the condition for additional dsind, =mi
intensity maxima: wherem=1,2,3,...,0r

0, :sin‘l[m—l}
d
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Evaluate this expression for m = 2: 2(340 m/s) _[eEs

0, - sin‘l[(4805—1)(1.81m)} )

Remarks: It is easy to show that, for m > 2, the inverse sine function is undefined
and that, therefore, there are no additional relative maxima at angles larger than
51.5°.

*38 eee

Picture the Problem Because the speakers are driven in phase and the path difference is
0 at her initial position, the listener will hear a maximum at (D, 0). As she walks along a
line parallel to the y axis she will hear a minimum wherever it is true that the path
difference is an odd multiple of a half wavelength. She will hear an intensity maximum
wherever the path difference is an integral multiple of a wavelength. We’ll apply the
condition for destructive interference in part (a) to determine the angular location of the
first minimum and, in part (b), the condition for constructive interference find the angle at
which she’ll hear the first maximum after the one at 0°. In part (c), we can apply the
condition for constructive interference to determine the number of maxima she can hear
as keeps walking parallel to the y axis.

(a) Express the condition for

) A
A dsind, =m—
destructive interference: 2

wherem=1, 3,5,..., or
mA

0, :sinl(—
2d

Evaluate this expression for m = 1: . _1[ v . _{ 340m/s }
6, =sin =sin

2fd 2(600s*)2m)
=|8.14°

(b) Express the condition for dsind, =mi
additional intensity maxima: wherem=0, 1, 2,3,..., 0r

0, = sin‘l[m—/1j

d

Evaluate this expression for m = 1: v _— 340 m/s

6,=sin"| — |= =

600s™)(2m)

=|16.5°
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(c) Express the limiting condition
onsing:

Solve for m to obtain:

Because m must be an integer:

39 (1 1]

sing, :misl
d

=]
o d_fd_ (6005 )(2m)23l53
A v 340m/s

Picture the Problem Let d be the separation of the two sound sources. We can express
the wavelength of the sound in terms of the d and either of the angles at which intensity
maxima are heard. We can find the frequency of the sources from its relationship to the
speed of the waves and their wavelengths. Using the condition for constructive
interference, we can find the angles at which intensity maxima are heard. Finally, in part
(d), we’ll use the condition for destructive interference to find the smallest angle for

which the sound waves cancel.

(a) Express the condition for
constructive interference:

Solve for A:

Evaluate 4 form=1:

(b) Express the frequency of the
sound in terms of its wavelength
and speed:

(c) Solve equation (1) for :

The table shows the values for @as
a function of m:

dsind, =mAi 1)

wherem=0,1, 2, 3,...

_dsing,
m

A

A =(2m)sin(0.140rad)

-[0279m
o LULN g7
2 0.279m

0 =Sin_1[m—lj=sin‘l{w}

2m
=sin*[(0.1395)m]

m O
(rad)

3 0.432
0.592

5 0.772
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6 0.992

7 1.354

8 | undefined
(d) Expr.ess.the condition for dsing, = mi
destructive interference: 2

wherem=1, 3, 5,...

Solve for 8, 0. =sin‘1(mij
2d
Evaluate this expression for m = 1: )
P 0, =sint| 2219M | 15 0698 rad
2(2m)
40 00

Picture the Problem The total phase shift in the waves arriving at the points of interest is
the sum of the phase shift due to the difference in path lengths from the two sources to a
given point and the phase shift due to the sources being out of phase by 90°. From
Problem 39 we know that 4 = 0.279 m. Using the conditions on the path difference Ax for
constructive and destructive interference, we can find the angles at which intensity
maxima are heard.

Letting the subscript "pd " denote 5= 5pd 165, = 27z&+£

"path difference” and the subscript

"s"” the "sources”, express the total where Ax is the path difference between the

phase shift & two sources and the points at which
constructive or destructive interference is
heard.

Express the condition for 5= 2”& LT 21 Anb,..

constructive interference:

Solve for Ax to obtain: Ax = ZE,Ei,éﬂu,... _ (8m-1)

8 8 8 8
wherem=1, 2, 3,...

A

Relate Ax to d to obtain: (8m-1)

AX=-——=A=dsing,
8

where the ""c¢” denotes constructive
interference.
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Solve for . p :Sin_{(8m—1)i} 12123
C 8d 1 i) i) .

The table shows the values for &, for m A
m=1to5: 11]701°

2 15.2°

3 23.6°

4 |135.1°

S| |42.8°
Express the condition for destructive 5=2r AX +F 3750
interference: A 4 A
Solve for Ax to obtain: a3 19, (8m _5)1

8 '8 '8 8
wherem=1, 2, 3,...

Letting "d " denotes destructive AX = (8m —5) 1=dsing
interference, relate Ax to d to obtain: ‘
Solve for 6;: 0, :sin‘l[(gm_s)/l]mzl, 23
The table shows the values for @, for m G
m=1to5: 1] 13.00°

2 11.1°

3 |1]19.3°

4 28.1°

5 37.6°
41 00
Picture the Problem We can calculate the required phase shift from the path difference

AS

and the wavelength of the radio waves using & = 27[7 .

Express the phase delay as a S5=2r As 1)
function of the path difference and
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the wavelength of the radio waves:

Find the wavelength of the radio vV 3x10° m/s _
waves: ~f  20x10°s?
Express the path difference for the As=dsiné

signals coming from an angle ¢
with the vertical:

Substitute numerical values and As =(200m)in10° =34.73m = 2.3151
evaluate As: =21+0.3154

Substitute in equation (1) and 5=2,93154 1 98raq=T113°
evaluate &

Beats

42 .

Picture the Problem The beat frequency is the difference between the frequency of the
tuning fork and the frequency of the violin string. Let f, = 500 Hz.

(a) Express the relationship between f, = f, £ Af
the beat frequency of the =500Hz+4Hz
frequencies of the two tuning forks:

Solve for f,: f, =| 504 Hz or 496 Hz

) If the beat frequency is increased, then f, = 504 Hz; if it is diminished,
f, =496 Hz.

43 e

Picture the Problem The Doppler shift of the siren as heard by one of the drivers is
given by the formula for source and receiver both moving and approaching each

other f, = f_[(1+u/v)/(1—u/v)], where u is the speed of the ambulance and v is the
speed of sound.

(a) Express the beat frequency: f f —f

beat — 'r s
where f, is the frequency heard by either
driver due to the other’s siren,



1244 Chapter 16

Express f: u
1+—
fo=f—
1-=
v
Substitute to obtain: u u
1+— 1+—
fbealt fs—v_fs: s —v_
1-— 1-—
v v
2
—=1
u
Substitute numerical values and 2
evaluate ooy foear = (500 HZ)—34O m/s ) =| 70.5Hz
22.4m/s

The person on the street hears no beat frequency as the sirens of both
ambulancesare Doppler shifted up by the same amount (approx. 35 Hz).

(b)

Standing Waves

*44 .
Picture the Problem We can use v = f4 to relate the second-harmonic frequency to the
wavelength of the standing wave for the second harmonic.

Relate the speed of transverse waves v=f,4,
on the string to their frequency and

wavelength:

Express A, in terms of the length L A, =L

of the string:

Substitute for 1, and evaluate v: v=f,L= (60 5—1X3 m) =|180m/s

45 .

Picture the Problem We can find the wavelength of this standing wave from the
standing-wave condition for a string fixed at both ends and its frequency from v = f3 4.
We can use the wave function for a standing wave on a string fixed at both ends
(y,(xt)= A, sink, xcosem,t)) to write the wave function for the wave described in this

problem.
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(a) Using the standing-wave L nﬁ, n=123,..
condition for a string fixed at both

ends, relate the length of the string

to the wavelength of the harmonic

mode in which it is vibrating:

: 2
Solve for As: A=SL= 5 (3 m) _[200m
Express_ th_e frequency of the third f,= VN 50m/s _[250Hz
harmonic in terms of the speed of A 2m
transverse waves on the string and
their wavelength:
(b) Write the equation for a standing ys(x,t)= A, sinkx cos wjt
wave, fixed at both ends, in its third
harmonic:
Evaluate ks: K, _2r_2m

A, 2m

Evaluate @: w, =24, = 2%(253‘1): 507s™

Substitute to obtain: | y,(x,t)=(4mm)sinkxcoswt |where k= zm™ and

w=507s"

46 o

Picture the Problem The first harmonic = —
displacement-wave pattern in an organ pipe ~

open at both ends and vibrating in its A
fundamental mode is represented in part (a) — ~

of the diagram. Part (b) of the diagram (@)

shows the wave pattern corresponding to =
the fundamental frequency for a pipe of the =
same length L that is closed at one end. We
can relate the wavelength to the frequency -
of the fundamental modes using v = fA. )

(a) Express the dependence of the v
frequency of the fundamental mode P 2 open
of vibration in the open pipe on its
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wavelength:

Relate the length of the open pipe to
the wavelength of the fundamental
mode:

Substitute and evaluate f; gpen:

(b) Express the dependence of the
frequency of the fundamental mode
of vibration in the closed pipe on its
wavelength:

Relate the length of the closed pipe
to the wavelength of the

fundamental mode:

Substitute to obtain:

47

2’].,open = 2L

£ = = 2305 _ 7 5 H,
| 2L 2(10m)

\

fl,closed = ﬂlydosed

ﬂ'l,closed = 4L

fo =y 340ms reeohs
| 4L 4(10m)

Picture the Problem We can find the speed of transverse waves on the wire using

A
V= F/y and the wavelengths of any harmonic from L = n?”, n=1,2,3,.... We can

use v = fA to find the frequency of the fundamental. For a wire fixed at both ends, the
higher harmonics are integer multiples of the first harmonic (fundamental).

(a) Relate the speed of transverse
waves on the wire to the tension in
the wire and its linear density:

Substitute numerical values and
evaluate v:

(b) Using the standing-wave
condition for a wire fixed at both
ends, relate the length of the wire to
the wavelength of the harmonic
mode in which it is vibrating:

Solve for A;:

VZF: | F
u m/L

968 N
! \/ (0.005kg)/(1.4m) me

L:nﬁ, n=123,..
2

A =2L=2(1.4m)=| 2.80m
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Express the frequency of the first oV 521m/s _ 186 Hz
harmonic in terms of the speed and Y4, 2.80m

wavelength of the waves:

(c) Because, for a wire fixed at both f,=2f = 2(186 Hz) =|372Hz

ends, the higher harmonics are integer

. . . and
multiples of the first harmonic:

f, =3f, =3(186Hz)=| 558 Hz

48 o
. . Vv .
Picture the Problem We can use Equation 16-13, f = nI =nf,n=13,5,..., tofind

the resonance frequencies for a rope that is fixed at one end.

(a) Using the resonance-frequency f = nl —nf,n=135,..
condition for a rope fixed at one

end, relate the resonance

frequencies to the speed of the

waves and the length of the rope:

Solve for fi: 20m/s
! f, = =|1.25Hz
4(4m)
) Because this rope is fixed at just one end, the system does not support a
second harmonic.
(c) For the third harmonic, n = 3: f,=3f =3(1.25Hz)=| 3.75Hz
49 .

Picture the Problem We can find the fundamental frequency of the piano wire using the
general expression for the resonance frequencies of a wire fixed at both ends,

f, :ni:nfl,nzl, 2,3,...,withn=1. We can use Vv = ,/F/u to express the

frequencies of the fundamentals of the two wires in terms of their linear densities.

Relate the fundamental frequency of o v
the piano wire to the speed of oL
transverse waves on it and its linear

density:
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Express the dependence of the F

speed of transverse waves on the V=,

tension and linear density:

Substitute to obtain: 1 |IF
oL 7

Doubling the linear density results .1 [F 1(1 |F 1
in a new fundamental frequency f’ fy :Z Z :ﬁ 2L ; zﬁ fy

given by:

Substitute for f; to obtain: i 12 (200Hz) = [ 141Hz

*50 o

Picture the Problem Because the frequency and wavelength of sounds waves are
inversely proportional, the greatest length of the organ pipe corresponds to the lowest
frequency in the normal hearing range. We can relate wavelengths to the length of the
pipes using the expressions for the resonance frequencies for pipes that are open at both
ends and open at one end.

Find the wavelength of a 20-Hz note: J) v _340m/s _

max = —=17/m
fIowest 205
(a) Relate the Iengt_h L of a closed- L= nﬁ, n=13.5, ..
at-one-end organ pipe to the
wavelengths of its standing waves:
Solve for and evaluate A;: L A _17M _ 425m
4 4
(b) Relate the length L of an open L= nﬁ, n=123, ..
organ pipe to the wavelengths of its
standing waves:
Solve for and evaluate A;: L= ﬂn;x _ 172m —_[850m

51 ee
Picture the Problem We can find A and f by comparing the given wave function to the
general wave function for a string fixed at both ends. The speed of the waves can then be
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found from v = fA4. We can find the length of the string from its fourth harmonic
wavelength.

(a) Using the wave function, relate Kk — 2_7T —0.20cm™
k and A:
Solve for 2 A=—2" _ _10zcm=|3L4cm
0.20cm
Using the wave function, relate f =2 =300s™
and w:
Solve for f: -
olve for f o 300s _ 4771z
2r
(b) Express the speed of transverse v= fA=(47.7Hz)0.314m)
waves in terms of their frequency —115.0m/s

and wavelength:

(c) Relate the Iength of the s_tring to L= n&, n=1213, ..
the wavelengths of its standing- 2
wave patterns:

Solve for L when n = 4: L =24, =2(31.4cm)=| 62.8cm

52 ee
Picture the Problem We can find A and f by comparing the given wave function to the
general wave function for a string fixed at both ends. The speed of the waves can then be
found from v = fA. In a standing wave pattern, the nodes are separated by one-half
wavelength.

(a) Express the speed of the traveling v= {4
waves in terms of their frequency and
wavelength:
Using the wave function, relate k Kk — 2 —25m™
and A
: 2
Solve for 1 A=—2" _—08zm=25lm
2.5m

Using the wave function, relate @ ® =2 =500s7"
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and f:
Solve for f: -

olve for - 500s _ 79.6Hz

V4
Substitute to find v: V= (79.65‘1)(2.51m) —[200m/s
Express the amplitude of the Ay =2A
standing wave in terms of the
amplitude of the two traveling
waves that result in the standing
wave:
Solve for and evaluate A: A Asw _0.05m _ 5 50cm
2 2

(b) The distance between nodes is A _251m _ 126m
half the wavelength: 2 2 :
©) Becau_se there is a standing_wave L = i —[1.26m
on the string, the shortest possible 2
length is:
53 ee

Picture the Problem We can evaluate the wave function of Problem 52 at the given
times to obtain graphs of position as a function of x. We can find the period of the motion
from its frequency fand find f from its angular frequency .

(a) The function y(x,0) is shown to

the right. ‘ //\\
1/ \\
i jDD 05 1.0 \ 15 20 5
R \ /
R \ /
Y AN /

X (m)
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The functions y(x,T/4) and
y(x,3T/4) are shown to the right.
Because these functions are
identical, only one graph is shown.

y(x,T/4) (cm)
L S e )

x (m)

The function y(x,T/2) is shown to

the right. ‘ /\
:! /
%4 \05 10// 15 20 25
: X (m)
(b) Express the period in terms of T= i
the frequency: f
Using the wave function, relate o w =22 =500s7"
and f:
Ive for f: -
Solve for F o 500s _ 79.6Hz
T
Substitute for f and evaluate T: T 1 _=[126ms
79.6s

Because the string is moving either upward or downward when
y(x) =0 for all x,the energy of the wave is entirely kinetic energy.

(©)

*5/] e
Picture the Problem Whether these frequencies are for a string fixed at one end only
rather than for a string fixed at both ends can be decided by determining whether they are
integral multiples or odd-integral multiples of a fundamental frequency. The length of the
string can be found from the wave speed and the wavelength of the fundamental
frequency using the standing-wave condition for a string with one end free.

(a) Letting the three frequencies be f 75Hz

represented by f', f*, and ', find ' 125Hz

3
5

the ratio of the first two frequencies:
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Find the ratio of the second and " B 125Hz B

third frequencies: f*  175Hz

5
s

(b) | There are no even harmonics, so the string must be fixed at one end only.

(c) Express the resonance f,=nf,n=1,3,5,..
frequencies in terms of the
fundamental frequency:

Noting that the frequencies are f o f, _75Hz _ 25 Hz
multiples of 25 Hz, we can conclude 3 3
that:

Because the frequencies are 3, 5, and 7 times the fundamental frequency,
they are the third, fifth, and seventh harmonics.

(d)

_(e) Express the Iengt_h of the string L= nﬁ, n=135 ..
in terms of the standing-wave
condition for a string fixed at one

end:

Using v = fy 4y, find A;: A= v _ 400 mlls _16
f, 25s”

Evaluate L for 4, =16 mandn=1: L:£:16m: 2.00m
4 4

55 o0

Picture the Problem The lowest resonant frequency in this closed-at-one-end tube is its
fundamental frequency. This frequency is related to its wavelength through v = finAmax-
We can use the relationship between the nth harmonic and the fundamental

frequency, f, = (2n +1) f,,n=1,2,3,..., to find the highest frequency less than or equal

to 5000 Hz that will produce resonance.

(a) Express the Igngth of the space L= nﬁ, n=135 ..
above the water in terms of the

standing-wave condition for a

closed pipe:

Solve for Ay y :ﬂ,n:1,3,5,...
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Amax COrresponds ton = 1: Aax = 4L = 4(1.2 m) =4.8m

Using vV = foindmax, find foin: oo vo_ 340m/s _[708H2
Avax  4.8M

(b) Express the nth harmonic in f, = (2n +1) f,n=1,23,..

terms of the fundamental frequency
(first harmonic):

To find the highest harmonic below 5000Hz = (2n +1)(70.8 Hz)
5000 Hz, let f, = 5000 Hz:

Solve for n (an integer) to obtain: n=34
Evaluate fas: f,, =69f, =69(70.8Hz)=| 4.89kHz
(c) There are 34 harmonics higher 35

than the fundamental frequency so
the total number is:

56 o0

Picture the Problem Sound waves of frequency 460 Hz are excited in the tube, whose
length L can be adjusted. Resonance occurs when the effective length of the tube

Leir = L + AL equals+ 4, 2 4, 2 4, and so on, where A is the wavelength of the sound.

Even though the pressure node is not exactly at the end of the tube, the wavelength can be

found from the fact that the distance between water levels for successive resonances is
half the wavelength. We can find the speed from v = fA and the end correction from the

fact that, for the fundamental, L = %/1 =L, + AL, where L, is the distance from the top

of the tube to the location of the first resonance.

(a) Relate the speed of sound in air v=f1
to its wavelength and the frequency
of the tuning fork:

Using the fact that nodes are A =2(55.8cm-18.3cm)
separated by one-half wavelength, =75cm

find the wavelength of the sound

waves:

Substitute and evaluate v: V= (460 sfl)(o,75 m)=| 345m/s
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(b) Relate the end correction AL to
the wavelength of the sound and
effective length of the tube:

Solve for and evaluate AL:

*57 oo

Lef‘f :%/1
=L +AL

AL=141-L =1(75cm)-18.3cm
=| 0.450cm

Picture the Problem We can use v = fA to express the fundamental frequency of the

organ pipe in terms of the speed of sound and v = 1/% to relate the speed of sound and

the fundamental frequency to the absolute temperature.

Express the fundamental frequency
of the organ pipe in terms of the
speed of sound:

Relate the speed of sound to the
temperature:

Substitute to obtain:

Using primed quantities to represent
the higher temperature, express the
new frequency as a function of T:

As we have seen, A is proportional
to the length of the pipe. For the
first question, we assume the length
of the pipe does not change, so

A= A'. Then the ratio of f' to f is:

f=Y
p)

vo [RT
M

where y and R are constants, M is the
molar mass, and T is the absolute
temperature.

¢ 1 |RT
IVA'RY

¢ L [RT
AV M

f_r

f T



Solve for and evaluate f ' with
T'=305Kand T=289 K:
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[305K
=" =1 —
305K = 1289K 4 5ag 1

= (440.0Hz) 305K
289K

=| 452 Hz

It would be better to have the pipe expand so that v/L, where L is the
length of the pipe, is independent of temperature.

58 oo

Picture the Problem We can express the wavelength of the fundamental in a pipe open
at both ends in terms of the effective length of the pipe using 4 = 2L 4 = 2(L + AL),

where L is the physical length of the pipe and A = v/f. Solving these equations
simultaneously will lead us to an expression for L as a function of D.

Express the wavelength of the
fundamental in a pipe open at both
ends in terms of the pipe’s effective
length L

Solve for L to obtain:

Express the wavelength of middle C
in terms of its frequency f and the

speed of sound v:

Substitute to obtain:

Substitute numerical values to
express L as a function of D:

Evaluate L for D=1 cm:

Evaluate L for D =10 cm:

A=2L, =2(L+AL)
where L is its physical length.

L:i—AL:i—0.3186D
2 2

L= _0.3186D
2t

340m/s

L= > -0.3186D
2(2565)

=0.664m-0.3186D

L = 0.664m —0.3186(0.01m)
=|66.1cm

L =0.664m —0.3186(0.1m)
=|63.2cm
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Evaluate L for D = 30 cm: L =0.664m —0.3186(0.3m)
=|956.8cm

59 oo

Picture the Problem We know that, when a string is vibrating in its fundamental mode,
its ends are one-half wavelength apart. We can use v = f4 to express the fundamental
frequency of the organ pipe in terms of the speed of sound and v = \/F/ x to relate the
speed of sound and the fundamental frequency to the tension in the string. We can use

this relationship between f and L, the length of the string, to find the length of string
when it vibrates with a frequency of 650 Hz.

(a) Express the wavelength of the 1=2L= 2(40 cm) =| 80cm
standing wave, vibrating in its
fundamental mode, to the length L
of the string:

(b) Relate the speed of the waves v=fa
combining to form the standing
wave to its frequency and

wavelength:
Express the speed of transverse F
. L vV=_[—
waves as a function of the tension in
the string:
Substitute and solve for F to obtain: F— f2)2 m

where m is the mass of the string and L is

its length.
Substitute numerical values and F_ (5005‘1)2(0.8 m) , 1.2x107° kg
evaluate F: 04m
= 480N
(c) Using v = f4 and assuming that f o v_\v
the string is still vibrating in its A 2L

fundamental mode, express its
frequency in terms of its length:



Solve for L;

Letting primed quantities refer to a
second length and frequency,
express L’ in terms of f’;

Express the ratio of L' to L and
solve for L":

Evaluate L6s0 Hz:

60 oo
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500Hz
650Hz — 650 Hz LSOOHZ
_ 500Hz

= (40cm)=30.77cm
650 Hz

You should place your finger
9.23 cm from the scroll bridge.

Picture the Problem Let f' represent the frequencies corresponding to the A, B, C, and D
notes and x(f ") represent the distances from the end of the string that a finger must be
placed to play each of these notes. Then, the distances at which the finger must be placed

are given by x(f')=L(fg)-L(f").

Express the distances at which the
finger must be placed in terms of the
lengths of the G string and the
frequencies f ' of the A, B, C, and D
notes:

Assuming that it vibrates in its
fundamental mode, express the
frequency of the G string in terms of
its length:

Solve for Lg:

Letting primed quantities refer to
the string lengths and frequencies of

x(f')=L(fs)-L(f) (1)
fo=v =
Je 2L,
\Y
|_ =
© 21,
L=V
2f
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the A, B, C, and D notes, express L'

in terms of f':
Express the ratio of L’ to L and L k INT. k L
solve for L": L, f f
Evaluate L' = L(f) for the notes A, Note | Frequency | L(f")
B, C and D to complete the table: (Hz) (cm)
A 220 26.73
B 247 23.81
C 262 22.44
D 294 20.00
Use equation (1) to evaluate x(f ") Note | Frequency | L(f") x(f"
and complete the table to the right: (Hz) (cm) (cm)
A 220 26.73 | | 3.27
B 247 2381 | | 6.19
C 262 2244 | | 756
D 294 20.00 | |10.0
61 oo

Picture the Problem We can use the fact that the resonance frequencies are multiples of
the fundamental frequency to find both the fundamental frequency and the harmonic
numbers corresponding to 375 Hz and 450 Hz. We can find the length of the string by
relating it to the wavelength of the waves on it and the wavelength to the speed and
frequency of the waves. The speed of the waves is, in turn, a function of the tension in the
string and its linear density, both of which we are given.

(a) Express 375 Hz as an integer nf, =375Hz Q)
multiple of the fundamental
frequency of the string:

Express 450 Hz as an integer (n +1) f, =450Hz (2)
multiple of the fundamental
frequency of the string:

Solve equations (1) and (2) f,=| 75.0Hz
simultaneously for f;:




(b) Substitute in equation (1) to obtain:

(c) Express the length of the string
as a function of the speed of
transverse waves on it and its
fundamental frequency:

Express the speed of transverse
waves on the string in terms of the
tension in the string and its linear

density:

Substitute to obtain:

Substitute numerical values and
evaluate L:

62 oo
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n=>5

The harmonics are the fifth and sixth.

i Y,
2

L=+ |F
2f, \

L=+ [ SON oo
2(755)\ 4x10 kg/m

Picture the Problem We can use the fact that the resonance frequencies are multiples of
the fundamental frequency and are expressible in terms of the speed of the waves and
their wavelengths to find the harmonic numbers corresponding to wavelengths of 0.54 m
and 0.48 m. We can find the length of the string by using the standing-wave condition for

a string fixed at both ends.

(a) Express the frequency of the
nth harmonic in terms of its
wavelength:

Express the frequency of the
(n + 1)th harmonic in terms of its
wavelength:

Solve these equations
simultaneously for n:

v v
nf,=—-=
A, 0.54m
(n+1)f,=— ="
Ay 0.48m
n==8

The harmonics are the eighth and ninth.
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(b) Using the standing-wave L nﬁ, n=123..
condition, both ends fixed, relate

the length of the string to the

wavelength of its nth harmonic:

2.16m

Evaluate L for the eighth harmonic: L — 8(0.54 mJ B
2

63 oo
Picture the Problem The linear densities of the strings are related to the transverse wave

speed and tension throughv = ,/ F/y. We can use v = fA = 2fL to relate the frequencies

of the violin strings to their lengths and linear densities.

(a) Relate the speed of transverse F
waves on a string to the tension in V=i,

the string and solve for the string’s

and
linear density: F
H=—
Vv
Express the dependence of the v=fd
speed of the transverse waves on =2f.L
their frequency and wavelength:
Substitute to obtain: 1 = Fe
S A
Substitute numerical values and 1 = 90N
evaluate /i * afu.5(44057)) (0.3mY
=5.74x10"" kg/m
=| 0.574g/m
(b) Evaluate za: 90N

77 4aa0s ) (0.3m)
=1.29x107° kg/m
={1.29g/m
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Evaluate zp: L = 90N
4(293s)*(0.3m)?
=2.91x10° kg/m
=| 2.91g/m

Evaluate s s = 90N
4(195s)°(0.3m)?
=6.57x10"° kg/m
=|6.57g/m

64 oo

Picture the Problem The spatial period is one-half the wavelength of the standing wave
produced by the sound and its reflection. Hence we can solve ¢ = f'A'for A’ and use

f'=f []/(1— V/C)] to derive an expression for 2'/2 in terms of ¢, v, and f.

(a) Express the wavelength of the 1= C
reflected sound as a function of its '
frequency and the speed of sound in

air:
Use the expression for the Doppler- frof 1
shift in frequency when to source is 1— v
in motion to obtain: c
where c is the speed of sound.
Substitute to obtain: A_¢c ¢
2 2f 2§ 1V
1——
c
I PR A
2f c 2f
Substitute numerical values and A" 340m/s—22.4m/s 0318
. . = 1 =(0.318m
evaluate the spatial period of the 2 2(5005 )

standing wave:
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As the ambulance moves closer to the wall, the sound waves from its siren
o will periodically move in and out of resonance (i.e., the reflected waves
will sometimes interfere constructively and sometimes partially

destructively) so the intensity will periodically get louder and softer.

65 e
Picture the Problem Beat frequencies are heard when the strings are vibrating with
slightly different frequencies. To understand the beat frequency heard when the A and E
strings are bowed simultaneously, we need to consider the harmonics of both strings. In
part (c) we’ll relate the tension in the string to the frequency of its vibration and set up a
proportion involving the frequencies corresponding to the two tensions that we can solve
for the tension when the E string is perfectly tuned.

The two sounds produce a beat because the third harmonic of the A

string equals the second harmonic of the E string, and the original frequency
of the E string is slightly greater than 660 Hz. If f. =(660+ Af)Hz,a

beat of 2Af will be heard.

(@)

(b) Because fyey increases with fe =660Hz + (3 HZ)
increasing tension, the frequency of —[661.5Hz
the E string is greater than 660 Hz.
Thus the frequency of the E string
is:

(c) Express the frequency of a string ‘¢ v 1 |F

as a function of its tension: 2 a\u
When the frequency of the E strin F

. e ’ 660 Hz = — |~
is 660 Hz we have: P
When the frequency of the E strin

. e ’ 6615Hz == 20N
is 661.5 Hz we have: AN
Divide the first of these equations 660 Hz

by the second and solve for Fggo 1, tO 660Hz — 661 5Hz 79.6N
obtain:

66 oo

Picture the Problem We can use the condition for constructive interference of the waves
reflected from the walls in front of and behind you to relate the path difference to the
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wavelength of the sound. We can find the wavelength of the sound from its frequency
and the speed of sound in air.

Express the total path difference as AX = MXocarwa + AXpar wai 1)
you walk toward the far wall of the
hall:

Express the condition on the path nA=Axwheren=1,2,3,... (2)
difference for constructive
interference:

The reduction in the distance to the AXnear wan = 2d
nearer wall as you walk a distance d
is:

The increase in the distance to the AXar wan = 2d

farther wall as you walk a distance d

is:

Substitute in equation (1) to find the Ax=2d +2d =4d
total path difference as you walk a

distance d:

Relate Ato fand v: \Y

. . . . Vv
Substitute in equation (2) to obtain: n— — 4d

Solve for and evaluate d for n = 1: g=_Y _ 340 mls

—= =|12.5cm
4f 4‘6803‘”

*67 oo
Picture the Problem Let the wave function for the wave traveling to the right be
Yr (x,t) = Asin(kx —wt— 5) and the wave function for the wave traveling to the left

bey, (x,t)= Asin(kx+ @t + &)and use the identity
sina +sin g = 23in[#j cos[#j to show that the sum of the wave functions

can be written in the form y(x,t) = A'sin kx cos(at + &).
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Express the sum of the traveling waves of equal amplitude moving in opposite directions:
y(x,t)= Yo (x,t)+y, (x,t) = Asin(kx — ot —5) + Asin(kx+ ot +5)

Use the trigonometric identity to obtain:

Y(X,t)=2Asin(kx_wt_5;kx+wt+5jcos(k>(—0)t—5;kx-a)t_5j

= 2Asinkxcos(— ot — )

Because the cosine function is even: y(X,t) = 2Asinkx cos(a)t + 5)

i.e., cos(—6) = cosé: = A'sin kxcos(a)t + 5)
where A’ = 2A.

Thus we have: y(x,t)=| A'sinkxcos(at + &)

provided A’ = 2A.

68 oo
Picture the Problem We can find w; and k; from the given information and substitute to
find the wave function for the 3" harmonic. We can use the time-derivative of this
expression (the transverse speed) to express the kinetic energy of a segment of mass dm
and length dx of the string. Integrating this expression will give us the maximum kinetic
energy of the string in terms of its mass.

(a) Write the general form of the y3(x, t) = A;sink;x cos mt
wave function for the 3™ harmonic:

Evaluate o w, = 27f, = 27(100s ) = 20075
Using the standing-wave condition L= 3£

for a string fixed at one end, relate

the length of the string to its 3" and

harmonic wavelength: A = 4Lz i(Zm) _8

Evaluate ks: K, = 27 _ 2m _ 3_7rm_l
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Substitute numerical values and K, = %m(ZOO;z 5—1)2(0_03 m)’
evaluate Kmax:
= | (88.8J/kg)m

Substitute to obtain:

ys(x,t)=1 (0.03 m)sin[(%z mljx} cos(2007rs’l)t

. . 2
(b) Express the kinetic energy of a dK = dmv;
segment of string of mass dm:

Express the mass of the segment in dm = pdx
terms of its length dx and the linear
density of the string:

Using our result in (a), evaluate vy:
v, = ﬁ[(0.03m)5in[(3—” m‘l)x} cos(2007s) t}
ot 4
— —(20075)(0.03 m)sinK%” mle}sin(ZOOﬁsl)t

— (6 m/s)sinKBTﬂ m‘ljx}sin(ZOOﬂs‘l)t

Substitute to obtain:

dK = %{(671 m/s)sin[(%r m‘ljx}sin(ZOOns‘l)t} z,udx

Express the condition on the time sin(ZOOﬁs‘l)t =1
that dK is a maximum: or
(20075t )t=7 3% .
2 2
Solve for and evaluate t: 1 =z 1 3
200zs™ 2 200zs™t 2
=| 2.50ms,7.50ms,...

Because the string’s maximum
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Kinetic energy occurs when The string is a straight line.
y(x,t) = 0:

(c) Integrate dK from (b) over the
length of the string to obtain:

L
Kinge = [ 4[eoAsin kxsin ot]? uix
0

L
£ pes” A’ ['sin” kxclx
0

=1 pa® A %[% kx —1sin 2kx],

=1me’A?

where m is the mass of the string.

*6Q oo

Picture the Problem We can equate the expression for the velocity of a wave on a string
and the expression for the velocity of a wave in terms of its frequency and wavelength to
obtain an expression for the weight that must be suspended from the end of the string in
order to produce a given standing wave pattern. By using the condition on the
wavelength that must be satisfied at resonance, we can express the weight on the end of
the string in terms of g, f, L, and an integer n and then evaluate this expression forn =1,
2, and 3 for the first three standing wave patterns.

Express the velocity of a wave on T mg
the string in terms of the tension T V=_[—=_|—
in the string and its linear density . H H

where mg is the weight of the object
suspended from the end of the string.

Express the wave speed in terms of v=f1
its wavelength A and frequency f:

Eliminate v to obtain:

f1- |M9
y7;

Solve for mg: mg = u f 222
Express the condition on A that 2L
corresponds to resonance: A=—,n=1,2,3,..
Substitute to obtain: oLV

mg =,sz2(—) ,n=1,23,

or

212
mg :M—ZL,nzl, 2,3,...
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Evaluate mg for n = 1: mg = 4(0.415g/m)(808'l)2(0.2 m)2

@)

=| 0.425N

which corresponds, at sea level, to a mass
of 43.3 g.

Evaluate mg for n = 2: g — 4(0.415g/m)(80s*)*(0.2mY

(2

=| 0.106 N

which corresponds, at sea level, to a mass
of 10.8 g.

Wave Packets

70 -

Picture the Problem We can find the maximum duration of each pulse under the
conditions given in the problem from the reciprocal of frequency of the pulses and the
range of frequencies from the wave packet condition on Aw and At.

(@) Th_e maxim_um duration of each T = 1 _ 71 = 107 s = 0.100 15
pulse is its period: f 10's
(b) Express the wave packet AwAt =1 or 27AfAt =1

condition on Aw and At:

Solve for Af: At T
27At 27w
- - I I 7 _l
Substitute numerical values and Af ~ 10°s _[159MHz
evaluate Af: 27
71 -

Picture the Problem We can approximate the duration of the pulse from the product of
the number of cycles in the interval and the period of each cycle and the wavelength from
the number of complete wavelengths in Ax. We can use its definition to find the wave
number k from the wavelength A.

(a) Relate the duration of the pulse to N
) ) At=NT =| —
the number of cycles in the interval and f,

the period of each cycle:
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(b) There are about N complete P AX
wavelengths in Ax; hence: TN
(c) Use its definition to express the K = 2 | 22N
wave number k: 21| Ax

N is uncertain because the waveform dies out gradually rather than stopping
(d) | abruptly at some time; hence, where the pulse starts and stops is not well
defined.

(e) Using our result in part (c), Ak = 27AN 2_7r
express the uncertainty in k: AX | Ax

because AN = +1.
General Problems

72 e
Picture the Problem We can use v = fA and v = \/F/u to relate the tension in the piano

wire to its fundamental frequency.

Relate the tension in the wire to the _|[F_|FL
speed of transverse waves on it: V= u \m
Express the speed of the transverse v=fi

in terms of their wavelength and

frequency:

Equate these expressions and solve F mf 2 2%

for F to obtain: L

Relate A for the fundamental mode A=2L

of vibration to the length of the

piano wire:

Substitute to obtain: F =4mf 2L

Substitute numerical values and evaluate F:  F = 4(7><1O‘3 kg)(261.633’1)2(0.8 m)
=| 1.53kN
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73
Picture the Problem We can use v = f, 4, to express the resonance frequencies of the ear

canal in terms of their wavelengths and L = n%, n=1,3,5,...to relate the length of the

ear canal to its resonance wavelengths.

(a) Relate the resonance frequencies £ v
to the speed of sound and the A
wavelength of the compressional
vibrations:
-y 2’
Express the condition for L=nZt n=1305 .

constructive interference in a pipe
that is open at one end:

Solve for A,: A= 4L
n
Substitute to obtain: fo nl . 340m/s
"T 4L 4(25x107°m)
=n(3.40kHz)
Evaluate f;, f,, and f3: f =| 3.40kHz |,

f, =3x3.40kHz =| 10.2kHz |,

and
f. =5x3.40kHz =| 17.0kHz

(b) Frequencies near 3400 Hz will be
most readily perceived.

74 .

. A
Picture the Problem We canuse L = nT”, n=1,3,5,...to express the wavelengths of
the fundamental and next two harmonics in terms of the length of the rope and v = f, 4,

F . .
and v = _|— to relate the resonance frequencies to their wavelengths.
y7,

-y ﬂ
(@) Expre_ss the condition for L=nZt n=1305 .
constructive interference on a rope
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that is fixed at one end:

Solve for A,

Evaluate A, forn=1, 3, and 5:

(b) Relate the resonance frequencies
to the speed and wavelength of the
transverse waves:

Express the speed of the transverse

waves as a function of the tension in
the rope:

Substitute to obtain:

Evaluate f, forn=1, 3, and 5:

75 oo

A === -
n n n
4, =[16.0m
PR LU
3
and
2, =M _350m
5
f=
A

F[FL
V= |—= _—
u m

where m and L are the mass and length of
the rope.

. _1 [FL_1 [(400N)(am
" Vm 2\ 0.16kg

_100m/s
ﬂ’n
UL oy
16m
- 100m/s _ 18.8Hz
5.33m
and
- 100 m/s _[313Hz
3.20m

Picture the Problem The path difference at the point where the resultant wave an
amplitude A is related to the phase shift between the interfering waves according to
AX/A = 8/27 . We can use this relationship to find the phase shift and the expression for

the amplitude resulting from the superposition of two waves of the same amplitude and

frequency to find the phase shift.
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Express the relation between the AX = A S
path difference and the phase shift at 2r
the point where the resultant wave

has an amplitude A:

Express the amplitude resulting A=2y,c0s%5
from the superposition of two waves
of the same amplitude and

frequency:
Solve for and evaluate & 5= 2cos’li _ ZCos’lA _ 2z
2Y, 2A 3
Substitute and simplify to obtain: Ax= ] 27/3 _ )
2
76 e

Picture the Problem We can use v = f 4, to express the resonance frequencies of the

string in terms of their wavelengths and L = n%, n=1,2,3,...to relate the length of the

string to the resonance wavelengths for a string fixed at both ends. Our strategy for part
(b) will be the same ... except that we’ll use the standing-wave condition

L= n%, n=1,3,5,... for strings with one end free.

(a) Relate the frequencies of the f o v

harmonics to their wavelengths and ",

the speed of transverse waves on the

string:

Express the standing-wave condition L= nﬁ n=123

for a string with both ends fixed:

Solve for A, A= 2L
==
Substitute to obtain: £ \
n n_——
2L
Express the speed of the transverse F
waves as a function of the tension in V=i,

the string:
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Substitute to obtain:

Calculate the 1% four harmonics:

(b) Express the standing-wave
condition for a string fixed at one
end:

Solve for Ay

The resonance frequencies equation
becomes:

Calculate the 1* four harmonics:

77 e

1 |F
f.=n—_[—
2L\ u
a1 18N
2(35m) Y\ 0.0085kg/m
=n(0.657 Hz)
f, =| 0.657 Hz

f, = 2(0.657Hz)=| 1.31Hz
f, = 3(0.657 Hz) =| 1.97 Hz

and
f, = 4(0.657Hz)=| 2.63Hz

L= nﬁ, n=1,3,5,...
4

PR
n
fn=ni F
4L\ u
o1 18N
4(35m)Y\ 0.0085kg/m
=n(0.329Hz)
f, =| 0.329Hz

f, =3(0.329Hz)=| 0.987Hz

f, =5(0.329Hz) = | 1.65Hz

and
f, =7(0.329Hz)=| 2.30Hz

Picture the Problem We’ll model the shaft as a pipe of length L with one end open. We
can relate the frequencies of the harmonics to their wavelengths and the speed of sound
using v = f, 4, and the depth of the mine shaft to the resonance wavelengths using the
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standing-wave condition for a pipe with one end open; L = n%, n=1,3,5,....

Relate the frequencies of the f oV
harmonics to their wavelengths and " A
the speed of sound:

Express the standing-wave L=n ﬁ n=135
condition for a pipe with one end ’ T
open:
Solve for A 4 AL
" n
Substitute to obtain: fon
" 4L
For f, = 63.58 Hz: 63.58Hz = n_-
' 4L
For f,.» = 89.25 Hz: 89.25Hz = (n + Z)L
4L
Divide either of these equations by n=495~5

the other and solve for n to obtain:

Substitute in the equation for f= Sv
f, = fs = 63.58 Hz: * 4L
Solve for and evaluate L: LY 5(340m/s) _ 568

a1, 4[6358s7)

78  ee
Picture the Problem We can use the standing-wave condition for a string with one end
free to find the wavelength of the 5™ harmonic and the definitions of the wave number
and angular frequency to calculate these quantitities. We can then substitute in the wave
function for a wave in the nth harmonic to find the wave function for this standing wave.

@ E_x_press the sta_lnding_-wave L= nﬁ, n=135, .,
condition for a string with one end
free:
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Solve for and evaluate As:

(b) Use its definition to calculate the
wave number:

(c) Using its definition, calculate the
angular frequency:

(d) Write the wave function for a
standing wave in the nth harmonic:

Substitute to obtain:

ys (x,t) = Asin(k.x)cos(eyt) =

79 oo

Jg=— =) _T400m

2t _27m | 7w

Ky =——=|=m
A 4m | 2

w, = 27f, = 27(400s™) = [ 8007 s *

y,(x,t)= Asink xcosm,t

(0.03 m)sinK% mljx} cos(8007s )t

Picture the Problem The coefficient of the factor containing the time dependence in the
wave function is the maximum displacement of any point on the string. The time
derivative of the wave function is the instantaneous speed of any point on the string and
the coefficient of the factor containing the time dependence is the maximum speed of any

point on the string.

Differentiate the wave function with
respect to t to find the speed of any
point on the string:

(a) Referring to the wave function,
express the maximum displacement
of the standing wave:

Evaluate equation (1) at x =0.10 m:

Referring to the derivative of the
wave function with respect to t,
express the maximum speed of the

v, = Q[O.OZSin 47 xC0s607t]
ot

=—(0.02)(607)sin 4 xsin 60t
=-1.27sin4z xsin60~t

Yonm (X) = (0.02m)sin [(472 m’l)x] (1)

Yo (0.10m)=(0.02m)
xsin[(4zm)(0.20m)]
1.90cm

V, o (X) = 1.2 m/s)sin|(4z m* x| @)

y,max



standing wave:

Evaluate equation (2) at x =0.10 m:

(b) Evaluate equation (1) at
x=0.25m:

Evaluate equation (2) at x = 0.25 m:

(c) Evaluate equation (1) at
x=0.30 m:

Evaluate equation (2) at x = 0.30 m:

(d) Evaluate equation (1) at
X =0.50 m:

Evaluate equation (2) at x = 0.50 m:

80 oo
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Vy max(0.10m) = (1.277 m/s)
xsin|(4zm™)(0.10m)]
3.59m/s

Yim (0.25m) = (0.02m)
xsin|(4zm*)(0.25m)|

[0

Vy max(0.25M) = (1277 m/s)
xsin[(4zm*)(0.25m)|

[0

Yim (0.30m) = (0.02m)
<sin[(4zm™)(0.30m)]
1.18cm

(0.30m) = 1.2z m/s)
xsin[(4zm*)(0.30m)]
2.22m/s

Vy,max

Yim (0.50m) = (0.02m)
xsin|(4zm*)(0.50m)]

[0

Vy max (0.50m) = (1.2 m/s)
xsin|(4zm™)0.50m)]
0

Picture the Problem In part (a) we can use the standing-wave condition for a wire fixed
at both ends and the fact that nodes are separated by one-half wavelength to find the
harmonic number. In part (b) we can relate the resonance frequencies to their
wavelengths and the speed of transverse waves and express the speed of the transverse
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waves in terms of the tension in the wire and its linear density.

(a) Express the standing-wave L= ni, n=1213, ..
condition for a wire fixed at both
ends:
Solve for n: e 2L

ﬂ’n
Solve for and evaluate A;: A, =2L=2(25m)=5m
Relate the distance between nodes to +4,=05m
the distance of the node closest to and
one end and solve for A,: A, =1m
Substitute and evaluate n: 2(2.5m)

N=————=+=|5
1im

(b) Express the resonance f o N nl
frequencies in terms of the their " A

wavelengths and the speed of
transverse waves on the wire:

Relate the speed of transverse waves B F
on the wire to the tension in the V=aT,
wire:
Substitute and simplify to obtain: ¢ —n 1 /FL . 1 30N)(2.5m
" 4\Um  5m 0.1kg
=n(5.48Hz)
Evaluate f, forn=1, 2, and 3: f, =| 5.48Hz
f, = 2(5.48Hz)=| 11.0Hz
and
f, =3(5.48Hz)=| 16.4Hz
*81 [ 1)

Picture the Problem We can use v = fA to relate the speed of sound in the gas to the
distance between the piles of powder in the glass tube.
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At resonance, standing waves are set up in the tube. At a displacement
(a)| antinode, the powder is moved about; at a node the powder is stationary,
and so it collects at the nodes.

(b) Relate the speed of sound to its v= {4
frequency and wavelength:

Letting D = distance between nodes, A=2D
relate the distance between the nodes
to the wavelength of the sound:

Substitute to obtain: v=|2fD
(c) If we let the length L of the tube C_Vy _ 34Amis 680 Hz
be 1.2 m and assume that v, = 344 2D 2(0.253m)

m/s (the speed of sound in air at
20°C), then the 10" harmonic
corresponds to D = 25.3 cm and a
driving frequency of:

If f =2kHzandv,, =1008 m/s (the speed of sound in helium at 20°C),
then D for the 10" harmonicin helium would 25.3cm and D for the 10"
harmonicin air would be 8.60 cm. Hence, neglecting end effects at the
driven end, a tube whose length is the least common multiple of 8.60 cm
and 25.3cm (218 cm) would work well for the measurement of the
speed of sound in either air or helium.

(d)

82 oo
Picture the Problem We can use v = \/F/u to express F as a function of v and
v = fAto relate v to the frequency and wavelength of the string’s fundamental mode.

Because, for a string fixed at both ends, f, = nf;, we can extend our result in part (a) to
part (b).

(a) Relate the speed of the Yo \/F
u

transverse waves on the string to the
tension in it:

Solve for F: F=w’ 1)
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Relate the speed of the transverse
waves on the string to their
frequency and wavelength:
Express the wavelength of the
fundamental mode to the length of
the string:

Substitute to obtain:

Substitute in equation (1) to obtain:

Substitute numerical values and
evaluate F:

(b) For the nth harmonic, equation
(2) becomes:

Evaluate this expression forn =2, 3,
and 4:

83 oo

v="F4
A =2L
v=2fL
F=4fu (2)

F = 4(60s*f(2.5m) (8x10* kg/m)
~[720N

F, = f22u=n?f*u=n?*(720N)

4(720N)=| 2.88kN
9(720N) =| 6.48kN

F, =
F, =

and
F, =16(720N)=|11.5kN

Picture the Problem We can use the conditions Af = f and f, = nf, , wherenisan

integer, which must be satisfied if the pipe is open at both ends to decide whether the pipe
is closed at one end or open at both ends. Once we have decided this question, we can use
the condition relating Af and the fundamental frequency to determine the latter. In part
(c) we can use the standing-wave condition for the appropriate pipe to relate its length to

its resonance wavelengths.
(a) Express the conditions on the

frequencies for a pipe that is open at
both ends:

Evaluate Af =f;:

Using the 2" condition, find n:

Af = f]
and
f, =nf,

Af =1834Hz -1310Hz =524 Hz

f, 1310Hz
f,  524Hz

2.5
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The pipe is closed at one end.

(b) Express the condition on the Af =21,

frequencies for a pipe that is open at

both ends:

Solve for and evaluate f;: f, =1 Af =1(524Hz)=| 262Hz
(c) Using the standing-wave L — nﬁ, n=135 .

condition for a pipe open at one end,
relate the length of the pipe to its
resonance wavelengths:

For n = 1 we have: Zizland L:ﬁzi
f, 4 41,

Substitute numerical values and _ 340 ml_sl _[32.4¢em

evaluate L: 4(26257)

84 e

Picture the Problem We can relate the speed of sound in air to the frequency of the
violin string and the wavelength of the sound in the open tube that is closed at one end by
water. The wavelength of the sound, in turn, is a function of the length of the air column
and so we can derive an expression for the speed of sound as a function of the frequency
of the transverse waves on the violin string and the length of the air column above the
water. Knowing that the violin string is vibrating in its fundamental mode, we can
express this frequency in terms of the tension in the string and its linear density.

Express the speed of sound in the v, = f4
tube in terms of its fundamental
frequency and wavelength:

Using the standing-wave condition L _ nﬁ n=13.5
for a tube open at one end, relate the aircolumn ’ R
speed of sound to the length of the

air column in the tube:

Solve for A;: A =4L, o

Substitute to obtain: Ve = 41, L corumn 1)
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Express the frequency of the
transverse waves on the violin
string in terms of their wavelength
and the speed with which they
propagate on the string:

Relate the speed of the transverse
waves on the string to the tension in

it:

Substitute to obtain:

Substitute in equation (1) to obtain:

Substitute numerical values and
evaluate vs:

v

v
ﬂ‘l 2 I-string

fi

v \/E _ | Flsing
Y7, m
f = 1 ,FLstring _ F
' 2 Lstring m 4mLstring

F
Vs = 4'Laircolumn 4 |_
m string
F
= 2I‘aircolumn L
m string
V. =

2(0.18m)\/( (440N)

107 kg)(0.5m)

=| 338m/s

(see Problem 56).

The method is not very accurate because it neglects end effects

85 oo

Picture the Problem We know that the superimposed traveling waves have the same
wave number and angular frequency as the standing-wave function, have equal
amplitudes that are half that of the standing-wave function, and travel in opposite
directions. From inspection of the standing-wave function we note that

k=3%irx m'and @ = 40775 . We can express the velocity of a segment of the rope by

differentiating the standing-wave function with respect to time and the acceleration by

differentiating the velocity function with respect to time.

(a) Write the wave function for the wave traveling in the positive x direction:

y,(xt)= (O.Olm)sin{(%m‘ljx—(407rs‘1)t}
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Write the wave function for the wave traveling in the negative x direction:

y,(xt)= (0.01m)sinK% m‘ljx + (407:3‘1)%

(b) Express the distance d between d=11
nodes in terms of the wavelength of
the standing wave:

Use the wave number to find the K=lrm™— 2w
wavelength: A

and

A=4m
Substitute and evaluate d: d=24(4m)=|2.00m

(c) Differentiate the given wave function with respect to t to express the velocity of any
segment of the rope:

v, (x,t)= %{(0.02 m)sin(% mljx COS(407rSl)t}

=—(0.87 m/s)sin[% mljxsin(407zsl)t
Evaluate vy(lm,t):

v, (lm,t)=—(0.87 m/s) sm( m- jlm sin(407s7 )t

= (0.8 m/s)sin(407 s )t
=| - (2.51m/s)sin(407s7 )t

(d) Differentiate vy(x,t) with respect to time to obtain ay(x,t):
a,(x,t)= %{— (0.87 m/s)sin(% m‘ljx sin(407 s‘l)t}
(3272 m/s® )sin(% m‘l)x cos(407 s )t

Evaluate ay(lm,t):
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T

a,(Lm,t) = —(327% m/s? )sin[— mlj(lm)cos(407rsl)t

2

= (3227 mis? Jcos(407 s )t

= | (316 m/s? Jcos(407s7 )t

86 oo

Picture the Problem We can use the definition of intensity to find the intensity of each
speaker, the dependence of intensity on the square of the amplitude of the wave
disturbance to express the amplitudes of the waves, and the dependence of the intensity
on whether the speakers are coherent and their phase difference to find the intensity at the

given point.
(a) Express the intensity as a
function of the distance of a point

from the source:

Evaluate |;;

Evaluate I:

(b) Using v = f4, find the
wavelength of the sound:

Express the path difference in terms
of A:

Express the intensity at point P due
to the sound from source 1:

Express the intensity at point P due
the sound from source 2:

Express the square of the resultant

l, =——— =119.9 W/m?

T _[8.84 W/m?

AX =21
and so there is constructive interference at
point P.

I, = constant x A?

or
A=Cyl,

where C is a constant.

I, = constant x A2

or

A, =Cyll,

A =G (I, +4T, ) =



amplitude at point P:

Solve for and evaluate I:

(c) If they are driven coherently but
are 180° out of phase we will have
destructive interference at point P
and the intensity is given by:

(d) Because the sources are
incoherent, the intensities add
arithmetically:
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Picture the Problem In Chapter 14,
Section 14.1, it was shown that a harmonic
function could be represented by a vector
rotating at the angular frequency @. The
simplest way to do this problem is to use
that representation. The vectors, of equal
magnitude, are shown in the diagram.

We can find the resultant wave function by
finding the magnitude and direction of the
resultant vector.

From the diagram it is evident that:

Find the sum of the x components of
the vectors:

Relate the magnitude of the
resultant vector to the sum of its x
and y components:

Find the direction of the resultant
vector:
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()
— (19.9 aim? + /884 awim? |
55.3 Z/m?

-
[ (19.9 aim? - /8 84 awim? |
=| 2.21W/m?

I=1,+1,
=19.9 £W/m? +8.84 W/m”®
=| 28.7 iW/m?

v, =0

D v, = Acos60°+ Acos60°+ A = 2A

V=S + Xy,

=y(2AY +(0F =2A
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Express the resultant wave:

88 oo
Picture the Problem The diagram shows a
two dimensional plane wave propagating at
an angle @with respect to the x axis. Ata
given point in time, the surface of constant
phase for the wave is the line defined by
kx+ky=g,ory= —(kx/ky)x+¢.

The wave itself moves in a direction
perpendicular to the wavefront, i.e., in a
direction specified by a line with slope
ky/k. Choose two points (x, y) and

(x + AX, y + Ay) that have a separation of 1
wavelength along such a line.

Express the phase difference ¢

between the two points that have a
separation of 1 wavelength along

the line y = —(kx/ky)x+¢ in terms

of the spatial separation Ar of the

points:

Substitute ¢ = 2 to obtain:

Express ¢ in terms of ky, ky, Ax and Ay:

k
Because Ay = k—yAx .

X

Yoo (X, 1) = 2Asin(kx — ot)
=| 0.1sin(kx— ot)

Surfaces of constant phase

(x + Axv,y + Ay)

i:2—7ror¢:2—ﬁAr
Ar A

where Ar = (Ax)2 +(Ay)2

2 = 25 (ax) + (ay

or
A =A(ax) +(ay) (1)

¢ = KAr =k, Ax+k Ay

or, because ¢ =21,
kK AX+k Ay =27

k2
kXAx+k—yAx =2z

or

27k
AX = —%—
k2 +k?

X y



Superposition and Standing Waves 1285

Similarly: 27K
i y Ay = 2 : 2
k, +k;
o . . 5 >
Substitute in equation (1) to obtain: 21k ) 7Zky
A= 7 | Yz
ke +kj ki +kj
2z
2 2
NLSES &
Relate the wave velocity v to its vl _ A
angular frequency o and wave k 2r
number k:
Substitute for A to obtain: w 27 1)
V=2 2 2 - 2 2
27 k2+k? | |k k2
Express the angle between the wave 27Zky
velocity and the x axis: k2 +k?
0=tan' Y —tant TNy
AX 27ka
ky +k;
k
= tan‘l[—yJ
Ky
*89 e

Picture the Problem We can express the fundamental frequency of the organ pipe as a
function of the air temperature and differentiate this expression with respect to the
temperature to express the rate at which the frequency changes with respect to
temperature. For changes in temperature that are small compared to the temperature, we
can approximate the differential changes in frequency and temperature with finite
changes to complete the derivation of Af/f = X2AT/T. In part (b) we’ll use this relationship
and the data for the frequency at 20°C to find the frequency of the fundamental at 30°C.

(a) Express the fundamental fo v
frequency of an organ pipe in terms A
of its wavelength and the speed of
sound:
Relate the speed of sound in air to
P V= RT =CT

the absolute temperature: M
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Defining a new constant C’,
substitute to obtain:

Differentiate this expression with
respectto T:

Separate the variables to obtain:

For AT << T, we can approximate df
by Af and dT by AT to obtain:

(b) Express the fundamental
frequency at 30°C in terms of its
frequency at 20°C:

Solve our result in (a) for Af:

Substitute numerical values and
evaluate Af;

90 oo

where

C= 1/ﬁ = constant
M

f=S T —CVT

because A is constant for the fundamental
frequency we ignore any change in the
length of the pipe.

ﬂzlc"r*]ﬁzl
ar 2 oT
o 107
F2T
Af _1AT
F 2T
f, = £, +Af
af =1 £ AT

&

10K

f,, = 200Hz + 4 (200Hz
30 2( )293K

=| 203Hz

Picture the Problem We’ll use a spreadsheet program to graph the wave functions
individually and their sum as functions of xatt =0 and att=1s. In (c) and (d) we can
add the wave functions algebraically to find the result wave function at t = 0 and at

t=1s.

(a) and (d) A spreadsheet program to calculate values for y;(x,t) and y,(x,t) between and
plot their graphs is shown below. The constants and cell formulas used are shown in the

table.
Cell Content/Formula Algebraic Form
A5 5.0 X
A6 A5+0.1 X + AX
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B5 | 0.05/(2+(A5-2*$B$1)"2) y;(x,0)
C5 | —0.05/(2+(A5+2*$B$1)"2) y,(x,0)
D5 | 0.05/(2+(A5-2*$B$1)"2) | y,(x,0)+ y,(x,0)
—~0.05/(2+(A5+2*$B$1)"2)
E5 | 0.05/(2+(A5-2*$B$2)"2) | y,(x.1)+y,(x1)
—0.05/(2+(A5+2*$B$2)"2)
A B C D E
1 =[o0
2 t=]1 s
3
4 X | y1(x,0) | y2(x,0) | y1(x,0)+y2(x,0) | y1(x,1)+y2(x,1)
5 | 5.0 0001 | -0.001 0.000 -0.001
6 | —4.9] 0001 | -0.001 0.000 ~0.002
7 | -4.8] 0001 | -0.001 0.000 ~0.002
8 | —4.7| 0.001 | -0.001 0.000 ~0.002
9 | 4.6 0001 | -0.001 0.000 -0.002
10 | -45] 0.001 | -0.001 0.000 ~0.002
110 | 55 | 0.001 | -0.001 0.000 0.001
111 | 56 | 0.001 | -0.001 0.000 0.001
112 | 57 | 0.001 | -0.001 0.000 0.001
113 | 58 | 0.001 | -0.001 0.000 0.001

The four curves on the graph are identified in the legend. y; is traveling from left to right
and y, from right to left. As time increases, y; is farther to the right and y, is farther to the

left.

-0.004 4
N
-0.006 4

N
20,008 4

— — —yl(x,0)

; y2(x,0)
—yr] (x,0)+y2(X,0)

y1(x,1)+y2(x,1)

(b) Express the resultant wave function at t = 0:
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0.02m* -0.02m°®
o [o]

yl(x,0)+ yz(x70): M4 X’ 2miext

(c) Express the resultant wave functionatt=1s:

0.02m?® N -0.02m?
2m? +(x=2s)f  2m?+(x+2sy

yl(x’ls)+ Y, (X’]-S) =

91 oo
Picture the Problem We can relate the frequency of the standing waves in the open-
ended tube to its length and the speed of sound in air.

(a) What you hear is the fundamental mode of the tube and its overtones. A more
physical explanation is that the echo of the finger snap moves back and forth along the
tube with a characteristic time of 2L/c, leading to a series of clicks from each echo.
Because the clicks happen with a frequency of ¢/2L, the ear interprets this as a musical
note of that frequency.

(b) Express the frequency of the £ v
sound in terms of the length of the 2L
tube:
Solve for L: L=V
2f
Substitute numerical values and L= 340 m/751 _[38.6cm
evaluate L: 2‘4403 }
92 e

Picture the Problem To find the total kinetic energy of the nth mode of vibration, we’ll
need to differentiate Y, (x,t) = A, sink xcosm,t with respect to time, substitute in the

expression for AK, and then integrate over the length of the string.

(a) Write the wave function for a y,(x,t)= A sink xcosa,t
standing wave on a string fixed at 2r
where k, =—.
both ends: A
Using the standing-wave condition L= nﬁ, n=1,23, .

for a string with both ends fixed,
relate the length of the string to the
wavelength of the nth harmonic:
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Solve for Ay: 42t

oo
Substitute in the expression for k;, to kK =n i
obtain: "L

- - - . - a i
Differentiate this expression with oy _ _[A] sink X Cos a)nt]
respect to t: ot ot
=-w,A,sink xsina,t

Substitute in the given expression AK =1 y(— e, A sink xsina,t) Ax

and simplify to obtain:

N N

1 AZsin? K xsin® @, tAx

Integrate this expression over the
length of the string to find its total
kinetic energy:

L
K =2 uw? A sin® wntjsinz(n%xjdx
0

2A2 ain?
= +ma A, sin” ot

(b) Express the condition that sin’ ot=1 @
K= Kiax:

. . 272
Substitute to obtain: Ko =| $may; A

(C) From equation (1), for K = Kiax: Sinz a)nt =1or a)nt :%

Evaluate the wave function in (a) T . T
7 Yol X,— :Ansmknxcos—:@
when ot = —: 2, 2
2
(d) Using the result from part (b), Koo =ima’ A
express the maximum kinetic
energy:
Relate @, to a: o, =N,
Substitute to obtain: Ko = nz(%ma)fAf)
or, because m and w; are constants,
Kinax € nzAn2
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Remarks: Our result in part (b) is exactly the same result obtained in Problem 68
with @, and A, replacing w and A.

93 oo

. v
Picture the Problem We can use f, = ni, n=1,2,3,... to relate the resonant

frequencies to the length of the string and the speed of transverse waves on the string and
v=,F / L4 to express the speed of the transverse waves on the string in terms of the

tension in the string. Differentiating of the resulting expression with respect to F will lead

to dff” = Ed—F For changes in f that are small compared to f, we can use a differential
N _Af 1AF
approximation to obtain =——.
. 2F
(a) Using the standing-wave fo nl n=123

n

condition for a string fixed at both
ends, relate the resonant frequencies
to the length of the string and the
speed of transverse waves on the
string:

Express the speed of transverse F
waves on the string in terms of the V=i,

tension in the string:

fn
2L

because n, L, and u are constants.

Substitute to obtain:
_nE_ CJF
Y7,

Differentiate f, with respect to F to df, :E 1 _ 1 i
obtain: dF 2.F 2F
Separate the variables to obtain: df, _1dF

f 2F

Because no conditions were placed on its derivation, this expression is valid for

all harmonics.
(b) Because Af << f, one can Af, _1AF
approximate the differential f. 2F

quantitities in our result for part (a)
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to obtain:
Solve for AF/F: AF _, A,
F n
Substitute numerical values and
_ AF o[ 2HZ | s
evaluate AF/F: F 260 Hz
94 e

Picture the Problem Let the sources be denoted by the numerals 1 and 2. The phase
difference between the two waves at point P is the sum of the phase difference due to the
sources & and the phase difference due to the path difference o.

(a) Write the wave function due to f,(x,t)=| A, cos(kx, — wt)

source 1:

Write the wave function due to f,(x,t)=| A cos(k(x, + AX)—wt+5,)
source 2:

(b) Express the sum of the two wave functions:

f(x,t)= f,(x,t)+ f,(x,t)= A, cos(kx, — wt)+ A, cos(k(x, + AX)— @t +5,)
= Ay[cos(kx, — wt)cos(k(x, + Ax)— ot + 35, )]

Use COSa +C0S 3 = 2 cos[#j cos[a ; P j to obtain:

f(x,t)= 2%[cos(%x+%jcos(k(x +%J — ot +%ﬂ

Express the phase difference & in O 2T\ o KAx =S
terms of the path difference Ax and AX
the wave number k:

Substitute to obtain:

f(x,t)= 2A{cos(§255 jcos(k(x+%j— wt +%ﬂ

The amplitude of the resultant wave A=|2A,cosi(5+6,)
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function is the coefficient of the
time-dependent factor:

(c) Express the intensity at an |, =C'A?
arbitrary point P: _ C'[ZAJ COS%(5+§S )]2
=C'[4n cos? 1(5+ 6, )]

Evaluate | for §=0and & = Ct: | = C'[4A§ cos’ %(Ct)]

2
Because the average value of I <2A; =21,
cos’ & over a complete period is %: and

| oc | 41,cos®1(Ct)

(d) Evaluate | for Ax =4 A4 and AX=3A=>d6=nm
&=Ct 1 =C'[4A?cos? (7 +Ct)|
andatt=0, | =0. i.e., the waves interfere

destructively.

A spreadsheet program to calculate the intensity at point P as a function of time for a zero
path difference and a path difference of A is shown below. The constants and cell
formulas used are shown in the table.

Cell Content/Formula Algebraic Form
Bl 1 C
B7 B6+0.1 t+ At
C6 COS($B$6*B6/2)"2 cos? 1 (Ct)
D6 | COS($B$6*B6/2-PI()/2)"2 cos> %(7, + Ct)
A B C D
1 c=|1 s
2
3
4 t I I
5 (s) (W/m"2) (W/m"2)
6 0.00 1.000 0.000
7 0.10 0.998 0.002
8 0.20 0.990 0.010
9 0.30 0.978 0.022
103 9.70 0.019 0.981
104 9.80 0.035 0.965
105 9.90 0.055 0.945
106 10.00 0.080 0.920
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The solid curve is the graph of cos? %(Ct) and the dashed curve is the graph of
cos’4(z +Ct).

Lo LAY ¢
v A ¢
0.8 ! ' '
'] q 1
o 1 ,
06 4 path diff =0 7
z X = = = path diff = lambda/2 r
2 a A
T 04 ’ - 5
’ q ¢
. q v
0.2 ' . .
4 Q ’
0.0 =2 s _ 7
0 2 4 6 8 10

t()
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Picture the Problem We can differentiate the sum of the two wave functions to find the
velocity of a segment dx of the string. We can find the kinetic energy of this segment
from dK =$vidm =4 v’ dx and integrate this expression from 0 to L to find the total

kinetic energy of the resultant wave.
(a) Express the resultant wave function:
v, (%,t)=y,(x,t)+ y,(x,t) = A cosejtsink,x + A, cos w,tsink,x

Differentiate this expression with respect to t to find vy:

v, (xt)= %[A1 cosmtsink x + A, cos m,tsink,x]

=| —a, A sinotsink x—m,A, sin m,tsink,x

(b) Express the kinetic energy of a segment of the string of length dx and mass dm:

2

dK = 2vidm = 1 v2dx = 1 p(@, A sin oyt sink x + @, A, sin w,tsin k,x )’ dx

1 u|w? A sin? mtsin? kx + 2,0, A A, sin ayt sink,xsin a,t sink,x

+ w5 A sin® w,t sin? kzx]dx
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(c) Integrate dK from 0 to L to obtain:

L
K :%,uja)fAf sin? mytsin? k xdx
0
L

+ %,u.[ 2m,0,A A, sin ot sin k,xsin w,t sin k,xdx
0

L
+%y.[w22A§ sin? w,t sin® k,xdx
0

L
=1 uw’ A sin’ a)lt.[sinz nl%xdx
0
L T 4
+ payo, A A, sin atsin wztjsin nltxsin n, dex
0

L
. . T
+1 pew? A sin? a)ztj-sm2 n, dex
0

= (% peo) A sin’? wlt)(% L)+ (uao, A A, sin otsin a)zt)(o)nl;enz
+ (5 peo? A2 sin? ot 3 L)
=| imaw}A?sin® ot + I mawl Al sin® oyt

Note that, from Problem 92: 1 ma} A?sin® ot + 1 mae? Al sin® o,t = K, + K,

96 (X 1]
Picture the Problem We can use the relationship K. =2me?’A? from Problem 92 to

express the maximum kinetic energy of the wire and v =f4and v = ,/F/x to find an

AU oy Y’
expression for w. In part (d) we’ll use o ~3 F(—) from Problem 15-120 to
X

OX
determine where the potential energy per unit length has its maximum value.

() From Problem 92 we have: Ko = 1Mo’ A’ 1)
Express @, in terms of f;: w, = 27,

Relate f; to the speed of transverse _vV_Vv

waves on the wire and the . A4, 2L

wavelength of the fundamental where L is the length of the wire.

mode:



Express the speed of the transverse
waves on the wire in terms of the
tension in the wire:

Substitute and simplify to obtain:

Substitute for @ and f; in equation
(1) to obtain:

Substitute numerical values and
evaluate Kpax:

(b) Express the wave function for a
standing wave in its first harmonic:

At the instant the transverse
displacement is given by
(0.02 m) sin (7x/2):

(c) dK is a maximum where the
displacement of the wire is greatest;
i.e., at its midpoint:

(d) From Problem 15-120:

Express the condition on dy/ox that
maximizes AU/AX:

Differentiate

y,(x,t)= A sink,xcos ot with
respect to x and set the derivative
equal to zero for extrema:
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\/F [FL

V= |— = _—

U m

oL JFL_ | F

2tV m VamL
F | ’F

K, =im2r|— | A2=Z T A2
4mL 4L

2
. =M(2x10*2 mYf
4(2m)
=119.7mJ
y,(x,t)= A sink,xcos mjt )

cosot=1=wt=0

x=1L=4%(2m)=|1.00m

N _ 0 (p.
L = — (A sink xcoswmt
X ox (Ai 1 a)l)

=k, A cosk,xcos ot
=0

or

cosk,x=0
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Solve for kix and then x: kx="
X =
2
and
7 A
2k, 2(2z) ¢ HeL)

=1(2m)=]1.00m

i.e., the potential energy per unit length is a
maximum at the midpoint of the wire.

Remarks: In part (d) we’ve shown that AU/Ax has an extreme valueatx=1m. To
show that AU/Ax is a maximum at this location, you need to examine the sign of the
2" derivative of y;(x,t) at this point.

97 (1 1]
(a) A spreadsheet program to evaluate f(x) is shown below. Typical cell formulas used are
shown in the table.

Cell Content/Formula Algebraic Form
Ab A5+0.1 X+ AX
B4 2*B3+1 2n+1
B5 (-1)"B$3*COS(B$4*$A5) z( 1) COS 2n +]_) )
*
/B$4*4/PI() = on+1
C5 BS+(—1)AC$3*COS(C$4*$A5) Z( 1) cos (Zn _|_1) )
*
/C$4*4/PI() = on+1
A B C D K L
1
2
3 0 1 2 9 10
4 1 3 5 19 21
5 0.0 | 1.2732 | 0.8488 | 1.1035 0.9682 | 1.0289
6 0.1 | 1.2669 | 0.8614 | 1.0849 1.0134 | 0.9828
7 0.2 | 1.2479 | 0.8976 | 1.0352 1.0209 | 0.9912
8 0.3 | 1.2164 | 0.9526 | 0.9706 0.9680 | 1.0286
9 04 | 1.1727 | 1.0189 | 0.9130 1.0057 | 0.9742
10 | 0.5 | 1.1174 | 1.0874 | 0.8833 1.0298 | 1.0010
130 | 12.5 | 1.2704 | 0.8544 | 1.0952 0.9924 | 1.0031
131 | 12.6 | 1.2725 | 0.8503 | 1.1013 0.9752 | 1.0213
132 | 12.7 | 1.2619 | 0.8711 | 1.0710 1.0287 | 0.9714
133 | 12.8 | 1.2386 | 0.9143 | 1.0141 1.0009 | 1.0126
134 | 12.9 | 1.2030 | 0.9740 | 0.9493 0.9691 | 1.0146
135 | 13.0 | 1.1554 | 1.0422 | 0.8990 1.0261 | 0.9685

The solid curve is plotted from the data in columns A and B and is the graph of f(x) for 1
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term. The dashed curve is plotted from the data in columns A and F and is the graph of
f(x) for 5 terms. The dotted curve is plotted from the data in columns A and K and is the
graph of f(x) for 10 terms.

1.5 ‘
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1.0 &. Iy 'I\n

BV 05 v Y/ 4
\r. : /
Ik |
0.5 ] i
i
\ a
0.0 T
2
|
i

L2

LAY
o
f
f

-0.5

-1.0 1
-15
b) Evaluate f(27) to obtain:
(b) (27) f(2m) = i(cos 27 cos3(2x)
V4 1 3
. cos5(2x) _j
5}
4[ 111 j
=—|l-—+=-=+
V4 3 5 7
=1
which is equivalent to the Liebnitz
formula.
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(a) A spreadsheet program to evaluate f(x) is shown below. Typical cell formulas used are

shown in the table.

Cell Content/Formula Algebraic Form
A6 A5+0.1 X+ AX
B4 2*B3+1 2n +1
B5 (-1)"$B$3*sin($BS4*A5)/ Z ) sin(2n +1)x
B$4)2*4/PI
(8B84)7274/P10 7% (2n +1)
C5 | B5+((-1)"$C$3*sin($CH4*A5)/ )'sin(2n+1)x
C$4)"2*4/PI _
(8C34)2*4/PI() Z an 1]
A B C D K L
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3 0 1 2 9 10

4 1 3 5 19 21

5 | 0.0 | 0.0000 | 0.0000 | 0.0000 0.0000 | 0.0000
6 | 01 |0.1271 | 0.0853 | 0.1097 0.0986 | 0.1011
7 | 02 |0.2530 | 0.1731 | 0.2159 0.2012 | 0.1987
8 | 0.3 | 0.3763 | 0.2654 | 0.3163 0.3004 | 0.3005
9 | 04 |0.4958 | 0.3640 | 0.4103 0.3983 | 0.4008
10| 0.5 | 0.6104 | 0.4693 | 0.4998 0.5011 | 0.4985

72| 6.7 | 0.5155 | 0.3812 | 0.4256 0.4153 | 04171
73| 6.8 | 0.6291 | 0.4877 | 0.5146 0.5183 | 0.5154
74| 6.9 | 0.7365 | 0.6005 | 0.6034 0.6171 | 0.6182
75| 7.0 | 0.8365 | 0.7181 | 0.6963 0.7148 | 0.7166
76| 7.1 | 0.9282 | 0.8380 | 0.7968 0.8183 | 0.8155

Graphs of f(x) for 1, 5, and 10 terms are shown below. Note that there is little difference
between the graphs for 5 terms and 10 terms of this triangular wave function.

2.0

15
A ——
1.0 \ —— —n=5

= = =n=10

0.5 1

0.0 \

-0.5 1

-1.0

-1.5 A

-2.0
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Picture the Problem From the diagram above, the nth echo will reflect n — 1 times going
out, and the same number of times going back. If we "unfold" the ray into a straight line,
we get the representation shown below. Using this figure we can express the distance d,
traveled by the nth echo and then use this result to express the time delay between the ny,
and n + 1, echoes. The reciprocal of this time delay is the frequency corresponding to the
nth echo.
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1

2(n-1)r

1

-

A

(a) Apply the Pythagorean theorem _ T N\2¢2 , 12
to the right triangle whose base is L, d, = 2\/4(n DRERE
whose height is 2(n — 1), and whose

hypotenuse is d,, to obtain:

Express the time delay between the d,
N and n + 1, echoes: At, = "
Substitute to obtain:
At, = E( (2n)r?+ 12
v

JRn-1r? Lz)

A spreadsheet program to calculate At, as a function of n is shown below. The constants
and cell formulas used are shown in the table.

Cell Content/Formula Algebraic Form
Bl 90 L
B2 1 r
B3 340 c
B8 B7+1 n+1
C7 2/$B$3*((2*(B7-1) At
*$B$2)"2+$B$1"2)"0.5
A B S D
1 L=1]90 m
2 r=11 m
3 c=| 340 m/s
4
5
6 n t(n) delta t(n)
7 1 0.5294 0.0001
8 2 0.5295 0.0004
9 3 0.5299 0.0007
10 4 0.5306 0.0009
11 5 0.5315 0.0012
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202 196 2.3544 0.0115
203 197 2.3659 0.0115
204 198 2.3773 0.0115
205 199 2.3888 0.0115
206 200 2.4003 0.0115

The graph of At, as a function of n shown below was plotted using the data from
columns B and D.

0.012

pumm—
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0.008 -

0.006 -

Delta-t(n)

0.004

0.002 -

0.000 ‘
0 50 100 150 200

The frequency heard at any timeis1/At,, so because At, increases over

c
© time, the frequency of the culvert whistler decreases.
The highest frequency corresponds 1
ton =1 and is given by: Fhignest = ——

At
Substitute for At; to obtain: f 1 v

highest — .

Aty 2( @Frt+ -V
Substitute numerical values and 340m/s
evaluate fhighest: fhighest =

2(\/4(1m)2 +(90my —90m)

=| 7.65kHz

The lowest frequency end can be found by examining the limit of At, as N — oo:
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i —tim_,.| 2| (2n /r2+L— n— ,/rﬂ;z
lim, At =1 M[V[(Z ) ny 2(n-1) 2(n-1)7 H
4

2r r
=2 (2n-2n+2)="
V(n n+2) y

EXpress fiowest in terms of At 1 v

flowest = Atw = E
Substitute numerical values and 340m/s
evaluate fioest: frowest = —4(1m) =|85.0Hz
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