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Chapter 16 
Superposition and Standing Waves 
 
Conceptual Problems 
 
*1 ••  
Picture the Problem We can use the speeds of the pulses to determine their positions at 
the given times. 
 

 
 

2 ••  
Picture the Problem We can use the speeds of the pulses to determine their positions at 
the given times. 
 

 
 
3 •  
Determine the Concept Beats are a consequence of the alternating constructive and 
destructive interference of waves due to slightly different frequencies. The amplitudes of 
the waves play no role in producing the beats. correct. is )(c  

 
4 •  
(a) True. The harmonics for a string fixed at both ends are integral multiples of the 
frequency of the fundamental mode (first harmonic). 
 
(b) True. The harmonics for a string fixed at both ends are integral multiples of the 
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frequency of the fundamental mode (first harmonic). 
 
(c) True. If l is the length of the pipe and v the speed of sound, the excited harmonics are 

given by
l4

vnfn = , where n = 1, 3, 5… 

 
5 ••  
Determine the Concept Standing waves are the consequence of the constructive 
interference of waves that have the same amplitude and frequency but are traveling in 
opposite directions. correct. is )(b  

 
*6 •  
Determine the Concept Our ears and brain find frequencies which are small-integer 
multiples of one another pleasing when played in combination.  In particular, the ear 
hears frequencies related by a factor of 2 (one octave) as identical.  Thus, a violin sounds 
much more "musical" than the sound of a drum. 
 
7 •  
Picture the Problem The first harmonic 
displacement-wave pattern in an organ pipe 
open at both ends and vibrating in its 
fundamental mode is represented in part (a) 
of the diagram. Part (b) of the diagram 
shows the wave pattern corresponding to 
the fundamental frequency for a pipe of the 
same length L that is closed at one end. 
Letting unprimed quantities refer to the 
open pipe and primed quantities refer to the 
closed pipe, we can relate the wavelength 
and, hence, the frequency of the 
fundamental modes using v = fλ.  
  
Express the frequency of the first 
harmonic in the open pipe in terms 
of the speed and wavelength of the 
waves: 
 

1
1 λ

vf =  

Relate the length of the open pipe to 
the wavelength of the fundamental 
mode: 

L21 =λ  
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Substitute to obtain: 
L
vf

21 =  

 
Express the frequency of the first 
harmonic in the closed pipe in terms 
of the speed and wavelength of the 
waves: 
 

'
v'f
1

1 λ
=  

Relate the length of the closed pipe 
to the wavelength of the 
fundamental mode: 
 

L' 41 =λ  

Substitute to obtain: 
11 2

1
22

1
4

f
L
v

L
v'f =⎟

⎠
⎞

⎜
⎝
⎛==  

 
Substitute numerical values and 
evaluate 'f1 : 

( ) Hz200Hz400
2
1

1 =='f  

and correct. is )(a  

 
8 ••  
Picture the Problem The frequency of the fundamental mode of vibration is directly 
proportional to the speed of waves on the string and inversely proportional to the 
wavelength which, in turn, is directly proportional to the length of the string. By 
expressing the fundamental frequency in terms of the length L of the string and the 
tension F in it we can examine the various changes in lengths and tension to determine 
which would halve it. 
 
Express the dependence of the  
frequency of the fundamental mode 
of vibration of the string on its 
wavelength: 
 

1
1 λ

vf =  

Relate the length of the string to the 
wavelength of the fundamental 
mode: 
 

L21 =λ  

Substitute to obtain: 
L
vf

21 =  

 
Express the dependence of the speed 
of waves on the string on the tension µ

Fv =  
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in the string: 
 
Substitute to obtain: 

µ
F

L
f

2
1

1 =  

 
(a) Doubling the tension and the length would increase the frequency by a factor 
of 22 . 

 
(b) Halving the tension and keeping the length fixed would decrease the frequency by a 
factor of 21 . 

 
(c) Keeping the tension fixed and halving the length would double the frequency. 

correct. is )(c  

 
9 ••  
Determine the Concept We can relate the resonant frequencies of an organ pipe to the 
speed of sound in air and the speed of sound to the absolute temperature. 
 
Express the dependence of the 
resonant frequencies on the speed of 
sound: 
 

λ
vf =  

Relate the speed of sound to the 
temperature of the air: 
 

M
RTv γ

=  

where γ  and R are constants, M is the 
molar mass of the gas (air), and T is the 
absolute temperature. 
 

Substitute to obtain: 
 M

RTf γ
λ
1

=  

 

s.frequencieresonant   theincreases re temperatu theincreasing , Because Tv ∝  

 
*10 •  
Determine the Concept Because the two waves move independently, neither impedes 
the progress of the other. 
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11 • 
Determine the Concept No; the wavelength of a wave is related to its frequency and 
speed of propagation (λ = v/f). The frequency of the plucked string will be the same as 
the wave it produces in air, but the speeds of the waves depend on the media in which 
they are propagating. Because the velocities of propagation differ, the wavelengths will 
not be the same. 
 
12 •  
Determine the Concept No; when averaged over a region in space including one or 
more wavelengths, the energy is unchanged. 
 
13 •  
Determine the Concept When the edges of the glass vibrate, sound waves are produced 
in the air in the glass. The resonance frequency of the air columns depends on the length 
of the air column, which depends on how much water is in the glass. 
 
14 ••  
Picture the Problem We can use v = fλ to relate the frequency of the sound waves in the 
organ pipes to the speed of sound in air, nitrogen, and helium. We can use 

MRTv γ= to relate the speed of sound, and hence its frequency, to the properties of 

the three gases. 
 
Express the frequency of a given 
note as a function of its wavelength 
and the speed of sound: 
 

λ
vf =  

Relate the speed of sound to the 
absolute temperature and the molar 
mass of the gas used in the organ: 
 

M
RTv γ

=  

where γ  depends on the kind of gas, R is a 
constant, T is the absolute temperature, and 
M is the molar mass. 
  

Substitute to obtain: 

M
RTf γ

λ
1

=  

 
For air in the organ pipes we have: 
 

air

air
air

1
M

RTf γ
λ

=                         (1) 

 
When nitrogen is in the organ pipes: 
 

2

2

2
N

N
N

1
M

RT
f

γ
λ

=                        (2) 
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Express the ratio of equation (2) to 
equation (1) and solve for

2Nf : 
2

22

N

air

air

N

air

N

M
M

f
f

γ
γ

=  

and 

2

2

2
N

air

air

N
airN M

Mff
γ
γ

=  

 
Because airN2

γγ = and 
2Nair MM > : airN2

ff >  

i.e., 
pipe.organ each for  increase  willf  

 
If helium were used, we’d have: 
 

He

air

air

He
airHe M

Mff
γ
γ

=  

 
Because airHe γγ > and Heair MM >> : airHe ff >>  

i.e., 
.pronounced

 moreeven  be leffect wil the
 

 
*15 ••  
Determine the Concept Increasing the tension on a piano wire increases the speed of the 
waves. The wavelength of these waves is determined by the length of the wire. Because 
the speed of the waves is the product of their wavelength and frequency, the wavelength 
remains the same and the frequency increases. correct. is )(b  

 
16 ••  
Determine the Concept If connected properly, the speakers will oscillate in phase and 
interfere constructively. If connected incorrectly, they interfere destructively. It would be 
difficult to detect the interference if the wavelength is short, less than the distance 
between the ears of the observer. Thus, one should use bass notes of low frequency and 
long wavelength. 
 
17 ••  
Determine the Concept The pitch is determined mostly by the resonant cavity of the 
mouth;  the frequency of sounds he makes is directly proportional to their speed. Because 
vHe > vair  (see Equation 15-5), the resonance frequency is higher if helium is the gas in 
the cavity. 
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*18 ••  
Determine the Concept The light is being projected up from underneath the silk, so you 
will see light where there is a gap and darkness where two threads overlap.  Because the 
two weaves have almost the same spatial period but not exactly identical (because the 
two are stretched unequally), there will be places where, for large sections of the cloth, 
the two weaves overlap in phase, leading to brightness, and large sections where the two 
overlap 90° out of phase (i.e., thread on gap and vice versa) leading to darkness.  This is 
exactly the same idea as in the interference of two waves. 
 
Estimation and Approximation 
 
19 ••  
Determine the Concept Pianos are tuned by ringing the tuning fork and the piano note 
simultaneously and tuning the piano string until the beats are far apart; i.e., the time 
between beats is very long. If we assume that 2 s is the maximum detectable period for 
the beats, then one should be able to tune the piano string to at least 0.5 Hz. 
 
*20 •  
Picture the Problem We can use v = f1λ1 to express the resonance frequencies in the 

organ pipes in terms of their wavelengths and ... 3, 2, 1,   ,
2

== nnL nλ
to relate the length 

of the pipes to the resonance wavelengths. 
 
(a) Relate the fundamental 
frequency of the pipe to its 
wavelength and the speed of sound: 
 

1
1 λ

vf =  

Express the condition for 
constructive interference in a pipe 
that is open at both ends: 
 

... 3, 2, 1,   ,
2

== nnL nλ
               (1) 

Solve for λ1: L21 =λ  

 
Substitute and evaluate f1: 

( ) kHz2.27
m107.52

m/s340
2 21 =

×
== −L

vf  

 
(b) Relate the resonance frequencies 
of the pipe to their wavelengths and 
the speed of sound: 
 

n
n

vf
λ

=  

Solve equation (2) for λn: 
n
L

n
2

=λ  
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Substitute to obtain: 
( )

( )kHz27.2
m107.52

m/s340
2 2

n

n
L
vnfn

=
×

== −  

 
Set  fn = 20 kHz and evaluate n: 81.8

kHz2.27
kHz20

==n  

 

hearing. goodh very person wit aby  heard bemight 
harmonicninth  The audible. as defined range e within this harmoniceighth  The

 

 
21 ••  
Picture the Problem Assume a pipe length of 5 m and apply the standing-wave 
resonance frequencies condition for a pipe that is open at both ends (the same conditions 
hold for a string that is fixed at both ends). 
 
Relate the resonance frequencies for 
a pipe open at both ends to the length 
of the pipe: 
 

... 3, 2, 1,   ,
2

== n
L
vnfn  

Evaluate this expression for n = 1: 
( ) Hz34.0

m52
m/s340

1 ==f  

 
Express the dependence of the speed 
of sound in a gas on the temperature: 
 

M
RTv γ

=  

where γ  and R are constants, M is the 
molar mass, and T is the absolute 
temperature. 
 

summer. in thehigher somewhat  be willfrequency   the   Because ,Tv ∝  

 
Superposition and Interference 
 
22 •  
Picture the Problem We can use δ2

1
0 cos2yA =  to find the amplitude of the resultant 

wave. 
 
(a) Evaluate the amplitude of the 
resultant wave when δ  = π/6: 
 

( )

cm86.3

62
1cosm02.02cos2 2

1
0

=

⎟
⎠
⎞

⎜
⎝
⎛==

πδyA
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(b) Proceed as in (a) with δ  = π/3: 
 

( )

cm46.3

32
1cosm02.02cos2 2

1
0

=

⎟
⎠
⎞

⎜
⎝
⎛==

πδyA
 

 
23 •  
Picture the Problem We can use δ2

1
0 cos2yA =  to find the amplitude of the resultant 

wave. 
 
Evaluate the amplitude of the 
resultant wave when δ  = π/2: 
 

( )

cm07.7

22
1cosm05.02cos2 2

1
0

=

⎟
⎠
⎞

⎜
⎝
⎛==

πδyA
 

 
*24 •  
Picture the Problem The phase shift in the waves generated by these two sources is due 
to their separation of λ/3. We can find the phase difference due to the path difference 

from
λ

πδ x∆
= 2 and then the amplitude of the resultant wave from δ2

1
0 cos2yA = . 

 
Evaluate the phase difference δ: π

λ
λπ

λ
πδ

3
2322 ==

∆
=

x
 

 
Find the amplitude of the resultant 
wave: 

AA

AyA

==

⎟
⎠
⎞

⎜
⎝
⎛==

3
cos2

3
2

2
1cos2cos2 2

1
0res

π

πδ
 

 
25 •  
Picture the Problem The phase shift in the waves generated by these two sources is due 
to a path difference ∆x = 5.85 m – 5.00 m = 0.85 m. We can find the phase difference due 

to this path difference from 
λ

πδ x∆
= 2 and then the amplitude of the resultant wave 

from .cos2 2
1

0 δyA =  

 
(a) Find the phase difference due to 
the path difference: 
 

λ
πδ x∆

= 2  

Calculate the wavelength of the 
sound waves: 
 

m3.4
s100
m/s340

1 === −f
vλ  
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Substitute and evaluate δ: °=== 0.90rad
2m3.4

m0.852 ππδ  

 
(b) Relate the amplitude of the 
resultant wave to the amplitudes of 
the interfering waves and the phase 
difference between them: 

A

AyA

2

22
1cos2cos2 2

1
0

=

⎟
⎠
⎞

⎜
⎝
⎛==

πδ
 

 
*26 •  
Picture the Problem The diagram is shown below. Lines of constructive interference are 
shown for path differences of 0, λ, 2λ, and 3λ. 
 

 
 
27 •  
Picture the Problem The intensity at the point of interest is dependent on whether the 
speakers are coherent and on the total phase difference in the waves arriving at the given 

point. We can use 
λ

πδ x∆
= 2  to determine the phase difference δ, δ2

1
0 cos2 pA =  to 

find the amplitude of the resultant wave, and the fact that the intensity I is proportional to 
the square of the amplitude to find the intensity at P for the given conditions. 
 
(a) Find the phase difference δ: 
 

π
λ
λπδ == 2

1

2  

 
Find the amplitude of the resultant 
wave: 
 

0cos2 2
1

0 == πpA  

Because the intensity is proportional 
to A2: 
 

0=I  

(b) The sources are incoherent and 
02II =  
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the intensities add: 
 
(c) Express the total phase 
difference:  

π

ππ
λ

ππ

δδδ

2
2
122

differencepathsourcestot

=

⎟
⎠
⎞

⎜
⎝
⎛+=

∆
+=

+=

x
 

 
Find the amplitude of the resultant 
wave: 
 

( ) 02
1

0 22cos2 ppA == π  

Because the intensity is proportional 
to A2: 
 

( )
002

0

2
0

02
0

2

42 II
p
pI

p
AI ===  

 
28 •  
Picture the Problem The intensity at the point of interest is dependent on whether the 
speakers are coherent and on the total phase difference in the waves arriving at the given 

point. We can use 
λ

πδ x∆
= 2  to determine the phase difference δ, δ2

1
0 cos2 pA =  to 

find the amplitude of the resultant wave, and the fact that the intensity I is proportional to 
the square of the amplitude to find the intensity at P for the given conditions. 
 
(a) Find the phase difference δ: 
 

π
λ
λπδ 22 ==  

 
Find the amplitude of the resultant 
wave: 
 

( ) 02
1

0 22cos2 ppA == π  

Because the intensity is proportional 
to A2: 
 

( )
002

0

2
0

02
0

2

42 II
p
pI

p
AI ===  

 
(b) The sources are incoherent and 
the intensities add: 
 

02II =  

(c) Express the total phase 
difference:  

π
λ
λππ

λ
ππ

δδδ

3

22

differencepathsourcestot

=

⎟
⎠
⎞

⎜
⎝
⎛+=

∆
+=

+=

x
 

 
Find the amplitude of the resultant ( ) 03cos2 2

1
0 == πpA  
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wave: 
 
Because the intensity is proportional 
to A2: 

0=I  

 
29 •  
Picture the Problem Let P be the point located a distance r1 from speaker 1 and a 
distance r2 from speaker 2. If the sound at point P is to be either a maximum or a 
minimum, the difference in the distances to the speakers will have to be such that this 
difference compensates for the 90° out-of-phase condition of the speakers. 
 
(a) Express the phase shift due to the 
speakers in terms of a path difference: 
 

λλλδ
4
1sources

360
90

360
=

°
°

=
°

=∆r  

 
Express the condition that 12 rr − must 

satisfy in order to compensate for this 
path difference: 
 

λ4
1

12 =− rr  

(b) In this case, the smallest difference 
in path is again λ/4, but now: 

λ4
1

21 =− rr  

 
*30 •• 
Picture the Problem The drawing shows a 
generic point P located a distance r1 from 
source S1 and a distance r2 from source S2. 
The sources are separated by a distance d 
and we’re given that d < λ/2. Because the 
condition for destructive interference is 
that δ  = nπ  where n = 1, 2, 3,..., we’ll 
show that, with d < λ/2, this condition 
cannot be satisfied. 

 
 
Relate the phase shift to the path 
difference and the wavelength of the 
sound: 
 

λ
πδ r∆

= 2  

 

Relate ∆r to d and θ: ddr ≤<∆ θsin  
 

Substitute to obtain: 
λ

π
λ

θπδ dd 2sin2 ≤<  
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Because 2λ<d : 

 
π

λ
λπδ =<

22  

 
Express the condition for destructive 
interference: 
 

πδ n=  
where n = 1, 2, 3,… 

direction.any in  ceinterferen edestructiv complete no is  there   Because ,πδ <  

 
31 ••  
Picture the Problem Let the positive x direction be the direction of propagation of the 
wave. We can express the phase difference in terms of the separation of the two points 
and the wavelength of the wave and solve for λ. In part (b) we can find the phase 
difference by relating the time between displacements to the period of the wave. I in part 
(c) we can use the relationship between the speed, frequency, and wavelength of a wave 
to find its velocity. 
 
(a) Relate the phase difference to the 
wavelength of the wave: 
 

λ
πδ x∆

= 2                     

Solve for and evaluate λ: cm0.60
6

cm522 ==
∆

=
π

π
δ

πλ x
 

 
(b) Express and evaluate the period 
of the wave: 

ms25
s40

11
1 === −f

T  

 
Relate the time between the two 
displacements to the period of the 
wave: 
 

T
5
1ms5 =  

 

Express the phase difference 
corresponding to one-fifth of a 
period: 
 

5
2πδ =  

 

(c) Express the wave speed in terms 
of its frequency and wavelength: 

( )( ) m/s0.24m0.6s40 1 === −λfv  

 
32 ••  
Picture the Problem Assume a distance of about 20 cm between your ears. When you 
rotate your head through 90°, you introduce a path difference of 20 cm. We can apply the 
equation for the phase difference due to a path difference to determine the change in 
phase between the sounds received by your ears as you rotate your head through 90°. 
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Express the phase difference due to 
the rotation of your head through 
90°: 
 

λ
πδ cm202=  

Find the wavelength of the sound 
waves: 
 

cm50
s680
m/s340

1 === −f
vλ  

 
Substitute to obtain: rad8.0

cm50
cm202 ππδ ==  

 
33 ••  
Picture the Problem Because the sound intensity diminishes as the observer moves, 
parallel to a line through the sources, away from her initial position, we can conclude that 
her initial position is one at which there is constructive interference of the sound coming 
from the two sources. We can apply the condition for constructive interference to relate 
the wavelength of the sound to the path difference at her initial position and the 
relationship between the velocity, frequency, and wavelength of the waves to express this 
path difference in terms of the frequency of the sources. 
 
Express the condition for 
constructive interference at  
(40 m, 0): 
 

...,3,2,1, ==∆ nnr λ                 (1) 

Express the path difference ∆r: 
 

AB rrr −=∆  

Using the Pythagorean theorem, find 
rB: 
 

( ) ( )22
B m2.4m40 +=r  

Substitute for rB and evaluate ∆r: ( ) ( )
m0.07194

m40m2.4m40 22

=

−+=∆r  

 
Substitute in equation (1) and solve 
for λ: n

m07194.0
=λ  

 
Using v =  fλ, express  f  in terms  
of λ and n: 

( )n

nvnfn

Hz4726
m0.07194

m/s340
m07194.0

=

==
 

 
Evaluate  f  for n = 1 and 2: 
 

Hz47261 =f  and Hz45292 =f  
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34 ••  
Picture the Problem Because the sound intensity increases as the observer moves, 
parallel to a line through the sources, away from her initial position, we can conclude that 
her initial position is one at which there is destructive interference of the sound coming 
from the two sources. We can apply the condition for destructive interference to relate the 
wavelength of the sound to the path difference at her initial position and the relationship 
between the velocity, frequency, and wavelength of the waves to express this path 
difference in terms of the frequency of the sources. 
 
Express the condition for 
destructive interference at (40 m, 0): 
 

...,5,3,1,
2

==∆ nnr λ
                (1) 

Express the path difference ∆r: 
 

AB rrr −=∆  

Using the Pythagorean theorem, 
find rB: 
 

( ) ( )22
B m2.4m40 +=r  

Substitute for rB and evaluate ∆r: ( ) ( )
m0.07194

m40m2.4m40 22

=

−+=∆r  

 
Substitute in equation (1) and solve 
for λ: 

( )
nn

m1439.0m07194.02
==λ  

 
Using v =  fλ, express  f  in terms  
of λ: 

( )n

nvnfn

Hz3632
m0.1439

m/s340
m1439.0

=

==
 

 
Evaluate  f  for n = 1 and 3: 
 

Hz36321 =f  

and 
Hz70893 =f  

 
*35 ••  
Picture the Problem We can use the trigonometric identity 

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ +

=+
2

cos
2

cos2coscos BABABA to derive the expression given in (a) and the 

speed of the envelope can be found from the second factor in this expression; i.e., 
from ( ) ( )[ ]txk 2/2/cos ω∆−∆ . 
(a)  Express the amplitude of the resultant wave function y(x,t): 
 

( )( ( ))txktxkAtxy 2211 coscos),( ωω −+−=  
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Use the trigonometric identity ⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ +

=+
2

cos
2

cos2coscos BABABA  to obtain: 

 

⎥
⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛ −

+
−

⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +

−
+

=

⎥⎦
⎤+−−

⎢⎣
⎡ −+−

=

txkktxkkA

txktxktxktxkAx,ty

22
cos

22
cos2

2
cos

2
cos2)(

12212121

22112211

ωωωω

ωωωω

 

 
Substitute ωave = (ω1 + ω2)/2, kave = (k1 + k2)/2, ∆ω = ω1 - ω2 and ∆k = k1  −  k2 to obtain: 
 

( )[ ⎥
⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛ ∆

−
∆

−= txktxkAx,ty
22

coscos2)( aveave
ωω  

 
(b) A spreadsheet program to calculate y(x,t) between 0 m and 50 m at t = 0, 0.5 s, and 1 s 
follows. The constants and cell formulas used are shown in the table.  
 

Cell Content/Formula Algebraic Form 
B11 B10+0.25 x + ∆x 
C10 COS($B$3*B10−$B$5*$C$9) 

+ COS($B$4*B10−$B$6*$C$9) 
( )0x,y  

D10 COS($B$3*B10-$B$5*$D$9) 
+ COS($B$4*B10−$B$6*$D$9)

( )s5.0x,y  

E10 COS($B$3*B10−$B$5*$E$9) 
+ COS($B$4*B10−$B$6*$E$9) 

( )s1x,y  
 
 

 A B C D E 
1      
2      
3 k1= 1 m−1   
4 k2= 0.8 m−1   
5 w1= 1 rad/s   
6 w2= 0.9 rad/s   
7  x y(x,0) y(x,0.5 s) y(x,1 s)
8  (m)    
9   0.000 2.000 4.000 

10  0.00 2.000 −0.643 −1.550 
11  0.25 1.949 −0.207 −1.787 
12  0.50 1.799 0.241 −1.935 
13  0.75 1.557 0.678 −1.984 
14  1.00 1.237 1.081 −1.932 

      
206  49.00 0.370 −0.037 0.021 
207  49.25 0.397 0.003 −0.024 
208  49.50 0.397 0.065 −0.075 
209  49.75 0.364 0.145 −0.124 
210  50.00 0.298 0.237 −0.164  
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The solid line is the graph of y(x,0), the dashed line that of y(x,0.5 s), and the dotted line is 
the graph of y(x,1 s). 
 

-2 .0

- 1.5

- 1.0

-0 .5

0 .0

0 .5

1.0

1.5

2 .0

0 5 10 15 20 25 30 35 40 45 50

x  (m)

f (x,0)

f (x,0.5 s)

f (x,1 s)

 

(c) Express the speed of the 
envelope: 21

21
envelope kkk

v
−
−

=
∆
∆

=
ωωω

 

 
Substitute numerical values and 
evaluate venvelope: 

m/s500.0
m8.0m1
rad/s9.0rad/s1

11envelope =
−
−

= −−v  

 
36 ••  
Picture the Problem The diagram shows 
the two sources separated by a distance d 
and the path difference ∆s. Because the 
lines from the sources to the distant point 
are approximately parallel, the triangle 
shown in the diagram is approximately a 
right triangle and we can use trigonometry 
to express ∆s in terms of d and θ. In the 
second part of the problem, we can apply a 
small-angle approximation to the larger 
triangle shown in Figure 16-29 to relate ym 
to D and θ  and then use the condition for 
constructive interference to relate ym to D, 
λ, and d.  

 
(a) Using the diagram, relate ∆s to 
the separation of the sources and the 
angle θ: 
 

d
s∆

≈θsin and θsinds ≈∆  

 

(b) For θ  << 1, we can approximate θtands ≈∆  
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sinθ with tanθ to obtain: 
 
Referring to Figure 16-29, express 
tanθ in terms of y and D: 
 

D
ym≈θtan  

Substitute to obtain: 
D

dys m≈∆  

 
Express the condition on the phase 
difference for constructive 
interference: 
 

...,3,2,122 ==
∆

= mm,s π
λ

πδ  

 

Substitute for ∆s: ...,3,2,122 == mm,
D
dym π

λ
π  

 
Simplify and solve for ym: 

d
Dmym

λ
=  

 
37 ••  
Picture the Problem Because a maximum is heard at 0° and the sources are in phase, we 
can conclude that the path difference is 0. Because the next maximum is heard at 23°, the 
path difference to that position must be one wavelength. We can use the result of part (a) 
of Problem 36 to relate the separation of the sources to the path difference and the angle 
θ. We’ll apply the condition for constructive interference to determine the angular 
locations of other points of maximum intensity in the interference pattern. 
 
Using the result of part (a) of Problem 
36, express the separation of the 
sources in terms of ∆s and θ : 
 

θsin
sd ∆

=  

Evaluate d with ∆s = λ and θ = 23°: 

( ) m1.81
sin23s480
m/s340

23sin23sin

1 =
°

=

°
=

°
=

−

f
vd λ

 

 
Express the condition for additional 
intensity maxima: 

λθ md m =sin  

where m = 1, 2, 3, …, or 

⎥⎦
⎤

⎢⎣
⎡= −

d
m

m
λθ 1sin  
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Evaluate this expression for m = 2: 
 

( )
( )( ) °=⎥

⎦

⎤
⎢
⎣

⎡
= −

− 5.51
m1.81s480

m/s3402sin 1
1

2θ  

 
Remarks: It is easy to show that, for m > 2, the inverse sine function is undefined 
and that, therefore, there are no additional relative maxima at angles larger than 
51.5°. 
 
*38 •••  
Picture the Problem Because the speakers are driven in phase and the path difference is 
0 at her initial position, the listener will hear a maximum at (D, 0). As she walks along a 
line parallel to the y axis she will hear a minimum wherever it is true that the path 
difference is an odd multiple of a half wavelength. She will hear an intensity maximum 
wherever the path difference is an integral multiple of a wavelength. We’ll apply the 
condition for destructive interference in part (a) to determine the angular location of the 
first minimum and, in part (b), the condition for constructive interference find the angle at 
which she’ll hear the first maximum after the one at 0°. In part (c), we can apply the 
condition for constructive interference to determine the number of maxima she can hear 
as keeps walking parallel to the y axis. 
 
(a) Express the condition for 
destructive interference: 2

sin λθ md m =  

where m = 1, 3, 5,…, or 

⎟
⎠
⎞

⎜
⎝
⎛= −

d
m

m 2
sin 1 λθ  

 
Evaluate this expression for m = 1: 
 ( )( )

°=

⎥
⎦

⎤
⎢
⎣

⎡
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −

−−

14.8

m2s0062
m/s340sin

2
sin 1

11
1 fd

vθ
 

 
(b) Express the condition for 
additional intensity maxima: 

λθ md m =sin  

where m = 0, 1, 2, 3,…, or 

⎟
⎠
⎞

⎜
⎝
⎛= −

d
m

m
λθ 1sin  

 
Evaluate this expression for m = 1: 
 ( )( )

°=

⎥
⎦

⎤
⎢
⎣

⎡
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −

−−

5.16

m2s006
m/s340sinsin 1

11
1 fd

vθ
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(c) Express the limiting condition 
on sinθ : 

1sin ≤=
d

mm
λθ  

 
Solve for m to obtain: ( )( ) 53.3

m/s340
m2s600 1

===≤
−

v
fddm

λ
 

 
Because m must be an integer: 3=m  

 
39 •••  
Picture the Problem Let d  be the separation of the two sound sources. We can express 
the wavelength of the sound in terms of the d and either of the angles at which intensity 
maxima are heard. We can find the frequency of the sources from its relationship to the 
speed of the waves and their wavelengths. Using the condition for constructive 
interference, we can find the angles at which intensity maxima are heard. Finally, in part 
(d), we’ll use the condition for destructive interference to find the smallest angle for 
which the sound waves cancel. 
 
(a) Express the condition for 
constructive interference: 
 

λθ md m =sin                      (1) 

where m = 0, 1, 2, 3,… 

Solve for λ: 
m

d mθλ sin
=  

 
Evaluate λ  for m = 1: ( ) ( )

m279.0

rad140.0sinm2

=

=λ
 

 
(b) Express the frequency of the 
sound in terms of its wavelength 
and speed: 
 

kHz22.1
m0.279

m/s340
===

λ
vf  

 

(c) Solve equation (1) for θm: ( )

( )[ ]m

m
d

m
m

1395.0sin

m2
m279.0sinsin

1

11

−

−−

=

⎥
⎦

⎤
⎢
⎣

⎡
=⎟

⎠
⎞

⎜
⎝
⎛=

λθ
 

 
  
The table shows the values for θ as 
a function of m: 
 
 
 

m θm 
 (rad) 

3 0.432 
4 0.592 
5 0.772 
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6 0.992 
7 1.354 
8 undefined  

(d) Express the condition for 
destructive interference: 
 

2
sin λθ md m =  

where m = 1, 3, 5,… 
 

Solve for θm: 
⎟
⎠
⎞

⎜
⎝
⎛= −

d
mm 2

sin 1 λθ  

 
Evaluate this expression for m = 1: 

( ) rad0698.0
m22

m0.279sin 1
1 =⎥

⎦

⎤
⎢
⎣

⎡
= −θ  

 
40 •••  
Picture the Problem The total phase shift in the waves arriving at the points of interest is 
the sum of the phase shift due to the difference in path lengths from the two sources to a 
given point and the phase shift due to the sources being out of phase by 90°. From 
Problem 39 we know that λ = 0.279 m. Using the conditions on the path difference ∆x for 
constructive and destructive interference, we can find the angles at which intensity 
maxima are heard.  
 
Letting the subscript ″pd ″ denote 
″path difference″ and the subscript 
″s″ the ″sources″, express the total 
phase shift δ: 
 

4
2spd

π
λ

πδδδ +
∆

=+=
x

 

where ∆x is the path difference between the 
two sources and the points at which 
constructive or destructive interference is 
heard. 
 

Express the condition for 
constructive interference: 
 

...,642
4

2 ππππ
λ

πδ ,,x
=+

∆
=  

Solve for ∆x to obtain: 
 

( )λλλλ
8

18...
8
23

8
15

8
7 −

==∆
m,,,x  

where m = 1, 2, 3,… 
 

Relate ∆x to d to obtain: 
 

( )
csin

8
18 θλ dmx =

−
=∆                    

where the ″c″ denotes constructive 
interference. 
 



Chapter 16    
 

 

1242 

Solve for θc: ( )
⎥⎦
⎤

⎢⎣
⎡ −

= −

d
m
8

18sin 1
c

λθ , m = 1, 2, 3,… 

 
The table shows the values for θc for 
m = 1 to 5: 
 
 
 
 
 
 
 

m θc 
1 °7.01  

2 °2.15  

3 °6.23  

4 °1.35  

5 °8.42  
 

Express the condition for destructive 
interference: 
 

...53
4

2 ,,,x ππππ
λ

πδ =+
∆

=  

Solve for ∆x to obtain: 
 

( )λλλλ
8

58...
8

19
8
11

8
3 −

==∆
m,,,x  

where m = 1, 2, 3,… 
 

Letting ″d ″ denotes destructive 
interference, relate ∆x to d to obtain: 
 

( )
dsin

8
58 θλ dmx =

−
=∆                    

 
Solve for θd: ( )

⎥⎦
⎤

⎢⎣
⎡ −

= −

d
m

8
58sin 1

d
λθ , m = 1, 2, 3,… 

 
The table shows the values for θd for  
m = 1 to 5:  
 

m θd 
1 °00.3  

2 °1.11  

3 °3.19  

4 °1.28  

5 °6.37  
 

 
41 •••  
Picture the Problem We can calculate the required phase shift from the path difference 

and the wavelength of the radio waves using 
λ

πδ s∆
= 2  . 

 
Express the phase delay as a 
function of the path difference and λ

πδ s∆
= 2                            (1) 
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the wavelength of the radio waves: 
 

 

Find the wavelength of the radio 
waves: 

m15
s1020

m/s103
16

8

=
×

×
== −f

vλ  

 
Express the path difference for the 
signals coming from an angle θ  
with the vertical: 
 

θsinds =∆  
 

Substitute numerical values and 
evaluate ∆s: 

( )
λλ

λ
0.3152

2.315m34.73sin10m200
+=

==°=∆s
 

 
Substitute in equation (1) and 
evaluate δ: 

°=== 113rad98.1315.02
λ

λπδ  

 
Beats 
 
42 •  
Picture the Problem The beat frequency is the difference between the frequency of the 
tuning fork and the frequency of the violin string. Let  f2 = 500 Hz. 
 
(a) Express the relationship between 
the beat frequency of the 
frequencies of the two tuning forks: 
 

Hz4Hz500
12

±=
∆±= fff

 

Solve for f2: Hz496orHz5042 =f  

 

(b) 
Hz. 496  

,diminished isit  if Hz; 504 then increased, isfrequency beat   theIf

2

2

=
=

f
f

 

 
43 ••  
Picture the Problem The Doppler shift of the siren as heard by one of the drivers is 
given by the formula for source and receiver both moving and approaching each 
other ( ) ( )[ ]vuvuff /1/1sr −+= , where u is the speed of the ambulance and v is the 
speed of sound.   
 
(a) Express the beat frequency: 

srbeat fff −=  
where  fr  is the frequency heard by either 
driver due to the other’s siren, 
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Express fr: 

v
u
v
u

ff
−

+
=

1

1
sr  

 
Substitute to obtain: 

1

2

1
1

1

1

1

s

sssbeat

−
=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
−

+
=−

−

+
=

u
v

f

v
u
v
u

ff

v
u
v
u

ff

 

 
Substitute numerical values and 
evaluate fbeat: ( ) Hz5.70

1
m/s4.22
m/s340
2Hz500beat =

−
=f  

 

(b) 
Hz). 35 (approx.amount  same by the up shiftedDoppler  areambulances

both  of sirens  theasfrequency beat  no hearsstreet  on theperson  The
 

 
Standing Waves 
 
*44 •  
Picture the Problem We can use v = fλ to relate the second-harmonic frequency to the 
wavelength of the standing wave for the second harmonic. 
 
Relate the speed of transverse waves 
on the string to their frequency and 
wavelength: 
 

22λfv =  

Express λ2 in terms of the length L 
of the string: 
 

L=2λ  

Substitute for λ2 and evaluate v: ( )( ) m/s180m3s60 1
2 === −Lfv  

 
45 •  
Picture the Problem We can find the wavelength of this standing wave from the 
standing-wave condition for a string fixed at both ends and its frequency from v = f3λ3. 
We can use the wave function for a standing wave on a string fixed at both ends 
( ( ) txkAx,ty nnnn ωcossin= )) to write the wave function for the wave described in this 

problem. 
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(a) Using the standing-wave 
condition for a string fixed at both 
ends, relate the length of the string 
to the wavelength of the harmonic 
mode in which it is vibrating: 
 

... 3, 2, 1,   ,
2

== nnL nλ
 

Solve for λ3: ( ) m2.00m3
3
2

3
2

3 === Lλ  

 
Express the frequency of the third 
harmonic in terms of the speed of 
transverse waves on the string and 
their wavelength: 
 

Hz25.0
m2
m/s50

3
3 ===

λ
vf  

 

(b) Write the equation for a standing 
wave, fixed at both ends, in its third 
harmonic: 
 

( ) txkAtxy 3333 cossin, ω=  

Evaluate k3: 1

3
3 m

m2
22 −=== ππ

λ
πk  

 
Evaluate ω3: ( ) 11

33 s50s2522 −− === πππω f  

 
Substitute to obtain: ( ) ( ) tkxx,ty ωcossinmm43 = where k = π m−1 and  

ω = 50π s−1. 
 
46 •  
Picture the Problem The first harmonic 
displacement-wave pattern in an organ pipe 
open at both ends and vibrating in its 
fundamental mode is represented in part (a) 
of the diagram. Part (b) of the diagram 
shows the wave pattern corresponding to 
the fundamental frequency for a pipe of the 
same length L that is closed at one end. We 
can relate the wavelength to the frequency 
of the fundamental modes using v =  fλ.  
 
(a) Express the dependence of the  
frequency of the fundamental mode 
of vibration in the open pipe on its 

open,1
open,1 λ

vf =  
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wavelength: 
 
Relate the length of the open pipe to 
the wavelength of the fundamental 
mode: 
 

L2open,1 =λ  

Substitute and evaluate f1,open: 
( ) Hz17.0

m102
m/s340

2open,1 ===
L
vf  

 
(b) Express the dependence of the  
frequency of the fundamental mode 
of vibration in the closed pipe on its 
wavelength: 
 

closed,1
closed,1 λ

vf =  

Relate the length of the closed pipe 
to the wavelength of the 
fundamental mode: 
 

L4closed,1 =λ  

Substitute to obtain: 
( ) Hz50.8

m104
m/s340

4closed,1 ===
L
vf  

 
47 •  
Picture the Problem We can find the speed of transverse waves on the wire using 

µFv = and the wavelengths of any harmonic from ... 3, 2, 1,   ,
2

== nnL nλ
. We can 

use v = fλ to find the frequency of the fundamental. For a wire fixed at both ends, the 
higher harmonics are integer multiples of the first harmonic (fundamental). 
 
(a) Relate the speed of transverse 
waves on the wire to the tension in 
the wire and its linear density: 
 

Lm
FFv ==

µ
 

Substitute numerical values and 
evaluate v: 
 

( ) ( ) m/s521
m1.4kg0.005

N968
==v  

(b) Using the standing-wave 
condition for a wire fixed at both 
ends, relate the length of the wire to 
the wavelength of the harmonic 
mode in which it is vibrating: 

... 3, 2, 1,   ,
2

== nnL nλ
            

Solve for λ1: ( ) m2.80m4.1221 === Lλ  
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Express the frequency of the first 
harmonic in terms of the speed and 
wavelength of the waves: 
 

Hz861
m2.80

m/s215
1

1 ===
λ
vf  

 

(c) Because, for a wire fixed at both 
ends, the higher harmonics are integer 
multiples of the first harmonic:  

( ) Hz372Hz18622 12 === ff  

and 
( ) Hz585Hz18633 13 === ff  

 
48 •  

Picture the Problem We can use Equation 16-13,
 

...,,5,3,1
4 1 === n,nf

L
vnfn  to find 

the resonance frequencies for a rope that is fixed at one end. 
 
(a) Using the resonance-frequency 
condition for a rope fixed at one 
end, relate the resonance 
frequencies to the speed of the 
waves and the length of the rope: 
 

...,5,3,1
4 1 === n,nf

L
vnfn

 
           

Solve for  f1: 
( ) Hz1.25

m44
m/s20

1 ==f  

 

(b) 
harmonic. second

 asupport not  does system theend, onejust at  fixed is rope  thisBecause
 

 
(c) For the third harmonic, n = 3: 
 

( ) Hz75.3Hz25.133 13 === ff  

49 •  
Picture the Problem We can find the fundamental frequency of the piano wire using the 
general expression for the resonance frequencies of a wire fixed at both ends, 

... 3, 2, 1,   ,
2 1 === nnf

L
vnfn , with n = 1.  We can use µFv = to express the 

frequencies of the fundamentals of the two wires in terms of their linear densities. 
 
Relate the fundamental frequency of 
the piano wire to the speed of 
transverse waves on it and its linear 
density: 

L
vf

21 =  
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Express the dependence of the 
speed of transverse waves on the 
tension and linear density: 
 

µ
Fv =  

Substitute to obtain: 

µ
F

L
f

2
1

1 =  

 
Doubling the linear density results 
in a new fundamental frequency f ′ 
given by: 
 

11 2
1

2
1

2
1

22
1 fF

L
F

L
'f =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==

µµ
 

Substitute for f1 to obtain: ( ) Hz141Hz200
2

1
1 =='f  

 
*50 •  
Picture the Problem Because the frequency and wavelength of sounds waves are 
inversely proportional, the greatest length of the organ pipe corresponds to the lowest 
frequency in the normal hearing range. We can relate wavelengths to the length of the 
pipes using the expressions for the resonance frequencies for pipes that are open at both 
ends and open at one end. 
 
Find the wavelength of a 20-Hz note: m17

s20
m/s340

1
lowest

max === −f
vλ  

 
(a) Relate the length L of a closed-
at-one-end organ pipe to the 
wavelengths of its standing waves: 
 

... 5, 3, 1,   ,
4

== nnL nλ
 

Solve for and evaluate λ1: m4.25
4
m17

4
max ===

λL  

 
(b) Relate the length L of an open 
organ pipe to the wavelengths of its 
standing waves: 
 

... 3, 2, 1,   ,
2

== nnL nλ
 

Solve for and evaluate λ1: m50.8
2
m17

2
max ===

λL  

 
51 ••  
Picture the Problem We can find λ and  f  by comparing the given wave function to the 
general wave function for a string fixed at both ends. The speed of the waves can then be 
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found from v = fλ. We can find the length of the string from its fourth harmonic 
wavelength. 
 
(a) Using the wave function, relate 
k and λ: 

1cm20.02 −==
λ
πk  

 
Solve for λ: cm4.31cm10

cm20.0
2

1 === − ππλ  

 
Using the wave function, relate f 
and ω: 
 

1s3002 −== fπω  

 

Solve for f: 
Hz7.47

2
s300 1

==
−

π
f  

 
(b) Express the speed of transverse 
waves in terms of their frequency 
and wavelength: 
 

( )( )
m/s15.0

m0.314Hz47.7

=

== λfv
 

 

(c) Relate the length of the string to 
the wavelengths of its standing-
wave patterns: 
 

... 3, 2, 1,   ,
2

== nnL nλ
 

Solve for L when n = 4: ( ) cm62.8cm31.422 4 === λL  

52 ••  
Picture the Problem We can find λ and  f  by comparing the given wave function to the 
general wave function for a string fixed at both ends. The speed of the waves can then be 
found from v = fλ. In a standing wave pattern, the nodes are separated by one-half 
wavelength. 
 
(a) Express the speed of the traveling 
waves in terms of their frequency and 
wavelength: 
 

λfv =  

Using the wave function, relate k 
and λ: 

1m5.22 −==
λ
πk  

 
Solve for λ: m2.51m8.0

m.52
2

1 === − ππλ  

 
Using the wave function, relate ω 1s5002 −== fπω  
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and f: 
 

 

Solve for  f: 
Hz6.79

2
s500 1

==
−

π
f  

 
Substitute to find v: ( )( ) m/s200m2.51s79.6 1 == −v  

 
Express the amplitude of the 
standing wave in terms of the 
amplitude of the two traveling 
waves that result in the standing 
wave: 
 

AA 2SW =  

Solve for and evaluate A: cm50.2
2

m0.05
2
SW ===

AA  

 
(b) The distance between nodes is 
half the wavelength: 
 

m1.26
2

m2.51
2

==
λ

 

 
(c) Because there is a standing wave 
on the string, the shortest possible 
length is: 

m1.26
2min ==
λL  

 
53 ••  
Picture the Problem We can evaluate the wave function of Problem 52 at the given 
times to obtain graphs of position as a function of x. We can find the period of the motion 
from its frequency  f and find  f from its angular frequency ω. 
 
(a) The function y(x,0) is shown to 
the right.  
 

-5

-4

-3

-2

-1

0

1

2

3

4

5

0.0 0.5 1.0 1.5 2.0 2.5

x  (m)

y(
x,

0)
 (c

m
)
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The functions y(x,T/4) and  
y(x,3T/4) are shown to the right. 
Because these functions are 
identical, only one graph is shown. 

-5

-4

-3

-2

-1

0

1

2

3

4

5

0.0 0.5 1.0 1.5 2.0 2.5

x  (m)

y(
x,

T
/4

) (
cm

)

 
The function y(x,T/2) is shown to 
the right. 

-5

-4

-3

-2

-1

0

1

2

3

4

5

0.0 0.5 1.0 1.5 2.0 2.5

x  (m)

y(
x,

T
/2

) (
cm

)

 
(b) Express the period in terms of 
the frequency: 
 

f
T 1

=  

Using the wave function, relate ω 
and f: 
 

1s5002 −== fπω  

 

Solve for  f: 
Hz6.79

2
s500 1

==
−

π
f  

Substitute for f and evaluate T: ms12.6
s79.6

1
1 == −T  

 

(c) 
energy. kineticentirely  is  wave theofenergy  the allfor  0  )(

 when downwardor  upwardeither  moving is string  theBecause
x,xy =

 

 
*54 ••  
Picture the Problem Whether these frequencies are for a string fixed at one end only 
rather than for a string fixed at both ends can be decided by determining whether they are 
integral multiples or odd-integral multiples of a fundamental frequency. The length of the 
string can be found from the wave speed and the wavelength of the fundamental 
frequency using the standing-wave condition for a string with one end free. 
 
(a) Letting the three frequencies be 
represented by f'''f''f' and ,, , find 

the ratio of the first two frequencies: 
 

5
3

Hz125
Hz75

==
f''
f'
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Find the ratio of the second and 
third frequencies: 
 

7
5

Hz175
Hz251

==
f'''
f''

 

(b)  only. end oneat  fixed bemust  string  theso harmonics,even  no are There  

 
(c) Express the resonance 
frequencies in terms of the 
fundamental frequency: 
 

... 5, 3, 1,   ,1 == nnffn  

 

Noting that the frequencies are 
multiples of 25 Hz, we can conclude 
that: 
 

Hz25
3
Hz75

3
3

1 ===
ff  

 

(d) 
harmonics.seventh  and fifth,  third, thearethey 

 frequency, lfundamenta  the times7 and 5, 3, are sfrequencie  theBecause
 

 
(e) Express the length of the string 
in terms of the standing-wave 
condition for a string fixed at one 
end: 
 

... 5, 3, 1,   ,
4

== nnL nλ
 

Using v = f1λ1, find λ1: m16
s25
m/s400

1
1

1 === −f
vλ  

 
Evaluate L for λ1 = 16 m and n = 1: m4.00

4
m16

4
1 ===

λL  

 
55 ••  
Picture the Problem The lowest resonant frequency in this closed-at-one-end tube is its 
fundamental frequency. This frequency is related to its wavelength through v = fminλmax. 
We can use the relationship between the nth harmonic and the fundamental 
frequency, ( ) ... 3, 2, 1,   ,12 1n =+= nfnf , to find the highest frequency less than or equal 

to 5000 Hz that will produce resonance. 
 
(a) Express the length of the space 
above the water in terms of the 
standing-wave condition for a 
closed pipe: 
 

... 5, 3, 1,   ,
4

== nnL nλ
 

Solve for λn: ... 5, 3, 1,   ,4
== n

n
L

nλ  
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λmax corresponds to n = 1: ( ) m4.8m1.244max === Lλ  

 
Using v =  fminλmax, find  fmin: Hz70.8

m4.8
m/s340

max
min ===

λ
vf  

 
(b) Express the nth harmonic in 
terms of the fundamental frequency 
(first harmonic): 
 

( ) ... 3, 2, 1,   ,12 1n =+= nfnf  

To find the highest harmonic below 
5000 Hz, let  fn = 5000 Hz: 
 

( )( )Hz8.7012Hz5000 += n  

Solve for n (an integer) to obtain: n = 34 
 

Evaluate f34: ( ) kHz4.89Hz70.89669 134 === ff  

 
(c) There are 34 harmonics higher 
than the fundamental frequency so 
the total number is: 

35  

 
56 ••  
Picture the Problem Sound waves of frequency 460 Hz are excited in the tube, whose 
length L can be adjusted. Resonance occurs when the effective length of the tube  
Leff = L + ∆L equals ,,, λλλ 4

5
4
3

4
1  and so on, where λ is the wavelength of the sound. 

Even though the pressure node is not exactly at the end of the tube, the wavelength can be 
found from the fact that the distance between water levels for successive resonances is 
half the wavelength. We can find the speed from λfv = and the end correction from the 
fact that, for the fundamental, L,LL ∆+== 14

1
eff λ  where L1 is the distance from the top 

of the tube to the location of the first resonance. 
 
(a) Relate the speed of sound in air 
to its wavelength and the frequency 
of the tuning fork: 
 

λfv =  

Using the fact that nodes are 
separated by one-half wavelength, 
find the wavelength of the sound 
waves: 
 

( )
cm75

cm18.3cm8.552
=

−=λ
 

Substitute and evaluate v: ( )( ) m/s345m0.75s460 1 == −v  



Chapter 16    
 

 

1254 

(b) Relate the end correction ∆L to 
the wavelength of the sound and 
effective length of the tube: 
 

LL
L

∆+=

=

1

4
1

eff λ
 

Solve for and evaluate ∆L: 
 

( )
cm0.450

cm18.3cm754
1

14
1

=

−=−=∆ LL λ
 

 
*57 ••  
Picture the Problem We can use v =  fλ to express the fundamental frequency of the 

organ pipe in terms of the speed of sound and 
M
RTv γ

= to relate the speed of sound and 

the fundamental frequency to the absolute temperature. 
 
Express the fundamental frequency 
of the organ pipe in terms of the 
speed of sound: 
 

λ
vf =  

Relate the speed of sound to the 
temperature: 
 

M
RTv γ

=  

where γ  and R are constants, M is the 
molar mass, and T is the absolute 
temperature. 
 

Substitute to obtain: 

M
RTf γ

λ
1

=  

Using primed quantities to represent 
the higher temperature, express the 
new frequency as a function of T:  
 

M
RT'

'
f' γ

λ
1

=  

As we have seen, λ is proportional 
to the length of the pipe. For the 
first question, we assume the length 
of the pipe does not change, so  
λ = λ′. Then  the ratio of f ′ to f is: 
 

T
T'

f
f'

=  

 



Superposition and Standing Waves 
 

 

1255

Solve for and evaluate f ′ with  
T ′ = 305 K and T = 289 K: 

( )

Hz452

K289
K305Hz0.440

K289
K305

K289K305

=

=

== fff'

 

 

re. temperatuoft independen is pipe,  theoflength 
  theis   where/ that so expand pipe  thehave better to be It would LL,v

 

 
58 ••  
Picture the Problem We can express the wavelength of the fundamental in a pipe open 
at both ends in terms of the effective length of the pipe using ( )LLL ∆+== 22 effλ , 
where L is the physical length of the pipe and λ = v/f. Solving these equations 
simultaneously will lead us to an expression for L as a function of D. 
 
Express the wavelength of the 
fundamental in a pipe open at both 
ends in terms of the pipe’s effective 
length Leff: 
 

( )LLL ∆+== 22 effλ  

where L is its physical length. 

Solve for L to obtain: DLL 3186.0
22

−=∆−=
λλ

 

 
Express the wavelength of middle C 
in terms of its frequency  f  and the 
speed of sound v: 
 

f
v

=λ  

Substitute to obtain: 
 

D
f

vL 3186.0
2

−=  

 
Substitute numerical values to 
express L as a function of D: ( )

D

DL

3186.0m664.0

3186.0
s2562

m/s340
1-

−=

−=
 

 
Evaluate L for D = 1 cm: 
 

( )
cm1.66

m01.03186.0m664.0

=

−=L
 

 
Evaluate L for D = 10 cm: 
 

( )
cm2.63

m1.03186.0m664.0

=

−=L
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Evaluate L for D = 30 cm: 
 

( )
cm8.56

m3.03186.0m664.0

=

−=L
 

 
59 ••  
Picture the Problem We know that, when a string is vibrating in its fundamental mode, 
its ends are one-half wavelength apart. We can use v = fλ to express the fundamental 
frequency of the organ pipe in terms of the speed of sound and µFv = to relate the 

speed of sound and the fundamental frequency to the tension in the string. We can use 
this relationship between  f  and L, the length of the string, to find the length of string 
when it vibrates with a frequency of 650 Hz. 
 
(a) Express the wavelength of the 
standing wave, vibrating in its 
fundamental mode, to the length L 
of the string: 
 

( ) cm80cm4022 === Lλ  

(b) Relate the speed of the waves 
combining to form the standing 
wave to its frequency and 
wavelength: 
 

v = fλ 

Express the speed of transverse 
waves as a function of the tension in 
the string: 
 

µ
Fv =  

Substitute and solve for F to obtain: 
 L

mfF 22λ=  

where m is the mass of the string and L is 
its length. 
 

Substitute numerical values and 
evaluate F: 

( ) ( )

N480

m0.4
kg101.2

m0.8s500
3

221

=

×
=

−
−F

 

 
(c) Using v = fλ and assuming that 
the string is still vibrating in its 
fundamental mode, express its 
frequency in terms of its length: 
 

L
vvf

2
==

λ
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Solve for L: 
f

vL
2

=  

 
Letting primed quantities refer to a 
second length and frequency, 
express L′ in terms of f ′: 
 

f'
vL'

2
=  

Express the ratio of L′ to L and 
solve for L′: 
 

f'
f

L
L'

=  ⇒ L
f'
fL' =  

 
Evaluate L650 Hz: 

( ) cm77.30cm40
Hz650
Hz500
Hz650
Hz500

Hz500Hz650

==

= LL
 

 
 

bridge. scroll  thefrom cm 9.23
finger your  place shouldYou 

 

 
60 ••  
Picture the Problem Let f′ represent the frequencies corresponding to the A, B, C, and D 
notes and x(f ′) represent the distances from the end of the string that a finger must be 
placed to play each of these notes. Then, the distances at which the finger must be placed 
are given by ( ) ( ) ( )'fLfL'fx −= G . 

 
Express the distances at which the 
finger must be placed in terms of the 
lengths of the G string and the 
frequencies f ′ of the A, B, C, and D 
notes: 
 

( ) ( ) ( )'G fLfL'fx −=                  (1) 

 

Assuming that it vibrates in its 
fundamental mode, express the 
frequency of the G string in terms of 
its length: 
 

GG
G 2L

vvf ==
λ

 

 

Solve for LG: 

G
G 2 f

vL =  

 
Letting primed quantities refer to 
the string lengths and frequencies of 'f

vL'
2

=  
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the A, B, C, and D notes, express L′ 
in terms of f ′: 
 
Express the ratio of L′ to L and 
solve for L′: 
 

'f
f

L
L' G

G

=  ⇒ G
G L
'f

fL' =  

 
Evaluate L′ = L(f′) for the notes A, 
B, C and D to complete the table: 

Note Frequency L(f ′) 
 (Hz) (cm) 

A 220 26.73 
B 247 23.81 
C 262 22.44 
D 294 20.00  

  
Use equation (1) to evaluate x(f ′) 
and complete the table to the right: 

Note Frequency L(f ′) x(f ′) 
 (Hz) (cm) (cm) 

A 220 26.73 27.3  

B 247 23.81 19.6  

C 262 22.44 56.7  

D 294 20.00 0.10  
 

 
61 ••  
Picture the Problem We can use the fact that the resonance frequencies are multiples of 
the fundamental frequency to find both the fundamental frequency and the harmonic 
numbers corresponding to 375 Hz and 450 Hz. We can find the length of the string by 
relating it to the wavelength of the waves on it and the wavelength to the speed and 
frequency of the waves. The speed of the waves is, in turn, a function of the tension in the 
string and its linear density, both of which we are given. 
 
(a) Express 375 Hz as an integer 
multiple of the fundamental 
frequency of the string: 
 

Hz3751 =nf                     (1) 

Express 450 Hz as an integer 
multiple of the fundamental 
frequency of the string: 
 

( ) Hz4501 1 =+ fn             (2) 

Solve equations (1) and (2) 
simultaneously for f1: 
 

Hz0.751 =f  
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(b) Substitute in equation (1) to obtain: 
 

5=n  

 sixth. andfifth   theare harmonics The  

 
(c) Express the length of the string 
as a function of the speed of 
transverse waves on it and its 
fundamental frequency: 
 

122 f
vL ==

λ
 

Express the speed of transverse 
waves on the string in terms of the 
tension in the string and its linear 
density: 
 

µ
Fv =  

Substitute to obtain: 
 µ

F
f

L
12

1
=  

 
Substitute numerical values and 
evaluate L: ( ) m00.2

kg/m104
N360

s752
1

31 =
×

= −−L

 
62 ••  
Picture the Problem We can use the fact that the resonance frequencies are multiples of 
the fundamental frequency and are expressible in terms of the speed of the waves and 
their wavelengths to find the harmonic numbers corresponding to wavelengths of 0.54 m 
and 0.48 m. We can find the length of the string by using the standing-wave condition for 
a string fixed at both ends. 
 
(a) Express the frequency of the 
nth harmonic in terms of its 
wavelength: 
 

m54.01
vvnf

n

==
λ

              

        

Express the frequency of the  
(n + 1)th harmonic in terms of its 
wavelength: 
 

( )
m48.0

1
1

1
vvfn

n

==+
+λ

            

  

Solve these equations 
simultaneously for n: 
 

8=n  

 
 

ninth. andeighth   theare harmonics The
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(b) Using the standing-wave 
condition, both ends fixed, relate 
the length of the string to the 
wavelength of its nth harmonic: 
 

... 3, 2, 1,   ,
2

== nnL nλ
 

Evaluate L for the eighth harmonic: m16.2
2

m54.08 =⎟
⎠
⎞

⎜
⎝
⎛=L  

 
63 ••  
Picture the Problem The linear densities of the strings are related to the transverse wave 
speed and tension through .µFv =  We can use v =  fλ = 2fL to relate the frequencies 

of the violin strings to their lengths and linear densities. 
 
(a) Relate the speed of transverse 
waves on a string to the tension in 
the string and solve for the string’s 
linear density: 
 

µ
Fv =  

and 

2v
F

=µ  

 
Express the dependence of the 
speed of the transverse waves on 
their frequency and wavelength: 
 

Lf
fv

E

E

2=
= λ

 

Substitute to obtain: 
22

E

E
E 4 Lf

F
=µ  

 
Substitute numerical values and 
evaluate µE: ( )[ ] ( )

g/m0.574

kg/m1074.5
m3.0s4405.14

N90

4

221E

=

×=

=

−

−
µ

 

 
(b) Evaluate µA: 

( ) ( )

g/m29.1

kg/m1029.1
m3.0s4404

N90

3

221A

=

×=

=

−

−
µ
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Evaluate µD: 
( ) ( )

g/m91.2

kg/m1091.2
m3.0s2934

N90

3

221D

=

×=

=

−

−
µ

 

 
Evaluate µG: 

( ) ( )

g/m57.6

kg/m1057.6
m3.0s1954

N90

3

221G

=

×=

=

−

−
µ

 

 
64 ••  
Picture the Problem The spatial period is one-half the wavelength of the standing wave 
produced by the sound and its reflection. Hence we can solve ''λfc = for λ′ and use 

( )[ ]cvff −= 11'  to derive an expression for λ′/2 in terms of c, v, and f. 

 
(a)  Express the wavelength of the 
reflected sound as a function of its 
frequency and the speed of sound in 
air: 
 

'
'

f
c

=λ  

Use the expression for the Doppler-
shift in frequency when to source is 
in motion to obtain: 
 

c
v

ff
−

=
1

1'  

where c is the speed of sound. 
 

Substitute to obtain: 

f
vc

c
v

f
c

c
v

f

c
f

c

2
1

2

1

12'2
 

2
'

−
=⎟

⎠
⎞

⎜
⎝
⎛ −=

−

==
λ

 

 
Substitute numerical values and 
evaluate the spatial period of the 
standing wave: 
 

( ) m318.0
s5002

m/s4.22m/s340 
2
'

1- =
−

=
λ
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(b)

 softer. andlouder get ly periodical willintensity   theso  ely)destructiv
partially  sometimes andvely constructi interfere sometimes will

  wavesreflected  the(i.e., resonance ofout  andin  movely periodical will
siren  its from  wavessound  the wall, thecloser to moves ambulance  theAs

 

 
65 ••  
Picture the Problem Beat frequencies are heard when the strings are vibrating with 
slightly different frequencies. To understand the beat frequency heard when the A and E 
strings are bowed simultaneously, we need to consider the harmonics of both strings. In 
part (c) we’ll relate the tension in the string to the frequency of its vibration and set up a 
proportion involving the frequencies corresponding to the two tensions that we can solve 
for the tension when the E string is perfectly tuned. 
 

(a) 

heard. be  will2 ofbeat 
 a,Hz)  (660   If Hz. 660an greater thslightly  is string E  theof

frequency  original  theand string, E  theof harmonic second  theequals string
A  theof harmonic  third thebecausebeat  a produce sounds  twoThe

E

f
ff

∆
∆ +=

 

 
(b) Because fbeat increases with 
increasing tension, the frequency of 
the E string is greater than 660 Hz. 
Thus the frequency of the E string 
is:  
 

( )
Hz661.5

Hz3Hz606 2
1

E

=

+=f
 

 

(c) Express the frequency of a string 
as a function of its tension: µλλ

Fvf 1
==  

 
When the frequency of the E string 
is 660 Hz we have: 
 

µλ
Hz6601Hz660

F
=  

When the frequency of the E string 
is 661.5 Hz we have: 
 

µλ
N801Hz5.661 =  

Divide the first of these equations 
by the second and solve for F660 Hz to 
obtain: 

( ) N79.6N80
Hz661.5

Hz660
2

Hz660 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=F  

 
66 ••  
Picture the Problem We can use the condition for constructive interference of the waves 
reflected from the walls in front of and behind you to relate the path difference to the 
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wavelength of the sound. We can find the wavelength of the sound from its frequency 
and the speed of sound in air. 
 
Express the total path difference as 
you walk toward the far wall of the 
hall: 
 

far wallwallnear xxx ∆+∆=∆               (1) 

Express the condition on the path 
difference for constructive 
interference: 
 

xn ∆=λ where n = 1, 2, 3, …     (2) 
 

The reduction in the distance to the 
nearer wall as you walk a distance d 
is: 
 

∆xnear wall = 2d 

The increase in the distance to the 
farther wall as you walk a distance d 
is: 
 

∆xfar wall = 2d 
 

Substitute in equation (1) to find the  
total path difference as you walk a 
distance d: 
 

dddx 422 =+=∆  
 

Relate λ to f and v: 
f
v

=λ  

 
Substitute in equation (2) to obtain: d

f
vn 4=  

 
Solve for and evaluate d for n = 1: 

( ) cm12.5
s6804

m/s340
4 1 === −f
vd  

 
*67 ••  
Picture the Problem Let the wave function for the wave traveling to the right be 

( ) ( )δω −−= tkxAtxy sin,R  and the wave function for the wave traveling to the left 
be ( ) ( )δω ++= tkxAtxy sin,L and use the identity                      

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ +

=+
2

cos
2

sin2sinsin βαβαβα to show that the sum of the wave functions 

can be written in the form ( ) ( )δω += tkxAtxy cossin', . 
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Express the sum of the traveling waves of equal amplitude moving in opposite directions: 
 

( ) ( ) ( ) ( ) ( )δωδω +++−−=+= tkxAtkxAtxytxytxy sinsin,,, LR  

 
Use the trigonometric identity to obtain: 
 

( )

( )δω

δωδωδωδω

−−=

⎟
⎠
⎞

⎜
⎝
⎛ −−−−−

⎟
⎠
⎞

⎜
⎝
⎛ +++−−

=

tkxA

tkxtkxtkxtkxAtxy

cossin2
2

cos
2

sin2,
 

 
Because the cosine function is even; 
i.e., cos(−θ) = cosθ: 
 

( ) ( )
( )δω

δω
+=
+=

tkxA
tkxAtxy

cossin'
cossin2,

 

where A′ = 2A. 
 

Thus we have: ( ) ( )δω += tkxAtxy cossin',  

provided A′ = 2A. 
 
68 ••  
Picture the Problem We can find ω3 and k3 from the given information and substitute to 
find the wave function for the 3rd harmonic. We can use the time-derivative of this 
expression (the transverse speed) to express the kinetic energy of a segment of mass dm 
and length dx of the string. Integrating this expression will give us the maximum kinetic 
energy of the string in terms of its mass. 
 
(a) Write the general form of the 
wave function for the 3rd harmonic: 
 

( ) txkAtxy 3333 cossin, ω=  

Evaluate ω3: ( ) 11
33 s200s10022 −− === πππω f  

 
Using the standing-wave condition 
for a string fixed at one end, relate 
the length of the string to its 3rd 
harmonic wavelength: 
 

4
3 3λ

=L  

and 

( ) m
3
8m2

3
4

3
4

3 === Lλ  

 
Evaluate k3: 

( )
1

3
3 m

4
3

m38
22 −===

ππ
λ
πk  
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Substitute numerical values and 
evaluate Kmax: 

( ) ( )
( )m
mK

J/kg8.88

m03.0s200 221
4
1

max

=

= −π
 

Substitute to obtain: 

( ) ( ) ( )txtxy 11
3 s200cosm

4
3sinm03.0, −−

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛= ππ

 

 
(b) Express the kinetic energy of a 
segment of string of mass dm: 
 

2
2
1

ydmvdK =  

Express the mass of the segment in 
terms of its length dx and the linear 
density of the string: 
 

dxdm µ=  

Using our result in (a), evaluate vy:  
 

( ) ( )

( )( ) ( )

( ) ( ) tx

tx

tx
t

vy

11

111

11

s200sinm
4

3sinm/s6

s200sinm
4

3sinm03.0s200

s200cosm
4

3sinm03.0

−−

−−−

−−

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=

πππ

πππ

ππ

 

 
Substitute to obtain: 
 

( ) ( ) dxtxdK µπππ
2

11
2
1 s200sinm

4
3sinm/s6 ⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛= −−  

 
Express the condition on the time 
that dK is a maximum: 
 

( ) 1s200sin 1 =− tπ  

or 

( ) ,...
2

3,
2

s200 1 πππ =− t  

 
Solve for and evaluate t: 

,...msms,7.5050.2

,...
2

3
s200

1,
2s200

1
11

=

= −−

π
π

π
π

t
 

 
Because the string’s maximum  
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kinetic energy occurs when  
y(x,t) = 0: 

line.straight  a is string The  

 
(c) Integrate dK from (b) over the 
length of the string to obtain: [ ]

[ ]
22

4
1

04
1

2
122

2
1

0

222
2
1

0

2
2
1

max

2sin1

sin

sinsin

Am

kxkx
k

A

kxdxA

dxtkxAK

L

L

L

ω

µω

µω

µωω

=

−=

=

=

∫

∫

 

where m is the mass of the string. 
 
*69 ••  
Picture the Problem We can equate the expression for the velocity of a wave on a string 
and the expression for the velocity of a wave in terms of its frequency and wavelength to 
obtain an expression for the weight that must be suspended from the end of the string in 
order to produce a given standing wave pattern.  By using the condition on the 
wavelength that must be satisfied at resonance, we can express the weight on the end of 
the string in terms of µ, f, L, and an integer n and then evaluate this expression for n = 1, 
2, and 3 for the first three standing wave patterns. 
 
Express the velocity of a wave on 
the string in terms of the tension T 
in the string and its linear density µ: 
 

µµ
mgTv ==  

where mg is the weight of the object 
suspended from the end of the string. 
  

Express the wave speed in terms of 
its wavelength λ and frequency f: 
 

λfv =  

Eliminate v to obtain: 
 

µ
λ mgf =  

 
Solve for mg: 22λµ fmg =  

 
Express the condition on λ that 
corresponds to resonance: 
 

... 3, 2, 1,  ,2
== n

n
Lλ  

Substitute to obtain: 
... 3, 2, 1,  ,2 2

2 =⎟
⎠
⎞

⎜
⎝
⎛= n

n
Lfmg µ  

or 

... 3, 2, 1,  ,4
2

22

== n
n

Lfmg µ
 

 



Superposition and Standing Waves 
 

 

1267

Evaluate mg for n = 1: ( )( ) ( )
( )

N425.0

1
m2.0s80g/m415.04

2

221-

=

=mg
 

which corresponds, at sea level, to a mass 
of 43.3 g. 
 

Evaluate mg for n = 2: ( )( ) ( )
( )

N106.0

2
m2.0s80g/m415.04

2

221-

=

=mg
 

which corresponds, at sea level, to a mass 
of 10.8 g. 

 
Wave Packets  
 
70 •  
Picture the Problem We can find the maximum duration of each pulse under the 
conditions given in the problem from the reciprocal of frequency of the pulses and the 
range of frequencies from the wave packet condition on ∆ω and ∆t. 
 
(a) The maximum duration of each 
pulse is its period: 
 

s100.0s10
s10

11 7
17 µ==== −

−f
T  

 
(b) Express the wave packet 
condition on ∆ω and ∆t: 
 

1≈∆∆ tω  or 12 ≈∆∆ tfπ  

 

Solve for ∆f: 
ππ 22

1 T
t

f =
∆

≈∆  

 
Substitute numerical values and 
evaluate ∆f: 

MHz59.1
2

s10 17

=≈∆
−

π
f  

 
71 •  
Picture the Problem We can approximate the duration of the pulse from the product of 
the number of cycles in the interval and the period of each cycle and the wavelength from 
the number of complete wavelengths in ∆x. We can use its definition to find the wave 
number k from the wavelength λ. 

 
(a) Relate the duration of the pulse to 
the number of cycles in the interval and 
the period of each cycle: 

0f
NNTt =≈∆  
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(b) There are about N complete 
wavelengths in ∆x; hence: 
 

N
x∆

≈λ  

(c) Use its definition to express the 
wave number k: 
 

x
Nk

∆
==

π
λ
π 22

 

 

(d) 
defined.

not well is stops and starts pulse  the wherehence,  time;someat abruptly 
stoppingn rather thagradually out  dies  waveform thebecauseuncertain  is N

 

 
(e)  Using our result in part (c), 
express the uncertainty in k:  

 
xx

Nk
∆

=
∆
∆

=∆
ππ 22

 

because ∆N = ±1. 
 
General Problems 

 
72 •  
Picture the Problem We can use v = fλ and µFv = to relate the tension in the piano 

wire to its fundamental frequency. 
 
Relate the tension in the wire to the 
speed of transverse waves on it: 
 

m
FLFv ==

µ
 

 
Express the speed of the transverse 
in terms of their wavelength and 
frequency: 
 

λfv =  

Equate these expressions and solve 
for F to obtain: 
 

L
mfF

22λ
=  

Relate λ for the fundamental mode 
of vibration to the length of the 
piano wire: 
 

L2=λ  

Substitute to obtain: 
 

LmfF 24=  

Substitute numerical values and evaluate F: ( )( ) ( )
kN53.1

m8.0s63.261kg1074 213

=

×= −−F
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73 •  
Picture the Problem We can use v = fnλn to express the resonance frequencies of the ear 

canal in terms of their wavelengths and ... 5, 3, 1,   ,
4

== nnL nλ
to relate the length of the 

ear canal to its resonance wavelengths. 
 
(a) Relate the resonance frequencies 
to the speed of sound and the 
wavelength of the compressional 
vibrations: 
 

n
n

vf
λ

=  

Express the condition for 
constructive interference in a pipe 
that is open at one end: 
 

... 5, 3, 1,   ,
4

== nnL nλ
 

Solve for λn: 
n
L

n
4

=λ  

 
Substitute to obtain: 

( )
( )kHz40.3

m102.54
m/s340

4 2

n

n
L
vnfn

=
×

== −  

 
Evaluate f1, f2, and f3: kHz40.31 =f , 

kHz2.10kHz40.333 =×=f , 

and 
kHz0.17kHz40.355 =×=f  

 
(b) 

perceived.readily most 
 be  willHz 3400near  sFrequencie

 

 
74 •  

Picture the Problem We can use ... 5, 3, 1,   ,
4

== nnL nλ
to express the wavelengths of 

the fundamental and next two harmonics in terms of the length of the rope and v = fnλn 

and 
µ
Fv = to relate the resonance frequencies to their wavelengths. 

 
(a) Express the condition for 
constructive interference on a rope 

... 5, 3, 1,   ,
4

== nnL nλ
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that is fixed at one end: 
 
Solve for λn: ( )

nnn
L

n
m16m444

===λ  

 
Evaluate λn for n = 1, 3, and 5: m0.161 =λ  

m33.5
3
m16

3 ==λ  

and 

m20.3
5
m16

5 ==λ  

 
(b) Relate the resonance frequencies 
to the speed and wavelength of the 
transverse waves: 
 

n
n

vf
λ

=  

Express the speed of the transverse 
waves as a function of the tension in 
the rope: 
 

m
FLFv ==

µ
 

where m and L are the mass and length of 
the rope. 
 

Substitute to obtain: ( )( )

n

nn
n m

FLf

λ

λλ
m/s100

kg0.16
m4N40011

=

==
 

 
Evaluate fn for n = 1, 3, and 5: Hz25.6

m16
m/s100

1 ==f  

Hz8.18
m33.5

m/s100
3 ==f  

and 

Hz3.31
m20.3

m/s100
5 ==f  

 
75 ••  
Picture the Problem The path difference at the point where the resultant wave an 
amplitude A is related to the phase shift between the interfering waves according to 

πδλ 2=∆x . We can use this relationship to find the phase shift and the expression for 

the amplitude resulting from the superposition of two waves of the same amplitude and 
frequency to find the phase shift. 
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Express the relation between the 
path difference and the phase shift at 
the point where the resultant wave 
has an amplitude A: 
 

π
δλ
2

=∆x  

Express the amplitude resulting 
from the superposition of two waves 
of the same amplitude and 
frequency: 
 

δ2
1

0 cos2yA =  

Solve for and evaluate δ: 
 3

2
2

cos2
2

cos2 1

0

1 πδ === −−

A
A

y
A

 

 
Substitute and simplify to obtain: 
 

λ
π

πλ 3
1

2
32

==∆x  

 
76 ••  
Picture the Problem We can use v = fnλn to express the resonance frequencies of the 

string in terms of their wavelengths and ... 3, 2, 1,   ,
2

== nnL nλ
to relate the length of the 

string to the resonance wavelengths for a string fixed at both ends. Our strategy for part 
(b) will be the same … except that we’ll use the standing-wave condition 

... 5, 3, 1,   ,
4

== nnL nλ
for strings with one end free. 

 
(a) Relate the frequencies of the 
harmonics to their wavelengths and 
the speed of transverse waves on the 
string: 
 

n
n

vf
λ

=  

Express the standing-wave condition 
for a string with both ends fixed: 
 

... 3, 2, 1,   ,
2

== nnL nλ
 

Solve for λn: 
 n

L
n

2
=λ  

 
Substitute to obtain: 
 L

vnfn 2
=  

 
Express the speed of the transverse 
waves as a function of the tension in 
the string: 

µ
Fv =  
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Substitute to obtain: 

( )
( )Hz657.0

kg/m0.0085
N18

m352
1

2
1

n

n

F
L

nfn

=

=

=
µ

 

 
Calculate the 1st four harmonics: 
 

Hz657.01 =f  

( ) Hz31.1Hz657.022 ==f  

( ) Hz97.1Hz657.033 ==f  

and 
( ) Hz63.2Hz657.044 ==f  

 
(b) Express the standing-wave 
condition for a string fixed at one 
end: 
 

... 5, 3, 1,   ,
4

== nnL nλ
 

Solve for λn: 
 n

L
n

4
=λ  

 
The resonance frequencies equation 
becomes: 

( )
( )Hz329.0

kg/m0.0085
N18

m354
1

4
1

n

n

F
L

nfn

=

=

=
µ

 

 
Calculate the 1st four harmonics: 
 

Hz329.01 =f  

( ) Hz987.0Hz329.033 ==f  

( ) Hz65.1Hz329.055 ==f  

and 
( ) Hz30.2Hz329.077 ==f  

 
77 ••  
Picture the Problem We’ll model the shaft as a pipe of length L with one end open. We 
can relate the frequencies of the harmonics to their wavelengths and the speed of sound 
using v = fnλn and the depth of the mine shaft to the resonance wavelengths using the 
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standing-wave condition for a pipe with one end open; ... 5, 3, 1,   ,
4

== nnL nλ
. 

 
Relate the frequencies of the 
harmonics to their wavelengths and 
the speed of sound: 
 

n
n

vf
λ

=  

Express the standing-wave 
condition for a pipe with one end 
open: 
 

... 5, 3, 1,   ,
4

== nnL nλ
 

Solve for λn: 
 n

L
n

4
=λ  

 
Substitute to obtain: 

L
vnfn 4

=  

 
For fn = 63.58 Hz: 

L
vn

4
Hz58.63 =  

 
For fn+2 = 89.25 Hz: ( )

L
vn

4
2Hz25.89 +=  

 
Divide either of these equations by 
the other and solve for n to obtain: 
 

595.4 ≈=n  

Substitute in the equation for  
fn = f5 = 63.58 Hz: L

vf
4
5

5 =  

 
Solve for and evaluate L: ( )

( ) m68.6
s63.584

m/s3405
4
5

1
5

=== −f
vL  

 
78 ••  
Picture the Problem We can use the standing-wave condition for a string with one end 
free to find the wavelength of the 5th harmonic and the definitions of the wave number 
and angular frequency to calculate these quantitities. We can then substitute in the wave 
function for a wave in the nth harmonic to find the wave function for this standing wave. 
 
(a) Express the standing-wave 
condition for a string with one end 
free: 
 

... 5, 3, 1,   ,
4

== nnL nλ
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Solve for and evaluate λ5: ( ) m00.4
5
m54

5
4

5 ===
Lλ  

 
(b) Use its definition to calculate the 
wave number: 

1

5
5 m

2m4
22 −===

ππ
λ
πk  

 
(c) Using its definition, calculate the 
angular frequency: 
 

( ) 11
55 s800s40022 −− === πππω f  

 

(d) Write the wave function for a 
standing wave in the nth harmonic: 
 

( ) txkAtxy nnn ωcossin, =  

Substitute to obtain: 
 

 

( ) ( ) ( ) ( ) ( ) txtxkAtxy 11
555 s800cosm

2
sinm03.0cossin, −−

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛== ππω  

 
79 ••  
Picture the Problem The coefficient of the factor containing the time dependence in the 
wave function is the maximum displacement of any point on the string. The time 
derivative of the wave function is the instantaneous speed of any point on the string and 
the coefficient of the factor containing the time dependence is the maximum speed of any 
point on the string. 
 
Differentiate the wave function with 
respect to t to find the speed of any 
point on the string: 
 

[ ]
( )( )

tx
tx

tx
t

vy

πππ
πππ

ππ

60sin4sin2.1
60sin4sin6002.0

60cos4sin02.0

−=
−=
∂
∂

=

 

 
(a) Referring to the wave function, 
express the maximum displacement 
of the standing wave: 
 

( ) ( ) ( )[ ]xxy 1
max m4sinm02.0 −= π     (1) 

Evaluate equation (1) at x = 0.10 m: ( ) ( )
( )( )[ ]
cm90.1

m10.0m4sin

m02.0m10.0
1

max

=

×

=
−π

y

 

 
Referring to the derivative of the 
wave function with respect to t, 
express the maximum speed of the 

( ) ( ) ( )[ ]xxvy
1

max, m4sinm/s2.1 −= ππ  (2) 
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standing wave: 
 
Evaluate equation (2) at x = 0.10 m: ( ) ( )

( )( )[ ]
m/s59.3

m10.0m4sin

m/s2.1m10.0
1

max,

=

×

=
−π

πyv

 

 
(b) Evaluate equation (1) at  
x = 0.25 m: 

( ) ( )
( )( )[ ]

0

m25.0m4sin

m02.0m25.0
1

max

=

×

=
−π

y

 

 
Evaluate equation (2) at x = 0.25 m: ( ) ( )

( )( )[ ]
0

m25.0m4sin

m/s2.1m25.0
1

max,

=

×

=
−π

πyv

 

 
(c) Evaluate equation (1) at  
x = 0.30 m: 

( ) ( )
( )( )[ ]
cm18.1

m30.0m4sin

m02.0m30.0
1

max

=

×

=
−π

y

 

 
Evaluate equation (2) at x = 0.30 m: ( ) ( )

( )( )[ ]
m/s22.2

m30.0m4sin

m/s2.1m30.0
1

max,

=

×

=
−π

πyv

 

 
(d) Evaluate equation (1) at  
x = 0.50 m: 

( ) ( )
( )( )[ ]

0

m50.0m4sin

m02.0m50.0
1

max

=

×

=
−π

y

 

 
Evaluate equation (2) at x = 0.50 m: ( ) ( )

( )( )[ ]
0

m50.0m4sin

m/s2.1m50.0
1

max,

=

×

=
−π

πyv

 

 
80 ••  
Picture the Problem In part (a) we can use the standing-wave condition for a wire fixed 
at both ends and the fact that nodes are separated by one-half wavelength to find the 
harmonic number. In part (b) we can relate the resonance frequencies to their 
wavelengths and the speed of transverse waves and express the speed of the transverse 
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waves in terms of the tension in the wire and its linear density. 
 
(a) Express the standing-wave 
condition for a wire fixed at both 
ends: 
 

... 3, 2, 1,   ,
2

== nnL nλ
 

Solve for n: 
 n

Ln
λ
2

=  

 
Solve for and evaluate λ1: ( ) m5m5.2221 === Lλ  

 
Relate the distance between nodes to 
the distance of the node closest to 
one end and solve for λn: 
 

m5.02
1 =nλ  

and  
m1=nλ  

 
Substitute and evaluate n: ( ) 5

m1
m5.22

==n  

 
(b) Express the resonance 
frequencies in terms of the their 
wavelengths and the speed of 
transverse waves on the wire: 
 

1λλ
vnvf

n
n ==  

 

Relate the speed of transverse waves 
on the wire to the tension in the 
wire: 
 

µ
Fv =  

 

Substitute and simplify to obtain: ( )( )

( )Hz48.5
kg0.1

m2.5N30
m5
11

1

n

n
m
FLnfn

=

==
λ  

 
Evaluate fn for n = 1, 2, and 3: Hz48.51 =f  

( ) Hz0.11Hz48.522 ==f  

and 
( ) Hz4.16Hz48.533 ==f  

 
*81 ••  
Picture the Problem We can use λfv = to relate the speed of sound in the gas to the 

distance between the piles of powder in the glass tube. 
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(a)
nodes. at the collectsit  so and

 ,stationary ispowder   thenode aat  about; moved ispowder   theantinode,
nt displaceme aAt   tube.in the upset  are  wavesstanding resonance,At 

 

 
(b) Relate the speed of sound to its 
frequency and wavelength: 
 

λfv =  

Letting D = distance between nodes, 
relate the distance between the nodes 
to the wavelength of the sound: 
 

D2=λ  

Substitute to obtain: 
 

fDv 2=  

(c) If we let the length L of the tube 
be 1.2 m and assume that vair = 344 
m/s (the speed of sound in air at 
20°C), then the 10th harmonic 
corresponds to D = 25.3 cm and a 
driving frequency of: 
 

( ) Hz680 
m253.02

m/s344
2

air
air ===

D
vf  

 

(d)

helium.or air either in  sound of speed
  theoft measuremen for the  work well wouldcm) (218 cm 25.3 and 

cm 8.60 of multiplecommon least   theislength   whose tubea end,driven 
 at the effects end neglecting Hence, cm. 8.60 be air wouldin  harmonic

 10 for the  and cm 25.3  wouldheliumin  harmonic 10 for the then 

)C20at  heliumin  sound of speed (the m/s 1008   and kHz 2   If
thth

He

DD

vf  ,°==

 

 
82 ••  
Picture the Problem We can use µFv = to express F as a function of v and 

λfv = to relate v to the frequency and wavelength of the string’s fundamental mode. 

Because, for a string fixed at both ends, fn = nf1, we can extend our result in part (a) to 
part (b). 
 
(a) Relate the speed of the 
transverse waves on the string to the 
tension in it: 
 

µ
Fv =  

Solve for F: 2vF µ=                       (1) 
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Relate the speed of the transverse 
waves on the string to their 
frequency and wavelength: 
 

11λfv =  

Express the wavelength of the 
fundamental mode to the length of 
the string: 
 

L21 =λ  

Substitute to obtain: fLv 2=  

 
Substitute in equation (1) to obtain: 
 

µ224 LfF =                (2) 

Substitute numerical values and 
evaluate F: 

( ) ( ) ( )
N720

kg/m108m5.2s604 3221

=

×= −−F
 

 
(b) For the nth harmonic, equation 
(2) becomes: 
 

( )N720222
1

222 nLfnLfF nn === µµ  

 

Evaluate this expression for n = 2, 3, 
and 4: 

( ) kN88.2N72042 ==F  

( ) kN48.6N72093 ==F  

and 
( ) kN5.11N720164 ==F  

 
83 ••  
Picture the Problem We can use the conditions 1ff =∆ and 1nffn =  , where n is an 

integer, which must be satisfied if the pipe is open at both ends to decide whether the pipe 
is closed at one end or open at both ends. Once we have decided this question, we can use 
the condition relating ∆f and the fundamental frequency to determine the latter.  In part 
(c) we can use the standing-wave condition for the appropriate pipe to relate its length to 
its resonance wavelengths. 
 
(a) Express the conditions on the 
frequencies for a pipe that is open at 
both ends: 

1ff =∆  

and 
1nffn =  

 
Evaluate ∆f = f1: Hz524Hz1310Hz8341 =−=∆f  

 
Using the 2nd condition, find n: 
 

5.2
Hz524
Hz1310

1

===
f
fn n  



Superposition and Standing Waves 
 

 

1279

end. oneat  closed is pipe The  

 
(b) Express the condition on the 
frequencies for a pipe that is open at 
both ends: 
 

12 ff =∆  

Solve for and evaluate f1: 
 

( ) Hz262Hz5242
1

2
1

1 ==∆= ff  

 
(c) Using the standing-wave 
condition for a pipe open at one end, 
relate the length of the pipe to its 
resonance wavelengths: 
 

... 5, 3, 1,   ,
4

== nnL nλ
 

For n = 1 we have: 

1
1 f

v
=λ  and 

1

1

44 f
vL ==

λ
 

 
Substitute numerical values and 
evaluate L: ( ) cm32.4

s2624
m/s340

1 == −L  

 
84 ••  
Picture the Problem We can relate the speed of sound in air to the frequency of the 
violin string and the wavelength of the sound in the open tube that is closed at one end by 
water. The wavelength of the sound, in turn, is a function of the length of the air column 
and so we can derive an expression for the speed of sound as a function of the frequency 
of the transverse waves on the violin string and the length of the air column above the 
water. Knowing that the violin string is vibrating in its fundamental mode, we can 
express this frequency in terms of the tension in the string and its linear density. 
 
Express the speed of sound in the 
tube in terms of its fundamental 
frequency and wavelength: 
 

11s λfv =  

Using the standing-wave condition 
for a tube open at one end, relate the 
speed of sound to the length of the 
air column in the tube: 
 

... 5, 3, 1,   ,
4columnair == nnL nλ

 

Solve for λ1: columnair1 4L=λ  

 
Substitute to obtain: columnair1s 4 Lfv =                                 (1) 
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Express the frequency of the 
transverse waves on the violin 
string in terms of their wavelength 
and the speed with which they 
propagate on the string: 
 

string1
1 2L

vvf ==
λ

 

 

Relate the speed of the transverse 
waves on the string to the tension in 
it: 
 

m
FLFv string==

µ
 

 

Substitute to obtain: 

string

string

string
1 42

1
mL

F
m

FL
L

f ==  

 
Substitute in equation (1) to obtain: 
  

string
columnair

string
columnairs

2

4
4

mL
FL

mL
FLv

=

=

 

 
Substitute numerical values and 
evaluate vs: 

( ) ( )
( )( )

m/s338

m0.5kg10
N440m0.182 3s

=

= −v
 

 

56). Problem (see
 effects end neglectsit  because accurate not very is method The

 

 
85 ••  
Picture the Problem We know that the superimposed traveling waves have the same 
wave number and angular frequency as the standing-wave function, have equal 
amplitudes that are half that of the standing-wave function, and travel in opposite 
directions. From inspection of the standing-wave function we note that 

1
2
1 m−= πk and 1s40 −= πω . We can express the velocity of a segment of the rope by 

differentiating the standing-wave function with respect to time and the acceleration by 
differentiating the velocity function with respect to time. 
 
(a) Write the wave function for the wave traveling in the positive x direction: 
 

( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛= −− txtxy 11

1 s40m
2

sinm01.0, ππ
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Write the wave function for the wave traveling in the negative x direction: 
 

( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛= −− txtxy 11

2 s40m
2

sinm01.0, ππ
 

 
(b) Express the distance d between 
nodes in terms of the wavelength of 
the standing wave: 
 

λ2
1=d  

Use the wave number to find the 
wavelength: 
 

λ
ππ 2m 1

2
1 == −k  

and 
m4=λ  

 
Substitute and evaluate d: ( ) m2.00m42

1 ==d  

 
(c) Differentiate the given wave function with respect to t to express the velocity of any 
segment of the rope: 

( ) ( ) ( )

( ) ( )tx

tx
t

txvy

11

11

s40sinm
2

sinm/s8.0

s40cosm
2

sinm02.0,

−−

−−

⎟
⎠
⎞

⎜
⎝
⎛−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=

πππ

ππ

 

 
Evaluate ( )tvy ,m1 : 

 

( ) ( ) ( ) ( )
( ) ( )

( ) ( )t
t

ttvy

1

1

11

s40sinm/s51.2

s40sinm/s8.0

s40sinm1m
2

sinm/s8.0,m1

−

−

−−

−=

−=

⎟
⎠
⎞

⎜
⎝
⎛−=

π

ππ

πππ

 

 
(d) Differentiate ( )txvy ,  with respect to time to obtain ( )txay , : 

 

( ) ( ) ( )

( ) ( )tx

tx
t

txay

1122

11

s40cosm
2

sinm/s32

s40sinm
2

sinm/s8.0,

−−

−−

⎟
⎠
⎞

⎜
⎝
⎛−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−

∂
∂

=

πππ

πππ
 

 
Evaluate ( )tay ,m1 : 



Chapter 16    
 

 

1282 

( ) ( ) ( ) ( )
( ) ( )

( ) ( )t
t

ttay

12

122

1122

s40cosm/s316

s40cosm/s32

s40cosm1m
2

sinm/s32,m1

−

−

−−

−=

−=

⎟
⎠
⎞

⎜
⎝
⎛−=

π

ππ

πππ

 

 
86 ••  
Picture the Problem We can use the definition of intensity to find the intensity of each 
speaker, the dependence of intensity on the square of the amplitude of the wave 
disturbance to express the amplitudes of the waves, and the dependence of the intensity 
on whether the speakers are coherent and their phase difference to find the intensity at the 
given point. 
 
(a) Express the intensity as a 
function of the distance of a point 
from the source: 
 

24 r
PI
π

=  

Evaluate I1: 
( )

2
21 W/m9.19

m24
mW1 µ

π
==I  

 
Evaluate I2: 

( )
2

22 W/m84.8
m34

mW1 µ
π

==I  

 
(b) Using v = fλ, find the 
wavelength of the sound: 

m5.0
s680
m/s340

1 === −f
vλ  

 
Express the path difference in terms 
of λ: 

λ2=∆x  
and so there is constructive interference at 
point P. 
 

Express the intensity at point P due 
to the sound from source 1: 
 

2
11 constant AI ×=  

or 

11 ICA =  

where C is a constant. 
 

Express the intensity at point P due 
the sound from source 2: 

2
22 constant AI ×=  

or 

22 ICA =  

 
Express the square of the resultant ( ) ICIICA 22

21
22 =+=  
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amplitude at point P: 
 

 

Solve for and evaluate I: ( )
( )

2

2
22

2

21

W/m3.55

W/m84.8W/m9.19

µ

µµ

=

+=

+= III

 

 
(c) If they are driven coherently but 
are 180° out of phase we will have 
destructive interference at point P 
and the intensity is given by: 
 

( )
( )

2

2
22

2

21

W/m21.2

W/m84.8W/m9.19

µ

µµ

=

−=

−= III

 

 
(d) Because the sources are 
incoherent, the intensities add 
arithmetically: 2

22
21

W/m7.28

W/m84.8W/m9.19

µ

µµ

=

+=

+= III

 

 
87 ••  
Picture the Problem In Chapter 14, 
Section 14.1, it was shown that a harmonic 
function could be represented by a vector 
rotating at the angular frequency ω. The 
simplest way to do this problem is to use 
that representation. The vectors, of equal 
magnitude, are shown in the diagram. 
We can find the resultant wave function by 
finding the magnitude and direction of the 
resultant vector.   

 
 
From the diagram it is evident that: ∑ = 0yv  

 
Find the sum of the x components of 
the vectors: 

AAAAvx 260cos60cos =+°+°=∑  

 
Relate the magnitude of the 
resultant vector to the sum of its x 
and y components: 
 

( ) ( )
( ) ( ) AA

vvv yx

202 22

22

=+=

+= ∑∑  

 
Find the direction of the resultant 
vector: 0

2
0tantan 11 =⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= −−

∑
∑

Av
v

x

yθ  
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Express the resultant wave: ( ) ( )
( )tkx

tkxAtxy

ω

ω

−=

−=

sin1.0

sin2,res
 

 
88 ••  
Picture the Problem The diagram shows a 
two dimensional plane wave propagating at 
an angle θ with respect to the x axis. At a 
given point in time, the surface of constant 
phase for the wave is the line defined by 
kx x + kyy = φ , or ( ) φ+−= xkky yx .  

The wave itself moves in a direction  
perpendicular to the wavefront, i.e., in a 
direction specified by a line with slope 
ky/kx.  Choose two points (x, y) and  
(x + ∆x, y + ∆y) that have a separation of 1 
wavelength along such a line.   

 
 

 

Express the phase difference φ 
between the two points that  have a 
separation of 1 wavelength along 
the line ( ) φ+−= xkky yx in terms 

of the spatial separation ∆r of the 
points: 
 

λ
πφ 2

=
∆r

or r∆=
λ
πφ 2

 

where ( ) ( )22 yxr ∆+∆=∆  

Substitute φ = 2π to obtain: ( ) ( )2222 yx ∆+∆=
λ
ππ  

or 

( ) ( )22 yx ∆+∆=λ                   (1) 

 
Express φ in terms of kx, ky, ∆x and ∆y: ykxkrk yx ∆+∆=∆=φ  

or, because φ = 2π, 
π2=∆+∆ ykxk yx  

 

Because x
k
k

y
x

y ∆=∆ : π2
2

=∆+∆ x
k
k

xk
x

y
x  

or 

22
2

yx

x

kk
kx

+
=∆

π
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Similarly: 
 22

2

yx

y

kk

k
y

+
=∆

π
 

 
Substitute in equation (1) to obtain: 

22

2

22

2

22

2

22

yx

yx

y

yx

x

kk

kk
k

kk
k

+
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
=

π

ππλ
 

 
Relate the wave velocity v to its 
angular frequency ω and wave 
number k: 
 

π
λωω

2
==

k
v  

 

Substitute for λ to obtain: 
2222

2
2

yxyx kkkk
v

+
=

+
=

ωπ
π

ω
 

 
Express the angle between the wave 
velocity and the x axis: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

+

+
=

∆
∆

=

−

−−

x

y

yx

x

yx

y

k
k

kk
k
kk

k

x
y

1

22

22
11

tan

2

2

tantan π

π

θ

 

 
*89 ••  
Picture the Problem We can express the fundamental frequency of the organ pipe as a 
function of the air temperature and differentiate this expression with respect to the 
temperature to express the rate at which the frequency changes with respect to 
temperature. For changes in temperature that are small compared to the temperature, we 
can approximate the differential changes in frequency and temperature with finite 
changes to complete the derivation of ∆f/f = ½∆T/T. In part (b) we’ll use this relationship 
and the data for the frequency at 20°C to find the frequency of the fundamental at 30°C. 
 
(a) Express the fundamental 
frequency of an organ pipe in terms 
of its wavelength and the speed of 
sound: 
 

λ
vf =  

Relate the speed of sound in air to 
the absolute temperature: TC

M
RTv ==

γ
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 where 

constant==
M
RC γ

 

 
Defining a new constant C′, 
substitute to obtain: 

TCTCf '==
λ

 

because λ is constant for the fundamental 
frequency we ignore any change in the 
length of the pipe. 
 

Differentiate this expression with 
respect to T: 
 

T
fTC

dT
df

2
'

2
1 21 == −  

 
Separate the variables to obtain: 
 T

dT
f

df
2
1

=  

 
For ∆T << T, we can approximate df 
by ∆f and dT by ∆T to obtain: 
 

T
T

f
f ∆

=
∆

2
1

 

(b) Express the fundamental 
frequency at 30°C in terms of its 
frequency at 20°C: 
 

fff ∆+= 2030  

Solve our result in (a) for ∆f: 
T
Tff ∆

=∆ 2
1  

 
Substitute numerical values and 
evaluate ∆f: 

( )

Hz203

K293
K10Hz200Hz200 2

1
30

=

+=f
 

 
90 ••  
Picture the Problem We’ll use a spreadsheet program to graph the wave functions 
individually and their sum as functions of x at t = 0 and at t = 1 s. In (c) and (d) we can 
add the wave functions algebraically to find the result wave function at t = 0 and at 
 t = 1 s. 
 
(a) and (d) A spreadsheet program to calculate values for y1(x,t) and y2(x,t) between and 
plot their graphs is shown below. The constants and cell formulas used are shown in the 
table.  
 

Cell Content/Formula Algebraic Form 
A5 −5.0 x 
A6 A5+0.1 xx ∆+  
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B5 0.05/(2+(A5−2*$B$1)^2) ( )0,1 xy  
C5 −0.05/(2+(A5+2*$B$1)^2) ( )0,2 xy  
D5 0.05/(2+(A5−2*$B$1)^2) 

−0.05/(2+(A5+2*$B$1)^2)
( ) ( )0,0, 21 xyxy +

E5 0.05/(2+(A5−2*$B$2)^2) 
−0.05/(2+(A5+2*$B$2)^2)

( ) ( )1,1, 21 xyxy +  
 
 

 A B C D E 
1 t= 0    
2 t= 1 s   
3      
4 x y1(x,0) y2(x,0) y1(x,0)+y2(x,0) y1(x,1)+y2(x,1) 
5 −5.0 0.001 −0.001 0.000 −0.001 
6 −4.9 0.001 −0.001 0.000 −0.002 
7 −4.8 0.001 −0.001 0.000 −0.002 
8 −4.7 0.001 −0.001 0.000 −0.002 
9 −4.6 0.001 −0.001 0.000 −0.002 

10 −4.5 0.001 −0.001 0.000 −0.002 
      

110 5.5 0.001 −0.001 0.000 0.001 
111 5.6 0.001 −0.001 0.000 0.001 
112 5.7 0.001 −0.001 0.000 0.001 
113 5.8 0.001 −0.001 0.000 0.001  

 
The four curves on the graph are identified in the legend. y1 is traveling from left to right 
and y2 from right to left. As time increases, y1 is farther to the right and y2 is farther to the 
left. 
 

 

-0.010

-0.008

-0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

-5 -3 -1 1 3 5

y1(x,0)
y2(x,0)
y1(x,0)+y2(x,0)
y1(x,1)+y2(x,1)

 
 

(b) Express the resultant wave function at t = 0: 
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( ) ( ) 0
m2

m02.0
m2

m02.00,0, 22

3

22

3

21 =
+

−
+

+
=+

xx
xyxy  

 
(c) Express the resultant wave function at t = 1 s: 
 

( ) ( )
( ) ( )22

3

22

3

21 s2m2
m02.0

s2m2
m02.0s1,s1,

++
−

+
−+

=+
xx

xyxy  

 
91 ••  
Picture the Problem We can relate the frequency of the standing waves in the open-
ended tube to its length and the speed of sound in air. 
 
(a)  What you hear is the fundamental mode of the tube and its overtones.  A more 
physical explanation is that the echo of the finger snap moves back and forth along the 
tube with a characteristic time of 2L/c, leading to a series of clicks from each echo.  
Because the clicks happen with a frequency of c/2L, the ear interprets this as a musical 
note of that frequency. 
(b)  Express the frequency of the 
sound in terms of the length of the 
tube: 
 

L
vf

2
=  

Solve for L: 
f

vL
2

=  

 
Substitute numerical values and 
evaluate L: ( ) cm6.38

s4402
m/s340

1 == −L  

 
92 ••  
Picture the Problem To find the total kinetic energy of the nth mode of vibration, we’ll 
need to differentiate ( ) txkAtxy nnnn ωcossin, = with respect to time, substitute in the 

expression for ∆K, and then integrate over the length of the string. 
 
(a) Write the wave function for a 
standing wave on a string fixed at 
both ends: 
 

( ) txkAtxy nnnn ωcossin, =  

where 
n

nk
λ
π2

= . 

 
Using the standing-wave condition 
for a string with both ends fixed, 
relate the length of the string to the 
wavelength of the nth harmonic: 
 

... 3, 2, 1,   ,
2

== nnL nλ
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Solve for λn: 
n
L

n
2

=λ  

 
Substitute in the expression for kn to 
obtain: L

nkn
π

=  

 
Differentiate this expression with 
respect to t: 

[ ]
txkA

txkA
tt

y

nnnn

nnn

ωω

ω

sinsin

cossin

−=
∂
∂

=
∂
∂

 

 
Substitute in the given expression 
and simplify to obtain: 

( )
xtxkA

xtxkAK

nnnn

nnnn

∆=

∆−=∆

ωµω

ωωµ
2222

2
1

2
2
1

sinsin

sinsin
 

 
Integrate this expression over the 
length of the string to find its total 
kinetic energy: 
 tAm

dxx
L

ntAK

nnn

L

nnn

ωω

πωµω

222
4
1

0

2222
2
1

sin

sinsin

=

⎟
⎠
⎞

⎜
⎝
⎛= ∫

 

 
(b) Express the condition that  
K = Kmax: 
 

1sin2 =tnω                                (1) 

Substitute to obtain: 
 

22
4
1

max nn AmK ω=  

 
(c) From equation (1), for K = Kmax:  
 

1sin2 =tnω or 
2
πω =tn  

 
Evaluate the wave function in (a) 

when 
2
πω =tn : 

0
2

cossin
2

, ==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ π
ω
π xkAxy nn

n
n  

 
(d) Using the result from part (b), 
express the maximum kinetic 
energy: 
 

22
4
1

max nn AmK ω=  

Relate ωn to ω1: 1ωω nn =  

 
Substitute to obtain: ( )22

14
12

max nAmnK ω=  

or, because m and ω1 are constants, 
22

max nAnK ∝  
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Remarks: Our result in part (b) is exactly the same result obtained in Problem 68 
with ωn and An replacing ω and A. 
 
93 ••  

Picture the Problem We can use ... 3, 2, 1,   ,
2

== n
L
vnfn  to relate the resonant 

frequencies to the length of the string and the speed of transverse waves on the string and 
µFv = to express the speed of the transverse waves on the string in terms of the 

tension in the string. Differentiating of the resulting expression with respect to F will lead 

to
F

dF
f

df

n

n

2
1

= . For changes in f that are small compared to f, we can use a differential 

approximation to obtain
F
F

f
f

n

n ∆
=

∆
2
1

. 

(a) Using the standing-wave 
condition for a string fixed at both 
ends, relate the resonant frequencies 
to the length of the string and the 
speed of transverse waves on the 
string: 
 

... 3, 2, 1,   ,
2

== n
L
vnfn  

Express the speed of transverse 
waves on the string in terms of the 
tension in the string: 
 

µ
Fv =  

Substitute to obtain: 
FCF

L
nfn ==

µ2
 

because n, L, and µ are constants. 
 

Differentiate fn with respect to F to 
obtain: F

f
F

C
dF
df nn

2
11

2
==  

 
Separate the variables to obtain: 

F
dF

f
df

n

n

2
1

=  

 

harmonics. all
for  validis expression  this,derivation itson  placed  wereconditions no Because

 

 
(b) Because ∆f  << f, one can 
approximate the differential 
quantitities in our result for part (a) 

F
F

f
f

n

n ∆
=

∆
2
1
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to obtain: 
 
Solve for ∆F/F: 
 n

n

f
f

F
F ∆

=
∆ 2  

 
Substitute numerical values and 
evaluate ∆F/F: 
 

%54.1
Hz260

Hz22 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∆
F
F

 

 
94 ••  
Picture the Problem Let the sources be denoted by the numerals 1 and 2. The phase 
difference between the two waves at point P is the sum of the phase difference due to the 
sources δ0 and the phase difference due to the path difference δ. 
 
(a) Write the wave function due to 
source 1: 

( ) ( )tkxAtxf ω−= 101 cos,  

 
Write the wave function due to 
source 2:  

( ) ( )( )s102 cos, δω +−∆+= txxkAtxf  

 
(b) Express the sum of the two wave functions: 
 

( ) ( ) ( ) ( ) ( )( )
( )[ ( )( )]s110

s101021

coscos
coscos,,,

δωω
δωω

+−∆+−=
+−∆++−=+=

txxktkxA
txxkAtkxAtxftxftxf

 

 

Use ⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ +

=+
2

cos
2

cos2coscos βαβαβα to obtain: 

 

( ) ⎥
⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟

⎠
⎞

⎜
⎝
⎛ ∆

+⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +

∆
=

22
cos

22
cos2, ss

0
δωδ txxkxkAtxf  

 
Express the phase difference δ  in 
terms of the path difference ∆x and 
the wave number k: 
 

k
x

==
∆ λ

πδ 2
 or δ=∆xk  

 

Substitute to obtain: 
 

( ) ⎥
⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟

⎠
⎞

⎜
⎝
⎛ ∆

+⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +

=
22

cos
2

cos2, ss
0

δωδδ txxkAtxf  

 
The amplitude of the resultant wave ( )s2

1
0 cos2 δδ += AA  
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function is the coefficient of the 
time-dependent factor: 
 
(c) Express the intensity at an 
arbitrary point P: ( )[ ]

( )[ ]s

s

P

AC

AC

ACI

δδ

δδ

+=

+=

=

2
122

0

2
2
1

0

2

cos4'

cos2'

'

 

 
Evaluate I for δ = 0 and δs = Ct: ( )[ ]CtACI 2

122
0 cos4'=  

Because the average value of 
θ2cos over a complete period is ½:  

0
2
0ave 22 IAI =∝  

and 
( )CtII 2

12
0 cos4∝  

 
(d) Evaluate I for λ2

1=∆x and  

δs = Ct: 

πδλ =⇒=∆ 2
1x  

∴ ( )[ ]CtACI += π2
122

0 cos4'  

and at t = 0, 0=I . i.e., the waves interfere 
destructively. 
 

A spreadsheet program to calculate the intensity at point P as a function of time for a zero 
path difference and a path difference of λ is shown below. The constants and cell 
formulas used are shown in the table.  
 

Cell Content/Formula Algebraic Form 
B1 1 C 
B7 B6+0.1 tt ∆+  
C6 COS($B$6*B6/2)^2 ( )Ct2

12cos  
D6 COS($B$6*B6/2-PI()/2)^2 ( )Ct+π2

12cos   
 

 A B C D 
1 C= 1 s−1  
2     
3     
4  t I I 
5  (s) (W/m^2) (W/m^2) 
6  0.00 1.000 0.000 
7  0.10 0.998 0.002 
8  0.20 0.990 0.010 
9  0.30 0.978 0.022 
     

103  9.70 0.019 0.981 
104  9.80 0.035 0.965 
105  9.90 0.055 0.945 
106  10.00 0.080 0.920  
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The solid curve is the graph of ( )Ct2
12cos  and the dashed curve is the graph of 

( )Ct+π2
12cos . 

 

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10
t  (s)

I 
(W

/m
^2

)

path diff = 0
path diff = lambda/2

 
 
95 •••  
Picture the Problem We can differentiate the sum of the two wave functions to find the 
velocity of a segment dx of the string. We can find the kinetic energy of this segment 
from dxvdmvdK yy

2
2
12

2
1 µ==  and integrate this expression from 0 to L to find the total 

kinetic energy of the resultant wave. 
 
(a) Express the resultant wave function: 
 

( ) ( ) ( ) xktAxktAtxytxytxy 22211121r sincossincos,,, ωω +=+=  

 
Differentiate this expression with respect to t to find vy: 
 

( ) [ ]

xktAxktA

xktAxktA
t

txvy

22221111

222111

sinsinsinsin

sincossincos,

ωωωω

ωω

−−=

+
∂
∂

=
 

 
(b) Express the kinetic energy of a segment of the string of length dx and mass dm: 
 

( )
[

]dxxktA

xktxktAAxktA

dxxktAxktAdxvdmvdK yy

2
2

2
22

2
2
2

221121211
2

1
22

1
2
12

1

2
222211112

12
2
12

2
1

sinsin

sinsinsinsin2sinsin

sinsinsinsin

ωω

ωωωωωωµ

ωωωωµµ

+

+
=

+===
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(c) Integrate dK from 0 to L to obtain: 
 

( )( ) ( )( )
( )( )

tAmtAm

LtA

ttAALtA

xdx
L

ntA

xdx
L

nx
L

nttAA

xdx
L

ntA

xdxktA

xdxktxktAA

xdxktAK

nn

L

L

L

L

L

L

2
22

2
2
24

1
1

22
1

2
14

1

2
1

2
22

2
2
22

1

2121212
1

1
22

1
2
12

1

0
2

2
2

22
2

2
22

1

0
21212121

0
1

2
1

22
1

2
12

1

0
2

2
2

22
2

2
22

1

0
221121212

1

0
1

2
1

22
1

2
12

1

sinsin

sin

0sinsinsin

sinsin

sinsinsinsin

sinsin

sinsin

sinsinsinsin2

sinsin

21

ωωωω

ωµω

ωωωµωωµω

πωµω

ππωωωµω

πωµω

ωωµ

ωωωωµ

ωωµ

+=

+

+=

+

+

=

+

+

=

≠

∫

∫

∫

∫

∫

∫

 

 
Note that, from Problem 92: 212

22
2

2
24

1
1

22
1

2
14

1 sinsin KKtAmtAm +=+ ωωωω  

 
96 •••  
Picture the Problem We can use the relationship 22

4
1

max AmK ω=  from Problem 92 to 

express the maximum kinetic energy of the wire and v = fλ and µFv = to find an 

expression for ω.  In part (d) we’ll use 
2

2
1 ⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

≈
∆
∆

x
yF

x
U

from Problem 15-120 to 

determine where the potential energy per unit length has its maximum value. 
 
(a) From Problem 92 we have: 22

4
1

max AmK ω=                        (1) 

 
Express ω1 in terms of f1: 11 2 fπω =  

 
Relate f1 to the speed of transverse 
waves on the wire and the 
wavelength of the fundamental 
mode: 

L
vvf

21
1 ==

λ
 

where L is the length of the wire. 
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Express the speed of the transverse 
waves on the wire in terms of the 
tension in the wire: 

m
FLFv ==

µ
 

 
Substitute and simplify to obtain: 

mL
F

m
FL

L
f

42
1

1 ==  

 
Substitute for ω1 and f1 in equation 
(1) to obtain: 

2
2

2

2

4
1

max 44
2 A

L
FA

mL
FmK ππ =⎥

⎦

⎤
⎢
⎣

⎡
=  

 
Substitute numerical values and 
evaluate Kmax: 

( )
( ) ( )

mJ7.19

m102
m24

N40 22
2

max

=

×= −πK
 

 
(b) Express the wave function for a 
standing wave in its first harmonic: 
 

( ) txkAtxy 1111 cossin, ω=                  (2) 

At the instant the transverse 
displacement is given by  
(0.02 m) sin (πx/2): 

01cos 11 =⇒= tt ωω  

and 
0=K  

 
(c) dK is a maximum where the 
displacement of the wire is greatest; 
i.e., at its midpoint: 
 

( ) m00.1m22
1

2
1 === Lx  

 

(d) From Problem 15-120: 2

2
1 ⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

≈
∆
∆

x
yF

x
U

 

 
Express the condition on xy ∂∂ that 

maximizes ∆U/∆x: max
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=
∂
∂

x
y

x
y

 

 
Differentiate 

( ) txkAtxy 1111 cossin, ω= with 

respect to x and set the derivative 
equal to zero for extrema: 

( )

 0
coscos

cossin

1111

111
1

=
=

∂
∂

=
∂
∂

txkAk

txkA
xx

y

ω

ω

 

or 
 0cos 1 =xk  
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Solve for k1x and then x: 
21
π

=xk  

and 

( ) ( )

( ) m00.1m2

2
222

2
1

4
1

4
1

1

==

==== L
k

x λ
π

πλπ

 

i.e., the potential energy per unit length is a 
maximum at the midpoint of the wire. 
 

Remarks: In part (d) we’ve shown that ∆U/∆x has an extreme value at x = 1 m. To 
show that ∆U/∆x is a maximum at this location, you need to examine the sign of the 
2nd derivative of y1(x,t) at this point. 
 
97 •••  
(a) A spreadsheet program to evaluate f(x) is shown below. Typical cell formulas used are 
shown in the table. 
 

Cell Content/Formula Algebraic Form 
A6 A5+0.1 xx ∆+  
B4 2*B3+1 12 +n  
B5 (−1)^B$3*COS(B$4*$A5) 

/B$4*4/PI() 
 

( )( )∑
∞

= +
+−

0 12
12cos)1(4

n

n

n
xn

π
 

C5 B5+(−1)^C$3*COS(C$4*$A5) 
/C$4*4/PI() 

( )( )∑
∞

= +
+−

0 12
12cos)1(4

n

n

n
xn

π
 

 
 

 A B C D  K L 
1    
2    
3  0 1 2  9 10 
4  1 3 5  19 21 
5 0.0 1.2732 0.8488 1.1035  0.9682 1.0289 
6 0.1 1.2669 0.8614 1.0849  1.0134 0.9828 
7 0.2 1.2479 0.8976 1.0352  1.0209 0.9912 
8 0.3 1.2164 0.9526 0.9706  0.9680 1.0286 
9 0.4 1.1727 1.0189 0.9130  1.0057 0.9742 

10 0.5 1.1174 1.0874 0.8833  1.0298 1.0010 
        

130 12.5 1.2704 0.8544 1.0952  0.9924 1.0031 
131 12.6 1.2725 0.8503 1.1013  0.9752 1.0213 
132 12.7 1.2619 0.8711 1.0710  1.0287 0.9714 
133 12.8 1.2386 0.9143 1.0141  1.0009 1.0126 
134 12.9 1.2030 0.9740 0.9493  0.9691 1.0146 
135 13.0 1.1554 1.0422 0.8990  1.0261 0.9685  

 
The solid curve is plotted from the data in columns A and B and is the graph of f(x) for 1 
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term. The dashed curve is plotted from the data in columns A and F and is the graph of 
f(x) for 5 terms. The dotted curve is plotted from the data in columns A and K and is the 
graph of f(x) for 10 terms. 
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(b) Evaluate f(2π) to obtain: ( )

( )

1

...
7
1

5
1

3
114

...
5

25cos
3

23cos
1
2cos4)2(

=

⎟
⎠
⎞+−+⎜

⎝
⎛ −=

⎟
⎠
⎞−+

⎜
⎝
⎛ −=

π

π

ππ
π

πf

 

which is equivalent to the Liebnitz 
formula. 

 
98 •••  
(a) A spreadsheet program to evaluate f(x) is shown below. Typical cell formulas used are 
shown in the table. 
 

Cell Content/Formula Algebraic Form 
A6 A5+0.1 xx ∆+  
B4 2*B3+1 12 +n  
B5 (−1)^$B$3*sin($B$4*A5)/ 

($B$4)^2*4/PI() 
( ) ( )

( )∑ +
+−

n

n

n
xn

212
12sin14

π
 

C5 B5+((−1)^$C$3*sin($C$4*A5)/ 
($C$4)^2*4/PI() 

( ) ( )
( )∑ +

+−

n

n

n
xn

212
12sin14

π
 

 
 

 A B C D  K L 
1        
2        
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3  0 1 2  9 10 
4  1 3 5  19 21 
5 0.0 0.0000 0.0000 0.0000  0.0000 0.0000 
6 0.1 0.1271 0.0853 0.1097  0.0986 0.1011 
7 0.2 0.2530 0.1731 0.2159  0.2012 0.1987 
8 0.3 0.3763 0.2654 0.3163  0.3004 0.3005 
9 0.4 0.4958 0.3640 0.4103  0.3983 0.4008 
10 0.5 0.6104 0.4693 0.4998  0.5011 0.4985 
        

72 6.7 0.5155 0.3812 0.4256  0.4153 0.4171 
73 6.8 0.6291 0.4877 0.5146  0.5183 0.5154 
74 6.9 0.7365 0.6005 0.6034  0.6171 0.6182 
75 7.0 0.8365 0.7181 0.6963  0.7148 0.7166 
76 7.1 0.9282 0.8380 0.7968  0.8183 0.8155  

 
Graphs of f(x) for 1, 5, and 10 terms are shown below. Note that there is little difference 
between the graphs for 5 terms and 10 terms of this triangular wave function. 
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99 •••  
Picture the Problem From the diagram above, the nth echo will reflect n − 1 times going 
out, and the same number of times going back.  If we "unfold" the ray into a straight line, 
we get the representation shown below. Using this figure we can express the distance dn 
traveled by the nth echo and then use this result to express the time delay between the nth 
and n + 1th echoes. The reciprocal of this time delay is the frequency corresponding to the 
nth echo. 



Superposition and Standing Waves 
 

 

1299

 
 
(a) Apply the Pythagorean theorem 
to the right triangle whose base is L, 
whose height is 2(n − 1), and whose 
hypotenuse is dn  to obtain: 
 

222)1(42 Lrndn +−=  

Express the time delay between the 
nth and n + 1th echoes: v

dt n
n =∆  

 
Substitute to obtain: ( )

( )[ ] ⎟
⎠
⎞+−−

⎜
⎝
⎛ +=∆

222

222

12

22

Lrn

Lrn
v

tn
 

 
A spreadsheet program to calculate ∆tn as a function of n is shown below. The constants 
and cell formulas used are shown in the table.  
 

Cell Content/Formula Algebraic Form 
B1 90 L 
B2 1 r 
B3 340 c 
B8 B7+1 n + 1 
C7 2/$B$3*((2*(B7−1) 

*$B$2)^2+$B$1^2)^0.5 
nt∆  

 
 

 A B C D 
1 L= 90 m  
2 r= 1 m  
3 c= 340 m/s  
4     
5     
6  n t(n) delta t(n) 
7  1 0.5294 0.0001 
8  2 0.5295 0.0004 
9  3 0.5299 0.0007 

10  4 0.5306 0.0009 
11  5 0.5315 0.0012 
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202  196 2.3544 0.0115 
203  197 2.3659 0.0115 
204  198 2.3773 0.0115 
205  199 2.3888 0.0115 
206  200 2.4003 0.0115  

 
The  graph of ∆tn as a function of n shown below was plotted using the data from 
columns B and D. 
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(c) 
decreases.istler culvert wh  theoffrequency   thetime,

over increases  because so ,1/ is any timeat  heardfrequency  The nn tt ∆∆
 

 
The highest frequency corresponds 
to n = 1 and is given by: 

1
highest

1
t

f
∆

=  

Substitute for ∆t1 to obtain: 

( ) )⎜
⎝
⎛ −+

=
∆

=
2222

1
highest

22

1

LLr

v
t

f  

Substitute numerical values and 
evaluate fhighest: ( ) ( ) )

kHz65.7

m90m90m142

m/s340
22highest

=

⎜
⎝
⎛ −+

=f
 

 
The lowest frequency end can be found by examining the limit of ∆tn as n → ∞:  
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( )
( )

( )
( )( )

( )
v
rnn

v
r

n
Lrn

n
Lrn

v
t nnn

42222

12
12

2
22limlim 2

2
2

2

2
2

=+−=

⎥
⎥
⎦

⎤

⎟
⎟
⎠

⎞

−
+−−

⎢
⎢
⎣

⎡

⎜
⎜
⎝

⎛
+=∆ →∞→∞

 

 
Express flowest in terms of ∆t∞: 

r
v

t
f

4
1

lowest =
∆

=
∞

 

 
Substitute numerical values and 
evaluate flowest: ( ) Hz0.85

m14
m/s340

lowest ==f  
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