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Chapter 17 
Temperature and the Kinetic Theory of Gases 
 
Conceptual Problems 

 
*1 • 
(a) False. If two objects are in thermal equilibrium with a third, then they are in thermal 
equilibrium with each other. 
 
(b) False. The Fahrenheit and Celsius temperature scales differ in the number of intervals 
between the ice-point temperature and the steam-point temperature. 
 
(c) True. 
  
(d) False. The result one obtains for the temperature of a given system is thermometer-
dependent. 

 
2 • 
Determine the Concept Put each in thermal equilibrium with a third body; e.g., a 
thermometer. If each body is in thermal equilibrium with the third, then they are in 
thermal equilibrium with each other. 
 
3 •  
Picture the Problem We can decide which room was colder by converting 20°F to the 
equivalent Celsius temperature. 

 
Using the Fahrenheit-Celsius conversion, 
convert 20°F to the equivalent Celsius 
temperature: 

( ) ( )
C67.6

322032 9
5

F9
5

C

°−=

°−°=°−= tt
 

so colder.  wasroom sMert'  

 
4 ••  

Picture the Problem We can apply the ideal-gas law to the two vessels to decide which 
of these statements is correct.  

 
Apply the ideal-gas law to the 
particles in vessel 1: 
 

1111 kTNVP =  

Apply the ideal-gas law to the 
particles in vessel 2: 
 

2222 kTNVP =  

Divide the equation for vessel 1 by 
the equation for vessel 2: 22

11

22

11

kTN
kTN

VP
VP

=  
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Because the vessels are identical and 
are at the same temperature and 
pressure: 
 

2

11
N
N

=  and 21 NN =  

( ) correct. is a  

 
5 ••  

Determine the Concept From the ideal-gas law, we have .VTnRP =  In the process 

depicted, both the temperature and the volume increase, but the temperature increases 
faster than does the volume. Hence, the pressure increases. 
 
*6 ••  
Determine the Concept From the ideal-gas law, we have .PTnRV =  In the 
process depicted, both the temperature and the pressure increase, but the pressure 
increases faster than does the temperature. Hence, the volume decreases. 

 
7 •  
True. The kinetic energy of translation K for n moles of gas is directly proportional to the 
absolute temperature T of the gas ( )nkTK 2

3= . 

 
8 •  
Determine the Concept We can use MRTv 3rms = to relate the temperature of a gas 

to the rms speed of its molecules. 
  

Express the dependence of the rms 
speed of the molecules of a gas on 
their absolute temperature: 

M
RTv 3

rms =  

where R is the gas constant, M is the molar 
mass, and T is the absolute temperature. 
 

molecules.  theof speed rms  thedouble to
order in  quadrupled bemust  re temperatu the,   Because rms Tv ∝

 

 
9 •  
Picture the Problem The average kinetic energy of a molecule, as a function of the 
temperature, is given by kTK 2

3
av = and the pressure, volume, and temperature of an ideal 

gas are related according to .NkTPV =  
 

Express the average kinetic energy 
of a molecule in terms of its 
temperature: 
 

kTK 2
3

av =  
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From the ideal-gas law we have: 
 

NkTPV =  

Eliminate kT between these 
equations to obtain: 
 

N
PVK
2

3
av =  

2. offactor  aby  increases   ,constant at  doubled is  If avKVP  

 
2. offactor  aby  increases  ,constant at  doubled is  If avKPV  

 
10 ••  
Picture the Problem We can express the rms speeds of the helium atoms and the 
methane molecules using .3rms MRTv =  

 
Express the rms speed of the 
helium atoms: ( )

He
rms

3He
M
RTv =  

 
Express the rms speed of the 
methane molecules: ( )

4CH
4rms

3CH
M

RTv =  

 
Divide the first of these equations 
by the second to obtain: 
 

( )
( ) He

CH

4rms

rms 4

CH
He

M
M

v
v

=  

 
Use Appendix C to find the molar 
masses of helium and methane: 
 

( )
( ) 2

g/mol4
g/mol16

CH
He

4rms

rms ==
v
v

 

and correct. is )(b  

 
11 •  
False. Whether the pressure changes also depends on whether and how the volume 
changes. In an isothermal process, the pressure can increase while the volume decreases 
and the temperature is constant. 

 
12 •  
Determine the Concept For the Celsius scale, the ice point (0°C) and the boiling point of 
water at 1 atm (100°C) are more convenient than 273 K and 373 K; temperatures in 
roughly this range are normally encountered. On the Fahrenheit scale, the temperature of 
warm-blooded animals is roughly 100°F; this may be a more convenient reference than 
approximately 300 K. Throughout most of the world, the Celsius scale is the standard for 
nonscientific purposes. 
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*13 •  
Determine the Concept Because 107 >> 273, it does not matter. 

 
14 •  
Determine the Concept The average speed of the molecules in an ideal gas depends on 
the square root of the kelvin temperature. Because ,av Tv ∝  doubling the temperature 

while maintaining constant pressure increases the average speed by a factor of .2  
correct. is )( d  

 
15 •  
Determine the Concept From the ideal-gas law, we have .nRTPV =  Halving both the 
temperature and volume of the gas leaves the pressure unchanged. correct. is )( b  

 
16 •  
Determine the Concept The average translational kinetic energy of the molecules of an 
ideal gas is given by .2

3
2
3 nRTNkTK ==  The temperature of the ideal gas is related to 

the pressure of the gas. correct. is )( d  

 
17 •  
Determine the Concept The only conclusion we can draw from the information that the 
vessel contains equal amounts, by weight, of helium and argon is that the temperatures of 
the helium and argon molecules are the same. correct. is )( d  

 
18 ••  
Determine the Concept The two rooms are in thermal equilibrium and, because they are 
connected, the air in each is at the same pressure.  Because P = NkT/V, and the volume of 
each room is identical, NATA = NBTB, so the cooler room (A) has more air in it. 

 
19 •  
Picture the Problem The rms speed of an ideal gas is given by MRTv 3rms = and its 

average kinetic energy by .2
3

av kTK =  

 
 

Because :3rms MRTv =  

masses.molecular   theof
root  square  the toalproportion

inversely  are speeds rms The
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Because kTK 2
3

av = and the gases 

are at the same temperature: same.  theare
molecules  theof energies kinetic The

 

 
20 ••  
Determine the Concept The pressure is a measure of the change in momentum per 
second of a gas molecule on collision with the wall of the container. When the gas is 
heated, the average velocity, the average momentum, and pressure of the molecules 
increase. 
 
*21 ••  
Determine the Concept Because the temperature remains constant, the average speed of 
the molecules remains constant. When the volume decreases, the molecules travel less 
distance between collisions, so the pressure increases because the frequency of collisions 
increases. 

 
22 ••  
Picture the Problem The average kinetic energies of the molecules are given by 

( ) .2
3

av
2

2
1

av kTmvK ==  Assuming that the room’s temperature distribution is uniform, 

we can conclude that the oxygen and nitrogen molecules have equal average kinetic 
energies. Because the oxygen molecules are more massive, they must be moving slower 
than the nitrogen molecules. correct. is )( b  

 
23 ••  
Determine the Concept The average molecular speed of He gas at 300 K is about 1.4 
km/s, so a significant fraction of He molecules have speeds in excess of earth’s escape 
velocity (11.2 km/s). Thus, they "leak" away into space.  Over time, the He content of the 
atmosphere decreases to almost nothing.  
 
Estimation and Approximation 

 
*24 ••   
Picture the Problem Assuming the steam to be an ideal gas at a temperature of 373 K, 
we can use the ideal-gas law to estimate the pressure inside the test tube when the water is 
completely boiled away. 

 
Using the ideal-gas law, relate the 
pressure inside the test tube to its 
volume and the temperature: 
 

V
NkTP =  

Relate the number of particles N to 
the mass of water, its molar mass M, 
and Avogadro’s number NA: 

AN
M

N
m
=  
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Solve for N: 
 M

N
mN A=  

 
Relate the mass of 1 mL of water to 
its density: 
 

( )( ) g1m10kg/m10 3633 === −Vm ρ  

Substitute for m, NA, and M (18 
g/mol) and evaluate N: 
 

( )

particles1035.3
g/mol18

molparticles/10022.6g1

22

23

×=

×
=N

 

 
Substitute numerical values and evaluate P: 
 

( )( )( )

atm171

N/m101.01
atm1N/m10172

m1010
K373J/K10381.1particles1035.3

25
25

36

2322

=

×
××=

×
××

= −

−

P

 

 
25 •••  
Picture the Problem We can find the escape temperatures for the earth and the moon by 
equating, in turn, 0.15ve and vrms of O2 and H2. We can compare these temperatures to 
explain the absence from the earth’s upper atmosphere and from the surface of the moon.  

 
(a) Express vrms for O2: 

M
RTv 3

rms =  

where R is the gas constant, T is the 
absolute temperature, and M is the molar 
mass of oxygen. 
 

Equate 0.15ve and vrms: 

M
RTgR 3215.0 earth =  

 
Solve for T to obtain: 

R
MgRT

3
045.0 earth=                           (1) 

 
Evaluate T for O2: ( )( )

( )
( )

K1061.3

kg/mol1032
KJ/mol8.3143

m106.37m/s9.81045.0

3

3

62

×=

××

⋅
×

=

−

T
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(b) Substitute numerical values and 
evaluate T for H2: 

( )( )
( )

( )
K225

kg/mol102
KJ/mol8.3143

m106.37m/s9.81045.0

3

62

=

××

⋅
×

=

−

T

 

 

(c) 
.atmosphereupper   thefrom escape molecules H energetic

 more  theTherefore, escape. molecules H ,25or   If

2

2atme5
1

rms TTvv ≥>
 

 
(d) Express equation (1) at the 
surface of the moon: 

( )

R
MRg

R
MRg

R
MRgT

moonearth

moonearth6
1

moonmoon

0025.0
3

045.0
3

045.0

=

=

=

 

 
Substitute numerical values and evaluate T for O2: 
 

( )( )( ) K164
KJ/mol8.314

kg/mol1032m10738.1m/s9.810025.0 362

=
⋅

××
=

−

T  

 
Substitute numerical values and evaluate T for H2: 
 

( )( )( ) K3.10
KJ/mol8.314

kg/mol102m10738.1m/s9.810025.0 362

=
⋅

××
=

−

T  

 

present.  themoon to  theofformation   thesince  time theduring escaped
 have wouldH and O all then K, 1000ely approximatbeen  have

  wouldmoon  on the re temperatu that theassume  weIf

22

mospherewith an at
 

 
26 ••  
Picture the Problem We can use MRTv 3rms = to calculate the rms speeds of H2, O2, 

and CO2 at 273 K and then compare these speeds to 20% of the escape velocity on Mars 
to decide the likelihood of finding these gases in the atmosphere of Mars. 
 
Express the rms speed of an atom as 
a function of the temperature: 
 

M
RTv 3

rms =  
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(a) Substitute numerical values and 
evaluate vrms for H2: 

( )( )

km/s1.85

kg/mol102
K273KJ/mol8.3143

3Hrms, 2

=

×
⋅

= −v
 

 
(b) Evaluate vrms for O2: ( )( )

m/s614

kg/mol1032
K273KJ/mol8.3143

3Orms, 2

=

×
⋅

= −v
 

 
(c) Evaluate vrms for CO2: ( )( )

m/s933

kg/mol1044
K273KJ/mol8.3143

3COrms, 2

=

×
⋅

= −v
 

 
(d) Calculate 20% of vesc for Mars: ( ) km/s1km/s55

1
esc5

1 === vv  

 

.present be should ,Hnot but  ,CO and O
Hfor   than lessbut  O and COfor  an greater th is  Because

222

2rms22rms vvv
 

 
*27 ••  
Picture the Problem We can use MRTv 3rms = to calculate the rms speeds of H2, O2, 

and CO2 at 123 K and then compare these speeds to 20% of the escape velocity on Jupiter 
to decide the likelihood of finding these gases in the atmosphere of Jupiter. 
 
Express the rms speed of an atom as 
a function of the temperature: 
 

M
RTv 3

rms =  

(a) Substitute numerical values and 
evaluate vrms for H2: 

( )( )

km/s1.24

kg/mol102
K231KJ/mol8.3143

3Hrms, 2

=

×
⋅

= −v
 

(b) Evaluate vrms for O2: ( )( )

m/s310

kg/mol1032
K123KJ/mol8.3143

3Orms, 2

=

×
⋅

= −v
 

 
(c) Evaluate vrms for CO2: ( )( )

m/s264

kg/mol1044
K123KJ/mol8.3143

3COrms, 2

=

×
⋅

= −v
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(d) Calculate 20% of vesc for Jupiter: ( ) km/s12km/s065
1

esc5
1 === vv  

 

.Jupiteron  found be
 should H and ,CO ,O  ,H and ,CO ,Ofor  an greater th is  Because 222222rmsvv

 

 
Temperature Scales 
 
28 •  

Picture the Problem We can convert both of these temperatures to the Fahrenheit scale 
and then express their difference to find the range of temperatures. 

 
Solve the Fahrenheit-Celsius 
conversion equation for the 
Fahrenheit temperature: 
 

°+= 32C5
9

F tt  

Find the Fahrenheit equivalent of 
−12°C: 

( ) °=°+°−= 4.1032125
9

Ft  

 
Find the Fahrenheit equivalent of 
−7°C: 

( ) F4.193275
9

F °=°+°−=t  

 
The difference between these two 
temperatures is the range on the 
Fahrenheit scale: 

°=

°−°=

9.00F

F10.4F19.4Range
 

 
Remarks: We could take advantage of the fact that 9 F° = 5 C° to arrive at the 
aforementioned result in which the range of Celsius temperatures happens to be 5C°. 
If the temperature difference were other than 5C°, we could set up a proportion to 
quickly find the range on the Fahrenheit scale. 
 
29 •  
Picture the Problem We can use the Fahrenheit-Celsius conversion equation to find this 
temperature on the Celsius scale. 
Convert 1945.4°F to the equivalent 
Celsius temperature: 

( ) ( )
C1063

324.194532 9
5

F9
5

C

°=

°−°=°−= tt
 

 
*30 •  
Picture the Problem We can use the Fahrenheit-Celsius conversion equation to express 
the temperature of the human body on the Celsius scale. 

 
Convert 98.6°F to the equivalent 
Celsius temperature: 

( ) ( )
C0.37

326.9832 9
5

F9
5

C

°=

°−°=°−= tt
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31 •  
Picture the Problem While we could use 
Equation 17-1 to relate the Celsius 
temperature to the length of the column of 
mercury in the thermometer, an alternative 
solution is to use the diagram to the right to 
set up a proportion that will relate the 
Celsius temperature to the calibration 
temperatures and to the lengths of the 
mercury column.   
  
Using the diagram, set up a 
proportion relating the temperatures 
to the lengths of the column of 
mercury: 
 

0100

0tc

C0C001
C0

LL
LLt
−
−

=
°−°

°−
 

Solve for and evaluate Lt: ( )

( )

( ) cm0.4
100

cm0.20

cm0.4
100

cm4.0cm0.24
100

c

c

0
0100c

t

+
°

=

+
°
−

=

+
°
−

=

t

t

LLLtL

 

 
(a) Substitute 22.0°C for tc and 
evaluate Lt: 

( )( )

cm40.8

cm0.4
100

cm0.20C0.22
t

=

+
°

°
=L

 

 
(b) Substitute 25.4 cm for Lt and 
evaluate tc: 

C107

100
cm20

cm4.0cm25.4
c

°=

°×
−

=t
 

 
32 •  
Picture the Problem We can use the temperature conversion equations 

°+= 32C5
9

F tt and K15.273C −= Tt to convert 107 K to the Fahrenheit and Celsius 

temperatures. 
 

Express the kelvin temperature in terms 
of the Celsius temperature: 
 

K15.273C += tT  
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(a) Solve for and evaluate tC: 

K10

K273.15K10K15.273
7

7
C

≈

−=−= Tt
 

 
(b) Use the Celsius to Fahrenheit 
conversion equation to evaluate tF: 

( ) F1080.132C10 77
5
9

F °×≈°+°=t  

 
33 •  
Picture the Problem While we could 
convert 77.35 K to a Celsius temperature 
and then convert the Celsius temperature 
to a Fahrenheit temperature, an alternative 
solution is to use the diagram to the right 
to set up a proportion for the direct 
conversion of the kelvin temperature to its 
Fahrenheit equivalent.  

 
Use the diagram to set up the 
proportion: K273.15K373.15

K77.35K273.15
F32F212

F32 F

−
−

=
°−°

−° t
 

 or 

100
195

F801
F32 F =

°
−° t

 

 
Solve for and evaluate tF: F319F180

100
195F32F °−=°×−°=t  

 
34 •  
Picture the Problem We can use the fact that, for a constant-volume gas thermometer, 
the pressure and absolute temperature are directly proportional to calibrate the given 
thermometer; i.e., to find the constant of proportionality relating P and T. We can then 
use this equation to find the temperature corresponding to a given pressure or the pressure 
corresponding to a given temperature. 
 
Express the direct proportionality 
between the pressure and the 
temperature: 
 

CTP =  
where C is a constant. 
 

Use numerical values to evaluate C: 
 

atm/K101.464
K273.15

atm0.400

3−×=

==
T
PC
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Substitute to obtain: ( )TP atm/K10464.1 3−×=         (1) 

or 
( )PT K/atm9.682=                   (2) 

 
(a) Use equation (2) to find the 
temperature: 

( )( )
K68.3

atm0.1K/atm682.9

=

=T
 

 
(b) Use equation (1) to find the 
boiling point of sulfur: 

( )
( )

atm05.1

K15.2736.444
atm/K101.464 3

=

+×
×= −P

 

 
*35  •  
Picture the Problem We can use the information that the thermometer reads 50 torr at 
the triple point of water to calibrate it. We can then use the direct proportionality between 
the absolute temperature and the pressure to either the pressure at a given temperature or 
the temperature for a given pressure. 
 
Using the ideal-gas temperature scale, 
relate the temperature to the pressure: 

( )P

PP
P

T

K/torr463.5
torr50

K16.273K16.273
3

=

==
 

 
(a) Solve for and evaluate P when  
T = 300 K: 

( )
( )( )

torr9.54

K300torr/K1830.0
torr/K1830.0

=

=
= TP

 

 
(b) Find T when the pressure is 678 torr: ( )( )

K3704

torr678K/torr463.5

=

=T
 

 
36 •  
Picture the Problem We can use the equation for the ideal-gas temperature scale to 
express the temperature measured by this thermometer in terms of its pressure and the 
given data to calibrate the thermometer. 
 
Write the equation for the ideal-gas 
temperature scale: 
 

P
P

T
3

K16.273
=                       17-4 
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(a) Solve for and evaluate the 
thermometer’s triple-point pressure: 
 

( )

torr0.22

torr30
K373

K273.16K16.273
3

=

== P
T

P
 

 
(b) Substitute for P3 in Equation 17-4:  ( )

K17.2

torr175.0
torr0.22

K16.273
torr0.22

K16.273

=

== PT
 

 
37 •  
Picture the Problem We can find the temperature at which the Fahrenheit and Celsius 
scales give the same reading by setting tF = tC in the temperature-conversion equation. 
 
Set tF = tC in ( )°−= 32F9

5
C tt : ( )°−= 32F9

5
F tt  

 
Solve for and evaluate tF: F0.40C0.40FC °−=°−== tt  

 
Remarks: If you’ve not already thought of doing so, you might use your graphing 
calculator to plot tC versus tF and tF = tC (a straight line at 45°) on the same graph. 
Their intersection is at (−40, −40). 
 
38 •  
Picture the Problem We can use the Celsius-to-absolute conversion equation to find 371 
K on the Celsius scale and the Celsius-to-Fahrenheit conversion equation to find the 
Fahrenheit temperature corresponding to 371 K. 
 
Express the absolute temperature as 
a function of the Celsius 
temperature: 
 

K15.273C += tT  

 

Solve for and evaluate tC: 

C97.9K273.15K371

K15.273C

°=−=

−= Tt
 

 
Use the Celsius-to-Fahrenheit 
conversion equation to find tF: 

( )
F208

329.9732 5
9

C5
9

F

°=

°+°=°+= tt
 

 
39 •  
Picture the Problem We can use the Celsius-to-absolute conversion equation to find 90.2 
K on the Celsius scale and the Celsius-to-Fahrenheit conversion equation to find the 
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Fahrenheit temperature corresponding to 90.2 K. 
 

Express the absolute temperature as a 
function of the Celsius temperature: 
 

K15.273C += tT  

 

Solve for and evaluate tC: 

C183K273.15K2.09

K15.273C

°−=−=

−= Tt
 

 
Use the Celsius-to-Fahrenheit 
conversion equation to find tF: 

( )
F297

3218332 5
9

C5
9

F

°−=

°+°−=°+= tt
 

 
40 ••  
Picture the Problem We can use the 
diagram to the right to set up proportions 
that will allow us to convert temperatures 
on the Réaumur scale to Celsius and 
Fahrenheit temperatures. 

 
  

Referring to the diagram, set up a 
proportion to convert temperatures on 
the Réaumur scale to Celsius 
temperatures: 
 

R0R80
R0

C0C100
C0 RC

°−°
°−

=
°−°

°− tt
 

Simplify to obtain: 
 80100

RC tt
= or RC 25.1 tt =  

 
Referring to the diagram, set up a 
proportion to convert temperatures on 
the Réaumur scale to Fahrenheit 
temperatures: 
 

R0R80
R0

F32F212
F32 RF

°−°
°−

=
°−°

°− tt
 

Simplify to obtain: 
 80180

32 RF tt
=

−
 or 32R4

9
F += tt  

 
*41 •••   
Picture the Problem We can use the temperature dependence of the resistance of the 
thermistor and the given data to determine R0 and B. Once we know these quantities, we 
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can use the temperature-dependence equation to find the resistance at any temperature in 
the calibration range. Differentiation of R with respect to T will allow us to express the 
rate of change of resistance with temperature at both the ice point and the steam point 
temperatures. 

 
(a) Express the resistance at the ice 
point as a function of temperature of 
the ice point: 
 

K273
07360 BeR=Ω           (1) 

Express the resistance at the steam 
point as a function of temperature of 
the steam point: 
 

K373
0153 BeR=Ω              (2) 

Divide equation (1) by equation (2) 
to obtain: 
 

K373K27310.48
153
7360 BBe −==

Ω
Ω

 

 
Solve for B by taking the logarithm 
of both sides of the equation: 

1K
373
1

273
11.48ln −⎟

⎠
⎞

⎜
⎝
⎛ −= B  

and  

K1094.3
K

373
1

273
1

1.48ln 3

1
×=

⎟
⎠
⎞

⎜
⎝
⎛ −

=
−

B  

 
Solve equation (1) for R0 and 
substitute for B: 

( )

( )
Ω×=

Ω=

Ω=
Ω

=

−

×−

−

3

K273K1094.3

K273
K2730

1097.3

7360

73607360

3

e

e
e

R B
B

 

 
(b) From (a) we have: ( ) TeR K1094.33 3

1097.3 ×− Ω×=  

 
Convert 98.6°F to kelvins to obtain: K310=T  

 
Substitute to obtain: ( )

Ω=

Ω×= ×−

k31.1

1097.3 K310K1094.33 3

eR
 

 
(c) Differentiate R with respect to T 
to obtain: 

( )

202

00

T
RBeR

T
B

T
B

dT
deReR

dT
d

dT
dR

TB

TBTB

−=
−

=

⎟
⎠
⎞

⎜
⎝
⎛==
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Evaluate dR/dT at the ice point: 
 

( )( )
( )

K/389

K16.273
K1094.37360

2

3

pointice

Ω−=

×Ω
−=⎟

⎠
⎞

⎜
⎝
⎛

dT
dR

 

 
Evaluate dR/dT at the steam point: 
 

( )( )
( )

K/33.4

K16.373
K1094.3153

2

3

pointsteam

Ω−=

×Ω
−=⎟

⎠
⎞

⎜
⎝
⎛

dT
dR

 

 

(d) 
es.temperatur

lowerat y sensitivitgreater  hasit  i.e.,sensitive; more isr  thermistoThe
 

 
The Ideal-Gas Law 
 
42 •  

Picture the Problem Let the subscript 1 refer to the gas at 50°C and the subscript 2 to 
the gas at 100°C. We can apply the ideal-gas law for a fixed amount of gas to find the 
ratio of the final and initial volumes. 

 
Apply the ideal-gas law for a fixed 
amount of gas: 
  

1

11

2

22

T
VP

T
VP

=  

or, because P2 = P1, 

1

2

1

2

T
T

V
V

=  

 
Substitute numerical values and 
evaluate V2/V1: 

( )
( ) 15.1

K5015.273
K10015.273

1

2 =
+
+

=
V
V

 

 
43 •  

Picture the Problem We can use the ideal-gas law to find the number of moles of gas in 
the vessel and the definition of Avogadro’s number to find the number of molecules. 

 
Apply the ideal-gas law to the gas: nRTPV =  

 
Solve for the number of moles of gas 
in the vessel: RT

PVn =  
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Substitute numerical values and 
evaluate n: 

( )( )
( )( )

mol1.79

K273Katm/molL108.206
L10atm4

2

=

⋅⋅×
= −n

 
Relate the number of molecules N in 
the gas in terms of the number of 
moles n: 
 

AnNN =  

Substitute numerical values and evaluate N: 
 

( )( ) molecules101.08molmolecules/106.022mol1.79 2423 ×=×=N  

 
44 ••  
Picture the Problem We can use the ideal-gas law to relate the number of molecules in 
the gas to its pressure, volume, and temperature. 
 
Solve the ideal-gas law for the number 
of molecules in a gas as a function of 
its pressure, volume, and temperature: 
 

kT
PVN =  

Substitute numerical values and 
evaluate N: 

( )( )( )
( )( )

8

23

368

1022.3

K300J/K101.381
m10Pa/torr133.32torr10

×=

×
= −

−−

N
 

45 ••  
Picture the Problem The pictorial 
representation to the right, in which T0 
represents absolute zero, summarizes the 
information concerning the temperatures 
and pressures we are given. We know, 
from the ideal-gas law, that the pressure of 
a fixed volume of gas is proportional to its 
absolute temperature. We can use the 
diagram to set up a proportion relating the 
temperatures and pressures that we can 
solve for T0.  
 
Apply the ideal-gas law to obtain: 
 klads

Tglips
klads

Tglips
7.8

10
5.12

22 00 −−
=

−
 

 
Solve for T0 to obtain: glipsT 2.830 −=  
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Remarks: Because the gas is ideal, its pressure is directly proportional to its 
temperature. Hence, a graph of P versus T will be linear and the linear equation 
relating P and T can be solved for the temperature corresponding to zero pressure. 
 
46 ••  
Picture the Problem Let the subscript 1 refer to the tires when their pressure is 180 kPa 
and the subscript 2 to conditions when their pressure is 245 kPa. Assume that the air in 
the tires behaves as an ideal gas. Then, we can apply the ideal-gas law for a fixed amount 
of gas to relate the temperatures to the pressures and volumes of the tires. 
 
(a) Apply the ideal-gas law for a 
fixed amount of gas to the air in the 
tires: 
 

1

11

2

22

T
VP

T
VP

=                    (1) 

Solve for T2: 
 1

2
12 P

PTT =   because V1 = V2. 

 
Substitute numerical values to 
obtain: 
 

( )

C87.7

K360.7
kPa180
kPa245K2652

°=

==T
 

 
(b) Use equation (1) with  
V2 = 1.07 V1. Solve for T2: ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
== 1

1

2
1

11

22
2 07.1 T

P
PT

VP
VPT  

 
Substitute numerical values and 
evaluate T2: 

( ) C113K385.9K7.36007.12 °===T

 
47 ••  
Picture the Problem We can apply the ideal-gas law to find the number of moles of air 
in the room as a function of the temperature. 

 
(a) Use the ideal-gas law to relate the 
number of moles of air in the room to 
the pressure, volume, and temperature 
of the air: 
 

RT
PVn =                               (1) 

Substitute numerical values and 
evaluate n: 

( )( )
( )( )

mol103.66

K300KJ/mol8.314
m90kPa101.3

3

3

×=

⋅
=n
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(b) Letting n′ represent the number 
of moles in the room when the 
temperature rises by 5 K, express 
the number of moles of air that 
leave the room: 
 

n'nn −=∆  

Apply the ideal-gas law to obtain: 
 'RT

PVn' =                               (2) 

 
Divide equation (2) by equation (1) 
to obtain: T'

T
n
n'

=  and 
T'
Tnn' =  

 
Substitute for n′ to obtain: 

⎟
⎠
⎞

⎜
⎝
⎛ −=−=∆

T'
Tn

T'
Tnnn 1  

 
Substitute numerical values and 
evaluate ∆n: ( )

mol60.0

K305
K3001mol103.66 3

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×=∆n

 

 
*48 ••  
Picture the Problem Let the subscript 1 refer to helium gas at 4.2 K and the subscript 2 
to the gas at 293 K. We can apply the ideal-gas law to find the volume of the gas at 4.2 K 
and a fixed amount of gas to find its volume at 293 K. 

 
(a) Apply the ideal-gas law to the 
helium gas and solve for its volume: 
 

1

1
1 P

nRTV =  

 
Substitute numerical values to 
obtain: 

( )( )

( )n

nV

mol/L3447.0
atm1

K4.2Katm/molL0.08206
1

=

⋅⋅
=

 

 
Find the number of moles in 10 g of 
helium: 

mol2.5
g/mol4

g10
==n  

 
Substitute for n to obtain: 
 

( )( )
L862.0

mol5.2mol/L3447.01

=

=V
 

 
(b) Apply the ideal-gas law for a 
fixed amount of gas and solve for 1

11

2

22

T
VP

T
VP

=  
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the volume of the helium gas at  
293 K: 
 

and, because P1 = P2, 

1
1

2
2 V

T
TV =  

 
Substitute numerical values and 
evaluate V2: 

( ) L60.1L0.862
K4.2
K293

2 ==V  

 
49 ••  
Picture the Problem Because the helium is initially in the liquid state, its temperature 
must be 4.2 K. Let the subscript 1 refer to helium gas at 4.2 K and the subscript 2 to the 
gas at 293 K. We can apply the ideal-gas law for a fixed volume of gas to relate the 
pressure at 293 K to the pressure at 4.2 K and use the ideal-gas law to find the pressure at 
4.2 K.  

 
Apply the ideal-gas law for a fixed 
amount of gas: 
 

1

11

2

22

T
VP

T
VP

=  

Solve for its pressure at 293 K: 
 1

2
1

12

211
2 T

TP
TV
TVPP ==                  (1) 

because V1 = V2 
 

Apply the ideal-gas law to the 
helium gas at 4.2 K and solve for its 
pressure: 
 

1

1
1 V

nRTP =  

 

Substitute numerical values to 
obtain: 

( )( )

( )n

nP

mol/atm05744.0
L6

K4.2Katm/molL0.08206
1

=

⋅⋅
=

 

 
Find the number of moles in 10 g of 
helium: 

mol2.5
g/mol4

g10
==n  

 
Substitute for n to obtain: 
 

( )( )
atm1436.0

mol5.2mol/atm05744.01

=
=P

 

Substitute in equation (1) and 
evaluate P2: 

( ) atm10.0
K4.2
K293atm0.14362 ==P  

 
*50 ••  
Picture the Problem Let the subscript 1 refer to the tire when its temperature is 20°C 
and the subscript 2 to conditions when its temperature is 50°C. We can apply the ideal-
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gas law for a fixed amount of gas to relate the temperatures to the pressures of the air in 
the tire. 

 
(a) Apply the ideal-gas law for a 
fixed amount of gas and solve for 
pressure at the higher temperature: 
 

1

11

2

22

T
VP

T
VP

=                        (1)                

and 

1
1

2
2 P

T
TP =                  

because V1 = V2 
 

Substitute numerical values to 
obtain: 
 

( )

kPa323

kPa101kPa200
K293
K323

2

=

+=P
 

and 

kPa231

kPa101kPa332gauge2,

=

−=P
 

 
(b) Solve equation (1) for P2 with  
V2 = 1.1 V1 and evaluate P2: 

( ) ( )

kPa302

kPa101kPa200
K2931.1

K323

1
12

21
2

=

+=

= P
TV
TVP

 

and 
kPa201kPa101kPa302gauge2, =−=P  

 
51 ••   
Picture the Problem Let

2Nρ and
20ρ be the number densities (i.e., the number of 

particles per unit volume) of N2 and O2, respectively. We can express the density of air in 
terms of the densities of nitrogen and oxygen and their number densities 
as .

2222 00NNair ρρρ mm +=  By applying the ideal-gas law, we can find the number 
density of air and, using the given composition of air, calculate the number densities of 
nitrogen and oxygen. Finally, we can find the masses of nitrogen and oxygen molecules 
from their atomic masses. Knowing ,

2Nρ ,
2Oρ ,

2Nm  and ,
2Om we can calculate ρair. 

Express the density of air in terms of 
the densities of nitrogen and oxygen: 
 

2222 00NNair ρρρ mm +=                (1) 

Using the ideal-gas law, relate the 
number density of air N/V to its 
temperature and pressure: 
 

NkTPV =  and 
kT
P

V
N

=  
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Substitute numerical values and 
evaluate the number density of air: 
 ( )( )

325

23

25

m1046.2
K297J/K10381.1

N/m1001.1

−

−

×=

×
×

=
V
N

 

 
Because air is approximately 74% 
N2 and 26% O2: 
 

( )
325

325
N

m1082.1

m1046.274.074.0
2

−

−

×=

×==
V
Nρ

 

and 

( )
324

325
O

m1040.6

m1046.226.026.0
2

−

−

×=

×==
V
Nρ

 

 
Calculate the masses of N2 and O2 
molecules: 
 

( )( )
kg1065.4

kg/u10660.1u28
26

27
N 2

−

−

×=

×=m
 

and 
( )( )

kg1031.5

kg/u10660.1u32
26

27
O2

−

−

×=

×=m
 

 
Substitute in equation (1) and 
evaluate ρair: 

( )( )
( )( )

3

32426

32526
air

kg/m19.1

m1040.6kg1031.5

m1082.1kg1065.4

=

××+

××=
−−

−−ρ

 
52 ••  
Picture the Problem Let the subscript 1 refer to the conditions at the bottom of the lake 
and the subscript 2 to the surface of the lake and apply the ideal-gas law for a fixed 
amount of gas. 

 
Apply the ideal-gas law for a fixed 
amount of gas: 
 

1

11

2

22

T
VP

T
VP

=  

Solve for the volume of the bubble 
just before it breaks the surface: 21

12
12 PT

PTVV =  

 
Find the pressure at the bottom of 
the lake: 

( )( )( )
kPa7.493

m40m/s9.81kg/m10
kPa01.31

233

atm1

=
+

=
+= ghPP ρ
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Substitute numerical values and 
evaluate V2: 

( )( )( )
( )( )
3

3
2

cm4.78

kPa101.3K278
kPa493.7K298cm15

=

=V
 

 
53 ••  
Picture the Problem Assume that the volume of the balloon is not changing. Then the 
air inside and outside the balloon must be at the same pressure of about 1 atm. The 
contents of the balloon are the air molecules inside it. We can use Archimedes principle 
to express the buoyant force on the balloon and we can find the weight of the air 
molecules inside the balloon 
 
Express the net force on the balloon 
and its contents: 
 

balloon  theinsideair net wBF −=              (1) 

Using Archimedes principle, 
express the buoyant force on the 
balloon: 
  

gmwB fluid displacedfluid displaced ==  
 or 

gVB balloonoρ=                               
where ρo is the density of the air outside 
the balloon. 
 

Express the weight of the air inside 
the balloon: 
 

gVw ballooniballoon  theinsideair ρ=       
where ρi is the density of the air inside the 
balloon. 
         

Substitute in equation (1) for B and 
wair inside the balloon to obtain: 
 ( ) gV

gVgVF

balloonio

ballooniballoononet

ρρ
ρρ

−=
−=

          (2) 

 
Express the densities of the air 
molecules in terms of their number 
densities, molecular mass, and 
Avogadro’s number: 
 

⎟
⎠
⎞

⎜
⎝
⎛=

V
N

N
M

A

ρ  

Using the ideal-gas law, relate the 
number density of air N/V to its 
temperature and pressure: 
 

NkTPV =  and 
kT
P

V
N

=  

Substitute to obtain: 
 ⎟

⎠
⎞

⎜
⎝
⎛=

kT
P

N
M

A

ρ  

 
Substitute in equation (2) and 
simplify to obtain: 
 

gV
TTkN

MPF balloon
ioA

net
11
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=  

 
Assuming that the average molecular weight of air is 29 g/mol, substitute numerical 
values and evaluate Fnet: 
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( )( )
( )( )

( )( )
N56.2

m/s81.9m5.1

K348
1

K297
1

J/K10381.1molparticles/10022.6
N/m1001.1g/mol29

23

2323

25

net

=

×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

××
×

= −F

 

 
54 •••   
Picture the Problem We can find the number of moles of helium gas in the balloon by 
applying the ideal-gas law to relate n to the pressure, volume, and temperature of the 
helium and Archimedes principle to find the volume of the helium. In part (b), we can 
apply the result of Problem 13-95 to relate atmospheric pressure to altitude and use the 
ideal-gas law to determine the pressure of the gas when the balloon is fully inflated. In 
part (c), we’ll find the net force acting on the balloon at the altitude at which it is fully 
inflated in order to decide whether it can rise to that altitude. 

 
(a) Apply the ideal-gas law to the 
helium in the balloon and solve  
for n: 
 

RT
PVn =                                         (1) 

Relate the net force on the balloon 
to its weight: 
 

N30HeloadskinB =−−− wwwF  

Use Archimedes principle to 
express the buoyant force on the 
balloon in terms of the volume of 
the balloon: 

Vg

wF

air

airdisplacedB

ρ=

=
 

Substitute to obtain: 
 

N30Heloadskinair =−−− VgwwVg ρρ  

Solve for the volume of the helium: 
( )g

wwV
Heair

loadskinN30
ρρ −
++

=  

 
Substitute numerical values and 
evaluate V: ( )

( )
3

2

33

m39.17
m/s9.81
1

kg/m0.179kg/m1.293
N110N50N30

=

×

−
++

=V
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Substitute numerical values in 
equation (1) and evaluate n: ( )( )

( )( )
mol776

K273Katm/molL108.206
m10

L1m17.39atm1

2

33
3

=

⋅⋅×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

= −

−

n

 
(b) Using the result of Problem 13-
95, express the variation in 
atmospheric pressure with altitude: 
 

( ) 0
0

hhePhP −=  

where h0 = 7.93 km 

Solve for h: 
 ( )⎥⎦

⎤
⎢
⎣

⎡
=

hP
Phh 0

0 ln                                    (2) 

 
Neglecting changes in temperature with elevation, apply the ideal-gas law to find the 
pressure at which the balloon’s volume will be 32 m3: 
 

( )( )( ) atm543.0

m10
L1m32

K273Katm/molL108.206mol776

33
3

2

=
×

⋅⋅×
==

−

−

V
nRTP  

 
Substitute in equation (2) and 
evaluate h: ( ) km84.4

atm0.543
atm1lnkm93.7 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=h

 
(c) Express the condition that must be 
satisfied if the balloon is to reach its 
fully inflated altitude: 
 

0totBnet ≥−= wFF                            (3) 

 

Express wtot: 

He

He

Heskinloadtot

N160
50110
w

wNN
wwww

+=
++=

++=
 

 
Express the weight of the helium: Vgw HeHe ρ=  

 
Substitute for wHe and evaluate wtot: 

( )( )
( )

N5.190
m/s9.81

m17.38kg/m0.179N601

N160

2

33
Hetot

=
×

+=

+= Vgw ρ

 

 
Determine the buoyant force on the VgF hair,B ρ=                                     (4) 
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balloon at h = 4.84 km: 
 

 

Express the dependence of the 
density of the air on atmospheric 
pressure: 
 

air

air,

0 ρ
ρ h

P
P
=                                       (5)  

or 

air
0

air, ρρ
P
P

h =  

 
Substitute and evaluate FB: 

( )( )
( )
N9.219

m/s9.81
m23kg/m1.293543.0

2

33

air
0

B

=
×

=

= Vg
P
PF ρ

 

 
Substitute in equation (3) and 
evaluate Fnet: 
 

0N29.4N190.5N19.92net ≥=−=F  

 

inflated.fully
 isit at which  altitude than thehigher rise llballoon wi  the,0 Because net >F

 

 
(d) The balloon will rise until the net force acting on it is zero. Because the buoyant 
force depends on the density of the air, the balloon will rise until the density of the air 
has decreased sufficiently for the buoyant force to just equal the total weight of the 
balloon. 
 
Substitute equation (5) in equation 
(2) to obtain: 
 

h

hh
air,

air
0 ln

ρ
ρ

=  

Using equation (4), find the density 
of the air such that FB = 190.5 N: ( )( )

3

23
B

air,

kg/m0.6068
m/s9.81m32

N190.5

=

==
Vg
F

hρ
 

 
Substitute numerical values and 
evaluate h: ( )

km00.6

kg/m6068.0
kg/m293.1lnkm93.7 3

3

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=h
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Kinetic Theory of Gases 
 
*55 •  
Picture the Problem We can express the rms speeds of argon and helium atoms by 
combining nRTPV = and MRTv 3rms = to obtain an expression for vrms in terms of 

P, V, and M. 
 

Express the rms speed of an atom as a 
function of the temperature: 
 

M
RTv 3

rms =  

From the ideal-gas law we have: 
n

PVRT =  

 
Substitute to obtain: 

nM
PVv 3

rms =  

 
(a) Substitute numerical values and evaluate vrms for an argon atom: 
 

( ) ( )( )( )
( )( ) m/s276

kg/mol1040mol1
m10kPa/atm101.3atm103Ar 3

33

rms =
×

= −

−

v  

 
(b) Substitute numerical values and evaluate vrms for a helium atom: 
 

( ) ( )( )( )
( )( ) m/s872

kg/mol104mol1
m10kPa/atm101.3atm103He 3

33

rms =
×

= −

−

v  

 
56 •  
Picture the Problem We can express the total translational kinetic energy of the oxygen 
gas by combining nRTK 2

3= and the ideal-gas law to obtain an expression for K in terms 

of the pressure and volume of the gas. 
 

Relate the total translational kinetic 
energy of translation to the 
temperature of the gas: 
 

nRTK 2
3=  

Using the ideal-gas law, substitute 
for nRT to obtain: 

PVK 2
3=  

Substitute numerical values and 
evaluate K: 

( )( ) J152m10kPa101.3 33
2
3 == −K  
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57 •  
Picture the Problem Because we’re given the temperature of the hydrogen atom and 
know its molar mass, we can find its rms speed using MRTv 3rms = and its average 

kinetic energy from .2
3

av kTK =  

 
Relate the rms speed of a hydrogen 
atom to its temperature and molar 
mass: 
 

M
RTv 3

rms =  

Substitute numerical values and 
evaluate vrms: 
 

( )( )

km/s499

kg/mol10
K10KJ/mol8.3143

3

7

rms

=

⋅
= −v

 

 
Express the average kinetic energy 
of the hydrogen atom as a function 
of its temperature: 
 

kTK 2
3

av =  

Substitute numerical values and 
evaluate Kav: 

( )( )
J102.07

K10J/K101.381
16

723
2
3

av

−

−

×=

×=K
 

 
*58 •  
Picture the Problem Because there are 6 squared terms in the expression for the total 
energy of an atom in this model, we can conclude that there are 6 degrees of freedom. 
Because the system is in equilibrium, we can conclude that there is energy of kT2

1 per 
molecule or RT2

1 per mole associated with each degree of freedom. 

 
Express the average energy per atom 
in the solid in terms of its 
temperature and the number of 
degrees of freedom: 
 

( ) ( ) kTkTkTNE 36
atom 2

1
2
1av ===  

 

Relate the total energy of one mole 
to its temperature and the number of 
degrees of freedom: 

( ) ( ) RTRTRTNE 36
mole 2

1
2
1tot ===  

  
59 •   

Picture the Problem We can combine
22

1
dnvπ

λ = and nRTPV = to express the 

mean free path for a molecule in an ideal gas in terms of the pressure and temperature. 
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Express the mean free path of a 
molecule in an ideal gas: 
 

22
1

dnvπ
λ =  

where 
VnNVNnv A==  

 
Solve the ideal-gas law for the 
volume of the gas: 
 

P
nRTV =  

Substitute in our expression for nv to 
obtain: kT

PP
nRT
nNnv == A  

 
Substitute in the expression for the 
mean free path to obtain: 22 dP

kT
π

λ =  

 
60 ••  
Picture the Problem We can find the collision time from the mean free path and the 
average (rms) speed of the helium molecules. We can use the result of Problem 43 to find 
the mean free path of the molecules and MRTv 3rms = to find the average speed of the 

molecules. 
 

Express the collision time in terms of 
the mean free path for and the average 
speed of a helium molecule: 
 

avv
λτ =                        (1) 

Use the result of Problem 43 to 
express the mean free path of the 
gas: 
 

22 dP
kT
π

λ =  

 

Substitute numerical values and 
evaluate λ: 

( )( )
( ) ( )

m101.332
m10Pa1072
K300J/K101.381

9

21011

23

×=

×

×
=

−−

−

π
λ

 

 
Express the average speed of the 
molecules: M

RTv 3
rms =  

 
Substitute numerical values and 
evaluate vrms: 

( )( )

m/s101.368

kg/mol104
K300KJ/mol8.3143

3

3rms

×=

×
⋅

= −v
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Substitute in equation (1) and 
evaluate τ: 

s109.74
m/s101.368
m101.332 5

3

9

×=
×
×

=τ  

 
*61 ••  
Picture the Problem We can use kTK 2

3= and ANMghmghU ==∆ to express the 

ratio of the average kinetic energy of a molecule of the gas to the change in its 
gravitational potential energy if it falls from the top of the container to the bottom. 

 
Express the average kinetic energy 
of a molecule of the gas as a 
function of its temperature: 
 

kTK 2
3=  

Letting h represent the height of the 
container, express the change in the 
potential energy of a molecule as it 
falls from the top of the container to 
the bottom: 
 

AN
MghmghU ==∆  

Express the ratio of K to ∆U and 
simplify to obtain: 
 

Mgh
kTN

N
Mgh

kT
U
K

2
3 A

A

2
3

==
∆

 

 
Substitute numerical values and evaluate K/∆U: 
 

( )( )( )
( )( )( )

4
23

2323

1095.7
m15.0m/s81.9kg10322

K300J/K10381.110022.63
×=

×
××

=
∆ −

−

U
K

 

 
The Distribution of Molecular Speeds 
 
62 ••  
Picture the Problem Equation 17-37 gives the Maxwell-Boltzmann speed distribution. 
Setting its derivative with respect to v equal to zero will tell us where the function’s 
extreme values lie. 
Differentiate Equation 17-37 with 
respect to v: 

kTmv

kTmv

e
kT
mvv

kT
m

ev
kT
m

dv
d

dv
df

2
323

22
23

2

2

2
2

4

2
4

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛=

π

π
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Set df/dv = 0 for extrema and solve 
for v: 02

3

=−
kT
mvv ⇒ 

m
kTv 2

=  

 
 Examination of the graph of f(v) makes it 

clear that this extreme value is, in fact, a 
maximum. See Figure 17-16 and note that 
it is concave downward at .2 mkTv =  

 
Remarks: An alternative to the examination of  f(v) in order to conclude that 

mkTv 2=  maximizes the Maxwell-Boltzmann speed distribution function is to 

show that d2f/dv2 < 0 at .mkTv 2=   

 
*63 ••  
Picture the Problem We can show that f(v) is normalized by using the given integral to 
integrate it over all possible speeds. 

 
Express the integral of Equation 17-37: 

( ) ∫∫
∞

−
∞

⎟
⎠
⎞

⎜
⎝
⎛=

0

22
23

0

2

2
4 dvev

kT
mdvvf kTmv

π
 

 
Let kTma 2= to obtain: 

( ) ∫∫
∞

−
∞

=
0

223

0

24 dvevadvvf av

π
 

 
Use the given integral to obtain: 

( ) 1
4

4 2323

0

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

∞

∫ aadvvf π
π

 

i.e.,  f(v) is normalized. 
 

64 ••  
Picture the Problem In Problem 63 we showed that f(v) is normalized. Hence we can 

evaluate vav using ( )∫
∞

0

dvvvf . 

 
Express the average speed of the 
molecules in the gas: 

( )

∫

∫
∞

−

∞

⎟
⎠
⎞

⎜
⎝
⎛=

=

0

23
23

0
av

2

2
4 dvev

kT
m

dvvvfv

kTmv

π
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Substitute :2kTma =  
∫
∞

−=
0

323
av

24 dvevav av

π
 

 
Use the given integral to obtain: 

m
kT

a
aav

22

12
2

4 2
23

av

π

ππ

=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−

 

 
*65 ••  
Picture the Problem Choose a coordinate system in which downward is the positive 
direction. We can use a constant-acceleration equation to relate the fall distance to the 
initial velocity of the molecule, the acceleration due to gravity, the fall time, and 

mkTv 3rms =  to find the initial velocity of the molecules. 

 
(a) Using a constant-acceleration 
equation, relate the fall distance to 
the initial velocity of a molecule, the 
acceleration due to gravity, and the 
fall time: 
 

2
2
1

0 gttvy +=                           (1) 

Express the rms speed of the atom to 
its temperature and mass: 
 

m
kTv 3

rms =  

Substitute numerical values and 
evaluate vrms: 
 

( )( )
( )( )

m/s1092.5

kg/u10660.1u47.85
nK120J/K10381.13

3

27

23

rms

−

−

−

×=

×
×

=v
 

 
Letting vrms = v0, substitute in 
equation (1) to obtain: 
 

( ) ( ) 22
2
13 m/s81.9m/s1092.5m1.0 tt +×= −

 

Solve this equation to obtain: s142.0=t  

 
(b) If the atom is initially moving 
upward: 
 

m/s1092.5 3
0rms

−×−== vv  

Substitute in equation (1) to obtain: 
 

( )
( ) 22

2
1

3

m/s81.9
m/s1092.5m1.0

t
t

+

×−= −
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Solve this equation to obtain: s143.0=t  

 
 
General Problems 
 
66 •  
Picture the Problem We can use MRTv 3rms = to relate the temperature of the H2 

molecule to its rms speed. 
 

Relate the rms speed of the molecule 
to its temperature: 
 

M
RTv 3

rms =  

Solve for the temperature: 
R

MvT
3

2
rms=  

 
Substitute numerical values and 
evaluate T: 

( )( )
( )
K8.79

KJ/mol8.3143
m/s331kg/mol102 23

=

⋅
×

=
−

T
 

 
67 ••  
Picture the Problem We can use the ideal-gas law to find the initial temperature of the 
gas and the ideal-gas law for a fixed amount of gas to relate the volumes, pressures, and 
temperatures resulting from the given processes. 
(a) Apply the ideal-gas law to 
express the temperature of the gas: nR

PVT =  

 
Substitute numerical values and 
evaluate T: 

( )( )
( )( ) K122

KJ/mol8.314mol1
m1010kPa101.3 33

=
⋅

×
=

−

T  

 
(b) Use the ideal-gas law for a fixed 
amount of gas to relate the 
temperatures and volumes: 

2

22

1

11

T
VP

T
VP

=  

or, because P1 = P2, 

2

2

1

1

T
V

T
V

=  

Solve for and evaluate T2: ( ) K244K12221
1

2
2 === T

V
VT  

 
(c) Use the ideal-gas law for a fixed 
amount of gas to relate the 2

22

1

11

T
VP

T
VP

=  
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temperatures and pressures: or, because V1 = V2, 

2

2

1

1

T
P

T
P
=  

 
Solve for T2: 

1
1

2
2 P

T
TP =  

 
Substitute numerical values and 
evaluate P2: 

( ) atm1.43atm1
K244
K350

2 ==P  

 
68 ••  
Picture the Problem We can use the definition of pressure to express the net force on 
each wall of the box in terms of its area and the pressure differential between the inside 
and the outside of the box. We can apply the ideal-gas law for a fixed amount of gas to 
find the pressure inside the box. 

 
Using the definition of pressure, 
express the net force on each wall of 
the box: 
 

( )outsideinside PPA
PAF

−=
∆=

 

Use the ideal-gas law for a fixed 
amount of gas to relate the initial 
and final pressures of the gas: 
 

2

22

1

11

T
VP

T
VP

=  

or, because V1 = V2, 

2

2

1

1

T
P

T
P
=  

 
Solve for and evaluate Pinside: ( )

kPa135.1

kPa101.3
K300
K400

1
1

2
inside2

=

=== P
T
TPP

 

 
Substitute and evaluate F: ( ) ( )

kN1.35

kPa101.3kPa135.1m0.2 2

=

−=F
 

 
*69 ••  
Picture the Problem We can use the molar mass of water to find the number of moles in 
2 L of water. Because there are two hydrogen atoms in each molecule of water, there 
must be as many hydrogen molecules in the gas formed by electrolysis as there were 
molecules of water and, because there is one oxygen atom in each molecule of water, 
there must be half as many oxygen molecules in the gas formed by electrolysis as there 
were molecules of water.  
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Express the electrolysis of water 
into H2 and O2: 
 

( ) ( ) ( )22
1

22 OHOH nnn +→  

 

Express the number of moles in 2 L 
of water: 

( ) mol111
g/mol18

g2000OH2 ==n  

 
Because there is one hydrogen atom 
for each water molecule: 
 

( ) mol111H2 =n  

Because there are two oxygen atoms 
for each water molecule: 

( ) ( ) ( )
mol5.55

mol111OHO 2
1

22
1

2

=

== nn
 

 
70 ••     
Picture the Problem The diagram shows 
the cylinder before removal of the 
membrane. We’ll assume that the gases are 
at the same temperature. The approximate 
location of the center of mass (CM) is 
indicated. We can find the distance the 
cylinder moves by finding the location of 
the CM after the membrane is removed. 

 
 

 
 

Express the distance the cylinder 
will move in terms of the movement 
of the center of mass when the 
membrane is removed: 
 

beforecm,aftercm, xxx −=∆  

Apply the ideal-gas law to both 
collections of molecules to obtain: 
 

( )kTnVP 2NN N
22
=  

and 
( )kTnVP 2OO O

22
=  

 
Divide the first of these equations 
by the second to obtain: 
 

( )
( )2

2

O

N

O
N

2

2

n
n

P
P

=  

or, because 
22 ON 2PP = , 

( )
( )2

2

O

O

O
N2

2

2

n
n

P
P

=  ⇒ n(N2) = 2n(O2) 

 
Express the mass of O2 in terms of 
its molar mass and the number of 
moles of oxygen: 

m(O2) = n(O2)M(O2) 
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Express the mass of N2 in terms of 
its molar mass and the number of 
moles of nitrogen: 
 

m(N2) = 2n(O2)M(N2). 

Using its definition, express the center of mass before the membrane is removed: 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )22

Ocm,2Ncm,2

2222

Ocm,22Ncm,22

2222

Ocm,22Ncm,22
beforecm,

ON2
ON2

OONO2
OONO2

OONN
OONN

22

22

22

MM
xMxM

MnMn
xMnxMn

MnMn
xMnxMn

m

mx
x

i
i

i
ii

+
+

=

+
+

=

+
+

==
∑
∑

 

 
Substitute numerical values and evaluate xcm,before: 
 

( )( ) ( )( )
( ) cm17.27

g32g282
g32cm30g28cm102

beforecm, =
+
+

=x  

 
Locate the center of mass after the 
membrane is removed: 

( )( ) ( )( )
( )

cm0.02
g32g282

g32cm20g28cm202
aftercm,

=
+
+

=x
 

 
Substitute to obtain: 

cm2.73

cm17.27cm20.00

=

−=∆x
 

 

left.  the tocm 2.73 movedcylinder  theright,  the tomoved mass 
ofcenter   theand process  thisduring conserved bemust  momentum Because

 

 
71 ••  
Picture the Problem We can apply the ideal-gas law to the two processes to find the 
number of moles of hydrogen in terms of the number of moles of nitrogen in the gas. 
Using the definition of molar mass, we can relate the mass of each gas to the number of 
moles of each gas and their molar masses. 

 
Apply the ideal-gas law to the first 
case: 
 

( ) ( )[ ] 1221 HN2 RTnnVP +=  

 

Apply the ideal-gas law to the ( ) ( )[ ] 1221 2H2N23 RTnnVP +=  
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second case: 
 

 

Divide the second of these equations 
by the first and simplify to express 
n(H2) in terms of n(N2): 
 

( ) ( )22 N2H nn =                        (1) 

Relate the mN to n(N2): ( ) ( )
( )( )g/mol28N

NN

2

22N

n
Mnm

=
=

 

and 

( )
g/mol28

N N
2

mn =  

 
Relate the mH to n(H2): ( ) ( )

( )( )g/mol2H
HH

2

22H

n
Mnm

=
=

 

and 

( )
g/mol2

H H
2

mn =  

 
Substitute in equation (1) and solve 
for mN: g/mol28

2
g/mol2

NH mm
= ⇒ HN 7mm =  

 
*72 ••  
Picture the Problem Initially, we have 3P0V = n0RT0. Later, the pressures in the three 
vessels, each of volume V, are still equal, but the number of moles is not. The total 
number of moles, however, is constant and equal to the number of moles in the three 
vessels initially. Applying the ideal-gas law to each of the vessels will allow us to relate 
the number of moles in each to the final pressure and temperature. Equating this sum n0 
will leave us with an equation in P′ and P0 that we can solve for P′. 

 
Relate the number of moles of gas in 
the system in the three vessels 
initially to the number in each vessel 
when the pressure is P′: 
 

3210 nnnn ++=  

 

Relate the final pressure in the first 
vessel to its temperature and solve 
for n1: 
 

( )
V

TRnP' 01 2
=  ⇒ 

0
1 2RT

P'Vn =  

 

Relate the final pressure in the 
second vessel to its temperature and 
solve for n2: 

( )
V

TRnP' 02 3
= ⇒ 

0
2 3RT

P'Vn =  
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Relate the final pressure in the third 
vessel to its temperature and solve 
for n3: 
 

V
RTnP' 03= ⇒ 

0
3 RT

P'Vn =  

 

Substitute to obtain: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎠
⎞

⎜
⎝
⎛ ++=

++=

00

000
0

6
111

3
1

2
1

32

RT
P'V

RT
P'V

RT
P'V

RT
P'V

RT
P'Vn

 

 
Express the number of moles in the 
three vessels initially in terms of the 
initial pressure and total volume: 
 

( )
0

0
0

3
RT

VPn =  

Equate the two expressions for n0   
and solve for P′ to obtain: 011

18 PP' =  

 
73 ••  
Picture the Problem We can use the ideal-gas temperature scale to relate the temperature 
of the boiling substance to its pressure and the pressure at the triple point. If we assume a 
linear relationship between P/P3 and P3, we can calibrate this equation using the data from 
any two (or all) of the temperature measurements and then extrapolate this equation to zero 
gas pressure to find the ideal-gas temperature of the boiling substance. 

 
Using the ideal-gas temperature 
scale, relate the temperature of the 
boiling substance to its pressure and 
the pressure at the triple point: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3

K16.273
P
PT                       (1) 

Find the temperature of the first 
measurement: 
 ( )

K401.00
1.4680K16.273

torr500
torr734K16.2731

=
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=T

 

 
Find the temperature of the third 
measurement: 
 ( )

K400.59
1.4655K16.273

torr100
torr65.146K16.2733

=
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=T
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Assume a linear relationship 
between P/P3 and P3: 
  

3
3

bPa
P
P

+=  

where a is the pressure ratio for P3 = 0. 
 

Substitute using the data from the 
first measurement: 

( )torr500
torr500
torr734 ba +=  

or 
( )torr5004680.1 ba +=  

 
Substitute using the data from the 
third measurement: 

( )torr001
torr001

torr65.461 ba +=  

 or 
( )torr1004665.1 ba +=  

 
Solve these equations 
simultaneously for a: 
 

a = 1.46613 
 

Substitute in equation (1) to obtain: ( ) K49.40046613.1K16.273 ==T  

 
*74 ••  
Picture the Problem Because the O2 molecule resembles 2 spheres stuck together, which 
in cross section look something like two circles, we can estimate the radius of the 
molecule from the formula for the area of a circle. We can express the area, and hence the 
radius, of the circle in terms of the mean free path and the number density of the 
molecules and use the ideal-gas law to express the number density. 
 
Express the area of two circles of 
diameter d that touch each other: 
 24

2
22 ddA ππ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

 
Solve for d to obtain: 
 

π
Ad 2

=                          (1) 

 
Relate the mean free path of the 
molecules to their number density 
and cross-sectional area: 
 

Anv

1
=λ  

Solve for A to obtain: 
 λvn

A 1
=  

 
Substitute in equation (1) to obtain: 
 

λπ vn
d 2
=  
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Use the ideal-gas law to relate the 
number density of the O2 molecules 
to their temperature and pressure: 
 

NkTPV =  or 
kT
P

V
Nnv ==  

Substitute to obtain: 

λπP
kTd 2

=  

 
Substitute numerical values and 
evaluate d: 

( )( )
( )( )

nm0.606m1006.6

m101.7Pa1001.1
K300J/K10381.12

10

85

23

=×=

××
×

=

−

−

−

π
d

 

 
75 ••  
Picture the Problem We can use its definition to express the mean free path of the 
molecules and the ideal-gas law to obtain an expression for the number density of the 
hydrogen gas molecules. 
 
(a) Relate the mean free path of the 
molecules to their number density 
and cross-sectional area: Anv

1
=λ  

Use the ideal-gas law to relate the 
number density of the H2 molecules 
to their temperature and pressure: 
 

NkTPV =  or 
kT
P

V
Nnv ==  

Express the effective cross-sectional 
area of a H2 molecule: 
 

2
4
1 dA π=  

Substitute for nv and A to obtain: 
2

4
dP

kT
π

λ =  

 
Substitute numerical values and 
evaluate λ: 

( )( )
( ) ( )

m1004.2

m106.1N/m1001.1
K300J/K10381.14

6

21025

23

−

−

−

×=

××

×
=
π

λ
 

 
(b) Relate the available volume per 
molecule to the number density nv: P

kT
nN

V

v

==
1

 

 
Substitute numerical values and 
evaluate V/N: 
 

( )( )

326

25

23

m1010.4

N/m1001.1
K300J/K10381.1

−

−

×=

×
×

=
N
V

 

 
Express the volume of a spherical 
molecule: 

3
6
13

3
4 drV ππ ==  
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Solve for d: 
3

6
π
Vd =  

 
Substitute numerical values and 
evaluate d: 

( ) nm28.4m1010.46
3

326

=
×

=
−

π
d  

 
 

1000. offactor  aely approximat
bylarger  ispath  freemean  The

 

 
76 •••  
Picture the Problem Let A be the cross-sectional area of the cylinder. We can use the 
ideal-gas law to find the height of the piston under equilibrium conditions. In (b), we can 
apply Newton’s 2nd law and the ideal-gas law for a fixed amount of gas to the show that, 
for small displacements from its equilibrium position, the piston executes simple 
harmonic motion. 

 
(a) Express the pressure inside the 
cylinder: A

MgPP += atmin  

Apply the ideal-gas law to obtain a 
second expression for the pressure 
of the gas in the cylinder: 
 

hA
nRT

V
nRTP ==in                        (1) 

 

Equate these two expressions: 
hA

nRT
A

MgP =+atm  

 
Solve for h to obtain: ( )

atm

atm

atm

atm

1

m4.2

m4.2

AP
Mg

MgAP
AP

MgAP
nRTh

+
=

+
=

+
=

 

 
At STP, 0.1 mol of gas occupies  
2.24 L. Therefore: 

( ) 33 m1024.2m4.2 −×=A  

and 
A = 9.33×10−4 m2 
 

Substitute numerical values and 
evaluate h: ( )( )

( )( )
m096.2

kPa101.3m109.333
m/s9.81kg1.41

m2.4

24

2

=

×
+

=

−

h
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(b) Relate the frequency of vibration 
of the piston to its mass and a 
″stiffness″ constant: 

M
kf

π2
1

=                                (2) 

where M is the mass of the piston and k is a 
constant of proportionality. 
 

Letting y be the displacement from 
equilibrium, apply ∑ = yy maF to 

the piston in its equilibrium 
position: 
 

0atmin =−− APmgAP  

For a small displacement y above 
equilibrium: 

ymaAPmg'AP =−− atmin  

or 
ymaAP'AP =− inin                           (3) 

 
Using the ideal-gas law for a fixed 
amount of gas and constant 
temperature, relate inin to P'P : 

VP'V'P inin =  

or 
( ) VPAyV'P inin =+  

Solve for 'Pin : 
AyV

VP'P
+

= inin  

and 

h
yAP

AyAh
AhAP'AP

+
=

+
=

1

1
ininin  

 
Substitute in equation (3) to obtain: 

ymaAP
h
yAP =−⎟
⎠
⎞

⎜
⎝
⎛ +

−

in

1

in 1  

or, for y << h, 

ymaAP
h
yAP ≈−⎟
⎠
⎞

⎜
⎝
⎛ − inin 1                (4) 

 
Simplify equation (4): 

yma
h
yAP ≈− in  

 
Substitute in equation (1) to obtain: 

yma
h
yA

Ah
nRT

≈⎟
⎠
⎞

⎜
⎝
⎛−  

or 

ymay
h

nRT
≈⎟

⎠
⎞

⎜
⎝
⎛− 2  
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Solve for ay: y
mh
nRTay 2−=  

or 

y
m
kay −= , the condition for SHM 

where 2mh
nRT

m
k
=  

 
Substitute in equation (2) to obtain: 

22
1

mh
nRTf

π
=  

 
Substitute numerical values and evaluate f: 
 

( )( )( )
( )( )

Hz01.1
m2.096kg1.4

K300KJ/mol8.314mol0.1
2
1

2 =
⋅

=
π

f  

 
*77 ••• 

Picture the Problem We can show that ( ) ( )∫ =
V

xIdvvf
0

,  where f(v) is the Maxwell-

Boltzmann distribution function, ,kTmVx 22= and I(x) is the integral whose values are 
tabulated in the problem statement. Then, we can use this table to find the value of x 
corresponding to the fraction of the gas molecules with speeds less than v by evaluating 
I(x). 
 
(a) The Maxwell-Boltzmann speed 
distribution f(x) is given by: 
 

( ) kTmvev
kT
mvf 22

23
2

2
4 −⎟

⎠
⎞

⎜
⎝
⎛=

π
 

which means that the fraction of particles 
with speeds between v and  
v + dv is ( ) .dvvf   
 

Express the fraction F(V) of 
particles with speeds less than V = 
400 m/s: 
 

( ) ( )

∫

∫

−⎟
⎠
⎞

⎜
⎝
⎛=

=

V
kTmv

V

dvev
kT
m

dvvfVF

0

22
23

0

2

2
4
π

 

 
Change integration variables by 
letting kTmvz 2= so we can use 
the table of values to evaluate the 
integral.  Then: 
 

z
m
kTv 2

=   ⇒ dz
m
kTdv 2

=  
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Substitute in the integrand of F(V) 
to obtain: 

dzez
m
kT

dz
m
kTe

m
kTzdvev

z

zkTmv

2

22

2
23

21
222

2

22

−

−−

⎟
⎠
⎞

⎜
⎝
⎛=

⎟
⎠
⎞

⎜
⎝
⎛=

 

 
Transform the integration limits to 
correspond to the new integration 
variable :2kTmvz =  
 

When v = 0, z = 0,  
and  
when v = V, kTmVz 2=   
 

The new lower integration limit is 0. Evaluate kTmVz 2= to find the upper limit: 
 

( ) ( )( )
( )( ) 06.1

K273K/J101.3812
kg10661.1u32m/s400 23

27

=
×

×
= −

−

z  

 
Evaluate F(400 m/s) to obtain: 
 

( ) ( )

( )06.1

4
2

4m/s400
06.1

0

2
m/s400

0

22
23m/s400

0

22

I

dzezdvev
kT
mdvvfF zkTmv

=

=⎟
⎠
⎞

⎜
⎝
⎛== ∫∫∫ −−

ππ  

where ( ) ∫ −=
x

z dzezxI
0

2 24
π

 

 
Letting r represent the fraction of the 
molecules with speeds less than 400 
m/s, interpolate from the table to 
obtain: 
 

15.1
438.0788.0

106.1
438.0

−
−

=
−

−r
 

and 
%0.48=r  

 
(b) Express the fraction r of the 
molecules with speeds between  
V1 = 190 m/s and V2 = 565 m/s: 
 

( ) ( ) ( ) ( )1212 xIxIVFVFr −=−=  
where 

kTmVx 211 = and kTmVx 222 =  
 

Evaluate x1 and x2 to obtain: 
 

( ) ( )( )
( )( ) 504.0

K273K/J101.3812
kg10661.1u32m/s190 23

27

1 =
×

×
= −

−

x  

and 

( ) ( )( )
( )( ) 50.1

K273K/J101.3812
kg10661.1u32m/s565 23

27

2 =
×

×
= −

−

x  

 
Substitute to obtain: ( ) ( )504.050.1 IIr −=                   (1) 
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Using the table, evaluate I(1.50): ( ) 788.050.1 =I  
 

Letting r represent the fraction of 
the molecules with speeds less than 
190 m/s, interpolate from the table 
to obtain: 
 

5.06.0
081.0132.0

5.0504.0
081.0

−
−

=
−

−r
 

 and 
083.0=r  

Substitute in equation (1) to obtain: %5.70083.0788.0 =−=r  
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