Chapter 17
Temperature and the Kinetic Theory of Gases

Conceptual Problems

*1 °
(@) False. If two objects are in thermal equilibrium with a third, then they are in thermal
equilibrium with each other.

(b) False. The Fahrenheit and Celsius temperature scales differ in the number of intervals
between the ice-point temperature and the steam-point temperature.

(c) True.

(d) False. The result one obtains for the temperature of a given system is thermometer-
dependent.

2 .

Determine the Concept Put each in thermal equilibrium with a third body; e.g., a
thermometer. If each body is in thermal equilibrium with the third, then they are in
thermal equilibrium with each other.

3 .
Picture the Problem We can decide which room was colder by converting 20°F to the
equivalent Celsius temperature.

Using the Fahrenheit-Celsius conversion, te = 3(t; —32°)=£(20°-32°)

convert 20°F to the equivalent Celsius =-6.67°C
temperature: so| Mert's room was colder.
4 oo

Picture the Problem We can apply the ideal-gas law to the two vessels to decide which
of these statements is correct.

Apply the ideal-gas law to the PV, = NkT,
particles in vessel 1:

Apply the ideal-gas law to the PV, = N,kT,
particles in vessel 2:

Divide the equation for vessel 1 by BV, _ NkT,
the equation for vessel 2: PV,  N,kT,
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Because the vessels are identical and N,
l1=—Land N, =N,
are at the same temperature and N,
pressure- (a)is correct.
5 o0

Determine the Concept From the ideal-gas law, we have P = nR T/V. In the process

depicted, both the temperature and the volume increase, but the temperature increases
faster than does the volume. Hence, the pressure increases.

*6 L1l

Determine the Concept From the ideal-gas law, we have ¥ =nRT/P. In the
process depicted, both the temperature and the pressure increase, but the pressure
increases faster than does the temperature. Hence, the volume decreases.

7 .
True. The Kinetic energy of translation K for n» moles of gas is directly proportional to the
absolute temperature 7 of the gas (K - %nkT).

8
Determine the Concept We can use v, = 1/3RT/M to relate the temperature of a gas

to the rms speed of its molecules.

Express the dependence of the rms 3RT
speed of the molecules of a gas on Vims = M
their absolute temperature: where R is the gas constant, M is the molar

mass, and 7T is the absolute temperature.

Because v, o« +/T', the temperature must be quadrupled in order
to double the rms speed of the molecules.

9 .
Picture the Problem The average kinetic energy of a molecule, as a function of the
temperature, is given by K, =3 kT and the pressure, volume, and temperature of an ideal

gas are related according to PV = NkT.

=
Il
oo
PN
~

Express the average Kkinetic energy
of a molecule in terms of its
temperature:

av
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From the ideal-gas law we have: PV = NkT
Eliminate kT between these _3rr
equations to obtain: ¥ 2N

If Pisdoubled at constant V', K, increases by a factor of 2.

If V' is doubled at constant P, K, increases by a factor of 2.

10 e
Picture the Problem We can express the rms speeds of the helium atoms and the

methane molecules using v, =+/3RT/M.
fSRT
Vrms(He) = MHe

/ 3RT
Vrms(CHA): M
CH,

Divide the first of these equations vrms(He) M,
by the second to obtain: Vi (CH4) M,

Express the rms speed of the
helium atoms:

Express the rms speed of the
methane molecules:

e

Vins(He) _ [16g/mol 5
v,o(CH,) '\ 4g/mol

and | (b) is correct.

Use Appendix C to find the molar
masses of helium and methane:

11 -

False. Whether the pressure changes also depends on whether and how the volume
changes. In an isothermal process, the pressure can increase while the volume decreases
and the temperature is constant.

12 -

Determine the Concept For the Celsius scale, the ice point (0°C) and the boiling point of
water at 1 atm (100°C) are more convenient than 273 K and 373 K; temperatures in
roughly this range are normally encountered. On the Fahrenheit scale, the temperature of
warm-blooded animals is roughly 100°F; this may be a more convenient reference than
approximately 300 K. Throughout most of the world, the Celsius scale is the standard for
nonscientific purposes.
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*13 .
Determine the Concept Because 107 >> 273, it does not matter.

14
Determine the Concept The average speed of the molecules in an ideal gas depends on
the square root of the kelvin temperature. Because v,, o JT, doubling the temperature
while maintaining constant pressure increases the average speed by a factor of \/E :

(d) is correct.

15 -
Determine the Concept From the ideal-gas law, we have PV = nRT. Halving both the

temperature and volume of the gas leaves the pressure unchanged. | (b) is correct.

16
Determine the Concept The average translational kinetic energy of the molecules of an
ideal gas is given by K = %NkT = %nRT. The temperature of the ideal gas is related to

the pressure of the gas. | (d) is correct.

17
Determine the Concept The only conclusion we can draw from the information that the
vessel contains equal amounts, by weight, of helium and argon is that the temperatures of

the helium and argon molecules are the same. | (d) is correct.

18 oo
Determine the Concept The two rooms are in thermal equilibrium and, because they are
connected, the air in each is at the same pressure. Because P = NkT/V, and the volume of
each room is identical, NaTa = NgTg, S0 the cooler room (A) has more air in it.

19 -
Picture the Problem The rms speed of an ideal gas is given by v,.. =+/3RT/M and its
average kinetic energy by K, = 3 kT

Because v,,, =+/3RT/M : The rms speeds are inversely
proportional to the square root
of the molecular masses.
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Because K,, =27 and the gases The kinetic energies of the molecules
are at the same temperature: are the same.
20 e

Determine the Concept The pressure is a measure of the change in momentum per
second of a gas molecule on collision with the wall of the container. When the gas is
heated, the average velocity, the average momentum, and pressure of the molecules
increase.

*21 e

Determine the Concept Because the temperature remains constant, the average speed of
the molecules remains constant. When the volume decreases, the molecules travel less
distance between collisions, so the pressure increases because the frequency of collisions
increases.

22 e
Picture the Problem The average kinetic energies of the molecules are given by
K, = (%mvz)av =3kT. Assuming that the room’s temperature distribution is uniform,

we can conclude that the oxygen and nitrogen molecules have equal average kinetic
energies. Because the oxygen molecules are more massive, they must be moving slower

than the nitrogen molecules. | () is correct.

23 e

Determine the Concept The average molecular speed of He gas at 300 K is about 1.4
km/s, so a significant fraction of He molecules have speeds in excess of earth’s escape
velocity (11.2 km/s). Thus, they "leak™ away into space. Over time, the He content of the
atmosphere decreases to almost nothing.

Estimation and Approximation

*24 e

Picture the Problem Assuming the steam to be an ideal gas at a temperature of 373 K,
we can use the ideal-gas law to estimate the pressure inside the test tube when the water is
completely boiled away.

Using the ideal-gas law, relate the
pressure inside the test tube to its
volume and the temperature:

p=NET
4

Relate the number of particles N to m_ M
the mass of water, its molar mass M, N N,
and Avogadro’s number Na:
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Solve for N: N = mﬂ

M
Relate the mass of 1 mL of water to m=pV = (103 kg/m‘?)(lO‘6 mg): 19
its density:

Substitute for m, Na, and M (18
g/mol) and evaluate N:

6.022 x10* particles/mol
N =(1g) :

18g/mol
= 3.35x10% particles

Substitute numerical values and evaluate P:

P (3.35x 10 particles)(1.381x10 % J/K )(373K)
10x10°m®
latm
1.01x10° N/m?

=172x10° N/m?® x

=|171atm

25 (11}

Picture the Problem We can find the escape temperatures for the earth and the moon by
equating, in turn, 0.15v, and v;ms 0f O, and H,. We can compare these temperatures to
explain the absence from the earth’s upper atmosphere and from the surface of the moon.

(@) Express vis for O,: 3RT
Vims = M

where R is the gas constant, T is the
absolute temperature, and A is the molar
mass of oxygen.

Equate 0.15ve and vips: 3RT
0.15 2gRearth Il Y R
M

Solve for T to obtain: _ 0.045gR M

3R

T 1)

Evaluate 7 for O;: 7 0.045(9.81m/s”)(6.37x10° m)
3(8.314J/mol - K)

x(32x10"*kg/mol)
=[3.61x10°K
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(b) Substitute numerical values and . 0.045(9.81m/32)(6.37 x10° m)
evaluate 7 for Hy: 3(8.314J/mol - K)
x (2 x107° kg/mol)
=| 225K

If Vs > £V, OF T > 25T,

atm?

H, moleculesescape. Therefore, the more

(c) .
energetic H, molecules escape from the upper atmosphere.

(d) Express equation (1) at the T 0.045g . oon Rioon M
surface of the moon: 3R
— 0045(% gearth )RmoonM
- 3R
~ 0.0025g,.1, R oo M
R

Substitute numerical values and evaluate T for O,:

_ 0.0025(9.81ms? )(L.738 x 10° m (32 x 10" kg/mol)

T =1164K
8.314J/mol - K
Substitute numerical values and evaluate T for H,:
;- 0:0025(9.81m/s” 1.738x10° m )2 10 kg/mol ) _ o

8.314J/mol - K

If we assume that the temperature on the moon with an atmosphere would
have been approximately 1000 K, then all O, and H, would have
escaped during the time since the formation of the moon to the present.

26 oo
Picture the Problem We can use v, = 1/3RT/M to calculate the rms speeds of H,, O,

and CO, at 273 K and then compare these speeds to 20% of the escape velocity on Mars
to decide the likelihood of finding these gases in the atmosphere of Mars.

Express the rms speed of an atom as 3RT
a function of the temperature: Vims = M
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(@) Substitute numerical values and

evaluate vy, for Ha:

(b) Evaluate viys for Oy:

(c) Evaluate vims for CO,:

(d) Calculate 20% of ves for Mars:

_ [3(8.314J/mol - K)(273K)
meHe 2x10~° kg/mol

=|1.85km/s

L 3(8.314J/mol - K )(273K)
M0z 32 x10~* kg/mol

=| 461m/s

) _[3(8.314J/mol - K)(273K)
msC0z — 44 x107° kg/mol

=1|393m/s

v=1v, =1(5km/s)=1km/s

Because v is greater than v, for CO, and O, but less than v, for H,
O, and CO.,, but not H,, should be present.

*27 L 1]

Picture the Problem We can use v, = 1/3RT/M to calculate the rms speeds of H,, O,,

and CO; at 123 K and then compare these speeds to 20% of the escape velocity on Jupiter
to decide the likelihood of finding these gases in the atmosphere of Jupiter.

Express the rms speed of an atom as
a function of the temperature:

(a) Substitute numerical values and

evaluate v, for Hy:

(b) Evaluate vyys for Oy:

(c) Evaluate vims for CO,:

3RT

Vims =45,
M

L 3(8.314J/mol - K)(123K)
s e 2x107% kg/mol

=11.24km/s
L 3(8.314J/mol - K)(123K)
ms02 32 x10~* kg/mol

=| 310m/s
., _ [3(8.314J/mol - K)(123K)
ms.Coz 44 x107% kg/mol

=| 264m/s
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(d) Calculate 20% of ves. for Jupiter: v="1v, =1(60km/s)=12km/s

Because v is greater than v, for O,, CO,,and H,, O,,CO,, and H, should
be found on Jupiter.

Temperature Scales

28 -
Picture the Problem We can convert both of these temperatures to the Fahrenheit scale
and then express their difference to find the range of temperatures.

Solve the Fahrenheit-Celsius tr =31, +32°
conversion equation for the
Fahrenheit temperature:

Find the Fahrenheit equivalent of te = %(— 12°)+ 32°=10.4°
-12°C:

Find the Fahrenheit equivalent of te = %(— 7°)+ 32°=19.4°F
—7°C:

The difference between these two Range =19.4°F-10.4°F
temperatures is the range on the —| 9.00F°

Fahrenheit scale:

Remarks: We could take advantage of the fact that 9 F° =5 C° to arrive at the
aforementioned result in which the range of Celsius temperatures happens to be 5C°.
If the temperature difference were other than 5C°, we could set up a proportion to
quickly find the range on the Fahrenheit scale.

29
Picture the Problem We can use the Fahrenheit-Celsius conversion equation to find this
temperature on the Celsius scale.

Convert 1945.4°F to the equivalent te =5 (t, —32°) = 5(1945.4° - 32°)
Celsius temperature: —[1063°C

*30 -
Picture the Problem We can use the Fahrenheit-Celsius conversion equation to express
the temperature of the human body on the Celsius scale.

Convert 98.6°F to the equivalent te =3(f —32°)=5(98.6°-32°)
Celsius temperature: —[37.0°C
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31 -
Picture the Problem While we could use NP s S = s — —Ligo
Equation 17-1 to relate the Celsius
temperature to the length of the column of
mercury in the thermometer, an alternative bi— 4+ — — — — — — — —lzg
solution is to use the diagram to the right to
set up a proportion that will relate the
Celsius temperature to the calibration
temperatures and to the lengths of the

mercury column. P= o === = == ~ Lo
Using the diagram, set up a ,-0°C _ L-L
proportion relating the temperatures 100°C-0°C L, — L,
to the lengths of the column of
mercury:
Solve for and evaluate L;: I = 2 (LlOO - Lo)
t = nme T Lo
100°
_#,(24.0cm-4.0cm) - 4.0em
100°
_ tC(ZO.Ocm)+4.OCm
100°
(a) Substitute 22.0°C for ¢, and L= (22.0 C)(20.0cm)+4_0Cm
evaluate L 100°
=| 8.40cm
(b) Substitute 25.4 ¢cm for L, and - 25.4cm—-4.0cm <100°
evaluate 7, ¢ 20cm
=|107°C
32 e

Picture the Problem We can use the temperature conversion equations
tr =2t +32°and 1, =T —273.15K to convert 10" K to the Fahrenheit and Celsius

temperatures.

Express the kelvin temperature in terms T =1t.+273.15K
of the Celsius temperature:
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(@) Solve for and evaluate #:

(b) Use the Celsius to Fahrenheit
conversion equation to evaluate #:

33 -

Picture the Problem While we could
convert 77.35 K to a Celsius temperature
and then convert the Celsius temperature
to a Fahrenheit temperature, an alternative
solution is to use the diagram to the right
to set up a proportion for the direct
conversion of the kelvin temperature to its
Fahrenheit equivalent.

Use the diagram to set up the
proportion:

Solve for and evaluate #:

34 .

te =T —273.15K =10 K - 273.15K
10" K

Q

t, = 2(107°C)+32° ~[ 1.80x107°F

°F K
MW—|——— — — — — —373.15

R—|———— — — — —273.15

—[— — — — — — — —77.35

32°F—1, _ 273.15K-77.35K
212°F—32°F 373.15K —273.15K
or

32°F—1, 195

180F° 100

te = 32°F—@x18OF° =| —319°F
100

Picture the Problem We can use the fact that, for a constant-volume gas thermometer,
the pressure and absolute temperature are directly proportional to calibrate the given
thermometer; i.e., to find the constant of proportionality relating P and 7. We can then
use this equation to find the temperature corresponding to a given pressure or the pressure

corresponding to a given temperature.
Express the direct proportionality
between the pressure and the

temperature:

Use numerical values to evaluate C:

P=CT

where C is a constant.

_ P _0.400atm
T 273.15K

=1.464x107% atm/K
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Substitute to obtain: P= (1.464 x107% atm/ K)T €))
or
T =(682.9K/atm)P )
(a) Use equation (2) to find the T = (682.9K/atm)(0.1atm)
temperature: —| 68.3K
(b) Use equation (1) to find the P= (1.464><10‘3 atm/ K)
boiling point of sulfur: % (444.6 + 273.15)K

=| 1.05atm

*35 e

Picture the Problem We can use the information that the thermometer reads 50 torr at
the triple point of water to calibrate it. We can then use the direct proportionality between
the absolute temperature and the pressure to either the pressure at a given temperature or
the temperature for a given pressure.

Using the ideal-gas temperature scale, _273.16K P 273.16K P

T =
relate the temperature to the pressure: P, 50torr
= (5.463K torr )P
(@) Solve for and evaluate P when P= (0.1830 torr/K)T
T=300 K: = (0.1830torr/K )(300K)
=| 54.9torr

(b) Find T when the pressure is 678 torr: T = (5.463K/torr )(678torr)
=| 3704K

36 -

Picture the Problem We can use the equation for the ideal-gas temperature scale to
express the temperature measured by this thermometer in terms of its pressure and the
given data to calibrate the thermometer.

Write the equation for the ideal-gas T 273.16K p
temperature scale: P,

17-4
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(a) Solve for and_ evalua_te the o 273.16K P 273.16K (30torr)
thermometer’s triple-point pressure: T 373K
=| 22.0torr
(b) Substitute for P5 in Equation 17-4: T 273.16K P 273.16K (0.175torr)
22.0torr 22.0torr
=| 217K
37 .

Picture the Problem We can find the temperature at which the Fahrenheit and Celsius
scales give the same reading by setting # = #c in the temperature-conversion equation.

Set fr = rcin tg = 5(t, —32°): t. = 5(1 —32°)

Solve for and evaluate #: =t =| —40.0°C |=| —40.0°F

Ic

Remarks: If you’ve not already thought of doing so, you might use your graphing
calculator to plot tc versus tr and tr = tc (a straight line at 45°) on the same graph.
Their intersection is at (-40, —40).

38 -

Picture the Problem We can use the Celsius-to-absolute conversion equation to find 371
K on the Celsius scale and the Celsius-to-Fahrenheit conversion equation to find the
Fahrenheit temperature corresponding to 371 K.

Express the absolute temperature as T =t.+273.15K
a function of the Celsius

temperature:

Solve for and evaluate #c: te =T -273.15K

=371K -273.15K =| 97.9°C

Use the Celsius-to-Fahrenheit tr = 21 +32°=2(97.9°)+32°
conversion equation to find #: —[ 208°F
39 -

Picture the Problem We can use the Celsius-to-absolute conversion equation to find 90.2
K on the Celsius scale and the Celsius-to-Fahrenheit conversion equation to find the
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Fahrenheit temperature corresponding to 90.2 K.

Express the absolute temperature as a
function of the Celsius temperature:

Solve for and evaluate #:

Use the Celsius-to-Fahrenheit
conversion equation to find #:

40 e
Picture the Problem We can use the
diagram to the right to set up proportions
that will allow us to convert temperatures
on the Réaumur scale to Celsius and
Fahrenheit temperatures.

Referring to the diagram, set up a
proportion to convert temperatures on
the Réaumur scale to Celsius
temperatures:

Simplify to obtain:

Referring to the diagram, set up a
proportion to convert temperatures on
the Réaumur scale to Fahrenheit

temperatures:

Simplify to obtain:

*41 (X1}

T =1, +273.15K

t. =T -273.15K
=90.2K —273.15K =[ —183°C

fo = 21, +32° = $(~183°)+32°

=| —297°F
C F R
100°—|— = = — - 20l — — — — 80°|—
tg=l= = === tpl— — — — — Ig |—
0°—[————-— 320|— — — — — 0°|—
t.—0°C t, —0°R

100°C—0°C _ 80°R —0°R

fo e oo tc =|1.25¢,
100 80

t,—32°F £, —0°R
212°F-32°F  80°R —0°R

t.—32 g 5
——=—"ort.=| 3t +32
180 8 - AR

Picture the Problem We can use the temperature dependence of the resistance of the
thermistor and the given data to determine R and B. Once we know these quantities, we
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can use the temperature-dependence equation to find the resistance at any temperature in
the calibration range. Differentiation of R with respect to 7" will allow us to express the
rate of change of resistance with temperature at both the ice point and the steam point

temperatures.

(a) Express the resistance at the ice
point as a function of temperature of
the ice point:

Express the resistance at the steam
point as a function of temperature of

the steam point:

Divide equation (1) by equation (2)
to obtain:

Solve for B by taking the logarithm
of both sides of the equation:

Solve equation (1) for R, and
substitute for B:

(b) From (a) we have:

Convert 98.6°F to kelvins to obtain:

Substitute to obtain:

(c) Differentiate R with respectto 7
to obtain:

7360Q = R e”?"¥ (1)
153Q = R "X )

736002
153Q

In48.1= B[ = — |k
273 373

_ 48.10 = P/273K-B3T3K

and

p—_ 481  e10°K

11
273 373

73600

R =——"""
07 BJ2TK
(7360 Q)e—3.94><103 K/273K
=13.97x107°Q

=(7360Q)e 773«

R =(3.97x102 Q)0

T =310K

R= (3.97 x107° Q)e3.94x103 K/310K
=] 1.31kQ

d_R:i(R eB/T):ReB/Ti B
dT  dT "' ° o ar\r
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Evaluate dR/dT at the ice point: (d_Rj _ (7360 0)(3.94x10°K)
AT )icapoin (273.16K)’
=| —-389Q/K
Evaluate dR/dT at the steam point: ( dR j _ (1530)(3.94x10°K)
dT steam point (37316 K)Z
=| -4.33Q2/K

The thermistor is more sensitive; i.e., it has greater sensitivity at lower
temperatures.

(@)

The Ideal-Gas Law

42

Picture the Problem Let the subscript 1 refer to the gas at 50°C and the subscript 2 to
the gas at 100°C. We can apply the ideal-gas law for a fixed amount of gas to find the
ratio of the final and initial volumes.

Apply the ideal-gas law for a fixed By, AV
amount of gas: T, - 1
or, because P, = Py,
v, T,
[
Substitute numerical values and Vs _ (273.15+100)K _M15
evaluate V,/Vy: v, (273.15+50)K =

43 o
Picture the Problem We can use the ideal-gas law to find the number of moles of gas in
the vessel and the definition of Avogadro’s number to find the number of molecules.

Apply the ideal-gas law to the gas: PV =nRT

Solve for the number of moles of gas - PV
in the vessel: RT
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Substitute numerical values and
evaluate n:

Relate the number of molecules N in
the gas in terms of the number of
moles #:

Substitute numerical values and evaluate N:

N =(1.79mol)(6.022 x 10% molecules/mol ) =

44 e

B (4atm)(10L)
~ (8.206x107% L -atm/mol - K )(273K)

=[1.79mol

N =nN,

1.08 x10* molecules

Picture the Problem We can use the ideal-gas law to relate the number of molecules in
the gas to its pressure, volume, and temperature.

Solve the ideal-gas law for the number
of molecules in a gas as a function of
its pressure, volume, and temperature:

Substitute numerical values and
evaluate V;

45 e
Picture the Problem The pictorial
representation to the right, in which T;
represents absolute zero, summarizes the
information concerning the temperatures
and pressures we are given. We know,
from the ideal-gas law, that the pressure of
a fixed volume of gas is proportional to its
absolute temperature. We can use the
diagram to set up a proportion relating the
temperatures and pressures that we can
solve for Ty.

Apply the ideal-gas law to obtain:

Solve for T, to obtain:

PV
kT

(10°® torr)(133.32Pa/torr)(10°* m?)
(L.381x107% J/K (300K )

=|3.22x10°
T, glips T, klads
D= — —i—— = ——— — —-12.5
- |-———-—————— -8.7
- —--——-—-- -0

22 glips—T, —10glips T,
12.5klads 8.7 klads

T, =| —83.2glips
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Remarks: Because the gas is ideal, its pressure is directly proportional to its
temperature. Hence, a graph of P versus T will be linear and the linear equation
relating P and T can be solved for the temperature corresponding to zero pressure.

46 e

Picture the Problem Let the subscript 1 refer to the tires when their pressure is 180 kPa
and the subscript 2 to conditions when their pressure is 245 kPa. Assume that the air in
the tires behaves as an ideal gas. Then, we can apply the ideal-gas law for a fixed amount
of gas to relate the temperatures to the pressures and volumes of the tires.

(a) Apply the ideal-gas law for a BV, EV]
: . == (1)
fixed amount of gas to the air in the T, 1,
tires:
: P
Solve for 7z T,=T,—2 because V1 = V>.

1

Substitute numerical values to 7, = (265 K)245 kPa _ oe0 7k
obtain: 180kPa
=| 87.7°C
(b) Use equation (1) with _ BV, . F,
V, = 1.07 V1. Solve for T: T = o, I, =107 ETl
Substitute numerical values and T, = 1.07(360.7 K) =385.9K =| 113°C
evaluate 75:
47 o

Picture the Problem We can apply the ideal-gas law to find the number of moles of air
in the room as a function of the temperature.

(a) Use the ideal-gas law to relate the n= ﬂ (1)
number of moles of air in the room to RT

the pressure, volume, and temperature

of the air:

Substitute numerical values and (1013 kPa)(90 m3)
evaluate 1 "~ (8.:314J/mol - K)(300K)

=1 3.66x10°mol
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(b) Letting n' represent the number
of moles in the room when the
temperature rises by 5 K, express
the number of moles of air that
leave the room:

Apply the ideal-gas law to obtain:
Divide equation (2) by equation (1)
to obtain:

Substitute for »’ to obtain:

Substitute numerical values and
evaluate An:

*48 oo

An=n-n'
PV
n =27 2
RT )
—=— and n':nz
’ TV
An:n—nzzn 1—2
T T

An = (3.66x10° mol )| 1 - 220K
305K

=| 60.0mol

Picture the Problem Let the subscript 1 refer to helium gas at 4.2 K and the subscript 2
to the gas at 293 K. We can apply the ideal-gas law to find the volume of the gas at 4.2 K
and a fixed amount of gas to find its volume at 293 K.

(a) Apply the ideal-gas law to the
helium gas and solve for its volume:

Substitute numerical values to
obtain:
Find the number of moles in 10 g of

helium;

Substitute for » to obtain:

(b) Apply the ideal-gas law for a
fixed amount of gas and solve for

V= nRT
A
Vo (0.08206L - atm/mol - K )(4.2K)
! 1atm
=(0.3447 L/ mol)n
n= 109 =2.5mol
4g/mol

7, =(0.3447L/mol)(2.5mol)
0.862L
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the volume of the helium gas at
293 K:

Substitute numerical values and
evaluate V5:

49 e

and, because P; = P,

V, ZEV:L
I

v, :%(O.%ZL): 60.1L
42K

Picture the Problem Because the helium is initially in the liquid state, its temperature
must be 4.2 K. Let the subscript 1 refer to helium gas at 4.2 K and the subscript 2 to the
gas at 293 K. We can apply the ideal-gas law for a fixed volume of gas to relate the
pressure at 293 K to the pressure at 4.2 K and use the ideal-gas law to find the pressure at

4.2 K.

Apply the ideal-gas law for a fixed
amount of gas:

Solve for its pressure at 293 K:

Apply the ideal-gas law to the
helium gas at 4.2 K and solve for its
pressure:

Substitute numerical values to
obtain:

Find the number of moles in 10 g of

helium:

Substitute for » to obtain:

Substitute in equation (1) and
evaluate P»:

*50 L 1]

bV, _ BN
LT
p=tie_pt o
Y

because V'; =V,

P- nRT|

4

(0.08206 L - atm/mol - K)(4.2K)
B=n

6L
= (0.05744atm/mol )n
n= 109 _ 2.5mol
4g/mol

P, =(0.05744atm/mol)(2.5mol)

=0.1436atm

B, = (0.1436atm)% =|10.0atm

Picture the Problem Let the subscript 1 refer to the tire when its temperature is 20°C
and the subscript 2 to conditions when its temperature is 50°C. We can apply the ideal-
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gas law for a fixed amount of gas to relate the temperatures to the pressures of the air in
the tire.

(a) Apply the ideal-gas law for a K, :ﬂ (1)
fixed amount of gas and solve for T, Y
pressure at the higher temperature: and
B=2F
L
because V1 = 1,
Subs_titute numerical values to P 323K (200kPa +101kPa)
obtain: 293K
=332kPa
and
P, jauge = 332kPa —101kPa
=| 231kPa
(b) Solve equation (1) for P, with p_ WI, P
V> =1.1 V; and evaluate P,: 2 V, T, !
= ﬂ(zoo kPa +101kPa)
1.1(293K)
=302kPa
and
P, jauge = 302kPa —101kPa =| 201kPa

51  ee

Picture the Problem Let p,_and p, be the number densities (i.e., the number of
particles per unit volume) of N, and O, respectively. We can express the density of air in
terms of the densities of nitrogen and oxygen and their number densities

as Py, = My, Py, + My P - By applying the ideal-gas law, we can find the number
density of air and, using the given composition of air, calculate the number densities of
nitrogen and oxygen. Finally, we can find the masses of nitrogen and oxygen molecules
from their atomic masses. Knowing P, Po,s My, » and mg_,We can calculate oy

Express the density of air in terms of D = My Py, + My Py (1)
the densities of nitrogen and oxygen: v v

Using the ideal-gas law, relate the N P
number density of air N/V to its PV = NkT and 7w
temperature and pressure:
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Substitute numerical values and

evaluate the number density of air:

Because air is approximately 74%
N, and 26% 0O,:

Calculate the masses of N, and O,
molecules:

Substitute in equation (1) and
evaluate pg:

52 [T}

- ([L.381x10 % UK )(297K)
=2.46x10"m™

N 1.01x10° N/m?
4

P, = o.74% —0.74(2.46x10% m")

=1.82x10®°m™
and

Po, = 0.26% —0.26(2.46x10* m™?)

=6.40x10*m™

my, = (28u)(1.660x 10 kg/u)

=4.65x10"% kg
and
mo, = (32u)(L.660x107 kg/u)

=5.31x10"*°kg

Pur = (4.65><10‘26 kg)(1-82xl025 m‘B)
+(5.31x10% kg)(6.40x10% m )
=|1.19kg/m®

Picture the Problem Let the subscript 1 refer to the conditions at the bottom of the lake
and the subscript 2 to the surface of the lake and apply the ideal-gas law for a fixed

amount of gas.

Apply the ideal-gas law for a fixed

amount of gas:

Solve for the volume of the bubble

just before it breaks the surface:

Find the pressure at the bottom of
the lake:

B, _Bh
L, 1
T,F,
V=V
Lb,

B =P, + pgh

—101.3kPa
+(10° kg/m®)(9.81m/s? J(40m)

— 493.7kPa
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Substitute numerical values and
evaluate V5:

53 oo

5\(298K)(493.7kPa)
’(278K)(101.3kPa)

=| 78.4cm?®

V, (15cm

Picture the Problem Assume that the volume of the balloon is not changing. Then the
air inside and outside the balloon must be at the same pressure of about 1 atm. The
contents of the balloon are the air molecules inside it. We can use Archimedes principle
to express the buoyant force on the balloon and we can find the weight of the air

molecules inside the balloon

Express the net force on the balloon

and its contents:

Using Archimedes principle,
express the buoyant force on the
balloon:

Express the weight of the air inside
the balloon:

Substitute in equation (1) for B and
Wair inside the balloon TO ODtain:

Express the densities of the air
molecules in terms of their number
densities, molecular mass, and
Avogadro’s number:

Using the ideal-gas law, relate the
number density of air N/V to its
temperature and pressure:

Substitute to obtain:

Substitute in equation (2) and
simplify to obtain:

net — B - Wiair inside the balloon (1)

B = Wiisplaced fluid — Mdisplaced fluid &
or
B = poVbaIIoong

where p, is the density of the air outside
the balloon.

Wairinside the balloon — pi Vballoong

where p; is the density of the air inside the
balloon.

Fnet = poVbaIIoong _inbaIIoong

(2)
= (po — P )Vballoong
_M(N
p N\ V
PV = NkT and E:i
V kT
_M( P
PN T
MP({1 1
net — - Vballoong
N\, T,

Assuming that the average molecular weight of air is 29 g/mol, substitute numerical

values and evaluate Fet:
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e (29g/mol)(1.01x10° N/m?) 11
" (6.022x10% particles/mol )(1.381x10 2 /K || 297K~ 348K
x(1.5m*)(9.81mis? )
=[ 256N
54  eee

Picture the Problem We can find the number of moles of helium gas in the balloon by
applying the ideal-gas law to relate » to the pressure, volume, and temperature of the
helium and Archimedes principle to find the volume of the helium. In part (»), we can
apply the result of Problem 13-95 to relate atmospheric pressure to altitude and use the
ideal-gas law to determine the pressure of the gas when the balloon is fully inflated. In
part (c), we’ll find the net force acting on the balloon at the altitude at which it is fully
inflated in order to decide whether it can rise to that altitude.

(a) Apply the ideal-gas law to the n PV 1)
helium in the balloon and solve RT
for n:
Relate the net force on the balloon Fo =Wy = Wioag — Whe = 30N
to its weight:
Use Archimedes principle to Fg = Wisplacedair
express the buoyant force on the = p.Ve
balloon in terms of the volume of
the balloon:
Substitute to obtain: PaiV€ = Wyin = Wioad — PreV’€ =30N
Solve for the volume of the helium: - 30N + Wi, + Wiod
(pair ~ Phe )g
Substitute numerical values and _ 30N+50N+110N
evaluate V: (1.293kg/m3 -0.179 kg/mS)
1

“To.81m/s?)

=17.39m?
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Substitute numerical values in (1t )(17 39 3) 1L
equation (1) and evaluate n: amjif-oom 10°%m?

~ (8.206x1072 L -atm/mol - K )(273K)

=| 776 mol
(b) Using the result of Problem 13- P(h)=Pe""
95, express the variation in where i, = 7.93 km
atmospheric pressure with altitude:
Solve for #:
h=hyln h 2
P(h)

Neglecting changes in temperature with elevation, apply the ideal-gas law to find the
pressure at which the balloon’s volume will be 32 m®:

_ nRT _ (776mol)(8.206x10°2 L -atm/mol - K )(273K)

4 2mix t-
107 m

P =0.543atm

Substitute in equation (2) and

h = (7.93km)In| —2™_ | _["4 84km
0.543atm

evaluate 4:

(c) Express the condition that must be Fy=Fg—wg 20 (3)
satisfied if the balloon is to reach its
fully inflated altitude:

EXpress wi: Wit = Wioad T Wakin T Whe
=110N +50 N + w,
=160 N +w,

Express the weight of the helium: Wee = Puc’g

Substitute for wy and evaluate wio: W =160N+ p,, Vg
=160N +(0.179kg/m?)(17.38m*)
x(9.81m/s?)
=190.5N

Determine the buoyant force on the Fy=p,i Ve 4)
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balloon at 4 = 4.84 km:
Express the dependence of the

density of the air on atmospheric
pressure:

Substitute and evaluate Fg:

Substitute in equation (3) and
evaluate Fler:

i: Pair, i (5)
PO pair
or
_r
palr,h PO palr
P
Fy=—paVs
B PO palr g
= 0.543(1.293kg/m*)(32m?)
x(9.81m/s?)
= 219.9N

F..=2199N-190.5N=294N2>0

net

Because F

net

fullyinflated.

> 0, the balloon will rise higher than the altitude at which it is

(d) The balloon will rise until the net force acting on it is zero. Because the buoyant
force depends on the density of the air, the balloon will rise until the density of the air
has decreased sufficiently for the buoyant force to just equal the total weight of the

balloon.

Substitute equation (5) in equation
(2) to obtain:

Using equation (4), find the density
of the air such that g = 190.5 N:

Substitute numerical values and
evaluate 4:

h=hyIn L
pair,h
R, 1905N
P =y = B2m?)9.81m/s?)
— 0.6068kg/m’

3
h :(7.93km)ln[mj

0.6068kg/m®

=|6.00km
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Kinetic Theory of Gases

*55
Picture the Problem We can express the rms speeds of argon and helium atoms by
combining PV = nRT and v, = 1/3RT/M to obtain an expression for vy in terms of

P, V, and M.

Express the rms speed of an atom as a 3RT
function of the temperature: Vims = M
From the ideal-gas law we have: RT — PV

Substitute to obtain: 3PV
vrms =
nM

(a) Substitute numerical values and evaluate v,ms for an argon atom:

-3 A3
v (Ar)= 3(10atm)(101.3kPa/3atm)(10 m’) _ T
(1mol)(40x 10~ kg/mol)

(b) Substitute numerical values and evaluate v,ms for a helium atom;

-3 a3
v (He)= 3(10atm)(lOl.3kP:i1£atm)(10 m’) _ TS
(tmol)(4 x107 kg/mol)

56 -
Picture the Problem We can express the total translational kinetic energy of the oxygen
gas by combining K = 5 nRT and the ideal-gas law to obtain an expression for K in terms

of the pressure and volume of the gas.

Relate the total translational kinetic K =3nRT
energy of translation to the
temperature of the gas:

Using the ideal-gas law, substitute K=3PV
for nRT to obtain:

Substitute numerical values and K =2(101.3 kPa)(lO’s m3): 152
evaluate K:
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57
Picture the Problem Because we’re given the temperature of the hydrogen atom and
know its molar mass, we can find its rms speed using v, = 1/3RT/M and its average

kinetic energy from K, = 34T

Relate the rms speed of a hydrogen _ |3RT
atom to its temperature and molar Vims = M
mass:
Substitute numerical values and 3(8.314J/mol - K)(lo7 K)
evaluate vims: Yims = 10~*kg/mol
=| 499km/s
Express the average kinetic energy K, =3kT

of the hydrogen atom as a function
of its temperature:

3(1.381x10* UK )(10" K)
= 2.07x107]

Substitute numerical values and K.,
evaluate K,

*58 e

Picture the Problem Because there are 6 squared terms in the expression for the total
energy of an atom in this model, we can conclude that there are 6 degrees of freedom.
Because the system is in equilibrium, we can conclude that there is energy of 1 kT per

molecule or $ RT per mole associated with each degree of freedom.

Express the average energy per atom E, _ N(l kT) _ 6(l kT) _[3kr
in the solid in terms of its atom 2

temperature and the number of
degrees of freedom:

Re'late the total energy of one mole E\y _ N(%RT) _ 6(%RT): 3RT
to its temperature and the number of mole

degrees of freedom:

59 -

Picture the Problem We can combine A = and PV = nRT to express the

1
N2n 7 d?

mean free path for a molecule in an ideal gas in terms of the pressure and temperature.
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Express the mean free path of a ao 1
molecule in an ideal gas: \/El’lvﬂdz

where
n,=N/V =nN,/V

Solve the ideal-gas law for the - nRT
volume of the gas: P
Substitute in our expression for n, to w = Nap_ P
obtain: " nRT kT
Substitute in the expression for the kT

. A=| —=——
mean free path to obtain: J2Prd?
60 oo

Picture the Problem We can find the collision time from the mean free path and the
average (rms) speed of the helium molecules. We can use the result of Problem 43 to find
the mean free path of the molecules and v, = \/3RT/M to find the average speed of the

molecules.

Express the collision time in terms of r= i 1)
the mean free path for and the average v

speed of a helium molecule:

Use the result of Problem 43 to 1= kT

express the mean free path of the \/EPﬂ'dz

gas:

Substitute numerical values and 1 (1.381x 107 J/K )(300K)

evaluate A J2(7x10"Pa)z (10 m
=1.332x10°m

Express the average speed of the _ |3RT

molecules: Vims = M

Substitute numerical values and _[3(8.314J/mol - K )(300K)

evaluate vy Vims = 4 %1072 kg/mol

=1.368x10°m/s
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. . . 9

Substitute in equation (1) and . 1.332x10°m _[974x10°s
evaluate = 1.368x10° m/s

<61 e

Picture the Problem We can use K =37 and AU = mgh = Mgh/ N , to express the

ratio of the average kinetic energy of a molecule of the gas to the change in its
gravitational potential energy if it falls from the top of the container to the bottom.

Express the average kinetic energy K =3kT
of a molecule of the gas as a
function of its temperature:

Letting /4 represent the height of the
container, express the change in the N,
potential energy of a molecule as it

falls from the top of the container to

the bottom:
Express the ratio of K to AU and K _ 3kT _3NkT
simplify to obtain: AU  Mgh  2Mgh

N

Substitute numerical values and evaluate K/AU:

K _ 3(6.022x10”)1.381x10™ UK )(300K) _ e

AU 2(32x107°kg)(9.81m/s?)(0.15m)

The Distribution of Molecular Speeds

62 oo

Picture the Problem Equation 17-37 gives the Maxwell-Boltzmann speed distribution.
Setting its derivative with respect to v equal to zero will tell us where the function’s
extreme values lie.

Differentiate Equation 17-37 with d d| 4 ( m 92 2 i okT
respect to v: o dv ﬁ(ZkT] ve

4 3/2 3
- i _m —va/ZkT
) 2k f
T
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Set dfldv = 0 for extrema and solve m?e 2kT
for v: ZV—E=0:> v=| ., —
' m

Examination of the graph of f{v) makes it
clear that this extreme value is, in fact, a
maximum. See Figure 17-16 and note that
it is concave downward at v = /2kT/m.

Remarks: An alternative to the examination of f(v) in order to conclude that
v =/2kT/m maximizes the Maxwell-Boltzmann speed distribution function is to

show that d*f/dv® < 0 atv = ,/2KT /m.

*63 e
Picture the Problem We can show that f{v) is normalized by using the given integral to
integrate it over all possible speeds.

Express the integral of Equation 17-37: 2 Y2 2
P ’ | If(v)dv = %(—ZZT] jvze_mv [2KT 1,
T

0

o0

I 4 32(.2 —av?
Wy = — d
.!.f(v V=—=a J-ve v

0

Let a =m/2kT to obtain:

Use the given integral to obtain:

i :i 3/2 ﬁ =32 | _ 1
.([f(v)dv \/;a [ 2 e ]
i.e., f{v)is normalized.

64 e
Picture the Problem In Problem 63 we showed that f{v) is normalized. Hence we can

evaluate v, using J- vf (v)dv .
0

Express the average speed of the T
molecules in the gas: av )
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Substitute a = m/2kT : 4 %

_ 3/2 —av
v, =——da dv
Tr {
Use the given integral to obtain: 9
2 JZ
_| 2 |%T
T\ m
*05 oo

Picture the Problem Choose a coordinate system in which downward is the positive
direction. We can use a constant-acceleration equation to relate the fall distance to the
initial velocity of the molecule, the acceleration due to gravity, the fall time, and

Vs = +/3kT/m to find the initial velocity of the molecules.

rms

(@) Using a constant-acceleration Y=vt+1 gt2 @
equation, relate the fall distance to

the initial velocity of a molecule, the

acceleration due to gravity, and the

fall time:

Express the rms speed of the atom to _|BkT

its temperature and mass: Vims =417,

Substitute numerical values and 3(1.381>< 1072 J/K)(lzo nK)

evaluate vims: ™\ (85.47u)(1.660 x 10" kg/u)
=5.92x10°m/s

Letting vims = vo, Substitute in 0.1m= (5 92x10° m/s)t +1 (9 81m/s? ) 2

equation (1) to obtain:

Solve this equation to obtain: t=|0.142s

(b) If the atom is initially moving Vims = Vo = —5.92x107° m/s

upward:

Substitute in equation (1) to obtain: 0.1m= (—5.92><10’3 m/s)t

+1(0.81m/s?)r?
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Solve this equation to obtain:

General Problems

66

t=|0.143s

Picture the Problem We can use v, = +/3RT/M to relate the temperature of the H,

molecule to its rms speed.

Relate the rms speed of the molecule
to its temperature:

Solve for the temperature:

Substitute numerical values and
evaluate 7:

67 [T}

3RT
Vims = 7
M,
3R

(2x10°* kg/mol |(331m/s)
3(8.314J/mol - K)

8.79K

Picture the Problem We can use the ideal-gas law to find the initial temperature of the
gas and the ideal-gas law for a fixed amount of gas to relate the volumes, pressures, and
temperatures resulting from the given processes.

(a) Apply the ideal-gas law to
express the temperature of the gas:

Substitute numerical values and
evaluate 7:

(b) Use the ideal-gas law for a fixed
amount of gas to relate the
temperatures and volumes:

Solve for and evaluate 75:

(c) Use the ideal-gas law for a fixed
amount of gas to relate the

r PV
nRkR
-3 3
_ (101.3kPa)(10x10° m°) oo
(1mol)(8.314J/mol - K)
an _ Bl
L T
or, because P; = P,
n_n
I 7T,
VZ
T, =-2T, = 2(122K)=| 244K
4
BV, _ BV,
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temperatures and pressures: or, because V; = V5,

L_5H

I T,
Solve for T5: P =£P1

I

Substitute numerical values and P = 350K (Latm) = [1.43atm
evaluate P,: 244K
68 o

Picture the Problem We can use the definition of pressure to express the net force on
each wall of the box in terms of its area and the pressure differential between the inside
and the outside of the box. We can apply the ideal-gas law for a fixed amount of gas to
find the pressure inside the box.

Using the definition of pressure, F=AAP
express the net force on each wall of = APy — Prscice)
the box:
Use the ideal-gas law for a fixed hY, _ BV,
amount of gas to relate the initial 1 T,
and final pressures of the gas: or, because V; = V5,
H_5
L T
Solve for and evaluate Pjqsige: P=P. - T, p- 400K (101.3kPa)
T K
=135.1kPa
Substitute and evaluate F: F =(0.2m)’(135.1kPa —101.3kPa)
=| 1.35kN

*6Q oo
Picture the Problem We can use the molar mass of water to find the number of moles in
2 L of water. Because there are two hydrogen atoms in each molecule of water, there
must be as many hydrogen molecules in the gas formed by electrolysis as there were
molecules of water and, because there is one oxygen atom in each molecule of water,
there must be half as many oxygen molecules in the gas formed by electrolysis as there
were molecules of water.
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Express the electrolysis of water
into H, and O,:

Express the number of molesin 2 L
of water:

Because there is one hydrogen atom
for each water molecule:

Because there are two oxygen atoms
for each water molecule:

70 e
Picture the Problem The diagram shows
the cylinder before removal of the
membrane. We’ll assume that the gases are
at the same temperature. The approximate
location of the center of mass (CM) is
indicated. We can find the distance the
cylinder moves by finding the location of
the CM after the membrane is removed.
Express the distance the cylinder

will move in terms of the movement

of the center of mass when the

membrane is removed:

Apply the ideal-gas law to both
collections of molecules to obtain:

Divide the first of these equations
by the second to obtain:

Express the mass of O, in terms of
its molar mass and the number of
moles of oxygen:

”(Hzo)_) ”(H2)+%”(Oz)

n(H,0)= 22209 _ 111 mol
18g/mol

111mol

n(0,)=4n(H,0)=1(111mol)
=| 55.5mol

Ax = Xemafter — Xem,pefore

PNz n(NZ)

Poz ”(Oz)

or, because PNZ = ZPOZ,

2F, n(Nz)

2 —_ ) Z) N>) = 2n(0O
POZ I’Z(OZ) :n( 2) n( 2)

m(02) = n(02)M(O,)
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Express the mass of N, in terms of m(Ny) = 2n(02)M(Ny).
its molar mass and the number of

moles of nitrogen:

Using its definition, express the center of mass before the membrane is removed:

2 a(NMN e, OO, s
e ym, n(N;)M (N, )+n(0,)M(O,)
_ 2’/‘(02)]\4(|\|2)xcm,m2 + ”(Oz)]w(oz)xcm,o2
2”(02)M(N2)+ ”(Oz)M(Oz)
_ 2]M(Nz)xcm,N2 + ]M(Oz)xcm,o2
ZM(N2)+M(02)
Substitute numerical values and evaluate xcm pefore:
N _ 2(10cm)(289)+(30cm)(329) _1727em
cm,before 2(28g)+ 329 :
Locate the center of mass after the . _ 2(20cm)(289)+(20cm)(329)
membrane is removed: emafeer 2(289)+ 329
=20.0cm
Substitute to obtain: Ax =20.00cm—-17.27cm
=|2.73cm

Because momentum must be conserved during this process and the center of
mass moved to the right, the cylinder moved 2.73 cm to the left.

71 oo

Picture the Problem We can apply the ideal-gas law to the two processes to find the
number of moles of hydrogen in terms of the number of moles of nitrogen in the gas.
Using the definition of molar mass, we can relate the mass of each gas to the number of
moles of each gas and their molar masses.

Apply the ideal-gas law to the first BV =[2n(N,)+n(H,)]RT,
case:

Apply the ideal-gas law to the 3RV = [2n(N2)+ 2n(H2)]2R71
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second case:

Divide the second of these equations n(HZ): 2n(N2) (1)
by the first and simplify to express
n(Hy) in terms of n(N,):

Relate the my to n(Ny): my = ”(Nz)M(Nz)
=n(N,)(28g/mol)
and
m
N. )= N
N:) 28 g/mol
Relate the my to n(Hy): my = ”(Hz)M(Hz)
=n(H,)(2g/mol)
and
m
H.)= H
(M) 2g/mol
Substitute in equation (1) and solve my  _ 2my — = 7m
for my: 2g/mol  28g/mol N 3

*72 oo

Picture the Problem Initially, we have 3P,V = noRTy. Later, the pressures in the three
vessels, each of volume ¥, are still equal, but the number of moles is not. The total
number of moles, however, is constant and equal to the number of moles in the three
vessels initially. Applying the ideal-gas law to each of the vessels will allow us to relate
the number of moles in each to the final pressure and temperature. Equating this sum ng
will leave us with an equation in P" and P, that we can solve for P'.

Relate the number of moles of gas in ny=n,+n,+n,
the system in the three vessels

initially to the number in each vessel

when the pressure is P':

Relate the final pressure in the first pr an(ZTO) n = PV
vessel to its temperature and solve 4 2RT,
for ny:

Relate the final pressure in the P an(3To) = PV
second vessel to its temperature and 4 ? 3RT,

solve for ny:
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Relate the final pressure in the third pr nyRT, = PV
vessel to its temperature and solve 4 ’ RT,
for ng:

Substitute to obtain: PV PV PV

Ny = + +
2RT, 3RI, RI,
1 1 PV 11 PV

= —+=+1 =—
2 3 RT, 6\ RTj

Express the number of moles in the B Po(3V)
three vessels initially in terms of the RT,
initial pressure and total volume:

Equate the two expressions for n 18

. P'=|—~HR
and solve for P’ to obtain: 11
73 o0

Picture the Problem We can use the ideal-gas temperature scale to relate the temperature
of the boiling substance to its pressure and the pressure at the triple point. If we assume a
linear relationship between P/P; and P3, we can calibrate this equation using the data from
any two (or all) of the temperature measurements and then extrapolate this equation to zero
gas pressure to find the ideal-gas temperature of the boiling substance.

Using the ideal-gas temperature 7 - 27316 K P 1
scale, relate the temperature of the B ' _3 (1)
boiling substance to its pressure and
the pressure at the triple point:
Find the t t f the first
ind the emplera ure of the firs T,=273.16 K(734t0rr]
measurement: 500torr
=273.16 K(1.4680)
=401.00K
Find the t t f the third :
ind the emplera ure of the thir T,-273.16 K(146 65t0rrJ
measurement: 100 torr
=273.16 K(1.4655)

=400.59K
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- - - P
Assume a linear relationship L _avbp
between P/P; and Ps: A
where a is the pressure ratio for P3 = 0.
i i 734 torr
S_ubstltute using the data from the —a+ b(500 torr)
first measurement: 500 torr
or
1.4680 = a + h(500 torr)
i i 146.65torr
SLfbstltute using the data from the —a+ b(lOO torr)
third measurement: 100 torr
or
1.4665 = a + b(100torr)
Solve these equations a = 1.46613

simultaneously for a:

Substitute in equation (1) to obtain: T =273.16 K(1.46613) =| 400.49K

*74 oo

Picture the Problem Because the O, molecule resembles 2 spheres stuck together, which
in cross section look something like two circles, we can estimate the radius of the
molecule from the formula for the area of a circle. We can express the area, and hence the
radius, of the circle in terms of the mean free path and the number density of the
molecules and use the ideal-gas law to express the number density.

Express the area of two circles of d? d?
diameter d that touch each other: A=2 — |= T
Solve for d to obtain: 24

d=,— @

T
Relate the mean free path of the 1
molecules to their number density A= WA
and cross-sectional area: v
Solve for 4 to obtain: y 1
- n A

Substitute in equation (1) to obtain: 2

d= |—
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Use the ideal-gas law to relate the
number density of the O, molecules
to their temperature and pressure:

Substitute to obtain:

Substitute numerical values and
evaluate d-

75 oo

P
kT

PV = NKT or n, =

d= 2T
P A
| 2(1.381x10% /K )(300K)
| #{1.01x20° Pa)(7.1x10* m)

=6.06x10"m =| 0.606nm

<|=

Picture the Problem We can use its definition to express the mean free path of the
molecules and the ideal-gas law to obtain an expression for the number density of the

hydrogen gas molecules.

(a) Relate the mean free path of the
molecules to their number density
and cross-sectional area:

Use the ideal-gas law to relate the
number density of the H, molecules
to their temperature and pressure:

Express the effective cross-sectional
area of a H, molecule:

Substitute for n, and 4 to obtain:

Substitute numerical values and
evaluate A:

(b) Relate the available volume per
molecule to the number density n,.

Substitute numerical values and
evaluate V/N:

Express the volume of a spherical
molecule:

P
n, A
PV = NkT or n, _N_P
v kT
A=17md?
jo YT
Pd
A 4(1.381x10% J/K )(300K)
#(1.01x10° N/m?) (1.6 x 10 m
=[2.04x10°m
y_1_4#
N n P

v

¥ (1.381x10% J/K )(300K)
N 1.01x10°N/m?

4.10x10%*m?

3 3
V=2rr=tnd
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Solve for d:

Substitute numerical values and
evaluate d:

76 (1 1]

d:36—V
\ 7

-26 3
d:i/6(4.10><10 m ): I28m
T

The mean free path is larger by
approximately a factor of 1000.

Picture the Problem Let 4 be the cross-sectional area of the cylinder. We can use the
ideal-gas law to find the height of the piston under equilibrium conditions. In (b), we can
apply Newton’s 2" law and the ideal-gas law for a fixed amount of gas to the show that,
for small displacements from its equilibrium position, the piston executes simple

harmonic motion.

(a) Express the pressure inside the
cylinder:

Apply the ideal-gas law to obtain a
second expression for the pressure
of the gas in the cylinder:

Equate these two expressions:

Solve for /4 to obtain:

At STP, 0.1 mol of gas occupies
2.24 L. Therefore:

Substitute numerical values and
evaluate 4:

1)

nRT  (2.4m)A4P,

— atm
+Mg AP, + Mg

h=
AR,
2.4m
Mg

AP,

atm

1+

(2.4m)4=2.24x10"m’
and
A=9.33x10"*m?

2.4m
(1.4kg)(9.81m/s?)
(9.333x10* m?)(101.3kPa)

=| 2.096m
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(b) Relate the frequency of vibration
of the piston to its mass and a
"stiffness” constant:

Letting y be the displacement from
equilibrium, apply »' F, =ma, to

the piston in its equilibrium
position:

For a small displacement y above
equilibrium:

Using the ideal-gas law for a fixed
amount of gas and constant
temperature, relate B,'to B, :

Solve for B,":

Substitute in equation (3) to obtain:

Simplify equation (4):

Substitute in equation (1) to obtain:

k

1
f=oorr @)

M

where M is the mass of the piston and k is a

constant of proportionality.

B,A-mg—-P,,A=0

atm

Pin'A_mg_Path =ma,

or
Pin,A_PinA = may

RV'=RV
or
BV +4y)=RV

®3)

(4)
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Solve for ay: 4 :_nRTy
y th

or

y

k .
a, =——y, the condition for SHM
m

k nRT

where — = 5

m mh

Substitute in equation (2) to obtain: 1 [nRT
f =4 2
27 \ mh

Substitute numerical values and evaluate f:

=|1.01Hz

f

_ 1 [(0.1mol)(8.3143/mol - K)(300K)
_E\/ (1.4kg)(2.096 m)’

*77 (X1}

Vv
Picture the Problem We can show that_[f(v)dv = I(x), where f{v) is the Maxwell-
0

Boltzmann distribution function, x = sz/ZkT, and I(x) is the integral whose values are

tabulated in the problem statement. Then, we can use this table to find the value of x
corresponding to the fraction of the gas molecules with speeds less than v by evaluating
I(x).

(@) The Maxwell-Boltzmann speed 4 m 3/2 2
distribution f{x) is given by: fv)= _(Zij 2_-m?[2kT

N
which means that the fraction of particles
with speeds between v and

v+dvis f(v)dv.

Express the fraction F(V) of 4

particles with speeds less than ¥ = F(V)= j F(v)av

400 m/s: 0
4 32y

:_(lj j Ze—mv /Zdev

7\ 2kT 3

Change integration variables by okt okt

letting z = v/m/2kT so we can use VN, C T dv= " dz

the table of values to evaluate the
integral. Then:
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Substitute in the integrand of F(7) , T o 2kT Y
to obtain: V2e ™ T gy = 72 Le_z (Lj dz
m m
3/2
= {—Zij e dz
m
Transform the integration limits to Whenv=0,z=0,
correspond to the new integration and
variable z = vy/m/2kT : whenv =",z =V m/2kT

The new lower integration limit is 0. Evaluate z =V m/ZkT to find the upper limit:

- — (400mss) (32u)(1.661x10 *'kg) _, ¢
2(1.381x10% J/K)(273K)

Evaluate F(400 m/s) to obtain:

400m/s 3/2 400m/s / 1.06
400 m/s Ve M gy = [ 22
-[ f (ZkT j -([ T '([ }
= 1(1 06)
where [ 2%
W=
Letting  represent the fraction of the r—0.438 0.788-0.438
molecules with speeds less than 400 1 _
m/s, interpolate from the table to 1.06-1 15-1
. and
obtain:
r=|48.0%

(b) Express the fraction r of the r=FW,)-F(V,)=1(x,)-1(x,)

molecules with speeds between

where
V1 =190 m/s and V, = 565 m/s:

x, = V;\/m/2kT and x, = V,/m/2kT

Evaluate x; and x, to obtain:

, = (190ms) | (2WLEELX10 k) oo,
' 2(1.381x 107 J/K)(273K)

and

= (565ms) (32u)(1.661x107 kg) 150
2(1.381x10 J/K )(273K)

Substitute to obtain: r=1(1.50)-7(0.504) (1)
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Using the table, evaluate /(1.50): ](1_50) =0.788

Letting r represent the fraction of r—0.081 0.132-0.081
the molecules with speeds less than N _

190 m/s, interpolate from the table 26204 0.5 0.6-0.5
to obtain: +=0.083

Substitute in equation (1) to obtain: »=0.788-0.083 =] 705%
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