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Chapter 18 
Heat and the First Law of Thermodynamics 
 
Conceptual Problems 
 
1 •  
Picture the Problem We can use the relationship TmcQ ∆= to relate the temperature 

changes of bodies A and B to their masses, specific heats, and the amount of heat 
supplied to each. 
 
Express the change in temperature 
of body A in terms of its mass, 
specific heat, and the amount of heat 
supplied to it: 
 

AA
A cm

QT =∆  

Express the change in temperature 
of body B in terms of its mass, 
specific heat, and the amount of heat 
supplied to it: 
 

BB
B cm

QT =∆  

Divide the second of these equations 
by the first to obtain: 
 

BB

AA

A

B

cm
cm

T
T

=
∆
∆

 

Substitute and simplify to obtain: 
 

( )( ) 422

BB

BB

A

B ==
∆
∆

cm
cm

T
T

 

or 

AB 4 TT ∆=∆  

 
*2 •  
Picture the Problem We can use the relationship TmcQ ∆= to relate the temperature 

changes of bodies A and B to their masses, specific heats, and the amount of heat 
supplied to each. 
 
Relate the temperature change of 
block A to its specific heat and 
mass: 
 

AA
A cM

QT =∆  

Relate the temperature change of 
block B to its specific heat and 
mass: 
 

BB
B cM

QT =∆  
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Equate the temperature changes to 
obtain: 
 

AABB

11
cMcM

=  

Solve for cA: 
B

A

B
A c

M
Mc =  

and correct. is )( b  

 
3 •  
Picture the Problem We can use the relationship TmcQ ∆= to relate the amount of 

energy absorbed by the aluminum and copper bodies to their masses, specific heats, and 
temperature changes. 
 
Express the energy absorbed by the 
aluminum object: 
 

TcmQ ∆= AlAlAl  

Express the energy absorbed by the 
copper object: 
 

TcmQ ∆= CuCuCu  

Divide the second of these equations 
by the first to obtain: 
 

Tcm
Tcm

Q
Q

∆
∆

=
AlAl

CuCu

Al

Cu  

Because the object’s masses are the 
same and they experience the same 
change in temperature: 
 

1
Al

Cu

Al

Cu <=
c
c

Q
Q

 

or 

AlCu QQ <  and correct. is )( c  

 
4 •  
Determine the Concept Some examples of systems in which internal energy is 
converted into mechanical energy are: a steam turbine, an internal combustion engine, 
and a person performing mechanical work, e.g., climbing a hill. 
 
*5 •  
Determine the Concept Yes, if the heat absorbed by the system is equal to the work 
done by the system.  
 
6 •  
Determine the Concept According to the first law of thermodynamics, the change in the 
internal energy of the system is equal to the heat that enters the system plus the work 
done on the system. correct. is )( a   
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7 •  
Determine the Concept .oninint WQE +=∆  For an ideal gas, ∆Eint is a function of T 

only. Because Won = 0 and Qin = 0 in a free expansion, ∆Eint = 0 and T is constant. For a 
real gas, Eint depends on the density of the gas because the molecules exert weak 
attractive forces on each other. In a free expansion, these forces reduce the average 
kinetic energy of the molecules and, consequently, the temperature. 
 
8 •  
Determine the Concept Because the container is insulated, no energy is exchanged with 
the surroundings during the expansion of the gas. Neither is any work done on or by the 
gas during this process. Hence, the internal energy of the gas does not change and we can 
conclude that the equilibrium temperature will be the same as the initial temperature. 
Applying the ideal-gas law for a fixed amount of gas we see that the pressure at 
equilibrium must be half an atmosphere. correct. is )( c  

 
9 •  
Determine the Concept The temperature of the gas increases. The average kinetic 
energy increases with increasing volume due to the repulsive interaction between the 
ions. 
 
*10 ••  
Determine the Concept The balloon that expands isothermally is larger when it reaches 
the surface. The balloon that expands adiabatically will be at a lower temperature than the 
one that expands isothermally.  Because each balloon has the same number of gas 
molecules and are at the same pressure, the one with the higher temperature will be 
bigger. An analytical argument that leads to the same conclusion is shown below. 
 
Letting the subscript ″a″ denote the 
adiabatic process and the subscript 
″i″ denote the isothermal process, 
express the equation of state for the 
adiabatic balloon: 
 

γγ
af,f00 VPVP = ⇒ 

γ1

f

0
0af, ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

P
PVV  

 

For the isothermal balloon: 
 if,f00 VPVP =  ⇒ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

f

0
0if, P

PVV  

 
Divide the second of these equations 
by the first and simplify to obtain: 
 

λ

γ

11

f

0
1

f

0
0

f

0
0

af,

if,
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
P
P

P
PV

P
PV

V
V
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Because P0/Pf > 1 and γ > 1: 
af,if, VV >  

 
11 •  
Determine the Concept The work done along each of these paths equals the area under 
its curve. The area is greatest for the path A→B→C and least for the path A→D→C. 

correct. is )( a  

 
12 •  
Determine the Concept An adiabatic process is, by definition, one for which no heat 
enters or leaves the system. correct. is )( b  

 
13 •  
(a) False. The heat capacity of a body is the heat needed to raise the temperature of the 
body by one degree. 
 
(b) False. The amount of heat added to a system when it goes from one state to another is 
path dependent. 
 
(c) False. The work done on a system when it goes from one state to another is path 
dependent. 
 
(d) True.  
 
(e) True. 
 
(f) False. A quasi-static process is one for which the gas is never far from an equilibrium 
state. 
 
(g) True. 
 
*14 •  
Determine the Concept For a constant-volume process, no work is done on or by the 
gas. Applying the first law of thermodynamics, we obtain Qin = ∆Eint. Because the 
temperature must change during such a process, we can conclude that  
∆Eint ≠ 0 and hence Qin ≠ 0. correct. are )( and )( db  

 
15 •  
Determine the Concept Because the temperature does not change during an isothermal 
process, the change in the internal energy of the gas is zero. Applying the first law of 
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thermodynamics, we obtain Qin = −Won = Wby the system. Hence correct. is )(d  

 
16 ••   
Determine the Concept The melting point of propane at 1 atm pressure is  
83 K. Hence, at this low temperature and high pressure, C3H8 is a solid.    
 
17 ••  
Picture the Problem We can use the given dependence of the pressure on the volume 
and the ideal-gas law to show that if the volume decreases, so does the temperature. 
 
We’re given that: constant=VP  

 
Because the gas is an ideal gas: ( ) nRTVVVPPV === constant  

 
Solve for T: ( )

nR
VT constant

=  

 

decreases.re temperatuthe
 decreases,  volume theif , ofroot  square  with the varies Because VT

 

 
*18 ••  
Determine the Concept At room temperature, most solids have a roughly constant heat 
capacity per mole of 6 cal/mol-K (Dulong-Petit law).  Because 1 mole of lead is more 
massive than 1 mole of copper, the heat capacity of lead should be lower than the heat 
capacity of copper. This is, in fact, the case. 
 
19 ••  
Determine the Concept The heat capacity of a substance is proportional to the number 
of degrees of freedom per molecule associated with the molecule. Because there are 6 
degrees of freedom per molecule in a solid and only 3 per molecule (translational) for a 
monatomic liquid, you would expect the solid to have the higher heat capacity. 
 
Estimation and Approximation 
 
*20 ••  
Picture the Problem The heat capacity of lead is c = 128 J/kg⋅K. We’ll assume that all 
of the work done in lifting the bag through a vertical distance of 1 m goes into raising the 
temperature of the lead shot and use conservation of energy to relate the number of drops 
of the bag and the distance through which it is dropped to the heat capacity and change in 
temperature of the lead shot.   
 
(a) Use conservation of energy to 
relate the change in the potential 
energy of the lead shot to the 
change in its temperature: 

TmcNmgh ∆=  
where N is the number of times the bag of 
shot is dropped. 



Chapter 18    
 

 

1354 

Solve for ∆T to obtain: 
 c

Ngh
mc

NmghT ==∆  

 
Substitute numerical values and 
evaluate ∆T: 
 

( )( ) K83.3
KJ/kg128

m1m/s`81.950 2

=
⋅

=∆T  

(b) 

increases. mass  theas
 decreases which );L  /L(L mass itsby  dividedshot   theof area surface

  theas slost varieheat  ofamount  The mass. its  toalproportion isheat 
gainsit at which  rate  the whilearea surface its  toalproportion isshot  lead
by thelost  isheat at which  rate  thebecause masslarger  a use better to isIt 

132 −=

 

 
21 ••  
Picture the Problem Assume that the water is initially at 30°C and that the cup contains 
200 g of water. We can use the definition of power to express the required time to bring 
the water to a boil in terms of its mass, heat capacity, change in temperature, and the rate 
at which energy is supplied to the water by the microwave oven. 
 
Use the definition of power to relate 
the energy needed to warm the 
water to the elapsed time: 
 

t
Tmc

t
WP

∆
∆

=
∆
∆

=  

Solve for ∆t to obtain: 
P

Tmct ∆
=∆  

 
Substitute numerical values and evaluate ∆t: 
 

( )( )( ) min1.63s5.97
W600

K330K733KkJ/kg18.4kg2.0
==

−⋅
=∆t , an elapsed time 

that seems to be consistent with experience. 
 
22 •  
Picture the Problem The adiabatic 
compression from an initial volume V1 
to a final volume V2 between the 
isotherms at temperatures T1 and T2 is 
shown to the right. We’ll assume a room 
temperature of 300 K and apply the 
equation for a quasi-static adiabatic 
process with γair = 1.4 to solve for the 
ratio of the initial to the final volume of 
the air. 

 

 
 
Express constant1 =−γTV in terms 
of the initial and final values of T 
and V: 

1
22

1
11

−− = γγ VTVT  
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Solve for V1/V2 to obtain: 
1

1

1

2

2

1
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

γ

T
T

V
V

 

 
Substitute numerical values and 
evaluate V1/V2: 
 

69.3
K300
K506 14.1

1

2

1 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−

V
V

 

 
23 ••  
Picture the Problem We can use TmcQ ∆= p to express the specific heat of water 
during heating at constant pressure in terms of the required heat and the resulting change 
in temperature. Further, we can use the definition of the bulk modulus to express the 
work done by the water as it expands. Equating the work done by the water during its 
expansion and the heat gained during this process will allow us to solve for cp. 
 
Express the heat needed to raise the 
temperature of a mass m of a 
substance whose specific heat at 
constant pressure  is cp by ∆T: 
 

TmcQ ∆= p  

Solve for cp to obtain: 
 Tm

Qc
∆

=p  

 
Use the definition of the bulk 
modulus to express the work done 
by the water as it expands: 
 

V
PV

VV
PB

∆
∆

=
∆
∆

=  

or 
VBPVW ∆=∆=  

 
Assuming that the work done by the 
water in expanding equals the heat 
gained during the process, substitute 
to obtain: 
 

Tm
VBc
∆
∆

=p  

Using the definition of the 
coefficient of volume expansion, 
express ∆V (see Chapter 20,  
Section 1): 
 

TVV ∆=∆ β  

Substitute to obtain: 
 m

VB
Tm

TVBc ββ
=

∆
∆

=p  
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Use the data given in the problem 
statement to find the average 
volume of 1 kg of water as it warms 
from 4°C to 100°C: 
 

33

33

m1002.1
2

g/cm9584.0g/cm1.0000
kg1

−×=

+
=

=
ρ
mV

 

 
Substitute numerical values and evaluate cp: 
 

( )( )( ) KJ/kg2.42
kg1

m1002.1K10207.0N/m102 33-1328

p ⋅=
×××

=
−−

c  

 
Express the ratio of cp to cwater: 2

water

p 1001.1
KJ/kg4184
KJ/kg2.42 −×=
⋅
⋅

=
c

c
 

or 
( ) waterp %01.1 cc =  

 
*24 ••  
Picture the Problem We can apply the condition for the validity of the equipartition 
theorem, i.e., that the spacing of the energy levels be large compared to kT, to find the 
critical temperature Tc: 
 
Express the failure condition for the 
equipartition theorem: 
 

eV15.0c ≈kT  

Solve for Tc: 
k

T eV15.0
c =  

 
Substitute numerical values and 
evaluate Tc: K1740

J/K101.381
eV

J101.602eV0.15
23

19

c =
×

×
×

= −

−

T

 
Heat Capacity; Specific Heat; Latent Heat 
 
*25 •  
Picture the Problem We can use the conversion factor 1 cal = 4.184 J to convert 2500 
kcal into joules and the definition of power to find the average output if the consumed 
energy is dissipated over 24 h. 
 
(a)  Convert 2500 kcal to joules: 

MJ5.10
cal

J4.184kcal2500kcal2500

=

×=
 



Heat and the First Law of Thermodynamics 
 

 

1357

(b) Use the definition of average 
power to obtain: W121

h
s3600h24

J 1005.1 7

av =
×

×
=

∆
∆

=
t
EP  

 
Remarks: Note that this average power output is essentially that of a widely used 
light bulb. 
 
26 •  
Picture the Problem We can use the relationship TmcQ ∆= to calculate the amount of 

heat given off by the concrete as it cools from 25 to 20°C. 
 
Relate the heat given off by the 
concrete to its mass, specific heat, 
and change in temperature: 
 

TmcQ ∆=  

Substitute numerical values and 
evaluate Q: 

( )( )( )
MJ500

K293K298KkJ/kg1kg105

=

−⋅=Q
 

 
27 •  
Picture the Problem We can find the amount of heat that must be supplied by adding the 
heat required to warm the ice from −10°C to 0°C, the heat required to melt the ice, and 
the heat required to warm the water formed from the ice to 40°C. 
 
Express the total heat required:  waterwarmicemelticewarm QQQQ ++=  

 
Substitute for each term to obtain: 
 ( )waterwaterficeice

waterwaterficeice

TcLTcm
TmcmLTmcQ

∆++∆=
∆++∆=

 

 
Substitute numerical values and evaluate Q: 
 

( ) ( )( )[
( )( )]

kcal48.7

K273K313Kkcal/kg1
kcal/kg79.7K263K273Kkcal/kg49.0kg0.06

=

−⋅+
+−⋅=Q

 

 
28 ••  
Picture the Problem We can find the amount of heat that must be removed by adding the 
heat that must be removed to cool the steam from 150°C to 100°C, the heat that must be 
removed to condense the steam to water, the heat that must be removed to cool the water 
from 100°C to 0°C, and the heat that must be removed to freeze the water. 
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Express the total heat that must be 
removed:  

waterfreezewatercool

steamcondensesteamcool

QQ

QQQ

++

+=
 

 
Substitute for each term to obtain: 
 

( )fwaterwatervsteamsteam

fwaterwater

vsteamsteam

LTcLTcm
mLTmc

mLTmcQ

+∆++∆=
+∆+

+∆=

 
 

Substitute numerical values and evaluate Q: 
 

( ) ( )( )[
( )( ) ]

kcal4.74

kJ4.184
kcal1kJ2.311

kJ/kg5.333K273K373KkJ/kg18.4
MJ/kg26.2K373K423KkJ/kg01.2kg0.1

=

×=

+−⋅+
+−⋅=Q

 

 
29 ••  
Picture the Problem We can find the amount of nitrogen vaporized by equating the heat 
gained by the liquid nitrogen and the heat lost by the piece of aluminum. 
 
Express the heat gained by the 
liquid nitrogen as it cools the piece 
of aluminum: 
 

vNNN LmQ =  

Express the heat lost by the piece of 
aluminum as it cools: 
 

AlAlAlAl TcmQ ∆=  

Equate these two expressions and 
solve for mN: 

AlAlAlvNN TcmLm ∆=  

and 

vN

AlAlAl
N L

Tcmm ∆
=  

 
Substitute numerical values and evaluate mN: 
 

( )( )( ) mg48.8kg1088.4
kJ/kg199

K77K293KJ/kg0.90kg0.05 5
N =×=

−⋅
= −m  
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30 ••  
Picture the Problem Because the heat lost by the lead as it cools is gained by the block 
of ice (we’re assuming no heat is lost to the surroundings), we can apply the conservation 
of energy to determine how much ice melts. 
 
Apply the conservation of energy to 
this process: 
 

0=∆Q  

or 
( ) 0wf,wPbPbPbf,Pb =+∆+− LmTcLm  

 
Solve for mw: 

wf,

PbPbPbf,Pb
w L

TcLm
m

⎟
⎠
⎞⎜

⎝
⎛ ∆+

=  

 
Substitute numerical values and evaluate mw: 
 

( ) ( )( )( ) g8.99
kJ/kg333.5

K273K600KkJ/kg0.128kJ/kg7.24kg5.0
w =

−⋅+
=m  

 
*31 ••  
Picture the Problem The temperature of the bullet immediately after coming to rest in 
the block is the sum of its pre-collision temperature and the change in its temperature as a 
result of being brought to a stop in the block. We can equate the heat gained by the bullet 
and half its pre-collision kinetic energy to find the change in its temperature. 
 
Express the temperature of the 
bullet immediately after coming to 
rest in terms of its initial 
temperature and the change in its 
temperature as a result of being 
stopped in the block: 
 

T
TTT
∆+=

∆+=
K293

i  

Relate the heat absorbed by the 
bullet as it comes to rest to its 
kinetic energy before the collision: 
 

KQ 2
1=  

Substitute for Q and K to obtain: ( )2
Pb2

1
2
1

PbPb vmTcm =∆  

 
Solve for ∆T: 

Pb

2

4c
vT =∆  
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Substitute to obtain: 

Pb

2

4
K293

c
vT +=  

 
Substitute numerical values and 
evaluate T: 

( )
( )

C365K638

KkJ/kg0.1284
m/s420K293

2

°==

⋅
+=T

 

 
32 ••  
Picture the Problem We can find the heat available to warm the brake drums from the 
initial kinetic energy of the car and the mass of steel contained in the brake drums from Q 
= msteelcsteel∆T. 
 
Express msteel in terms of Q: 

Tc
Qm
∆

=
steel

steel  

 
Find the heat available to warm the 
brake drums from the initial kinetic 
energy of the car: 
 

2
car2

1 vmKQ ==  

Substitute for Q to obtain: 
Tc
vmm
∆

=
steel

2
car2

1

steel  

 
Substitute numerical values and 
evaluate msteel: ( )

( )

kg6.26

K120
kcal

kJ4.186
Kkg

kcal0.112

s3600
h1

h
km80kg1400

2

steel

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

=m

 
Calorimetry 
 
33 •  
Picture the Problem Let the system consist of the piece of lead, calorimeter, and water. 
During this process the water will gain energy at the expense of the piece of lead. We can 
set the heat out of the lead equal to the heat into the water and solve for the final 
temperature of the lead and water. 
 
Apply conservation of energy to the 
system to obtain: 
 

0=∆Q  or outin QQ =  
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Express the heat lost by the lead in 
terms of its specific heat and 
temperature change: 
 

PbPbPbout TcmQ ∆=  

 

Express the heat absorbed by the 
water in terms of its specific heat 
and temperature change: 
 

wwwin TcmQ ∆=  

 
 

Substitute to obtain: 
 

PbPbPbwww TcmTcm ∆=∆  

Substitute numerical values: 
 

( )( )( ) ( )( )( )ff K363KkJ/kg128.0kg0.2K293KkJ/kg18.4kg0.5 tt −⋅=−⋅  

 
Solve for tf to obtain: C8.20K8.293f °==t  

 
*34 •  
Picture the Problem During this process the water and the container will gain energy at 
the expense of the piece of metal. We can set the heat out of the metal equal to the heat 
into the water and the container and solve for the specific heat of the metal. 
 
Apply conservation of energy to the 
system to obtain: 
 

0=∆Q or lostgained QQ =  

 

Express the heat lost by the metal in 
terms of its specific heat and 
temperature change: 
 

metalmetalmetallost TcmQ ∆=  

 

Express the heat gained by the water 
and the container in terms of their 
specific heats and temperature 
change: 
 

wmetalcontainerwwwgained TcmTcmQ ∆+∆=  

 

Substitute to obtain: 
 

metalmetalmetalwmetalcontainerwww TcmTcmTcm ∆=∆+∆  
 
Substitute numerical values: 
 

( )( )( ) ( )( )
( )( ) metal

metal

K4.294K373kg0.1
K293K4.294kg0.2K293K4.294KkJ/kg18.4kg0.5

c
c

−=
−+−⋅
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Solve for cmetal: KkJ/kg386.0metal ⋅=c  

 
35 ••  
Picture the Problem We can use TmcQ ∆= to express the mass m of water that can be 
heated through a temperature interval ∆T by an amount of heat energy Q. We can then 
find the amount of heat energy expended by Armstrong from the definition of power. 
 
Express the amount of heat energy 
Q required to raise the temperature 
of a mass m of water by ∆T: 
 

TmcQ ∆=  
 

Solve for m to obtain: 

Tc
Qm
∆

=  

 
Use the definition of power to relate  
the heat energy expended by 
Armstrong to the rate at which he 
expended the energy: 
 

t
QP
∆

= ⇒ tPQ ∆=  

 

Substitute to obtain: 
 Tc

tPm
∆
∆

=  

 
Substitute numerical values and 
evaluate m: 

( )( )( )( )
( )( )

kg453

K792K373KkJ/kg184.4
d20h/d5s/h3600J/s400

=

−⋅
=m

 

 
36 ••  
Picture the Problem During this process the ice and the water formed from the melted 
ice will gain energy at the expense of the glass tumbler and the water in it. We can set the 
heat out of the tumbler and the water that is initially at 24°C equal to the heat into the ice 
and ice water and solve for the final temperature of the drink. 
 
Apply conservation of energy to the 
system to obtain: 
 

0=∆Q or lostgained QQ =  

 

Express the heat lost by the tumbler 
and the water in it in terms of their 
specific heats and common 
temperature change: 
 

TcmTcmQ ∆+∆= waterwaterglassglasslost  

 

Express the heat gained by the ice 
and the melted ice in terms of their 
specific heats and temperature 

watericewaterwaterice

ficeiceiceicegained

Tcm

LmTcmQ

∆+

+∆=
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changes: 
 
Substitute to obtain: 
 

TcmTcmTcmLmTcm ∆+∆=∆++∆ waterwaterglassglasswatericewaterwatericeficeiceiceice  

 
Substitute numerical values: 
 

( )( )( ) ( )( )
( )( ) ( )( )( )

( )( )( )f

ff

K297Kkcal/kg1kg0.2
K297Kkcal/kg2.0kg0.025Kkcal/kg1kg0.03

kcal/kg7.79kg0.03K270K273Kkcal/kg49.0kg0.03

t
tt

−⋅+
−⋅=⋅+

+−⋅
 

 
Solve for tf: C6.10K6.283f °==t  

 
37 ••  
Picture the Problem Because we can not tell, without performing a couple of 
calculations, whether there is enough heat available in the 500 g of water to melt all of 
the ice, we’ll need to resolve this question first.  
 
(a) Determine the heat required to 
melt 200 g of ice: ( )( )

kcal15.94
kcal/kg79.7kg0.2

ficeicemelt

=
=

= LmQ

 

 
Determine the heat available from 
500 g of water: ( )( )

( )
kcal10

K273K932
Kkcal/kg1kg0.5

waterwaterwaterwater

=
−×

⋅=
∆= TcmQ

 

 
Because Qwater < Qmelt ice: C.0 is re temperatufinal The °  

 
(b) Equate the energy available 
from the water Qwater to miceLf and 
solve for mice: 
 

f

water
ice L

Qm =  

Substitute numerical values and 
evaluate mice: 

g125
kcal/kg79.7
kcal10

ice ==m  
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38 ••  
Picture the Problem Because the bucket contains a mixture of ice and water initially, we 
know that its temperature must be 0°C. We can equate the heat gained by the mixture of 
ice and water and the heat lost by the block of copper and solve for the amount of ice 
initially in the bucket. 
 
Apply conservation of energy to the 
system to obtain: 
 

0=∆Q  or lostgained QQ =  

 

Express the heat lost by the block of 
copper: 
 

CuCuCulost TcmQ ∆=  

Express the heat gained by the ice 
and the melted ice: 
 

watericewaterwatericeficegained TcmLmQ ∆+=  

Substitute to obtain: 

0CuCuCu

watericewaterwatericefice

=∆−

∆+

Tcm

TcmLm
 

 
Solve for mice: 

f

watericewaterwatericeCuCuCu
ice L

TcmTcm
m

∆−∆
=

 
Substitute numerical values and evaluate mice: 
 

( )( )( )

( )( )( )

g171

kcal/kg79.7
K273K281Kkcal/kg1kg2.1

kcal/kg79.7
K281K353Kkcal/kg0923.0kg5.3

ice

=

−⋅
−

−⋅
=m

 

 
39 ••  
Picture the Problem During this process the ice and the water formed from the melted 
ice will gain energy at the expense of the condensing steam and the water from the 
condensed steam. We can equate these quantities and solve for the final temperature of 
the system. 
 
(a) Apply conservation of energy to 
the system to obtain: 
 

0=∆Q  or lostgained QQ =  

 

Express the heat required to melt the 
ice and raise the temperature of the 

waterwaterwatericeficegained TcmLmQ ∆+=  
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ice water: 
 
Express the heat available from 20 g 
of steam and the cooling water 
formed from the condensed steam: 
 

waterwatersteamvsteamlost TcmLmQ ∆+=  

 

Substitute to obtain: 
 

waterwatersteamvsteamwaterwaterwatericefice TcmLmTcmLm ∆+=∆+  

 
Substitute numerical values: 
 

( )( ) ( )( )( )
( )( ) ( )( )( )f

f

K733Kkcal/kg1kg0.02kcal/kg540kg0.02
K273Kkcal/kg1kg15.0kcal/kg79.7kg0.15

t
t

−⋅+=
−⋅+

 

 
Solve for tf: 
 

C4.94K94.277f °==t  

 
(b) left. is ice no C,0an greater th is e temperturfinal  theBecause °  

 
40 ••  
Picture the Problem During this process the ice will gain heat and the water will lose 
heat. We can do a preliminary calculation to determine whether there is enough heat 
available to melt all of the ice and, if there is, equate the heat the heat lost by the water to 
the heat gained by the ice and resulting ice water as the system achieves thermal 
equilibrium. 
 
Apply conservation of energy to the 
system to obtain: 
 

0=∆Q  or lostgained QQ =  

 

Find the heat available to melt the ice: 
( )( )
( )
kcal30

K273K303
Kkcal/kg1kg1

waterwaterwateravail

=
−×

⋅=
∆= TcmQ

 

 
Find the heat required to melt all of 
the ice: ( )( )

kcal3.985
kcal/kg79.7kg0.05

ficeicemelt

=
=

= LmQ

 

 
Because Qavail > Qmelt ice, we know waterwaterwaterlost TcmQ ∆=  
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that the final temperature will be 
greater than 273 K and we can 
express Qlost in terms of the change 
in  temperature of the water:  
  
Express Qgained:  
 

watericewaterwatericeficegained TcmLmQ ∆+=  

 
Equate the heat gained and the heat 
lost to obtain: 
 

waterwaterwaterwatericewaterwatericefice TcmTcmLm ∆=∆+

 

Substitute numerical values to obtain: 
 

( )( ) ( )( )( )
( )( )( )f

f

K303Kkcal/kg1kg1
K273Kkcal/kg1kg05.0kcal/kg7.79kg05.0

T
T

−⋅=
−⋅+

 

 
Solving for Tf yields: C24.8K297.8f °==T  

 
Find the heat required to melt 500 g of ice: 

( )( )
kcal39.85

kcal/kg79.7kg0.5
ficeicemelt

=
=

= LmQ

 

 

C.0 be  willre temperatufinal the
available,heat  an thegreater th is ice of g 500melt   torequiredheat   theBecause

°
 

 
*41 ••  
Picture the Problem Assume that the calorimeter is in thermal equilibrium with the 
water it contains. During this process the ice will gain heat in warming to 0°C and 
melting, as will the water formed from the melted ice. The water in the calorimeter and 
the calorimeter will lose heat. We can do a preliminary calculation to determine whether 
there is enough heat available to melt all of the ice and, if there is, equate the heat the 
heat lost by the water to the heat gained by the ice and resulting ice water as the system 
achieves thermal equilibrium. 
 
Find the heat available to melt the ice: 
 

( )( )[ ( )( )]( )
kJ40.45

K 273K932KkJ/kg9.0kg2.0KkJ/kg18.4kg5.0
watercalcalwaterwaterwateravail

=
−⋅+⋅=

∆+∆= TcmTcmQ
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Find the heat required to melt all of the ice: 
 

( )( )( ) ( )( )
kJ35.37

kJ/kg5.333kg0.1K253K372KkJ/kg2kg0.1
ficeiceiceiceicemelt

=
+−⋅=

+∆= LmTcmQ

 

 
(a) Because Qavail > Qmelt ice, we 
know that the final temperature will 
be greater than 0°C. Apply the 
conservation of energy to the system 
to obtain: 
 

0=∆Q  or lostgained QQ =  

Express Qlost in terms of the final 
temperature of the system: 
  

( ) rcalorimetewatercalcalwaterwaterlost +∆+= TcmcmQ
 

Express Qgained in terms of the final 
temperature of the system: 
 

ficeiceiceicegained LmTcmQ +∆=  

 

Substitute to obtain: 
 

( ) rcalorimetewatercalcalwaterwaterwatericewaterwatericeficeiceiceice +∆+=∆++∆ TcmcmTcmLmTcm  

 
Substitute numerical values: 
 

( )( )( )
( )( )[ ( )( )]( )f

f

K932KkJ/kg0.9kg2.0KkJ/kg4.18kg5.0
K273KkJ/kg18.4kg1.0kJ35.37

t
t

−⋅+⋅=
−⋅+

 

 
Solving for tf yields: C99.2K276f °==t  

 
(b) Find the heat required to raise 200 g of ice to 0°C: 
 

( )( )( ) kJ00.8K253K273KkJ/kg2kg0.2iceiceiceicewarm =−⋅=∆= TcmQ  

 
Noting that there are now 600 g of water in the calorimeter, find the heat available from 
cooling the calorimeter and water from 3°C to 0°C: 
 

( )( )[ ( )( )]( )
kJ064.8

K273K293KkJ/kg9.0kg2.0KkJ/kg18.4kg6.0
watercalcalwaterwaterwateravail

=
−⋅+⋅=

∆+∆= TcmTcmQ
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Express the amount of ice that will 
melt in terms of the difference 
between the heat available and the 
heat required to warm the ice: 
 

f

ice warmavail
icemelted L

QQm −
=  

Substitute numerical values and 
evaluate mmelted ice: 
 g0.1919

kJ/kg333.5
kJ8kJ8.064

icemelted

=

−
=m

 

 
Find the ice remaining in the system: 
 g199.8

g0.1919g002iceremaining

=

−=m
 

 

(c) 
same. the

 be ldanswer wou  thesame,  theare conditions final and initial  theBecause
 

 
42 ••  
Picture the Problem Let the subscript B denote the block, w1 the water initially in the 
calorimeter, and w2 the 120 mL of water that is added to the calorimeter vessel. We can 
equate the heat gained by the calorimeter and its initial contents to the heat lost by the 
warm water and solve this equation for the specific heat of the block. 
 
Apply conservation of energy to the 
system to obtain: 
 

0=∆Q  or lostgained QQ =  

 

Express the heat gained by the 
block, the calorimeter, and the water 
initially in the calorimeter: 
 

( ) Tcmcmcm

Tcm

TcmTcmQ

∆++=

∆+

∆+∆=

11

111

wwCuCuBB

www

CuCuCuBBBgained

 

because the temperature changes are the 
same for the block, calorimeter, and the 
water that is initially at 20°C. 
 

Express the heat lost by the water 
that is added to the calorimeter: 
 

222 wwwlost TcmQ ∆=  

 

Substitute to obtain: 
 

( )
22211 wwwwwCuCuBB TcmTcmcmcm ∆=∆++  

 
Substitute numerical values: 
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( ) ( )[ ( ) ( )( )]( )
( )( )( )K327K353KkJ/kg4.18kg10120

K293K327KkJ/kg4.18kg0.06KkJ/kg0.386kg025.0kg1.0
3

B

−⋅×=

−⋅+⋅+
−

c
 

 
Solve for cB to obtain: 

Kcal/g294.0

KkJ/kg23.1B

⋅=

⋅=c
 

 
43 ••  
Picture the Problem We can find the temperature t by equating the heat gained by the 
warming water and calorimeter, and vaporization of some of the  water. 
 
Apply conservation of energy to the 
system to obtain: 
 

0=∆Q  or lostgained QQ =  

 

Express the heat gained by the 
warming and vaporizing water: 
 

wcalcal

wwwwf,vaporizedw,gained

Tcm

TcmLmQ

∆+

∆+=
 

 
Express the heat lost by the 100-g 
piece of copper as it cools: 
 

CuCuCulost TcmQ ∆=  

 

Substitute to obtain: 
 

CuCuCuwcalcalwwwwf,vaporizedw, TcmTcmTcmLm ∆=∆+∆+  

 
Substitute numerical values: 
 
( )( ) ( )( )( )

( )( )( ) ( )( )( )K311Kcal/g0.0923g100K892K113Kcal/g0923.0g150
K892K113Kcal/g1g200cal/g540g1.2

−⋅=−⋅+
−⋅+

t
 

 
Solve for t to obtain: C618K891 °==t  

 
44 ••  

Picture the Problem We can find the final temperature of the system by equating the 
heat gained by the calorimeter and the water in it to the heat lost by the cooling aluminum 
shot. In (b) we’ll proceed as in (a) but with the initial and final temperatures adjusted to 
minimize heat transfer between the system and its surroundings. 
 
Apply conservation of energy to the 
system to obtain: 
 

0=∆Q   or lostgained QQ =  
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(a) Express the heat gained by the 
warming water and the calorimeter: 
 

wAlcalwwwgained TcmTcmQ ∆+∆=  

 

Express the heat lost by the 
aluminum shot as it cools: 
 

AlAlshotlost TcmQ ∆=  

Substitute to obtain: 
 

( ) AlAlshotwAlcalww TcmTcmcm ∆=∆+  

Substitute numerical values to obtain: 
 

( )( )[ ( )( )]( )
( )( )( )f

f

K373Kcal/g0.215g300
K392Kcal/g0923.0g200Kcal/g1g500

t
t

−⋅=
−⋅+⋅

 

 
Solve for tf to obtain: C9.28K9.301f °==t  

 
(b) Let the initial and final 
temperatures of the calorimeter and 
its contents be:  

ti = 20°C – t0                     (1) 
and 
tf = 20°C + t0 
where ti and tf are  the temperatures above 
and below room temperature and t0 is the 
amount ti and tf must be below and above 
room temperature respectively.  
 

Express and the heat gained by the 
water and calorimeter: 
 

( ) wAlcalww

wAlcalwwwin

Tcmcm
TcmTcmQ

∆+=
∆+∆=

 

 
Express the heat lost by the aluminum 
shot as it cools: 
 

AlAlshotout TcmQ ∆=  

 

Equate Qin and Qout to obtain: 
 

( ) AlAlshotwAlcalww TcmTcmcm ∆=∆+  

 
Substitute numerical values: 
 

( )( )[ ( )( )]( )
( )( )( )0

00

K293K373Kcal/g0.215g300
K293K293Kcal/g215.0g200Kcal/g1g500

t
tt

−−⋅=
+−+⋅+⋅

 

 
Solve for and evaluate t0: C49.4K49.2770 °==t  

 
Substitute in equation (1) to obtain: C5.15C49.4C20i °=°−°=t  
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First Law of Thermodynamics 
 
45 •  
Picture the Problem We can apply the first law of thermodynamics to find the change in 
internal energy of the gas during this process.  
 
Apply the first law of 
thermodynamics to express the 
change in internal energy of the gas 
in terms of the heat added to the 
system and the work done on the 
gas: 
 

oninint WQE +=∆  

The work done by the gas equals the 
negative of the work done on the 
gas. Substitute numerical values and 
evaluate ∆Eint: 

kJ2.21

J300
cal

J4.184cal006int

=

−×=∆E
 

 
*46 •  
Picture the Problem We can apply the first law of thermodynamics to find the change in 
internal energy of the gas during this process.  
 
 
Apply the first law of 
thermodynamics to express the 
change in internal energy of the gas 
in terms of the heat added to the 
system and the work done on the 
gas: 
 

oninint WQE +=∆  

The work done by the gas is the 
negative of the work done on the 
gas. Substitute numerical values and 
evaluate ∆Eint: 

kJ748

kJ800
cal

J4.184kcal004int

=

−×=∆E
 

 
47 •  
Picture the Problem We can use the first law of thermodynamics to relate the change in 
the bullet’s internal energy to its pre-collision kinetic energy. 
 
Using the first law of thermodynamics, 
relate the change in the internal energy 
of the bullet to the work done on it by 

oninint WQE +=∆  

or, because Qin = 0, 
( )iKKKWE −−=∆==∆ fonint  
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the block of wood: 
 
Substitute for ∆Eint, Kf, and Ki to obtain: 
 

( ) ( ) 2
2
12

2
1

ifPb 0 mvmvttmc =−−=−  

 
Solve for tf: 

Pb

2

if 2c
vtt +=  

 
Substitute numerical values and 
evaluate tf: 

( )
( )

C176K449

KkJ/kg128.02
m/s200K293

2

f

°==

⋅
+=t

 

 
48 •  
Picture the Problem What is described above is clearly a limiting case because, as the 
water falls, it will, for example, collide with rocks and experience air drag; resulting in 
some of its initial potential energy being converted into internal energy. In this limiting 
case we can use the first law of thermodynamics to relate the change in the gravitational 
potential energy (take Ug = 0 at the bottom of the waterfalls) to the change in internal 
energy of the water and solve for the increase in temperature. 
 
(a) Using the first law of 
thermodynamics and noting that, 
because the gravitational force is 
conservative, Won = −∆U, relate the 
change in the internal energy of the 
water to the work done on it by 
gravity: 
 

oninint WQE +=∆  

or, because Qin = 0, 
( )ifonint UUUWE −−=∆−==∆  

Substitute for ∆Eint, Uf, and Ui to 
obtain: 
 

( ) hmghmgTmc ∆=∆−−=∆ 0w  

Solve for ∆T: 
 wc

hgT ∆
=∆  

 
Substitute numerical values and 
evaluate ∆T: 

( )( ) K117.0
KkJ/kg4.18
m50m/s9.81 2

=
⋅

=∆T  

 
(b) Proceed as in (a) with  
∆h = 740 m: 

( )( ) K74.1
KkJ/kg4.18

m740m/s9.81 2

=
⋅

=∆T  
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49 •  
Picture the Problem We can apply the first law of thermodynamics to find the change in 
internal energy of the gas during this process.  
 
Apply the first law of 
thermodynamics to express the 
change in internal energy of the gas 
in terms of the heat added to the 
system and the work done on the 
gas: 
 

oninint WQE +=∆  

The work done by the gas is the 
negative of the work done on the 
gas. Substitute numerical values and 
evaluate ∆Eint: 

J7.53J03
cal

J4.184cal20int =−×=∆E

 
50 ••  
Picture the Problem We can use the definition of kinetic energy to express the speed of 
the bullet upon impact in terms of its kinetic energy. The heat absorbed by the bullet is 
the sum of the heat required to warm to bullet from 202 K to its melting temperature of 
600 K and the heat required to melt it. We can use the first law of thermodynamics to 
relate the impact speed of the bullet to the change in its internal energy.  
 
Using the first law of 
thermodynamics, relate the change 
in the internal energy of the bullet to 
the work done on it by the target: 
 

oninint WQE +=∆  

or, because Qin = 0, 
( )iKKKWE −−=∆==∆ fonint  

Substitute for ∆Eint, Kf, and Ki to 
obtain: 
 

( ) 2
2
12

2
1

Pbf,PbPb 0 mvmvmLTmc =−−=+∆  

or 
( ) 2

2
1

Pbf,iMPPb mvmLTTmc =+−  

 
Solve for v to obtain: 
 

( )[ ]Pbf,iMPPb2 LTTcv +−=  

 
Substitute numerical values and evaluate v: 
 

( )( ) }{ m/s354kJ/kg24.7K303K600KkJ/kg0.1282 =+−⋅=v  
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*51 ••  
Picture the Problem We can find the rate at which heat is generated when you rub your 
hands together using the definition of power and the rubbing time to produce a 5°C 
increase in temperature from ( ) tdtdQQ ∆=∆  and  

Q = mc∆T. 
 
(a) Express the rate at which heat is 
generated as a function of the friction 
force and the average speed of your 
hands: 
 

vFvfP
dt
dQ

nk µ===  

Substitute numerical values and 
evaluate dQ/dt: 

( )( ) W6.13m/s0.35N35.50 ==
dt
dQ

 

 
(b) Relate the heat required to raise 
the temperature of your hands 5 K to 
the rate at which it is being 
generated: 
 

Tmct
dt
dQQ ∆=∆=∆  

Solve for ∆t: 
dtdQ
Tmct ∆

=∆  

 
Substitute numerical values and 
evaluate ∆t: 

( )( )( )

min0.19
s60

min1s1143

W6.13
K5KkJ/kg4kg0.35

=×=

⋅
=∆t

 

 
Work and the PV Diagram for a Gas 
 
52 •  
Picture the Problem We can find the work done by the gas during this process from the 
area under the curve. Because no work is done along the constant volume (vertical) part 
of the path, the work done by the gas is done during its isobaric expansion. We can then 
use the first law of thermodynamics to find the heat added to the system during this 
process. 
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(a) The path from the initial state (1) 
to the final state (2) is shown on the 
PV diagram.  
 

 
 

The work done by the gas equals the area under the shaded curve: 
 

( )( ) J608
L

m10L2
atm

kPa101.3atm3L2atm3
33

gasby =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×⎟

⎠
⎞

⎜
⎝
⎛ ×==∆=

−

VPW  

 
(b) The work done by the gas is the 
negative of the work done on the 
gas. Apply the first law of 
thermodynamics to the system to 
obtain: 
 

( ) ( )
( ) gasby int,1int,2

gasby int,1int,2

onintin

WEE
WEE

WEQ

+−=

−−−=
−∆=

 

Substitute numerical values and 
evaluate Qin: 

( ) kJ1.06J608J456J912in =+−=Q  

 
53 •  
Picture the Problem We can find the work done by the gas during this process from the 
area under the curve. Because no work is done along the constant volume (vertical) part 
of the path, the work done by the gas is done during its isobaric expansion. We can then 
use the first law of thermodynamics to find the heat added to the system during this 
process 
 
(a) The path from the initial state (1) 
to the final state (2) is shown on the 
PV diagram.  
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The work done by the gas equals the area under the curve: 
 

( )( ) J054
L

m10L2
atm

kPa101.3atm2L2atm2
33

gasby =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×⎟

⎠
⎞

⎜
⎝
⎛ ×==∆=

−

VPW  

 
(b) The work done by the gas is the 
negative of the work done on the 
gas. Apply the first law of 
thermodynamics to the system to 
obtain:  
 

( ) ( )
( ) gasby int,1int,2

gasby int,1int,2

onintin

WEE
WEE

WEQ

+−=

−−−=
−∆=

 

Substitute numerical values and 
evaluate Qin: 

( ) J618J054J456J912in =+−=Q  

 
*54 ••  
Picture the Problem We can find the work done by the gas during this process from the 
area under the curve. Because no work is done along the constant volume (vertical) part 
of the path, the work done by the gas is done during its isothermal expansion. We can 
then use the first law of thermodynamics to find the heat added to the system during this 
process. 
 
(a) The path from the initial state (1) 
to the final state (2) is shown on the 
PV diagram.  
 

 
 

The work done by the gas equals the 
area under the curve: 
 

[ ]

3ln

ln

1

L3
L111

L3

L1
11

L3

L1
1gasby 

2

1

VP

VVP
V
dVVP

V
dVnRTdVPW

V

V

=

==

==

∫

∫∫

 

 
Substitute numerical values and evaluate Wby gas: 
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J3343ln
L

m10L1
atm

kPa101.3atm3
33

gasby =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×⎟

⎠
⎞

⎜
⎝
⎛ ×=

−

W  

 
(b) The work done by the gas is the 
negative of the work done on the 
gas. Apply the first law of 
thermodynamics to the system to 
obtain:  
 

( ) ( )
( ) gasby int,1int,2

gasby int,1int,2

onintin

WEE
WEE

WEQ

+−=

−−−=
−∆=

 

Substitute numerical values and 
evaluate Qin: 

( ) J790J334J456J912in =+−=Q  

 
55 ••  
Picture the Problem We can find the work done by the gas during this process from the 
area under the curve. We can then use the first law of thermodynamics to find the heat 
added to the system during this process. 
 
(a) The path from the initial state (1) 
to the final state (2) is shown on the 
PV diagram:  
 

 
 

The work done by the gas equals the 
area under the curve: 
 

( )( )

J507
Latm
J101.3Latm5

L2atm2atm32
1

trapezoidgasby 

=
⋅

×⋅=

+== AW
 

 
(b) The work done by the gas is the 
negative of the work done on the 
gas. Apply the first law of 
thermodynamics to the system to 
obtain:  
 

( ) ( )
( ) gasby int,1int,2

gasby int,1int,2

onintin

WEE
WEE

WEQ

+−=

−−−=
−∆=

 

Substitute numerical values and 
evaluate Qin: 

( ) J639J507J456J912in =+−=Q  
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Remarks: You could use the linearity of the path connecting the initial and final 
states and the coordinates of the endpoints to express P as a function of V.  You 
could then integrate this function between 1 and 3 L to find the work done by the 
gas as it goes from its initial to its final state. 
 
56 ••  
Picture the Problem We can find the work done by the gas during this process from the 
area under the curve. 
 
The path from the initial state i to 
the final state f is shown on the PV 
diagram: 

 
 

The work done by the gas equals the 
area under the curve: 
 

( )( )

kJ1.10
Latm
J101.3Latm100

L05atm3atm12
1

trapezoidgasby 

=
⋅

×⋅=

+== AW
 

 
Remarks: You could use the linearity of the path connecting the initial and final 
states and the coordinates of the endpoints to express P as a function of V.  You 
could then integrate this function between 1 and 3 L to find the work done by the 
gas as it goes from its initial to its final state. 
 
57 ••  
Picture the Problem We can find the work done by the gas from the area under the PV 
curve provided we can find the pressure and volume coordinates of the initial and final 
states. We can find these coordinates by using the ideal gas law and the condition  

.2APT =  
 
Apply the ideal-gas law  with  
n =  1 mol and 2APT = to obtain: 
  

2RAPPV =  ⇒ RAPV =             (1) 
This result tells us that the volume varies 
linearly with the pressure. 
 

Solve the condition on the 
temperature for the pressure of the 
gas: 

A
TP 0

0 =  
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Find the pressure when the 
temperature is 4T0: 
 

0
00 224 P

A
T

A
TP ===  

 
Using equation (1), express the 
coordinates of the final state: 
 

( )00 2,2 PV  

The PV diagram for the process is 
shown to the right: 
 

 
 

The work done by the gas equals the 
area under the curve: 
 

( )( )

002
3

00002
1

trapezoidgasby 23

VP

VVPPAW

=

−+==
 

 
*58 •  
Picture the Problem From the ideal gas law, PV = NkT, or V = NkT/P. Hence, on a VT 
diagram, isobars will be straight lines with slope 1/P. 
 
A spreadsheet program was used to plot the following graph. The graph was plotted for 1 
mol of gas.   
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59 ••  
Picture the Problem The PV diagram 
shows the isothermal expansion of the ideal 
gas from its initial state 1 to its final state 2. 
We can use the ideal-gas law for a fixed 
amount of gas to find V2 and then evaluate 

∫ PdV for an isothermal process to find the 

work done by the gas. In part (b) of the 
problem we can apply the first law of 
thermodynamics to find the heat added to 
the gas during the expansion. 

 

 

 
(a) Express the work done by a gas 
during an isothermal process: 
 

∫∫∫ ===
2

1

2

1

2

1

11gasby 

V

V

V

V

V

V V
dVVP

V
dVnRTdVPW  

 
Apply the ideal-gas law for a fixed 
amount of gas undergoing an 
isothermal process: 
 

2211 VPVP =  or  
1

1

1

2

P
P

V
V

=  

 

Solve for and evaluate V2: 
 

( ) L8L4
kPa100
kPa200

1
2

1
2 === V

P
PV  

 
Substitute numerical values and 
evaluate W: 

( )( )

( )[ ]

( )

J555
L

m10LkPa800

L4
L8lnLkPa800

lnLkPa800

L4kPa200

33

L8
L4

L8

L4
gasby 

−

×⋅=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

⋅=

= ∫

V

V
dVW

 

 
(b) Apply the first law of 
thermodynamics to the system to 
obtain: 
 

onintin WEQ −∆=  

or, because ∆Eint = 0 for an isothermal 
process, 

onin WQ −=  

 
Because the work done by the gas is 
the negative of the work done on the 
gas: 
 

( ) gasby gasby in WWQ =−−=  
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Substitute numerical values and 
evaluate Qin: 

J555in =Q  

 
Heat Capacities of Gases and the Equipartition Theorem 
 
60 •  
Picture the Problem We can find the number of moles of the gas from its heat capacity 
at constant volume using nRC 2

3
V = . We can find the internal energy of the gas from 

TCE Vint = and the heat capacity at constant pressure using nRCC += VP . 

 
(a) Express CV in terms of the 
number of moles in the monatomic 
gas: 
 

nRC 2
3

V =  

Solve for n: 
R

Cn
3

2 V=  

 
Substitute numerical values and 
evaluate n: 
 

( )
( ) 99.3

KJ/mol8.3143
J/K49.82

=
⋅

=n  

(b) Relate the internal energy of the 
gas to its temperature: 
 

TCE Vint =  

 

Substitute numerical values and 
evaluate Eint: 
 

( )( ) kJ14.9K300J/K49.8int ==E  

(c) Relate the heat capacity at 
constant pressure to the heat 
capacity at constant volume:  
 

nRnRnRnRCC 2
5

2
3

VP =+=+=  

Substitute numerical values and 
evaluate CP: 

( )( )
J/K82.9

KJ/mol8.3143.992
5

P

=

⋅=C
 

 
61 •  
Picture the Problem The Dulong-Petit law gives the molar specific heat of a solid, c′. 
The specific heat is defined as c = c′/M where M is the molar mass. Hence we can use 
this definition to find M and a periodic table to identify the element. 
 
(a) Apply the Dulong-Petit law: Rc' 3=  or 

M
Rc 3

=  
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Solve for M: 
c
RM 3

=  

 
Substitute numerical values and 
evaluate M: 
 

g/mol7.55
KkJ/kg0.447
KJ/mol24.9

=
⋅
⋅

=M  

 

iron.likely most 
iselement   that thesee  weelements

 theof  tableperiodic  theConsulting
 

 
*62 ••  
Picture the Problem The specific heats of air at constant volume and constant pressure 
are given by cV = CV/m and cP = CP/m and the heat capacities at constant volume and 
constant pressure are given by nRC 2

5
V =  and nRC 2

7
P = , respectively.  

 
(a) Express the specific heats per 
unit mass of air at constant volume 
and constant pressure: 
 

m
Cc V

V =                                 (1) 

and  

m
Cc P

P =                                  (2) 

 
Express the heat capacities of a 
diatomic gas in terms of the gas 
constant R, the number of moles n, 
and the number of degrees of 
freedom: 
  

nRC 2
5

V =  

and 
nRC 2

7
P =  

Express the mass of 1 mol of air: 
 

22 ON 26.074.0 MMm +=  

Substitute in equation (1) to obtain: 
 ( )

22 ON
V 26.074.02

5
MM

nRc
+

=  

 
Substitute numerical values and evaluate cV: 
 

( )( )
( ) ( )[ ] KJ/kg716

kg103226.0kg102874.02
KJ/mol314.8mol15

33V ⋅=
×+×
⋅

= −−c  

 
Substitute in equation (2) to obtain: 
 ( )

22 ON
P 26.074.02

7
MM

nRc
+

=  



Heat and the First Law of Thermodynamics 
 

 

1383

 
Substitute numerical values and evaluate cP: 
 

( )( )
( ) ( )[ ] KJ/kg1002

kg103226.0kg102874.02
KJ/mol314.8mol17

33P ⋅=
×+×
⋅

= −−c  

 
 

(b) Express the percent difference between the value from the Handbook of Chemistry 
and Physics and the calculated value: 
 

%91.2
KJ/g1.032

K1.002J/gKJ/g1.032difference% =
⋅

⋅−⋅
=  

 
63 ••  
Picture the Problem We know that, during a constant-volume process, no work is done 
and that we can calculate the heat added during this expansion from the heat capacity at 
constant volume and the change in the absolute temperature. We can then use the first 
law of thermodynamics to find the change in the internal energy of the gas. In part (b), 
we can proceed similarly; using the heat capacity at constant pressure rather than 
constant volume.  
 
(a) For a constant-volume process: 0on =W  

 
Relate the heat added to the gas to its 
heat capacity at constant volume and 
the change in its temperature: 
 

TnRTCQ ∆=∆= 2
5

Vin  

 

Substitute numerical values and 
evaluate Qin: 

( )( )( )
kJ6.24

K300KJ/mol8.314mol12
5

in

=

⋅=Q
 

 
Apply the first law of 
thermodynamics to find ∆Eint: kJ24.60kJ24.6

oninint

=+=

+=∆ WQE
 

 
(b) Relate the heat added to the gas 
to its heat capacity at constant 
pressure and the change in its 
temperature: 
 

( ) TnRnRTCQ ∆+=∆= 2
5

Pin  

 

Substitute numerical values and 
evaluate Qin: 

( )( )( )
kJ73.8

K300KJ/mol8.314mol12
7

in

=

⋅=Q
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Because ∆Eint depends only on the 
temperature difference: 
 

kJ24.6int =∆E  

Apply the first law of 
thermodynamics to find W: kJ2.49

kJ6.24kJ73.8ininton

=

−=−∆= QEW
 

 
(c) Integrate dWon = P dV to obtain: 
 ( ) ( )ififon

f

i

TTnRVVPPdVW
V

V

−=−== ∫  

 
Substitute numerical values and 
evaluate Won: 

( )( )( )
kJ2.49

K300KJ/mol8.314mol1on

=

⋅=W
 

 
64 ••  
Picture the Problem Because this is a constant-volume process, we can use 

TCQ ∆= V to express Q in terms of the temperature change and the ideal-gas law for a 

fixed amount of gas to find ∆T. 
 
Express the amount of heat Q that 
must be transferred to the gas if its 
pressure is to triple: 
 

( )0f2
5

V

TTnR
TCQ

−=

∆=
 

Using the ideal-gas law for a fixed 
amount of gas, relate the initial and 
final temperatures, pressures and 
volumes: 
 

f

0

0

0 3
T

VP
T
VP
=  

Solve for Tf: 
 

0f 3TT =  

Substitute and simplify to obtain: ( ) ( ) VPnRTTnRQ 0002
5 552 ===  

 
65 ••  
Picture the Problem Let the subscripts i and f refer to the initial and final states of the 
gas, respectively. We can use the ideal-gas law for a fixed amount of gas to express V′ in 
terms of V and the change in temperature of the gas when 13,200 J of heat are transferred 
to it. We can find this change in temperature using TCQ ∆= P . 

 
Using the ideal-gas law for a fixed 
amount of gas, relate the initial and 
final temperatures, volumes, and 

f

f

i

i

T
V'P

T
VP
=  
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pressures: 
 
Because the process is isobaric, we 
can solve for V′ to obtain: ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∆
+=

∆+
==

ii

i

i

f 1
T
TV

T
TTV

T
TVV'  

 
Relate the heat transferred to the gas 
to the change in its temperature: 
 

TnRTCQ ∆=∆= 2
7

P  

Solve ∆T: 
nR
QT

7
2

=∆  

 
Substitute to obtain: 
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

i7
21
nRT

QVV'  

 
One mol of gas at STP occupies 22.4 L. Substitute numerical values and evaluate V′: 
 

( ) ( )
( )( )( ) L6.59

K273KJ/mol8.314mol17
kJ13.221m1022.4 33 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

+×= −V'  

 
66 ••  
Picture the Problem We can use the relationship between CP and CV ( nRCC += VP ) 

to find the number of moles of this particular gas. In parts (b) and (c) we can use the 
number of degrees of freedom associated with monatomic and diatomic gases, 
respectively, to find CP and CV. 
 
(a) Express the heat capacity of the 
gas at constant pressure to its heat 
capacity at constant volume: 
 

nRCC += VP  

Solve for n: 
R

CCn VP −=  

 
Substitute numerical values and 
evaluate n: 
 

mol3.50
KJ/mol8.314

J/K29.1
=

⋅
=n  

(b) Express and evaluate CV for a 
monatomic gas: 
 

nRC 2
3

V =  

 

Substitute numerical values and 
evaluate CV: 

( )( )
J/K43.6

KJ/mol8.314mol3.52
3

V

=

⋅=C
 



Chapter 18    
 

 

1386 

Express CP for a monatomic gas: 
 

nRC 2
5

P =  

 
Substitute numerical values and 
evaluate CP: 

( )( )
J/K7.27

KJ/mol8.314mol3.52
5

P

=

⋅=C
 

 
(c) If the diatomic molecules rotate 
but do not vibrate they have 5 
degrees of freedom: 
 

( )( )
J/K7.27

KJ/mol8.314mol3.52
5
2
5

V

=

⋅=
= nRC

 

and 

( )( )
J/K102

KJ/mol8.314mol3.52
7
2
7

P

=

⋅=
= nRC

 

 
*67 ••  
Picture the Problem We can find the change in the heat capacity at constant pressure as 
CO2 undergoes sublimation from the energy per molecule of CO2 in the solid and gaseous 
states. 
 
Express the change in the heat 
capacity (at constant pressure) per 
mole as the CO2 undergoes 
sublimation: 
 

solidP,gasP,P CCC −=∆  

Express Cp,gas in terms of the number 
of degrees of freedom per molecule: 

( ) NkNkfC 2
5

2
1

gasP, ==  
because each molecule has three 
translational and two rotational degrees of 
freedom in the gaseous state. 
  

We know, from the Dulong-Petit 
Law, that the molar specific heat of 
most solids is 3R = 3Nk. This result 
is essentially a per-atom result as it 
was obtained for a monatomic solid 
with six degrees of freedom. Use 
this result and the fact CO2 is 
triatomic to  express Cp,solid: 
 

NkNkC 9atoms3
atom
3

solidP, =×=  

 

Substitute to obtain: NkNkNkC 2
13

2
18

2
5

P −=−=∆  

 
68 ••  
Picture the Problem We can find the initial internal energy of the gas from 

nRTU 2
3

i = and the final internal energy from the change in internal energy resulting 

from the addition of 500 J of heat. The work done during a constant-volume process is 
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zero and the work done during the constant-pressure process can be found from the first 
law of thermodynamics. 
 
(a) Express the initial internal 
energy of the gas in terms of its 
temperature: 
 

nRTE 2
3

iint, =  

 

Substitute numerical values and 
evaluate Eint,i: 

( )( )( )
kJ3.40

K273KJ/mol8.314mol12
3

iint,

=

⋅=E
 

 
(b) Relate the final internal energy 
of the gas to its initial internal 
energy: 
 

TCEEEE ∆+=∆+= Viint,intiint,fint,  

Express the change in temperature 
of the gas resulting from the 
addition of heat: 
 

P

in

C
QT =∆  

Substitute to obtain: 
 in

P

V
iint,fint, Q

C
CEE +=  

 
Substitute numerical values and 
evaluate Eint,f: 

( ) kJ70.3J500kJ40.3
2
5
2
3

fint, =+=
nR
nRE  

 
(c) Relate the final internal energy 
of the gas to its initial internal 
energy: 
 

intiint,fint, EEE ∆+=  

Apply the first law of 
thermodynamics to the constant-
volume process: 
 

oninint WQE +=∆  

or, because Won = 0, 
J500inint ==∆ QE  

 
Substitute numerical values and 
evaluate Eint,f: 

kJ3.90J500kJ.403fint, =+=E  

 
69 ••  
Picture the Problem We can use ( )NkfC 2

1
waterV, =  to express CV,water and then count 

the number of degrees of freedom associated with a water molecule to determine f. 
 
Express CV,water in terms of the 
number of degrees of freedom per 

( )NkfC 2
1

waterV, =  
where f is the number of degrees of 



Chapter 18    
 

 

1388 

molecule: freedom associated with a water molecule. 
 

atom).per  (2
freedom of degrees 4 additionalan in  resulting atom,oxygen  eagainst th

ecan vibrat atomshydrogen   theofeach  addition,In  freedom. of degrees
 rotational  threeand freedom of degrees onal translati threeare There

 

 
Substitute for f to obtain: ( ) NkNkC 510 2

1
waterV, ==  

 
Quasi-Static Adiabatic Expansion of a Gas 
 
*70 ••  
Picture the Problem The adiabatic 
expansion is shown in the PV diagram. We 
can use the ideal-gas law to find the initial 
volume of the gas and the equation for a 
quasi-static adiabatic process to find the 
final volume of the gas. A second 
application of the ideal-gas law, this time 
at the final state, will yield the final 
temperature of the gas. In part (c) we can 
use the first law of thermodynamics to find 
the work done by the gas during this 
process. 

 

 

 
(a) Apply the ideal-gas law to 
express the initial volume of the 
gas: 
 

i

i
i P

nRTV =  

 

Substitute numerical values and 
evaluate Vi: 

( )( )( )

L2.24m102.24
atm

kPa101.3atm10

K273KJ/mol8.314mol1

33

i

=×=

×

⋅
=

−

V
 

 
Use the relationship between the 
pressures and volumes for a quasi-
static adiabatic process to express 
Vf: 
 

γγ
ffii VPVP =  ⇒ 

γ1

f

i
if ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

P
PVV  
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Substitute numerical values and 
evaluate Vf: ( )

L5.88

atm2
atm10L2.24

531

f

i
if

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

γ

P
PVV

 

 
(b) Apply the ideal-gas law to 
express the final temperature of the 
gas: 
 

nR
VPT ff

f =  

 

Substitute numerical values and 
evaluate Tf: 

( )( )

K143

Katm/molL108.206
L5.88atm2

2f

=

⋅⋅×
= −T

 

 
(c) Apply the first law of 
thermodynamics to express the 
work done on the gas: 
 

ininton QEW −∆=  

or, because the process is adiabatic, 
TnRTCEW ∆=∆=∆= 2

3
Vinton  

Substitute numerical values and 
evaluate Won: 
 

( )( )( )
kJ1.62

K130KJ/mol8.314mol12
3

on

−=

−⋅=W
 

Because Wby the gas = −Won: kJ1.62gasby  =W  

 
71 •  
Picture the Problem We can use the temperature-volume equation for a quasi-static 
adiabatic process to express the final temperature of the gas in terms of its initial 
temperature and the ratio of its heat capacitiesγ. Because nRCC += VP , we can 

determine γ for each of the given heat capacities at constant volume. 
 
Express the temperature-volume 
relationship for a quasi-static adiabatic 
process: 
 

1-
ff

1-
ii

γγ VTVT =  

Solve for the final temperature: 
( ) 1

i

1

i2
1

i
i

1

f

i
if 2 −

−−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= γ

γγ

T
V

VT
V
VTT  

 
(a) Evaluate γ for nR2

3
VC = :  

3
5

2
3
2
5

V

P ===
nR
nR

C
Cγ  

 
Evaluate Tf: ( )( ) K4652K293 1

f
3
5

== −T  
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(b) Evaluate γ  for nR2
5

VC = :  
5
7

2
5
2
7

V

P ===
nR
nR

C
Cγ  

 
Evaluate Tf: ( )( ) K8732K293 1

f
5
7

== −T  

 
72 •  
Picture the Problem We can use the temperature-volume and pressure-volume equations 
for a quasi-static adiabatic process to express the final temperature and pressure of the 
gas in terms of its initial temperature and pressure and the ratio of its heat capacities.  
 
Express the temperature-volume 
relationship for a quasi-static 
adiabatic process: 
 

1
ff

1
ii

−− = γγ VTVT  

Solve for the final temperature: 
( ) 1

i

1

i4
1

i
i

1

f

i
if 4 −

−−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= γ

γγ

T
V

VT
V
VTT  

 
Using γ  = 5/3 for neon, evaluate Tf:  ( )( ) K3874K293 1

f
3
5

== −T  

 
Express the relationship between the 
pressures and volumes for a quasi-
static adiabatic process: 
 

γγ
ffii VPVP =  

 
 

Solve for Pf: γ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

i4
1

i
if V

VPP  

 
Substitute numerical values and 
evaluate Pf: 

( )( ) atm10.14atm1 35
f ==P  

 
*73 ••  
Picture the Problem We can use the ideal-gas law to find the initial volume of the gas. 
In part (a) we can apply the ideal-gas law for a fixed amount of gas to find the final 
volume and the expression (Equation 19-16) for the work done in an isothermal process. 
Application of the first law of thermodynamics will allow us to find the heat absorbed by 
the gas during this process. In part (b) we can use the relationship between the pressures 
and volumes for a quasi-static adiabatic process to find the final volume of the gas. We 
can apply the ideal-gas law to find the final temperature and, as in (a), apply the first law 
of thermodynamics, this time to find the work done by the gas. 
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Use the ideal-gas law to express the 
initial volume of the gas: 
 

i

i
i P

nRTV =  

 
Substitute numerical values and 
evaluate Vi: 

( )( )( )

L3.12m103.12
kPa400

K300KJ/mol8.314mol0.5

33

i

=×=

⋅
=

−

V
 

 
(a) Because the process is 
isothermal: 
 

K300if == TT  

 

Use the ideal-gas law for a fixed 
amount of gas to express Vf: f

ff

i

ii

T
VP

T
VP

=  

or, because T = constant, 

f

i
if P

PVV =  

 
Substitute numerical values and 
evaluate Vf: 
 

( ) L7.80
kPa160
kPa400L3.12f =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=V  

Express the work done by the gas 
during the isothermal expansion: 
 

i

f
gasby ln

V
VnRTW =  

 
Substitute numerical values and 
evaluate Wby gas: 

( )( )

( )

kJ14.1

L3.12
L7.80lnK300

KJ/mol8.314mol0.5gasby 

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⋅=W

 

 
Noting that the work done by the 
gas during the process equals the 
negative of the work done on the 
gas, apply the first law of 
thermodynamics to find the heat 
absorbed by the gas: 
 

( )
kJ1.14

kJ1.140onintin

=

−−=−∆= WEQ
 

(b) Using γ = 5/3 and the 
relationship between the pressures 
and volumes for a quasi-static 
adiabatic process, express Vf: 
 

γγ
ffii VPVP =  ⇒ 

γ1

f

i
if ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

P
PVV  
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Substitute numerical values and 
evaluate Vf: ( ) L5.41

kPa160
kPa400L12.3

53

f =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=V  

 
Apply the ideal-gas law to find the 
final temperature of the gas: 
 

nR
VPT ff

f =  

 
Substitute numerical values and 
evaluate Tf: 

( )( )
( )( )

K208

KJ/mol8.314mol0.5
m105.41kPa160 33

f

=

⋅
×

=
−

T
 

 
For an adiabatic process: 0in =Q  

 
Apply the first law of 
thermodynamics to express the work 
done on the gas during the adiabatic 
process: 
 

TnRTCQEW ∆=−∆=−∆= 2
3

Vininton 0  

Substitute numerical values and 
evaluate Won: 

( )( )
( )

J745
K300K208

KJ/mol8.314mol0.52
3

on

−=
−×

⋅=W
 

 
Because the work done by the gas 
equals the negative of the work done 
on the gas: 

( ) J745J574gasby  =−−=W  

 
74 ••  
Picture the Problem We can use the ideal-gas law to find the initial volume of the gas. 
In part (a) we can apply the ideal-gas law for a fixed amount of gas to find the final 
volume and the expression (Equation 19-16) for the work done in an isothermal process. 
Application of the first law of thermodynamics will allow us to find the heat absorbed by 
the gas during this process. In part (b) we can use the relationship between the pressures 
and volumes for a quasi-static adiabatic process to find the final volume of the gas. We 
can apply the ideal-gas law to find the final temperature and, as in (a), apply the first law 
of thermodynamics, this time to find the work done by the gas. 
 
Use the ideal-gas law to express the 
initial volume of the gas: 
 

i

i
i P

nRTV =  
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Substitute numerical values and 
evaluate Vi: 

( )( )( )

L3.12m103.12
kPa400

K300KJ/mol8.314mol0.5

33

i

=×=

⋅
=

−

V
 

 
(a) Because the process is isothermal: 
 

K300if == TT  

 
Use the ideal-gas law for a fixed 
amount of gas to express Vf: f

ff

i

ii

T
VP

T
VP

=  

or, because T = constant, 

f

i
if P

PVV =  

 
Substitute numerical values and 
evaluate Tf: 

( ) L7.80
kPa160
kPa400L3.12f =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=V  

 
Express the work done by the gas 
during the isothermal expansion: 
 

i

f
gasby ln

V
VnRTW =  

 
Substitute numerical values and 
evaluate Wby gas: 

( )( )

( )

kJ14.1

L3.12
L7.80lnK300

KJ/mol8.314mol0.5gasby 

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⋅=W

 

 
Noting that the work done by the gas 
during the isothermal expansion 
equals the negative of the work done 
on the gas, apply the first law of 
thermodynamics to find the heat 
absorbed by the gas: 
 

( )
kJ1.14

kJ1.140onintin

=

−−=−∆= WEQ
 

(b) Using γ = 1.4 and the relationship 
between the pressures and volumes 
for a quasi-static adiabatic process, 
express Vf: 
 

γγ
ffii VPVP =  ⇒ 

γ1

f

i
if ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

P
PVV  

 

Substitute numerical values and evaluate 
Vf: ( ) L00.6

kPa160
kPa400L12.3

1.41

f =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=V  
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Apply the ideal-gas law to express 
the final temperature of the gas: 
 

nR
VPT ff

f =  

 
Substitute numerical values and 
evaluate Tf: 

( )( )
( )( )

K231

KJ/mol8.314mol0.5
m106kPa160 33

f

=

⋅
×

=
−

T
 

 
For an adiabatic process: 0in =Q  

 
Apply the first law of 
thermodynamics to express the work 
done on the gas during the adiabatic 
expansion: 
 

TnRTCQEW ∆=−∆=−∆= 2
5

Vininton 0  

Substitute numerical values and 
evaluate Won: 

( )( )
( )

J717
K300K312

KJ/mol8.314mol0.52
5

on

−=
−×

⋅=W
 

 
Noting that the work done by the 
gas during the adiabatic expansion is 
the negative of the work done on the 
gas, we have: 

( ) J717J717gasby  =−−=W  

 
75 ••  
Picture the Problem We can eliminate the volumes from the equations relating the 
temperatures and volumes and the pressures and volumes for a quasi-static adiabatic 
process to obtain a relationship between the temperatures and pressures. We can find the 
initial volume of the gas using the ideal-gas law and the final volume using the pressure-
volume relationship. In parts (d) and (c) we can find the change in the internal energy of 
the gas from the change in its temperature and use the first law of thermodynamics to 
find the work done by the gas during its expansion. 
 
(a) Express the relationship between 
temperatures and volumes for a 
quasi-static adiabatic process: 
 

1
ff

1
ii

−− = γγ VTVT  

Express the relationship between 
pressures and volumes for a quasi-
static adiabatic process: 
 

γγ
ffii VPVP =                        (1) 
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Eliminate the volume between these 
two equations to obtain: 
 

γ
11

i

f
if

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

P
PTT  

 
Substitute numerical values and 
evaluate Tf: ( ) K263

atm5
atm1K500

35
11

f =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−

T  

 
(b) Solve equation (1) for Vf: γ

1

f

i
if ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

P
PVV  

 
Apply the ideal-gas law to express 
Vi: 
 

i

i
i P

nRTV =  

 
Substitute numerical values and 
evaluate Vi: 

( )( )( )

L4.10
atm

kPa101.35atm

K500KJ/mol8.314mol0.5
i

=

×

⋅
=V

 

 
Substitute for Vi and evaluate Vf: 

( ) L8.10
atm1
atm5L10.4

5
3

f =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=V  

 
(d) Relate the change in the internal 
energy of the helium gas to the 
change in its temperature: 
 

TnRTCE ∆=∆=∆ 2
3

Vint  

 

Substitute numerical values and 
evaluate ∆Eint: 

( )( )
( )

kJ48.1

K500K263
KJ/mol8.314mol0.52

3
int

−=

−×
⋅=∆E

 

 
(c) Use the first law of 
thermodynamics to express the work 
done on the gas: 
 

intintininton 0 EEQEW ∆=−∆=−∆=  

Substitute numerical values and 
evaluate Won: 
 

kJ48.1on −=W  

Because the work done by the gas 
equals the negative of Won: 

( )
kJ48.1

kJ48.1ongasby  

=

−−=−= WW
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*76 •••  
Picture the Problem Consider the process to be accomplished in a single compression. 
The initial pressure is 1 atm = 101 kPa. The final pressure is (101 + 482) kPa = 583 kPa, 
and the final volume is 1 L. Because air is a mixture of diatomic gases, γair = 1.4. We can 
find the initial volume of the air using γγ

ffii VPVP = and use Equation 19-39 to find the 

work done by the air. 
 
Express the work done in an 
adiabatic process: 
 

1
ffii

−
−

=
γ

VPVPW                   (1) 

Use the relationship between 
pressure and volume for a quasi-
static adiabatic process to express 
the initial volume of the air: 
 

γγ
ffii VPVP =  ⇒ 

γ
1

i

f
fi ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

P
PVV                

       

Substitute numerical values and 
evaluate Vi: ( ) L50.3

kPa101
kPa583L1

4.1
1

i =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=V  

 
Substitute numerical values in equation (1) and evaluate W: 
 

( )( ) ( )( ) J574
14.1

m10kPa835m103.5kPa101 3333

−=
−
−×

=
−−

W  

where the minus sign tells us that work is done on the gas. 
 
77 •••  
Picture the Problem We can integrate PdV using the equation of state for an adiabatic 
process to obtain Equation 18-39. 
 
Express the work done by the gas 
during this adiabatic expansion: 
 

∫=
2

1

gasby 

V

V

PdVW  

For an adiabatic process: CPV == constantγ          (1) 
and 

γ−= CVP  
 

Substitute and evaluate the integral 
to obtain: ( )γγγ

γ
−−− −

−
== ∫ 1

1
1
2gasby 1

2

1

VVCdVVCW
V

V

 

 
From equation (1) we have: γγ

22
1
2 VPCV =− and γγ

11
1

1 VPCV =−  
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Substitute to obtain: 

11
22111122

gasby −
−

=
−
−

=
γγ

γγγγ VPVPVPVPW , 

which is Equation 18-39. 
 
Cyclic Processes 
  
78 ••  
Picture the Problem To construct the PV diagram we’ll need to determine the volume 
occupied by the gas at the beginning and ending points for each process. Let these points 
be A, B, C, and D. We can apply the ideal-gas law to the starting point (A) to find VA. To 
find the volume at point B, we can use the relationship between pressure and volume for 
a quasi-static adiabatic process. We can use the ideal-gas law to find the volume at point 
C and, because they are equal, the volume at point D. We can apply the first law of 
thermodynamics to find the amount of heat added to or subtracted from the gas during 
the complete cycle. 
 
(a) Using the ideal-gas law, express 
the volume of the gas at the starting 
point A of the cycle: 
 

A

A
A P

nRTV =  

 

Substitute numerical values and 
evaluate VA: 

( )( )( )

L4.81
atm

kPa101.3atm5

K293KJ/mol8.314mol1
A

=

×

⋅
=V

 

 
Use the relationship between 
pressure and volume for a quasi-
static adiabatic process to express 
the volume of the gas at point B; the 
end point of the adiabatic expansion: 
 

γ
1

B

A
AB ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

P
PVV                

       

Substitute numerical values and 
evaluate VB: ( ) L2.15

atm1
atm5L81.4

4.1
1

B =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=V  

 
Using the ideal-gas law for a fixed 
amount of gas, express the volume 
occupied by the gas at points C and 
D: 
 

C

C
DC P

nRTVV ==  
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Substitute numerical values and 
evaluate VC: 

( )( )( )

L0.24
atm

kPa101.3atm1

K293KJ/mol8.314mol1
C

=

×

⋅
=V

 

 
The complete cycle is shown in the 
diagram. 

 
 

(b) Note that for the paths A→B and 
B→C, Wby gas, the work done by the 
gas, is positive. For the path D→A, 
Wby gas is negative, and greater in 
magnitude than WA→C. Therefore the 
total work done by the gas is 
negative. Find the area enclosed by 
the cycle by noting that each 
rectangle of dotted lines equals  
5 atm⋅L and counting the rectangles: 
 

( )
( )

( )

kJ6.58

Latm
J101.3Latm65

eL/rectanglatm5
rectangles13gasby 

−=

⎟
⎠
⎞

⎜
⎝
⎛

⋅
⋅−=

⋅×

−≈W

 

 

(c) The work done on the gas equals 
the negative of the work done by the 
gas. Apply the first law of 
thermodynamics to find the amount 
of heat added to or subtracted from 
the gas during the complete cycle: 
 

( )
kJ6.58

kJ6.580onintin

=

−−=−∆= WEQ
 

because ∆Eint = 0 for the complete cycle. 
 

(d) Express the work done during 
the complete cycle: 
 

ADDCCBBA →→→→ +++= WWWWW  
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A→B is an adiabatic process: 

( )( ) ( )( )

( )

kJ25.2
Latm
J101.3Latm3.22

14.1
L2.51atm1L4.82atm5

1
BBAA

BA

=

⎟
⎠
⎞

⎜
⎝
⎛

⋅
⋅=

−
−

=

−
−

=→ γ

γγ VPVPW

 

 
B→C is an isobaric process: 

( )( )

( )

kJ0.891
Latm
J101.3Latm8.80

L15.2L24.0atm1
CB

=

⎟
⎠
⎞

⎜
⎝
⎛

⋅
⋅=

−=
∆=→ VPW

 

 
C→D is a constant-volume process: 
 

0DC =→W  

D→A is an isobaric process: ( )( )

( )

kJ62.9
Latm
J101.3Latm0.95

L42L5atm5AD

−=

⎟
⎠
⎞

⎜
⎝
⎛

⋅
⋅−=

−=∆=→ VPW

 

 
Substitute to obtain: 

kJ6.48

kJ9.620kJ0.8912.25kJ

−=

−++=W
 

Note that our result in part (b) agrees with 
this more accurate value to within 2%. 

 
*79 ••  
Picture the Problem The total work done as the gas is taken through this cycle is the 
area bounded by the two processes. Because the process from 1→2 is linear, we can use 
the formula for the area of a trapezoid to find the work done during this expansion.  We 
can use ( )ifprocess isothermal ln VVnRTW =  to find the work done on the gas during the 

process 2→1.  The total work is then the sum of these two terms. 
 
Express the net work done per cycle: 
 

1221total →→ += WWW                       (1) 

Work is done by the gas during its 
expansion from 1 to 2 and hence is 
equal to the negative of the area of 
the trapezoid defined by this path 

( )( )
atmL3.17

atm1atm2L11.5L232
1

trap21

⋅−=
+−−=

−=→ AW
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and the vertical lines at V1 = 11.5 L 
and V2 = 23 L. Use the formula for 
the area of a trapezoid to express 
W1→2: 
 
Work is done on the gas during the 
isothermal compression from V2 to 
V1 and hence is equal to the area 
under the curve representing this 
process. Use the expression for the 
work done during an isothermal 
process to express W2→1: 
 

i

f
12 ln

V
VnRTW =→  

Apply the ideal-gas law at point 1 to find the temperature along the isotherm 2→1: 
 

( )( )
( )( ) K280

Katm/molL10206.8mol1
L5.11atm2

2 =
⋅⋅×

== −nR
PVT  

 
Substitute numerical values and evaluate W2→1: 
 

( )( )( ) atmL9.15
L23
L5.11lnK280Katm/molL10206.8mol1 2

12 ⋅=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅×= −

→W  

 
Substitute in equation (1) and 
evaluate Wnet: 

J142
atmL

J101.325atmL40.1

atmL15.9atmL3.17net

−=

⋅
×⋅−=

⋅+⋅−=W

 

 
Remarks: The work done by the gas during each cycle is 142 J. 
 
80 ••  
Picture the Problem We can apply the ideal-gas law to find the temperatures T1, T2, and 
T3. We can use the appropriate work and heat equations to calculate the heat added and 
the work done by the gas for the isothermal process (1→2), the constant-volume process 
(2→3), and the isobaric process (3→1). 
 



Heat and the First Law of Thermodynamics 
 

 

1401

(a) The cycle is shown in the diagram: 

 
 

(c) Use the ideal-gas law to find T1: 

( )( )
( )( )

K4.42

Katm/molL108.206mol2
L2atm2

2

11
1

=

⋅⋅×
=

=

−

nR
VPT

 

 
Because the process 1→2 is isothermal: 
 

K4.422 =T  

Use the ideal-gas law to find T3: 

( )( )
( )( )

K7.84

Katm/molL108.206mol2
L4atm2

2

33
3

=

⋅⋅×
=

=

−

nR
VPT

 

 
(b) Because the process 1→2 is 
isothermal, Qin,1→2 = Wby gas,1→2: 
 ( )( )

( )

J281

L2
L4lnK24.4

KJ/mol8.314mol2

ln
1

2
21gas,by 21 in,

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⋅=

== →→ V
VnRTWQ

 

 
Because process 2→3 takes place at 
constant volume: 
  

032 =→W  
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Because process 2→3 takes place at 
constant volume, Won,2→3 = 0: 

( )
( )( )
( )

J606

K4.42K48.7
KJ/mol8.314mol22

3

232
3

V3int,23in,2

=

−×
⋅=

−=∆=∆= →→ TTnRTCEQ

 

 
Process 3→1 is isobaric: 

( )( )
( )

kJ01.1

K7.84K4.24
KJ/mol8.314mol2

)(

2
5

312
5

P13

−=

−×
⋅=

−=∆=→ TTnRTCQ

 

 
The work done by the gas from 3 to 
1 equals the negative of the work 
done on the gas: 
  

( )
( )( )

( )

J405

Latm
J101.3Latm4

L4L2atm2
313,13,11gas,3by 

=

⎟
⎠
⎞

⎜
⎝
⎛

⋅
⋅−−=

−−=

−=∆−=→ VVPVPW

 

 
81 •••  
Picture the Problem We can find the temperatures, pressures, and volumes at all points 
for this ideal monatomic gas (3 degrees of freedom) using the ideal-gas law and the work 
for each process by finding the areas under each curve. We can find the heat exchanged 
for each process from the heat capacities and the initial and final temperatures for each 
process. 
 
Express the total work done by the 
gas per cycle: 
 

DCCBBAADtotgas,by →→→→ +++= WWWWW  

1. Use the ideal-gas law to find the 
volume of the gas at point D: 
 ( )( )( )

( )( )
L29.5

kPa/atm101.3atm2
K360KJ/mol8.314mol2

D

D
D

=

⋅
=

=
P

nRTV

 

 
2. We’re given that the volume of 
the gas at point B is three times that 
at point D: 
 

L6.88
3 DCB

=
== VVV
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Use the ideal-gas law to find the 
pressure of the gas at point C: 
 ( )( )

( )
atm667.0
K360

L6.88
Katm/molL10206.8mol2 2

C

C
C

=
×

⋅⋅×
=

=

−

V
nRTP

 

 
We’re given that the pressure at 
point B is twice that at point C: 
 

( ) atm33.1atm667.022 CB === PP  

 

3. Because path DC represents an 
isothermal process: 
 

K360CD == TT  

Use the ideal-gas law to find the 
temperatures at points B and A: 
 ( )( )

( )( )
K720

Katm/molL108.206mol2
L88.6atm1.333

2

BB
BA

=
⋅⋅×

=

==

−

nR
VPTT

 

 
Because the temperature at point A 
is twice that at D and the volumes 
are the same, we can conclude that: 
 

atm42 DA == PP  

The pressure, volume, and 
temperature at points A, B, C, and D 
are summarized in the table to the 
right. 
 
 
 

 
Point P V T 

 (atm) (L) (K) 
A 4 29.5 720 
B 1.33 88.6 720 
C 0.667 88.6 360 
D 2 29.5 360  

  
4. For the path D→A: 0AD =→W  

and  

( )
( )( )
( )

kJ98.8
K360K720

KJ/mol8.314mol22
3

DA2
3

AD2
3

AD int,AD

=
−×

⋅=
−=

∆=∆= →→→

TTnR
TnREQ
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For the path A→B: 

( )( )( )

kJ2.13
L29.5
L88.6ln

K720KJ/mol8.314mol2

ln
A

B
BA,BABA

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⋅=

== →→ V
VnRTQW

 

and, because process A→B is 
isothermal, 0BA int, =∆ →E  

 
For the path B→C: 0CB =→W  

and 
( )

( )( )
( )

kJ98.8
K720K360

KJ/mol8.314mol22
3

BC2
3

VCBCB

−=
−×

⋅=

−=∆=∆= →→ TTnRTCUQ

 

 
For the path C→D: 

( )( )( )

kJ58.6
L6.88
L5.92ln

K603KJ/mol8.314mol2

ln
C

D
DC,DC

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⋅=

=→ V
VnRTW

 

Also, because process A→B is isothermal, 
0BAint, =∆ →E  

and kJ58.6DCDC −== →→ WQ  

 
Qin, Won, and ∆Eint are summarized 
for each of the processes in the table 
to the right.  
 
 
 
 
 
 
 
 

 
Process Qin Won ∆Eint 

 (kJ) (kJ) (kJ) 
D→A 98.8  0 8.98 

A→B 2.13  −13.2 0 

B→C 98.8− 0 −8.98 

C→D 58.6− 6.58 0 
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Referring to the table, find the total 
work done by the gas per cycle: 

kJ6.62

kJ6.580kJ13.20
DCCBBAADtot

=

−++=
+++= →→→→ WWWWW

 

 
Remarks: Note that, as it should be, ∆Eint is zero for the complete cycle. 
 
*82 •••  
Picture the Problem We can find the temperatures, pressures, and volumes at all points 
for this ideal diatomic gas (5 degrees of freedom) using the ideal-gas law and the work for 
each process by finding the areas under each curve. We can find the heat exchanged for 
each process from the heat capacities and the initial and final temperatures for each 
process. 
 
Express the total work done by the 
gas per cycle: 
 

DCCBBAADtotgas,by →→→→ +++= WWWWW  

1. Use the ideal-gas law to find the 
volume of the gas at point D: 
 ( )( )( )

( )( )
L29.5

kPa/atm101.3atm2
K360KJ/mol8.314mol2

D

D
D

=

⋅
=

=
P

nRTV

 

 
2. We’re given that the volume of the 
gas at point B is three times that at 
point D: 
 

L6.88
3 DCB

=
== VVV

 

Use the ideal-gas law to find the 
pressure of the gas at point C: 
 ( )( )

( )
atm667.0
K360

L6.88
Katm/molL10206.8mol2 2

C

C
C

=
×

⋅⋅×
=

=

−

V
nRTP

 

 
We’re given that the pressure at point 
B is twice that at point C: 
 

( ) atm33.1atm667.022 CB === PP  

 

3. Because path DC represents an 
isothermal process: 
 

K360CD == TT  
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Use the ideal-gas law to find the 
temperatures at points B and A: 
 ( )( )

( )( )
K720

Katm/molL108.206mol2
L88.6atm1.333

2

BB
BA

=
⋅⋅×

=

==

−

nR
VPTT

 

 
Because the temperature at point A is 
twice that at D and the volumes are 
the same, we can conclude that: 
 

atm42 DA == PP  

The pressure, volume, and 
temperature at points A, B, C, and D 
are summarized in the table to the 
right. 
 
 
 
 

Point P V T 
 (atm) (L) (K) 

A 4 29.5 720 
B 1.33 88.6 720 
C 0.667 88.6 360 
D 2 29.5 360  

4. For the path D→A: 0AD =→W  

and  

( )
( )( )
( )

kJ0.15
K360K720

KJ/mol8.314mol22
5

DA2
5

AD2
5

ADAD

=
−×

⋅=
−=

∆=∆= →→→

TTnR
TnRUQ

 

 
For the path A→B: 

( )( )( )

kJ2.13
L29.5
L88.6ln

K720KJ/mol8.314mol2

ln
A

B
BA,BABA

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⋅=

== →→ V
VnRTQW

 

and, because process A→B is 
isothermal, 0BAint, =∆ →E  

 
For the path B→C: 0CB =→W  

and 
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( )
( )( )
( )

kJ0.15
K720K360

KJ/mol8.314mol22
5

BC2
5

VCBCB

−=
−×

⋅=
−=

∆=∆= →→

TTnR
TCUQ

 

 
For the path C→D: 

( )( )( )

kJ58.6
L6.88
L5.92ln

K603KJ/mol8.314mol2

ln
C

D
DC,DC

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⋅=

=→ V
VnRTW

 

Also, because process A→B is isothermal, 
0BAint, =∆ →E and 

kJ58.6DCDC −== →→ WQ  

 
Qin, Won, and ∆Eint are summarized for 
each of the processes in the table to the 
right.  
 
 
 
 
 
 
 
 

 
Process Qin Won ∆Eint 

 (kJ) (kJ) (kJ) 
D→A 0.15  0 15.0 

A→B 2.13  −13.2 0 

B→C 0.15−  0 −15.0 

C→D 58.6− 6.58 0 
 

Referring to the table and noting that 
the work done by the gas equals the 
negative of the work done on the 
gas, find the total work done by the 
gas per cycle: 
 

kJ6.62

kJ6.580kJ13.20
DCCBBAADtotgas,by 

=

−++=

+++= →→→→ WWWWW
 

 

Remarks: Note that ∆Eint for the complete cycle is zero and that the total work done 
is the same for the diatomic gas of this problem and the monatomic gas of Problem 
81. 
 
83 •••   
Picture the Problem We can use the equations of state for adiabatic and isothermal 
processes to express the work done on or by the system, the heat entering or leaving the 
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system, and the change in internal energy for each of the four processes making up the 
Carnot cycle. We can use the first law of thermodynamics and the definition of the 
efficiency of a Carnot cycle to show that the efficiency is 1 – Qc / Qh.   
 
(a) The cycle is shown on the PV 
diagram to the right: 

 
 

(b) Because the process 1→2 is 
isothermal: 
 

021int, =∆ →E  

 

Apply the first law of 
thermodynamics to obtain: 
 

1

2
h2121h ln

V
VnRTWQQ === →→  

 
(c) Because the process 3→4 is 
isothermal: 
 

043 =∆ →U  

Apply the first law of 
thermodynamics to obtain: 
 

4

3
c

3

4
c4343c

ln

ln

V
VnRT

V
VnRTWQQ

−=

=== →→

 

where the minus sign tells us that heat is 
given off by the gas during this process. 
 

(d) Apply the equation for a quasi-
static adiabatic process at points 4 
and 1 to obtain: 
 

1
1h

1
4c

−− = γγ VTVT  

Solve for the ratio V1/V4: 
 

1
1

h

c

4

1
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

γ

T
T

V
V

                     (1) 

 
Apply the equation for a quasi-static 
adiabatic process at points 2 and 3 to 

1
3c

1
2h

−− = γγ VTVT  
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obtain: 
 
Solve for the ratio V2/V3: 
 

1
1

h

c

3

2
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

γ

T
T

V
V

                      (2) 

 
Equate equations (1) and (2) and 
rearrange to obtain: 
 

1

2

4

3

V
V

V
V

=  

(e) Express the efficiency of the 
Carnot cycle: 
 

hQ
W

=ε  

Apply the first law of 
thermodynamics to obtain: 
 

( ) ( )chch

incycle int,on

0 QQQQ

QEW

−−=−−=

−∆=
 

because Eint is a state function and 
0cycle int, =∆E . 

 
Substitute to obtain: 

h

c

h

ch

h

on

h

gas by the

1
Q
Q

Q
QQ

Q
W

Q
W

−=
−

=

−
==ε

 

 
(f) In part (b) we established that: 

1

2
hh ln

V
VnRTQ =  

 
In part (c) we established that the 
heat leaving the system along the 
path 3→4 is given by: 
 

4

3
cc ln

V
VnRTQ =  

 

Divide the second of these equations 
by the first to obtain: 

h

c

1

2
h

4

3
c

h

c

ln

ln

T
T

V
VnRT

V
VnRT

Q
Q

==  

because
1

2

4

3

V
V

V
V

= . 

 
Remarks: This last result establishes that the efficiency of a Carnot cycle is also 

given by
h

c
C T

Tε −= 1 . 
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General Problems 
 
84 •  
Picture the Problem The isobaric process 
is shown on the PV diagram. We can 
express the heat that must be supplied to 
gas in terms of its heat capacity at constant 
pressure and the change in its temperature 
and then use the ideal-gas law for a fixed 
amount of gas to relate the final 
temperature to the initial temperature. 

 
 
Relate Qin to CP and ∆T: 
 

( ) ( )if2
5

ifPPin TTnRTTCTCQ −=−=∆=  

 
Use the ideal-gas law for a fixed 
amount of gas to relate the initial 
and final volumes, pressures, and 
temperatures: 
 

f

ff

i

ii

T
VP

T
VP

=  

or, because the process is isobaric, 

f

f

i

i

T
V

T
V

=  

 
Solve for Tf: 

iii
i

f
f 4

L50
L200 TTT

V
VT ===  

 
Substitute to obtain: ( ) i2

15
ii2

5
in 34 nRTTTnRQ =−=  

 
Substitute numerical values and 
evaluate Qin: 

( )( )( )
kJ56.1

K300KJ/mol8.314mol32
15

in

=

⋅=Q
 

 
85 •  
Picture the Problem We can use the first law of thermodynamics to relate the heat 
removed from the gas to the work done on the gas. 
 
Apply the first law of 
thermodynamics to this process: 
 

ononintin WWEQ −=−∆=  

because ∆Eint = 0 for an isothermal process. 
 

Substitute numerical values to obtain: kJ180in −=Q  

 
Because Qremoved = −Qin: kJ180removed =Q  
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*86 •  
Picture the Problem We can find the number of moles of the gas from the expression for 
the work done on or by a gas during an isothermal process. 
 
Express the work done on the gas 
during the isothermal process: 
 

i

fln
V
VnRTW =  

Solve for n: 

i

fln
V
VRT

Wn =  

 
Substitute numerical values and 
evaluate n: ( )( )

mol45.9

5
1lnK293KJ/mol8.314

kJ180

=

⎟
⎠
⎞

⎜
⎝
⎛⋅

−
=n

 

 
87 •  
Picture the Problem We can use the ideal-gas law to find the temperatures TA and TC. 
Because the process EDC is isobaric, we can find the area under this line geometrically 
and the first law of thermodynamics to find QAEC. 
 
(a) Using the ideal-gas law, find the 
temperature at point A:  

( )( )
( )( )

K65.2

Katm/molL108.206mol3
L4.01atm4

2

AA
A

=

⋅⋅×
=

=

−

nR
VPT

 
Using the ideal-gas law, find the 
temperature at point C: 
 ( )( )

( )( )
K81.2

Katm/molL108.206mol3
L02atm1

2

CC
C

=

⋅⋅×
=

=

−

nR
VPT
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(b) Express the work done by the gas 
along the path AEC: 
 

( )( )

kJ1.62
atmL

J101.3atmL16.0

L4.01L20atm1
0 ECECECAEAEC

=
⋅

×⋅=

−=
∆+=+= VPWWW

 

 
(c) Apply the first law of 
thermodynamics to express QAEC: 
 ( )ATTnRW

TnRW
TCWEWQ

−+=
∆+=

∆+=∆+=

C2
3

AEC

2
3

AEC

VAECintAECAEC

 

 
Substitute numerical values and evaluate QAEC: 
 

( )( )( ) kJ2.22K65.2K81.2KJ/mol8.314mol3kJ1.62 2
3

AEC =−⋅+=Q  

 
Remarks The difference between WAEC and QAEC is the change in the internal energy 
∆Eint,AEC during this process. 
  
88 ••  
Picture the Problem We can use the ideal-gas law to find the temperatures TA and TC. 
Because the process AB is isobaric, we can find the area under this line geometrically. 
We can use the expression for the work done during an isothermal expansion to find the 
work done between B and C and the first law of thermodynamics to find QABC. 
 
(a) Using the ideal-gas law, find the 
temperature at point A:  

( )( )
( )( )

K65.2

Katm/molL108.206mol3
L4.01atm4

2

AA
A

=

⋅⋅×
=

=

−

nR
VPT

 
Use the ideal-gas law to find the 
temperature at point C: 
 ( )( )

( )( )
K81.2

Katm/molL108.206mol3
L02atm1

2

CC
C

=

⋅⋅×
=

=

−

nR
VPT
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(b) Express the work done by the 
gas along the path ABC: 
 

B

C
BABAB

BCABABC

ln
V
VnRTVP

WWW

+∆=

+=
 

 
Use the ideal-gas law to find the volume of the gas at point B: 
 

( )( )( ) L5.00
atm4

K81.2Katm/molL108.206mol3 2

B

B
B =

⋅⋅×
==

−

P
nRTV  

 
Substitute to obtain: 
 

( )( ) ( )( )( )

kJ21.3
atm

J101.3atmL1.73

L5
L20lnK81.2Katm/molL108.206mol3L4.01L5atm4 2

ABC

=×⋅=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅×+−= −W

 

(c) Apply the first law of 
thermodynamics to obtain:  
 ( )ATTnRW

TnRW
TCWEWQ

−+=
∆+=

∆+=∆+=

C2
3

AEC

2
3

AEC

VABCintABCABC

 

 
Substitute numerical values and evaluate QABC: 
 

( )( )( ) kJ81.3K65.2K81.2KJ/mol8.314mol3kJ21.3 2
3

ABC =−⋅+=Q  

 
Remarks: The difference between WABC and QABC is the change in the internal 
energy ∆Eint,ABC during this process. 
  
*89 ••  
Picture the Problem We can use the ideal-gas law to find the temperatures TA and TC. 
Because the process DC is isobaric, we can find the area under this line geometrically. 
We can use the expression for the work done during an isothermal expansion to find the 
work done between A and D and the first law of thermodynamics to find QADC. 
 
(a) Using the ideal-gas law, find the 
temperature at point A:  

( )( )
( )( )

K65.2

Katm/molL108.206mol3
L4.01atm4

2

AA
A

=

⋅⋅×
=

=

−

nR
VPT
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Use the ideal-gas law to find the 
temperature at point C: 
 ( )( )

( )( )
K81.2

Katm/molL108.206mol3
L02atm1

2

CC
C

=

⋅⋅×
=

=

−

nR
VPT

 
 

(b) Express the work done by the 
gas along the path ADC: 
 DCDC

A

D
A

DCADADC

ln VP
V
VnRT

WWW

∆+=

+=
 

 
Use the ideal-gas law to find the volume of the gas at point D: 
 

( )( )( ) L1.61
atm1

K65.2Katm/molL108.206mol3 2

D

D
D =

⋅⋅×
==

−

P
nRTV  

 
Substitute numerical values and evaluate WADC: 
 

( )( )( )

( )( )

kJ65.2
atmL

J101.325atmL2.26

L1.61L02atm1
L01.4
L1.61lnK65.2Katm/molL108.206mol3 2

ADC

=
⋅

×⋅=

−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅×= −W

 

 
(c) Apply the first law of 
thermodynamics to obtain:  
 ( )ATTnRW

TnRW
TCWEWQ

−+=
∆+=

∆+=∆+=

C2
3

ADC

2
3

ADC

VADCintADCADC

 

 
Substitute numerical values and evaluate QADC: 
 

( )( )( ) kJ25.3K65.2K81.2KJ/mol8.314mol3kJ65.2 2
3

ADC =−⋅+=Q  

 
90 ••  
Picture the Problem We can use the ideal-gas law to find the temperatures TA and TC. 
Because the process AB is isobaric, we can find the area under this line geometrically. 
We can find the work done during the adiabatic expansion between B and C using 

BCVBC TCW ∆−= and the first law of thermodynamics to find QABC. 
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(a) Using the ideal-gas law, find the 
temperature at point A:  

( )( )
( )( )

K65.2

Katm/molL108.206mol3
L4.01atm4

2

AA
A

=

⋅⋅×
=

=

−

nR
VPT

 
Use the ideal-gas law to find the 
temperature at point C: 
 ( )( )

( )( )
K81.2

Katm/molL108.206mol3
L02atm1

2

CC
C

=

⋅⋅×
=

=

−

nR
VPT

 
 

(b) Express the work done by the 
gas along the path ABC: 
 

BC2
3

ABAB

BCVABAB

BCABABC

TnRVP
TCVP

WWW

∆−∆=

∆−∆=
+=

 

because, with Qin = 0, WBC = −∆Eint,BC. 
 

Apply the pressure-volume 
relationship for a quasi-static 
adiabatic process to the gas at points 
B and C to find the volume of the 
gas at point B: 
 

γγ
CCBB VPVP =  

and 

( )

L71.8

L20
atm4
atm1 5

31

C
B

C
B

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= V

P
PV

γ

 

 
Use the ideal-gas law to find TB: 

( )( )
( )( )

K142
Katm/molL108.206mol3

L8.71atm4
2

BB
B

=
⋅⋅×

=

=

−

nR
VPT

 
Substitute numerical values and evaluate WABC: 
 

( )( ) ( )( )
( )

kJ18.4
atm

J101.325atmL3.41

K142K81.2
Katm/molL108.206mol3L4.01L71.8atm4 2

2
3

ABC

=×⋅=

−×
⋅⋅×−−= −W
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(c) Apply the first law of 
thermodynamics to obtain: 
 ( )ATTnRW

TnRW
TCWEWQ

−+=
∆+=

∆+=∆+=

C2
3

ABC

2
3

ABC

VABCintABCABC

 

 
Substitute numerical values and evaluate QABC: 
 

( )( )( ) kJ78.4K65.2K81.2KJ/mol8.314mol3kJ18.4 2
3

ABC =−⋅+=Q  

 
91 ••  
Picture the Problem We can find c at T = 4 K by direct substitution. Because c is a 
function of T, we’ll integrate dQ over the given temperature interval in order to find the 
heat required to heat copper from 1 to 3 K. 
 
(a) Substitute for a and b to obtain: ( )

( ) 344

2

KJ/kg1062.7
KJ/kg0.0108

T
Tc
⋅×+

⋅=
−

 

 
Evaluate c at T = 4 K: ( ) ( )( )

( )( )
KJ/kg1020.9

K4KJ/kg1062.7

K4KJ/kg0.0108K4

2

344

2

⋅×=

⋅×+

⋅=

−

−

c

 

 
(b) Express and evaluate the integral of Q: 
 

( ) ( ) ( )

( ) ( ) J/kg0584.0
4

KJ/kg1062.7
2

KJ/kg0108.0

KJ/kg1062.7KJ/kg0108.0

K3

K1

4
44

K3

K1

2
2

K3

K1

344
K3

K1

2
f

i

=⎥
⎦

⎤
⎢
⎣

⎡
⋅×+⎥

⎦

⎤
⎢
⎣

⎡
⋅=

⋅×+⋅==

−

− ∫∫∫

TT

dTTTdTdTTcQ
T

T
 

 
92 ••  
Picture the Problem We can use the first law of thermodynamics to relate the heat 
escaping from the system to the amount of work done by the gas and the change in its 
internal energy. We can use the expression for the work done during an isothermal 
process to find the temperature along the isotherm. 
 
Apply the first law of 
thermodynamics to this isothermal 
process: 
 

onintin WEQ −∆=  
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For an isothermal process: 0int =∆E  

 
Substitute to obtain: 
 

J711
cal

J4.184cal170inon

=

⎟
⎠
⎞

⎜
⎝
⎛ ×−−=−= QW

 

 
Because Wby gas = −Won: 
 

J711gasby −=W  

Express the work done during an 
isothermal process: 
 

1

2
gasby ln

V
VnRTW =  

 
Solve for T = Ti = Tf: 

1

2

gasby 

ln
V
VnR

W
T =  

Substitute numerical values and 
evaluate T: ( )( )

K52.7

L18
L8lnKJ/mol8.314mol2

J711

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

−
=T

 

 
93 ••  
Picture the Problem Let the subscripts 1 and 2 refer to the initial and final values of 
temperature, pressure, and volume. We can relate the work done on a gas during an 
adiabatic process to the pressures and volumes of the initial and final points on the path 

using 
1

2211

−
−

=
γ

VPVPW and find P1 by eliminating P2 using ,2211
γγ VPVP = where, for a 

diatomic gas, γ = 1.4. Once we’ve determined P1 we can use the ideal-gas law to find T1 
and the first law of thermodynamics to find T2. Finally, we can apply the ideal-gas law a 
second time to determine P2. 
 
Relate the work done on a gas 
during an adiabatic process to the 
pressures and volumes of the initial 
and final points on the path: 
 1

1

2
1

2
11

2211
on

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

−
−

=

γ

γ

V
P
PVP

VPVPW

 

 
Using the equation for a quasi-static 
adiabatic process, relate the initial 
and final pressures and volumes: 
 

γγ
2211 VPVP =  ⇒ 

γ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

1

1

2

V
V

P
P
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Substitute to obtain: 

1

2
2

1
11

on −

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
γ

γ

V
V
VVP

W  

 
Solve for P1: ( )

2
2

1
1

1
1

V
V
VV

WP γ
γ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=  

 
Substitute numerical values and 
evaluate P1: 

( )( )

( )
kPa6.47

L8
L8
L18L18

11.4J820
1.41 =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−
=P  

 
Use the ideal-gas law to find T1: ( )( )

( )( )
K5.51

KJ/mol8.314mol2
L18kPa47.611

1

=

⋅
==

nR
VPT

 

 
Apply the first law of 
thermodynamics to obtain: 
  

oninint WQE +=∆  

or, because Qin = 0 for an adiabatic process, 
( )122

5
Vonint TTnRTCWE −=∆==∆  

 
Solve for and evaluate T2: 

( )( )
K2.71

KJ/mol8.314mol2
J820K.551

2
5

2
5

on
12

=

⋅
−

−=

−=
nR

WTT

 

 
Use the ideal-gas law to find P2: 

( )( )( )

kPa148

L8
K71.2KJ/mol1438.mol2

2

2
2

=

⋅
=

=
V

nRTP

 

 
94 ••  
Picture the Problem Let the subscripts 1 and 2 refer to the initial and final state 
respectively. Because the gas is initially at STP, we know that V1 = 22.4 L, P1 = 1 atm, 
and T1 = 273 K. We can use ( )12ln VVnRTW −=  to find the work done on the gas 

during an isothermal compression. We can relate the work done on a gas during an 
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adiabatic process to the pressures and volumes of the initial and final points on the path 

using 
1

2211

−
−

=
γ

VPVPW and find P1 by eliminating P2 using ,2211
γγ VPVP =  where, for a 

diatomic gas, γ  = 1.4. 
 
(a) Express the work done on the 
gas in compressing it isothermally: 
 

1

2
on ln

V
VnRTW −=  

Find the number of moles in 30 g of 
CO (M = 28 g/mol): 
 

mol1.07
g/mol28

g30
==n  

 
Substitute and evaluate Won: ( )( )

( )

kJ3.91

5
1lnK273

KJ/mol8.314mol1.07on

=

⎟
⎠
⎞

⎜
⎝
⎛×

⋅−=W

 

 
(b) Express the work done on the 
gas in compressing it adiabatically: 
 

1

1

2
1

2
11

2211
on

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=

−
−

−=

γ

γ

V
P
PVP

VPVPW

 

 
Using the equation for a quasi-static 
adiabatic process, relate the initial 
and final pressures and volumes: 
 

γγ
2211 VPVP = ⇒ 

γ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

1

1

2

V
V

P
P

 

 

Substitute and simplify to obtain: 

1

2.01

1

5

1

2

1
11

1

2

1
11

2
2

1
11

on

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=

γ

γ

γ

γ

γ

γ

V
VVP

V
V
VVP

V
V
VVP

W
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Substitute numerical values and evaluate Won: 
 

( )( )( ) ( )( ) kJ49.5
14.1

50.21L/mol22.4mol1.07kPa101.3 1.4

=
−

−
−=W  

 
95 ••  
Picture the Problem Let the subscripts 1 and 2 refer to the initial and final state 
respectively. Because the gas is initially at STP, we know that V1 = 22.4 L, P1 = 1 atm, 
and T1 = 273 K. We can use ( )12ln VVnRTW −=  to find the work done on the gas 

during an isothermal compression. We can relate the work done on a gas during an 
adiabatic process to the pressures and volumes of the initial and final points on the path 

using 
1

2211

−
−

=
γ

VPVPW and find P1 by eliminating P2 using γγ
2211 VPVP = . We can find γ 

using the data in Table 19-3. 
 
(a) Express the work done on the 
gas in compressing it isothermally: 
 

1

2
on ln

V
VnRTW −=  

Find the number of moles in 30 g of 
CO2 (M = 44 g/mol): 
 

mol682.0
g/mol44

g30
==n  

 
Substitute and evaluate Won: ( )( )

( )

kJ49.2

5
1lnK273

KJ/mol8.314mol682.0on

=

⎟
⎠
⎞

⎜
⎝
⎛×

⋅−=W

 

 
(b) Express the work done on the 
gas in compressing it adiabatically: 
 

1

1

2
1

2
11

2211
on

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=

−
−

−=

γ

γ

V
P
PVP

VPVPW

 

 
Using the equation for a quasi-static 
adiabatic process, relate the initial 
and final pressures and volumes: 
 

γγ
2211 VPVP = ⇒ 

γ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

1

1

2

V
V

P
P
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Substitute and simplify to obtain: 

1

2.01

1

5

1

2

1
11

1

2

1
11

2
2

1
11

on

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=

γ

γ

γ

γ

γ

γ

V
VVP

V
V
VVP

V
V
VVP

W

 

 
From Table 18-3 we have: 
 

Rc 39.3V =  

and 
( ) RRc 41.402.139.3P =+=  

 
Evaluate γ: 30.1

39.3
41.4

V

P ===
R
R

c
cγ  

 
Substitute numerical values and evaluate Won: 
 

( )( )( ) ( )( ) kJ20.3
13.1

50.21L/mol22.4mol682.0kPa101.3 1.3

on =
−

−
−=W  

 
96 ••  
Picture the Problem Let the subscripts 1 and 2 refer to the initial and final states 
respectively. Because the gas is initially at STP, we know that V1 = 22.4 L, P1 = 1 atm, 
and T1 = 273 K. We can use ( )12ln VVnRTW −=  to find the work done on the gas 

during an isothermal compression. We can relate the work done on a gas during an 
adiabatic process to the pressures and volumes of the initial and final points on the path 

using 
1

2211

−
−

=
γ

VPVPW and find P1 by eliminating P2 using ,2211
γγ VPVP =  where, for a 

monatomic gas, γ = 1.67. 
 
(a) Express the work done on the 
gas in compressing it isothermally: 
 

1

2
on ln

V
VnRTW −=  

Find the number of moles in 30 g of 
Ar (M = 40 g/mol): 
 

mol750.0
g/mol04

g30
==n  
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Substitute and evaluate Won: ( )( )

( )

kJ74.2

5
1lnK273

KJ/mol8.314mol75.0on

=

⎟
⎠
⎞

⎜
⎝
⎛×

⋅−=W

 

 
(b) Express the work done on the gas 
in compressing it adiabatically: 
 

1

1

2
1

2
11

2211
on

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=

−
−

−=

γ

γ

V
P
PVP

VPVPW

 

 
Using the equation for a quasi-static 
adiabatic process, relate the initial 
and final pressures and volumes: 
 

γγ
2211 VPVP = ⇒ 

γ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

1

1

2

V
V

P
P

 

 

Substitute and simplify to obtain: 

1

2.01

1

5

1

2

1
11

1

2

1
11

2
2

1
11

on

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=

γ

γ

γ

γ

γ

γ

V
VVP

V
V
VVP

V
V
VVP

W

 

 
Substitute numerical values and evaluate Won: 
 

( )( )( ) ( )( ) kJ93.4
167.1

50.21L/mol22.4mol75.0kPa101.3 1.67

on =
−

−
−=W  

 
97 ••  
Picture the Problem We can use conservation of energy to relate the final temperature to 
the heat capacities of the gas and the solid. We can apply the Dulong-Petit law to find the 
heat capacity of the solid at constant volume and use the fact that the gas is diatomic to 
find its heat capacity at constant volume. 
 
Apply conservation of energy to this 0=∆Q  
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process: or 
( ) ( ) 0K200K100 fsolidV,fgasV, =−−− TCTC

 
Solve for Tf: ( )( ) ( )( )

solidV,gasV,

solidV,gasV,
f

K200K100
CC

CC
T

+
+

=  

 
Using the Dulong-Petit law, 
determine the heat capacity of the 
solid at constant volume: 
 

( )( )
J/K49.9

KJ/mol8.314mol23
3solidV,

=
⋅=

= nRC
 

Determine the heat capacity of the 
gas at constant volume: 
 

( )( )
J/K20.8

KJ/mol8.314mol12
5

2
5

gasV,

=
⋅=

= nRC

 

 
Substitute numerical values and evaluate Tf: 
 

( )( ) ( )( ) K171
J/K9.49J/K8.20

J/K9.49K200J/K8.20K100
f =

+
+

=T  

 
*98 ••  
Picture the Problem We can express the work done during an isobaric process as the 
product of the temperature and the change in volume and relate Q to ∆T through the 
definition of CP. Finally, we can use the first law of thermodynamics to show that ∆Eint = 
Cv∆T. 
 

(a) 
. andonly   of

function  a is  ly,Consequent .  toalproportion is which molecules, gas
  theof energies kinetic  theof sum  theisenergy  internal  thegas, idealan For 

Vint TCET
UkT

∆=∆
 

 
 
(b) Use the first law of 
thermodynamics to relate the work 
done on the gas, the heat entering the 
gas, and the change in the internal 
energy of the gas: 
 

oninint WQE +=∆  

At constant pressure: ( ) ( ) TnRTTnRVVPW ∆=−=−= ififgasby  

and  
TnRWW ∆−=−= gasby on  
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Relate Qin to CP and ∆T: TCQ ∆= Pin  

 
Substitute to obtain: 

( ) TCTnRC

TnRTCE

∆=∆−=

∆−∆=∆

VP

Pint
 

 
99 ••  
Picture the Problem We can use the first law of thermodynamics to relate the work done 
by the gas, the heat added to the gas, and the change in its internal energy. We can use 

TnRTCE ∆=∆=∆ 2
3

Vint to find the change in the internal energy in both cases and 
TnRTCQ ∆=∆= 2

5
Pin to find Qin for the isobaric process. 

 
(a) Apply the first law of 
thermodynamics to obtain: 
 

onintin WEQ −∆=  

 

For a constant-volume process: 0on =W and TnRE ∆=∆ 2
3

int  

 
Substitute to obtain: TnRQ ∆= 2

3
in  

 
Substitute numerical values and 
evaluate Qin: 
 

( )( )( )
kJ3.74

K300KJ/mol8.314mol12
3

in

=

⋅=Q
 

(b) Express the change in internal 
energy of an ideal monatomic gas 
for any process between 300 K and 
600 K: 

( )( )( )
kJ3.74

K300KJ/mol8.314mol12
3
2
3

Vint

=

⋅=
∆=

∆=∆
TnR

TCE

 

 
Relate the heat absorbed by the gas 
to the change in temperature: 
 

( )( )( )
kJ6.24

K300KJ/mol8.314mol12
5

2
5

Pin

=

⋅=
∆=∆= TnRTCQ

 

 
Apply the first law of 
thermodynamics to find the work 
done on the gas during this 
expansion: 
 

kJ50.2
kJ.246kJ3.74ininton

−=
−=−∆= QEW

 

Because the Wby gas = −Won: kJ50.2gasby =W  
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*100 ••  
Picture the Problem We can use Qin = CP∆T to find the change in temperature during 
this isobaric process and the first law of thermodynamics to relate W, Q, and ∆Eint. We 
can use TnRE ∆=∆ 2

5
int to find the change in the internal energy of the gas during the 

isobaric process and the ideal-gas law for a fixed amount of gas to express the ratio of the 
final and initial volumes. 
 
(a) Relate the change in temperature 
to Qin and CP and evaluate ∆T: 

( )( )
K8.59

KJ/mol8.314mol2
J500

2
7

2
7

in

P

in

=

⋅
=

==∆
nR

Q
C
QT

 

 
(b) Apply the first law of 
thermodynamics to relate the work 
done on the gas to the heat supplied 
and the change in its internal 
energy: 
 

in2
5

inVininton

QTnR
QTCQEW

−∆=
−∆=−∆=

 

Substitute numerical values and 
evaluate Won: 

( )( )( )

J143
J500

K8.59KJ/mol8.314mol22
5

on

−=
−

⋅=W
 

 
Because Wby gas = −Won: 
 

J143gasby  =W  

(c) Using the ideal-gas law for a 
fixed amount of gas, relate the 
initial and final pressures, volumes 
and temperatures: 
 

f

ff

i

ii

T
VP

T
VP

=  

or, because the process is isobaric, 

f

f

i

i

T
V

T
V

=  

 
Solve for and evaluate Vf/Vi: 

03.1
K293.15

K8.59K293.15
i

i

i

f

i

f

=
+

=

∆+
==

T
TT

T
T

V
V

 

 
101 ••  
Picture the Problem Knowing the rate at which energy is supplied, we can obtain the 
data we need to plot this graph by finding the time required to warm the ice to 0°C, melt 
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the ice, warm the water formed from the ice to 100°C, vaporize the water, and warm the 
water to 110°C. 
 
Find the time required to warm the 
ice to 0°C: 

( )( )( )

s20.0
J/s100

K10KkJ/kg2kg0.1

ice
1

=

⋅
=

∆
=∆

P
Tmct

 

 
Find the time required to melt the ice: ( )( )

s5.333
J/s100

kJ/kg333.5kg0.1f
2

=

==∆
P

mLt
 

 
Find the time required to heat the 
water to 100°C: 

( )( )( )

s418
J/s100

K100KkJ/kg18.4kg0.1

w
3

=

⋅
=

∆
=∆

P
Tmct

 

 
Find the time required to vaporize 
the water: 

( )( )

s2257
J/s100

kJ/kg2572kg0.1V
4

=

==∆
P

mLt
 

 
Find the time required to heat the 
vapor to 110°C: 

( )( )( )

s20
J/s100

K10KkJ/kg2kg0.1

steam
5

=

⋅
=

∆
=∆

P
Tmct

 

 
The temperature T as a function of 
time t is shown to the right: 
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*102 ••  
Picture the Problem We know that, for an adiabatic process, Qin = 0. Hence the work 
done by the expanding gas equals the change in its internal energy. Because we’re given 
the work done by the gas during the expansion, we can express the change in the 
temperature of the gas in terms of this work and CV. 
 
Express the final temperature of the 
gas as a result of its expansion: 
 

TTT ∆+= if  

Apply the equation for adiabatic 
work and solve for ∆T: 

TCW ∆−= Vadiabatic  

and 

nR
W

C
WT

2
5
adiabatic

V

adiabatic −=−=∆  

 
Substitute and evaluate Tf: 

( )( )
K216

KJ/mol8.314mol2
kJ3.5K300

2
5

2
5
adiabatic

if

=

⋅
−=

−=
nR

WTT

 

 
103 ••   
Picture the Problem Because PfVf = 4PiVi 
and Vf = Vi/2, the path for which the work 
done by the gas is a minimum while the 
pressure never falls below Pi is shown on 
the adjacent PV diagram. We can apply the 
first law of thermodynamics to relate the 
heat transferred to the gas to its change in 
internal energy and the work done on the 
gas. 

 
 
Using the first law of 
thermodynamics, relate the heat 
transferred to the gas to its change in 
internal energy and the work done 
on the gas: 
 

oninint WQE +=∆  

Solve for Qin: onintin WEQ −∆=  
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Express the work done during this 
process: ( )

RTnRTVP
VVPVP

WWW

2
1

2
1

ii2
1

ii2
1

ii

volumeconstantprocess isobaricon

0
===

−=+∆=

+=

 

because n = 1 mol. 
 

Express ∆Eint for the process: ( )
RT

TnRTnRTCE

2
9

2
3

2
3

Vint 3
=

=∆=∆=∆
 

because n = 1 mol. 
 

Substitute to obtain: RTRTRTQ 42
1

2
9

in =−=  

 
104 ••  
Picture the Problem We can solve the ideal-gas law for the dilute solution for the 
increase in pressure and find the number of solute molecules dissolved in the water from 
their mass and molecular weight. 
 
Solve the ideal gas law for P to 
obtain: 
 

V
NkTP =  

 
Express the number of solute 
molecules N in terms of the number 
of moles n and Avogadro’s number 
and then express the number of 
moles in terms of the mass of the 
salt and its molecular mass: 
 

NaCl

A
A M

mNnNN ==  

Substitute to obtain: 
 VM

kTmNP
NaCl

A=  

 
Substitute numerical values and evaluate P: 
 

( )( )( )( )
( )( )

26
33

2323

N/m1027.1
m10g/mol4.58

K297J/K10381.1molparticles/10022.6g30
×=

××
= −

−

P

 
105 ••   
Picture the Problem Let the subscripts 1 and 2 refer to the initial and final states in this 
adiabatic expansion. We can use an equation describing a quasi-static adiabatic process to 
express the final temperature as a function of the initial temperature and the initial and 
final volumes. 
 
Using the equation for a quasi-static 1

11
1

22
−− = γγ VTVT  
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adiabatic process, relate the initial 
and final volumes and temperatures: 
 
Solve for and evaluate T2: ( )( )

K396

2K300 14.1
1

2

1
12

=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

−γ

V
VTT

 

 
106 ••  
Picture the Problem We can simplify our calculations by relating Avogadro’s number 
NA, Boltzmann’s constant k, the number of moles n, and the number of molecules N in the 
gas and solving for NAk. We can then calculate U300 K and U600 K and their difference. 
 
Express the increase in internal 
energy per mole resulting from the 
heating of diamond: 
 

K300K600 UUU −=∆  

Express the relationship between 
Avogadro’s number NA, 
Boltzmann’s constant k, the number 
of moles n, and the number of 
molecules N in the gas: 

NknR =  ⇒ kNk
n
NR A==  

Substitute in the given equation to 
obtain: 
 

1
3

E

E

−
= TTe

RTU  

Determine U300 K: ( )( )

J795
1

K1060KJ/mol314.83
K300K1060K300

=
−

⋅
=

e
U

 

 
Determine U600 K: ( )( )

kJ45.5
1

K1060KJ/mol314.83
K600K1060K600

=
−

⋅
=

e
U

 

 
Substitute to obtain: 

kJ4.66

J795kJ5.45K300K600

=

−=−=∆ UUU
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*107 •••   
Picture the Problem The isothermal 
expansion followed by an adiabatic 
compression is shown on the PV diagram. 
The path 1→2 is isothermal and the path 
2→3 is adiabatic. We can apply the ideal-
gas law for a fixed amount of gas and an 
isothermal process to find the pressure at 
point 2 and the pressure-volume 
relationship for a quasi-static adiabatic 
process to determineγ. 

 
 
(a) Relate the initial and final 
pressures and volumes for the 
isothermal expansion and solve for 
and evaluate the final pressure: 
 

2211 VPVP =  

and 

02
1

1

1
0

2

1
12 2

P
V

VP
V
VPP ===  

 
(b) Relate the initial and final 
pressures and volumes for the 
adiabatic compression:  
 

γγ
3322 VPVP =  

or 
( ) γγ

00002
1 32.12 VPVP =  

which simplifies to 
64.22 =γ  

 
Take the natural logarithm of both 
sides of this equation and solve for 
and evaluate γ : 

64.2ln2ln =γ  

and 

40.1
2ln
64.2ln

==γ  

diatomic. is gas  the∴  

 

(c) 
unchanged. is

energy kinetic onal translati theand constant, is  process, isothermal In the T
 

 

1.32. offactor  aby  increases
energy kinetic onal translati theand ,1.32   process, adiabatic In the 03 TT =

 

 
108 •••   
Picture the Problem In this problem the specific heat of the combustion products 
depends on the temperature. Although CP increases gradually from (9/2)R per mol to 
(15/2)R per mol at high temperatures, we’ll assume that CP = 4.5R below T = 2000 K and 
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CP = 7.5R above T = 2000 K. We’ll also use R = 2.0 cal/mol⋅K. We can find the final 
temperature following combustion from the heat made available during the combustion 
and the final pressure by applying the ideal-gas law to the initial and final states of the 
gases. 
 
(a) Relate the heat available in this 
combustion process to the change in 
temperature of the triatomic gases: 
 

( )( )if

Pavailable

5.7 TTRn
TnCQ

−=
∆=

 

Solve for Tf to obtain: 
 i

available
f 5.7

T
nR

QT +=                       (1) 

 
Express Q available to heat the gases 
above 2000 K: 

steamCOheat

K2000tomol9releasedavailable

2
QQ

QQQ

−−

−=
  (2) 

 
Express the energy released in the 
combustion of 1 mol of benzene: 
 

( ) kcal758kcal15162
1

released ==Q  

Noting that there are 3 mol of H2O 
and 6 mol of CO2, find the heat 
required to form the products at 
100°C: 

( )( )
( )( )
( )( )( )

kcal33.10
cal/g540g/mol18mol3

K300373KKcal/g1
g/mol18mol3

Vwwwsteam

=
+

−⋅×
=

+∆= LnMTcnMQ

 

and 

( )( )
( )

kcal942.3
300KK373

Kcal/mol2mol65.4

5.4PCOheat 2

=
−×

⋅=

∆=∆= TnRTnCQ

 

 
Find Q required to heat 9 mol of gas 
to 2000 K: ( )( )

( )
kcal93.43

373KK0002
Kcal/mol2mol95.4

5.4PK2000tomol9

=
−×

⋅=

∆=∆= TnRTnCQ

 

 
Substitute in equation (2) to obtain: 

kcal589.2
kcal33.10kcal3.94

kcal131.79kcal758available

=
−−

−=Q
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Substitute in equation (1) and 
evaluate Tf: ( )( )

K6364

K0002
Kcal/mol2mol97.5

kcal589.2
f

=

+
⋅

=T
 

 
Apply the ideal-gas law to express 
the final volume in terms of the final 
temperature and pressure: 
 

( )( )( )

3

f

f
f

m70.4

kPa101.3
K6364KJ/mol8.314mol9

=

⋅
=

=
P

nRTV

 

 
(b) Apply the ideal-gas law to relate 
the final temperature, pressure, and 
volume to the number of moles in 
the final state: 
 

ffff RTnVP =  

Apply the ideal-gas law to relate the 
initial temperature, pressure, and 
volume to the number of moles in 
the initial state: 
 

iiii RTnVP =  

Divide the first of these equations by 
the second and solve for Pf: ii

ff

ii

ff

RTn
RTn

VP
VP

=  

or, because Tf = Ti, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

f

i

i

f
if V

V
n
nPP                (3) 

 
Find the initial volume Vi occupied 
by 8.5 mol of gas at 300 K and 1 
atm: 
 

( )( )

L209.2
K273
K300mol8.5L/mol22.4i

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=V

 

Substitute numerical values in 
equation (3) and evaluate Vf: 

( )

atm0471.0

kPa101.325
atm1kPa774.4

L4700
L209.2

mol8.5
mol9kPa101.3f

=

×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=P

 

 



Heat and the First Law of Thermodynamics 
 

 

1433

*109 •••  
Picture the Problem In this problem the specific heat of the combustion products 
depends on the temperature. Although CP increases gradually from (9/2)R per mol to 
(15/2)R per mol at high temperatures, we’ll assume that CP = 4.5R below T = 2000 K and 
CP = 7.5R above T = 2000 K. We can find the final temperature following combustion 
from the heat made available during the combustion and the final pressure by applying 
the ideal-gas law to the initial and final states of the gases. 
 
(a) Apply the ideal-gas law to find 
the pressure due to 3 mol at 300 K 
in the container prior to the reaction: 
 

( )( )( )

kPa5.93

L80
K300KJ/mol8.314mol3

i

i
i

=

⋅
=

=
V

nRTP

 

 
(b) Relate the heat available in this 
adiabatic process to CV and the 
change in temperature of the gases: 
 

( )ifV

availableint

TTC
QE

−=
=∆

 

Because T > 2000 K: ( ) nRnRRnnRCC 5.65.7PV =−=−=  

 
Substitute to obtain: ( )ifavailable 5.6 TTnRQ −=  

 
Solve for Tf to obtain: 
 i

available
f 5.6

T
nR

QT +=                       (1) 

 
Find Q required to raise 2 mol of 
CO2 to 2000 K: 
 

TCQ ∆= VCOheat 2
 

 

For T < 2000 K: ( ) nRnRRnnRCC 5.35.4PV =−=−=  

 
Substitute for CV and find the heat 
required to warm to CO2 to 2000 K: ( )( )

( )
kJ94.98

300KK0002
KJ/mol.3148mol25.3

5.3
2COheat

=
−×

⋅=

∆= TnRQ

 

 
Find Q available to heat 2 mol of 
CO2 above 2000 K: kJ1.461

kJ94.98kJ560available

=
−=Q
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Substitute in equation (1) and 
evaluate Tf: 
 

( )( )
K6266

K2000
KJ/mol8.314mol26.5

kJ461.1
f

=

+
⋅

=T

 
Apply the ideal-gas law to relate the 
final temperature, pressure, and 
volume to the number of moles in 
the final state: 
 

ffff RTnVP =  

Apply the ideal-gas law to relate the 
initial temperature, pressure, and 
volume to the number of moles in 
the initial state: 
 

iiii RTnVP =  

Divide the first of these equations by 
the second and solve for Pf: ii

ff

ii

ff

RTn
RTn

VP
VP

=  

or, because Vf = Vi, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

i

f

i

f
if T

T
n
nPP                (2) 

 
Substitute numerical values in 
equation (2) and evaluate Pf: 

( )

MPa30.1

K300
K6266

mol3
mol2kPa53.39f

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=P

 

 
(c) Substitute numerical values in 
equation (2) and evaluate Pf for  
Tf = 273 K: 

( )

kPa7.56

K300
K273

mol3
mol2kPa53.39f

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=P

 

 
110 •••   
Picture the Problem The molar heat capacity at constant volume is related to the internal 

energy per mole according to
dT
dU

n
c' 1

V = . We can differentiate U with respect to 

temperature and use nR = Nk or R = NAk to establish the result given in the problem 
statement. 
 
From Problem 106 we have, for the 
internal energy per mol: 1

3
E

EA

−
= TTe

kTNU  
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Relate the molar heat capacity at 
constant volume to the internal 
energy per mol: 
 

dT
dU

n
c' 1

V =  

Use 
dT
dU

n
c' 1

V = to express :V
'c  

 

 

( ) ( )

( ) ( )2
2

22E

2EE
EA

V

1
3

1
13

1
1

13
1

13
1

31

E

E
E

E

E

EEE

−
⎟
⎠
⎞

⎜
⎝
⎛=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
=

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
=⎥⎦

⎤
⎢⎣
⎡

−
=⎥⎦

⎤
⎢⎣
⎡

−
=

TT

TT
EETT

TT

TT

TTTTTT
'

e
e

T
TR

T
Te

e
RT

e
dT
d

e
RT

edT
dRT

e
kTN

dT
d

n
c

 

 
111 •••   
Picture the Problem We can rewrite our expression for 'cV by dividing its numerator and 

denominator by TTe E and then using the power series for ex to show that, for T > TE, 
Rc' 3V ≈ . In part (b), we can use the result of Problem 103 to obtain values for 'cV every 

100 K between 300 K and 600 K and use this data to find ∆U numerically. 
 
(a) From Problem 110 we have: 

( )2

2
E

V
1

3
E

E

−
⎟
⎠
⎞

⎜
⎝
⎛=

TT

TT
'

e
e

T
TRc  

 
Divide the numerator and 
denominator by TTe E to obtain: 

TTTT

TT

TTTT
'

eeT
TR

e
eeT

TRc

EE

E

EE

2
13

12
13

2
E

2

2
E

V

−+−
⎟
⎠
⎞

⎜
⎝
⎛=

+−
⎟
⎠
⎞

⎜
⎝
⎛=

 

 
Apply the power series expansion to 
obtain: 

E

2
E

2
EE

2
EE

for  

...
2
112...

2
112 EE

TT
T
T

T
T

T
T

T
T

T
Tee TTTT

>⎟
⎠
⎞

⎜
⎝
⎛≈

+⎟
⎠
⎞

⎜
⎝
⎛+−+−+

⎟
⎠
⎞

⎜
⎝
⎛++=+− −

 

 
Substitute to obtain: 
 R

T
TT

TRc' 313 2
E

2
E

V =

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛≈  
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(b) Use the result of Problem 110 to 
verify the table to the right: 
 
 
 
 
 

 
T cV 

(K) (J/mol⋅K) 
300 9.65 
400 14.33 
500 17.38 
600 19.35  

  

The graph of specific heat as a 
function of temperature shown to 
the right was plotted using a 
spreadsheet program: 

5

7

9

11

13

15

17

19

21

300 350 400 450 500 550 600

T  (K)
C

V
 (J

/m
ol

-K
)

 
Integrate numerically, using the formula for the area of a trapezoid, to obtain: 
 

( )( ) ( )( )
( )( )

 ,kJ62.4

KJ/mol35.1938.17K100
KJ/mol38.1733.14K100KJ/mol33.1465.9K100

2
1

2
1

2
1

=

⋅++
⋅++⋅+=∆U

 

a result in good agreement (< 1% difference) with the result of Problem 106.  
 
112 •••  
Picture the Problem In (a) we’ll assume that τ = f (A/V, T, k, m) with the factors 
dependent on constants a, b, c, and d that we’ll find using dimensional analysis. In (b) 
we’ll use our result from (a) and assume that the diameter of the puncture is about 2 mm, 
that the tire volume is 0.1 m3, and that the air temperature is 20°C.   
 
(a) Express τ = f (A/V, T, k, m): 

( ) ( ) ( ) dcb
a

mkT
V
A
⎟
⎠
⎞

⎜
⎝
⎛=τ              (1) 

 
Rewrite this equation in terms of the 
dimensions of the physical quantities 
to obtain: 
 

( ) ( ) ( ) d
c

ba M
KT

MLKLT 2

2
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −  

where K represents the dimension of 
temperature. 
 

Simplify this dimensional equation dcccba MTKLMKLT -2c21 −−=  
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to obtain: 
 

or 
2c21 TMKLT −+−−= dccbac  

 
Equate exponents to obtain: 12:T =− c , 

02:L =− ac , 
0:K =− cb , 

and 
0:M =+ dc  

 
Solve these equations 
simultaneously to obtain: 
 

2
1−=c , 

1−=a , 

2
1−=b , 

and  
2
1=d  

 
Substitute in equation (1): ( ) ( ) ( )

kT
m

A
V

mkT
V
A

=

⎟
⎠
⎞

⎜
⎝
⎛= −−

−

2
1

2
1

2
1

1

τ
 

(b)  Substitute numerical values and evaluate τ: 
 

( )
( )( )

( )( ) min3.87s232
K293KJ/mol314.8

m1.0kg/m293.1

m102
4

m1.0 33

23

3

==
⋅×

=
−πτ  
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