Chapter 18
Heat and the First Law of Thermodynamics

Conceptual Problems

1 .
Picture the Problem We can use the relationship Q = MCAT to relate the temperature
changes of bodies A and B to their masses, specific heats, and the amount of heat
supplied to each.

Express the change in temperature AT, = Q
of body A in terms of its mass, A MAC,
specific heat, and the amount of heat
supplied to it:
Express the change in temperature AT. = Q
of body B in terms of its mass, ® MgCq
specific heat, and the amount of heat
supplied to it:
Divide the second of these equations ATy _ MACh
by the first to obtain: AT, mgCy
Substitute and simplify to obtain: ATy _ (2m;)(2¢c,) 4
AT, MgCq
or
ATy =| 4AT,
*9 .

Picture the Problem We can use the relationship Q = MCAT to relate the temperature

changes of bodies A and B to their masses, specific heats, and the amount of heat
supplied to each.

Relate the temperature change of AT = Q
block A to its specific heat and M ACa
mass:

Relate the temperature change of AT. = Q
block B to its specific heat and ® M sCs

mass:
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Equate the temperature changes to 1 _ 1
obtain: MgCs M,Cu
: M
Solve for ca: C, = B Cy
M A

and| (b)iscorrect.

3 .

Picture the Problem We can use the relationship Q = mcAT to relate the amount of
energy absorbed by the aluminum and copper bodies to their masses, specific heats, and
temperature changes.

Express the energy absorbed by the Qu = My CAAT
aluminum object:

Express the energy absorbed by the Qcy = Mg, Ce AT
copper object:

Divide the second of these equations Qe _ M, Ce AT
by the first to obtain: Qa My CuAT
Because the object’s masses are the Qe _Ca g
same and they experience the same Qa  Ca
change in temperature: or

Qc, <Q, and| (c)iscorrect.

4 .

Determine the Concept Some examples of systems in which internal energy is
converted into mechanical energy are: a steam turbine, an internal combustion engine,
and a person performing mechanical work, e.g., climbing a hill.

*5 °
Determine the Concept Yes, if the heat absorbed by the system is equal to the work
done by the system.

6 .
Determine the Concept According to the first law of thermodynamics, the change in the
internal energy of the system is equal to the heat that enters the system plus the work

done on the system. | () is correct.
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7 .
Determine the Concept AE;,, = Q,, +W,,. For an ideal gas, AEiy is a function of T
only. Because W,, = 0 and Qi, = 0 in a free expansion, AE;,; = 0 and T is constant. For a
real gas, Ej, depends on the density of the gas because the molecules exert weak
attractive forces on each other. In a free expansion, these forces reduce the average
kinetic energy of the molecules and, consequently, the temperature.

8 .

Determine the Concept Because the container is insulated, no energy is exchanged with
the surroundings during the expansion of the gas. Neither is any work done on or by the
gas during this process. Hence, the internal energy of the gas does not change and we can
conclude that the equilibrium temperature will be the same as the initial temperature.
Applying the ideal-gas law for a fixed amount of gas we see that the pressure at

equilibrium must be half an atmosphere. | (C) is correct.

9 .
Determine the Concept The temperature of the gas increases. The average Kinetic
energy increases with increasing volume due to the repulsive interaction between the
ions.

*10 e

Determine the Concept The balloon that expands isothermally is larger when it reaches
the surface. The balloon that expands adiabatically will be at a lower temperature than the
one that expands isothermally. Because each balloon has the same number of gas
molecules and are at the same pressure, the one with the higher temperature will be
bigger. An analytical argument that leads to the same conclusion is shown below.

Letting the subscript "a" denote the
adiabatic process and the subscript
"i” denote the isothermal process,
express the equation of state for the
adiabatic balloon:

f

P Yy
RPVy = Pfo,ya = Vf,a :VO[FOJ

For the isothermal balloon: P
PVo = Pfo,i = Vf,i =V, (FO]
f

Divide the second of these equations v R
by the first and simplify to obtain: V. 0
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Because Py/Ps> 1 and > 1: V., >V

fa

11 -
Determine the Concept The work done along each of these paths equals the area under
its curve. The area is greatest for the path A—>B—C and least for the path A—>D—C.

(a)is correct.

12 -
Determine the Concept An adiabatic process is, by definition, one for which no heat

enters or leaves the system. | (b) is correct.

13 -
(a) False. The heat capacity of a body is the heat needed to raise the temperature of the
body by one degree.

(b) False. The amount of heat added to a system when it goes from one state to another is
path dependent.

(c) False. The work done on a system when it goes from one state to another is path
dependent.

(d) True.
(e) True.

(f) False. A quasi-static process is one for which the gas is never far from an equilibrium
state.

(9) True.

*14 .

Determine the Concept For a constant-volume process, no work is done on or by the
gas. Applying the first law of thermodynamics, we obtain Q;, = AE;,. Because the
temperature must change during such a process, we can conclude that

AEjy # 0 and hence Qi, # 0. | (b) and (d) are correct.

15 -
Determine the Concept Because the temperature does not change during an isothermal
process, the change in the internal energy of the gas is zero. Applying the first law of
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thermodynamics, we obtain Qin = —~Won = Wiy the system- Hence | (d) is correct.

16 e
Determine the Concept The melting point of propane at 1 atm pressure is
83 K. Hence, at this low temperature and high pressure, C3Hs is a solid.

17 oo
Picture the Problem We can use the given dependence of the pressure on the volume
and the ideal-gas law to show that if the volume decreases, so does the temperature.

We’re given that: P\/\T = constant
Because the gas is an ideal gas: PV = (P\/\7)\/\7 = constantvVV = nRT
Solve for T: T (COI’lStant)\/\T

nR

BecauseT varies with the square root of V, if the volume decreases,
the temperature decreases.

*18 oo
Determine the Concept At room temperature, most solids have a roughly constant heat
capacity per mole of 6 cal/mol-K (Dulong-Petit law). Because 1 mole of lead is more
massive than 1 mole of copper, the heat capacity of lead should be lower than the heat
capacity of copper. This is, in fact, the case.

19 e
Determine the Concept The heat capacity of a substance is proportional to the number
of degrees of freedom per molecule associated with the molecule. Because there are 6
degrees of freedom per molecule in a solid and only 3 per molecule (translational) for a
monatomic liquid, you would expect the solid to have the higher heat capacity.

Estimation and Approximation

*20  ee
Picture the Problem The heat capacity of lead is ¢ = 128 J/kg-K. We’ll assume that all
of the work done in lifting the bag through a vertical distance of 1 m goes into raising the
temperature of the lead shot and use conservation of energy to relate the number of drops
of the bag and the distance through which it is dropped to the heat capacity and change in
temperature of the lead shot.

(a) Use conservation of energy to Nmgh = mcAT
relate the change in the potential where N is the number of times the bag of
energy of the lead shot to the shot is dropped.

change in its temperature:
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Solve for AT to obtain: AT = Nmgh  Ngh
mc C
Substitute numerical values and 50(9.81'm/s’ )(lm
evaluate AT: = (128J/kg 25 ): 3.83K

as the mass increases.

It is better to use a larger mass because the rate at which heat is lost by the
lead shot is proportional to its surface area while the rate at which it gains
(b) | heat is proportional to its mass. The amount of heat lost varies as the

surface area of the shot divided by its mass (L*/L°® = L™); which decreases

21 oo

Picture the Problem Assume that the water is initially at 30°C and that the cup contains
200 g of water. We can use the definition of power to express the required time to bring
the water to a boil in terms of its mass, heat capacity, change in temperature, and the rate

at which energy is supplied to the water by the microwave oven.

Use the definition of power to relate AW  mcAT

the energy needed to warm the P= AL = At

water to the elapsed time:

Solve for At to obtain: At — MCAT
P

Substitute numerical values and evaluate At:

(0.2kg)(4.18kJ/kg - K)(373K —303K)

At = =97.55=| 1.63min

600W
that seems to be consistent with experience.

22 e

Picture the Problem The adiabatic
compression from an initial volume V; P
to a final volume V, between the
isotherms at temperatures T, and T, is
shown to the right. We’ll assume a room
temperature of 300 K and apply the
equation for a quasi-static adiabatic
process with 7 = 1.4 to solve for the
ratio of the initial to the final volume of
the air.

, an elapsed time

Express TV /™ = constant in terms TV, =TV, *
of the initial and final values of T
and V:
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S
Vi (T |7
V2 Tl
Substitute numerical values and 1
evaluate V/Vs: ://_1 _ [506 KJ“‘I _369
2

Solve for V,/V, to obtain:

300K

23 oo
Picture the Problem We can use Q = meAT to express the specific heat of water

during heating at constant pressure in terms of the required heat and the resulting change
in temperature. Further, we can use the definition of the bulk modulus to express the
work done by the water as it expands. Equating the work done by the water during its
expansion and the heat gained during this process will allow us to solve for c,.

Express the heat needed to raise the Q= mc, AT
temperature of a mass m of a

substance whose specific heat at

constant pressure is ¢, by AT:

Solve for ¢, to obtain: - Q
P mAT
Use the definition of the bulk AP VAP
modulus to express the work done = =
by the water as it expands: AVN AV
or
W =VAP = BAV
Assuming that the work done by the BAV
water in expanding equals the heat G = mAT
gained during the process, substitute
to obtain:
Using the definition of the AV = VAT
coefficient of volume expansion,
express AV (see Chapter 20,
Section 1):
Substitute to obtain: c - BAVAT BpV

P mAT m
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Use the data given in the problem m

statement to find the average V= ;

volume of 1 kg of water as it warms

from 4°C to 100°C: _ 1kg

1.0000g/cm® +0.9584 g/cm®
2
=1.02x107°m?®
Substitute numerical values and evaluate c;:
8 2 -3 -l -3,..3
‘- (2x10° N/m?)(0.207 x10 K*)(1.02x10°m?) _ 1223k K
1kg

Express the ratio of ¢, t0 Cyater: G _ 42.2J/kg - K _1.01x10°
Comer  4184J/kg-K
or
Cp = (1'01%)Cwater

*24 oo

Picture the Problem We can apply the condition for the validity of the equipartition
theorem, i.e., that the spacing of the energy levels be large compared to kT, to find the
critical temperature T:

Express the failure condition for the KT, =0.15eV
equipartition theorem:

Solve for T¢: T = 0.15eV
¢ k
R . -19
Substitute r-1umer|cal values and 0.156V x 1.602x107J
evaluate Te: T = %?V =|1740K
1.381x10~ J/IK

Heat Capacity; Specific Heat; Latent Heat

*25

Picture the Problem We can use the conversion factor 1 cal = 4.184 J to convert 2500
kcal into joules and the definition of power to find the average output if the consumed
energy is dissipated over 24 h.

a) Convert 2500 kcal to joules:
@) : 2500kcal = 2500 kcal x #1847

cal

=110.5MJ
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(b) Use the definition of average AE  1.05x107J

At 36005~ LrtW
h

power to obtain: v =

24h x

Remarks: Note that this average power output is essentially that of a widely used
light bulb.

26 -
Picture the Problem We can use the relationship Q = mcAT to calculate the amount of

heat given off by the concrete as it cools from 25 to 20°C.

Relate the heat given off by the Q = mcAT
concrete to its mass, specific heat,
and change in temperature:

Substitute numerical values and Q = (10° kg )(Lk/kg - K (298K — 293K)
evaluate Q: —500M3
27 -

Picture the Problem We can find the amount of heat that must be supplied by adding the
heat required to warm the ice from —10°C to 0°C, the heat required to melt the ice, and
the heat required to warm the water formed from the ice to 40°C.

Express the total heat required: Q = Quarmice + Qmettice + Quarmwater
Substitute for each term to obtain: Q =mC AT, + MLy +MC o AT er
= m(ciceATice + Lf + CWa’(erATwater)

Substitute numerical values and evaluate Q:

Q = (0.06Kkg)[(0.49kcal/kg - K)(273K — 263K )+ 79.7 kcal/kg
+(Lkcal/kg - K)(313K - 273K

=| 7.48kcal

28 oo
Picture the Problem We can find the amount of heat that must be removed by adding the
heat that must be removed to cool the steam from 150°C to 100°C, the heat that must be
removed to condense the steam to water, the heat that must be removed to cool the water
from 100°C to 0°C, and the heat that must be removed to freeze the water.
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Express the total heat that must be Q = Quootsteam + Qeondensesteam
remOVEd: + Qcoolwater + ereeze water
Substitute for each term to obtain: Q = MCyn AT e + ML,
+ mcwaterATwater + mL'f
= m(csteamATsteam + LV + CwaterATwater + Lf )

Substitute numerical values and evaluate Q:

Q =(0.1kg)[(2.01kJ/kg - K )(423K —373K )+ 2.26 MJ/kg
+(4.18kJ/kg - K)(373K — 273K )+ 333.5ki/kg]

1kcal
4.184kJ

=311.2kJ x

=| 74.4kcal

29 oo
Picture the Problem We can find the amount of nitrogen vaporized by equating the heat
gained by the liquid nitrogen and the heat lost by the piece of aluminum.

Express the heat gained by the Qn =myLy
liquid nitrogen as it cools the piece

of aluminum:

Express the heat lost by the piece of Qua = My CAAT,,

aluminum as it cools:

Equate these two expressions and My L,y = My CaAT,,
solve for my: and
m, = MACAAT A
L

Substitute numerical values and evaluate my:

(0.05kg)(0.90J/kg - K )(293K ~ 77K)
199kJ/kg

=4.88x10° kg =| 48.8mg

my =
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30 oo
Picture the Problem Because the heat lost by the lead as it cools is gained by the block
of ice (we’re assuming no heat is lost to the surroundings), we can apply the conservation
of energy to determine how much ice melts.

Apply the conservation of energy to AQ=0
this process: or

— Mgy, (Lf,Pb + CPbATPb )+ m, I—f,w =0

Solve for my;: me(Lf Pb +chATPb)
mW = 3
f,w

Substitute numerical values and evaluate my,:

_ (0.5kg)(24.7ki/kg +(0.128ki/kg - K)(600K ~273K)) _ oo T
v 333.5k/kg :

*31 e
Picture the Problem The temperature of the bullet immediately after coming to rest in
the block is the sum of its pre-collision temperature and the change in its temperature as a
result of being brought to a stop in the block. We can equate the heat gained by the bullet
and half its pre-collision kinetic energy to find the change in its temperature.

Express the temperature of the T=T+AT
bullet immediately after coming to = 203K + AT
rest in terms of its initial

temperature and the change in its

temperature as a result of being

stopped in the block:

Relate the heat absorbed by the Q=3%K

bullet as it comes to rest to its

kinetic energy before the collision:

Substitute for Q and K to obtain: MpyCo, AT = %(% mpbvz)
Solve for AT: v2

AT =
4Cp
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Substitute to obtain: T —203K 4V
4cp,

. . 2
Substitute numerical values and T Z 293K + (420m/s)
evaluate T: 4(0.128kJ/kg - K)

= 638K =| 365°C
32 e

Picture the Problem We can find the heat available to warm the brake drums from the
initial kinetic energy of the car and the mass of steel contained in the brake drums from Q
= msteelcsteelAT-

EXpress Meeer in terms of Q: _Q
steel —
steeIAT
Find the heat available to warm the Q=K=1m_v’

brake drums from the initial kinetic
energy of the car:

Substitute for Q to obtain: im,Vve

e steeIAT
Substitute numerical values and km 1h )
evaluate Mgee: (1400kg )(SOh * 36005

msteel =
kg-K  kcal
=| 6.26Kkg

Calorimetry
33 -

Picture the Problem Let the system consist of the piece of lead, calorimeter, and water.
During this process the water will gain energy at the expense of the piece of lead. We can
set the heat out of the lead equal to the heat into the water and solve for the final
temperature of the lead and water.

Apply conservation of energy to the AQ =0 or Q, =Q,,
system to obtain:
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Express the heat lost by the lead in Quut = My Co ATy,
terms of its specific heat and
temperature change:

Express the heat absorbed by the Q,, =m,C,AT,

water in terms of its specific heat

and temperature change:

Substitute to obtain: m,C, AT, = My Co AT,

Substitute numerical values:

(0.5kg)(4.18kJ/kg - K)(t, —293K) = (0.2kg)(0.128 ki/kg - K )(363K —t, )

Solve for t; to obtain: t. = 293.8K =| 20.8°C

*34

Picture the Problem During this process the water and the container will gain energy at
the expense of the piece of metal. We can set the heat out of the metal equal to the heat
into the water and the container and solve for the specific heat of the metal.

Apply conservation of energy to the AQ=0or Qgained = Quost
system to obtain:

Express the heat lost by the metal in Qiost = Minetat Crmetat AT metal
terms of its specific heat and
temperature change:

Express the heat gained by the water Quained = My CoATyy + Megainer Crrea AT
and the container in terms of their

specific heats and temperature

change:

Substitute to obtain:

m,cC,AT, +m AT, =m AT, ol

containercmetal metaICmetaI

Substitute numerical values:

(0.5kg)(4.18kJ/kg - K)(294.4 K — 293K )+ (0.2kg)(294.4 K — 293K )c
=(0.1kg)(373K —294.4K)c

metal

metal
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Solve for Cetar: c 0.386kJ/kg - K

metal —

35 e
Picture the Problem We can use Q = mcAT to express the mass m of water that can be

heated through a temperature interval AT by an amount of heat energy Q. We can then
find the amount of heat energy expended by Armstrong from the definition of power.

Express the amount of heat energy Q =mcAT
Q required to raise the temperature
of a mass m of water by AT:

Solve for m to obtain: . Q
cAT
Use the definition of power to relate Q
the heat energy expended by P= At = Q=PAt

Armstrong to the rate at which he
expended the energy:

Substitute to obtain: M= PAt
~cAT
Substitute numerical values and i (400J/5)(3600s/h )(5h/d)(20d)
evaluate m: " (4.184kJ/kg - K)(373K —297K)
=| 453kg
36 (1)

Picture the Problem During this process the ice and the water formed from the melted
ice will gain energy at the expense of the glass tumbler and the water in it. We can set the
heat out of the tumbler and the water that is initially at 24°C equal to the heat into the ice
and ice water and solve for the final temperature of the drink.

Apply conservation of energy to the AQ =00r Quineg = Quost
system to obtain:

Express the heat lost by the tumbler Qs = mglasscglassAT + M aterCrvater AT
and the water in it in terms of their

specific heats and common

temperature change:

Express the heat gained by the ice Quained = MiceCiceATice + Mice L
and t_h_e melted ice in terms of their + M. ater Cuvater A Tico water
specific heats and temperature
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changes:
Substitute to obtain:

=m,.C. AT+m,. . C AT

glass ~glass water ~ water

miceciceATice + mice Lf + micewatercwaterATicewater

Substitute numerical values:

(0.03kg)(0.49kcal/kg - K )(273K — 270K )+ (0.03kg)(79.7 kcal/kg)
+(0.03kg)(1kcal/kg - K)t, = (0.025kg)(0.2kcal/kg - K)(297 K —t, )
+(0.2kg)(Lkcal/kg - K)(297 K —t, )

Solve for t;: t, =283.6K =]10.6°C

37 e
Picture the Problem Because we can not tell, without performing a couple of
calculations, whether there is enough heat available in the 500 g of water to melt all of
the ice, we’ll need to resolve this question first.

(a) Determine the heat required to Qrettice = Mice Lt
melt 200 g of ice: = (0.2kg)(79.7 kcal/kg)
=15.94 kcal
Determine the heat available from Quater = Muater Cuvater A Twater
500 g of water: = (0.5kg)(Lkcal/kg-K)
x (293K - 273K)

=10kcal

Because Qwater < Qmelt ice- The final temperature is0°C.

(b) Equate the energy available _
from the water Quater t0 MiceL and <L
solve for mice:

Substitute numerical values and 10 kcal

T P 125g
evaluate mic: 79.7 kcal/kg
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38 e
Picture the Problem Because the bucket contains a mixture of ice and water initially, we
know that its temperature must be 0°C. We can equate the heat gained by the mixture of
ice and water and the heat lost by the block of copper and solve for the amount of ice
initially in the bucket.

Apply conservation of energy to the AQ =0 or Quineg = Qiost
system to obtain:

Express the heat lost by the block of Qiost = Me, CeyATg,
copper:
Express the heat gained by the ice anined = Mg, Lf + micewatercwaterATicewater

and the melted ice:

Substitute to obtain: M, Lf + micewatercwaterATicewater
- mCuCCuATCu =0

ice water

Solve for mic: Mg C AT, —m Coarer AT

ice water ~water
m.

ice
Lf

Substitute numerical values and evaluate mic:

_ (3.5kg)(0.0923kcal/kg - K)(353K — 281K )
e 79.7 kcal/kg
(1.2kg)(Lkcal/kg - K)(281K — 273K)
79.7 kcal/kg

=[171g

39 oo

Picture the Problem During this process the ice and the water formed from the melted
ice will gain energy at the expense of the condensing steam and the water from the
condensed steam. We can equate these quantities and solve for the final temperature of
the system.

(a) Apply conservation of energy to AQ =0 or Qgines = Quost
the system to obtain:

Express the heat required to melt the anined = mice Lf + micewatercwaterATwater
ice and raise the temperature of the
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ice water:

Express the heat available from 20 g Qiost = Mateam Ly + Meeam Crvater A Twater
of steam and the cooling water
formed from the condensed steam:

Substitute to obtain:

=m,. L +m.. C. . AT

water

mice Lf + mice watercwaterAT

water steam —v steam ~water

Substitute numerical values:

(0.15kg)(79.7 keal/kg) + (0.15kg)(Lkcal/kg - K)(t, — 273K)
=(0.02kg)(540kcal/kg)+ (0.02 kg )(Lkcal/kg - K )(373K —t, )

Solve for t;; t, =277.94K =| 4.94°C

(b) | Because the final temperture is greater than 0°C, no ice is left.

40 e
Picture the Problem During this process the ice will gain heat and the water will lose
heat. We can do a preliminary calculation to determine whether there is enough heat
available to melt all of the ice and, if there is, equate the heat the heat lost by the water to
the heat gained by the ice and resulting ice water as the system achieves thermal
equilibrium.

Apply conservation of energy to the AQ =0 or Qgines = Qiost
system to obtain:

Find the heat available to melt the ice: Qavait = Myater Cuvater A Twater
= (1kg)(1kcal/kg - K)
x (303K - 273K)

= 30kcal
Find the heat required to melt all of Quettice = Mice Lt
the ice: =(0.05kg)(79.7 kcal/kg)
= 3.985kcal

Because Qavail > Qmelt ice, WE know Qlost = mwatercwaterATwater
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that the final temperature will be
greater than 273 K and we can
express Qyqst in terms of the change
in temperature of the water:

EXpreSS anined: anined = mice Lf + micewatercwaterATice water

Equate the heat gained and the heat miceLf + micewatercwaterATicewater = mwatercwaterATwater
lost to obtain:

Substitute numerical values to obtain:

(0.05kg)(79.7 keal/kg) + (0.05 kg )(Lkcal/kg - K )(T, —273K)
= (1kg)(1kcal/kg-K)(303K —T,)

Solving for T¢ yields: T, =297.8K =| 24.8°C

Find the heat required to melt 500 g of ice:  Qmertice = Mice Lt
= (0.5kg)(79.7 kcal/kg)
= 39.85kcal

Because the heat required to melt 500 g of ice is greater than the heat available,
the final temperature will be 0°C.

*4] e
Picture the Problem Assume that the calorimeter is in thermal equilibrium with the
water it contains. During this process the ice will gain heat in warming to 0°C and
melting, as will the water formed from the melted ice. The water in the calorimeter and
the calorimeter will lose heat. We can do a preliminary calculation to determine whether
there is enough heat available to melt all of the ice and, if there is, equate the heat the
heat lost by the water to the heat gained by the ice and resulting ice water as the system
achieves thermal equilibrium.

Find the heat available to melt the ice:

Quvait = MyaterCusater A Twater + MeaiCon AT

water ~water water cal ~cal water

= [(0.5kg)(4.18kJ/kg - K )+ (0.2kg)(0.9kI/kg - K)](293K — 273 K)
= 45.40kJ
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Find the heat required to melt all of the ice:

Qmeltice = miceciceATice + miceLf
= (0.1kg)(2kJ/kg - K)(273K — 253K )+ (0.1kg)(333.5kl/kg)
=37.35kJ

(a) Because Qavait > Qmelt ice, WE AQ =0or anined = Qlost
know that the final temperature will

be greater than 0°C. Apply the

conservation of energy to the system

to obtain:

EXPFESS Qlost in terms of the final Qlost = (mwatercwater + mcalccal )ATwateHcalorimeter
temperature of the system:

Express Qgainea in terms of the final Quained = MigeCiceATice + My L
temperature of the system:

Substitute to obtain:

MiceCi ATice + m'ceLf + mice WatercwaterATicewater = (m c + mcalccal )AT

Ice ~ice I water ~water water-+calorimeter

Substitute numerical values:

37.35kJ +(0.1kg)(4.18kJ/kg - K)(t, — 273K)
= [(0.5kg)(4.18kJ/kg - K) +(0.2kg)(0.9kJ/kg - K)](293K —t,)

Solving for t; yields: t, =276 K =| 2.99°C

(b) Find the heat required to raise 200 g of ice to 0°C:

Quamice = MieeCiceATiee = (0.2kg)(2kI/kg - K)(273K — 253K ) = 8.00kJ

Noting that there are now 600 g of water in the calorimeter, find the heat available from
cooling the calorimeter and water from 3°C to 0°C:

Qavail = mwatercwaterATwater + mcaICcalATwater

=[(0.6kg)(4.18kJ/kg - K) +(0.2kg)(0.9kJ/kg - K)](293K - 273K)
=8.064kJ
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_ Qavail — Qwarmice

Express the amount of ice that will m

melt in terms of the difference meltedioe L

between the heat available and the

heat required to warm the ice:

Substitute numerical values and m o 8.064 kJ —8kJ

evaluate Mmerted ice: meltedice — 333.5kd/kg
=0.1919¢

Find the ice remaining in the system: Miemainingice = 2009 —0.1919¢

=[199.8¢g
© Because the initial and final conditions are the same, the answer would be
c
the same.
42 e

Picture the Problem Let the subscript B denote the block, w; the water initially in the
calorimeter, and w, the 120 mL of water that is added to the calorimeter vessel. We can
equate the heat gained by the calorimeter and its initial contents to the heat lost by the
warm water and solve this equation for the specific heat of the block.

Apply conservation of energy to the AQ =0 or Qgines = Qiost
system to obtain:

Express the heat gained by the Qgained = MgCeATg +Me, Cc, AT,
block, the calorimeter, and the water +m,, c, AT,

initially in the calorimeter: _ ( )AT
- mBCB + mCuCCu + mwlcw1

because the temperature changes are the
same for the block, calorimeter, and the
water that is initially at 20°C.

Express the heat lost by the water Qiost =My, C AT,
that is added to the calorimeter:

Substitute to obtain:

(chB +Mg,Ce, +M,, Cy, )AT = mWZCWZATW2

Substitute numerical values:
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[(0.1kg)c, +(0.025kg)(0.386 ki/kg - K }+ (0.06 kg )(4.18 ki/kg - K )]|(327 K — 293K )
= (120x10"° kg )(4.18kJ/kg - K )(353K —327K)

Solve for cg to obtain: cg =| 1.23kJ/kg-K

=|0.294cal/g-K

43 e
Picture the Problem We can find the temperature t by equating the heat gained by the
warming water and calorimeter, and vaporization of some of the water.

Apply conservation of energy to the AQ =0 or Qgineg = Qiost
system to obtain:

Express the heat gained by the anined = My, vaporized L. +m,C,AT,
warming and vaporizing water: +m,C AT

cal —cal w
Express the heat lost by the 100-g Quost = MeyCeATe,

piece of copper as it cools:
Substitute to obtain:

m +m,c,AT, +m,C AT, =m.C. AT,

'w, vaporized I—r w cal

Substitute numerical values:

(1.2g)(540cal/g )+(200g)(Lcal/g- K)(311K —289K)
+(1509)(0.0923cal/g- K )(311K — 289K ) = (100g)(0.0923cal/g - K )(t —311K)

Solve for t to obtain: t=891K =| 618°C

44 e
Picture the Problem We can find the final temperature of the system by equating the
heat gained by the calorimeter and the water in it to the heat lost by the cooling aluminum
shot. In (b) we’ll proceed as in (a) but with the initial and final temperatures adjusted to
minimize heat transfer between the system and its surroundings.

Apply conservation of energy to the AQ =0 or Quineg = Qo
system to obtain:
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(a) Express the heat gained by the Quaineg = M, C, AT, + My, CAAT,
warming water and the calorimeter:

Express the heat lost by the Qiost = My CaAT A,
aluminum shot as it cools:

Substitute to obtain: (mWCW + M, Cay )ATW = My CalA Ty

Substitute numerical values to obtain:

[(500g)(1cal/g- K }+(200g)(0.0923cal/g - K)](t, — 293K )
=(300g)(0.215cal/g- K )(373K —t,)

Solve for t; to obtain: t, =301.9K =| 28.9°C
(b) Let the initial and final ti=20°C -t 1)
temperatures of the calorimeter and and

its contents be: tr=20°C + 1o

where tj and t; are the temperatures above
and below room temperature and t, is the

amount t; and t; must be below and above

room temperature respectively.

Express and the heat gained by the Q,, =m,c,AT, +m,C,AT,
water and calorimeter: = (chW + M Cal )ATW
Express the heat lost by the aluminum Qout = Mot CAAT o

shot as it cools:
Equate Qi and Qo to obtain: (m,,C,, +M,Cy)AT, =M, CyAT,

Substitute numerical values:

[(500g)(1cal/g- K }+(200g)(0.215cal/g- K)](293K +1t, —293K +1,)
= (300g)(0.215cal/g- K)(373K — 293K —t,)

Solve for and evaluate t,: t, =277.49K =4.49°C

Substitute in equation (1) to obtain: t. = 20°C—4.49°C =| 15.5°C
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First Law of Thermodynamics

45 o
Picture the Problem We can apply the first law of thermodynamics to find the change in
internal energy of the gas during this process.

Apply the first law of AE,, =Q,, +W,,
thermodynamics to express the

change in internal energy of the gas

in terms of the heat added to the

system and the work done on the

gas:

The V\-IOI’k done by the gas equals the AE,. = 600cal x 4.184) 3007
negative of the work done on the

gas. Substitute numerical values and = 2.21kJ

evaluate AE;,:

*46 o
Picture the Problem We can apply the first law of thermodynamics to find the change in
internal energy of the gas during this process.

Apply the first law of AE,, =Q,, +W,,
thermodynamics to express the

change in internal energy of the gas

in terms of the heat added to the

system and the work done on the

gas:
The vyork done by the gas is the AE, . = 400kcal 4.184] _ 800KJ
negative of the work done on the cal

gas. Substitute numerical values and —| 874kJ

evaluate AE;.:

47 o
Picture the Problem We can use the first law of thermodynamics to relate the change in
the bullet’s internal energy to its pre-collision kinetic energy.

Using the first law of thermodynamics, AE; =Q;, +W,,
relate the change in the internal energy or, because Qj, = 0,
of the bullet to the work done on it by AE, =W, = AK =—(K, —K,)
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the block of wood:

Substitute for AE;y, K, and K; to obtain:

Solve for ts;

Substitute numerical values and
evaluate t:;

48

t =t +—
2Cp,
2
t, = 293K + (200ms)
2(0.128kJ/kg - K)
= 449K = 176°C

Picture the Problem What is described above is clearly a limiting case because, as the
water falls, it will, for example, collide with rocks and experience air drag; resulting in
some of its initial potential energy being converted into internal energy. In this limiting
case we can use the first law of thermodynamics to relate the change in the gravitational
potential energy (take Uy = 0 at the bottom of the waterfalls) to the change in internal
energy of the water and solve for the increase in temperature.

(a) Using the first law of
thermodynamics and noting that,
because the gravitational force is
conservative, W,, = —AU, relate the
change in the internal energy of the
water to the work done on it by
gravity:

Substitute for AE;.;, Uy, and U; to
obtain:

Solve for AT:

Substitute numerical values and
evaluate AT:

(b) Proceed as in (a) with
Ah =740 m:

AEint = Qin +Won

or, because Qj, =0,
AEim :Won =-AU = _(Uf _Ui)

mc, AT = —(0—mgAh) = mgAh

aT = 94N
CW
2
T (9.81m/s )(50m): 017K
4.18kJ/kg-K
2
_ (9.81m/s?)(740m) _[17aK

4.18kJ/kg - K
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49
Picture the Problem We can apply the first law of thermodynamics to find the change in
internal energy of the gas during this process.

Apply the first law of
thermodynamics to express the
change in internal energy of the gas
in terms of the heat added to the
system and the work done on the
gas:

The work done by the gas is the
negative of the work done on the
gas. Substitute numerical values and
evaluate AE;y:

50 oo

AEint = Qin +Won

4.184]
cal

AE,, = 20calx ~30J=|53.7J

Picture the Problem We can use the definition of kinetic energy to express the speed of
the bullet upon impact in terms of its kinetic energy. The heat absorbed by the bullet is
the sum of the heat required to warm to bullet from 202 K to its melting temperature of
600 K and the heat required to melt it. We can use the first law of thermodynamics to
relate the impact speed of the bullet to the change in its internal energy.

Using the first law of
thermodynamics, relate the change
in the internal energy of the bullet to
the work done on it by the target:

Substitute for AE;n, Ks, and K; to
obtain:

Solve for v to obtain:

Substitute numerical values and evaluate v:

AEint = Qin +Won

or, because Q;, =0,
AEint :Won =AK = _(Kf - KI)

MCp, AT, +Mlyp, = —(0 —%sz)Z +mv

or
2
MCp,, (TMP _Ti )+ mLf,Pb = %mv

v=2lce (e —T)+ Lipo)

v =,/2{(0.128kJ/kg - K)(600K —303K ) +24.7k/kg | =

354 m/s
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*5]  ee
Picture the Problem We can find the rate at which heat is generated when you rub your
hands together using the definition of power and the rubbing time to produce a 5°C
increase in temperature from AQ = (dQ / dt)At and

Q = mcAT.
(a) Express the rate at which heat is d_Q —P=fyv=uFv
generated as a function of the friction dt
force and the average speed of your
hands:
Substitute numerical values and aQ _ 0.5(35 N)(0.35 m/s) —[613W
evaluate dQ/dt: dt
(b) Relate the heat required to raise AQ = d—QAt — mMCAT
the temperature of your hands 5 K to dt
the rate at which it is being
generated:
Solve for At: _ MCAT
dQ/dt
Substitute numerical values and At = (0.35kg)(4k¥/kg-K)(5K)
evaluate At: 6.13W
~11435x ™" _ 79 9min
60s

Work and the PV Diagram for a Gas

52 -

Picture the Problem We can find the work done by the gas during this process from the
area under the curve. Because no work is done along the constant volume (vertical) part
of the path, the work done by the gas is done during its isobaric expansion. We can then
use the first law of thermodynamics to find the heat added to the system during this
process.
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(a) The path from the initial state (1)
to the final state (2) is shown on the
PV diagram.

The work done by the gas equals the area under the shaded curve:

Wy, 4 = PAV = (3atm)(2L) = (Batm x

(b) The work done by the gas is the
negative of the work done on the
gas. Apply the first law of
thermodynamics to the system to
obtain:

Substitute numerical values and
evaluate Qjy:

53

-3 3
101.3 kPaj[z L, 10°m
atm

=AE,,

( |nt2

=(912)-456J)+608J =| 1.06kJ

V, L

]: 608J

-W,,
( |nt2 Elntl) ( Wbygas)
-E,

int, 1) by gas

Picture the Problem We can find the work done by the gas during this process from the
area under the curve. Because no work is done along the constant volume (vertical) part
of the path, the work done by the gas is done during its isobaric expansion. We can then
use the first law of thermodynamics to find the heat added to the system during this

process

(a) The path from the initial state (1)
to the final state (2) is shown on the
PV diagram.
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The work done by the gas equals the area under the curve:

-3 3
W,, . = PAV = (2atm)(2L) = | 2atmx22L:3KPa 15, 107 _ 2053
atm L
(b) The work done by the gas is the Q,, =AE,, -W_
negative of the work done on the = (s Elntl) ( Wbygas)
gas. Apply the first law of ( _E )
thermodynamics to the system to B = Era ]+ Woy g
obtain:
Substitute numerical values and Q,, =(912J-456J)+405J = | 861J
evaluate Qjy:
*54 oo

Picture the Problem We can find the work done by the gas during this process from the
area under the curve. Because no work is done along the constant volume (vertical) part
of the path, the work done by the gas is done during its isothermal expansion. We can
then use the first law of thermodynamics to find the heat added to the system during this
process.

(a) The path from the initial state (1)
to the final state (2) is shown on the
PV diagram.

The work done by the gas equals the
area under the curve: bygas

_dev —nRTj

l

cdV
= Plvl '[7 = Plvl[lnv]fll__
=RV In3

Substitute numerical values and evaluate Wy gas:
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-3 3
Wbygas=(3atmij 1 x9M 1323347
atm L

(b) The work done by the gas is the Q. = AE;, —W,,

negative of the work done on the ( Einio E.m1) ( Wbygas)

gas. Apply the first law of ( _E )

thermodynamics to the system to Sz = B+ Woy g

obtain:

Substitute numerical values and Q, = (9]_2J —456J)+ 334] =1 7901
evaluate Qjy:

55 e

Picture the Problem We can find the work done by the gas during this process from the
area under the curve. We can then use the first law of thermodynamics to find the heat
added to the system during this process.

(a) The path from the initial state (1) P, atm
to the final state (2) is shown on the

1
_ 3 —
PV diagram: \
|
21T — SRR ?

| I
N
|
| |
0 ! ' — VL
0 1 2 3
The work done by the gas equals the Wy gas = Phrapezoid = (3atm + 2atm)(2 L)
area under the curve:
=batm- L x 101.3J =|507J
atm-L
(b) The work done by the gas is the Q. = AE,, —W,,
negative of the work done on the = (E|m2 Emtl) ( WbygaS>
as. Apply the first law of
g pp y . = (Emtz Elntl) Wbygas
thermodynamics to the system to
obtain:
Substitute numerical values and Q, = (9123 —456J)+ 507J =] 963]

evaluate Qjy:
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Remarks: You could use the linearity of the path connecting the initial and final
states and the coordinates of the endpoints to express P as a function of V. You
could then integrate this function between 1 and 3 L to find the work done by the
gas as it goes from its initial to its final state.

56 oo
Picture the Problem We can find the work done by the gas during this process from the

area under the curve.

The path from the initial state i to

the final state f is shown on the PV
diagram:
V,L
The work done by the gas equals the Woy ges = Avapesoia = & (1atm+3atm)(50L )
area under the curve:
=100atm- L x 101.3J =1{10.1kJ
atm-L

Remarks: You could use the linearity of the path connecting the initial and final
states and the coordinates of the endpoints to express P as a function of V. You
could then integrate this function between 1 and 3 L to find the work done by the
gas as it goes from its initial to its final state.

57 e
Picture the Problem We can find the work done by the gas from the area under the PV
curve provided we can find the pressure and volume coordinates of the initial and final
states. We can find these coordinates by using the ideal gas law and the condition

T = AP%.

Apply the ideal-gas law with PV =RAP?> = V = RAP (1)
n= 1moland T = AP’to obtain: This result tells us that the volume varies
linearly with the pressure.

Solve the condition on the P T,
temperature for the pressure of the o7\ A
gas:
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Find the pressure when the 4T, T,

. ) P=,—=2|—=2PR,
temperature is 4Ty: A A
Using equation (1), express the (2v,,2P,)

coordinates of the final state:

The PV diagram for the process is

shown to the right: P
)y S .
PiJ ______
The work done by the gas equals the Woy ges = Avapesoia = 2 (P +3P)(2V, -V,
area under the curve:
= %Povo
*58

Picture the Problem From the ideal gas law, PV = NKT, or V = NKT/P. Hence, on a VT
diagram, isobars will be straight lines with slope 1/P.

A spreadsheet program was used to plot the following graph. The graph was plotted for 1
mol of gas.

300 .

[
= = =p=latm /
250 — =P =0.5atm

—P = 0.1 atm

200

mé 150 /

100 /
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59 e
Picture the Problem The PV diagram
shows the isothermal expansion of the ideal
gas from its initial state 1 to its final state 2.
We can use the ideal-gas law for a fixed
amount of gas to find V, and then evaluate
j PdV for an isothermal process to find the

work done by the gas. In part (b) of the
problem we can apply the first law of
thermodynamics to find the heat added to
the gas during the expansion.

(a) Express the work done by a gas
during an isothermal process:

Apply the ideal-gas law for a fixed
amount of gas undergoing an
isothermal process:

Solve for and evaluate V,:

Substitute numerical values and
evaluate W:

(b) Apply the first law of
thermodynamics to the system to
obtain:

Because the work done by the gas is
the negative of the work done on the
gas:

\
P, kPa \

200 1

100 4

't tdv tdv
W, 0 = [PAV =nRT [ — = RV, [—
by gas J. n \.!; Vv 1 1\.!; vV

Vi

V, =ﬂvl=M(4L)=8|_
P, © 100kPa

8L
W, .. = (200kPa)(4L) v

by gas
4L

=(800kPa-L)[InV]3:

— (800kPa- L)|n[8"J

4L

10°m?
~800KkPa L x> T [655)

Qin = AEint _Won
or, because AE;,; = 0 for an isothermal
process,

Qin = _Won

Qin = _(_Wby gas ) = Wby gas
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Substitute numerical values and Q,, =| 555J
evaluate Qjy:

Heat Capacities of Gases and the Equipartition Theorem

60 -
Picture the Problem We can find the number of moles of the gas from its heat capacity
at constant volume using C,, =3 nR . We can find the internal energy of the gas from

E,: = C, T and the heat capacity at constant pressure using C, =C,, +nR..

(a) Express Cy in terms of the Cy=3nR
number of moles in the monatomic
gas:
Solve for n: e 2C,,
3R
Substitute numerical values and N 2(49.8J/K) _3.99
evaluate n: 3(8.314J/mol-K)
(b) Relate the internal energy of the E.. =C,T

gas to its temperature:

Substitute numerical values and E,. = (49.8)/K)(300K)=|14.9k]
evaluate Ey:
(c) Relate the heat capacity at C, =C,+nR=3nR+nR=3nR

constant pressure to the heat
capacity at constant volume:

Substitute numerical values and C, = £(3.99)(8.314J/mol -K)
evaluate Cp: ~-[8291K
61 -

Picture the Problem The Dulong-Petit law gives the molar specific heat of a solid, c'.
The specific heat is defined as ¢ = ¢'/M where M is the molar mass. Hence we can use
this definition to find M and a periodic table to identify the element.

(a) Apply the Dulong-Petit law: ¢ =3R or C Z?\A_R



1382 Chapter 18

Solve for M: M = 3_R

c
Substitute numerical values and M = 24.9J/mol- K _[55.7g/mol
evaluate M: 0.447kJ/kg-K

Consulting the periodic table of the
elements we see that the element is
most likely iron.

*62 oo
Picture the Problem The specific heats of air at constant volume and constant pressure
are given by ¢y = Cy/m and cp = Cp/m and the heat capacities at constant volume and
constant pressure are given by C,, =3nR andC, =ZnR, respectively.

(a) Express the specific heats per o = C_V (1)
unit mass of air at constant volume Vom
and constant pressure: and
C
Cp =—— @)
m
Express the heat capacities of a Cy=3nR
diatomic gas in terms of the gas and
constant R, the number of moles n, C, = %nR
and the number of degrees of
freedom:
Express the mass of 1 mol of air: m=0.74M,, +0.26M,
Substitute in equation (1) to obtain: onR

™ = 200.74M,, +0.26M, )

Substitute numerical values and evaluate cy:

5(1mol)(8.314 J/mol - K)

Cy = =| 716J/kg - K
v 2]0.74(28 %107 kg )+ 0.26(32 x 10 kg ) L
Substitute in equation (2) to obtain: 7nR

“ = 20.74M +026M, )
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Substitute numerical values and evaluate cp:

.- 7(1mol)(8.314J/mol-K)
" 20.74(28x10° kg)+0.26(32x 10 kg |

=[1002J/kg- K

(b) Express the percent difference between the value from the Handbook of Chemistry
and Physics and the calculated value:

1.032J/g- K -1.002)/g- K _
1.032J/g- K

% difference = 2.91%

63 oo
Picture the Problem We know that, during a constant-volume process, no work is done
and that we can calculate the heat added during this expansion from the heat capacity at
constant volume and the change in the absolute temperature. We can then use the first
law of thermodynamics to find the change in the internal energy of the gas. In part (b),
we can proceed similarly; using the heat capacity at constant pressure rather than
constant volume.

(a) For a constant-volume process: W, = @

Relate the heat added to the gas to its Q,, =C AT =3nRAT
heat capacity at constant volume and
the change in its temperature:

Substitute numerical values and Q,, =2 (mol)(8.314J/mol- K)(300K)
evaluate Qjy: _[6.24KJ

Apply the first law of AE; = Q; +W,,

thermodynamics to find AE;.: —6.24k)+0=I6.24KJ

(b) Relate the heat added to the gas Q,, = C,AT = (3nR+nR)AT

to its heat capacity at constant
pressure and the change in its

temperature:
Substitute numerical values and Qn = %(lmol)(8.3143/mol - K)(300K)
evaluate Qjy: _873kJ
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Because AE;y; depends only on the
temperature difference:

Apply the first law of
thermodynamics to find W:

(c) Integrate dW,, = P dV to obtain:

Substitute numerical values and
evaluate Wo,:

64 oo

AE,, =| 6.24kJ

int

W

on

= AE, —Q, =8.73k]—6.24kJ
=[2.49Kk]

v
W,, = [PdV =P(V; -V,) = nR(T, -T,)
\VA

W, = (1mol)(8.314J/mol - K )(300K)
=| 2.49k]

Picture the Problem Because this is a constant-volume process, we can use
Q =C, AT to express Q in terms of the temperature change and the ideal-gas law for a

fixed amount of gas to find AT.
Express the amount of heat Q that
must be transferred to the gas if its
pressure is to triple:

Using the ideal-gas law for a fixed
amount of gas, relate the initial and
final temperatures, pressures and
volumes:

Solve for Tt

Substitute and simplify to obtain:

65 oo

Q=C,AT
=$nR(T, -T,)

RV _3RV
T, T;
T, =3T,

Q =2nR(2T,)=5(nRT,)=| 5PV

Picture the Problem Let the subscripts i and f refer to the initial and final states of the

gas, respectively. We can use the ideal-gas law for a fixed amount of gas to express V' in
terms of V and the change in temperature of the gas when 13,200 J of heat are transferred
to it. We can find this change in temperature using Q = C, AT .

Using the ideal-gas law for a fixed
amount of gas, relate the initial and
final temperatures, volumes, and

RV _RV
T T
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pressures:
Because the process is isobaric, we )
process 18 ¢ vi=yv oy ATyl AT
can solve for V' to obtain: T T T
Relate the heat transferred to the gas Q =C,AT =ZnRAT
to the change in its temperature:
Solve AT: AT = 2Q
nR

Substitute to obtain:

V' =V|1+ 2Q

7nRT,

One mol of gas at STP occupies 22.4 L. Substitute numerical values and evaluate V':

=|959.6L

V' =(22.4x10° m3)(1+ 213.2k)) J

7(1mol)(8.314 J/mol - K)(273K)

66 oo
Picture the Problem We can use the relationship between Cp and Cy (C, =C,, +nR)

to find the number of moles of this particular gas. In parts (b) and (c) we can use the
number of degrees of freedom associated with monatomic and diatomic gases,
respectively, to find Cp and Cy,.

(a) Express the heat capacity of the C,=C,+nR
gas at constant pressure to its heat
capacity at constant volume:

Solve for n: N C,-C,
R
Substitute numerical values and N 29.1J/K _350mol
evaluate n: 8.314J/mol - K
(b) Express and evaluate Cy for a Cy,=2nR

monatomic gas:

Substitute numerical values and C, = 2(3.5mol)(8.314J/mol-K)
evaluate Cy: - 436K
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Express Cp for a monatomic gas: C, =3nR
Substitute numerical values and C, = £(3.5mol)(8.314J/mol-K)
evaluate Cp: —1 727K
(c) If the diatomic molecules rotate C, =3nR
but do not vibrate they have 5 = 5(3.5mol)(8.314J/mol - K )
degrees of freedom: 727K
and
C, =ZnR
= 1(3.5mol)(8.314J/mol - K)
=[102J/K

*G7 oo
Picture the Problem We can find the change in the heat capacity at constant pressure as
CO; undergoes sublimation from the energy per molecule of CO; in the solid and gaseous
states.

Express the change in the heat AC, = (:F,gas —Cr g
capacity (at constant pressure) per ' ’
mole as the CO, undergoes

sublimation:

Express Cp gss in terms of the number C

as f(iNk =2Nk
of degrees of freedom per molecule: ho ENK) =3

because each molecule has three
translational and two rotational degrees of
freedom in the gaseous state.

We know, from the Dulong-Petit 3Nk

Law, that the molar specific heat of psolid — ﬁx 3atoms = 9Nk
most solids is 3R = 3Nk. This result

is essentially a per-atom result as it

was obtained for a monatomic solid

with six degrees of freedom. Use

this result and the fact CO; is

triatomic to express Cy soiid:

Substitute to obtain: AC, = 5Nk —1 Nk =| —% Nk

68 oo
Picture the Problem We can find the initial internal energy of the gas from
U, = %nRT and the final internal energy from the change in internal energy resulting

from the addition of 500 J of heat. The work done during a constant-volume process is
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zero and the work done during the constant-pressure process can be found from the first

law of thermodynamics.

(a) Express the initial internal
energy of the gas in terms of its
temperature:

Substitute numerical values and
evaluate Ejp:

(b) Relate the final internal energy
of the gas to its initial internal
energy:

Express the change in temperature
of the gas resulting from the
addition of heat:

Substitute to obtain:

Substitute numerical values and
evaluate Ejn+:

(c) Relate the final internal energy
of the gas to its initial internal
energy:

Apply the first law of
thermodynamics to the constant-
volume process:

Substitute numerical values and
evaluate Ejn+:

69 oo
Picture the Problem We can use C

V,water

int,i

Ei = 2(1mol)(8.314J/mol - K)(273K)

=| 3.40kJ
Eint,f = Eint,i +AEint = Eint,i +CvAT
AT = Qn
Cp
C
Einee = Eini +C_:Qin
3nR
E,.. =3.40k]+2—(500J)=| 3.70kJ
3 % n
Eint,f = Eint,i + AEint
AEint = Qin +Won
or, because W, = 0,
AE,, =Q,, =500J
Eim‘f =3.40kJ+500J =| 3.90kJ

=f (% Nk) to express Cy water aNd then count

the number of degrees of freedom associated with a water molecule to determine f.

Express Cy water in terms of the
number of degrees of freedom per

C
where f is the number of degrees of

= 1(3)

V,water —
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molecule:

freedom associated with a water molecule.

(2 per atom).

There are three translational degrees of freedom and three rotational
degrees of freedom. In addition, each of the hydrogen atoms can vibrate
against the oxygen atom, resulting in an additional 4 degrees of freedom

Substitute for f to obtain:

Cy waer = 10(1 Nk) = | 5Nk

V,water

Quasi-Static Adiabatic Expansion of a Gas

*70 oo

Picture the Problem The adiabatic
expansion is shown in the PV diagram. We
can use the ideal-gas law to find the initial
volume of the gas and the equation for a
quasi-static adiabatic process to find the
final volume of the gas. A second
application of the ideal-gas law, this time
at the final state, will yield the final
temperature of the gas. In part (¢) we can
use the first law of thermodynamics to find
the work done by the gas during this
process.

(a) Apply the ideal-gas law to
express the initial volume of the
gas:

Substitute numerical values and
evaluate V;:

Use the relationship between the
pressures and volumes for a quasi-
static adiabatic process to express
Vs

\
\
P, atm
104—————=
8+
6__
4+
24—
0
0
P
v - (mol)(8.314J/mol - K)(273K)
10atm  01-3kPa
atm
=224x10°m® =] 2.24L

P Yy
RV =RV{ =V, =V, (?j
f
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Substitute numerical values and Yr Y5
evaluate Vi Vi =V, (ﬂ] = (2'24 L)(lo atmj
A 2atm
=|5.88L
(b) Apply the ideal-gas law to T - PV,
express the final temperature of the " nR
gas:
Substitute numerical values and T = (2atm)(5.88 L)
evaluate T T 8.206x1072 L-atm/mol-K
=] 143K
(c) Apply the first law of W,, = AE, —Q;,
thermodynamics to express the or, because the process is adiabatic,
work done on the gas: W,, = AE;,, = C,AT =3nRAT
Substitute numerical values and W,, = 2(1mol)(8.3143/mol - K )(~130K)
evaluate Wo,: =-1.62kJ
BeCaUSQ Wby the gas = _Won: Wby gas = 1.62 kJ
71 .

Picture the Problem We can use the temperature-volume equation for a quasi-static
adiabatic process to express the final temperature of the gas in terms of its initial
temperature and the ratio of its heat capacitiesy. Because C, =C,, + nR, we can

determine y for each of the given heat capacities at constant volume.

Express the temperature-volume TV =TV
relationship for a quasi-static adiabatic
process:
Solve for the final temperature: S\ Y
T =T, l =T L =T (Z)V_l
Vf %VI

(a) Evaluate yforC,, =2nR: Y= Cp _3NR_ ¢

C, 3nR °

Evaluate Tr T, = (293K)(2) " = [ 465K
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(b) Evaluate y forC,, =3nR:

Evaluate Ts:

72 e

T, =(293K)(2)"* =[ 387K

Picture the Problem We can use the temperature-volume and pressure-volume equations
for a quasi-static adiabatic process to express the final temperature and pressure of the
gas in terms of its initial temperature and pressure and the ratio of its heat capacities.

Express the temperature-volume
relationship for a quasi-static
adiabatic process:

Solve for the final temperature:

Using y = 5/3 for neon, evaluate T:

Express the relationship between the
pressures and volumes for a quasi-
static adiabatic process:

Solve for Ps:

Substitute numerical values and
evaluate Ps:

*73 oo

v, = Tfoy_l

v (v Y
Tf =Ti — =Ti = :Ti(4)yil
V; %Vi

T, = (293K)(4)* =[ 738K

P. = (1atm)(4)”® ={ 10.1atm

Picture the Problem We can use the ideal-gas law to find the initial volume of the gas.
In part (a) we can apply the ideal-gas law for a fixed amount of gas to find the final
volume and the expression (Equation 19-16) for the work done in an isothermal process.
Application of the first law of thermodynamics will allow us to find the heat absorbed by
the gas during this process. In part (b) we can use the relationship between the pressures
and volumes for a quasi-static adiabatic process to find the final volume of the gas. We
can apply the ideal-gas law to find the final temperature and, as in (a), apply the first law
of thermodynamics, this time to find the work done by the gas.



Use the ideal-gas law to express the
initial volume of the gas:

Substitute numerical values and
evaluate V;:

(a) Because the process is
isothermal:

Use the ideal-gas law for a fixed
amount of gas to express Vs

Substitute numerical values and
evaluate Vs:

Express the work done by the gas
during the isothermal expansion:

Substitute numerical values and

Noting that the work done by the
gas during the process equals the
negative of the work done on the
gas, apply the first law of
thermodynamics to find the heat
absorbed by the gas:

(b) Using = 5/3 and the
relationship between the pressures
and volumes for a quasi-static
adiabatic process, express V.
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v, - "RT,
¥
v - (0.5mol)(8.314J/mol - K )(300K )
‘ 400kPa
=3.12x10°m®* =3.12L
T, =T, =| 300K
RV _ RV
Ti Tf
or, because T = constant,
V, =V, Ll
P

f

V, =(3.12 |_)(400 kpa] ~[7.80L

160kPa
Y
W, e = NRT Invfi
Wi, 4 = (0.5mol)(8.314 J/mol - K)
x (300K)In 7.80L
3.12L
={1.14kJ

Qin = AEint _Won = 0_(_114 kJ)
=|1.14kJ

P Yy
PV =RV =V, =V, [F‘]

f
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Substitute numerical values and 200kPa )
evaluate Vy: V, =(3.12 L)[ 160kPa | - 5.41L
Apply the ideal-gas law to find the T - PV;
final temperature of the gas: " nR
Substitute numerical values and (160 kPa)(5.41>< 10°° m3)
evaluate Tr. " (0.5mol)(8.314J/mol-K)

=| 208K
For an adiabatic process: Q, =
Apply the first law of W, = AE;, —Q;, =C AT —0=3nRAT
thermodynamics to express the work
done on the gas during the adiabatic
process:
Substitute numerical values and W, =2(0.5mol)(8.314J/mol -K)
evaluate Wop: x (208K —300K)

=-574]

Because the work done by the gas Wiy gas = _(_ 5743) —| 5743
equals the negative of the work done
on the gas:
74 e

Picture the Problem We can use the ideal-gas law to find the initial volume of the gas.
In part (a) we can apply the ideal-gas law for a fixed amount of gas to find the final
volume and the expression (Equation 19-16) for the work done in an isothermal process.
Application of the first law of thermodynamics will allow us to find the heat absorbed by
the gas during this process. In part (b) we can use the relationship between the pressures
and volumes for a quasi-static adiabatic process to find the final volume of the gas. We
can apply the ideal-gas law to find the final temperature and, as in (a), apply the first law
of thermodynamics, this time to find the work done by the gas.

Use the ideal-gas law to express the V. NRT;
initial volume of the gas: ‘P
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Substitute numerical values and
evaluate V;:

(a) Because the process is isothermal:

Use the ideal-gas law for a fixed
amount of gas to express Vs

Substitute numerical values and
evaluate Ts;

Express the work done by the gas
during the isothermal expansion:

Substitute numerical values and
evaluate Wyy gas:

Noting that the work done by the gas
during the isothermal expansion
equals the negative of the work done
on the gas, apply the first law of
thermodynamics to find the heat
absorbed by the gas:

(b) Using = 1.4 and the relationship
between the pressures and volumes
for a quasi-static adiabatic process,
express Vs

Substitute numerical values and evaluate
Vf:

(0.5mol)(8.314 J/mol - K )(300K)

V. =
400kPa
=3.12x10°m* =3.12L
T, =T =| 300K
PVi _ RV,
Ti Tf
or, because T = constant,
w=mﬂ
P

f

V, =(3.12 L)(A'OO kpaj ~[7.80L

160kPa
V
Wy, s = NRT Inv—:
W, 4 = (0.5mol)(8.314 J/mol - K)
x (300K ) In 7.80L
3.12L
=|1.14kJ

Q. = AE,, —W,, =0—(-1.14kJ)
=] 1.14KkJ

P Yy
PV/ =RV, =V, =V, (Flj

i
f

=|6.00L

160kPa

1.4
v, =(3.12 L)(400 kPa]
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Apply the ideal-gas law to express
the final temperature of the gas:

Substitute numerical values and
evaluate Ty

For an adiabatic process:

Apply the first law of
thermodynamics to express the work
done on the gas during the adiabatic
expansion:

Substitute numerical values and
evaluate Wy,

Noting that the work done by the
gas during the adiabatic expansion is
the negative of the work done on the
gas, we have:

Tf: fof
nR

(160kPa)(6x10°m°)

T =
" (0.5mol)(8.314J/mol-K)
=| 231K
Qin =
W,, = AE,, —Q,, = C,AT —0 = $nRAT

W,, =5(0.5mol)(8.314J/mol -K)
x (231K —300K)
=717

W

by gas

=—(-7173)=| 7171

75 e
Picture the Problem We can eliminate the volumes from the equations relating the
temperatures and volumes and the pressures and volumes for a quasi-static adiabatic
process to obtain a relationship between the temperatures and pressures. We can find the
initial volume of the gas using the ideal-gas law and the final volume using the pressure-
volume relationship. In parts (d) and (c) we can find the change in the internal energy of
the gas from the change in its temperature and use the first law of thermodynamics to
find the work done by the gas during its expansion.

(a) Express the relationship between TV =TV
temperatures and volumes for a

quasi-static adiabatic process:

Express the relationship between
pressures and volumes for a quasi-
static adiabatic process:

Piviy = vafy 1)
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Eliminate the volume between these
two equations to obtain:

Substitute numerical values and
evaluate Ty

(b) Solve equation (1) for Vs

Apply the ideal-gas law to express
Vi

Substitute numerical values and
evaluate Vi

Substitute for V; and evaluate Vs

(d) Relate the change in the internal
energy of the helium gas to the
change in its temperature:

Substitute numerical values and
evaluate AE;,:

(c) Use the first law of
thermodynamics to express the work
done on the gas:

Substitute numerical values and
evaluate Wo,:

Because the work done by the gas
equals the negative of Wy,:

-2
R

l_5}3
T, = (500 K)(latmj ~[ 263K
Satm
()
f
V= nRT;
Pi
v (0.5mol)(8.314 J/mol - K )(500K)
P 101.3kPa
Batmx————

atm
=4.10L

3
5

V, = (4.10 L)(SaﬂJ ~[10.8L

latm

AE,, = C,AT =2nRAT

AE,, =3(0.5mol)(8.314J/mol -K)
x (263K —500K)

—1.48kJ

W,, = AE, t _Qin = AEint -0= AEint

on n

W, =-1.48kJ

W,, = —(~1.48kJ)

by gas — VYo

=(1.48kJ
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*76

Picture the Problem Consider the process to be accomplished in a single compression.
The initial pressure is 1 atm = 101 kPa. The final pressure is (101 + 482) kPa = 583 kPa,
and the final volume is 1 L. Because air is a mixture of diatomic gases, ;i = 1.4. We can
find the initial volume of the air using PV,” = P;V" and use Equation 19-39 to find the

work done by the air.

Express the work done in an
adiabatic process:

Use the relationship between
pressure and volume for a quasi-
static adiabatic process to express
the initial volume of the air:

Substitute numerical values and
evaluate V;:

PiVi B Pfo
y—1

W =

RV =RV{ =V, =V, (Ff

U
~|

v, = (1L )| 283kPa ﬁ—350|_
101kPa '

Substitute numerical values in equation (1) and evaluate W:

o

101kPa)(3.5x10°* m* )~ (583kPa)(10° m°)

=| —574]

14-1

where the minus sign tells us that work is done on the gas.

77

Picture the Problem We can integrate PdV using the equation of state for an adiabatic

process to obtain Equation 18-39.

Express the work done by the gas
during this adiabatic expansion:

For an adiabatic process:

Substitute and evaluate the integral
to obtain:

From equation (1) we have:

\Z
W,y o, = [ PAV
Vl

PV7” =constant=C 1)
and
P=CVv~”
V, C
— 1— 1—
Wbygas = C\{V “dv :E(Vz 7=V 7)

CV}7 =PV/ and CV,*7 =PV,
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Substitute to obtain: PV, — PV, PV, - PV,
Wbygas = 1_ = _ 1 '
4 /4

which is Equation 18-39.

Cyclic Processes

78 e
Picture the Problem To construct the PV diagram we’ll need to determine the volume
occupied by the gas at the beginning and ending points for each process. Let these points
be A, B, C, and D. We can apply the ideal-gas law to the starting point (A) to find Va. To
find the volume at point B, we can use the relationship between pressure and volume for
a quasi-static adiabatic process. We can use the ideal-gas law to find the volume at point
C and, because they are equal, the volume at point D. We can apply the first law of
thermodynamics to find the amount of heat added to or subtracted from the gas during
the complete cycle.

(a) Using the ideal-gas law, express V. - nRT,
the volume of the gas at the starting 8 P,
point A of the cycle:

Substitute numerical values and V. - (Imol)(8.314J/mol - K)(293K )
: AT 101.3kPa
evaluate Va: 5atm x .
atm
=4.81L

Use the relationship between ) ¥

A
pressure and volume for a quasi- Ve = VA(P_]

B

static adiabatic process to express
the volume of the gas at point B; the
end point of the adiabatic expansion:

Substitute numerical values and 5atm )™
evaluate Vg: Vg = (4-81L)[m] =15.2L
Using the ideal-gas law for a fixed V. —V. = nRT.
c YD ™
amount of gas, express the volume P

occupied by the gas at points C and
D:



1398 Chapter 18

Substitute numerical values and
evaluate V¢:

The complete cycle is shown in the
diagram.

(b) Note that for the paths A—B and
B—C, Wy gas, the work done by the
gas, is positive. For the path D—A,
Wiy gas IS N€gative, and greater in
magnitude than Wa_,c. Therefore the
total work done by the gas is
negative. Find the area enclosed by
the cycle by noting that each
rectangle of dotted lines equals

5 atm-L and counting the rectangles:

(c) The work done on the gas equals
the negative of the work done by the
gas. Apply the first law of
thermodynamics to find the amount
of heat added to or subtracted from
the gas during the complete cycle:

(d) Express the work done during
the complete cycle:

(1mol)(8.314 J/mol - K )(293K )
101.3kPa

atm

Ve =

latm

W

by gas

~ —(13rectangles)

x (5atm - L/rectangle)

101.3Jj
atm-L

= (~65atm- L)[

=| —6.58kJ

Qin = AEint _Won = 0_(_658 k‘])
=|6.58kJ

because AE;, = 0 for the complete cycle.

W =W, g +Wg_,c +We_p +Wp 0
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A—B is an adiabatic process: _PV-RV{¢
= —}/ =
(5atm)(4.82L)-(Latm)(15.2L)
14-1

101.3\]]

WA—)B

= (22.3atm- L)(
atm-L

=2.25kJ

B—C is an isobaric process: W, . = PAV
= (latm)(24.0L-15.2L)

101.3\])

= (8.80atm- L)(
atm-L

= 0.891kJ

C—D is a constant-volume process: W.,p, =0

D—A is an isobaric process: Wy = PAV = (5atm)(5L—24L)
101.3J
atm- L

=(~95.0atm- L)[

=-9.62kJ

Substitute to obtain: W =2.25kJ+0.891kJ+0-9.62kJ
=| —6.48kJ

Note that our result in part (b) agrees with
this more accurate value to within 2%.

*70 oo
Picture the Problem The total work done as the gas is taken through this cycle is the
area bounded by the two processes. Because the process from 1—2 is linear, we can use
the formula for the area of a trapezoid to find the work done during this expansion. We
can use Wigyemaiprocess = NRT In(Vf /V,) to find the work done on the gas during the

process 2—1. The total work is then the sum of these two terms.

Express the net work done per cycle: W =W, +W, (1)
Work is done by the gas during its W, =—Anp

expansion from 1 to 2 and hence is = -1(23L-11.5L)(2atm +1atm)
equal to the negative of the area of —_17.3L -atm

the trapezoid defined by this path
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and the vertical linesatV; =115L
and V, = 23 L. Use the formula for
the area of a trapezoid to express

Wio:

. ) Vv
Work is done on the gas during the W, , = nRT Int
isothermal compression from V, to V,

V1 and hence is equal to the area
under the curve representing this
process. Use the expression for the
work done during an isothermal
process to express W,_,;:

Apply the ideal-gas law at point 1 to find the temperature along the isotherm 2— 1.

PV (2atm)(11.5L)

= =280K
nR  (lmol)(8.206x1072 L -atm/mol-K )

T=

Substitute numerical values and evaluate W,_,;:

W, , =|(1mol)(8.206x10 L -atm/mol - K )(280 K)In(%} ~15.9L -atm
Substitute in equation (1) and W, =-17.3L-atm+15.9L -atm
evaluate Wipe: _ —1.40L-atmx101'325J

L-atm
=[-142)

Remarks: The work done by the gas during each cycle is 142 J.

80 oo
Picture the Problem We can apply the ideal-gas law to find the temperatures Ty, T,, and
Ts. We can use the appropriate work and heat equations to calculate the heat added and
the work done by the gas for the isothermal process (1—2), the constant-volume process
(2—3), and the isobaric process (3—1).
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(a) The cycle is shown in the diagram:

(c) Use the ideal-gas law to find T:

Because the process 1—2 is isothermal:

Use the ideal-gas law to find Ts:

(b) Because the process 1—2 is
isothermal, Qin 152 = Why gas, 152!

Because process 2— 3 takes place at
constant volume:

T, =

V
Qin,1—>2 :Wbygas,1—>2 =nRT InV_2

0 V,L

0 1

PV,
R

(2atm)(2L)
(2mol)(8.206 x1072 L -atm/mol - K )

244K

244K

_ PRV,

nR
(2atm)(4L)
(2mol)(8.206 %1072 L -atm/mol -K )

48.7K

1

= (2mol)(8.314J/mol - K
x(24.4 K)In(%}

=| 281J

W, ;= @
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Because process 2—3 takes place at Qinzs = AE2 3 = CUAT = %nR(T3 _Tz)
constant volume, Won, 3 = 0: =3(2mol)(8.314J/mol - K)
x (48.7K —24.4K)
=| 606J
Process 3—»1 is isobaric: Q1 = CoAT =3nR(T, - T,)

= 5(2mol)(8.314/mol - K)
x(24.4K - 48.7K)

=|—-1.01kJ
The work done by the gas from 3 to Wiy gaszn = —PsAV = P, (V, - V;)
1 equals the negative of the work = —(2atm)(2L-4L)
done on the gas:
_ (aatm. ) 103
atm-L
=1405]

81  eee
Picture the Problem We can find the temperatures, pressures, and volumes at all points
for this ideal monatomic gas (3 degrees of freedom) using the ideal-gas law and the work
for each process by finding the areas under each curve. We can find the heat exchanged
for each process from the heat capacities and the initial and final temperatures for each
process.

Express the total work done by the Wiy gastor =Wpoa +Wa g +Wg o +We 5
gas per cycle:

1. Use the ideal-gas law to find the v, = nRT,

volume of the gas at point D: P,
_ (2mol)(8.314 J/mol - K )(360K)
~ (2atm)(101.3kPa/atm)
=295L

2. We’re given that the volume of Vg =V, =3V,

the gas at point B is three times that =886L

at point D:
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Use the ideal-gas law to find the
pressure of the gas at point C:

We’re given that the pressure at
point B is twice that at point C:

3. Because path DC represents an
isothermal process:

Use the ideal-gas law to find the
temperatures at points B and A:

Because the temperature at point A
is twice that at D and the volumes
are the same, we can conclude that:

The pressure, volume, and
temperature at points A, B, C, and D
are summarized in the table to the
right.

4. For the path D—A:

NRT,
=,
_ (2mol)(8.206x10 L -atm/mol - K )
88.6L
x (360K)
= 0.667atm

P, = 2P. = 2(0.667atm)=1.33atm

T, =T. = 360K
PV,
T, =T, =—22&
A B nR
(1.333atm)(88.6L)

(2mol)(8.206x10 L -atm/mol - K )
= 720K

P, = 2P, =4atm

Point P V T
(am) | (L) | (K)
A 4 295 | 720
B 1.33 | 88.6 | 720
C 0.667 | 88.6 | 360
D 2 29.5 | 360
Wy, =0

and

Qoo = AEint, DA — %nRATDHA
nR(T, -Ty)
(2mol)(8.314 J/mol - K)

x (720K —360K)
=8.98kJ

Nlw  Nofw
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For the path A—B:

For the path B—C:

For the path C—D:

Qin, Won, and AE; are summarized
for each of the processes in the table
to the right.

WA—)B = QA—)B = nRTAB InV_B
) VA

= (2mol)(8.314J/mol - K )(720K)

88.6L

xInf ——

29.5L
=13.2kJ

and, because process A—B is
isothermal, AE; o,z =0

W, . =0
and
Qp,c =AUg,c =C AT = %nR(Tc _TB)
=3(2mol)(8.314J/mol -K)
x (360K — 720K)
=-8.98k]J

V
W o =nRT,, InV—D

C

=(2mol)(8.314J/mol - K)(360K)

29.5L
xIn[ 2=
(88.6 Lj
— —6.58kJ

Also, because process A—B is isothermal,
AEint,AaB =0

and Q. ,p, =W, =—6.58kJ

Process Qin Won | AEiy
(kJ) (kJ) (k)
DA 8.08 0 | 8.98

A-B 132 |-132| o

B>C | [_8.98 0 |-898

CoD |[_658]| 658 | 0
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Referring to the table, find the total Wit =Wpn +Wa g +Wp o +We 5
work done by the gas per cycle: =0+13.2kJ+0-6.58kJ
=] 6.62kJ

Remarks: Note that, as it should be, AE; is zero for the complete cycle.

*82  eee
Picture the Problem We can find the temperatures, pressures, and volumes at all points
for this ideal diatomic gas (5 degrees of freedom) using the ideal-gas law and the work for
each process by finding the areas under each curve. We can find the heat exchanged for
each process from the heat capacities and the initial and final temperatures for each
process.

Express the total work done by the Wiy gastor =Woa tWa_g +Wg o +We
gas per cycle:

1. Use the ideal-gas law to find the V. — nRT,
volume of the gas at point D: P P
_ (2mol)(8.314/mol - K)(360K)
(2atm)(101.3kPa/atm)
=295L
2. We’re given that the volume of the Vg =V, =3V,
gas at point B is three times that at =88.6L
point D:
Use the ideal-gas law to find the P _ nRT.
pressure of the gas at point C: ¢ Ve
_ (2mol)(8.206x10° L -atm/mol -K )
88.6L
x (360K)
=0.667atm
We’re given that the pressure at point P, =2P. = 2(0.667 atm) =1.33atm

B is twice that at point C:

3. Because path DC represents an T, =T, =360K
isothermal process:
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Use the ideal-gas law to find the
temperatures at points B and A:

Because the temperature at point A is
twice that at D and the volumes are
the same, we can conclude that:

The pressure, volume, and
temperature at points A, B, C, and D
are summarized in the table to the
right.

4. For the path D—A:

For the path A—B:

For the path B—C:

— PBVB
TR

(1.333atm)(88.6L)
(2mol)(8.206 x1072 L -atm/mol - K )

=720K

T, =T,

P, = 2P, =4atm

Point P V T
(atm) | (L) | (K)
A 4 295 | 720
B 1.33 | 88.6 | 720
C 0.667 | 88.6 | 360
D 2 29.5 | 360
W, . =0

x (720K —360K)
=15.0kJ

WA%B = QA»B = nRTAB InV_B
y VA

= (2mol)(8.314/mol - K 720K )

88.6L

xInf ——

29.5L
=13.2kJ

and, because process A—B is
isothermal, AE; o ,5 =0

WB—)C =0

and
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For the path C—D:

Qin, Won, and AE;, are summarized for
each of the processes in the table to the
right.

Referring to the table and noting that
the work done by the gas equals the
negative of the work done on the
gas, find the total work done by the
gas per cycle:

Qg =AUg c =C AT
= %nR(Tc _TB)
=5(2mol)(8.314J/mol -K)
x (360K —720K)
=-15.0kJ

W, =NRT,, In://—D

C

= (2mol)(8.314J/mol - K )(360 K )
29.5L
xIn| ——
(88.6 LJ
= —6.58kJ

Also, because process A—B is isothermal,
AE;y a5 = 0and

Qe =W ,p = —6.58K]

Process Qin Won | AEin
(kJ) kJ) | (kJ)
DA | [15.0 0 | 150

A—B 132 |-132| o

B>C | [~15.0 0 |-150

c>D | [_g58]| 658 | 0

W = WD—>A +WA—>B +WB—>C +WC—>D
=0+13.2kJ+0-6.58kJ

=| 6.62kJ

by gas,tot

Remarks: Note that AE;, for the complete cycle is zero and that the total work done
is the same for the diatomic gas of this problem and the monatomic gas of Problem

81.

83 (1 1]

Picture the Problem We can use the equations of state for adiabatic and isothermal
processes to express the work done on or by the system, the heat entering or leaving the
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system, and the change in internal energy for each of the four processes making up the
Carnot cycle. We can use the first law of thermodynamics and the definition of the
efficiency of a Carnot cycle to show that the efficiency is 1 — Q. / Q.

(a) The cycle is shown on the PV
diagram to the right:

(b) Because the process 12 is
isothermal:

Apply the first law of
thermodynamics to obtain:

(c) Because the process 3—4 is
isothermal:

Apply the first law of
thermodynamics to obtain:

(d) Apply the equation for a quasi-
static adiabatic process at points 4
and 1 to obtain:

Solve for the ratio V1/Vy:

Apply the equation for a quasi-static
adiabatic process at points 2 and 3 to

P
P ————
\
\
\
I"! — _\T S—
Pyfm———
Py ———

AE 0

intl1s>2 —

Qh = Q1—>2 :W1—>2 = nRTh In=2

AUE’»%4 = 0

Qc = Q3~>4 :W3a4 = nRTc |nV_4

3

= —nRTCInﬁ

4

where the minus sign tells us that heat is
given off by the gas during this process.

TcV4}/_1 = ThV1y_1
v_[T_] 0
\ T,

Thvzy_l = chay_l



obtain:

Solve for the ratio V»/V3:

Equate equations (1) and (2) and
rearrange to obtain:

(e) Express the efficiency of the
Carnot cycle:

Apply the first law of
thermodynamics to obtain:

Substitute to obtain:

(f) In part (b) we established that:

In part (c) we established that the
heat leaving the system along the
path 3—4 is given by:

Divide the second of these equations

by the first to obtain:

Remarks: This last result establishes that the efficiency of a Carnot cycle is also

givenbyeg, = 1—£.
h
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v, (T, "
HTJ @

Won = AEint, cycle Qin
= O_(Qh _Qc)= _(Qh _Qc)

because E;y is a state function and
AE; =0.

int, cycle

c= Wby thegas _Won

Qx Qx
— Qh _Qc — 1_&

Q Q,

V
=nRT, In-2
Qh h V

1

V.
=nRT. In=2
QC C V

4

nRTcIn£
e Y4 _ L
Qy nRThlnﬁ Ty
Vl
becausev—3:\i
4 1
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General Problems

84 -

Picture the Problem The isobaric process
is shown on the PV diagram. We can
express the heat that must be supplied to
gas in terms of its heat capacity at constant
pressure and the change in its temperature
and then use the ideal-gas law for a fixed
amount of gas to relate the final
temperature to the initial temperature.

Relate Qj, to Cp and AT:

Use the ideal-gas law for a fixed

amount of gas to relate the initial
and final volumes, pressures, and
temperatures:

Solve for Ts:

Substitute to obtain:

Substitute numerical values and
evaluate Qjy:

85 -

P X

- T, =300 K
V.L

7
/

50 100 150 200
Qin = CPAT = CP(Tf _Ti ) = %nR(Tf _Ti)

RV _RV;
T T

or, because the process is isobaric,
Vi _ Vf

Ti Tf
PR LS S
Vv, ' s0L

Qin = %nR(A'Ti - 3Ti ) = % nRTi

Q,, =%2(3mol)(8.314J/mol - K)(300K)
=| 56.1k]

Picture the Problem We can use the first law of thermodynamics to relate the heat
removed from the gas to the work done on the gas.

Apply the first law of
thermodynamics to this process:

Substitute numerical values to obtain:

Because Qremoved = —Qin:

Qin = AEint _Won =-W,

on

because AE;,; = 0 for an isothermal process.

Q, =-180k]

180kJ

Qremoved -
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*86
Picture the Problem We can find the number of moles of the gas from the expression for
the work done on or by a gas during an isothermal process.

Express the work done on the gas W = nRT InV_f
during the isothermal process: V,
Solve for n: W
n= —V
RTIn*

Substitute numerical values and = —180kJ
evaluate n: (8.314J/mol - K)(293 K)In[éj

=| 45.9mol
87

Picture the Problem We can use the ideal-gas law to find the temperatures T and Tc.
Because the process EDC is isobaric, we can find the area under this line geometrically
and the first law of thermodynamics to find Qaec.

(a) Using the ideal-gas law, find the T P.\VA
temperature at point A: A nR
_ (4atm)(4.01L)
(3mol)(8.206x1072 L -atm/mol -K )
=[65.2K
Using the ideal-gas law, find the T - PV,
temperature at point C: ° nR
(Latm)(20L)

(3mol)(8.206x1072 L -atm/mol - K )
=[81.2K
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(b) Express the work done by the gas Woaee =Wy +Wee = 0+ P AV
along the path AEC: = (latm)(20L —4.01L)
~16.0L -atm x 0%-3?
L-atm
=|1.62kJ
(c) Apply the first law of Qaec =Wage +AE =Wyee +CUAT
thermodynamics to express Qaec: =W, e +3NRAT

= Waec +%nR(Tc _TA)

Substitute numerical values and evaluate Qagc:

Qpec =1.62kJ+2(3mol)(8.314J/mol - K)(81.2K —65.2K) =| 2.22kJ

Remarks The difference between Waec and Qaec is the change in the internal energy
AEin aec during this process.

88 oo
Picture the Problem We can use the ideal-gas law to find the temperatures T, and Tc.
Because the process AB is isobaric, we can find the area under this line geometrically.
We can use the expression for the work done during an isothermal expansion to find the
work done between B and C and the first law of thermodynamics to find Qagc.

(a) Using the ideal-gas law, find the T - P.\Va
temperature at point A: A R
B (4atm)(4.01L)
(3mol)(8.206x1072 L -atm/mol -K )
=165.2K
Use the ideal-gas law to find the T - PV,
temperature at point C: ° R
(1atm)(20L)

(3mol)(8.206x10 L -atm/mol - K )
=| 812K




Heat and the First Law of Thermodynamics 1413

(b) Express the work done by the Wage =Wae +Wec

as along the path ABC:
g aongep — P, AV, +NRT, |nx—C

B
Use the ideal-gas law to find the volume of the gas at point B:

v, = "RTs _ (3mol)(8.206x10°2 L -atm/mol - K (81.2K) _ 5 00L
Ps 4atm

Substitute to obtain:

W,ge = (4atm)(5L—4.01L)+(3 mol)(8.206><10—2 L -atm/mol- K)(81.2 K)In(%j

101.3)

=31.7L-atmx 3.21kJ
atm
(c) Apply the first law of Qasc =Wage +AE; =Wpge +CUAT
thermodynamics to obtain: =W, +3NRAT

= Waec +%nR(Tc _TA)

Substitute numerical values and evaluate Qagc:

Qppc = 3.21kJ +2(3mol)(8.314J/mol -K)(81.2K —65.2K ) =| 3.81k]

Remarks: The difference between Wagc and Qagc is the change in the internal
energy AEiy asc during this process.

*80 oo
Picture the Problem We can use the ideal-gas law to find the temperatures T, and Tc.
Because the process DC is isobaric, we can find the area under this line geometrically.
We can use the expression for the work done during an isothermal expansion to find the
work done between A and D and the first law of thermodynamics to find Qapc.

(a) Using the ideal-gas law, find the T = PV,
temperature at point A: A nR

(4atm)(4.01L)
(3mol)(8.206x1072 L -atm/mol -K )

=| 65.2K
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Use the ideal-gas law to find the T - PV,
temperature at point C: ° R
B (1atm)(20L)
(3mol)(8.206x10 L -atm/mol - K )
=181.2K
(b) Express the work done by the Wape =Wap +Wpe
gas along the path ADC.:

=nRT,In \\;—D + PocAVpe

A
Use the ideal-gas law to find the volume of the gas at point D:

v, = "RTo _ (3mol)(8.206x10°2 L -atm/mol - K )(65.2K) _ 161L
P, latm

Substitute numerical values and evaluate Wapc:

W, = (3mol)(8.206 1072 L -atm/mol - K )(65.2 K)ln(iﬁtj

+(latm)(20L -16.1L )

=26.2L -atm XM =| 2.65kJ
L -atm
(c) Apply the first law of Qanc =Wape + A =Wype +C AT
thermodynamics to obtain: =W,pc +3NRAT

=Wapc +%nR(Tc _TA)

Substitute numerical values and evaluate Qapc:

Quoc = 2.65kJ+2(3mol)(8.314J/mol - K)(81.2K —65.2K ) =| 3.25k]

90 e
Picture the Problem We can use the ideal-gas law to find the temperatures T, and Tc.
Because the process AB is isobaric, we can find the area under this line geometrically.
We can find the work done during the adiabatic expansion between B and C using
Wy =—C, ATy and the first law of thermodynamics to find Qagc.
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(a) Using the ideal-gas law, find the
temperature at point A:

Use the ideal-gas law to find the
temperature at point C:

(b) Express the work done by the
gas along the path ABC.:

Apply the pressure-volume
relationship for a quasi-static
adiabatic process to the gas at points
B and C to find the volume of the
gas at point B:

Use the ideal-gas law to find Tg:

PV
T =_A"A
A mR
_ (4atm)(4.01L)
(3mol)(8.206x1072 L -atm/mol - K )
= 65.2K
PV,
T.=-c'c
° nR
_ (Latm)(20L)
(3mol)(8.206x107 L -atm/mol -K )
=[81.2K

Wase =Wag +Wpgc

= PagAVg —Cy ATy

= P,gAV —%nRATBC
because, with Qi = 0, Wgc = —AEintgc.

PVY = PV

and

VA ik KV LR PR
P 4atm

=8.71L

T = PV
® R

(4atm)(8.71L)
(3mol)(8.206x1072 L -atm/mol - K )

=142K

Substitute numerical values and evaluate Wagc:

W, = (4atm)(8.71L —4.01L) - 2 (3mol)(8.206 x1072 L -atm/mol - K )

101.325]
atm

=41.3L-atmx

x(81.2K —142K)

4.18kJ
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(c) Apply the first law of Qasc =Wage + AEj =Wpge +CL AT
thermodynamics to obtain: =W,z +3NRAT

= Wasc +%nR(Tc _TA)

Substitute numerical values and evaluate Qagc:

Qpec = 4.18kJ +2(3mol)(8.314J/mol - K)(81.2K —65.2K ) =| 4.78kJ

91  ee
Picture the Problem We can find c at T = 4 K by direct substitution. Because c is a
function of T, we’ll integrate dQ over the given temperature interval in order to find the
heat required to heat copper from 1 to 3 K.

(@) Substitute for a and b to obtain: c= (0.0108J/kg . KZ)T
+(7.62x107 Jkg-K*)T?

(0.0108/kg - K?)(4K)
+(7.62x10 J/kg - K*)(4K)
9.20x102 J/kg - K

Evaluate cat T = 4 K: c(4K)

(b) Express and evaluate the integral of Q:

Q= Tc(T)dT = (0.0108J/kg - |<2)3
1

Ti

TaT + (7.62x10* J/kg- |<“)3jK T3dT
1K

K

T2 3K _I_4 3K
=(0.0108J/kg~K2){?} +(7.62x10‘4J/kg-K4)[T} ~[0.0584J/kg

1K

1K

92 e
Picture the Problem We can use the first law of thermodynamics to relate the heat
escaping from the system to the amount of work done by the gas and the change in its
internal energy. We can use the expression for the work done during an isothermal
process to find the temperature along the isotherm.

Apply the first law of Qi = AE;, —W,,
thermodynamics to this isothermal
process:
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For an isothermal process:

Substitute to obtain:

Because Wy gas = —Won:

Express the work done during an
isothermal process:

SolveforT=T;=Tsx.

Substitute numerical values and
evaluate T:

93 oo

AEint = @

W, =-Q, = —(—170 cal x 4'1843]
cal
=711J
Wy, s =| —711J
Wiy ges = NRT In\i
1
T= Wbygis/
nRIn-2
1
T -711)
8L
(2mol)(8.314 J/mol -K)In| -~
18L
=|52.7K

Picture the Problem Let the subscripts 1 and 2 refer to the initial and final values of
temperature, pressure, and volume. We can relate the work done on a gas during an
adiabatic process to the pressures and volumes of the initial and final points on the path

PV, -

using W = Lpzvzand find P, by eliminating P, using PV,” = PV, where, for a

y—1

diatomic gas, y= 1.4. Once we’ve determined P; we can use the ideal-gas law to find T,
and the first law of thermodynamics to find T,. Finally, we can apply the ideal-gas law a

second time to determine P..

Relate the work done on a gas
during an adiabatic process to the
pressures and volumes of the initial
and final points on the path:

Using the equation for a quasi-static
adiabatic process, relate the initial
and final pressures and volumes:

W = RV, - PV,
on 7_1
P
Afu-Ry)
= 1
7
RV =RV, = i = ﬁ
RV,
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Substitute to obtain:

Solve for Py:

Substitute numerical values and
evaluate P;:

Use the ideal-gas law to find Ty:

Apply the first law of
thermodynamics to obtain:

Solve for and evaluate T»:

Use the ideal-gas law to find P,:

94 oo

p - w(y-1)

4
Vl_(\\:lj Vz
2

p - (-820J)(1.4-1) _[476KPa

14
18L—(18Lj (8L)
8L

PV,  (47.6kPa)(l8L)

T = =

Y nR  (2mol)(8.314J/mol-K)
=|51.5K

AEint = Qin +Won

or, because Qj, = 0 for an adiabatic process,
AEint =Won = CVAT = %nR(Tz _Tl)

Won
2nR

T,=T,-

-820J
5(2mol)(8.314J/mol - K)

=515K -

=| 71.2K

(2mol)(8.314 J/mol - K)(71.2K)
8L

=| 148kPa

Picture the Problem Let the subscripts 1 and 2 refer to the initial and final state
respectively. Because the gas is initially at STP, we know that V, =22.4 L, P, = 1 atm,
and T, = 273 K. We can use W = —nRT In(V, /V, ) to find the work done on the gas

during an isothermal compression. We can relate the work done on a gas during an
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adiabatic process to the pressures and volumes of the initial and final points on the path

PlVl — szz
y—1
diatomic gas, y = 1.4.

using W =

(a) Express the work done on the
gas in compressing it isothermally:

Find the number of moles in 30 g of
CO (M =28 g/mol):

Substitute and evaluate Wj,:

(b) Express the work done on the
gas in compressing it adiabatically:

Using the equation for a quasi-static
adiabatic process, relate the initial
and final pressures and volumes:

Substitute and simplify to obtain:

and find Py by eliminating P, using PV,” = PV, where, for a

W,, =-nRT InV—2
V.

1

30¢g

n=——=—=1.07mol
28g/mol

W, = —(1.07 mol)(8.314 J/mol - K)
x(273K)M(%j

=| 3.91kJ

_ Plvl — szz
y—1

p
P|V,--2V
_ ( P, j

- 1

W =

on
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Substitute numerical values and evaluate Wo,:

 (101.3kPa)(1.07 mol)(22.4 L/mol) - 0.2(5)"*)
14-1

95 e
Picture the Problem Let the subscripts 1 and 2 refer to the initial and final state
respectively. Because the gas is initially at STP, we know that V, =22.4 L, P, = 1 atm,
and T, = 273 K. We can use W = —nRT In(V, /V, ) to find the work done on the gas
during an isothermal compression. We can relate the work done on a gas during an
adiabatic process to the pressures and volumes of the initial and final points on the path

using W = PlV;Iizvzand find P, by eliminating P, using PV,” = PV, . We can find y
}/_

using the data in Table 19-3.

(a) Express the work done on the W, =-nRT Inﬁ

gas in compressing it isothermally: \'A
Find the number of moles in 30 g of e 309 _ 0.682 mol
CO; (M =44 g/mol): 44g/mol
Substitute and evaluate Wop: W,, =—(0.682mol)(8.314J/mol - K)
x (273 K)|n(1j
5

=] 2.49kJ
(b) Express the work done on the W o =— RV, -RV,
gas in compressing it adiabatically: on y-1

P
P|V,—-2V

= 1
Using the equation for a quasi-static P v. Y
adiabatic process, relate the initial PV =RV = Fz = V_l

1 2

and final pressures and volumes:
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Substitute and simplify to obtain: v. Y
R Vl_(lJ Vv,
W, = Ve
on 7_1
v
Pl Vl_ ﬁ Vl
V,) 5
=— 1
4
PV,|1-0.2 Vl]
_ 2
= 1
From Table 18-3 we have: ¢, =3.39R
and

¢, =(3.39+1.02)R = 4.41R

Evaluate y. ¢ ﬂ =1.30

P
c, 3.39R

Substitute numerical values and evaluate Wo,:

13
Won:_(101.3kPa)(0.682moll)§221.4L/mol)(1—O.2(5) )00

96 e
Picture the Problem Let the subscripts 1 and 2 refer to the initial and final states
respectively. Because the gas is initially at STP, we know that V; =22.4 L, P; = 1 atm,
and T, = 273 K. We can use W = —nRT In(V, /V, ) to find the work done on the gas
during an isothermal compression. We can relate the work done on a gas during an

adiabatic process to the pressures and volumes of the initial and final points on the path

using W = IDlv;lzl)zvzand find P, by eliminating P, using PV,” = PV, where, fora

)/_
monatomic gas, y= 1.67.

(@) I_Express the \_/vor|_< (_jone on the W, =-nRT Inﬁ
gas in compressing it isothermally: \'A
Find the number of moles in 30 g of 309 _ 0.750mol

n=
Ar (M =40 g/mol): 40g/mol
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Substitute and evaluate W, W,, = —(0.75mol)(8.314 J/mol - K)
x (273 K)ln(lj
5
=| 2.74kJ
(b) Express the work done on the gas W= PV, -RV,
in compressing it adiabatically: on y—1
P
efu-gu
= i
Using the equation for a quasi-static P V. Y
adiabatic process, relate the initial RV =RV, = Fz = V_l
1 2

and final pressures and volumes:

Substitute and simplify to obtain: v. Y
R Vl_(lJ Vv,
V2

Substitute numerical values and evaluate Wo,:

1.67
W =_(101.3|<F>a)(o.75mol)(22.4|_/mo|)(1—o.2(5) )= 193K

. 1.67-1

97 e
Picture the Problem We can use conservation of energy to relate the final temperature to
the heat capacities of the gas and the solid. We can apply the Dulong-Petit law to find the
heat capacity of the solid at constant volume and use the fact that the gas is diatomic to
find its heat capacity at constant volume.

Apply conservation of energy to this AQ=0
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process: or
CV,gas (Tf —100 K)_ CV,SOIid (200 K _Tf ) =0

Solve for Tf: T = (100 K)(Cv,gas )+ (200 K)(Cv,solid)
' CV,gas + CV,soIid
Using the Dulong-Petit law, Cysoiid = 3NR
determine the heat capacity of the = 3(2 mo|)(8,314j/mo| . K)
solid at constant volume: — 499J/K
Determine the heat capacity of the Cygs =3NR
gas at constant volume: = 5(1mol)(8.314J/mol -K)
=20.8J/K
Substitute numerical values and evaluate T
(100K )(20.8J/K )+ (200K )(49.9J/K )
T, = =|171K
20.8J/K +49.9J/K

*08 e

Picture the Problem We can express the work done during an isobaric process as the
product of the temperature and the change in volume and relate Q to AT through the
definition of Cp. Finally, we can use the first law of thermodynamics to show that AE;, =
C\AT.

For an ideal gas, the internal energy is the sum of the kinetic energies of the
(@) | gas molecules, which is proportional to kT. Consequently,U is a function
of T only and AE,,, = C, AT.

(b) Use the first law of AE,, =Q,, +W,,
thermodynamics to relate the work

done on the gas, the heat entering the

gas, and the change in the internal

energy of the gas:

At constant pressure: Wy gas = P(Vf —Vi): nR(Tf —Ti): NRAT
and
W, =-W,, . = —NRAT

on by gas
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Relate Qj, to Cp and AT:

Substitute to obtain:

99 oo

Q,, =C,AT

AE,, = C,AT —nRAT
=(C, —nR)AT =| C AT

Picture the Problem We can use the first law of thermodynamics to relate the work done
by the gas, the heat added to the gas, and the change in its internal energy. We can use
AE;,, = C,AT =32nRAT to find the change in the internal energy in both cases and

Q;, = C,AT =3nRAT to find Qj, for the isobaric process.

(a) Apply the first law of
thermodynamics to obtain:

For a constant-volume process:

Substitute to obtain:

Substitute numerical values and
evaluate Qjy:

(b) Express the change in internal
energy of an ideal monatomic gas
for any process between 300 K and
600 K:

Relate the heat absorbed by the gas
to the change in temperature:

Apply the first law of
thermodynamics to find the work
done on the gas during this
expansion:

Qin = AEint _Won

Q, =£(lmol)(8.314J/mol - K)(300K)
=| 3.74KkJ

AE,, =C,AT
=3nRAT
= $(Lmol)(8.314J/mol - K )(300K)

=|3.74kJ

Q,, = C,AT =$nRAT
= $(1mol)(8.314 J/mol - K)(300K)
=| 6.24KkJ

W, =AE,, —Q, =3.74k]—6.24kJ
= —2.50kJ

W, s =| 2.50kJ

by gas
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*100 e

Picture the Problem We can use Qi, = CpAT to find the change in temperature during
this isobaric process and the first law of thermodynamics to relate W, Q, and AE;,. We
can use AE;, = 3nRAT to find the change in the internal energy of the gas during the

isobaric process and the ideal-gas law for a fixed amount of gas to express the ratio of the

final and initial volumes.

(a) Relate the change in temperature
to Qi, and Cp and evaluate AT:

(b) Apply the first law of
thermodynamics to relate the work
done on the gas to the heat supplied
and the change in its internal
energy:

Substitute numerical values and
evaluate Wy,

BeCaUSG Wby gas = _Won:
(c) Using the ideal-gas law for a
fixed amount of gas, relate the

initial and final pressures, volumes
and temperatures:

Solve for and evaluate Vi/V;:
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Q0
C, InR
) 500
~ 7(2mol)(8.314J/mol - K)

=| 8.59K

Won = AEin'[ _Qin = CVAT _Qin
=3nRAT -Q,,

W,, = £(2mol)(8.314J/mol - K)(8.59K)

~500]
= -143]
Wi, g = | 143J
Rvi_ RV,
Ti Tf

or, because the process is isobaric,
Vi _ Vf

T
V, T, T +AT
Vi Ti Ti

 29315K+8.59K
293.15K

1.03

Picture the Problem Knowing the rate at which energy is supplied, we can obtain the
data we need to plot this graph by finding the time required to warm the ice to 0°C, melt
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the ice, warm the water formed from the ice to 100°C, vaporize the water, and warm the

water to 110°C.

Find the time required to warm the
ice to 0°C:

Find the time required to melt the ice:

Find the time required to heat the
water to 100°C:

Find the time required to vaporize
the water:

Find the time required to heat the
vapor to 110°C:

The temperature T as a function of
time t is shown to the right:

_ mc; AT
P
(0.1kg)(2kJ/kg - K)(10K)

100J/s

At,

=20.0s

At - ML _ (0.1kg)(333.5kJ/kg)

2P 100J/s
=333.5s
At, = mc,, AT
P
_ (0.1kg)(4.18k¥/kg - K)(L00K)
100J/s
= 418s
Ap =MLy _ (0.1kg)(2257kd/kg)
P 100J/s
= 2257s
Ats — mcsteamAT
P
_ (0.1kg)(2kJ/kg-K)(10K)
100J/s
= 20s
T°C
| 7
| |
| X
I Il
I Il
I Il
I Ll
wf i
1

203535 7715 3028.5

30485
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Picture the Problem We know that, for an adiabatic process, Qi, = 0. Hence the work
done by the expanding gas equals the change in its internal energy. Because we’re given
the work done by the gas during the expansion, we can express the change in the
temperature of the gas in terms of this work and C,,.

Express the final temperature of the
gas as a result of its expansion:

Apply the equation for adiabatic
work and solve for AT:

Substitute and evaluate Ts:
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Picture the Problem Because PsVs = 4P;V;
and Vs = Vi/2, the path for which the work
done by the gas is a minimum while the
pressure never falls below P; is shown on
the adjacent PV diagram. We can apply the
first law of thermodynamics to relate the
heat transferred to the gas to its change in
internal energy and the work done on the
gas.

Using the first law of
thermodynamics, relate the heat
transferred to the gas to its change in
internal energy and the work done
on the gas:

Solve for Qjy:

T, =T, +AT
Wadiabatic = _CVAT
and
AT — _Wadiabatic — _Wadiabatic
C, 2nR
T =T _M
f i %nR
_ 300K — 3.5kJ
5(2mol)(8.314J/mol-K)
=] 216K
\\
SPP \| B
L R ¢
\ L=
\\ \\”
\ "
\ A \\‘
5 S
AN
Pt ;;L I
|
- =¥
AEint = Qin +Won
Qin = AEint _Won
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Express the work done during this Won =Wisobaric process +Wc0nstantvolume
process: =PAV +0= R(%Vi _Vi)
=3PV, =4inRT =1RT
because n = 1 mol.
Express AE;qy for the process: AE,, = C,AT =2nRAT =2nR(3T)
=3RT
2

because n =1 mol.

Substitute to obtain: Q,, =2RT —iRT =| 4RT
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Picture the Problem We can solve the ideal-gas law for the dilute solution for the
increase in pressure and find the number of solute molecules dissolved in the water from
their mass and molecular weight.

Solve the ideal gas law for P to p _ NkT

obtain: \

Express the number of solute N=nN, = MmN,
molecules N in terms of the number A My

of moles n and Avogadro’s number
and then express the number of
moles in terms of the mass of the
salt and its molecular mass:

Substitute to obtain: p_ mN KT
M NaCIV

Substitute numerical values and evaluate P:

(309)(6.022x 107 particles/mol )(1.381x10 % J/K (297 K)

~ [1.27x10° N/m?
(58.4g/mol){L0~° m) = o

P=
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Picture the Problem Let the subscripts 1 and 2 refer to the initial and final states in this
adiabatic expansion. We can use an equation describing a quasi-static adiabatic process to
express the final temperature as a function of the initial temperature and the initial and
final volumes.

Using the equation for a quasi-static TV, =TV



Heat and the First Law of Thermodynamics 1429

adiabatic process, relate the initial
and final volumes and temperatures:

Solve for and evaluate T: [Vl
Tl

V—]H = (300K)(2)**"*

2

=] 396K
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Picture the Problem We can simplify our calculations by relating Avogadro’s number
Na, Boltzmann’s constant k, the number of moles n, and the number of molecules N in the
gas and solving for Nak. We can then calculate Uzq k and Ugg  and their difference.

Express the increase in internal AU =Ug« —Ugiok
energy per mole resulting from the
heating of diamond:

Express the relationship between AR =Nk = R = Ek = N,k
Avogadro’s number Na, n
Boltzmann’s constant k, the number

of moles n, and the number of

molecules N in the gas:

Substitute in the given equation to U - 3RT,

obtain: em -1

Determine Usg k: 3(8.314/mol - K )(1060K )

Usgok = Ql060K/300K 4
=| 795J
Determine Uggo «: U - 3(8.314J/mol - K )(1060K )
600K 1060 K /600 K
e -1
=| 5.45kJ
Substitute to obtain: AU =Ug —Uzp0c =5.45k]J-795]

=| 4.66kJ
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*107 oo
Picture the Problem The isothermal
expansion followed by an adiabatic
compression is shown on the PV diagram.
The path 1—2 is isothermal and the path
2—3 is adiabatic. We can apply the ideal-
gas law for a fixed amount of gas and an
isothermal process to find the pressure at
point 2 and the pressure-volume
relationship for a quasi-static adiabatic
process to determiney.

(a) Relate the initial and final
pressures and volumes for the
isothermal expansion and solve for
and evaluate the final pressure:

(b) Relate the initial and final
pressures and volumes for the
adiabatic compression:

Take the natural logarithm of both
sides of this equation and solve for
and evaluate y:

Pyf— — — —a3
|
L — — _ll
|
P- — — —|— — =2
| |
| |
| | v
V[ VE
P1V1=P2V2
and
V, \V/
Pzzplf:Poz_\Z: %Po

PV, =PRV/
or
1P(2v,)" =1.32PV;

which simplifies to

27 =2.64
yIn2=1In2.64
and
_ In2.64 _1.40
In2

.. the gas is diatomic.

(©)

is unchanged.

In the isothermal process, T is constant, and the translational kinetic energy

increases by a factor of 1.32.

In the adiabatic process, T, =1.32T,, and the translational kinetic energy
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Picture the Problem In this problem the specific heat of the combustion products
depends on the temperature. Although Cp increases gradually from (9/2)R per mol to
(15/2)R per mol at high temperatures, we’ll assume that Cp = 4.5R below T = 2000 K and
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Cp =7.5R above T = 2000 K. We’ll also use R = 2.0 cal/mol-K. We can find the final
temperature following combustion from the heat made available during the combustion
and the final pressure by applying the ideal-gas law to the initial and final states of the

gases.

(a) Relate the heat available in this
combustion process to the change in
temperature of the triatomic gases:

Solve for T; to obtain:

Express Q available to heat the gases
above 2000 K:

Express the energy released in the
combustion of 1 mol of benzene:

Noting that there are 3 mol of H,O
and 6 mol of CO,, find the heat
required to form the products at
100°C:

Find Q required to heat 9 mol of gas
to 2000 K:

Substitute in equation (2) to obtain:

Qavailable = r]CPAT
=n(75R)(T, -T,)

— Qavailable + Ti (1)
7.5nR

f

Qavailable = Qreleased - QQmoItoZOOOK

()
- Qheat co, Qsteam

Quuieases = (1516 kcal) = 758 keal

released —

Qqean =NM ,C, AT +nM L,
= (3mol)(18g/mol)
x (1cal/g- K)(373K —300K)
+(3mol)(18g/mol)(540cal/g)
=33.10kcal

and
Qpeatco, = NCpAT = 4.5nRAT

= 4.5(6mol)(2cal/mol- K)
x (373K —300K)
=3.942kcal

Qomottoz000k = NCpAT = 4.5NRAT

= 4.5(9mol)(2cal/mol-K)
x (2000K —373K)
= 43.93kcal

Qe = 798keal —131.79 kcal
—3.94kcal —33.10kcal
=589.2 kcal
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Substitute in equation (1) and
evaluate T¢:

Apply the ideal-gas law to express
the final volume in terms of the final
temperature and pressure:

(b) Apply the ideal-gas law to relate
the final temperature, pressure, and
volume to the number of moles in
the final state:

Apply the ideal-gas law to relate the
initial temperature, pressure, and
volume to the number of moles in
the initial state:

Divide the first of these equations by
the second and solve for Ps:

Find the initial volume V; occupied
by 8.5 mol of gas at 300 K and 1
atm:

Substitute numerical values in
equation (3) and evaluate Vs:

- 589.2kcal -+ 2000K
7.5(9mol)(2cal/mol-K)

=| 6364K

v, = nRT;

P
_ (9mol)(8.314J/mol - K)(6364K)
101.3kPa

=|4.70m®

RV; =nRT;

PV, =n,RT,

Pfo _ nf RTf

PV, nRT,

or, because Ts=T;,

n; l
eAnfi) e

V, = (22.4L/mol)(8.5mol) 300K
273K
= 209.2L
8.5mol )| 4700L
_ 4774KPax 1AM
101.325kPa

=| 0.0471atm
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Picture the Problem In this problem the specific heat of the combustion products
depends on the temperature. Although Cp increases gradually from (9/2)R per mol to
(15/2)R per mol at high temperatures, we’ll assume that Cp = 4.5R below T = 2000 K and
Cp = 7.5R above T = 2000 K. We can find the final temperature following combustion
from the heat made available during the combustion and the final pressure by applying
the ideal-gas law to the initial and final states of the gases.

(a) Apply the ideal-gas law to find
the pressure due to 3 mol at 300 K

in the container prior to the reaction:

(b) Relate the heat available in this
adiabatic process to Cy and the
change in temperature of the gases:

Because T > 2000 K:

Substitute to obtain:

Solve for T; to obtain:

Find Q required to raise 2 mol of
CO, to 2000 K:

For T <2000 K:

Substitute for Cy, and find the heat

required to warm to CO, to 2000 K:

Find Q available to heat 2 mol of
CO;, above 2000 K:

Vi
_ (3mol)(8.314J/mol - K)(300K)
80L
=| 93.5kPa
AEint = Qavailable
= CV(Tf _Ti)

C, =C, —nR =n(7.5R)-nR = 6.5nR

Qavailable = 6'5nR(Tf _Ti)

_ Qavailable +T— (1)

Tf - i
6.5nR

Qheatco2 = CVAT
C, =C, —nR =n(4.5R)-nR =3.5nR

Qheatcoz = 3.5nNRAT
=3.5(2mol)(8.314J/mol - K)
x (2000K —300K)
= 98.94kJ

Qavailable = 560 k‘] - 9894 kJ
=461.1kJ
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Substitute in equation (1) and
evaluate T¢:

Apply the ideal-gas law to relate the
final temperature, pressure, and
volume to the number of moles in
the final state:

Apply the ideal-gas law to relate the
initial temperature, pressure, and
volume to the number of moles in
the initial state:

Divide the first of these equations by
the second and solve for Ps:

Substitute numerical values in
equation (2) and evaluate Py

(c) Substitute numerical values in
equation (2) and evaluate P; for
T;=273 K:

110 eee

+2000K

461.1kJ
T, =
6.5(2mol)(8.314J/mol-K)

=| 6266K

PVy =nRT;

PV, =n,RT,

Pfo _ nf RTf

PV, nRT,

or, because Vi = V;,
n AT,

2mol

()

)
Il

(93.53kPa)
3mol

1.30MPa

2mol

P, =(93.53kPa) 3mol

56.7 kPa

It
J)

Picture the Problem The molar heat capacity at constant volume is related to the internal

. 1 ) . .
energy per mole according toc,, = _c(jj_L'I{ . We can differentiate U with respect to
n

temperature and use nR = Nk or R = Nk to establish the result given in the problem

statement.

From Problem 106 we have, for the
internal energy per mol:

3N, KT.
U - eTE/T _1
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Relate the molar heat capacity at c = 1du
A%

constant volume to the internal T ndT
energy per mol:

Use C, = 1du to express C,,
(V2 Vo
ndT

.1 d [3N,KT, d 1 -1 d
C,==——| AT E _3RT, — | —— |=3RT.| ——— [—(e™" -1
V' ondT {eTE/T —J FdT [eTE/T —J E{(ew _1)2:|dT ( )
_ 2 Te/T
Y {/(T—ﬂ (] S
(eTE/T _1) T T (eTE/T _l)

111 eee
Picture the Problem We can rewrite our expression for C'V by dividing its numerator and

denominator by '™/ and then using the power series for €* to show that, for T > Tg,
c'V ~ 3R . In part (b), we can use the result of Problem 103 to obtain values for c'v every

100 K between 300 K and 600 K and use this data to find AU numerically.

(@) From Problem 110 we have: ‘ T.\> e
¢, =3R & | ——5
e

Divide the numerator and : Te ? 1
Cy =3R| — eZTE/T

denominator by e"/" to obtain: T _2e 41
eTE/T
T\ 1
B BR(?j e/l —24e /T
. - 2

App!y.the power series expansion to T 9y Tl _ 1+T_E+l T_E
obtain: T 2\ T

2
+...—2+1—T—E+1 Te +

T 2T

2
~ [T—Ej forT >T;
T

=| 3R

Substitute to obtain: . 2
3R(TE j 1
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(b) Use the result of Problem 110 to

verify the table to the right: T Cv
(K) | (3/mol-K)
300 9.65
400 14.33
500 17.38
600 19.35
The graph of specific heat as a N
function of temperature shown to 10 J
the right was plotted using a w //
spreadsheet program: g °
i
S

Integrate numerically, using the formula for the area of a trapezoid, to obtain:

AU = 1(100K)(9.65+14.33)J/mol - K + (100K )(14.33+17.38)J/mol - K
+1(100K)(17.38+19.35)J/mol - K

=| 4.62KkJ |,
a result in good agreement (< 1% difference) with the result of Problem 106.
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Picture the Problem In (a) we’ll assume that =f (A/V, T, k, m) with the factors
dependent on constants a, b, ¢, and d that we’ll find using dimensional analysis. In (b)
we’ll use our result from (a) and assume that the diameter of the puncture is about 2 mm,
that the tire volume is 0.1 m°, and that the air temperature is 20°C.

(@) Express z=f (A/V, T, k, m): AN .
r=| o | (1) (k)(m)’ (1)
Vv
Rewrite this equation in terms of the ML2 Y
1 a1 \b d
dimensions of the physical quantities T= (L) (K) (TZK] (M)
to obtain: . )
where K represents the dimension of

temperature.

Simplify this dimensional equation T = LK MELZK T *M?
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to obtain: or
Tl — LZc—a Kb—CMC+d T—ZC

Equate exponents to obtain: T:-2c=1,
L:2c-a=0,
K:b-c=0,
and
M:c+d=0

Solve these equations c=-3,

simultaneously to obtain: a=-1,
b=-1,
and
d=1

Substitute in equation (1): AN
o=[(2) 0 o)
_|V |m

AVK

(b) Substitute numerical values and evaluate

=232s=| 3.87min

T =

0.1m? (L.293kg/m?)(0.1m°)
7 (2x10° m)’ (8.314J/mol - K)(293K)
4
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