Chapter 19
The Second Law of Thermodynamics

Conceptual Problems

1 .
Determine the Concept Friction reduces the efficiency of the engine.

*2 °

Determine the Concept As described by the second law of thermodynamics, more heat
must be transmitted to the outside world than is removed by a refrigerator or air
conditioner. The heating coils on a refrigerator are inside the room-the refrigerator
actually heats the room it is in. The heating coils on an air conditioner are outside, so the
waste heat is vented to the outside.

3 .
Determine the Concept Increasing the temperature of the steam increases the Carnot
efficiency, and generally increases the efficiency of any heat engine.

4 L 1]
Determine the Concept To condense, water must lose heat. Because its entropy change
is given by dS = dQ./T and dQ,y is negative, the entropy of the water decreases.

(c)is correct.

*5 °
Determine the Concept

(a) Because the temperature changes during an adiabatic process, the internal energy of the
system changes continuously during the process.

(b) Both the pressure and volume change during an adiabatic process and hence work is
done by the system.

(c) AQ = 0 during an adiabatic process. Therefore AS = 0. | (C) is correct.

(d) Because the pressure and volume change during an adiabatic process, so does the
temperature.

6 L 1]
(a) False. The complete conversion of mechanical energy into heat is not prohibited by

either the 1% or 2" laws of thermodynamics and is common place in energy
transformations.

(b) True. This is the heat-engine statement of the 2™ law of thermodynamics.
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(c) False. The efficiency of a heat engine is a function of the thermodynamic processes of
its cycle.

(d) False. With the input of sufficient energy, a heat pump can transfer a given quantity of
heat from a cold reservoir to a hot reservoir.

(e) False. The only restriction that the refrigerator statement of the 2" law places on the
COP is that it can not be infinite.

(f) True. The Carnot engine, as a consequence of its thermodynamic processes, is
reversible.

(g) False. The entropy of one system can decrease at the expense of one or more other
systems.

(h) True. This is one statement of the 2" law of thermodynamics.

T e

Determine the Concept The two

paths are shown on the PV diagram

to the right. We can use the concept

of a state function to choose from

among the alternatives given as P
possible answers to the problem.

(a) Because E;y is a state function and the initial and final states are the same for the two
paths and AE; , = AE; ;.

(b) and (c) S, like E;y, is a state function and its change when the system moves from one
state to another depends only on the system’s initial and final states. It is not dependent
on the process by which the change occurs and AS, = AS;.

(d) | (d)iscorrect.
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*8  ee
Determine the Concept The processes g
A—B and C—D are adiabatic; the
processes B—C and D—A are isothermal.
The cycle is therefore the Carnot cycle

shown in the adjacent PV diagram.

9 oo

Determine the Concept Note that A—B is an adiabatic expansion. B—C is a constant
volume process in which the entropy decreases; therefore heat is released. C—D is an
adiabatic compression. D—A is a constant volume process that returns the gas to its
original state. The cycle is that of the Otto engine (see Figure 19-3).

10 oo
Determine the Concept Refer to Figure
19-3. Here a—>b is an adiabatic 4 ¢
compression, so S is constant and T
increases. Between b and c, heat is added
to the system and both S and T increase.
c—d is again isentropic, i.e., without
change in entropy. d—a releases heat and
both S and T decrease. The cycle on an ST
diagram is sketched in the adjacent figure.

11 e
Determine the Concept Referring to Figure
19-8, process 1—2 is an isothermal
expansion. In this process heat is added to 2 3
the system and the entropy and volume
increase. Process 2—3 is adiabatic, so S is
constant as V increases. Process 3—4 is an
isothermal compression in which S 1 4
decreases and V also decreases. Finally,
process 4—1 is adiabatic, i.e., isentropic, v
and S is constant while V decreases. The

cycle is shown in the adjacent SV diagram.
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12 e
Picture the Problem The SV diagram of the Otto cycle is shown in Figure 19-13. (see
Problem 9)

13 e
Determine the Concept Process A—B is
at constant entropy, i.e., an adiabatic
process in which the pressure increases. C B
Process B—C is one in which P is
constant and S decreases; heat is exhausted
from the system and the volume decreases.
Process C—D is an adiabatic compression.
Process D—A returns the system to its
original state at constant pressure. The
cycle is shown in the adjacent PV diagram.

P

*14

Picture the Problem Let AT be the change in temperature and

&= (Th — T)/Th be the initial efficiency. We can express the efficiencies of the Carnot
engine resulting from the given changes in temperature and examine their ratio to decide
which has the greater effect on increasing the efficiency.

If Ty is increased by AT, &, the new . T, + AT =T,

efficiency is: T, +AT

If T, is reduced by AT, the efficiency o T, -T, +AT

is: T,

Divide the second of these equations T, -T. + AT

by the first to obtain: g’ T, T, + AT
—= = >1
g T, +AT T, T,

T, + AT

Therefore, a reduction in the temperature of the cold reservoir by AT
increases the efficiency more than an equal increase in the temperature
of the hot reservoir.
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Estimation and Approximation

15 oo
Picture the Problem The maximum efficiency of an automobile engine is given by the
efficiency of a Carnot engine operating between the same two temperatures. We can use
the expression for the Carnot efficiency and the equation relating V and T for a quasi-
static adiabatic expansion to express the Carnot efficiency of the engine in terms of its
compression ratio.

Express the Carnot efficiency of an T
engine operating between the & =1- T
temperatures T and T: h

Relate the temperatures T, and T, to TV =TV ™
the volumes V. and V,, for a quasi- ©°
static adiabatic compression from V.

to V.
. . o
Solve for the ratio of T to Tj: L _ VhH i V_h ¥
Th ch_l Vc
Substitute to obtain: Vv 7-1
()
C
Express the compression ratio r: . V,
= V.
Substitute once more to obtain: 1
& =1-—5
r
Substitute numerical values for r and 1 5
v (1.4 for diatomic gases) and g =1- 8] =0.565=| 56.5%
evaluate &c:
*16 oo

Picture the Problem If we assume that the temperature on the inside of the refrigerator
is 0°C (273 K) and the room temperature to be about 30°C (303 K), then the refrigerator
must be able to maintain a temperature difference of about 30 K. We can use the
definition of the COP of a refrigerator and the relationship between the temperatures of

the hot and cold reservoir and |Qh| and Q. to find an upper limit on the COP of a
household refrigerator. In (b) we can solve the definition of COP for Q. and differentiate

the resulting equation with respect to time to estimate the rate at which heat is being
drawn from the refrigerator compartment.

(a) Using its definition, express the .
COP of a household refrigerator: COP = 1)
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Apply the 1% law of
thermodynamics to the refrigerator
to obtain:

Substitute for W and simplify to
obtain:

Assume, for the sake of finding the
upper limit on the COP, that the
refrigerator is a Carnot refrigerator
and relate the temperatures of the

hot and cold reservoirs to |Q, | and

Qc:

Substitute to obtain:

Substitute numerical values and
evaluate COP .

(b) Solve equation (1) for Q.:

Differentiate equation (2) with
respect to time to obtain:

Substitute numerical values and
evaluate dQ./dt:

17 oo

W +Q, =[Q,]

= QC = 1
|Qh|_Qc M_

1
T303K_,
273K

COP... =[9.10

Q, =W(COP) )

dw
= (Cop)=——
(Cop)—

dQ,
dt

% =(9.10)(600J/s) = | 5.46 kKW

Picture the Problem We can use the definition of intensity to find the total power of
sunlight hitting the earth and the definition of the change in entropy to find the changes in
the entropy of the earth and the sun resulting from the radiation from the sun.

(a) Using its definition, express the
intensity of the sun’s radiation on
the earth in terms of the power
delivered to the earth P and the
earth’s cross sectional area A:

Solve for P and substitute for A to
obtain:

P
A

P=IA=I1R’

where R is the radius of the earth.



Substitute numerical values and
evaluate P:

(b) Express dSean/dt for the earth
due to the flow of solar radiation:

Substitute numerical values and
evaluate dSen/dt:

(c) Express dSg/dt for the sun due
to the outflow of solar radiation
hitting the earth:

Substitute numerical values and
evaluate dSg,,/dt:

18 oo
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P = z(L.3kW/m?)(6.37 x10° mf

=|1.66x10" W
dSearth _ P
dt Tearth
17
AS,. = 1.66x10°" W
290K
=|5.72x10"J/K -s
dS,, _ P
dt T,
dS,, 1.66x10" W
dt 5400K

=13.07x108J/K -s

Picture the Problem We can use the definition of intensity to find the total power
radiated by the sun and the definition of the change in entropy to find the change in the
entropy of the universe resulting from the radiation of 10" stars in 10™* galaxies.

(a) Using its definition, express the
intensity of the sun’s radiation on
the location of earth in terms of the
total power it delivers to space P
and the area of a sphere A whose
radius is the distance from the sun to
the earth:

Solve for P and substitute for A to
obtain:

Substitute numerical values and
evaluate P:

(b) Express ASuniverse:

>| o

P=1A=4rIR?
where R is the distance from the sun to the
earth.

P = 47(1.3kW/m? (1.5 x 10" m)’
=|3.68x10* W

AS :P

universe
Tuniverse
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Substitute numerical values and 102 (3.68 %102 W)
evaluate ASuniverse: ASuniverse = 2 73 K

=11.35x10®J/K -s

19 e
Picture the Problem We can use the definition of entropy change to estimate the
increase in entropy of the universe as a result of the heat produced by a typical human
body. The entropy change is equivalent to the entropy change if the heat from the body
were added to the universe reversibly.

Express the increase in entropy of AQuy  AQugn
the universe as a result of the heat AS, = T + T
produced by a human body: day night
Using the definition of power, AQ = PAt
express the total heat produced by a
human body:
Assume that half of the heat is AQ oy = AQnight = % PAt
produced during the day and half at
night:
Substitute to obtain: 1PAt  L1PA
ASU = Z_t + Z_t
Tday Tnight
_spaf L.
Tday Tnight
Use T = 3(t. —32)+ 273 to obtain: Taay = 294 Kand Trign = 286 K
Substitute numerical values and evaluate AS,:
AS, = (100 /s)(241/d)(36008/h)| ——— + —~ | =[29.8KI/K
294K 286K
*20 (1 1]

Picture the Problem If you had one molecule in a box, it would have a 50% chance of
being on one side or the other. We don’t care which side the molecules are on as long as
they all are on one side, so with one molecule you have a 100% chance of it being on one
side or the other. With two molecules, there are four possible combinations (both on one
side, both on the other, one on one side and one on the other, and the reverse), so there is
a 25% (1 in 4) chance of them both being on a particular side, or a 50% chance of them
both being on either side. Extending this logic, the probability of N molecules all being
on one side of the box is P = 2/2", which means that, if the molecules shuffle 100 times a

second, the time it would take them to cover all the combinations and all get on one side
N

2(100)

or the otheris t = . In (&) we can apply the ideal gas law to find the number of
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molecules in 1 L of air at a pressure of 10* torr and an assumed temperature of 300 K.

(a) Evaluate t for N = 10 molecules: 210
t= =| 5.12s
2(100)
(b) Evaluate t for N = 100 molecules: 100
t=——~<=6.34x10""s
2(100)
=] 2.01x10"y
(c) Evaluate t for N = 1000 molecules: 1000
t p—l
2(100)
To evaluate 2°” let 10* = 2'** and (1000)In2 = xIn10

take the logarithm of both sides of
the equation to obtain:

Solve for x to obtain: x =301

Substitute to obtain: 10%
t=——=05x10"s

2(100)
=[1.58x10*" y
(d) Evaluate t for 06.02:10%
= 23 . t=
N = 6.02x10°° molecules: 2(100)
To evaluate 2°2% Jet (6.02x10%)in2 = xIn10

10% = 25949% anq take the
logarithm of both sides of the
equation to obtain:

Solve for x to obtain: X ~10%
Substitute to obtain: 10%°” =
t= ~ 10"y
2(100)
(e) Solve the ideal gas law for the PV
number of molecules N in the gas: N = F
Assuming the gas to be at room (102 torr (133.32Partorr)(10° m?)

temperature (300 K), substitute N =

-23
numerical values and evaluate N: (1381)(10 ‘]/K)(300 K)

=3.22x10" molecules
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Evaluate T for N = 3.22x10’ 08.22:10"
molecules: t= 2(100)
To evaluate 232 |et (3.22 %10’ )In 2=xIn10

10* = 2221 and take the
logarithm of both sides of the
equation to obtain:

Solve for x to obtain: X ~ 107
Substitute to obtain: 10107 -
T= ~|10° y
2(100)
Express the ratio of this waiting T 102 y ,
time to the lifetime of the universe =——2>~10"
Tuniverse: Tuniverse 10 y
or
T ~ 10107 Tuniverse

Heat Engines and Refrigerators

21 -
Picture the Problem We can use the definition of the efficiency of a heat engine to relate
the work done W, the heat absorbed Qi,, and the heat rejected each cycle Qqu.

(a) Express Qj, in terms of W and ¢ Q - W _100J _ 500J
e 02
(b) Solve the definition of efficiency Qo] = Q- £)=(500J)(1-0.2)

for and evaluate |Qout|2 =| 400J

22
Picture the Problem We can use its definition to find the efficiency of a heat engine
from the work done, the heat absorbed, and the heat rejected each cycle.

(a) Use the definition of the o= W 1200 a5
efficiency of a heat engine: Q. 400J
(b) Solve the definition of efficiency Quu| = Qi1 —&)=(400J)(1-0.3)

for and evaluate |Q,,|: _[2807
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23 -
Picture the Problem We can use its definition to find the efficiency of the engine and
the definition of power to find its power output.

(2) Apply the definition of the o1 Qo _q_ 60 oo
efficiency of a heat engine: Qi 100J

(b) Use the definition of power to P— AW _ Qp _ 0-4(1003) - 80.0W
find the power output of this engine: At At 0.5s :
*24 o

Picture the Problem We can apply their definitions to find the COP of the refrigerator
and the efficiency of the heat engine.

(a) Using the definition of the COP, COP =
relate the heat absorbed from the

cold reservoir to the work done each

cycle:

Le

Relate the work done per cycle to Qj W = |Qh|—Qc
and Q.:

Substitute to obtain: COP - Q.
|Qh| - Qc

Substitute numerical values and COP = 5kJ 167
evaluate COP: |8 kJ| —5kJ :

(b) Use the definition of efficiency W
to relate the work done per cycle to Q,
the heat absorbed from the high-

temperature reservoir:

Substitute numerical values and _ 3kJ _[375%
evaluate ¢: 8kJ
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25 oo

Picture the Problem To find the heat added during each step we need to find the
temperatures in states 1, 2, 3, and 4. We can then find the work done on or by the gas
along each pass from the area under each straight-line segment and the heat that enters or
leaves the system from Q = C, AT and Q = C,AT. We can find the efficiency of the

cycle from the work done each cycle and the heat that enters the system each cycle.

(a) The cycle is shown to the right:

Apply the ideal-gas law to state 1 to
find Ty:

The pressure doubles while the
volume remains constant between
states 1 and 2. Hence:

The volume doubles while the
pressure remains constant between
states 2 and 3. Hence:

The pressure is halved while the
volume remains constant between

states 3 and 4. Hence:

For path 1->2:

9
2F 2 -
—_ 3 1
g
Sk <
~ 1 4

0
0 10 20 30 40 50

V(L)
(Latm)(24.6L)

~ (1mol)(8.206 x10% L -atm/mol - K )
=300K

T, = 2T, =600K

T, = 2T, =1200K

T, = 1T, = 600K

Wlez = PAVHZ = @
and
Ql—)Z = AEint,l%Z = CVATHZ = % RAT, ,,

2(8.314J/mol - K )(600K — 300K )
=|3.74k)




For path 2—3:

For path 3—4:

For path 4—1.:

(b) Use its definition to find the
efficiency of this cycle:
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WZ%S = PAVZ—)Z
=(2atm)(49.2L - 24.6L)
— 49.20L - atm x 10%:325)
L -atm
=| 4.99kJ
and

Q2—>3 = CPAT2—>3 = % RAT2—>3
= £(8.314J/mol - K)(1200K

— 600K )
=[12.5kJ
W3—>4 = I3AV3->4
and

Qs =AEi5,4 =CVAT,,, = % RAT,,,
=2(8.314J/mol - K)(600K
~1200K)

=| —7.48kJ

W, ,, =PAV,
= (latm)(24.6 L — 49.2L)
101.3J
L -atm

=-24.6L -atmx

=| 2.49KkJ

and
Q4»1 = CPATzHl = % RAT,

=$(8.314J/mol - K)(300K — 600K )
=|-6.24KJ

&= ﬂ — Wos + Wy
Qin QlaZ +Q2e3
499k -2.49Kk)
 3.74kJ+12.5k)

15.4%

Remarks: Note that the work done per cycle is the area bounded by the rectangular

path.
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26 oo
Picture the Problem The three steps in the ?

process are shown on the PV diagram. We 264 1
can find the efficiency of the cycle by 5|

finding the work done by the gas and the
heat that enters the system per cycle.

P (atm)
95

0 10 20
V(L)

Express the efficiency of the cycle: =W
Qin

Find the heat entering or leaving the Q=0

system during the adiabatic

expansion:

Find the heat entering or leaving the Q, =C,AT, =LIRAT, =1PAV,

system during the isobaric = %(1atm)(10 L-20L)=-35atm-L

compression:

Find the heat entering or leaving the Q, = C AT, = 3RAT, = 3 APV,

system during the constant-volume = £(2.64atm-1atm)(10L )

process: =4latm-L

Apply the 1% law of thermodynamics W,, =AE;, - Q,, =-Q,

to the cycle (AE; .. =0) to =Q +Q, +Q,

obtain: =0-35atm-L +4latm-L
=6atm-L

Substitute and evaluate & o= 6atm-L _ 14.6%
4latm- L

27 ee

Picture the Problem We can find the efficiency of the cycle by finding the work done
by the gas and the heat that enters the system per cycle.



Apply the ideal-gas law to states 1,
2, 3, and 4 to find the pressures at
these points:

Proceed as above to obtain the
values shown in the table:

The PV diagram is shown to the
right:

Express the efficiency of the cycle:

Find the work done by the gas and
the heat that enters the system
during the isothermal expansion
from 1 to 2:

Find the work done by the

gas and the heat that enters

the system during the constant-
volume compression from 2 to 3:
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_ NRT,

-

(Lmol)(8.206 102 L -atm/mol - K )
24.6K

R

x (400K
=1.33atm

Point P V T

@am) | (L) | (K)
1.330 | 24.6 | 400
0.667 | 49.2 | 400
0.500 | 49.2 | 300
1.000 | 24.6 | 300

Alw [N |-

P (atm)
= =
th =
T T 17

I I
| |
I A
I sl -
—_——-N
I I
| I
= o
I
]
s
[R=]
-~

0 1 1l 1 il 1
0 10 20 30 40 50 60

V(L)

W, =Qp,, =NRT, |n\\;_2

1

= (1mol)(8.314J/mol - K)

x (400K )In 49.2L
24.6L
= 2.305kJ
W2—>3 = 0

and

Qs =CVAT,
= (21J/K)(300K - 400K)

=-2.10kJ
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Find the work done by the gas_and the W, ,=Q, ,=nRT, InV—4
heat that enters the system during the 5
isothermal expansion from 3 to 4: = (1mo|)(8,314j/m0| . K)
x (300K)In 246L
49.2LL
=-1.729kJ
Find the work done by the w,,=0
gas and the heat that enters and
the system during the constant- Q1 =CVAT,
volume process from 4 to 1: - (21J/K)(400 K —300 K)
=2.10kJ
Evaluate the work done each cycle: W=W_,+W, . +W, ,+W,
=2.305kJ+0-1.729kJ +0
=0.5760kJ
Find the heat that enters the system Qi =0, +Q,s
each cycle: =2.305kJ +2.100kJ
=4.405kJ
Substitute numerical values and o 0.5760kJ _ 13.1%
evaluate ¢: 4.405kJ
%28 oo

Picture the Problem We can use the ideal-gas law to find the temperatures of each state
of the gas and the heat capacities at constant volume and constant pressure to find the heat
flow for the constant-volume and isobaric processes. Because the change in internal
energy is zero for the isothermal process, we can use the expression for the work done on
or by a gas during an isothermal process to find the heat flow during such a process.
Finally, we can find the efficiency of the cycle from its definition.

(a) Use the ideal-gas law to find the N\ (100kPa)(25L)
temperature at point 1: ' nR  (lmol)(8.314J/mol - K)

=| 301K




Use the ideal-gas law to find the
temperatures at points 2 and 3:

(b) Find the heat entering or leaving
the system for the constant-volume
process from 1 to 2:

Find the heat entering or leaving the
system for the isothermal process
from 2 to 3:

Find the heat entering or leaving the
system during the isobaric
compression from 3 to 1:

(c) Express the efficiency of the cycle:

Apply the 1% law of
thermodynamics to the cycle:

Substitute and evaluate ¢:

29 oo
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T,=T,=-22=

Qlaz = CVATlaz = % RATl

V.
=nRT, In—=

PV, (200kPa)(25L )

nR  (Imol)(8.314J/mol - K)

601K

—2

=2(8.314J/mol - K)
x (601K —301K)

=| 3.74kJ

2

= (1mol)(8.314J/mol - K)

X (601K)|nﬂ
25L

=| 3.46kJ

Q3—>1 = CPAT3—>1 = % RAT3—>1

=5(8.314J/mol - K)
x (301K - 601K )

=| —6.24kJ

W W

E=—=——""""-—7—
Qin Ql—>2 + Q2—>3

W = ZQ = Q1—>2 + Q2—>3 + Q3—>1
=3.74kJ +3.46 k] —6.24 kJ
=0.960kJ

because, for the cycle, AU = 0.

0.960kJ

13.3%

© 374K+ 3.46K)

Picture the Problem We can use the ideal-gas law to find the temperatures of each state
of the gas. We can find the efficiency of the cycle from its definition; using the area
enclosed by the cycle to find the work done per cycle and the heat entering the system

between states 1 and 2 and 2 and 3 to determine Qj,.
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(a) Use the ideal-gas law for a fixed
amount of gas to find the
temperature in state 2 to the
temperature in state 1:

Solve for and evaluate T:

Apply the ideal-gas law for a fixed
amount of gas to states 2 and 3 to
obtain:

Apply the ideal-gas law for a fixed
amount of gas to states 3 and 4 to
obtain:

(b) Express the efficiency of the
cycle:

Use the area of the rectangle to find
the work done each cycle:

Apply the ideal-gas law to state 1 to
find the product of n and R:

Noting that heat enters the system
between states 1 and 2 and states 2
and 3, express Qin:

Substitute numerical values and
evaluate Qjy:

v _RY,
Tl - T2
T, -1, %% 1 B _ (200K 32M)
PV, PR (Latm)
=| 600K
T, =T, 2% _1, Y5 _ (600 K)(300 L)
PV, °V, (1ooL)
=|1800K
T, =T,V _1 B _1g00k) (tatm)
PV, °P (3atm)
=] 600K
W
& =—
Qin
W = APAV

= (300L —100L )(3atm —Z1atm)
=400atm-L

R PVi_ (Latm)(200L )
T, 200K

=0.5L atm/K

Qin = QlaZ + Qz»s
=CyAT,, +CAT,
=3nRAT,,, +2nRAT,_,
= (% AT, + %ATZ% )nR

Q, =[2(600K - 200K)
+2(1800K — 600K )]
x (0.5L -atm/K)
=2600atm- L
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Substitute and evaluate & _ 400atm-L

c=—— =115.4%
2600atm - L

30  ees
Picture the Problem To find the efficiency of the diesel cycle we can find the heat that
enters the system and the heat that leaves the system and use the expression that gives the
efficiency in terms of these quantities. Note that no heat enters or leaves the system
during the adiabatic processes a—b and c—d.

Express the efficiency of the cycle |Qc|
in terms of Q. and Qy: e=1-—
Q
Express Q for the isobaric warming Qe =[Q=Co(T, -T,)

process b—c:

Express Q for the constant-volume Qia=[Q|=Cy(Ty-T,)
cooling process d—a:

Substitute to obtain: el c,(T,-T,)

Co(T. - T,)

=1 (Td — Ta)

7/(Tc Tb)
Using the equation of state for an TV =TV, ™ (1)
adiabatic process, relate the
temperatures T, and Ty:
Proceeding similarly, relate the TV =TV, )
temperatures T, and Tg:
Use equations (1) and (2) to " S+t
eliminate T, and Tg: . Syt b v/

E =
7(Tc Tb)

because V, = V.
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Apply the ideal-gas law for a fixed
amount of gas to relate T, and T:

Substitute and simplify to obtain:

*31 L 1]

T

3
T, V

c c

because Py, = P..

Picture the Problem We can use the efficiency of a Carnot engine operating between
reservoirs at body temperature and typical outdoor temperatures to find an upper limit on
the efficiency of an engine operating between these temperatures.

(a) Express the maximum efficiency o = l—L
of an engine operating between ¢ T,

body temperature and 70°F:

Use T = 3(t, —32)+ 273 to obtain:

Substitute numerical values and
evaluate .. :

Tbody = 310 K and Troom = 294 K

294K

E=1—-—=
¢ 310K

5.16%

The fact that this efficiency is considerably less than the actual efficiency
of a human body does not contradict the second law of thermodynamics.
The application of the second law to chemical reactions such as the ones
that supply the body with energy have not been discussed in the text but
we can note that don't get our energy from heat swapping between our
body and the environment. Rather, we eat food to get the energy that we

need.
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Most warm — blooded animals survive under roughly the same conditions
as humans. To make a heat engine work with appreciable efficiency,

b)| . -
®) internal body temperatures would have to be maintained at an
unreasonably high level.
32 (11}

Picture the Problem The Carnot
cycle’s four segments (shown to the
right) are: (A) an isothermal expansion
at T =T, from V; to V,, (B) an adiabatic
expansion from V, to V3, (C) an
isothermal compression from V3 to V, at
T =T, and (D) an adiabatic
compression from V, to V;. We can find
the Carnot efficiency for a gas described
by the Clausius equation by expressing
the ratio of the work done per cycle to
the heat entering the system per cycle.

Express the efficiency of the Carnot
cycle in terms of the work done and
the heat that enters the system per
cycle:

Apply the first law of
thermodynamics to segment A:

Follow the same procedure for
segment C to obtain:

Vv,
Qu =W, +AE;, , =W, = [PdV

Vi

= nRT, J’d—v_nRT InY2—bn
bn V—bn

=Qh

A7
Qe =We +AE;, ¢ =W, = [PdV

Vs
— NRT, j NV _Rr, In —bn
bn —bn
and
|QC| = nRT, Inv3 —bn

V,—bn
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Apply the first law of W =Q, -|Q|
thermodynamics to the complete V. —bn V. —bn
— : =nRT, In-2 —nRT,In-2
cycle (AE;, o, = 0) to express W: h V, —bn “"V, —bn
Substitute and simplify to obtain: ART, InV2 —bn ART. In V, —bn
V, —bn V, —bn
&= V, —bn
nRT, In—2
V, —bn
T.In V, —bn
_q__ Va—bn
T.In V, —bn
V, —bn
Apply the first law of dQg =0=dW, +dE;, ; =PdV +C,dT
thermodynamics to the adiabatic nRT
processes B and D: ~V —bn dv +C.dT
Separate variables and integrate dar _ nT dv
to obtain: T C,’V -bn
dv
=—(y-1)| —m——
Y Fyaar
or

InT = —(y —1)In(V —bn)+ constant

=In(V —bn)”™ + constant

Simplify to obtain: InT + In(V - bn)y_1 = constant
or
InT(V —bn)” ™ = constant
and

T(V —bn)”™ = constant

Using this result, relate V, and Vs to T,(v, —bn) " =T.(v, ~bn)"™" (1)
Thand Te:

. . r-1 _ _ 7-1
Relate V; and V to Ty and T T,0v, —bn) =T (v, -bn)"™ (2)
Divide equation (1) by equation (2) T,0v, —bn)™* T.(V,~bn)"™
and simplify to obtain: T, (v, —bn)"™ TV, - bn)"
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V,—-bn V,-bn

V,—bn V,—bn
Substitute in our expression for & T InV2 —bn
and simplify: el ://l:l;?] _ 1_L
T, In-2 Ty
V, —bn

the same as for an ideal gas.
Second Law of Thermodynamics

33 e
Determine the Concept The relationship of the perfect engine and the refrigerator to
each other and to the hot and cold reservoirs is shown below. To remove 500 J from the
cold reservoir and reject 800 J to the hot reservoir, 300 J of work must be done on the
system. Assuming that the heat-engine statement is false, one could use the 800 J rejected
to the hot reservoir to do 300 J of work. Thus, running the refrigerator connected to the
"perfect” heat engine would have the effect of transferring 500 J of heat from the cold to
the hot reservoir without any work being done, in violation of the refrigerator statement
of the second law.

Hot Reservoir Ti

- 300 ]

|

|

800) |
 —

[

|

Refrigerator Perfect

500 Engine

Cold Reservoir T




1462 Chapter 19

*3] oo
Determine the Concept The work done by the system is the area enclosed by the cycle,
where we assume that we start with the isothermal expansion. It is only in this expansion
that heat is extracted from a reservoir. There is no heat transfer in the adiabatic expansion
or compression. Thus, we would completely convert heat to mechanical energy, without
exhausting any heat to a cold reservoir, in violation of the second law.

Carnot Engines

K
Picture the Problem We can find the efficiency of the Carnot engine using
& =1-T,/T, and the work done per cycle frome =W /Q,. We can apply conservation

of energy to find the heat rejected each cycle from the heat absorbed and the work done
each cycle. We can find the COP of the engine working as a refrigerator from its
definition.

(8) Express the efficiency of the £ =1- To 4 200K ooy
Carnot engine in terms of the T, 300K
temperatures of the hot and cold

reservoirs:

(b) Using the definition of W =£.Q, =(0.333)(100J)=| 33.3J

efficiency, relate the work done each
cycle to the heat absorbed from the
hot reservoir:

(c) Apply conservation of energy to |Qc| =Q, -W =100J-33.3) =| 66.7J
relate the heat given off each cycle

to the heat absorbed and the work
done;:

(d) Using its definition, express and A
evaluate the refrigerator’s coefficient W 333]
of performance:

2.00

36 -
Picture the Problem We can find the efficiency of the engine from its definition and the
additional work done if the engine were reversible from W = £.Q, , where & is the

Carnot efficiency.
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(a) Express the efficiency of the o= w _ Q& -Q —1— Q
engine in terms of the heat absorbed Qy Qy Qy
from the high-temperature reservoir B _@ _20.0%
and the heat exhausted to the low- T 250 :

temperature reservoir;

(b) Express the additional work done AW =Weamot = Woarta
if the engine is reversible:

Relate the work done by a reversible W= _[1 T,
engine to its Carnot efficiency: =& = _f @
_[q- 200K (250J)=83.3J
300K
Substitute and evaluate AW: AW =83.3J-50J) =] 33.3]
37 (1]

Determine the Concept Let the first engine be run as a refrigerator. Then it will remove
140 J from the cold reservoir, deliver 200 J to the hot reservoir, and require 60 J of energy
to operate. Now take the second engine and run it between the same reservoirs, and let it
eject 140 J into the cold reservoir, thus replacing the heat removed by the refrigerator. If
&, the efficiency of this engine, is greater than 30%, then Qy,, the heat removed from the
hot reservoir by this engine, is 140 J/(1 — &) > 200 J, and the work done by this engine is
W = £Qn2 > 60 J. The end result of all this is that the second engine can run the
refrigerator, replacing the heat taken from the cold reservoir, and do additional
mechanical work. The two systems working together then convert heat into mechanical
energy without rejecting any heat to a cold reservoir, in violation of the second law.

38 oo

Determine the Concept If the reversible engine is run as a refrigerator, it will require
100 J of mechanical energy to take 400 J of heat from the cold reservoir and deliver 500 J
to the hot reservoir. Now let the second engine, with & > 0.2, operate between the same
two heat reservoirs and use it to drive the refrigerator. Because &, > 0.2, this engine will
remove less than 500 J from the hot reservoir in the process of doing 100 J of work. The
net result is then that no net work is done by the two systems working together, but a
finite amount of heat is transferred from the cold to the hot reservaoir, in violation of the
refrigerator statement of the second law.

*39 e
Picture the Problem We can use the definition of efficiency to find the efficiency of the
Carnot engine operating between the two reservoirs.
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(a) Use its definition to find the W 50J

. ) Ec=—=——=|333%
efficiency of the Carnot engine: Q, 150J

(b) If COP > 2, then 50 J of work will remove more than 100 J of heat from the cold
reservoir and put more than 150 J of heat into the hot reservoir. So running engine (a) to
operate the refrigerator with a COP > 2 will result in the transfer of heat from the cold to
the hot reservoir without doing any net mechanical work in violation of the second law.

40 L 1]

Picture the Problem We can use the definitions of the efficiency of a Carnot engine and
the coefficient of performance of a refrigerator to find these quantities. The work done
each cycle by the Carnot engine is given by W = £.Q, and we can use the conservation

of energy to find the heat rejected to the low-temperature reservoir.

(a).U.se the definition of the £ = 1-Te 1 TTK 2130
efficiency of a Carnot engine to T, 300K

obtain:

(b) Express the work done each W =¢.Q, = (0_743)(1003) =|74.3]
cycle in terms of the efficiency of

the engine and the heat absorbed

from the high-temperature reservoir:

(c) Apply conservation of energy to |Qc| =Q,-W =100J-74.3)=| 25.7]
obtain:

(d) Using its def?nition, ’express and COP — |QC| _ 25.7J 0346
evaluate the refrigerator’s W 74.3]

coefficient of performance:

41 oo

Picture the Problem We can use the ideal-gas law for a fixed amount of gas and the
equations of state for an adiabatic process to find the temperatures, volumes, and
pressures at the end points of each process in the given cycle. We can use

Q =C AT and Q = C,AT to find the heat entering and leaving during the constant-

volume and isobaric processes and the first law of thermodynamics to find the work done
each cycle. Once we’ve calculated these quantities, we can use its definition to find the
efficiency of the cycle and the definition of the Carnot efficiency to find the efficiency of
a Carnot engine operating between the extreme temperatures.

(a) Apply the ideal-gas law for a PV, _ RV,
fixed amount of gas to relate the T T,
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temperature at point 3 to the or, because P, = P,
temperature at point 1: V.
P P T,=T,2 1)
Vl
Apply the ideal-gas law for a fixed RV, _ BV,
amount of gas to relate the pressure T T,
at point 2 to the temperatures at or, because V; = V,,
points 1 and 2 and the pressure at 1: T 423K

P, = P, % = (latm)——— =1.55atm
T, 273K

1

Apply the state equation for an RV, =RV,
adiabatic process to relate the
pressures and volumes at points 2

and 3:
Noting that V; = 22.4 L, solve for P B 1 55atm i
) V,=V,| 1| =(224L) =
and evaluate Vs: 3 1( 3} ( ){ 1atm j
=30.6L
Substitute in equation (1) and T, = (273K)30'6 L _ 373K
evaluate Ts:
and
t, =T, —273=|100°C
(b) Process 1—2 takes place at Q.,, =Cy AT, =2RAT,,

constant volume (note that = 1.4
corresponds to a diatomic gas and

5(8.314J/mol - K )(423K - 273K)

that C — Cy = R): =[8.12kJ

Process 2— 3 takes place Qs = @

adiabatically:

Process 3—1 is isobaric (note that Q. =C,AT, ,, =LRAT,,

Cp=Cv +R): =1(8.314J/mol - K)(273K - 373K)
=| —2.91kJ

(c) Use its definition to express the W

efficiency of this cycle: Q.
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Apply the first law of
thermodynamics to the cycle:

Evaluate W:

Substitute and evaluate ¢:

(d) Express and evaluate the
efficiency of a Carnot cycle
operating between 423 K and
273 K:

42 e

AKint = Qin +Won
or, because AE.

int, cycle

and ends in the same state) and
Won = - Wbythe gas — W, W = Qin .

= 0 (the system begins

W = ZQ = QlaZ + Q2»3 + Q3»l
=3.12kJ +0-2.91kJ

=0.210kJ
o= 0210k remag
3.12kJ
g =1-te 1 283K _mape
T, = 423K

Picture the Problem We can find the maximum efficiency of the steam engine by
calculating the Carnot efficiency of an engine operating between the given temperatures.
We can apply the definition of efficiency to find the heat discharged to the engine’s

surroundings in 1 h.

(a) Find the efficiency of a Carnot
engine operating between these
temperatures:

Find the efficiency of the steam
engine as a percentage of the
maximum possible efficiency:

(b) Relate the heat discharged to the
engine’s surroundings to Qp and the
efficiency of the engine:

Using its definition, relate the
efficiency of the engine to the heat
intake of the engine and the work it
does each cycle:

g =1-te 1 38K _ 4550
T, 543K

0.30
gsteam engine = gmax
0.405

=[0.741¢,

|Qc| = (1_ g)Qh
o W _Pat
& &
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Substitute and evaluate |Q,|in 1 h: Ql=(- E)E
_(1-03) (200kJ/s)(3600s)
7 0.3
=[1.68GJ
Heat Pumps
*43

Picture the Problem We can use the definition of the COP,p and the Carnot efficiency
of an engine to express the maximum efficiency of the refrigerator in terms of the
reservoir temperatures. We can apply equation 19-10 and the definition of power to find
the minimum power needed to run the heat pump.

(a) Express the COPyp in terms of |Qh| |Qh|
COP,, =—=
T,and Te: W Q-Q
1 1
QT
QT
— Th
Th _Tc
Substitute numerical values and COP,, = 313K 626
evaluate the COPyp: 313K -263K
(b) Using its definition, express the p— w
power output of the engine: At
Use equation 19-10 to express the W= |Qh|
work done by the heat pump: 1+ COP,
i : At
Substitute and evaluate P P Qul/ _ 20kw _ 5 75 kW
1+COP,, 1+6.26
(c) Find the minimum power if the b _ Q|/At _ 20kw
COP is 60% of the efficiency of an min 7 q 4 0.6(COPHP max) - 1+0.6(6.26)
ideal pump:

=| 4.21kW
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44 .

Picture the Problem We can use the definition of the COP to relate the heat removed
from the refrigerator to its power rating and operating time. By expressing the COP in
terms of T, and Ty, we can write the amount of heat removed from the refrigerator as a
function of T, Ty, P, and At.

(a) Express the amount of heat the Q. = (COP)W
refrigerator can remove in a given = (COP)PAt
period of time as a function of its
COP:
Express the COP in terms of T, and COP = Q Q] Q,-w
e W Q<
l1-¢ 1 1
= =———1= —_ 1
£ £ 1— T
h
— TC
Th _Tc
Substitute to obtain: T
Q. = £ — |PAt
Th _Tc
Substitute numerical values and 273K
=| —  |(370W)(60s
evaluate Qc: Q 293K — 273Kj( )( )
=| 303kJ
(b) Find the heat removed if the . 273K
COP is 70% of the efficiency of an Q= ( ' ) 203K - 273K (370W)(605)
ideal pump:
=| 212kJ
45 .

Picture the Problem We can use the definition of the COP to relate the heat removed
from the refrigerator to its power rating and operating time. By expressing the COP in
terms of T, and T, we can write the amount of heat removed from the refrigerator as a
function of T, Ty, P, and At.

(a) Express the amount of heat the Q. = (COP)W
refrigerator can remove in a given (COP)PAt
period of time as a function of its



COP:
Express the COP in terms of T, and
Te:

Substitute to obtain:

Substitute numerical values and
evaluate Qc:

(b) Find the heat removed if the
COP is 70% of the efficiency of an
ideal pump:

Entropy Changes

46
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COP = |Qc| _ |Qc| _ Qh -W
W Q, &,
_1-e_1_
& &
1T
1_L Th _Tc
h
T
= — |pat
QC Th_ c]
273K
= ——— [(370W)(60
QC 308K—273K]( )( S)
=|173kJ
. 273K
=(0.7)| ———— |(370W)(60
R ( )[308K—273KJ( )( S)
=|121kJ

Picture the Problem We can use the definition of entropy change to find the change in

entropy of the water as it freezes.

Apply the definition of entropy
change to obtain:

Substitute numerical values and
evaluate AS:

As=AQ _—mb
T T
AS —(189)(333.5J/g) _— 200K
273K
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*47 oo

Picture the Problem The change in the entropy of the world resulting from the freezing
of this water and the cooling of the ice formed is the sum of the entropy changes of the
water-ice and the freezer. Note that, while the entropy of the water decreases, the entropy
of the freezer increases.

Express the change in entropy of the AS, = AS, s T ASqeerer 1)
universe resulting from this freezing
and cooling process:

EpreSS Aswater: ASWater = ASfreezing + AScooling (2)
Express ASfreezing: AS. = - ereezing (3)
freesing Tfreezing

where the minus sign is a consequence of
the fact that heat is leaving the water as it

freezes.
Relate Qfreczing t0 the latent heat of Qfreezing = MLy
fusion and the mass of the water:
Substitute in equation (3) to obtain: AS _—mL
freezing — T
freezing
A cooling — m p nT_
i
Substitute in equation (2) to obtain: —mL; T,
a ) AS, e ==+ mC, In_I_—f
freezing i
Noting that the freezer gains heat (at AS ~ AQ, 4 AQcoolingice
263 K) from the freezing water and freezer Trcorer Torcorer
cooling ice, express AStreezer: _ mL, N me AT
Tfreezer Tfreezer
Substitute for ASyater aNd AStreezer iN equation (1):
AS, = I'ermeIn—er L
freezing i freezer Tfreezer
—L T L C,AT
=m —+CInt+——+2
T T T

freezing freezer freezer
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Substitute numerical values and evaluate AS,:

263K 333.5x10°J/kg

333.5x10° J/kg
+( +
273K 263K

273K

. (2100J/kg - K)(273K — 263K )
263K

AS, =(0.05kg) | - 2100J/kg - K)In

=| 2.40J/K

and, because AS, > 0, the entropy of the universe increases.

48

Picture the Problem We can use the definition of entropy change and the first law of
thermodynamics to express AS for the ideal gas as a function of its initial and final
volumes.

(a) Use its definition to express the AS = AQ

entropy change of the gas: T

Apply the first law of Vi
thermodynamics to the isothermal AQ = AB; ~We, = ~NRT In V.
process:

because AE;, = 0 for an isothermal process.

Substitute to obtain: AS = 1R InV_f
= (2mol)(8.314J/mol - K)In 8oL
40L
=|11.5J/K
(b) Because the process is reversible: AS,=|0

Remarks: The entropy change of the environment of the gas is -11.5 J/K.

49

Picture the Problem We can use the definition of entropy change and the 1* law of
thermodynamics to express AS for the ideal gas as a function of its initial and final
volumes.

(a) Use its definition to express the AS = AQ
entropy change of the gas: T
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Apply the first law of

Vf
thermodynamics to the isothermal AQ = ABy, —Wy, = _(_ NRT In V_j

process: because AE;, = 0 for an isothermal process.
Substitute to obtain: AS = nRIn Yt
= (2mol)(8.314J/mol - K)In 8oL
40L
=|11.5JK
(b) Because the process is not AS, > @

quasi-static, it is non-reversible:

50 -
Picture the Problem We can use the definition of entropy change to find the change in
entropy of the water as it changes to steam.

Apply the definition of entropy AS = & _ mL,
change to obtain: T T -

Substitute numerical values and AS = (1kg)(2.26 MJ/kg) e
evaluate AS: 373K .

51

Picture the Problem We can use the definition of entropy change to find the change in
entropy of the ice as it melts.

Apply the definition of entropy AS :£ _ mL,
change to obtain: T T_

Substitute numerical values and AS = (1kg)(333.5 kJ/kg) _[122KIK
evaluate AS: 273K .

52 e

Picture the Problem We can use the first law of thermodynamics to find the change in
the internal energy of the system and the change in the entropy of the system from the
change in entropy of the hot- and cold-reservoirs.
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(a) Apply the 1% law of AE; =Q, +W,,
thermodynamics to find the change =(2003-100J)-501
in the internal energy of the system: _[503
(b) Express the change in entropy of AS = AS, — AS, = Q. Q
the system as the sum of the entropy T, T
changes of the high- and low-

9 9h-ar _ 2000 100J _roaeyk
temperature reservoirs: 300K 200K
(c) Because the process is reversible: AS, = @
(d) Because Sgysiem IS a state function: AE,, =|50J |, AS =| 0.167 JIK |,

and
AS, >0

*53 e
Picture the Problem We can use the fact that the system returns to its original state to
find the entropy change for the complete cycle. Because the entropy change for the
complete cycle is the sum of the entropy changes for each process, we can find the
temperature T from the entropy changes during the 1st two processes and the heat
rejected during the third.

(a) Because S is a state function of Asmmpletecycle = @
the system:

(b) Relate the entropy change for the Q +& +% _0
complete cycle to the entropy L T, T

change for each process:

Substitute numerical values to 300J N 200J N —400J 0
obtain: 300K 400K T

Solve for T: T=|267K

54 e

Picture the Problem We can use the definition of entropy change and the 1% law of
thermodynamics to express AS for the ideal gas as a function of its initial and final
volumes.
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(a) Use its definition to express the AS = AQ
entropy change of the gas: T
Apply the first law of V;
thermodynamics to the isothermal AQy, = ABjy ~We, = _(_ NRT In V.
process: because AE;y = 0 for free expansion.
Substitute to obtain: AS = nRIn Yt
= (2mol)(8.314J/mol - K)In soL
40L
=|11.5J/K
(b) Because the process is AS, =|11.5J/K

irreversible, S, > 0 and, because no
heat is exchanged:

55 e
Picture the Problem Because the ice gains heat as it melts, its entropy change is positive
and can be calculated from its definition. Because the temperature of the lake is just
slightly greater than 0°C and the mass of water is so much greater than that of the block
of ice, the absolute value of the entropy change of the lake will be approximately equal to
the entropy change of the ice as it melts.

(a) Use the definition of entropy mL,  (200kg)(333.5kJ/kg)

AS. , = =
change to find the entropy change of <oT 273K
the ice: =[ 244kIK
(b) Relate the entropy change of the AS,,. ® —AS,, =| —244kJIK
lake to the entropy change of the
ice:

(c) Because the temperature of the lake is slightly greater than that of the ice, the
magnitude of the entropy change of the lake is less than 244 kJ/K and the entropy change
of the universe is greater than zero. The melting of the ice is an irreversible process

and| AS, >0 |.
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Picture the Problem We can use conservation of energy to find the equilibrium
temperature of the water and apply the equations for the entropy change during a melting
process and for constant-pressure processes to find the entropy change of the universe,
i.e., the piece of ice and the water in the insulated container.

(a) Apply conservation of energy to Quost = Qgainea
obtain: or

Qcooling water — Qmelting ice + Qwarming water

Substitute to relate the masses of the ice and water to their temperatures, specific
heats, and the final temperature of the water:

(100g)(Lcal/g - C°)(100°C —t) = (100g)(79.7 cal/g) + (100g)(Lcal/g - C°)(t)

Solve for t to obtain: t=|10.2°C

(b) Express the entropy change of AS, =AS,, +AS,
the universe:

Using the expression for the entropy ASice = AS ettingice T AS warming water
change for a constant-pressure L, T
process, express the entropy change =—+MC, |”[?f)

of the melting ice and warming ice- f !

water:

Substitute numerical values to obtain:

283.2K

AS :(0-1k9)(333'5k‘]/kg)+(O.1kg)(4.184kJ/kg~K)In( e j=138J/K

“ 273K

Find the entropy change of the cooling water:

283.2K
AS,,.... =(0.1kg)(4.18kJ/kg - K)I
01k 15kag- ) 2502

water

):—115J/K

Substitute for ASice and ASater and AS, =138J/K —-115J/K
evaluate the entropy change of the ~[2303/K
universe:
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Remarks: The result that AS, > 0 tells us that this process is irreversible.

*57 oo

Picture the Problem We can use conservation of energy to find the equilibrium
temperature of the water and apply the equations for the entropy change during a constant
pressure process to find the entropy changes of the copper block, the water, and the

universe.

(a) Using the equation for the
entropy change during a constant-
pressure process, express the
entropy change of the copper block:

Apply conservation of energy to
obtain:

T
AS¢, =M, Cq, In?f

Qlost = anined
or

Qcopper block — Qwarming water

Substitute to relate the masses of the block and water to their temperatures,
specific heats, and the final temperature t of the water:

(1kg)(0.386kJ/kg - C°)(100°C —t)= (4L )(1kg/L )(4.184 ki/kg - C°)(t)

Solve for t and Ts:

Substitute numerical values and
evaluate ASc,:

(b) Express the entropy change of
the water:

Substitute numerical values and
evaluate ASyater:

t=226°CandT, =275.4K

AS, = (1kg)(0.386 kJ/kg - K)

275.4K
xInf 222
(373.15Kj

=| -117JK
T
AS, .. = In—t
water mwatercwater n -I-i
AS,,... =(4kg)(4.184kl/kg - K)

275.4K
xIn
273K

=[146J/K
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ASu = ASCu + ASwater
=-117J/K +146 J/K

=[29.0J/K

(c) Substitute for ASc, and ASyater
and evaluate the entropy change of
the universe:

Remarks: The result that AS, > 0 tells us that this process is irreversible.

58 oo
Picture the Problem Because the mass of the water in the lake is so much greater than

the mass of the piece of lead, the temperature of the lake will increase only slightly and

we can reasonably assume that its final temperature is 10°C. We can apply the equation
for the entropy change during a constant pressure process to find the entropy changes of
the piece of lead, the water in the lake, and the universe.

Express the entropy change of the AS, = AS,, +AS,,
universe in terms of the entropy

changes of the lead and the water in

the lake:

Using the equation for the entropy
change during a constant-pressure
process, express and evaluate the
entropy change of the lead:

Find the entropy change of the water
in the lake:

Substitute and evaluate AS,:

59 (1}

ASpy = MeyCpy Inilr__f

=(2kg)(0.128kJ/kg - K)

283.15K
xIn| ———
373.15K
=—-70.66J/K

Qpp _ MpyCopATey
T, T,

w w w

T
_ (2kg)(0.128kJ/kg - K)(90K)
- 283.15K

=81.37J/K

AS,, = =" =

w

AS, =—70.66J/K +81.37J/K
=[10.7JK

Picture the Problem Because the air temperature will not change appreciably as a result
of this crash; we can assume that the kinetic energy of the car is transformed into heat at
a temperature of 20°C. We can use the definition of entropy change to find the entropy

change of the universe.
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Express the entropy change of the AS — 9 B %mv2
universe as a consequence of the CCTOOT
kinetic energy of the car being
transformed into heat:
Substitute numerical values and km 1h Y
evaluate AS,: 3(1500kg)[ 100~ = x
u h  3600s
AS, =
293.15K
=|1.97kJ/K

*60 e
Picture the Problem The total change in entropy resulting from the mixing of these
gases is the sum of the changes in their entropies.

(a) Express the total change in AS =AS, +AS,
entropy resulting from the mixing
of the gases:

Express the change in entropy of V
each of the gases: AS, =nRIn—*A
iA

and
ASg =nR Invﬁ

iB

Because the initial and final V,
volumes of the gases are the same AS =2nR InV_ =2nRIn2
and both volumes double: [

Substitute numerical values and AS = 2(1mol)(8.314 J/mol - K)In2
evaluate AS:
=1 11.5J/K

Because the gas moleculesare indistinguishable, the entropy doesn't change.
(b)| A complete description of this phonomenon has been derived using
quantum mechanics.

Entropy and Work Lost

*G1 oo
Picture the Problem We can find the entropy change of the universe from the entropy
changes of the high- and low-temperature reservoirs. The maximum amount of the 500 J
of heat that could be converted into work can be found from the maximum efficiency of
an engine operating between the two reservoirs.



(a) Express the entropy change of
the universe:

Substitute numerical values and
evaluate AS,:

(b) Express the heat that could have
been converted into work in terms of
the maximum efficiency of an
engine operating between the two
reservoirs:

Express the maximum efficiency of
an engine operating between the two

reservoir temperatures:

Substitute and evaluate W:

62 oo
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AS, =AS, +AS, =—

=10.417J/IK

W= gmath
Emax = €c =1_T_C
Th

T
W=[1-—<10 =

e
=1125J

Q. Q

h Tc

1 1
AS :(_5OOJ)(4OOK B SOOKJ

1—%J(5OOJ)
400K

Picture the Problem Although in the adiabatic free expansion no heat is lost by the gas,
the process is irreversible and the entropy of the gas increases. In the isothermal
reversible process that returns the gas to its original state, the gas releases heat to the
surroundings. However, because the process is reversible, the entropy change of the
universe is zero. Consequently, the net entropy change is the negative of that of the gas in

the isothermal compression.

(a) Relate the entropy change of the
universe to the entropy change of
the gas during the isothermal
compression:

AS, =-AS_ =-nRIn—"
V

V,
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Substitute numerical values and AS, =—(1mol)(8.314J/mol - K)
evaluate AS: ¥ 12.3L
24.6L
=|5.76J/K

To the extent that the initial expansion was isothermal and
(b) | reversible, no work was done and none was wasted in the
cycle.

(c) Express the wasted work in W, =TAS, =(300K)(5.76 J/K)
terms of T and the entropy change of —~[1.73kJ
the universe:

General Problems

63 -

Picture the Problem We can use the definition of power to find the work done each
cycle and the definition of efficiency to find the heat that is absorbed each cycle.
Application of the first law of thermodynamics will yield the heat given off each cycle.

(a) Use the definition of power to Wy = PAt = (200W)(0.1s)
relate the work done in each cycle to 12003

the period of each cycle:

(b) Express the heat absorbed in Q _ Weycre _ @ 6673
each cycle in terms of the work done novele T g 0.3 :

and the efficiency of the engine:

Apply the 1% law of
thermodynamics to find the heat
given off in each cycle:

Qc,cycle = Qh,cycle _W = 667J - ZOJ

=|46.7]

64
Picture the Problem We can use their definitions to find the efficiency of the engine and
that of a Carnot engine operating between the same reservoirs.

(a) Apply the definition of LW 1_@ _q 1250 _

. ——=116.7%
efficiency: Q. Q. 150J
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(b) Find the efficiency of a Carnot T 293.15

) ) g=1-FL=1- =21.4%
engine operating between the same T, 373.15
reservoirs:

Express the ratio of the two & _16.7% 5940
efficiencies: & 21.4%
65 -

Picture the Problem We can use the definition of efficiency to find the work done by the
engine during each cycle and the first law of thermodynamics to find the heat exhausted
in each cycle.

(a) Express the efficiency of the

engine in terms of the efficiency of a A

&=0.85¢; = 0.85(1—_%}

Carnot engine working between the 200K

same reservoirs: =0.851-—— |=| 51.0%
500K

(b) Use the definition of efficiency W =¢Q, = 0_51(200 kJ) =[102kJ

to find the work done in each cycle:

(c) Apply the first law of Qe cycte| = Qneyere =W =200kJ —102kJ
thermodynamics to the cycle to
. =| 98.0kJ
obtain:
*66 oo

Picture the Problem We can use the expression for the Carnot efficiency of the plant to
find the highest efficiency this plant can have. We can then use this efficiency to find the
power that must be supplied to the plant to generate 1 GW of power and, from this value,
the power that is wasted. The rate at which heat is being delivered to the river is related to
the requisite flow rate of the river by dQ/dt = cATpdV /dt.

(a) Express the Carnot efficiency of o c

. Emax = Ec =1—=5
a plant operating between T,
temperatures T, and T:

Substitute numerical values and ., 298K
b =1— - =[ 0.404
evaluate &: 500K
(c) Find the power that must be P 1GW
supplied, at 40.4% efficiency, to supplied = 0.404 8G

max

produce an output of 1 GW:
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(b) Relate the wasted power to the Puasted = Peaupptied — Pyenerated

power generated and the power

supplied:

Substitute numerical values and P ased = 2.48GW —1GW =| 1.48GW

evaluate Pyasted:

(d) Express the rate at which heat is dQ _ A7 9M _ a7 i(pV)
being dumped into the river: dt dt dt
dv
=CATp—
Pt

Solve for the flow rate dV/dt of the dv _ dQydt
river: dt cATp
Substitute numerical values (see av 1.48x10° J/s
Table 19-1 for the specific heat of dt  (4180J/kg)(0.5K)({10% kg/m®)

water) and evaluate dV/dt: —708m?/s =l 7.08x10° L/s

67 o
Picture the Problem We can find the rate at which the house contributes to the increase
in the entropy of the universe from the ratio of AS to At.

Using the definition of entropy AS _AQ/T _ AQ/At
change, express the rate of increase At At T
in the entropy of the universe:

Substitute numerical values and AS _30KW _ ook
evaluate AS/AL: At 266K
68 o

Picture the Problem Because the cycle represented in Figure 19-12 is a Carnot cycle, its
efficiency is that of a Carnot engine operating between the temperatures of its isotherms.

Express the Carnot efficiency of the o = 1_L

cycle: © T

Substitute numerical values and g =1- 300K _ 60.0%
evaluate &: 750K
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69 oo
Picture the Problem All 500 J of mechanical energy are lost, i.e., transformed into heat
in process (1). For process (2), we can find the heat that would be converted to work by a
Carnot engine operating between the given temperatures and subtract amount of work
from 1 kJ to find the energy that is lost. In part (b) we can use its definition to find the
change in entropy for each process.

(a) For process (2) W2,max = Wrecovered = SCQin

Fim_j the effici_ency of a Carnot g = 1_T_C 1 300K _ 0.95

engine operating between 400 K and T, 400K

300 K:

Substitute to obtain: W, oovereq = 0-25(1kJ) = 250
or

750 J are lost.

Process (1) is more wasteful of
mechanical energy.Process (2) is
more wasteful of total energy.

(b) Find the change in entropy of the AS, = AQ _ 500J _[1677K
universe for process (1): T 300K

Find the change in entropy of the AS, = AS, + AS, = _AQ _ AQ
universe for process (2): T, T,

-

=(1 kJ)(L _ L]
300K 400K

=( 0.833J/K

70 oo
Picture the Problem Denote the three states of the gas as 1, 2, and 3 with 1 being the
initial state. We can use the ideal-gas law and the equation of state for an adiabatic
process to find the temperatures, volumes, and pressures at points 1, 2, and 3. To find the
work done during each cycle, we can use the equations for the work done during
isothermal, isobaric, and adiabatic processes. Finally, we find the efficiency of the cycle
from the work done each cycle and the heat that enters the system during the isothermal
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expansion.

(a) Apply the ideal-gas law to the

isothermal expansion 1—2 to find P:

Apply the equation of state for an
adiabatic process to relate the
pressures and volumes at 1 and 3:

The PV diagram is shown to the right:

(b) From (a) we have:
Apply the equation of state for an
adiabatic process (y=1.67) to relate

the temperatures and volumes at 1
and 3:

(c) Express the work done each
cycle:

For the process 1—»2:

For the process 2—3:

and
P
V,=V,| =2
3 1(P
=2.29L
V,=|229L

Tsvsy_l = T1V1y_1

and

y-1
T, - T{\% — (600 K)(L

2.29L

3

=| 344K

W = Wlaz +W2%3 +Ws%

Wl

—

p = nRTlIn\\i—Z: Plvlln\%

1 1

- (16 atm)(lL)'”(%J

=22.2atm-L

W2a3 = Pzszas
= (4atm)(2.29L - 4L)
=-6.84atm-L
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For the process 3—>1: W, =—-Cy AT, =—2nR(T, - T,)
= _%(Plvl - P3V3)
= —3[(16atm)(1L )~ (4atm)(2.29L)]

=-10.3atm- L

Substitute to obtain: W =22.2atm-L -6.84atm- L

-10.3atm-L

=| 5.06atm-L
(d) Using its definition, express and oW _W W
evaluate the efficiency of the cycle: Q. Q., W,
_ 5.06atm-L _228%
22.2atm-L

*71 oo
Picture the Problem We can express the temperature of the cold reservoir as a function
of the Carnot efficiency of an ideal engine and, given that the efficiency of the heat
engine is half that of a Carnot engine, relate T, to the work done by and the heat input to
the real heat engine.

Using its definition, relate the T,
efficiency of a Carnot engine T,
working between the same

reservoirs to the temperature of the

cold reservoir:

Solve for T¢: T =T, (1_5c)

Relate the efficiency of the heat
engine to that of a Carnot engine
working between the same
temperatures:

W 2W
E=——=5&0Mgc =—
Qin in

122

in

Substitute to obtain:

The work done by the gas in W = PAV = (latm)4L)=4atm-L
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expanding the balloon is:

Substitute numerical values and evaluate Te:

I_)(101.325Jj

2(4atm- 3
T, = (393.15K)| 1 o atm- ~[313K

72 e
Picture the Problem We can use the definitions of the COP and & to show that their
relationship is COP = T,/ (&Th).

Using the definition of the COP, COP - Q.
relate the heat removed from the W
cold reservoir to the work done each
cycle:
Apply energy conservation to relate Q =Q,-W
Qc, O, and W:
Substitute to obtain: COP - Q,—W
Divide numerator and denominator W
by Qn and simplify to obtain: COP - Q,—W _ Q,
w
Q,
Because &. =W/Q, : 1_(1_-':}) T,
cop -1zt n/_Th
éc éc éc
— TC
ecly
73 [ 1)

Picture the Problem We can use the definition of the COP to express the work the motor
must do to maintain the temperature of the freezer in terms of the rate at which heat flows
into the freezer. Differentiation of this expression with respect to time will yield an
expression for the power of the motor that is needed to maintain the temperature in the
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freezer.

Using the definition of the COP, COP = X
relate the heat that must be removed
from the freezer to the work done by

the motor:
Solve for W: W = Q.

COP
Differentiate this expression with P— daw _ dQ, /dt
respect to time to express the power dt COP
of the motor:
Express the maximum COP of the coP. — T,
motor: e
Substitute to obtain: p_ dQ. AT

dt T,
Substitute numerical values and K

_ P=(50W) 0K ) _0.0w

evaluate P: 250K
74 e

Picture the Problem We can use the ideal-gas law to find the unknown temperatures,
pressures, and volumes at points A, B, and C and then find the work done by the gas and
the efficiency of the cycle by using the expressions for the work done on or by the gas
and the heat that enters the system for the isobaric, adiabatic, and isothermal processes of
the cycle.

(a) Apply the ideal-gas law to find v - RT,
the volume of the gas at A: A P,
_ (2mol)(8.314J/mol - K)(600K)
B 101.325kPa
Satmx—————
atm
=|19.7L
(b) We’re given that: Vo =2V, = 2(19.7 L) =|39.4L
Apply the ideal-gas law to this T, =T, V_B _ (600 K)Z\/_A -[1200K

isobaric process to obtain: Va V,
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(c) Because the process C—A is T.=T, =| 600K
isothermal:
(d) Apply the equation of state for TV =TV
an adiabatic process (y = 1.4) to find and
the volume of the gas at C: L et
Ve =V, To| (39.4L) 1200K
Te 600K
=| 223L
(e) Express and evaluate the work W, 5 =P,(V; -V, )=P,(2V, -V,)
done by the gas during the isobaric =PV, =(5atm)(19.7L)
process AB:
=98.50atm - L x 101.325)
atm- L
=19.98kJ
Apply the first law of Wonsc =AEig c —Qinec =AEsc—0
thermodynamics to express the =AE,, 5. c =-NC,AT;
wo_rk d(_)ne by th? gas dl?rmg the — _5nRAT, .
adiabatic expansion BC:
Substitute numerical values and Wg o= —%(2 mol)(8.314 J/mol - K)
evaluate Ws c: x (600K —1200K)
=| 24.9kJ
Express and evaluate the work done W,_, = nRT, InV—A
by the gas during the isothermal Ve
compression CA: = (2mol)(8.314J/mol - K)
x (600K )In 19.7L
223L
=| —24.2kJ
(f) Express and evaluate the heat Qg =NCAT, 5 =4NRAT, ¢
absorbed during the isobaric = Z(2mol)(8.314 J/mol - K)
expansion AB: % (1200 K —600 K)

34.9kJ




Express and evaluate the heat
absorbed during the adiabatic
expansion BC:

Use the first law of thermodynamics
to express and evaluate the heat
absorbed during the isothermal
compression CA:

(9) Apply the definition of
thermodynamic efficiency to
express and evaluate ¢

75 e
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Qe = @

QC—A =Weat AEim, C-A :WC—A
=| —-24.2kJ

because AEjyc_a = 0 for an isothermal
process.

— ﬂ _Wag+Wg c +We o
Qi Qas
9.98kJ +24.9kJ—24.2kJ

34.9kJ

&

=1 30.6%

Picture the Problem We can use the ideal-gas law to find the unknown temperatures,
pressures, and volumes at points B, C, and D and then find the work done by the gas and
the efficiency of the cycle by using the expressions for the work done on or by the gas
and the heat that enters the system for the various thermodynamic processes of the cycle.

(f;l) Apply the ideal-gas law for a P, =P, Va _ (5atm)V—A
fixed amount of gas to the B 2V,
isothermal process AB:
p _ 2.50atmx101'325kpa
latm
=| 253kPa
(b) Apply the ideal-gas law for a T -7 PVe
fixed amount of gas to the adiabatic R - AVA
process BC:
Using the ideal-gas law, find the V. - nRT,
L =—2F8
volume at B: P
_ (2mol)(8.314J/mol - K )(600K)
253kPa

=39.43L
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Use the equation of state for an
adiabatic process and = 1.4 to find
the volume occupied by the gas at
C:

Substitute and evaluate T¢:

(c) Express the work done by the gas
in one cycle:

Express and evaluate the work done
during the isothermal expansion AB:

Express and evaluate the work done
during the adiabatic expansion BC:

Express and evaluate the work done
during the isobaric compression CD:

Express and evaluate the work done
during the constant-volume process
DA:

Substitute numerical values and
evaluate W:

- latm
=75.87L

iy
V. :VB(%j ~(39.43 L)(2'5atm

y (latm)(75.87L)
’(2.5atm)(39.43L)

462K

T. = (600K

W =W, g +Wg o +W. , +Wp_,

V
W, . =nRT,In—&
A-B A V

A

= (2mol)(8.314J/mol - K)

« (600 K)In( Z\YAJ

A

=6.915kJ

W, ¢ =-C ATy  =—3nRAT,
=-£(2mol)(8.314J/mol - K)
x (462K — 600K )
=5.737k]

We p = PC(VD _Vc)
= (latm)(19.7L - 75.87L)

101.325]
atm-L

=-56.17atm- L x
=-5.690kJ

W, =0

]1/1.4

W =6.915kJ +5.737kJ -5.690kJ +0

=] 6.96kJ




Using its definition, express the
thermodynamic efficiency of the
cycle:

Express and evaluate the heat
entering the system during the
isothermal process AB:

Express the heat entering the system
during the constant-volume process
DA:

Apply the ideal-gas law to the
constant-volume process DA to

obtain:

Evaluate the heat entering the
system during the process DA:

Substitute and evaluate the
efficiency of the cycle:

76 [T}
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LW W
Qin QA—B + QD—A

Qg =Wp g +AE as =W, 5 =6.915kJ

Because AE;; = 0 for an isothermal process.

QD—A = CVATD—A = % nRATD—A

Fo _ (600K) 2™ _ 120k

T, =T,-2
° AP, 5atm

Qo =2(2mol)(8.314J/mol - K)
x (600K —120K)
=20.0kJ

6.975kJ

&= =| 25.9%
6.915kJ +20.0kJ

Picture the Problem We can use the ideal-gas law to find the unknown temperatures,
pressures, and volumes at points A, B, and C and then find the work done by the gas and
the efficiency of the cycle by using the expressions for the work done on or by the gas
and the heat that enters the system for the isobaric, adiabatic, and isothermal processes of

the cycle.

(a) Apply the ideal-gas law to find
the volume of the gas at A:

(b) We’re given that:

(2mol)(8.314J/mol - K)(600K)
101.325kPa
Satmx ————

atm

=119.7L

V, =2V, =2(19.7L)=| 39.4L
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Apply_the ideal-gas Iaw_ to this T, =T, Ve _ (600 K) AR —[1200K
isobaric process to obtain: VA V,
(c) Because the process CA is T. =T, =| 600K
isothermal:
(d) Apply the equation of state for TV =TV
an adiabatic process (y = 5/3) to find and
the volume of the gas at C: T L 1200K 3
Ve =Vy| 2| =(39.4L)
T 600K
=111L
(e) Express and evaluate the work W, s = F’A(VB —VA) =P, (2VA —VA)
done by the gas during the isobaric =PV, =(5atm)(19.7L)
process AB:
_ 98.50atm - L x 103237
atm-L
=19.98kJ
Apply the first law of Wongc =AEisc—Qnec
thermodynamics to express the work =AE, -0

done by the gas during the adiabatic

= AE; = —(nc, AT,
expansion BC: int, B-C ( % B—C)

=—3nRAT,
Substitute numerical values and W, 5.c =—2(2mol)(8.314J/mol-K)
evaluate Wg_c: X (600 K =1200 K)
=114.9kJ
Express and e\_/aluate _the work done W,_, = nRT, InV—A
by the gas during the isothermal V¢

compression CA: (2mol)(8.314J/mol - K)

x (600 K)In(lg'iJ
111L

= —-17.2kJ




(f) Express and evaluate the heat
absorbed during the isobaric
expansion AB:

Express and evaluate the heat
absorbed during the adiabatic
expansion BC:

Use the first law of thermodynamics
to express and evaluate the heat
absorbed during the isothermal
compression CA:

(9) Apply the definition of

thermodynamic efficiency to express
and evaluate ¢:

77 e
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Qia-s =NCAT, 5 =3NRAT, 4
=$(2mol)(8.314J/mol - K)
x (1200K - 600K)
=|24.9kJ

QC—A :WC—A + AEint, C-A :WC—A
=|-17.2kJ

because AE;, = 0 for an isothermal process.

c= ﬂ _ Wag +We ¢ +We
Qin Qae
9.98kJ+14.9kJ-17.2kJ
24.9kJ

=1 30.8%

Picture the Problem We can use the ideal-gas law to find the unknown temperatures,
pressures, and volumes at points B, C, and D and then find the work done by the gas and
the efficiency of the cycle by using the expressions for the work done on or by the gas
and the heat that enters the system for the various thermodynamic processes of the cycle.

(a) Apply the ideal-gas law for a
fixed amount of gas to the
isothermal process AB:

(b) Apply the ideal-gas law for a
fixed amount of gas to the adiabatic
process BC:

P, = PAV—A = (5atm)V—A
A v,
_ 2.50atmx2223KP8 _ 1 o53kpa
latm
T.=T, FeVe
I:)BVB
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Using the ideal-gas law, find the
volume at B:

Use the equation of state for an
adiabatic process and y=5/3 to find
the volume occupied by the gas at
C:

Substitute and evaluate T¢:

(c) Express the work done by the
gas in one cycle:

Express and evaluate the work done

during the isothermal expansion AB:

Express and evaluate the work done
during the adiabatic expansion BC:

Express and evaluate the work done
during the isobaric compression
CD:

Express and evaluate the work done
during the constant-volume process
DA:

nRT,
Vg = 3
_ (2mol)(8.3143/mol - K)(600K )
253kPa
=39.43L

e latm
=68.33L

iy
Ve :V{%} ~(39.43 L){2'5atm

y (Latm)(68.33L)
’(2.5atm)(39.43L)

416K

T. = (600K

w :WA—B +WB—C +WC—D +WD—A

V
W, g =nRT, InV—B

A

= (2mol)(8.314J/mol - K)

x(600K)|nﬁ/AJ

A

= 6.915k]
Wy ¢ =—C AT, o =—3$nRAT, .
=—2(2mol)(8.314J/mol - K)

x (416 K — 600K )
= 4.589k]

Wep = PC(VD _Vc)
= (latm)(19.7L - 68.33L)

101.3J
atm-L

=-48.63atm - L x

=-4.926kJ

W, ,=0



Substitute to obtain:

Using its definition, express the
thermodynamic efficiency of the
cycle:

Express and evaluate the heat
entering the system during the
isothermal process AB:

Express the heat entering the system
during the constant-volume process
DA:

Apply the ideal-gas law to the
constant-volume process DA to

obtain:

Evaluate the heat entering the
system during the process DA:

Substitute and evaluate the
efficiency of the cycle:

78 o0
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W =6.915kJ + 4.589kJ —4.926kJ + 0
=| 6.58kJ

W

W
= =—— "
Qn  QaetQoa

QA—B = WA—B + AEint, A-B — WA—B
=6.915kJ
because AE;, = 0 for an isothermal process.

QD—A = CVATD—A = %nRATD—A

Po _ (600K)22M _ 100k

T, =T, 2
°hp 5atm

Qp_a = 2(2mol)(8.314J/mol - K)
x (600K —120K)
=12.0kJ

L__ 658K _
6.915k] +12.0kJ

34.8%

Picture the Problem We can express the efficiency of the Otto cycle using the result
from Example 19-2. We can apply the relation TV’ = constant to the adiabatic
processes of the Otto cycle to relate the end-point temperatures to the volumes occupied
by the gas at these points and eliminate the temperatures at ¢ and d. We can use the ideal-
gas law to find the highest temperature of the gas during its cycle and use this
temperature to express the efficiency of a Carnot engine. Finally, we can compare the

efficiencies by examining their ratio.

The efficiency of the Otto engine is
given in Example 19-2:

_Td -T, 1)
Tc_Tb

where the subscripts refer to the various

& =1



1496 Chapter 19

points of the cycle as shown in Figure 19-

3.
Apply the relation vy
— a
TV 7 = constant to the adiabatic T, =T, I
process a—b to obtain:
Apply the relation v, -
TV 7 = constant to the adiabatic T, =T, v
C

process c—d to obtain:

Subtract the first of these equations V, r V r
— a
from the second to obtain: To=T, =T, vV -T V.

In the Otto cycle, V, = Vgyand
V. = V,. Substitute to obtain: T =T, =T,

Substitute in equation (1) and e =1— T, T,
simplify to obtain: ° a1 v, 7
d~ 'a q

y-1
1 (%] T
Va Tb
Note that, while T, is the lowest

temperature of the cycle, Ty is not the

highest temperature.

Apply the ideal-gas law to ¢ and b to P R LT oT
obtain an expression for the cycle’s T, T, © P
highest temperature T:

& >T,
Pb

Express the efficiency of a Carnot R
engine operating between the T
maximum and minimum

temperatures of the Otto cycle:
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Express the ratio of the efficiency of 1 Ty

a Carnot eng_;me to the_ efficiency of & _ T, > [T |because T. > Ty,
an Otto engine operating between & 1 Ty

the same temperatures: T,

*79 (X 1]

Picture the Problem We canuse nR =C, -C,,, » =C,/C,,, and TV’ = a constant

to show that the entropy change for a quasi-static adiabatic expansion that proceeds from
state (V1,T1) to state (V,,Ty) is zero.

T V.
Express the entropy change for a AS =C,In-2 +nRIn2
general process that proceeds from T, \'A
state 1 to state 2:

For an adiabatic process: T, (V, ~
T_l =| L

Substitute and simplify to obtain:

7-1
AS:CVIni +nRIn\Q =In
V2 Vl

= |n(\$j R + e In@Z] = |n(\$][nR—(y—1)cv]

A
C, In(vl]
j Ry V)

<I<

1 —In ﬁ 1
2

Use the relationship between Cp and Cy nR=C,-C,
to obtain:
Substitute for nR and yand simplify: C

4 Ity AS = |n(v—2j{cp —c, - [—P —1}04

V. C
1 \%
=10
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Picture the Problem

(a) Suppose the refrigerator statement of the second law is violated in the sense that heat
Q. is taken from the cold reservoir and an equal mount of heat is transferred to the hot
reservoir and W = 0. The entropy change of the universe is then AS, = Q./Ty, — Q./T.
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Because T, > T,, S, <0, i.e., the entropy of the universe would decrease.

(b) In this case, is heat Qy, is taken from the hot reservoir and no heat is rejected to the
cold reservaoir, i.e., Q. = 0, then the entropy change of the universe is AS, = —Q/T, + 0,
which is negative. Again, the entropy of the universe would decrease.

(c) The heat-engine and refrigerator statements of the second law only state that some
heat must be rejected to a cold reservoir and some work must be done to transfer heat
from the cold to the hot reservoir, but these statements do not specify the minimum
amount of heat rejected or work that must be done. The statement

AS, > 0 is more restrictive. The heat-engine and refrigerator statements in conjunction
with the Carnot efficiency are equivalent to AS, > 0.

81 (11}
Picture the Problem We can express the net efficiency of the two engines in terms of
Wi, W,, and Qp, and then use & = W./Qp and & = W»/Q,, to eliminate Wy, Wy, Qp, and Qp,.

Express the net efficiency of the two _W W,
engines connected in series: et Qn
Express the efficiencies of engines 1 e =M
and 2: tQ,
and
W.
& ===
Qn
Solve for W; and W, and substitute _&Q,+&Q, . Q,
. St =T 5 At &
to obtain: Q, Qx
Express the efficiency of engine 1 in o = 1_&
terms of Qn and Qy: ! Q.
Solve for Qn/ Qn: m
Qm Qh Q_ =1- &
Q,
Substitute to obtain: e =| & +(1—g)e,
*82 (1 1]

Picture the Problem We can express the net efficiency of the two engines in terms of
Wi, W5, and Qy, and then use & = W,/Qy and & = W,/Q,, to eliminate W, W,, Qy, and Q..
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Finally, we can substitute the expressions for the efficiencies of the ideal reversible
engines to obtain &, =1-T,/T,.

Express the efficiencies of ideal e = _T_m (1)
reversible engines 1 and 2: ' T,
and
T
& =1-=—+- )
Tm
Express the net efficiency of the two _ W, +W, 3)
engines connected in series: et Q,

Express the efficiencies of engines 1

and 2: Q. m
Solve for Wy and W, and substitute _&Q, +&Q, Qn
. . . Enet = =&+ &
in equation (3) to obtain: Q, Q,
Express the efficiency of engine 1 in o = 1_%
terms of Qp, and Qy: ' Q,
Solve for Qn/ Qp:
Qu/ Q Qg
Q
Substitute to obtain: Enet =& T (1— gl)g2
Substitute for & and & and T T T
simplify to obtain: net T \T, T,
L PSP P P I
Th h Th Th
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Picture the Problem There are 26 letters and four punctuation marks (space, comma,
period, and exclamation point) used in the English language, disregarding capitalization,
so we have a grand total of 30 characters to choose from. This fragment is 330 characters
(including spaces) long; there are then 30%® different possible arrangements of the
character set to form a fragment this long. We can use this number of possible
arrangements to express the probability that one monkey will write out this passage and
then an estimate of a monkey’s typing speed to approximate the time required for one
million monkeys to type the passage from Shakespeare.
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Assuming the monkeys type at
random, express the probability P
that one monkey will write out this
passage:

Use the approximation
30 ~ /1000 =10"° to obtain:

Assuming the monkeys can type at a
rate of 1 character per second, it
would take about 330 s to write a
passage of length equal to the
guotation from Shakespeare. Find
the time T required for a million
monkeys to type this particular
passage by accident:

Express the ratio of T to Russell’s
estimate:

1
= 30%®
1 1 -
P= 1051330 = 10°® =107
T (330s)(10**
10°
- (3.30x10%s)| Y
3.16x10°'s
~ 10484y

T — 104:4 y — 10478
10°y

TRusseII
or

T ~|10*°T

Russell




