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Chapter 19 
The Second Law of Thermodynamics 
 
Conceptual Problems 
 
1 •  
Determine the Concept Friction reduces the efficiency of the engine.   
 
*2 •  
Determine the Concept As described by the second law of thermodynamics, more heat 
must be transmitted to the outside world than is removed by a refrigerator or air 
conditioner. The heating coils on a refrigerator are inside the room–the refrigerator 
actually heats the room it is in.  The heating coils on an air conditioner are outside, so the 
waste heat is vented to the outside. 
 
3 •   
Determine the Concept Increasing the temperature of the steam increases the Carnot 
efficiency, and generally increases the efficiency of  any heat engine. 
 
4 ••  
Determine the Concept To condense, water must lose heat. Because its entropy change 
is given by dS = dQrev/T and dQrev is negative, the entropy of the water decreases. 

correct. is )(c  

 
*5 •  
Determine the Concept 
 
(a) Because the temperature changes during an adiabatic process, the internal energy of the 
system changes continuously during the process. 
 
(b) Both the pressure and volume change during an adiabatic process and hence work is 
done by the system. 
 
(c) ∆Q = 0 during an adiabatic process. Therefore ∆S = 0. correct. is )(c  

 
(d) Because the pressure and volume change during an adiabatic process, so does the 
temperature. 
 
6 ••  
(a) False. The complete conversion of mechanical energy into heat is not prohibited by 
either the 1st or 2nd laws of thermodynamics and is common place in energy 
transformations. 
 
(b) True. This is the heat-engine statement of the 2nd law of thermodynamics. 
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(c) False. The efficiency of a heat engine is a function of the thermodynamic processes of 
its cycle. 
 
(d) False. With the input of sufficient energy, a heat pump can transfer a given quantity of 
heat from a cold reservoir to a hot reservoir. 
 
(e) False. The only restriction that the refrigerator statement of the 2nd law places on the 
COP is that it can not be infinite. 
 
(f) True. The Carnot engine, as a consequence of its thermodynamic processes, is 
reversible.  
 
(g) False. The entropy of one system can decrease at the expense of one or more other 
systems. 
 
(h) True. This is one statement of the 2nd law of thermodynamics. 
 
7 ••   
Determine the Concept The two 
paths are shown on the PV diagram 
to the right. We can use the concept 
of a state function to choose from 
among the alternatives given as 
possible answers to the problem. 
 

 
 
(a) Because Eint is a state function and the initial and final states are the same for the two 
paths and B int,A int, EE ∆=∆ . 

 
(b) and (c) S, like Eint, is a state function and its change when the system moves from one 
state to another depends only on the system’s initial and final states. It is not dependent 
on the process by which the change occurs and BA SS ∆=∆ . 

 
(d) correct. is )(d  
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*8 ••  
Determine the Concept The processes 
A→B and C→D are adiabatic; the 
processes B→C and D→A are isothermal. 
The cycle is therefore the Carnot cycle 
shown in the adjacent PV diagram. 

 
 
9 ••  
Determine the Concept Note that A→B is an adiabatic expansion. B→C is a constant 
volume process in which the entropy decreases; therefore heat is released. C→D is an 
adiabatic compression. D→A is a constant volume process that returns the gas to its 
original state. The cycle is that of the Otto engine (see Figure 19-3). 
 
10 ••   
Determine the Concept Refer to Figure 
19-3. Here a→b is an adiabatic 
compression, so S is constant and T 
increases. Between b and c, heat is added 
to the system and both S and T increase. 
c→d is again isentropic, i.e., without 
change in entropy. d→a releases heat and 
both S and T decrease. The cycle on an ST 
diagram is sketched in the adjacent figure. 

 

 
11 ••  
Determine the Concept Referring to Figure 
19-8, process 1→2 is an isothermal 
expansion. In this process heat is added to 
the system and the entropy and volume 
increase. Process 2→3 is adiabatic, so S is 
constant as V increases. Process 3→4 is an 
isothermal compression in which S 
decreases and V also decreases. Finally, 
process 4→1 is adiabatic, i.e., isentropic, 
and S is constant while V decreases. The 
cycle is shown in the adjacent SV diagram. 
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12 ••  
Picture the Problem The SV diagram of the Otto cycle is shown in Figure 19-13. (see 
Problem 9) 

 
13 ••  
Determine the Concept Process A→B is 
at constant entropy, i.e., an adiabatic 
process in which the pressure increases. 
Process B→C is one in which P is 
constant and S decreases; heat is exhausted 
from the system and the volume decreases. 
Process C→D is an adiabatic compression. 
Process D→A returns the system to its 
original state at constant pressure.  The 
cycle is shown in the adjacent PV diagram. 

 

 

 
*14 •  
Picture the Problem Let ∆T be the change in temperature and   
ε = (Th − Tc)/Th be the initial efficiency. We can express the efficiencies of the Carnot 
engine resulting from the given changes in temperature and examine their ratio to decide 
which has the greater effect on increasing the efficiency.  

 
If Th is increased by ∆T , ε′, the new 
efficiency is: 
 

TT
TTT'

∆+
−∆+

=
h

chε  

If Tc is reduced by ∆T, the efficiency 
is: 
 

h

ch

T
TTT'' ∆+−

=ε  

Divide the second of these equations 
by the first to obtain: 
 

1
h

h

h

ch

h

ch

>
∆+

=

∆+
−∆+

∆+−

=
T

TT

TT
TTT

T
TTT

'
''
ε
ε

 

 

reservoir.hot   theof
 re temperatuin the increase equalan  than more efficiency  theincreases

 by reservoir  cold  theof re temperatuin thereduction  a Therefore, T∆
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Estimation and Approximation  
 
15 ••  
Picture the Problem The maximum efficiency of an automobile engine is given by the 
efficiency of a Carnot engine operating between the same two temperatures. We can use 
the expression for the Carnot efficiency and the equation relating V and T for a quasi-
static adiabatic expansion to express the Carnot efficiency of the engine in terms of its 
compression ratio. 
 
Express the Carnot efficiency of an 
engine operating between the 
temperatures Tc and Th: 
 

h

c
C 1

T
T

−=ε  

Relate the temperatures Tc and Th to 
the volumes Vc and Vh for a quasi-
static adiabatic compression from Vc 
to Vh: 
 

1
hh

1
cc

−− = γγ VTVT  

Solve for the ratio of Tc to Th: 
 

1

c

h
1

c

1
h

h

c

−

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

γ

γ

γ

V
V

V
V

T
T

 

 
Substitute to obtain: 
 

1

c

h
C 1

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

γ

ε
V
V

 

 
Express the compression ratio r: 
 

h

c

V
Vr =  

 
Substitute once more to obtain: 

1C
11 −−= γε

r
 

 
Substitute numerical values for r and 
γ (1.4 for diatomic gases) and 
evaluate εC: 

( )
%5.56565.0

8
11 14.1C ==−= −ε  

 
*16 •• 
Picture the Problem If we assume that the temperature on the inside of the refrigerator 
is 0°C (273 K) and the room temperature to be about 30°C (303 K), then the refrigerator 
must be able to maintain a temperature difference of about 30 K.  We can use the 
definition of the COP of a refrigerator and the relationship between the temperatures of 
the hot and cold reservoir and hQ  and Qc to find an upper limit on the COP of a 
household refrigerator. In (b) we can solve the definition of COP for Qc and differentiate 
the resulting equation with respect to time to estimate the rate at which heat is being 
drawn from the refrigerator compartment. 
 
(a)  Using its definition, express the 
COP of a household refrigerator: 
 W

QcCOP =                                 (1) 
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Apply the 1st law of 
thermodynamics to the refrigerator 
to obtain: 
 

hc QQW =+  

Substitute for W and simplify to 
obtain: 

1

1
COP

c

hch

c

−

=
−

=

Q
QQQ

Q
 

 
Assume, for the sake of finding the 
upper limit on the COP, that the 
refrigerator is a Carnot refrigerator 
and relate the temperatures of the 
hot and cold reservoirs to hQ  and 
Qc: 
 

c

h

c

h

T
T

Q
Q

=  

Substitute to obtain: 

1

1COP

c

h
max

−
=

T
T  

 
Substitute numerical values and 
evaluate COPmax: 10.9

1
K273
K303
1COPmax =
−

=  

 
(b) Solve equation (1) for Qc: ( )COPc WQ =                           (2) 

 
Differentiate equation (2) with 
respect to time to obtain: 
 

( )
dt

dW
dt

dQ COPc =  

Substitute numerical values and 
evaluate dQc/dt: ( )( ) kW46.5J/s6009.10c ==

dt
dQ

 

 
17 ••   
Picture the Problem We can use the definition of intensity to find the total power of 
sunlight hitting the earth and the definition of the change in entropy to find the changes in 
the entropy of the earth and the sun resulting from the radiation from the sun. 
 
(a) Using its definition, express the 
intensity of the sun’s radiation on 
the earth in terms of the power 
delivered to the earth P and the 
earth’s cross sectional area A: 
 

A
PI =  

Solve for P and substitute for A to 
obtain: 
 

2RIIAP π==  
where R is the radius of the earth. 
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Substitute numerical values and 
evaluate P: ( )( )

W1066.1

m1037.6kW/m3.1
17

262

×=

×= πP
 

 
(b) Express dSearth/dt for the earth 
due to the flow of solar radiation: 

earth

earth

T
P

dt
dS

=  

 
Substitute numerical values and 
evaluate dSearth/dt: 

sJ/K1072.5

K290
W1066.1

14

17

earth

⋅×=

×
=∆S

 

 
(c) Express dSsun/dt for the sun due 
to the outflow of solar radiation 
hitting the earth: 
 

sun

sun

T
P

dt
dS

=  

Substitute numerical values and 
evaluate dSsun/dt: 

sJ/K1007.3

K5400
W1066.1

13

17
sun

⋅×=

×
=

dt
dS

 

 
18 ••  
Picture the Problem We can use the definition of intensity to find the total power 
radiated by the sun and the definition of the change in entropy to find the change in the 
entropy of the universe resulting from the radiation of 1011 stars in 1011 galaxies. 
 
(a) Using its definition, express the 
intensity of the sun’s radiation on 
the location of earth in terms of the 
total power it delivers to space P 
and the area of a sphere A whose 
radius is the distance from the sun to 
the earth: 
 

A
PI =  

Solve for P and substitute for A to 
obtain: 
 

24 IRIAP π==  
where R is the distance from the sun to the 
earth. 
 

Substitute numerical values and 
evaluate P: ( )( )

W1068.3

m105.1kW/m3.14
26

2112

×=

×= πP
 

 
(b)  Express ∆Suniverse:  

universe
universe T

PS =∆  
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Substitute numerical values and 
evaluate ∆Suniverse: 

( )

sJ/K1035.1

K73.2
W1068.310

48

2622

universe

⋅×=

×
=∆S

 

 
19 ••  
Picture the Problem We can use the definition of entropy change to estimate the 
increase in entropy of the universe as a result of the heat produced by a typical human 
body. The entropy change is equivalent to the entropy change if the heat from the body 
were added to the universe reversibly. 
 
Express the increase in entropy of 
the universe as a result of the heat 
produced by a human body: 
  

night

night

day

day
u T

Q
T
Q

S
∆

+
∆

=∆  

Using the definition of power, 
express the total heat produced by a 
human body: 
 

tPQ ∆=∆  

Assume that half of the heat is 
produced during the day and half at 
night: 
 

tPQQ ∆=∆=∆ 2
1

nightday  

Substitute to obtain: 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+∆=

∆
+

∆
=∆

nightday
2
1

night

2
1

day

2
1

u

11
TT

tP

T
tP

T
tPS

 

 
Use ( ) 27332F9

5 +−= tT to obtain: Tday = 294 K and Tnight = 286 K 
 

Substitute numerical values and evaluate ∆Su: 
 

( )( )( ) kJ/K8.29
K286

1
K294

1s/h3600h/d24J/s1002
1

u =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=∆S  

 
*20 •••   
Picture the Problem If you had one molecule in a box, it would have a 50% chance of 
being on one side or the other. We don’t care which side the molecules are on as long as 
they all are on one side, so with one molecule you have a 100% chance of it being on one 
side or the other. With two molecules, there are four possible combinations (both on one 
side, both on the other, one on one side and one on the other, and the reverse), so there is 
a 25% (1 in 4) chance of them both being on a particular side, or a 50% chance of them 
both being on either side. Extending this logic, the probability of N molecules all being 
on one side of the box is P = 2/2N, which means that, if the molecules shuffle 100 times a 
second, the time it would take them to cover all the combinations and all get on one side 

or the other is ( )1002
2N

t = . In (e) we can apply the ideal gas law to find the number of 
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molecules in 1 L of air at a pressure of 10−12 torr and an assumed temperature of 300 K. 
 
 
(a) Evaluate t for N = 10 molecules: 
 ( ) s12.5

1002
210

==t  

 
(b) Evaluate t for N = 100 molecules: 
 ( )

y1001.2

s1034.6
1002
2

20

27
100

×=

×==t
 

 
(c) Evaluate t for N = 1000 molecules: 
 ( )1002

21000

=t  

 
To evaluate 10002  let 1000210 =x and 
take the logarithm of both sides of 
the equation to obtain: 
 

( ) 10ln2ln1000 x=  

Solve for x to obtain: 
 

301=x  

Substitute to obtain: 
 ( )

y1058.1

s105.0
1002

10

290

299
301

×=

×==t
 

 
(d) Evaluate t for  
N = 6.02×1023 molecules: 
 ( )1002

2
231002.6 ×

=t  

 
To evaluate 

231002.62 ×  let 
231002.6210 ×=x and take the 

logarithm of both sides of the 
equation to obtain: 
 

( ) 10ln2ln1002.6 23 x=×  

Solve for x to obtain: 
 

2310≈x  

Substitute to obtain: 

( ) y10
1002

10 23
23

10
10

≈≈t  

 
(e) Solve the ideal gas law for the 
number of molecules N in the gas: 
 kT

PVN =  

Assuming the gas to be at room 
temperature (300 K), substitute 
numerical values and evaluate N: 

( )( )( )
( )( )

molecules1022.3
K300J/K10381.1

m10Pa/torr32.133torr10

7

23

3312

×=

×
= −

−−

N



Chapter 19    
 

 

1448 

 
Evaluate T for N = 3.22×107 
molecules: 
 ( )1002

2
71022.3 ×

=t  

 
To evaluate 

71022.32 ×  let 
71022.3210 ×=x and take the 

logarithm of both sides of the 
equation to obtain: 
 

( ) 10ln2ln1022.3 7 x=×  

Solve for x to obtain: 
 

710≈x  

Substitute to obtain: 
 ( ) y10

1002
10 7

7

10
10

≈=T  

 
Express the ratio of this waiting 
time to the lifetime of the universe 
Tuniverse: 

7
7

10
10

10

universe

10
y10
y10
≈=

T
T

 

or 

universe
107

10 TT ≈  

 
Heat Engines and Refrigerators 
 
21 •  
Picture the Problem We can use the definition of the efficiency of a heat engine to relate 
the work done W, the heat absorbed Qin, and the heat rejected each cycle Qout.  

 
(a) Express Qin in terms of W and ε : 
 

J500
0.2

J100
in ===

ε
WQ  

 
(b) Solve the definition of efficiency 
for and evaluate outQ : 

( ) ( )( )
J400

2.01J5001inout

=

−=−= εQQ
 

 
22 •  
Picture the Problem We can use its definition to find the efficiency of a heat engine 
from the work done, the heat absorbed, and the heat rejected each cycle. 

 
(a) Use the definition of the 
efficiency of  a heat engine: 
 

%30
J400
J120

in

==≡
Q
Wε  

 
(b) Solve the definition of efficiency 
for and evaluate outQ : 

( ) ( )( )
J280

3.01J4001inout

=

−=−= εQQ
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23 •  
Picture the Problem We can use its definition to find the efficiency of the engine and 
the definition of power to find its power output. 

 
(a) Apply the definition of the 
efficiency of a heat engine: 
 

%0.40
J100
J601

Q
1

in

out =−=−=
Qε  

 
(b) Use the definition of power to 
find the power output of this engine: 

( ) W80.0
s0.5

J1000.4in ==
∆

=
∆
∆

=
t

Q
t

WP ε

 
*24 •  
Picture the Problem We can apply their definitions to find the COP of the refrigerator 
and the efficiency of the heat engine. 

 
(a) Using the definition of the COP, 
relate the heat absorbed from the 
cold reservoir to the work done each 
cycle: 
 

W
QcCOP =  

Relate the work done per cycle to Qh  
and Qc: 
 

ch QQW −=  

Substitute to obtain: 
 ch

cCOP
QQ

Q
−

=  

 
Substitute numerical values and 
evaluate COP: 

67.1
kJ5kJ8

kJ5COP =
−

=  

 
(b) Use the definition of efficiency 
to relate the work done per cycle to 
the heat absorbed from the high-
temperature reservoir: 
 

hQ
W

=ε  

Substitute numerical values and 
evaluate ε : 

%5.37
kJ8
kJ3

==ε  
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25 ••  
Picture the Problem To find the heat added during each step we need to find the 
temperatures in states 1, 2, 3, and 4. We can then find the work done on or by the gas 
along each pass from the area under each straight-line segment and the heat that enters or 
leaves the system from TCQ ∆= V and .P TCQ ∆=  We can find the efficiency of the 

cycle from the work done each cycle and the heat that enters the system each cycle. 
 

(a) The cycle is shown to the right: 

 
 

Apply the ideal-gas law to state 1 to 
find T1: 

( )( )
( )( )

K300
Katm/molL108.206mol1

L24.6atm1
2

11
1

=
⋅⋅×

=

=

−

nR
VPT

 

 
The pressure doubles while the 
volume remains constant between 
states 1 and 2. Hence: 
 

KTT 6002 12 ==  

The volume doubles while the 
pressure remains constant between 
states 2 and 3. Hence: 
 

KTT 12002 23 ==  

The pressure is halved while the 
volume remains constant between 
states 3 and 4. Hence: 
 

KTT 60032
1

4 ==  

For path 1→2: 
 
 
 
 
 

02121 =∆= →→ VPW  

and 

( )( )
kJ74.3

K300K600KJ/mol8.3142
3

212
3

21V21int,21

=

−⋅=

∆=∆=∆= →→→→ TRTCEQ
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For path 2→3: 
 
 
 
 
 
 
 
 
 
 
 
 

( )( )

kJ99.4
atmL

J101.325atmL20.49

L24.6L49.2atm2
2232

=
⋅

×⋅=

−=
∆= →→ VPW

 

and 

( )(
)

kJ5.12

K600
K1200KJ/mol8.3142

5

322
5

32P32

=

−

⋅=

∆=∆= →→→ TRTCQ

 

For path 3→4: 
 
 
 
 
 
 
 
 

0
4343

=

∆= →→ VPW
 

and 

( )(
)

kJ48.7

K0021
K600KJ/mol8.3142

3

432
3

43V43int,43

−=

−

⋅=

∆=∆=∆= →→→→ TRTCEQ

 

 
For path 4→1: 
 ( )( )

kJ49.2
atmL

J101.3atmL6.24

L2.94L24.6atm1
1414

=
⋅

×⋅−=

−=
∆= →→ VPW

 

and 

( )( )
kJ24.6

K600K003KJ/mol8.3142
5

142
5

14P14

−=

−⋅=

∆=∆= →→→ TRTCQ

 
(b) Use its definition to find the 
efficiency of this cycle: 

%4.15
kJ12.5kJ3.74
kJ2.49kJ4.99

3221

1432

in

=
+
−

=

+
+

==
→→

→→

QQ
WW

Q
Wε

 

 
Remarks: Note that the work done per cycle is the area bounded by the rectangular 
path. 
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26 ••  
Picture the Problem The three steps in the 
process are shown on the PV diagram. We 
can find the efficiency of the cycle by 
finding the work done by the gas and the 
heat that enters the system per cycle. 

 
 

Express the efficiency of the cycle: 
 inQ

W
=ε  

 
Find the heat entering or leaving the 
system during the adiabatic 
expansion: 
 

01 =Q  

Find the heat entering or leaving the 
system during the isobaric 
compression: 
 

( )( ) Latm35L20L10atm12
7

22
7

22
7

2V2

⋅−=−=

∆=∆=∆= VPTRTCQ
 

 

Find the heat entering or leaving the 
system during the constant-volume 
process: 
 

( )( )
Latm41

L10atm1-atm2.642
5

32
5

32
5

3V3

⋅=
=

∆=∆=∆= PVTRTCQ
 

 
Apply the 1st law of thermodynamics 
to the cycle ( 0cycle int, =∆E ) to 

obtain: 

Latm6
Latm41L35atm0

321

inininton

⋅=
⋅+⋅−=

++=
−=−∆=

QQQ
QQEW

 

 
Substitute and evaluate ε : %6.14

Latm41
Latm6

=
⋅
⋅

=ε  

 
27 ••  
Picture the Problem We can find the efficiency of the cycle by finding the work done 
by the gas and the heat that enters the system per cycle. 
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Apply the ideal-gas law to states 1, 
2, 3, and 4 to find the pressures at 
these points: 
 
 
 

( )( )

( )
atm33.1

K400
K24.6

Katm/molL108.206mol1 2
1

1
1

=
×

⋅⋅×
=

=

−

V
nRTP

Proceed as above to obtain the 
values shown in the table: 
 
 
 
 
 
 

 
Point P V T 

(atm) (L) (K) 
1 1.330 24.6 400 
2 0.667 49.2 400 
3 0.500 49.2 300 
4 1.000 24.6 300  

The PV diagram is shown to the 
right: 

 
Express the efficiency of the cycle: 
 inQ

W
=ε  

 
Find the work done by the gas and 
the heat that enters the system 
during the isothermal expansion 
from 1 to 2: 
 
 
 
 

( )( )

( )

kJ305.2
L24.6
L49.2lnK400

KJ/mol8.314mol1

ln
1

2
12121

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⋅=

== →→ V
VnRTQW

 

Find the work done by the  
gas and the heat that enters  
the system during the constant-
volume compression from 2 to 3: 
 

032 =→W  

and 

( )( )
kJ2.10

K400K300J/K21
32V32

−=
−=

∆= →→ TCQ
 

 



Chapter 19    
 

 

1454 

Find the work done by the gas and the 
heat that enters the system during the 
isothermal expansion from 3 to 4: 
 
 
 
 

( )( )

( )

kJ729.1
L2.94
L6.42lnK300

KJ/mol8.314mol1

ln
3

4
34343

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⋅=

== →→ V
VnRTQW

 

 
Find the work done by the  
gas and the heat that enters  
the system during the constant-
volume process from 4 to 1: 
 

014 =→W  

and 

( )( )
kJ2.10

K300K400J/K21
14V14

=
−=

∆= →→ TCQ
 

 
Evaluate the work done each cycle: 
 

kJ0.5760
0kJ1.7290kJ2.305

14433221

=
+−+=

+++= →→→→ WWWWW
 

 
Find the heat that enters the system 
each cycle: 
 kJ4.405

kJ2.100kJ2.305
1421in

=
+=

+= →→ QQQ
 

 
Substitute numerical values and 
evaluate ε : 

%1.13
kJ4.405
kJ0.5760

==ε  

 
*28 ••  
Picture the Problem We can use the ideal-gas law to find the temperatures of each state 
of the gas and the heat capacities at constant volume and constant pressure to find the heat 
flow for the constant-volume and isobaric processes. Because the change in internal 
energy is zero for the isothermal process, we can use the expression for the work done on 
or by a gas during an isothermal process to find the heat flow during such a process. 
Finally, we can find the efficiency of the cycle from its definition. 

 
(a) Use the ideal-gas law to find the 
temperature at point 1: 
 

( )( )
( )( )

K301

KJ/mol8.314mol1
L25kPa10011

1

=

⋅
==

nR
VPT
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Use the ideal-gas law to find the 
temperatures at points 2 and 3: 
 

( )( )
( )( )

K601

KJ/mol8.314mol1
L25kPa20022

32

=

⋅
===

nR
VPTT

 

 
(b) Find the heat entering or leaving 
the system for the constant-volume 
process from 1 to 2: 

( )
( )

kJ3.74

K301K601
KJ/mol8.3142

3

212
3

21V21

=

−×

⋅=

∆=∆= →→→ TRTCQ

 

 
Find the heat entering or leaving the 
system for the isothermal process 
from 2 to 3: 
 

( )( )

( )

kJ46.3

L52
L05lnK016

KJ/mol8.314mol1

ln
2

3
232

=

×

⋅=

=→ V
VnRTQ

 

 
Find the heat entering or leaving the 
system during the isobaric 
compression from 3 to 1: 
 

( )
( )

kJ24.6

K601K301
KJ/mol8.3142

5

132
5

13P13

−=

−×

⋅=

∆=∆= →→→ TRTCQ

 

 
(c) Express the efficiency of the cycle: 
 3221in →→ +

==
QQ

W
Q
Wε  

 
Apply the 1st law of 
thermodynamics to the cycle: 
 kJ0.960

kJ6.24kJ3.46kJ.743
133221

=
−+=

++== →→→∑ QQQQW

 

because, for the cycle, ∆U = 0. 
 

Substitute and evaluate ε : %3.13
kJ3.46kJ3.74

kJ0.960
=

+
=ε  

 
29 ••  
Picture the Problem We can use the ideal-gas law to find the temperatures of each state 
of the gas. We can find the efficiency of the cycle from its definition; using the area 
enclosed by the cycle to find the work done per cycle and the heat entering the system 
between states 1 and 2 and 2 and 3 to determine Qin. 
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(a) Use the ideal-gas law for a fixed 
amount of gas to find the 
temperature in state 2 to the 
temperature in state 1: 
 

2

22

1

11

T
VP

T
VP

=  

 

Solve for and evaluate T2: 
 

( ) ( )
( )

K600

atm1
atm3K200

1

2
1

11

22
12

=

===
P
PT

VP
VPTT

 

 
Apply the ideal-gas law for a fixed 
amount of gas to states 2 and 3 to 
obtain: 
 

( ) ( )
( )

K1800

L100
L300K600

2

3
2

22

33
23

=

===
V
VT

VP
VPTT

 

 
Apply the ideal-gas law for a fixed 
amount of gas to states 3 and 4 to 
obtain: 
 

( ) ( )
( )

K600

atm3
atm1K1800

3

4
3

33

44
34

=

===
P
PT

VP
VPTT

 

 
(b) Express the efficiency of the 
cycle: 
 

inQ
W

=ε  

 
Use the area of the rectangle to find 
the work done each cycle: 
 

( )( )
Latm400

atm1atm3L100L300
⋅=

−−=
∆∆= VPW

 

 
Apply the ideal-gas law to state 1 to 
find the product of n and R: 

( )( )

atm/KL0.5
K200

L100atm1

1

11

⋅=

==
T
VPnR

 

 
Noting that heat enters the system 
between states 1 and 2 and states 2 
and 3, express Qin: 

( )nRTT
TnRTnR

TCTC
QQQ

322
7

212
5

322
7

212
5

32P21V

3221in

→→

→→

→→

→→

∆+∆=

∆+∆=

∆+∆=
+=

 

 
Substitute numerical values and 
evaluate Qin: 

( )[
( )]

( )
Latm2600

atm/KL5.0
K600K1800

K200K600

2
7

2
5

in

⋅=
⋅×

−+

−=Q
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Substitute and evaluate ε : %4.15
Latm2600
Latm400

=
⋅
⋅

=ε  

 
30 •••  
Picture the Problem To find the efficiency of the diesel cycle we can find the heat that 
enters the system and the heat that leaves the system and use the expression that gives the 
efficiency in terms of these quantities. Note that no heat enters or leaves the system 
during the adiabatic processes a→b and c→d. 
 
Express the efficiency of the cycle 
in terms of Qc and Qh: 
 h

c1
Q
Q

−=ε  

Express Q for the isobaric warming 
process b→c: 
 

( )bccb TTCQQ −==→ Ph  

Express Q for the constant-volume 
cooling process d→a: 
 

( )adad TTCQQ −==→ Vc  

Substitute to obtain: ( )
( )

( )
( )bc

ad

bc

ad

TT
TT

TTC
TTC

−
−

−=

−
−

−=

γ

ε

1

1
P

V

 

 
Using the equation of state for an 
adiabatic process, relate the 
temperatures Ta and Tb: 
 

11 −− = γγ
bbaa VTVT                (1) 

Proceeding similarly, relate the 
temperatures Tc and Td: 
 

11 −− = γγ
ddcc VTVT                (2) 

Use equations (1) and (2) to 
eliminate Ta and Td: 
 ( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−=

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=

−−

−

−

−

−

c

b

a

b

c

b

a

c

bc

a

b
b

d

c
c

T
T

V
V

T
T

V
V

TT
V
VT

V
VT

1
1

1

11

1

1

1

1

γ

γ
ε

γγ

γ

γ

γ

γ

 

because Va = Vd. 
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Apply the ideal-gas law for a fixed 
amount of gas to relate Tb and Tc: c

b

c

b

V
V

T
T

=  

because Pb = Pc. 
 

Substitute and simplify to obtain: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−=⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−=

−−−

a

b

a

c

a

b

a

c

a

b

a

c

a

b

a

b

a

c

a

c

a

c

c

b

a

b

c

b

a

c

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V
V
V

V
V

V
V

V
V

V
V

γ

γγ
ε

γγ

γγγγ

1

1
1

1

111

 

 
*31 ••  
Picture the Problem We can use the efficiency of a Carnot engine operating between 
reservoirs at body temperature and typical outdoor temperatures to find an upper limit on 
the efficiency of an engine operating between these temperatures. 
 
(a) Express the maximum efficiency 
of an engine operating between 
body temperature and 70°F: 
 

h

c
C 1

T
T

−=ε  

Use ( ) 27332F9
5 +−= tT to obtain: Tbody = 310 K and Troom = 294 K 

 
Substitute numerical values and 
evaluate Cε : 

 

%16.5
K310
K2941C =−=ε  

 need.
t weenergy tha get the  tofoodeat   weRather, t.environmen  theandbody 
ourbetween  swappingheat  fromenergy our get t don' that notecan  we

but text in the discussedbeen not  haveenergy body with  supply thethat 
ones  theassuch  reactions chemical  tolaw second  theofn applicatio The

amics. thermodynof law second  thecontradictnot  doesbody human  a of
efficiency actual  than thelessly considerab is efficiency thisfact that  The
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(b)

level.high ly unreasonab
an at  maintained be  tohave  wouldraturesbody tempe internal

  ,efficiency eappreciabl  work withengineheat  a make To humans. as
 conditions same eroughly thunder  survive animals bloodedMost warm −

 

 
32 •••  
Picture the Problem The Carnot 
cycle’s four segments (shown to the 
right) are: (A) an isothermal expansion 
at T = Th from V1 to V2, (B) an adiabatic 
expansion from V2 to V3, (C) an 
isothermal compression from V3 to V4 at 
T = Tc, and (D) an adiabatic 
compression from V4 to V1. We can find 
the Carnot efficiency for a gas described 
by the Clausius equation by expressing 
the ratio of the work done per cycle to 
the heat entering the system per cycle. 

 
 

Express the efficiency of the Carnot 
cycle in terms of the work done and 
the heat that enters the system per 
cycle: 
 

hQ
W

=ε  

Apply the first law of 
thermodynamics to segment A: 
 

h

1

2
hh

AA int,AA

ln
2

1

2

1

Q

bnV
bnVnRT

bnV
dVnRT

PdVWEWQ

V

V

V

V

=

−
−

=
−

=

==∆+=

∫

∫

 

 
Follow the same procedure for 
segment C to obtain: 
 

bnV
bnVnRT

bnV
dVnRT

PdVWEWQ

V

V

V

V

−
−

=
−

=

==∆+=

∫

∫

3

4
cc

CC int,CC

ln
4

3

4

3  

and 

bnV
bnVnRTQ

−
−

=
4

3
cc ln  
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Apply the first law of 
thermodynamics to the complete 
cycle ( 0cycle int, =∆E ) to express W: 

 
bnV
bnVnRT

bnV
bnVnRT

QQW

−
−

−
−
−

=

−=

4

3
c

1

2
h

ch

lnln
 

 
Substitute and simplify to obtain: 

bnV
bnVT

bnV
bnVT

bnV
bnVnRT

bnV
bnVnRT

bnV
bnVnRT

−
−
−
−

−=

−
−

−
−

−
−
−

=

1

2
h

4

3
c

1

2
h

4

3
c

1

2
h

ln

ln
1

ln

lnln
ε

 

 
Apply the first law of 
thermodynamics to the adiabatic 
processes B and D: 
 

dTCdV
bnV

nRT
dTCPdVdEdWdQ

V

VB int,BB 0

+
−

=

+=+==
 

 
Separate variables and integrate  
to obtain: 

( )∫

∫∫

−
−−=

−
−=

bnV
dV
bnV

dV
C
nT

T
dT

1

V

γ
 

or 
( ) ( )
( ) constantln

constantln1ln
1 +−=

+−−−=
−γ

γ

bnV

bnVT
 

 
Simplify to obtain: ( ) constantlnln 1 =−+ −γbnVT  

or 
( ) constantln 1 =− −γbnVT  

and 
( ) constant1 =− −γbnVT  

 
Using this result, relate V2 and V3 to 
Th and Tc: 
 

( ) ( ) 1
3c

1
2h

−− −=− γγ bnVTbnVT    (1) 

Relate V1 and V4 to Th and Tc: 
 

( ) ( ) 1
4c

1
1h

−− −=− γγ bnVTbnVT     (2) 

Divide equation (1) by equation (2) 
and simplify to obtain: 
 

( )
( )

( )
( ) 1

4h

1
3c

1
1h

1
2h

−

−

−

−

−
−

=
−
−

γ

γ

γ

γ

bnVT
bnVT

bnVT
bnVT

 

or 
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bnV
bnV

bnV
bnV

−
−

=
−
−

4

3

1

2  

 
Substitute in our expression for ε 
and simplify: 
 h

c

1

2
h

1

2
c

1
ln

ln
1

T
T

bnV
bnVT

bnV
bnVT

−=

−
−
−
−

−=ε  

the same as for an ideal gas. 
 

Second Law of Thermodynamics 
 
33 ••  
Determine the Concept The relationship of the perfect engine and the refrigerator to 
each other and to the hot and cold reservoirs is shown below. To remove 500 J from the 
cold reservoir and reject 800 J to the hot reservoir, 300 J of work must be done on the 
system. Assuming that the heat-engine statement is false, one could use the 800 J rejected 
to the hot reservoir to do 300 J of work. Thus, running the refrigerator connected to the 
″perfect″ heat engine would have the effect of  transferring 500 J of heat from the cold to 
the hot reservoir without any work being done, in violation of the refrigerator statement 
of the second law. 
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*34 ••  
Determine the Concept The work done by the system is the area enclosed by the cycle, 
where we assume that we start with the isothermal expansion. It is only in this expansion 
that heat is extracted from a reservoir. There is no heat transfer in the adiabatic expansion 
or compression. Thus, we would completely convert heat to mechanical energy, without 
exhausting any heat to a cold reservoir, in violation of the second law. 

 
Carnot Engines 
 
35 •  
Picture the Problem We can find the efficiency of the Carnot engine using 

hc /1 TT−=ε and the work done per cycle from ./ hQW=ε  We can apply conservation 

of energy to find the heat rejected each cycle from the heat absorbed and the work done 
each cycle. We can find the COP of the engine working as a refrigerator from its 
definition. 

 
(a) Express the efficiency of the 
Carnot engine in terms of the 
temperatures of the hot and cold 
reservoirs: 
 

%3.33
K300
K20011

h

c
C =−=−=

T
Tε  

 

(b) Using the definition of 
efficiency, relate the work done each 
cycle to the heat absorbed from the 
hot reservoir: 
 

( )( ) J33.3J1000.333hC === QW ε  

 

(c) Apply conservation of energy to 
relate the heat given off each cycle 
to the heat absorbed and the work 
done: 
 

J66.7J33.3J100hc =−=−= WQQ  

(d) Using its definition, express and 
evaluate the refrigerator’s coefficient 
of performance: 

00.2
J33.3
J66.7COP c ===

W
Q

 

 
36 •  
Picture the Problem We can find the efficiency of the engine from its definition and the 
additional work done if the engine were reversible from ,hCQW ε= where εC is the 

Carnot efficiency. 
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(a) Express the efficiency of the 
engine in terms of the heat absorbed 
from the high-temperature reservoir 
and the heat exhausted to the low-
temperature reservoir: 

%0.20
J250
J2001

1
h

c

h

ch

h

=−=

−=
−

==
Q
Q

Q
QQ

Q
Wε

 

 
(b) Express the additional work done 
if the engine is reversible: 
 

aWWW partCarnot −=∆  

Relate the work done by a reversible 
engine to its Carnot efficiency: 
 

( ) J3.83J250
K300
K2001

1 h
h

c
hC

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−== Q

T
TQW ε

 

 
Substitute and evaluate ∆W: J33.3J50J3.38 =−=∆W  

 
37 ••  
Determine the Concept Let the first engine be run as a refrigerator. Then it will remove 
140 J from the cold reservoir, deliver 200 J to the hot reservoir, and require 60 J of energy 
to operate. Now take the second engine and run it between the same reservoirs, and let it 
eject 140 J into the cold reservoir, thus replacing the heat removed by the refrigerator. If 
ε2, the efficiency of this engine, is greater than 30%,  then Qh2, the heat removed from the 
hot reservoir by this engine, is 140 J/(1 − ε2) > 200 J, and the work done by this engine is 
W = ε2Qh2 > 60 J. The end result of all this is that the second engine can run the 
refrigerator, replacing the heat taken from the cold reservoir, and do additional 
mechanical work. The two systems working together then convert heat into mechanical 
energy without rejecting any heat to a cold reservoir, in violation of the second law. 

 
38 ••  
Determine the Concept If the reversible engine is run as a refrigerator, it will require 
100 J of mechanical energy to take 400 J of heat from the cold reservoir and deliver 500 J 
to the hot reservoir. Now let the second engine, with ε2 > 0.2, operate between the same 
two heat reservoirs and use it to drive the refrigerator. Because ε2 > 0.2, this engine will 
remove less than 500 J from the hot reservoir in the process of doing 100 J of work. The 
net result is then that no net work is done by the two systems working together, but a 
finite amount of heat is transferred from the cold to the hot reservoir, in violation of the 
refrigerator statement of the second law. 

 
*39 ••  
Picture the Problem We can use the definition of efficiency to find the efficiency of the 
Carnot engine operating between the two reservoirs. 
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(a) Use its definition to find the 
efficiency of the Carnot engine: 
 

%3.33
J150
J50

h
C ===

Q
Wε  

 
(b) If COP > 2, then 50 J of work will remove more than 100 J of heat from the cold 
reservoir and put more than 150 J of heat into the hot reservoir. So running engine (a) to 
operate the refrigerator with a COP > 2 will result in the transfer of heat from the cold to 
the hot reservoir without doing any net mechanical work in violation of the second law. 
 
40 ••   
Picture the Problem We can use the definitions of the efficiency of a Carnot engine and 
the coefficient of performance of a refrigerator to find these quantities. The work done 
each cycle by the Carnot engine is given by hCQW ε= and we can use the conservation 

of energy to find the heat rejected to the low-temperature reservoir. 
 

(a) Use the definition of the 
efficiency of a Carnot engine to 
obtain: 
 

74.3%
K300
K7711

h

c
C =−=−=

T
Tε  

 

(b) Express the work done each 
cycle in terms of the efficiency of 
the engine and the heat absorbed 
from the high-temperature reservoir: 
 

( )( ) J3.74J100743.0hC === QW ε  

 

(c) Apply conservation of energy to 
obtain: 

J25.7J74.3J001hc =−=−= WQQ  

 
(d) Using its definition, express and 
evaluate the refrigerator’s 
coefficient of performance: 

346.0
J74.3
J25.7COP c ===

W
Q

 

 
41 ••  
Picture the Problem We can use the ideal-gas law for a fixed amount of gas and the 
equations of state for an adiabatic process to find the temperatures, volumes, and 
pressures at the end points of each process in the given cycle. We can use 

TQ ∆= VC and TQ ∆= PC to find the heat entering and leaving during the constant-

volume and isobaric processes and the first law of thermodynamics to find the work done 
each cycle. Once we’ve calculated these quantities, we can use its definition to find the 
efficiency of the cycle and the definition of the Carnot efficiency to find the efficiency of 
a Carnot engine operating between the extreme temperatures. 

 
(a) Apply the ideal-gas law for a 
fixed amount of gas to relate the 3

33

1

11

T
VP

T
VP

=  
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temperature at point 3 to the 
temperature at point 1: 
 

or, because P1 = P3, 

1

3
13 V
VTT =                        (1) 

 
Apply the ideal-gas law for a fixed 
amount of gas to relate the pressure 
at point 2 to the temperatures at 
points 1 and 2 and the pressure at 1: 
 

2

22

1

11

T
VP

T
VP

=  

or, because V1 = V2, 

( ) atm1.55
K273
K423atm1

1

2
12 ===

T
TPP  

 
Apply the state equation for an 
adiabatic process to relate the 
pressures and volumes at points 2 
and 3: 
 

γγ
3311 VPVP =  

Noting that V1 = 22.4 L, solve for 
and evaluate V3: ( )

L30.6
atm1

atm1.55L22.4
1.4
11

3

1
13

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

γ

P
PVV

 

 
Substitute in equation (1) and 
evaluate T3: 
 

( ) K373
L22.4
L30.6K2733 ==T  

and 
C10027333 °=−= Tt  

 
(b) Process 1→2 takes place at 
constant volume (note that γ = 1.4 
corresponds to a diatomic gas and 
that CP – CV = R): 
 

( )( )
kJ3.12

K273K423KJ/mol8.314
C

2
5

212
5

21V21

=

−⋅=

∆=∆= →→→ TRTQ
 

 

Process 2→3 takes place 
adiabatically: 
 

032 =→Q  

Process 3→1 is isobaric (note that  
CP = CV + R): 
 

( )( )
kJ2.91

K373K732KJ/mol8.314
C

2
7

212
7

13P13

−=

−⋅=

∆=∆= →→→ TRTQ
 

 
(c) Use its definition to express the 
efficiency of this cycle: 
 

inQ
W

=ε  
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Apply the first law of 
thermodynamics to the cycle: 
 

oninint WQK +=∆  
or, because 0cycle int, =∆E (the system begins 

and ends in the same state) and  
Won = − Wby the gas = W, inQW = . 

 
Evaluate W: 
 

kJ0.210
kJ2.910kJ3.12

133221

=
−+=

++== →→→∑ QQQQW
 

 
Substitute and evaluate ε : %73.6

kJ3.12
kJ0.210

==ε  

 
(d) Express and evaluate the 
efficiency of a Carnot cycle 
operating between 423 K and  
273 K: 

35.5%
K234
K73211

h

c
C =−=−=

T
Tε  

 
42 ••  
Picture the Problem We can find the maximum efficiency of the steam engine by 
calculating the Carnot efficiency of an engine operating between the given temperatures. 
We can apply the definition of efficiency to find the heat discharged to the engine’s 
surroundings in 1 h. 

 
(a) Find the efficiency of a Carnot 
engine operating between these 
temperatures: 
 

%5.40
K543
K32311

h

c
max =−=−=

T
Tε  

 

Find the efficiency of the steam 
engine as a percentage of the 
maximum possible efficiency: 
 

maxmaxenginesteam 741.0
405.0
30.0 εεε ==  

 

(b) Relate the heat discharged to the 
engine’s surroundings to Qh and the 
efficiency of the engine: 
 

( ) hc 1 QQ ε−=  

Using its definition, relate the 
efficiency of the engine to the heat  
intake of the engine and the work it 
does each cycle: 
 

εε
tPWQ ∆

==h  
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Substitute and evaluate cQ in 1 h: ( )

( ) ( )( )

GJ68.1
0.3

s3600kJ/s2003.01

1c

=

−=

∆
−=

ε
ε tPQ

 

 
Heat Pumps  
 
*43 •  
Picture the Problem We can use the definition of the COPHP and the Carnot efficiency 
of an engine to express the maximum efficiency of the refrigerator in terms of the 
reservoir temperatures. We can apply equation 19-10 and the definition of power to find 
the minimum power needed to run the heat pump. 

 
(a) Express the COPHP in terms of 
Th and Tc: 

ch

h

h

c

h

c

h

hh
HP

1

1

1

1

COP

TT
T

T
T

Q
Q

QQ
Q

W
Q

c

−
=

−
=

−
=

−
==

 

 
Substitute numerical values and 
evaluate the COPHP: 

26.6
K263K313

K133COPHP =
−

=  

 
(b) Using its definition, express the 
power output of the engine: 
  

t
WP
∆

=  

Use equation 19-10 to express the 
work done by the heat pump: 
 

HP

h

COP1+
=

Q
W  

Substitute and evaluate P: 
kW75.2

6.261
kW20

COP1 HP

h =
+

=
+

∆
=

tQ
P  

 
(c) Find the minimum power if the 
COP is 60% of the efficiency of an 
ideal pump: 

( ) ( )
kW21.4

6.266.01
kW20

COP6.01 maxHP,

c
min

=

+
=

+
∆

=
tQ

P
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44 •  
Picture the Problem We can use the definition of the COP to relate the heat removed 
from the refrigerator to its power rating and operating time. By expressing the COP in 
terms of Tc and Th we can write the amount of heat removed from the refrigerator as a 
function of Tc,  Th, P, and ∆t.  

 
(a) Express the amount of heat the 
refrigerator can remove in a given 
period of time as a function of its 
COP: 
 

( )
( ) tP

WQ
∆=

=
COP
COPc  

 
 

Express the COP in terms of Th and 
Tc: 

ch

c

h

c

h

h

h

cc

1
1

1111

COP

TT
T

T
T

Q
WQ

Q
Q

W
Q

−
=

−
−

=−=
−

=

−
===

εε
ε

εε

 

 
Substitute to obtain: 

tP
TT

TQ ∆⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
ch

c
c  

 
Substitute numerical values and 
evaluate Qc: 

( )( )

kJ303

s60W370
K273K293

K273
c

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=Q
 

 
(b) Find the heat removed if the 
COP is 70% of the efficiency of an 
ideal pump: 

( ) ( )( )

kJ122

s60W370
K273K293

K2737.0c

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

='Q

 
45 •  
Picture the Problem We can use the definition of the COP to relate the heat removed 
from the refrigerator to its power rating and operating time. By expressing the COP in 
terms of Tc and Th we can write the amount of heat removed from the refrigerator as a 
function of Tc,  Th, P, and ∆t.  

 
(a) Express the amount of heat the 
refrigerator can remove in a given 
period of time as a function of its 

( )
( ) tP

WQ
∆=

=
COP
COPc  
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COP:  
Express the COP in terms of Th and 
Tc: 

ch

c

h

c

h

h

h

cc

1
1

1

111

COP

TT
T

T
T

Q
WQ

Q
Q

W
Q

−
=−

−
=

−=
−

=

−
===

εε
ε

εε

 

 
Substitute to obtain: 

tP
TT

TQ ∆⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
ch

c
c  

 
Substitute numerical values and 
evaluate Qc: 

( )( )

kJ731

s60W370
K273K083

K273
c

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=Q
 

 
(b) Find the heat removed if the 
COP is 70% of the efficiency of an 
ideal pump: 

( ) ( )( )

kJ121

s60W370
K273K083

K2737.0c

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

='Q

 
Entropy Changes 
 
46 •  
Picture the Problem We can use the definition of entropy change to find the change in 
entropy of the water as it freezes. 

 
Apply the definition of entropy 
change to obtain: T

mL
T
QS f−
=

∆
=∆  

 
Substitute numerical values and 
evaluate ∆S: 

( )( ) J/K22.0
K273

J/g333.5g18
−=

−
=∆S  
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*47 ••  
Picture the Problem The change in the entropy of the world resulting from the freezing 
of this water and the cooling of the ice formed is the sum of the entropy changes of the 
water-ice and the freezer. Note that, while the entropy of the water decreases, the entropy 
of the freezer increases. 
  
Express the change in entropy of the 
universe resulting from this freezing 
and cooling process: 
 

freezerwateru SSS ∆+∆=∆              (1) 

Express ∆Swater: 
 

coolingfreezingwater SSS ∆+∆=∆         (2) 

Express ∆Sfreezing: 

freezing

freezing
freezing T

Q
S

−
=∆                     (3) 

where the minus sign is a consequence of 
the fact that heat is leaving the water as it 
freezes. 
 

Relate Qfreezing to the latent heat of 
fusion and the mass of the water: 
 

ffreezing mLQ =  

Substitute in equation (3) to obtain: 
 freezing

f
freezing T

mLS −
=∆  

 
Express ∆Scooling: 

i

f
pcooling ln

T
TmCS =∆  

 
Substitute in equation (2) to obtain: 
 i

f
p

freezing

f
water ln

T
TmC

T
mLS +

−
=∆  

 
Noting that the freezer gains heat (at 
263 K) from the freezing water and 
cooling ice, express ∆Sfreezer: 
 

freezer

p

freezer

f

freezer

ice cooling

freezer

ice
freezer

T
TmC

T
mL

T
Q

T
QS

∆
+=

∆
+

∆
=∆

 

Substitute for ∆Swater and ∆Sfreezer in equation (1): 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ∆
+++

−
=

∆
+++

−
=∆

freezer

p

freezer

f

i

f
p

freezing

f

freezer

p

freezer

f

i

f
p

freezing

f
u

ln

ln

T
TC

T
L

T
TC

T
Lm

T
TmC

T
mL

T
TmC

T
mLS
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Substitute numerical values and evaluate ∆Su: 
 

( ) ( )

( )( )

J/K40.2

K263
K263K273KJ/kg2100

K263
J/kg105.333

K273
K263lnKJ/kg2100

K273
J/kg105.333kg05.0

33

u

=

⎥
⎦

⎤−⋅
+

⎢
⎣

⎡ ×
+⋅+

×
−=∆S

 

and, because ∆Su > 0, the entropy of the universe increases. 
 
48 •  
Picture the Problem We can use the definition of entropy change and the first law of 
thermodynamics to express ∆S for the ideal gas as a function of its initial and final 
volumes. 

 
(a) Use its definition to express the 
entropy change of the gas: 
 

T
QS ∆

=∆  

Apply the first law of 
thermodynamics to the isothermal 
process: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=−∆=∆

i

f
onint ln

V
VnRTWEQ  

because ∆Eint = 0 for an isothermal process. 
 

Substitute to obtain: 

( )( )

J/K11.5

L40
L80lnKJ/mol8.314mol2

ln
i

f

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

=∆
V
VnRS

 

 
(b) Because the process is reversible: 0u =∆S  

 
 Remarks: The entropy change of the environment of the gas is −11.5 J/K. 

 
49 •  
Picture the Problem We can use the definition of entropy change and the 1st law of 
thermodynamics to express ∆S for the ideal gas as a function of its initial and final 
volumes. 

 
(a) Use its definition to express the 
entropy change of the gas: 
 

T
QS ∆

=∆  
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Apply the first law of 
thermodynamics to the isothermal 
process: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=−∆=∆

i

f
onint ln

V
VnRTWEQ  

because ∆Eint = 0 for an isothermal process. 
 

Substitute to obtain: 

( )( )

J/K11.5

L40
L80lnKJ/mol8.314mol2

ln
i

f

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

=∆
V
VnRS

 

 
(b) Because the process is not 
quasi-static, it is non-reversible: 

0u >∆S  

 
  
50 •  
Picture the Problem We can use the definition of entropy change to find the change in 
entropy of the water as it changes to steam. 

 
Apply the definition of entropy 
change to obtain: T

mL
T
QS v=

∆
=∆  

 
Substitute numerical values and 
evaluate ∆S: 

( )( ) kJ/K06.6
K373
MJ/kg26.2kg1

==∆S  

 
51 •  
Picture the Problem We can use the definition of entropy change to find the change in 
entropy of the ice as it melts. 

 
Apply the definition of entropy 
change to obtain: T

mL
T
QS f=

∆
=∆  

 
Substitute numerical values and 
evaluate ∆S: 

( )( ) kJ/K22.1
K273

kJ/kg5.333kg1
==∆S  

 
52 ••  
Picture the Problem We can use the first law of thermodynamics to find the change in 
the internal energy of the system and the change in the entropy of the system from the 
change in entropy of the hot- and cold-reservoirs. 
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(a) Apply the 1st law of 
thermodynamics to find the change 
in the internal energy of the system: 

( )
J50

J50J100J200
oninint

=

−−=
+=∆ WQE

 

 
(b) Express the change in entropy of 
the system as the sum of the entropy 
changes of the high- and low-
temperature reservoirs: 
 

J/K0.167
K200
J100

K300
J200

c

c

h

h
ch

=−=

−=∆−∆=∆
T
Q

T
QSSS

 

 
(c) Because the process is reversible: 0u =∆S  

 
(d) Because Ssystem is a state function: J50int =∆E , J/K0.167=∆S , 

and 
0u >∆S  

 
*53 ••  
Picture the Problem We can use the fact that the system returns to its original state to 
find the entropy change for the complete cycle. Because the entropy change for the 
complete cycle is the sum of the entropy changes for each process, we can find the 
temperature T from the entropy changes during the 1st two processes and the heat 
rejected during the third. 

 
(a) Because S is a state function of 
the system: 
 

0cyclecomplete =∆S  

(b) Relate the entropy change for the 
complete cycle to the entropy 
change for each process: 
 

03

2

2

1

1 =++
T
Q

T
Q

T
Q

 

Substitute numerical values to 
obtain: 

0J400
K400
J200

K300
J300

=
−

++
T

 

 
Solve for T: K267=T  

 
54 ••  
Picture the Problem We can use the definition of entropy change and the 1st law of 
thermodynamics to express ∆S for the ideal gas as a function of its initial and final 
volumes. 
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(a) Use its definition to express the 
entropy change of the gas: 
 

T
QS ∆

=∆  

Apply the first law of 
thermodynamics to the isothermal 
process: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=−∆=∆

i

f
onintin ln

V
VnRTWEQ  

because ∆Eint = 0 for free expansion. 
 

Substitute to obtain: 

( )( )

J/K11.5

L40
L80lnKJ/mol8.314mol2

ln
i

f

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

=∆
V
VnRS

 

 
(b) Because the process is 
irreversible, Su > 0 and, because no 
heat is exchanged: 

J/K5.11u =∆S  

 

   
55 ••  
Picture the Problem Because the ice gains heat as it melts, its entropy change is positive 
and can be calculated from its definition. Because the temperature of the lake is just 
slightly greater than 0°C and the mass of water is so much greater than that of the block 
of ice, the absolute value of the entropy change of the lake will be approximately equal to 
the entropy change of the ice as it melts. 

 
(a) Use the definition of entropy 
change to find the entropy change of 
the ice: 

( )( )

kJ/K244

K273
kJ/kg333.5kg200f

ice

=

==∆
T

mLS
 

 
(b) Relate the entropy change of the 
lake to the entropy change of the 
ice: 
 

kJ/K244icelake −=∆−≈∆ SS  

(c) Because the temperature of the lake is slightly greater than that of the ice, the 
magnitude of the entropy change of the lake is less than 244 kJ/K and the entropy change 
of the universe is greater than zero. The melting of the ice is an irreversible process 
and 0u >∆S . 
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56 ••  
Picture the Problem We can use conservation of energy to find the equilibrium 
temperature of the water and apply the equations for the entropy change during a melting 
process and for constant-pressure processes to find the entropy change of the universe, 
i.e., the piece of ice and the water in the insulated container. 

 
(a) Apply conservation of energy to 
obtain: 
 

gainedlost QQ =  

or 
waterwarmingicemeltingwatercooling QQQ +=  

 
Substitute to relate the masses of the ice and water to their temperatures, specific 
heats, and the final temperature of the water: 
 

( )( )( ) ( )( ) ( )( )( )tt °⋅+=−°°⋅ Ccal/g1g100cal/g79.7g100C100Ccal/g1g100  

 
Solve for t to obtain: C2.10 °=t  

 
(b) Express the entropy change of  
the universe: 
 

watericeu SSS ∆+∆=∆  

Using the expression for the entropy 
change for a constant-pressure 
process, express the entropy change 
of the melting ice and warming ice-
water: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

∆+∆=∆

i

f
P

f

f

waterwarmingicemeltingice

ln
T
Tmc

T
mL

SSS

 

Substitute numerical values to obtain: 
 

( )( ) ( )( ) J/K138
K273
K283.2lnKkJ/kg4.184kg0.1

K273
kJ/kg333.5kg0.1

ice =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅+=∆S  

 
Find the entropy change of the cooling water: 
 

( )( ) J/K115
K373
K283.2lnKkJ/kg4.18kg0.1water −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=∆S  

 
Substitute for ∆Sice and ∆Swater and 
evaluate the entropy change of the 
universe: 
 

J/K23.0

J/K115J/K381u

=

−=∆S
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Remarks: The result that ∆Su > 0 tells us that this process is irreversible. 
 
*57 ••  
Picture the Problem We can use conservation of energy to find the equilibrium 
temperature of the water and apply the equations for the entropy change during a constant 
pressure process to find the entropy changes of the copper block, the water, and the 
universe. 

 
(a) Using the equation for the 
entropy change during a constant-
pressure process, express the 
entropy change of the copper block: 
 

i

f
CuCuCu ln

T
TcmS =∆  

Apply conservation of energy to 
obtain: 
 

gainedlost QQ =  

or 
waterwarmingblockcopper QQ =  

 
Substitute to relate the masses of the block and water to their temperatures, 
specific heats, and the final temperature t of the water: 
 

( )( )( ) ( )( )( )( )tt °⋅=−°°⋅ CkJ/kg 4.184kg/L1L4C100CkJ/kg0.386kg1  

 
Solve for t and Tf:  K275.4 and C26.2 f =°= Tt  

 
Substitute numerical values  and 
evaluate ∆SCu: 
 

( )( )

J/K117

K373.15
K275.4ln

KkJ/kg0.386kg1Cu

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⋅=∆S

 

 
(b) Express the entropy change of 
the water: 
 

i

f
waterwaterwater ln

T
TcmS =∆  

Substitute numerical values and 
evaluate ∆Swater: 
 

( )( )

J/K146

K273
K4.275ln

KkJ/kg184.4kg4water

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⋅=∆S
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(c) Substitute for ∆SCu and ∆Swater 
and evaluate the entropy change of  
the universe: 
 

J/K29.0

J/K146J/K117
waterCuu

=

+−=
∆+∆=∆ SSS

 

 
Remarks: The result that ∆Su > 0 tells us that this process is irreversible. 
 
58 ••  
Picture the Problem Because the mass of the water in the lake is so much greater than 
the mass of the piece of lead, the temperature of the lake will increase only slightly and 
we can reasonably assume that its final temperature is 10°C. We can apply the equation 
for the entropy change during a constant pressure process to find the entropy changes of 
the piece of lead, the water in the lake, and the universe. 

 
Express the entropy change of the 
universe in terms of the entropy 
changes of the lead and the water in 
the lake: 
 

wPbu SSS ∆+∆=∆  

Using the equation for the entropy 
change during a constant-pressure 
process, express and evaluate the 
entropy change of the lead: 
 

( )( )

J/K66.70
K373.15
K15.283ln

KkJ/kg0.128kg2

ln
i

f
PbPbPb

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⋅=

=∆
T
TcmS

 

 
Find the entropy change of the water 
in the lake: 

( )( )( )

J/K37.81
K283.15

K90KkJ/kg0.128kg2
w

PbPbPb

w

Pb

w

w
w

=

⋅
=

∆
===∆

T
Tcm

T
Q

T
QS

 

 
Substitute and evaluate ∆Su: 

J/K10.7

J/K81.37J/K70.66u

=

+−=∆S
 

 
59 ••  
Picture the Problem Because the air temperature will not change appreciably as a result 
of this crash; we can assume that the kinetic energy of the car is transformed into heat at 
a temperature of 20°C. We can use the definition of entropy change to find the entropy 
change of the universe. 
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Express the entropy change of the 
universe as a consequence of the 
kinetic energy of the car being 
transformed into heat: 
 

T
mv

T
QS

2
2
1

u ==∆  

 

Substitute numerical values and 
evaluate ∆Su: ( )

kJ/K1.97

K293.15
s3600

h1
h

km100kg1500
2

2
1

u

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

=∆S  

 
*60 ••  
Picture the Problem The total change in entropy resulting from the mixing of these 
gases is the sum of the changes in their entropies.  
 
(a)  Express the total change in 
entropy resulting from the mixing 
of the gases: 
 

BA SSS ∆+∆=∆  

Express the change in entropy of 
each of the gases: 
 iA

fA
A ln

V
VnRS =∆  

and 

iB

fB
B ln

V
VnRS =∆  

 
Because the initial and final 
volumes of the gases are the same 
and both volumes double: 
 

2ln2ln2
i

f nR
V
VnRS ==∆  

Substitute numerical values and 
evaluate ∆S: 
 

( )( )
J/K5.11

2lnKJ/mol314.8mol12

=

⋅=∆S
 

 

(b)
mechanics. quantum

 using derivedbeen  has phonomenon  thisofn descriptio completeA 
 change.t doesn'entropy   theishable,indistingu are molecules gas  theBecause

 

 
Entropy and Work Lost 
 
*61 ••  
Picture the Problem We can find the entropy change of the universe from the entropy 
changes of the high- and low-temperature reservoirs. The maximum amount of the 500 J 
of heat that could be converted into work can be found from the maximum efficiency of 
an engine operating between the two reservoirs. 
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(a) Express the entropy change of  
the universe: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

+−=∆+∆=∆

ch

ch
chu

11
TT

Q

T
Q

T
QSSS

 

 
Substitute numerical values and 
evaluate ∆Su: 

( )

J/K0.417

K300
1

K400
1J500u

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=∆S

 

 
(b) Express the heat that could have 
been converted into work in terms of 
the maximum efficiency of an 
engine operating between the two 
reservoirs: 
 

hmaxQW ε=  

Express the maximum efficiency of 
an engine operating between the two 
reservoir temperatures: 
 

h

c
Cmax 1

T
T

−== εε  

Substitute and evaluate W: ( )

J125

J500
K400
K30011 h

h

c

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= Q

T
TW

 

 
62 ••  
Picture the Problem Although in the adiabatic free expansion no heat is lost by the gas, 
the process is irreversible and the entropy of the gas increases. In the isothermal 
reversible process that returns the gas to its original state, the gas releases heat to the 
surroundings. However, because the process is reversible, the entropy change of the 
universe is zero. Consequently, the net entropy change is the negative of that of the gas in 
the isothermal compression. 
 
(a) Relate the entropy change of the 
universe to the entropy change of 
the gas during the isothermal 
compression: 
 

i

f
gasu ln

V
VnRSS −=∆−=∆  
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Substitute numerical values and 
evaluate ∆Su: 

( )( )

J/K5.76

L6.24
L3.12ln

KJ/mol8.314mol1u

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⋅−=∆S

 

 

(b) 
cycle.

in the  wasted wasnone and done   work wasno ,reversible
 and isothermal wasexpansion  initial t theextent tha  theTo

 

 
(c) Express the wasted work in 
terms of T and the entropy change of 
the universe: 

( )( )
kJ1.73

J/K5.76K300ulost

=

=∆= STW
 

 
General Problems 
 
63 •  
Picture the Problem We can use the definition of power to find the work done each 
cycle and the definition of efficiency to find the heat that is absorbed each cycle. 
Application of the first law of thermodynamics will yield the heat given off each cycle. 

 
(a) Use the definition of power to 
relate the work done in each cycle to 
the period of each cycle: 
 

( )( )
20.0J

s0.1W200cycle

=

=∆= tPW
 

 

(b) Express the heat absorbed in 
each cycle in terms of the work done 
and the efficiency of the engine: 
 

J66.7
0.3

J20cycle
cycleh, ===

ε
W

Q  

 

Apply the 1st law of 
thermodynamics to find the heat 
given off in each cycle: J46.7

J20J66.7cycleh,cyclec,

=

−=−= WQQ
 

 
64 •  
Picture the Problem We can use their definitions to find the efficiency of the engine and 
that of a Carnot engine operating between the same reservoirs. 

 
(a) Apply the definition of 
efficiency: 
 

%7.16
J150
J12511

h

c

h

=−=−==
Q
Q

Q
Wε  
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(b) Find the efficiency of a Carnot 
engine operating between the same 
reservoirs: 
 

%4.21
15.373
15.29311

h

c
C =−=−=

T
Tε  

 

Express the ratio of the two 
efficiencies: 

780.0
%4.21
%7.16

C

==
ε
ε

 

 
65 •  
Picture the Problem We can use the definition of efficiency to find the work done by the 
engine during each cycle and the first law of thermodynamics to find the heat exhausted 
in each cycle. 

 
(a) Express the efficiency of the 
engine in terms of the efficiency of a 
Carnot engine working between the 
same reservoirs: 
 

%0.51
K500
K200185.0

185.085.0
h

c
C

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−==

T
Tεε

 

 
(b) Use the definition of efficiency 
to find the work done in each cycle: 

( ) kJ102kJ200.510h === QW ε  

 
(c) Apply the first law of 
thermodynamics to the cycle to 
obtain: kJ0.89

kJ021kJ002cycleh,cyclec,

=

−=−= WQQ
 

 
*66 ••  
Picture the Problem We can use the expression for the Carnot efficiency of the plant to 
find the highest efficiency this plant can have. We can then use this efficiency to find the 
power that must be supplied to the plant to generate 1 GW of power and, from this value, 
the power that is wasted. The rate at which heat is being delivered to the river is related to 
the requisite flow rate of the river by .dtdVTcdtdQ ρ∆=  

 
(a) Express the Carnot efficiency of 
a plant operating between 
temperatures Tc and Th: 
 

h

c
Cmax 1

T
T

−== εε  

Substitute numerical values and 
evaluate εC: 
 

404.0
K500
K2981max =−=ε  

(c) Find the power that must be 
supplied, at 40.4% efficiency, to 
produce an output of 1 GW: 

GW48.2
0.404
GW1

max

output
supplied ===

ε
P

P  
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(b) Relate the wasted power to the 
power generated and the power 
supplied: 
 

generatedsuppliedwasted PPP −=  

Substitute numerical values and 
evaluate Pwasted: 
 

GW48.1GW1GW48.2wasted =−=P  

(d) Express the rate at which heat is 
being dumped into the river: 
 

( )

dt
dVTc

V
dt
dTc

dt
dmTc

dt
dQ

ρ

ρ

∆=

∆=∆=
 

 
Solve for the flow rate dV/dt of the 
river: 
 

ρTc
dtdQ

dt
dV

∆
=  

Substitute numerical values (see 
Table 19-1 for the specific heat of 
water) and evaluate dV/dt: 
 

( )( )( )
L/s1008.7s/m708

kg/m10K5.0J/kg4180
J/s1048.1

53

33

9

×==

×
=

dt
dV

 

 
67 •  
Picture the Problem We can find the rate at which the house contributes to the increase 
in the entropy of the universe from the ratio of ∆S to ∆t. 

 
Using the definition of entropy 
change, express the rate of increase 
in the entropy of the universe: 
 

T
tQ

t
TQ

t
S ∆∆

=
∆

∆
=

∆
∆

 

Substitute numerical values and 
evaluate ∆S/∆t: 

W/K113
K266

kW30
==

∆
∆

t
S

 

 
68 ••  
Picture the Problem Because the cycle represented in Figure 19-12 is a Carnot cycle, its 
efficiency is that of a Carnot engine operating between the temperatures of its isotherms. 

 
Express the Carnot efficiency of the 
cycle: h

c
C 1

T
T

−=ε  

 
Substitute numerical values and 
evaluate εC: 

%0.60
K750
K3001C =−=ε  
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69 ••  
Picture the Problem All 500 J of mechanical energy are lost, i.e., transformed into heat 
in process (1). For process (2), we can find the heat that would be converted to work by a 
Carnot engine operating between the given temperatures and subtract amount of work 
from 1 kJ to find the energy that is lost. In part (b) we can use its definition to find the 
change in entropy for each process. 
 
(a) For process (2): 
 

inCrecoveredmax,2 QWW ε==  

Find the efficiency of a Carnot 
engine operating between 400 K and 
300 K: 
 

25.0
400
30011

h

c
C =−=−=

K
K

T
Tε  

 

Substitute to obtain: 
 

( ) J250kJ10.25recovered ==W  

or 
750 J are lost. 
 

 

energy.  of  wastefulmore
is (2) Process energy. 

of  wastefulmore is (1) Process

total
mechanical  

 
(b) Find the change in entropy of the 
universe for process (1): 
 

J/K1.67
K300
J500

1 ==
∆

=∆
T
QS  

 
Find the change in entropy of the 
universe for process (2): 
 

( )

J/K833.0

K400
1

K300
1kJ1

11

hc

ch
ch2

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∆=

∆
+

∆
−=∆+∆=∆

TT
Q

T
Q

T
QSSS

 

 
70 ••  
Picture the Problem Denote the three states of the gas as 1, 2, and 3 with 1 being the 
initial state. We can use the ideal-gas law and the equation of state for an adiabatic 
process to find the temperatures, volumes, and pressures at points 1, 2, and 3. To find the 
work done during each cycle, we can use the equations for the work done during 
isothermal, isobaric, and adiabatic processes. Finally, we find the efficiency of the cycle 
from the work done each cycle and the heat that enters the system during the isothermal 
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expansion. 
 
(a) Apply the ideal-gas law to the 
isothermal expansion 1→2 to find P2: 
 

( ) atm4
L4
L1atm16

2

1
12 ===
V
VPP  

 
Apply the equation of state for an 
adiabatic process to relate the 
pressures and volumes at 1 and 3: 
 

γγ
3311 VPVP =  

and 

( )

L2.29
atm4
atm16L1

1.6711

3

1
13

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

γ

P
PVV

 

 
The PV diagram is shown to the right: 
 

 
 

(b) From (a) we have: 
 

L29.23 =V  

Apply the equation of state for an 
adiabatic process (γ =1.67) to relate 
the temperatures and volumes at 1 
and 3: 
 

1
11

1
33

−− = γγ VTVT  

and 

( )

K344

L2.29
L1K600

11.671

3

1
13

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

−−γ

V
VTT

 

 
(c) Express the work done each 
cycle: 
 

133221 →→→ ++= WWWW  

For the process 1→2: 

( )( )

Latm22.2
L1
L4lnL1atm16

lnln
1

2
11

1

2
121

⋅=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

==→ V
VVP

V
VnRTW

 

For the process 2→3: 
( )( )

Latm84.6
L4L2.29atm4

32232

⋅−=
−=

∆= →→ VPW
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For the process 3→1: ( )

( )
( )( ) ( )( )[ ]

Latm0.31
L2.29atm4L1atm162

3

33112
3

312
3

13V13

⋅−=

−−=

−−=

−−=∆−= →→

VPVP
TTnRTCW

 
 

Substitute to obtain: 
 

Latm5.06

Latm10.3
Latm6.84Latm2.22

⋅=

⋅−
⋅−⋅=W

 

 
(d) Using its definition, express and 
evaluate the efficiency of the cycle: 
 

%8.22
Latm22.2
Latm5.06

2121in

=
⋅
⋅

=

===
→→ W

W
Q
W

Q
Wε

 

 
*71 ••  
Picture the Problem We can express the temperature of the cold reservoir as a function 
of the Carnot efficiency of an ideal engine and, given that the efficiency of the heat 
engine is half that of a Carnot engine, relate Tc to the work done by and the heat input to 
the real heat engine. 
 
Using its definition, relate the 
efficiency of a Carnot engine 
working between the same 
reservoirs to the temperature of the 
cold reservoir: 
 

h

c
C 1

T
T

−=ε  

Solve for Tc: ( )Chc 1 ε−= TT  

 
Relate the efficiency of the heat 
engine to that of a Carnot engine 
working between the same 
temperatures: 
 

C2
1

in

εε ==
Q
W

or
in

C
2
Q
W

=ε  

 

Substitute to obtain: 
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

in
hc

21
Q
WTT  

 
The work done by the gas in ( )( ) Latm4L4atm1 ⋅==∆= VPW  
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expanding the balloon is: 
 

 

Substitute numerical values and evaluate Tc: 
 

( ) K313
kJ4

Latm
J101.325Latm42

1K393.15c =

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⋅
×⋅

−=T  

 
72 ••  
Picture the Problem We can use the definitions of the COP and εC to show that their 
relationship is COP = Tc / (εCTh). 
 
Using the definition of the COP, 
relate the heat removed from the 
cold reservoir to the work done each 
cycle: 
 

W
QcCOP =  

Apply energy conservation to relate 
Qc, Qh, and W: 
 

WQQ −= hc  

Substitute to obtain: 
W

WQ −
= hCOP  

 
Divide numerator and denominator 
by Qh and simplify to obtain: 

h

hh

1
COP

Q
W

Q
W

W
WQ

−
=

−
=  

 
Because hC QW=ε : 

hC

c

C

h

c

C

h

c

C

C

11
1COP

T
T

T
T

T
T

ε

εεε
ε

=

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

=
−

=
 

 
73 ••  
Picture the Problem We can use the definition of the COP to express the work the motor 
must do to maintain the temperature of the freezer in terms of the rate at which heat flows 
into the freezer. Differentiation of this expression with respect to time will yield an 
expression for the power of the motor that is needed to maintain the temperature in the 
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freezer. 
 
Using the definition of the COP, 
relate the heat that must be removed 
from the freezer to the work done by 
the motor: 
 

W
QcCOP =  

Solve for W: 
COP

cQW =  

 
Differentiate this expression with 
respect to time to express the power 
of the motor: 
 

COP
c dtdQ

dt
dWP ==  

 

Express the maximum COP of the 
motor: 
 

T
T
∆

= c
maxCOP  

 
Substitute to obtain: 

c

c

T
T

dt
dQP ∆

=  

 
Substitute numerical values and 
evaluate P: ( ) W10.0

K250
K50W50 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=P  

 
74  ••  
Picture the Problem We can use the ideal-gas law to find the unknown temperatures, 
pressures, and volumes at points A, B, and C and then find the work done by the gas and 
the efficiency of the cycle by using the expressions for the work done on or by the gas 
and the heat that enters the system for the isobaric, adiabatic, and isothermal processes of 
the cycle. 
 
(a) Apply the ideal-gas law to find 
the volume of the gas at A: 
 ( )( )( )

L19.7
atm

kPa101.325atm5

K600KJ/mol8.314mol2
A

A
A

=

×

⋅
=

=
P

nRTV

 

(b) We’re given that: 
 

( ) L39.4L19.722 AB === VV  

 
Apply the ideal-gas law to this 
isobaric process to obtain: 

( ) K12002K600
A

A

A

B
AB ===

V
V

V
VTT  
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(c) Because the process C→A is 
isothermal: 
 

K600AC == TT  

 

(d) Apply the equation of state for 
an adiabatic process (γ = 1.4) to find 
the volume of the gas at C: 
 

1
CC

1
BB

−− = γγ VTVT  

and 

( )

L223

K600
K1200L39.4

11.4
1

1
1

C

B
BC

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

−−γ

T
TVV

 

 
(e) Express and evaluate the work 
done by the gas during the isobaric 
process AB: 
 

( ) ( )
( )( )

kJ9.98
Latm

J101.325Latm98.50

L19.7atm5
2

AA

AAAABABA

=
⋅

×⋅=

==
−=−=−

VP
VVPVVPW

 

 
Apply the first law of 
thermodynamics to express the 
work done by the gas during the 
adiabatic expansion BC: 
 

CB2
5

CBVCB int,

CB int,CB in,CBint,CB on, 0

−

−−

−−−−

∆−=

∆−=∆=

−∆=−∆=

TnR
TncE

EQEW
 

 

Substitute numerical values and 
evaluate WB−C: 

( )( )
( )

kJ24.9

K1200K600
KJ/mol8.314mol22

5
CB

=

−×

⋅−=−W
 

 
Express and evaluate the work done 
by the gas during the isothermal 
compression CA: 
 

( )( )

( )

kJ2.24

L223
L19.7lnK600

KJ/mol8.314mol2

ln
C

A
CAC

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⋅=

=− V
VnRTW

 

 
(f) Express and evaluate the heat 
absorbed during the isobaric 
expansion AB: 
 

( )( )
( )

kJ9.34

K600K1200
KJ/mol8.314mol22

7

BA2
7

BAPBA

=

−×
⋅=

∆=∆= −−− TnRTncQ
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Express and evaluate the heat 
absorbed during the adiabatic 
expansion BC: 
 

0CB =−Q  

Use the first law of thermodynamics 
to express and evaluate the heat 
absorbed during the isothermal 
compression CA: 
 

kJ2.24
ACAC int,ACAC

−=

=∆+= −−−− WEWQ
 

because ∆Eint,C−A = 0 for an isothermal 
process. 
 

(g) Apply the definition of 
thermodynamic efficiency to 
express and evaluate ε : 

%6.30

kJ34.9
kJ24.2kJ24.9kJ9.98

BA

ACCBBA

in

=

−+
=

++
==

−

−−−

Q
WWW

Q
Wε

 

 
75 ••  
Picture the Problem We can use the ideal-gas law to find the unknown temperatures, 
pressures, and volumes at points B, C, and D and then find the work done by the gas and 
the efficiency of the cycle by using the expressions for the work done on or by the gas 
and the heat that enters the system for the various thermodynamic processes of the cycle. 
 
(a) Apply the ideal-gas law for a 
fixed amount of gas to the 
isothermal process AB: 

( )

kPa253

atm1
kPa101.325atm2.50

2
atm5

A

A

B

A
AB

=

×=

==
V

V
V
VPP

 

 
(b) Apply the ideal-gas law for a 
fixed amount of gas to the adiabatic 
process BC: 
 

BB

CC
BC VP

VPTT =  

Using the ideal-gas law, find the 
volume at B: 

( )( )( )

L39.43
kPa253

K600KJ/mol8.314mol2
B

B
B

=

⋅
=

=
P

nRTV
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Use the equation of state for an 
adiabatic process and γ = 1.4 to find 
the volume occupied by the gas at 
C: 

( )

L75.87
atm1
atm2.5L39.43

1.411

C

B
BC

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

γ

P
PVV

 

 
Substitute and evaluate TC: ( ) ( )( )

( )( )
K462

L39.43atm2.5
L75.87atm1K600C

=

=T
 

 
(c) Express the work done by the gas 
in one cycle: 
 

ADDCCBBA −−−− +++= WWWWW  

Express and evaluate the work done 
during the isothermal expansion AB: 

( )( )

( )

kJ6.915
V
2VlnK600

KJ/mol8.314mol2

ln

A

A

A

B
ABA

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⋅=

=− V
VnRTW

 

 
Express and evaluate the work done 
during the adiabatic expansion BC: ( )( )

( )
kJ5.737

K006K624
KJ/mol8.314mol22

5

CB2
5

CBVCB

=
−×

⋅−=

∆−=∆−= −−− TnRTCW

 

 
Express and evaluate the work done 
during the isobaric compression CD: 

( )
( )( )

kJ5.690
Latm

J101.325Latm56.17

L75.87L19.7atm1
CDCDC

−=
⋅

×⋅−=

−=
−=− VVPW

 

 
Express and evaluate the work done 
during the constant-volume process 
DA: 
 

0AD =−W  

Substitute numerical values and 
evaluate W: kJ96.6

0kJ5.690kJ5.737kJ915.6

=

+−+=W
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Using its definition, express the 
thermodynamic efficiency of the 
cycle: 
 
 

ADBAin −− +
==

QQ
W

Q
Wε  

Express and evaluate the heat 
entering the system during the 
isothermal process AB: 
 

kJ915.6BABA int,BABA ==∆+= −−−− WEWQ  

Because ∆Eint = 0 for an isothermal process. 
 

Express the heat entering the system 
during the constant-volume process 
DA: 
 

AD2
5

ADVAD −−− ∆=∆= TnRTCQ  

Apply the ideal-gas law to the 
constant-volume process DA to 
obtain: 
 

( ) K120
atm5
atm1K600

A

D
AD ===

P
PTT  

 

Evaluate the heat entering the 
system during the process DA: 
 

( )( )
( )

kJ0.20
K120K600

KJ/mol8.314mol22
5

AD

=
−×

⋅=−Q
 

 
Substitute and evaluate the 
efficiency of the cycle: 

%9.25
kJ20.0kJ6.915

kJ6.975
=

+
=ε  

 
76 ••  
Picture the Problem We can use the ideal-gas law to find the unknown temperatures, 
pressures, and volumes at points A, B, and C and then find the work done by the gas and 
the efficiency of the cycle by using the expressions for the work done on or by the gas 
and the heat that enters the system for the isobaric, adiabatic, and isothermal processes of 
the cycle. 
 
(a) Apply the ideal-gas law to find 
the volume of the gas at A: 
 ( )( )( )

L19.7
atm

kPa101.325atm5

K600KJ/mol8.314mol2
A

A
A

=

×

⋅
=

=
P

nRTV

 

 
(b) We’re given that: 
 

( ) L39.4L19.722 AB === VV  
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Apply the ideal-gas law to this 
isobaric process to obtain: 
 

( ) K12002K600
A

A

A

B
AB ===

V
V

V
VTT  

 
(c) Because the process CA is 
isothermal: 
 

K600AC == TT  

 

(d) Apply the equation of state for 
an adiabatic process (γ = 5/3) to find 
the volume of the gas at C: 
 

1
CC

1
BB

−− = γγ VTVT  

and 

( )

L111

K600
K1200L39.4

2
3

1
1

C

B
BC

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

−γ

T
TVV

 

 
(e) Express and evaluate the work 
done by the gas during the isobaric 
process AB: 
 

( ) ( )
( )( )

kJ9.98
Latm

J101.325Latm98.50

L19.7atm5
2

AA

AAAABABA

=
⋅

×⋅=

==
−=−=−

VP
VVPVVPW

 

 
Apply the first law of 
thermodynamics to express the work 
done by the gas during the adiabatic 
expansion BC: 
 

( )
CB2

3

CBVCB int,

CB int,

CB in,CB int,CB on,

0

−

−−

−

−−−

∆−=

∆−=∆=

−∆=

−∆=

TnR
TncE

E
QEW

 

 
Substitute numerical values and 
evaluate WB−C: 

( )( )
( )

kJ14.9

K1200K600
KJ/mol8.314mol22

3
CB on,

=

−×

⋅−=−W
 

 
Express and evaluate the work done 
by the gas during the isothermal 
compression CA: 
 

( )( )

( )

kJ2.17

L111
L19.7lnK600

KJ/mol8.314mol2

ln
C

A
CAC

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⋅=

=− V
VnRTW
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(f) Express and evaluate the heat 
absorbed during the isobaric 
expansion AB: 
 

( )( )
( )

kJ9.24

K600K1200
KJ/mol8.314mol22

5

BA2
5

BAPBA in,

=

−×

⋅=

∆=∆= −−− TnRTncQ

 

 
Express and evaluate the heat 
absorbed during the adiabatic 
expansion BC: 
 

0CB =−Q  

Use the first law of thermodynamics 
to express and evaluate the heat 
absorbed during the isothermal 
compression CA: 
 

kJ2.17
ACAC int,ACAC

−=

=∆+= −−−− WEWQ
 

because ∆Eint = 0 for an isothermal process. 
 

(g) Apply the definition of 
thermodynamic efficiency to express 
and evaluate ε : 

%8.30

kJ24.9
kJ.271kJ14.9kJ98.9

BA

ACCBBA

in

=

−+
=

++
==

−

−−−

Q
WWW

Q
Wε

 

 
77 ••  
Picture the Problem We can use the ideal-gas law to find the unknown temperatures, 
pressures, and volumes at points B, C, and D and then find the work done by the gas and 
the efficiency of the cycle by using the expressions for the work done on or by the gas 
and the heat that enters the system for the various thermodynamic processes of the cycle. 
 
(a) Apply the ideal-gas law for a 
fixed amount of gas to the 
isothermal process AB: 

( )

kPa253
atm1

kPa101.3atm2.50

2
atm5

A

A

B

A
AB

=×=

==
V

V
V
VPP

 

 
(b) Apply the ideal-gas law for a 
fixed amount of gas to the adiabatic 
process BC: 
 

BB

CC
BC VP

VPTT =  
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Using the ideal-gas law, find the 
volume at B: 

( )( )( )

L39.43
kPa253

K600KJ/mol8.314mol2
B

B
B

=

⋅
=

=
P

nRTV

 

 
Use the equation of state for an 
adiabatic process and γ = 5/3 to find 
the volume occupied by the gas at 
C: 

( )

L33.86
atm1
atm2.5L39.43

531

C

B
BC

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

γ

P
PVV

 

 
Substitute and evaluate TC: ( ) ( )( )

( )( )
K416

L39.43atm2.5
L33.86atm1K600C

=

=T
 

 
(c) Express the work done by the 
gas in one cycle: 
 

ADDCCBBA −−−− +++= WWWWW  

Express and evaluate the work done 
during the isothermal expansion AB: 

( )( )

( )

kJ6.915

2lnK600

KJ/mol8.314mol2

ln

A

A

A

B
ABA

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⋅=

=−

V
V

V
VnRTW

 

Express and evaluate the work done 
during the adiabatic expansion BC: ( )( )

( )
kJ589.4

K006K164
KJ/mol8.314mol22

3

CB2
5

CBVCB

=
−×

⋅−=

∆−=∆−= −−− TnRTCW

 

 
Express and evaluate the work done 
during the isobaric compression 
CD: 

( )
( )( )

kJ926.4
Latm
J101.3Latm63.84

L33.86L19.7atm1
CDCDC

−=
⋅

×⋅−=

−=
−=− VVPW

 

 
Express and evaluate the work done 
during the constant-volume process 
DA: 

0AD =−W  
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Substitute to obtain: 

kJ58.6

0kJ926.4kJ589.4kJ915.6

=

+−+=W
 

 
Using its definition, express the 
thermodynamic efficiency of the 
cycle: 
 
 

ADBAin −− +
==

QQ
W

Q
Wε  

 

Express and evaluate the heat 
entering the system during the 
isothermal process AB: 
 

kJ915.6
BABA int,BABA

=

=∆+= −−−− WEWQ
 

because ∆Eint = 0 for an isothermal process. 
 

Express the heat entering the system 
during the constant-volume process 
DA: 
 

AD2
3

ADVAD −−− ∆=∆= TnRTCQ  

Apply the ideal-gas law to the 
constant-volume process DA to 
obtain: 
 

( ) K120
atm5
atm1K600

A

D
AD ===

P
PTT  

 

Evaluate the heat entering the 
system during the process DA: 
 

( )( )
( )

kJ0.12
K120K600

KJ/mol8.314mol22
3

AD

=
−×

⋅=−Q
 

 
Substitute and evaluate the 
efficiency of the cycle: 

%8.34
kJ.021kJ6.915

kJ6.58
=

+
=ε  

 
78 ••  
Picture the Problem We can express the efficiency of the Otto cycle using the result 
from Example 19-2. We can apply the relation constant1 =−γTV to the adiabatic 
processes of the Otto cycle to relate the end-point temperatures to the volumes occupied 
by the gas at these points and eliminate the temperatures at c and d. We can use the ideal-
gas law to find the highest temperature of the gas during its cycle and use this 
temperature to express the efficiency of a Carnot engine. Finally, we can compare the 
efficiencies by examining their ratio.  
 
The efficiency of the Otto engine is 
given in Example 19-2: 
 

b

ad

TT
TT

−
−

−=
c

O 1ε                 (1) 

where the subscripts refer to the various 
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points of the cycle as shown in Figure 19-
3. 
 

Apply the relation 
constant1 =−γTV to the adiabatic 

process a→b to obtain: 
 

1−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

γ

b

a
ab V

VTT  

Apply the relation 
constant1 =−γTV to the adiabatic 

process c→d to obtain: 
 

1−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

γ

c

d
dc V

VTT  

Subtract the first of these equations 
from the second to obtain: 
 

11 −−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=−

γγ

b

a
a

c

d
dbc V

VT
V
VTTT  

In the Otto cycle, Va = Vd and  
Vc = Vb. Substitute to obtain: 
 

( )
1

11

−

−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=−

γ

γγ

b

a
ad

b

a
a

b

a
dbc

V
VTT

V
VT

V
VTTT

 

 
Substitute in equation (1) and 
simplify to obtain: 

( )

b

a

a

b

b

a
ad

ad

T
T

V
V

V
VTT

TT

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−=

−

−

11

1

1

1O

γ

γε

 

Note that, while Ta is the lowest 
temperature of the cycle, Tb is not the 
highest temperature. 
 

Apply the ideal-gas law to c and b to 
obtain an expression for the cycle’s 
highest temperature Tc: 
 

b

b

c

c

T
P

T
P

=  ⇒ b
b

c
bc T

P
PTT >=  

 

Express the efficiency of a Carnot 
engine operating between the 
maximum and minimum 
temperatures of the Otto cycle: 
 

c

a

T
T

−=1Cε  
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Express the ratio of the efficiency of 
a Carnot engine to the efficiency of 
an Otto engine operating between 
the same temperatures: 

1
1

1

O

C >
−

−
=

b

a

c

a

T
T
T
T

ε
ε

because Tc > Tb. 

 
*79 •••  
Picture the Problem We can use VP CCnR −= , VP CC=γ , and 1−γTV = a constant 

to show that the entropy change for a quasi-static adiabatic expansion  that proceeds from 
state (V1,T1) to state (V2,T2) is zero. 
 
Express the entropy change for a 
general process that proceeds from 
state 1 to state 2: 
 

1

2

1

2
V lnln

V
VnR

T
TCS +=∆  

For an adiabatic process: 1

2

1

1

2

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

γ

V
V

T
T

 

 
Substitute and simplify to obtain: 

( )
( )[ ]V

1

2

2

1

2

1
V

1

2

1

2

1

2

1
V

1

2

1

2

1

2

1
V

1ln
ln

ln1
ln

ln

ln
lnlnln

CnR
V
V

V
V

V
VC

nR
V
V

V
V
V
VC

nR
V
V

V
VnR

V
VCS

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=∆

−

−

γ
γ

γ

γ

 

Use the relationship between CP and CV 
to obtain: 
 

VP CCnR −=  

Substitute for nR and γ and simplify: 

0

1ln V
V

p
VP

1

2

=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=∆ C

C
C

CC
V
VS

 

 
80 •••  
Picture the Problem 
(a) Suppose the refrigerator statement of the second law is violated in the sense that heat 
Qc is taken from the cold reservoir and an equal mount of heat is transferred to the hot 
reservoir and W = 0. The entropy change of the universe is then ∆Su = Qc/Th − Qc/Tc. 
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Because Th > Tc,  Su < 0, i.e., the entropy of the universe would decrease. 
 
(b) In this case, is heat Qh is taken from the hot reservoir and no heat is rejected to the 
cold reservoir, i.e., Qc = 0, then the entropy change of the universe is ∆Su = −Qh/Th + 0, 
which is negative. Again, the entropy of the universe would decrease. 
 
(c) The heat-engine and refrigerator statements of the second law only state that some 
heat must be rejected to a cold reservoir and some work must be done to transfer heat 
from the cold to the hot reservoir, but these statements do not specify the minimum 
amount of heat rejected or work that must be done. The statement 
∆Su ≥ 0 is more restrictive. The heat-engine and refrigerator statements in conjunction 
with the Carnot efficiency are equivalent to ∆Su ≥ 0. 
 
81 •••  
Picture the Problem We can express the net efficiency of the two engines in terms of 
W1, W2, and Qh and then use ε1 = W1/Qh and ε2 = W2/Qm to eliminate W1, W2, Qh, and Qm. 
 
Express the net efficiency of the two 
engines connected in series: 
 

h

21
net Q

WW +
=ε  

Express the efficiencies of engines 1 
and 2: h

1
1 Q

W
=ε  

and 

m

2
2 Q

W
=ε  

 
Solve for W1 and W2 and substitute 
to obtain: 
 

2
h

m
1

h

m2h1
net εεεεε

Q
Q

Q
QQ

+=
+

=  

 
Express the efficiency of engine 1 in 
terms of Qm and Qh: h

m
1 1

Q
Q

−=ε  

 
Solve for Qm/ Qh: 

1
h

m 1 ε−=
Q
Q

 

 
Substitute to obtain: ( ) 211net 1 εεεε −+=  

 
*82 •••  
Picture the Problem We can express the net efficiency of the two engines in terms of 
W1, W2, and Qh and then use ε1 = W1/Qh and ε2 = W2/Qm to eliminate W1, W2, Qh, and Qm. 
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Finally, we can substitute the expressions for the efficiencies of the ideal reversible 
engines to obtain hcnet 1 TT−=ε . 

 
Express the efficiencies of ideal 
reversible engines 1 and 2: 
 

h

m
1 1

T
T

−=ε                   (1) 

and 

m

c
2 1

T
T

−=ε                   (2) 

 
Express the net efficiency of the two 
engines connected in series: 
 

h

21
net Q

WW +
=ε              (3) 

Express the efficiencies of engines 1 
and 2: h

1
1 Q

W
=ε and 

m

2
2 Q

W
=ε  

 
Solve for W1 and W2 and substitute 
in equation (3) to obtain: 
 

2
h

m
1

h

m2h1
net εεεεε

Q
Q

Q
QQ

+=
+

=  

 
Express the efficiency of engine 1 in 
terms of Qm and Qh: h

m
1 1

Q
Q

−=ε  

 
Solve for Qm/ Qh: 

1
h

m 1 ε−=
Q
Q

 

 
Substitute to obtain: ( ) 211net 1 εεεε −+=  

Substitute for ε1 and ε2  and 
simplify to obtain: 
 

h

c

h

c

h

m

h

m

m

c

h

m

h

m
net

11

11

T
T

T
T

T
T

T
T

T
T

T
T

T
T

−=−+−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−=ε

 

 
83 •••  
Picture the Problem There are 26 letters and four punctuation marks (space, comma, 
period, and exclamation point) used in the English language, disregarding capitalization, 
so we have a grand total of 30 characters to choose from.  This fragment is 330 characters 
(including spaces) long; there are then 30330 different possible arrangements of the 
character set to form a fragment this long. We can use this number of possible 
arrangements to express the probability that one monkey will write out this passage and 
then an estimate of a monkey’s typing speed to approximate the time required for one 
million monkeys to type the passage from Shakespeare. 
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Assuming the monkeys type at 
random, express the probability P 
that one monkey will write out this 
passage: 
 

33030
1

=P  

Use the approximation 
5.110100030 =≈  to obtain: 

 
( )( )

495
4953305.1 10

10
1

10
1 −===P  

 
Assuming the monkeys can type at a 
rate of 1 character per second, it 
would take about 330 s to write a 
passage of length equal to the 
quotation from Shakespeare. Find 
the time T required for a million 
monkeys to type this particular 
passage by accident: 
 

( )( )

( )

y10

s103.16
y1s1030.3

10
10s330

484

7
491

6

495

≈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

×=

=T

 

Express the ratio of T to Russell’s 
estimate: 478

6

484

Russell

10
y10
y10
==

T
T

 

or  
 Russell

47810 TT ≈  

 
   
 
 


