Chapter 20
Thermal Properties and Processes

Conceptual Problems

*1 °
Determine the Concept The glass bulb warms and expands first, before the mercury
warms and expands.

2 .
Determine the Concept The heating of the sheet causes the average separation of its
molecules to increase. The consequence of this increased separation is that the area of the

hole always increases. | (b) is correct.

3 .
Determine the Concept Actually, it can be hard boiled, but it does take quite a bit longer
than at sea level. | (c) is the best response.

4 .
Determine the Concept Gases that cannot be liquified by applying pressure at 20°C are
those for which 7 < 293 K. These are He, Ar, Ne, H,, O, NO.

*5 L1l

(a) With increasing altitude, P decreases; from curve OF, T of the liquid-gas interface
diminishes, so the boiling temperature decreases. Likewise, from curve OH, the melting
temperature increases with increasing altitude.

(b) Boiling at a lower temperature means that the cooking time will have to be increased.
6 .

Picture the Problem We can apply the Stefan-Boltzmann law to relate the rate at which
an object radiates thermal energy to its environment.

Using the Stefan-Boltzmann law, P = ecAT*

relate the power radiated by a body where A is the surface area of the body, ois

to its temperature: Stefan’s constant, and e is the emissivity of
the object.

Because P varies with the fourth power of T, tripling the temperature increases the rate at
which it radiates by a factor of 3* and | (d) is correct.
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*7 °
Determine the Concept The thermal conductivity of metal and marble is much greater

than that of wood; consequently, heat transfer from the hand is more rapid.

8
(@) True

(b) True

(c) False. The rate at which an object radiates energy is proportional to the fourth power of
its absolute temperature.

(d) False. Water contracts on heating between 0°C and 4°C.
(e) True
9 o

Determine the Concept Because atoms are few and far between in space, the earth can
not lose heat by conduction or convection. Thermal energy is radiated through space in the

form of electromagnetic waves that move at the speed of light. | (¢) is correct.

10 -

Determine the Concept Because there is little, if any, molecule-to-molecule
transportation of energy into a fireplace-heated room, the mechanisms are radiation and
convection.

11 -
Determine the Concept In the absence of matter to support conduction and convection,
radiation is the only mechanism.

12 e
Determine the Concept Because the amount of heat lost by the house is proportional to
the difference between the house temperature and that of the outside air, the rate at which
the house loses heat (that must be replaced by the furnace) is greater at night when the
temperature of the house is kept high than when it is allowed to cool down.

13 oo

Picture the Problem The rate at which heat is conducted through a cylinder is given by
1 =dQ/dt = kAAT | Ax where A is the cross-sectional area of the cylinder.

Express the rate at which heat is

d? A_T
conducted through cylinder A: A

I, =ky7
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Express the rate at which heat is I —kxd? AT
; g = ke dg——
conducted through cylinder B:
i in: AT AT
Equate these expressions to obtain: kod? 28 = kord? 2
or

kAd,i = deé

Because da = 2d: ke (2dg Y = kyd?
and
4k, = ky=| (a)iscorrect.

14 -

Determine the Concept Most objects of everyday experience are at temperatures near
the mean temperature of the earth, about 300 K. Their blackbody spectrum therefore has
a peak near Amax = 2.898 mm K/ 300 K =~ 0.01 mm =10 um = 10,000 nm. These
wavelengths are in the infrared region of the spectrum, so the heat which most objects
radiate away can be detected most easily in the infrared, which is the spectral region
where most night-vision goggles and other types of optical "heat detectors" operate.
However, if the temperature of the object increases, the wavelength decreases; so the
peak radiation can be found in any spectral region, not just the infrared.

*15 .

Determine the Concept The temperature of an object is inversely proportional to the
maximum wavelength at which the object radiates (Wein’s displacement law). Because
blue light has a shorter wavelength than red light, an object for which the wavelength of
the peak of thermal emission is blue is hotter than one that is red.

Estimation and Approximation

16 eoe
Picture the Problem We can express the heat current through the insulation

in terms of the rate of evaporation of the liquid helium and in terms of the temperature
gradient across the superinsulation. Equating these equations will

allow us to solve for the thermal conductivity & of the superinsulation.

Express the heat current in terms of _ dm
the rate of evaporation of the liquid Y odt
helium:

i AT
Express the heat current in terms of 7= 2L

the temperature gradient across the
superinsulation and the conductivity
of the superinsulation:
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Equate these expressions and solve
for k:

Using the definition of density,
express the rate of loss of liquid
helium:

Substitute to obtain:

Express the ratio of the area of the
spherical container to its volume:

Solve for 4:

Substitute to obtain:

Substitute numerical values and evaluate %:

LA
_ dt
AAT
dm _ 4V
dt dt
LA
= dt
AAT
A_Am?
V %727’3
A=3/3672
LvAxpd—V
k= dt

Y3672V 2AT

-3 3
(21k/kg)(7 %107 m)(125kg/m? )[0“10”‘}
k= 864005 ) _
3/367(200x10° m*f (288K )
17 e

3.13x10°W/m-K

Picture the Problem We can use the thermal current equation for the thermal

conductivity of the skin.

Use the thermal current equation to
express the rate of conduction of
thermal energy:

Solve for k& to obtain:

Substitute numerical values and
evaluate &:

1= ka2l
Ax
I
k_
(AT
Ax
k= 130V\2K =[18.1mW/m-K
L8m?)
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*18 oo

Picture the Problem The amount of heat radiated by the earth must equal the solar flux
from the sun, or else the temperature on earth would continually increase. The emissivity
of the earth is related to the rate at which it radiates energy into space by the Stefan-

Boltzmann law P, = ecAT"*.

Using the Stefan-Boltzmann law, P =ecd'T*
express the rate at which the earth )
radiates energy as a function of its
emissivity e and temperature 7

where A’ is the surface area of the earth.

Solve for the emissivity of the earth: _ P
AT

Use its definition to express the Pycorbed

intensity of the radiation received I= —A

by the earth: where 4 is the cross-sectional area of the

earth.

For 70% absorption of the sun’s 0.7P,

radiation incident on the earth: I= 4

Substitute for P, and 4 and simplify 074 O07xR%*I 0.71

i - e = = =

to obtain: GAT* 4z R%T*  4oT"

Substitute numerical values and 0.7(1370 W/mZ)

evaluate e: e= 5 YY) 7

4(5.670x10° W/m? . K*)(288K)

=(0.615

19 oo

Picture the Problem The wavelength at which maximum power is radiated by the gas
falling into a black hole is related to its temperature by Wien’s displacement law.

Express Wien’s displacement law: P 2.898mm- K
max ~ T
S b t-t t f T d I t ﬂzmax: . *
ubstitute for 7 and evaluate ﬂmax=283%£n|2n K= 2.90nm
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Thermal Expansion

20 -

Picture the Problem We can find the length of the ruler at 100°C by adding its
elongation due to the increase in temperature to its length at 20°C. We can find its
elongation using the definition of the coefficient of linear expansiona = (AL/L)/AT.

Express the length of the ruler at Liggec = Logoc + AL
100°C in terms of its length at 20°C, = Lygoc + Lyg.c AT
its coefficient of linear expansion, = Lye (1+ aAT)

and the change in its temperature:

Substitute numerical values and Lygc = (30 cm)[1+ (11>< 10°° /K)(80 K)J
evaluate Ligpec: —130.026cm

21 e
Picture the Problem We can let the definition of the coefficient of linear expansion
a= (AL/L)/AT, with A4 replacing AL and A4 replacing L suggest a definition of the

coefficient of area expansion.

(a) Letting yrepresent the _| A4/4 )

coefficient of area expansion we V= AT

have:

(b) For a square: A =[LA+aAT)f - I
= I*(1+ 20AT + &?AT?)- I
= AQ2aAT +a*AT?)

Divide b(_)th sides of the equation by M o AT 4 ?AT?

A to obtain:

Substitute i tion (1) to obtain: AT?

ubstitute in equation (1) to obtain 7:2aAT+a AT —2u+ AT
AT
Let AT—0 to obtain: y = | 2aAT
For a circle: A4 = 7[R+ eAT)]* -7z R?

= 7 R*(1+ 20AT + a’AT? ) 7 R?
= A(2aAT + aAT?)
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Divide both sides of the equation by A4 — 20AT + &’ AT?
A to obtain:
Substitute i tion (1) to obtain: PAT?
ubstitute in equation (1) to obtain 7:2aAT+a AT 9+ o ?AT
AT
Let AT—0 to obtain: y =| 20AT
22 oo

Picture the Problem While the mass of a sample of aluminum will remain constant with
increasing temperature, its volume will increase due to thermal expansion. Consequently,
its density will decrease with increasing temperature. We can use the definition of density
(mass/unit volume) to express the density when its volume has increased by AV and the
definition of the coefficient of volume expansion to relate AV to the increase in
temperature AT. The relationship g = 3« will allow us to relate the coefficient of volume
expansion to the coefficient of linear expansion.

Express the density of aluminum o' o= m__ m/V

when its volume has changed V+AV  1+AV)V

by AV:

Using the definition of the P P _ P

coefficient of volume expansion, 1+ AT  1+3aAT

substitute for AV/V to obtain: because 4= 3e.

Substitute numerical values and , 2.70x10°kg/m®

evaluate ' = 1+ 3(24x10° /K)(200K)
=| 2.66x10°kg/m®

23 e

Picture the Problem Because the temperature of the steel shaft does not change, we need
consider just the expansion of the copper collar. We can express the required temperature
in terms of the initial temperature and the change in temperature that will produce the
necessary increase in the diameter D of the copper collar. This increase in the diameter is
related to the diameter at 20°C and the increase in temperature through the definition of the
coefficient of linear expansion.

Express the temperature to which T =T +AT
the copper collar must be raised in
terms of its initial temperature and
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the increase in its temperature:
Apply the definition of the
coefficient of linear expansion to
express the change in temperature
required for the collar to fit on the
shaft:

Substitute to obtain:

Substitute numerical values and
evaluate 7"

*24 e

AT =
(04
T=ﬂ+é2
aD
T = 293K + ?6-02“"
(L7x107° /K )(5.98cm)
— 490K =[ 217°C

Picture the Problem Because the temperatures of both the steel shaft and the copper
collar change together, we can find the temperature change required for the collar to fit the
shaft by equating their diameters for a temperature increase AT. These diameters are
related to their diameters at 20°C and the increase in temperature through the definition of

the coefficient of linear expansion.

Express the temperature to which the

collar and the shaft must be raised in
terms of their initial temperature and
the increase in their temperature:

Express the diameter of the steel
shaft when its temperature has been
increased by AT:

Express the diameter of the copper
collar when its temperature has been
increased by AT:

If the collar is to fit over the shaft
when the temperature of both has

been increased by AT:

Solve for AT to obtain:

T=T +AT @)

Dsteel = Dsteel,ZO"C (1+ a AT)

steel

Dey = Dey e (1+ aCuAT)

DCu,20°C(1+aCuAT)
= Dsteel,20°c(1+ a AT)

steel

AT = Dsteel,20°C _DCU,20°C

DCu,20°CaCu - Dsteel,ZO“Casteel



Substitute in equation (1) to obtain:

Substitute numerical values and evaluate T

6.0000cm —5.9800cm

T =293K+
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T=T+ Dsteel,20°C _DCu,ZO"C

DCu,20°CaCu - Dsteel,20°CasteeI

25 oo

(5.98cm)(17 %107 /K ) (6.00cm)(L1x107° /K

) =854K =| 581°C

Picture the Problem The linear expansion coefficient of the container is one-third its
coefficient of volume expansion. We can relate the changes in volume of the mercury and
the container to their initial volumes, temperature change, and coefficients of volume
expansion, and, because we know the amount of spillage, obtain an equation that we can

solve for 4.

Relate the linear expansion
coefficient of the container to its
coefficient of volume expansion:

Express the difference in the change
in the volume of the mercury and
the container in terms of the
spillage:

Express AV, using the definition

of the coefficient of volume
expansion:

Express AV, using the definition of

the coefficient of volume expansion:

Substitute to obtain:

Solve for 4.:

a. =

W~

JA (1)

AVyy = AV, =7.5mL

AVig = BugV AT

AV, = VAT

BodVugAT = BV.AT =7.5mL

 PugVigAT ~7.5mL
© VAT

c

or, because V' = Vg = 1z,
B = BuVAT —7.5mL
VAT
7.5mL
VAT

:ﬁHg_
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Substitute in equation (1) to obtain: .y 7.5mL
% =3P gyar
7.5mL
= aHg —_
VAT
Substitute numerical values and o = ;(0 18><10‘3/K)— 7.5mL
evaluate o ¢ 3(1.4L)40K)
=[15.4x10° K™
26 oo

Picture the Problem We can use dre 168°c = dre20°c(1+areAT) to find the diameter of the
hole in the aluminum sheet at 168°C and then da20.c = dai168°c(1—aaAT) to find the
diameter of the hole when the sheet has cooled to room temperature.

Relate the diameter of the hole/steel dre168°c = dre20oc(1t areAT)

drill bit at 168°C to its diameter at

20°C:

Substitute numerical values and evaluate dr 16s-c:

dr, 1o = (6.245cm)[1+11x10° K*(148K )| = 6.255¢m

Express the diameter of the hole in dpaee = dAI,lGB“C(l_aAIAT)
the plate at 20° C:

Substitute numerical values and evaluate da »o-c:

dp e = (6.255cm)f1— (24x10° K )148K)|=[ 6.233cm

Remarks: Note that the diameter of the hole in the plate at 20°C is less than the diameter of
the drill bit at 20°C.
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Picture the Problem Let L be the length
of the rail at 20°C and L' its length at
25°C. The diagram shows these
distances and the height # of the buckle.
We can use Pythagorean theorem to
relate the height of the buckle to the
distances L and L' and the definition of
the coefficient of linear expansion to
relate L and L'.

Apply the Pythagorean theorem to
obtain:

Use the definition of the coefficient
of linear expansion to relate L and
L

Substitute to obtain:

Substitute numerical values and
evaluate 4:

28 oo
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L’Z = L2(1 + Qe AT )2
or, because (el AT )? << 2 el AT,
L%~ L2(1 + ZasteelAT)

steel

= é\/ 2asteeIAT

h= %\/L2(1+ 20, AT )— I

h= 10020 M 2(1x10° K *)(5K)

=1524m

Picture the Problem The amount of gas that spills is the difference between the change in
the volume of the gasoline and the change in volume of the tank. We can find this
difference by expressing the changes in volume of the gasoline and the tank in terms of
their common volume at 10°C, their coefficients of volume expansion, and the change in

the temperature.

Express the spill in terms of the
change in volume of the gasoline
and the change in volume of the
tank:

Relate AVy.s to the coefficient of
volume expansion for gasoline:

Vspill = AVgats - AVtank

AVyas = PyasVAT
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Relate AVink to the coefficient of
linear expansion for steel:

Substitute to obtain:

Substitute numerical values and evaluate Vi

V.

S

29 oo

= (60L)(15K)[0.9x10° K *~3(11x10° K *)|=

AVtank = ﬁ[ankVAT
or, because Sieel = 3 steel,
AViank= 3 sieet VAT

Vspill = ,BgasVAT_ 3steel VAT
= VAT (ﬁgas - 3asteel)

0.780L

Picture the Problem We can relate the diameter of the capillary tube to the height the
mercury rises for a 1°C increase in temperature and to the difference in the volume changes
of the mercury in the bulb and the glass bulb. These volume changes can, in turn, be
expressed in terms of the coefficients of volume expansion of mercury and glass.

Express the net change in volume of
the mercury in the thermometer and
the bulb and tube of the glass
thermometer:

Relate AV to the coefficient of
linear expansion for mercury:

Relate AVyss to the coefficient of
linear expansion for glass:

Substitute to obtain:

Solve for d:

Substitute numerical values and evaluate d:

where 4 = zd*/4 is the cross-sectional area
of the capillary tube and d is its diameter.

AVig = SrgVAT

AVglass = ,BglassVAT
or, because Syass = 3 Aglass,
AVylass = 30glass VAT

wZ

= = B VAT =30y, VAT

glass

= VAT(ﬂHg - 3aglass )

4
d= \/%(ﬂHg _3aglass)

d- \/ 4o ”‘3)(1'()(0.18><10-3 K*-30x10°K™)) =

7(3x10° m)

0.255mm




Thermal Properties and Processes 1513

30 oo
Picture the Problem We can relate the volume of the thermometer bulb to the height the
mercury rises for the 8 C° increase in temperature and to the difference in the volume
changes of the mercury in the bulb and the glass bulb. These volume changes can, in turn,
be expressed in terms of the coefficients of volume expansion of mercury and glass.

Express the net change in volume of AV = AVhg — AVgiass = AAL

the mercury in the thermometer and where 4 = zd°/4 is the cross-sectional area
the bulb and tube of the glass of the capillary tube and 4 is its diameter.
thermometer:

Relate AVq to the coefficient of AVhg = fugVAT

linear expansion for mercury: or, because fug = 3amg,

Relate AVyss to the coefficient of AVyiass = Potass VAT
linear expansion for glass: or, because Syiass = 3 Uglass,
AVglass = 3aglassVAT

Substitute to obtain: BugVAT =30y, VAT = AAL
Solve for 7 and substitute for 4: - AAL
(ﬂHg - 36Kglass )AT
d*AL

B 4(ﬂHg - 3aglass )AT

Substitute numerical values and evaluate V-

_ #(0.4x10*mf (7.5x10%m)
~ 4{0.18x10° K* -3(9x10° K*)|(8K)

=| 7.70mL

31 eee
Picture the Problem We can determine whether the clock runs fast or slow from the
expression for the period of a simple pendulum and the dependence of its length on the
temperature. Letting 75 represent the period of the pendulum and 7 the temperature, we
can evaluate d7p/dT and use a differential approximation to find the time gained or lost in
a 24-h period.

(a) Express the period of the L
. . . T, =2rx |—
pendulum in terms of its length: g
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Because 7, oc VL and Lis
temperature dependent:

(b) Because the clock runs slow at
the higher temperature, we know
that it will lose time. Express the
loss in terms of the loss each period
and the elapsed time At

T
Write Ty as the product of
dT

dT, dL
—and —:
dL dT

dT,
Evaluate d_LP and simplify to obtain:

Express the dependence of the
length of the pendulum on its
calibration length L, and the
coefficient of linear expansion of
brass o

Evaluate d—L :
dT

Substitute to obtain:
Use the differential approximation
to obtain:

Substitute numerical values and
evaluate ATp/Tp:

The clock runs slow.

Loss = ATy At 1)
P

dT, _dT, d.

dT dL dT

ar, [, []_ifexyLY’
dL dL g| 2L g \g

SNl

Ty

2L

L=L,(1+aAT)

dL d
—=—|L,(1+aAT)|=al
L1 ot e,
dT; T, a
—F = (aLo):_TP
dr | 2L, 2
AL, _ap o AL _ 2 \p
AT 2 T, 2
AT,

e 1(19x10° /K )10K)

P

=9.50x10"
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Substitute in equation (1) to obtain:

Loss = (9.50><105)(24h x 36003)

=|8.21s

32 eee
Picture the Problem The steel tube will fit inside the brass tube when its outside diameter
equals the inside diameter of the brass tube. We can use the definition of the coefficient of
linear expansion to express the diameters of the tubes when they fit in terms of the
required temperature change and equate these expressions to find AT.

Express the temperature at which T =T +AT =293K+AT (1)
the steel tube will fit inside the brass

tube in terms of their initial

temperature and the change in

temperature:

Express the condition that the steel A oot = Aprass
tube will fit inside the brass tube:

Relate the diameter of the steel tube o) = A reel (1+ Oy AT )
to its initial diameter, coefficient of

linear expansion, and the change in

temperature:

Relate the diameter of the brass tube A prass = Ao brass (1+ @y AT)
to its initial diameter, coefficient of
linear expansion, and the change in

temperature:
Substitute to obtain: dO,steeI (1+ asteelAT) = dO,brass (1+ abrassAT)
Solve for AT: do,steel - dO,brass

AT =

dO,brassabrass - do,steelasteel

Substitute numerical values and evaluate AT

T 3.000cm-2.997cm _125K
(3.000cm)(19x10° K™ ) (2.997 cm)(11x10° K

Substitute in equation (1) to evaluate AT: 7T =293K +125K = 418K =| 145°C
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*33  eee
Picture the Problem We can use the definition of Young’s modulus to express the
tensile stress in the copper in terms of the strain it undergoes as its temperature returns to
20°C. We can show that AL/L for the circumference of the collar is the same as Ad/d for
its diameter.

Using Young’s modulus, relate the Stress = ¥ x Strain = ¥ AL
stress in the collar to its strain: Loy

where Lygec is the circumference of the
collar at 20°C.

Express the circumference of the L. =md,
collar at the temperature at which it
fits over the shaft:

Express the circumference of the Lygoc = 7d ypcc
collar at 20°C:

i in: 7id . — 7d
Substitute to obtain: Stress = y 7% 20°C
20°C
-y dT B d20°c
d20°C
i i .02cm
Substitute numerical values and Stress — (11X10710 N/m2)0 02c
evaluate the stress: 5.98cm

=|3.68x107** N/m?

The van der Waals Equation, Liquid-Vapor Isotherms, and Phase
Diagrams

34 .

Picture the Problem We can apply the ideal-gas law to find the volume of 1 mol of steam
at 100°C and a pressure of 1 atm and then use the van der Waals equation to find the
temperature at which the steam will this volume.
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(a) Use the ideal-gas law to find the - nRT
volume: P
_ (tmol)(8.314J/mol - K )(373K)
B 101.325kPa
latmx————  ~
atom
—3.06x102m* X
0”m
=[30.6L
(b) Solve van der Waals equation for an’
T to obtain: P+7 (v —bn)
T =
nRk
Substitute numerical values and evaluate T:
(PJFCZ;)(V_[M) (0.55Pa - m®/mol?) (Lmol
T= —|101.3kpa 42278 M MO J2MO
nR (3.06x102m?)

3.06x102m? - (30x10°° m¥mol ) (1mol)
(1mol) (8.314J/mol - K)

=| 375K

35 e
Picture the Problem We can find these temperatures and pressure by consulting Figure
20-3.

(@) At 70 kPa, water boils at: t~|90°C

(b) At 0.5 atm (about 51 kPa): toet = | 82°C
() For ty = 115°C: P ~|170kPa
*36 oo

Picture the Problem Assume that a helium atom is spherical. Then we can find its radius
from V' = 47 r>and its volume from the van der Waals equation.
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Express the radius of a spherical
atom in terms of its volume:

In the van der Waals equation, b is
the volume of 1 mol of molecules.
For He, 1 molecule = 1 atom. Use
Avogadro’s number to express b in
cm®/atom:

Substitute numerical values and
evaluate 7

37 (11}

3y
y=3—
A
, _ (0.0237L/mol)(10° cm’/L)
6.022 x10% atoms/mol

=3.94x10"% cm®/atom

3 _ 1/3(3.94x10-23 cm’)
4r Arx

=2.11x10%cm =] 0.211nm

Picture the Problem Because, at the critical point, dP/dV = 0 and d*PIldV* = 0, we can
solve the van der Waals equation for P and set its first and second derivatives equal to zero
to find V. We can then eliminate V. between these equations to find 7, and then substitute
in the van der Waals equation to express P.. Finally, we can use their definitions to rewrite
the van der Waals equation in terms of the reduced variables.

(a) Solve the van der Waals
equation for P:

Evaluate dP/dV:

2

Evaluate d ]Z :
dVv

2
2an

Solve equation (2) for =

nRT  an?
i ®

E_ d{nRT anz}

v dav|v—bn V?
nRT 2an’®
=- + @)
(V—nb)} V?
=0 for extrema
dZP_i B nRT +2an2
av? dv| (V-nb)} V°
2nRT 6an’
= 3 4 3)
(V—nb) V¥V
= 0 for critical points
2an’ nRT
= 4)

Ve  (Vv-nb)



2
6an

V4

Solve equation (3) for

Divide equation (4) by equation (5)
and simplify to obtain:

Solve for V' =V_:

Substitute in equation (4):

Simplify and solve for 7¢:

Substitute for ¥ and T in equation
(1) and simplify to obtain:

(b) Using the result for V. from (a),
express the reduced volume 77

Using the result for 7, from (a),

express the reduced temperature 7;:

Using the result for P, from (a),
express the reduced pressure Py

Substitute in the van der Waals
equation to obtain:
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6an’ 2nRT
= 5
vV —nb) ©

=30 -m)

V., =3nb

2an’ nRT

_ C

27n°b®  (3nb—nb)’

T - 8a
27Rb
8a

27Rb an’ _| 4

" Bbn—bn (3bn)f | 270

V. _r_r and V' =3nbV,
V. 3nb
T :£: 27TRbT
T, 8a
and
_ 8a
27Rb '
2
P :£: 27b°P
P, a
and
P=—"2F
27b

2

(“ P+ ](Sner—bn)

275" BubV, )
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2
r

Simplify to obtain:
P+

3
— (3. -1)=8T
5 Jo -y e

Heat Conduction

38 -

Picture the Problem We can use their definitions to find the thermal resistance of the bar,
the thermal current in the bar, and the temperature gradient in the bar. Because the
temperature varies linearly with distance along the bar, we can express the temperature in
terms of the thermal gradient and evaluate this expression 25 cm from the hot end.

(@) Using its definition, find the R Ax _ Ax
thermal resistance of the bar: kA  kxr®
B 2m
(401W/m - K)|z(10 m? |
=|15.9K/W
(b) Using its definition, find the I AT _ 100K _ 6.29W
thermal current in the bar: R 159K/W
(c) Substitute numerical value_s and AT 100K _ o wim = (50 K/m
evaluate the temperature gradient: Ax 2m
(d) Express the I_inear dependence of T=T,+ ﬂ Ax
the temperature in the bar on the dx
distance from the cold end:
Substitute numerical values and 7(1.75m)= 273K +(50K/m)(L.75m)
evaluate 7(1.75 m): —3605K =| 87.5°C

39 -

Picture the Problem We can use its definition to express the thermal current in the slab
in terms of the temperature differential across it and its thermal resistance and use the
definition of the R factor to express / as a function of AT, the cross-sectional area of the
slab, and Ry.

Express the thermal current through _AT
the slab in terms of the temperature R
difference across it and its thermal



resistance:

Substitute to express R in terms of
the insulation’s R factor:

Substitute numerical values and
evaluate I

40 oo
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AT AAT
R4 R,

I =

(20ft)(30ft)(68°F —30°F)
11h-ft*-F°/Btu

2.07kBtu/h

Picture the Problem We can use R = Ax/kA to find the thermal resistance of each cube

and the fact that they are in series to find the thermal resistance of the two-cube system.
We can use I = AT/R to find the thermal current through the cubes and the temperature

at their interface.

(a) Using its definition, express the
thermal resistance of each cube:

Substitute numerical values and
evaluate the thermal resistance of
the copper cube:

Substitute numerical values and
evaluate the thermal resistance of
the aluminum cube:

(b) Because the cubes are in series,
their thermal resistances are
additive:

(¢) Using its definition, find the
thermal current;

(d) Express the temperature at the
interface between the two cubes:

Express the temperature differential
across the copper cube:

R=2
kA

R 3cm

“ (401W/m-K)(3cm)
=| 0.0831K/W

R 3cm

A (237wWim-K)(3cm)
=] 0.141K/W

R=Re, + Ry

= 0.0831K/W +0.141K/W
= [ 0.224K/W

AT _373K-293K _ ey
R 0.224K/W

T

interface

=373K - AT,

ATCu = ICuRCu = IRCu
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Substitute numerical values and Tivtertace = 313K — IR,
evaluate Tinterface: = 373K — (357 W)(0.0831K/W)

=343.3K =| 70.3°C

41 e
Picture the Problem We can use / = AT/R and R = Ax/kA to find the thermal current in

each cube. Because the currents are additive, we can find the equivalent resistance of the
two-cube system from R, = AT/ .

(@) Using its definition, express the | AT
thermal current through each cube: R
Using its definition, express the R= g
thermal resistance of each cube: kA
Substitute to obtain: | kAAT
Ax
Substitute numerical values and (401W/m-K)(3cm)?
. I, =

evaluate the thermal current in the Cu 3cm
copper cube: x (373K - 293K)

=| 962W
Substitute numerical values and 7o (237W/m-K)(3cm)?
evaluate the thermal current in the AL 3cm
aluminum cube: x(373K—293 K)

=| 569 W
(b) Because the cubes are in parallel, I=1.+1,=962W +569W
their total thermal currents are —[153kW
additive:
(¢) Use the relationship between the R AT _ 373K -293K
thermal current, temperature R 1.53kW
differential and thermal resistance to —[0.0523K/W

find Reg:
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42 e
Picture the Problem The cost of operating the air conditioner is proportional to the
energy used in its operation. We can use the definition of the COP to relate the rate at
which the air conditioner removes heat from the house to rate at which it must do work
to maintain a constant temperature differential between the interior and the exterior of the
house. To obtain an expression for the minimum rate at which the air conditioner must do
work, we’ll assume that it is operating with the maximum efficiency possible. Doing so
will allow us to derive an expression for the rate at which energy is used by the air
conditioner that we can integrate to obtain the energy (and hence the cost of operation)

required.

Relate the cost C of air conditioning
the energy W required to operate the
air conditioner:

Express the rate dQ/dt at which heat
flows into a house provided the
house is maintained at a constant
temperature:

C=uW (1)
where u is the unit cost of the energy.

P= @ = kAT

dt
where AT is the temperature difference
between the interior and exterior of the
house.

Use the definition of the COP to dQ/dt

relate the rate at which the air COP = a’W/dt

conditioner must remove heat dW/dt

to maintain a constant temperature:

Solve for dWldt: dQ/dt
dw /dt = 0/t

COP
Express the maximum value of the T,
COP: COI:)max = AT

where Tt is the temperature of the cold
reservoir.

Letting COP = COPx, Substitute to dw  dQ /dt
obtain an expression for the ? = T AT
minimum rate at which the air ¢
conditioner must do work in order to
maintain a constant temperature:
Substitute for dQO/dt to obtain:
0 d_W — _kAT AT = i(AT)Z
dt T, c
Separate variables and integrate this k 4 k ,
equation to obtain: W =—(AT) Idt’ =—(AT) At
C 0 C

Substitute in equation (1) to obtain:
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43 (1 1]

Picture the Problem We can follow the step-by-step instructions given in the problem
statement to obtain the differential equation describing the variation of 7"with r.
Integrating this equation will yield an equation that we can solve for the current 1.

(a) Conservation of energy requires
that thermal current through each
shell be the same.

(b) Express the thermal current / It iA dT A dT
; = — —_— | —  —
through such a shell element in dr dr
terms of the area 4 = 47+, the where the minus sign is a consequence of
thickness dr, and the temperature the heat current being opposite the
difference dT across the element: temperature gradient.
(¢) Separate the variables: JT - — I dr
Ak r?
Integrate from = r1t0 7 = r5: TdT 1 ‘tar
o Akt
and
I
drklrl, A4zk\n n
Solve for / to obtain:
V | I = 47[/(}’11’2(7,2_]1)
n—n
(d)Whenl’z—F1<<F1: n=r,=r
Let , — , = Ar and substitute to obtain: 2
femnsar ]:4;;1:» (,-T,)= 47zkr2%

which is Equation 20-7.

*44 e

Picture the Problem We can use the expression for the thermal current to express the
thickness of the walls in terms of the thermal conductivity of copper, the area of the walls,
and the temperature difference between the inner and outer surfaces. Letting AA/Ax’
represent the area per unit length of the pipe and L its length, we can eliminate the surface
area and solve for and evaluate L.
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Write the expression for the thermal 1AL
current:
Solve for 4: 4= dAx
kAT
Express the total surface area of the A= A4
pipe: Ax'
Substitute for 4 and solve for L to IAx
obtain: I = kAT
AA/AX'
Substitute numerical values and (IBGW)(4><1O’3 m)
evaluate L: | (401W/m-K)(873K - 498K)
- 0.12m
=| 665m
45 (1 1]

Picture the Problem Consider an element with a cylindrical area of length L, radius r,
and thickness dr. We can relate the heat current through this element to the conductivity
of the walls of the pipe, its length and radius, and the temperature gradient across the
wall. We can separate the variables in the resulting differential equation and integrate to
find the rate of heat transfer.

(a) Express the heat current through 7= a9 _ o g 4T

the cylindrical element: dr dr
where the minus sign is a consequence of
the heat current being opposite the

temperature gradient.

Separate the variables: dT = — 1 ﬂ
2 kL r

Integrate from r = 1 to r = r, and Tsz 1 ar

T=T\t0T=Ty l T 27kl

and
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Solve for 7 to obtain: 2 kL

Remarks: If we use the above result in Problem 44 (take 0.12 m? to be the outside
area per unit length of the pipe), then r; = 1.91 cm and r, = 1.51 cm. Solving for L one
obtains 746 m.

Radiation

46 o
Picture the Problem We can apply Wein’s displacement law to find the wavelength at
which the power is a maximum.

Use Wein’s displacement law to _2.898mm-K
relate the wavelength at which the max T
power is a maximum to the surface

temperature of the skin:

Substitute numerical values and ~2.898mm-K
=R 947 um

evaluate Amax. 273K +33K

47

Picture the Problem We can apply the Stefan-Boltzmann law to find the net power
radiated by the wires of its heater to the room.

Relate the net power radiated to the P
surface area of the heating wires, their
temperature, and the room

temperature:

= ecd(T* -T})

Solve for 4: 4= Bt
eO'ITA' -7 )
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Substitute numerical values and evaluate A4:

B 1kW

= 1=19.35x10° m?
(1)(5.6703x10°® Wim? .K*)|(1173K)" - (293K )’ | .

48 e
Picture the Problem The rate at which the sphere absorbs radiant energy is given by
dQ|dt = medT | dt and, from the Stephan-Boltzmann law, P, = eaA(T4 —T04), where

net
A is the surface area of the sphere, T is its temperature, and 7' is the temperature of the
walls. We can solve the first equation for d7/dt and substitute Py for dQ/dt in order to
find the rate at which the temperature of the sphere changes.

Relate the rate at which the sphere _do _ 4T
absorbs radiant energy to the rate at " dr dt
which its temperature changes:

Solve for dT/dr: dl _ Ry _ By __ Ba

dt  mc ch_éﬁrgpc

net — eGA(T4 _T04)
relate the net power radiated to the —4r rzeO'(T4 _ To4)
sphere to the difference in

temperature of the walls and the

blackened copper sphere:

Apply the Stefan-Boltzmann law to P

Substitute to obtain: dT _ Arrec(rT’ -T})
dt ixripe
_BeolT*-T)
C rpe

Substitute numerical values and evaluate d7/dt:

ar __301)(5.6703x10° wim? -K*)[(203K)' - (273K)| o
dt (4x107 m)(8.93x10° kg/m®)(0.386 k/kg - K)

49 e
Picture the Problem We can apply the Stephan-Boltzmann law to express the net power
radiated by the incandescent lamp to its surroundings.
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Express the rate at which energy is
radiated to the surroundings:

Evaluate (7,/T)" :

Substitute to obtain:

Solve for T

Express the temperature T 'when the
electric power input is doubled:

Divide the second of these equations

by the first, simplify, and substitute
numerical values and evaluate 7'':

50 oo

ZeO'A(T4—7-E)4)
4
=eO'AT4(l—(5j J
T
T\ (273K Y
(—Oj - ~9x10™
T 1573K

and, because this ratio is so small, we can
neglect the temperature of the surroundings.

P

net

P ~ecAT*

net

ya
T — [ f)net j
eoA

Tr — (anet jlﬂ
edA
T 4
—=(2
"oy
and

7' =21 = (2)"*(1573K)
—1871K = 1598°C

Picture the Problem We can differentiate Q = mL, where L is the latent heat of boiling
for helium, with respect to time to obtain an expression for the rate at which the helium

boils away.

Express the rate at which the helium
boils away in terms of the rate at
which its container absorbs radiant
energy:

dm _ By _eod(r* 1)
dt L L
B eovrdZ(TA—To")
L
4
_ eord? 7 1 T,
L T
N eornd’ e
L

when Ty << T.
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Substitute numerical values and evaluate dm/dt:

-8 2 4 2
dm _ (1)5.6703x10* W/m? - K*)(0.3m) (77K’ — 2.68x10° K8, 3600s
dt 21kJ/kg s

=9.66x10"2kg/h =| 96.6g/h

General Problems

*51

Picture the Problem The distance by which the tape clears the ground equals
the change in the radius of the circle formed by the tape placed around the
earth at the equator.

Express the change in the radius of AR = RaAT

the circle defined by the steel tape: where R is the radius of the earth, « is the
coefficient of linear expansion of steel, and
AT is the increase in temperature.

Substitute numerical values and AR = (6.37 x10° m)(llxlO‘6 K‘l)(30 K)
evaluate AR. —210x10°m

=| 2.10km
52 oo

Picture the Problem We can differentiate the definition of the density of an
isotropic material with respect to 7'and use the definition of the coefficient of
volume expansion to express the rate at which the density of the material
changes with respect to temperature. Once we have an expression for dpin
terms of dT, we can apply a differential approximation to obtain Ap in terms
of AT.

Using its definition, relate the p= m
density of the material to its mass V

and volume:

Using its definition, relate the AV = VAT

volume of the material to its
coefficient of volume expansion:
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Differentiate p with respect to 7 and dp _dpdV _ _ gy
simplify to obtain: dT dV dT &
14
=~ BV ==pp

or

dp =—ppdT
Use a differential approximation to Ap =—pBAT
obtain:
53 e

Picture the Problem We can apply the Stefan-Boltzmann law to express the effective
temperature of the sun in terms of the total power it radiates. We can, in turn, use the
intensity of the sun’s radiation in the upper atmosphere

of the earth to approximate the total power it radiates.

Apply the Stefan-Boltzmann law to P =ecAd T
relate the energy radiated by the sun
to its temperature:

Solve for T: T4 P
ecA
Express the area of the sun: A=47R:
Relate the intensity of the sun’s _ P
radiation in the upper atmosphere to 4r R®
the total power radiated by the sun: where R is the earth-sun distance.
Solve for P;: P =4r R*I
Substitute for P, and 4 and simplify to A7 R%I R2I
btain: T =4 7 =4 2
obtain: ecdr R eoR;
Substitute numerical values and evaluate 7:
11 )2 2
. (L5x10" m)*(1.35kW/m?) 577K
(1)(5.67x10"° W/m? - K )(6.96 x10° m)



54 e
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Picture the Problem We can solve the thermal-current equation for the R factor

of the material.

Use the equation for the thermal
current to express I in terms of the
temperature gradient across the
insulation:

Rewrite this expression in terms of

the R factor of the material:

Solve for the R factor:

Substitute numerical values and evaluate R:

1=k
Ax
AT AT _ 4AT
A RR
kA A
Rf — AAT — 6AonesideAT

1 1

2 2
6[12”])(254510 mj —
n .
R = : (363K — 293K ) =| 0.390~"
100W
2 o 2 o, 2.
300K 9F° 1076 10543 ih [ Fftth
J 5K m Btu  3600s Btu
S
55 oo

Picture the Problem Because the temperature of the copper-aluminum interface is
(T} + T2)/2, we can conclude that the temperature differences across the two sheets must
be the same. We also know, because the sheets are in series, that the heat currents

through them are equal.

Express the thermal current through
the aluminum sheet:

Express the thermal current through
the copper sheet:

Equate these currents and solve for
Axpy.

AT,
Ly =kpAp —A
AxAI
AT,
ICu = CuACu sz:
AT, AT,
Fepr A =L = kgy A, —2
Al“TAl AXA| Cu“"Cu o

and
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k
AxAI = A’CCU k_AI
Cu
Substitute numerical values and Asy, = ( m)237 W/m-K _[118em
evaluate Axa;: 401W/m-K

56 e
Picture the Problem We can relate the stress in the bar to the strain due to its elongation
using the definition of Young’s modulus and express the strain

in terms of the coefficient of linear expansion and the change in temperature

of the bar.

Using the definition of Young’s F

modulus, relate the force exerted by Y = A

the bar on each wall to the strain in &

the bar due to the change in its L

length:

Using the definition of the AL AT

coefficient of linear expansion,

express the strain in the bar:

Substitute to obtain: - F
aAAT

Solve for F: F =aAYAT

Substitute numerical values and evaluate F:

F =[11x10"* K*)z (0.022m)2(200GN/m? )(40K ) = [ 1.34x10° N

57 e
Picture the Problem We can use the definition of the coefficient of volume expansion
with the ideal-gas law to show that g#= 1/T.

(a) Use the definition of the B 1dv
coefficient of volume expansion to V dT
express Sin terms of the rate of

change of the volume with

temperature:
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For an ideal gas: - nRT and ar :@
P dl P

Substitute to obtain: B _1nr |1
(b) Express the ratio of the 0.003673K " 1 K-
experimental value to the theoretical Pexo = Prn _ '
value: s 1

273

<] 0.3%

58 o

Picture the Problem We can express L as the difference between Lg and La
and express these lengths in terms of the coefficients of linear expansion brass
and steel. Requiring that L be constant will lead us to the condition that
La/lLg= aglap.

(a) Express the condition that Z does L=Lg-L,
not change when the temperature of = constant
the materials changes:

Using the definition of the L=(Lg +otgLyAT )~ (L, + pL\AT)
coefficient of linear expansion, =(Lg — L, )+ (agLy — ap Ly )AT
substitute for Lg and La: =L+ (%LB —a,L, )AT

or

(egLs — aaLn)AT =0

and

oglyg —a,L, =0
is the condition that L remain constant when
the temperature changes by AT.

Solve for the ratio of La to Lg: Ly, og

Ly a,
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(b) From (@) we have: Ly=Lg, =L, Oa _ Ly, Xprass
B asteel
-6 -1
= (250 Cm)19><10—_6K_1
11x107 K
=| 432cm
and
L=Lg—L,=432cm-250cm
=|182cm

59 L 1]

Picture the Problem We can apply the thermal-current equation to calculate
the heat loss of the earth per second due to conduction from its core. We can
also use the thermal-current equation to find the power per unit area radiated

from the earth and compare this quantity to the solar constant.

Express the heat loss of the earth per
unit time as a function of the thermal

conductivity of the earth and its
temperature gradient:

Substitute numerical values and
evaluate dQ/dt.

Rewrite equation (1) to express the
thermal current per unit area:

Substitute numerical values and
evaluate 7/4:

Express the ratio of 7/4 to the solar
constant:

1=9 2L @
dt Ax
or
d_Q:47[Rék£
dt

9O _ 47(637x10° m)’
dt

x(o.74J/m-s-K)[;§°]

m

=|1.26x10" kW
I _,AT
A4 Ax
i:(0.74J/m-s-K) 1c
A 30m

= 0.0247 W/m?
/4 0.0247W/m?

solarconstant  1.35kW/m?

<| 0.002%
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60 oo
Picture the Problem We can find the temperature of the outside of the copper bottom by
finding the temperature difference between the outside of the saucepan and the boiling
water. This temperature difference is related to the rate at which the water is evaporating
through the thermal-current equation.

Express the temperature outside the 1,.=T,+AT
pan in terms of the temperature =373K+ AT
inside the pan:

Relate the thermal current through AQ _ AT
the bottom of the saucepan to its At Ax
thermal conductivity, area, and the

temperature gradient between its

surfaces:
Solve for AT: AT = igm
kA At
Because the water is boiling: AQ =mL,
Substitute to obtain: AT = mL,Ax
kANt

Substitute numerical values and evaluate AT:

0.8kg)(2.26 MJ/kg)(3x10°*m
g g

=1.28K
(401W/m- K)B(o.ls m)z}(GOOs)

AT =

Substitute and evaluate Ty, T, =3713K+1.28K =374.3K
=(101.3°C
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*G1 oo

Picture the Problem We’ll do this problem twice. First, we’ll approximate the answer
by disregarding the fact that the surrounding insulation is cylindrical. In the second
solution, we’ll obtain the exact answer by taking into account the cylindrical insulation
surrounding the side of the tank. In both cases, the power required to maintain the
temperature of the water in the tank is equal to the rate at which thermal energy is

conducted through the insulation.
1* solution:

Using the thermal current equation,
relate the rate at which energy is
transmitted through the insulation to
the temperature gradient, thermal
conductivity of the insulation, and
the area of the insulation/tank:

Letting 4 represent the inside
diameter of the tank and L its inside
height, express and evaluate its
surface area:

Substitute numerical values and
evaluate I

2" solution:

Express the total heat loss as the
sum of the losses through the top
and bottom and the side of the hot-
water tank:

Express 7 through the top and
bottom surfaces:

AT

I =kA—
Ax

A= Agq + 4

2
:zrdL+2(ﬂd J
4

bases

= 7Z'(dL +%d2)
- 7[[(0.55m)(l.2 m)+%(0-55m)2]
=2.55m?

1=(0.035W/m- K)(2-55m2)[

=1

AT
[top and bottom — Z[kA _)

74K
0.05m

132W

topand bottom + Iside

Ax

AT
lrd’k—
Ax



Substitute numerical values and
evaluate ]top and bottom-

Letting r represent the inside radius
of the tank, express the heat current
through the cylindrical side:

Separate the variables:

Integrate from » =y to r =, and
T=TitoT=15:

Solve for ;4 to obtain:

Substitute numerical values and
evaluate Lge:

Substitute for ;g and evaluate I:

62 (1 1]
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Itop and bottom — %7[(055 m)2
y (0.035W/m-K)(74K)

0.05m
=246 W
L4 = —kAd—T =-2r kLrﬂ
dr dr

where the minus sign is a consequence of
the heat current being opposite the
temperature gradient.

_ I dr

side

2wkl r

T, 7

I tdr
Jar ==l

h

and
I.
T —T =— side |n )
2 2 kL r]rl
- _ Iside nr_2: Iside |ni
2kl n, 27kl 1,
27 kL
Iside Z—F(TZ _Tl)
1
In+
r
I - 27(0.035W/m-K)(1.2m) (74K)
In 0.325m
0.275m

=117W

I =246W+117W =| 142W

Picture the Problem We can use R = AT/I and I = —kAdT/dt to express dT in terms of the
linearly increasing diameter of the rod. Integrating this expression will allow us to find AT

and, hence, R.
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Express the thermal resistance of the
rod in terms of the thermal current in
it:

Relate the thermal current in the rod
to its thermal conductivity %, cross-

sectional area 4, and temperature
gradient:

Using the dependence of the
diameter of the rod on x, express the
area of the rod:

Substitute to obtain:

Separate variables to obtain:

Integrate 7 from 7} to 7, and x from
OtoL:

Substitute for AT and 7 in equation
(1) and simplify to obtain:

63 (1 1]

AT
R="C 1
7 1)
[:—kAd—T
dx

where the minus sign is a consequence of
the heat current being opposite the
temperature gradient.

_7zd2_7z

A 2 d; (1+ ax)2

dT
I= —k[%doz(l+ ax)z}d—

X

JT = — Idx
k[jd§(1+ax)2}
7 kd? (1+ax)2
T, L
de=— 412j dx :
% wkdy (1+ ax)
and
4IL
T,—-T,=AT=————
2 mkd?(1+al)
AIL
R 7 kdg(l+aL) _ 4L
mkd?(1+al)

Picture the Problem Let AT = T, — T;. We can apply Newton’s 2™ law to establish the
relationship between L2 and L1 and angular momentum conservation to relate «, and ;.
We can express both E; and E; in terms of their angular momenta and rotational inertias
and take their ratio to establish their relationship.



Apply Zz— = % to the spinning disk:

Apply conservation of angular
momentum to relate the angular
velocity of the disk at 75 to the
angular velocity at T3:

Express /;:

Substitute and apply the binomial
expansion formula to obtain:

Express E, in terms of L, and I:

Express E; in terms of L, and I:

Express the ratio of E, to Fy:

Solve for E, and substitute for the
ratio of 7, to Is:

64 (1 1]
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Because Zr =0,AL=0
and
L,=1L

Lo, =10,

and
I

®, = ia)l

I, =mr} =mr, (1+ aAT)2
= 1,1+ 20AT + (aAT )
~ I,(1+ 20AT)

because (aAT)? is small compared to aAT.

Il
0, =——<@®
> L(+20AT)
and, because 20AT << 1,
W, = (1— 20AT )a)l

L _L4

21, 21,
because L, = L;.

2

L
VA
L
E, 2, I,
E, L
21,
11
Ey=E = E,(1-2aAT)

Picture the Problem The amount of heat radiated by the earth must equal the solar flux
from the sun, or else the temperature on earth would continually increase. The emissivity
of the earth is related to the rate at which it radiates energy into space by the Stefan-

Boltzmann law P, = ecAT".
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Using the Stefan-Boltzmann law, P =ecd'T*
express the rate at which the earth i
radiates energy as a function of its
emissivity e and temperature 7

where A’ is the surface area of the earth.

Use its definition to express the

P
intensity of the radiation P, I= j or £, = Al

absorbed by the earth: where A4 is the cross-sectional area of the
earth.

For 70% absorption of the sun’s P, =0.741

radiation incident on the earth:

Equate P, and P, and simplify: 0.74I = ecA'T*
or

0.77 R*I = e(47rR20'T4)

Solve for T to obtain:
T =40 _ cove (1)
4oe
Subst_itute_numerical_ values for 7 and o 0.7 1370 WwW/m )
and simplify to obtain: T =
4(5.670x10° W/m? -K*)e

= (255K )e ™

A spreadsheet program to evaluate T as a function of e is shown below. The formulas
used to calculate the quantities in the columns are as follows:

Cell | Formula/Content | Algebraic Form

Bl 255
B4 0.4 e
B5 B4+0.01 e+0.1

C4 | $B$1/(B4"0.25) (255 K)e‘]/4

A B C D
1 T=| 255 K
2
3 e T
4 0.40 321
5 0.41 319
6 0.42 317
7 0.43 315
23 0.59 291
24 0.60 290
25 0.61 289
26 0.62 287
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A graph of T as a function of e is shown below.

325
320 \

315

310 \

305 - \

300 \\
295 N

290 1 \

285 T T
0.40 0.45 0.50 0.55 0.60

T (K)

Treating e as a variable, differentiate dar 1 . 54
equation (1) to obtain: e _Zce de )
Divide equation (2) by equation (1) 1
to obtain: dT —ZCe "de de
T  Ce¥ 4o

Use a differential approximation to AT 1 Ae
obtain: T4 e
Solve for Ae:

olve for Ae Ae:—4e£
Substitute numerical values Ae = —4(0.615) 1K 0.00854
(e zl 0.612 for Tean = 288 K) and T T
evaluate Ae: or about a 1.39% change in e.
65 oo

Picture the Problem We can differentiate the expression for the heat that must be
removed from water in order to form ice to relate dQ/dt to the rate of ice build-up dm/dt.
We can apply the thermal-current equation to express the rate at which heat is removed
from the water to the temperature gradient and solve this equation for dm/dt. In part (b) we
can separate the variables in the differential equation relating dm/dt and AT and integrate
to find out how long it takes for a 20-cm layer of ice to be built up.

(a) Relate the heat that must be 0 =mlL,
removed from the water to freeze it
to its mass and heat of fusion:



1542 Chapter 20

Differentiate this expression with
respect to time:

Using the definition of density,
relate the mass of the ice added to
the bottom of the layer to its density
and volume:

Differentiate with respect to time to
express the rate of build-up of the

ICe:

Substitute to obtain:
Apply the thermal-current equation:

Equate these expressions and solve
for dxl/dt:

Substitute numerical values and
evaluate dx/dt:

(b) Separate the variables in equation

):

Integrate x from x; to x; and ¢ from
Otor

Solve for ¢ to obtain:

49 _; dm
dt dt
m= pV = pAx
am _ 4
a P dl
doQ dx
22 _LooA==
a7
40 _ AT
dt X
dx AT

LpA~—=k4=—
th dt X
and
dx k AT
= (1)
dt Lip x
dx (0.592W/m-K)(10K)
dr (333.5kJ/kg)(917 kg/m®)(0.01m)

=1.94 um/s

=| 0.698cm/h
xdx:kATdt

Lip

Txdx = kAT ja’t’

X pr 0

and

362 - x2)= BT,
PL;
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Substitute numerical values and evaluate ¢

z:(917kg/ms)(333'5k”kg)[(o.2m)2—(0.01m)2]=1.03x1065>< th 1
2(0.592W/m-K)(10K) 3600s  24h
=|11.9d
*66 00

Picture the Problem We can use the thermal current equation and the definition of heat
capacity to obtain the differential equation describing the rate at which the temperature of
the water in the 200-g container is changing. Integrating this equation will

yieldT = Toe‘f/RC. Substituting for d7/dt in dQldt = —CdT/dt and integrating will lead
t0Q = CTy{1—e ).

[=49
dt 0°C

(@) Use the thermal current equation

to express the rate at which heat is
conducted from the water at 60°C by
the rod:

Using the definition of heat capacity,
relate the thermal current to the rate
at which the temperature of the
water initially at 60°C is changing:

Equate these two expressions to
obtain:

Separate variables to obtain:

Integrate dT from T, to T and dt
from O to «:

AT T

R R
because the temperature of the second
container is maintained at 0°C.

_odr

= = - 1
dt dt @
Cd—T = —lT, the differential equation
dt R

describing the rate at which the temperature
of the water in the 200-g container is
changing.

ar __ 1 .
T RC
LdT 1
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Transform from logarithmic to
exponential form and solve for 7'to
obtain:

(b) Use its definition to express the
thermal resistance R:

Substitute numerical values (see
Table 20-8 for the thermal
conductivity of copper) and evaluate
R:

Use its definition to express the heat
capacity of the water and the copper
container:

Substitute numerical values (see
Table 18-1 for the specific heats of
water and copper) and evaluate C:

Evaluate the product of R and C to
find the "time constant” z:

(c) Solve equation (1) for dQ to obtain:

Integrate dQ' fromQ=0to O
and dT from Ty to T

Substitute (equation (2) for 7(¢) to obtain:

TO e —t/RC (2)

0.1m

R=
(401W/m-K)(1.5x10* m?

1.66 KIW

C =myc,+m,c, =mc,+p,V,c,

C =(0.2kg)(386ki/kg-K)

+(10° kg/m®)(0.7L)(4.18k/kg - K)

3.00kJ/K

7 = RC = (1.66 K/W)(3.00kJ/K)

=4985s =| 1.38h

dQ =

—C(Ejdt =-CdT
dt

0 T
de'z —deT
0 T

or

0=C(1,-T())

0= C(TO _]Befz/Rc): CTO(l—eft/RC)

A spreadsheet program to evaluate Q as a function of ¢ is shown below. The formulas
used to calculate the quantities in the columns are as follows:

Cell Formula/Content

Algebraic Form

D1

T

D2

Ty




Thermal Properties and Processes 1545

D3 3000 C
A6 0 t

A7 AB+0.1 1+ Al

B6 $B$2*EXP(—AB6/$B$1) T,e /¢
C7 | $B$3*$B$2*(L-EXP(-A6/$BSL)) | CT, (1_e—z/zec)

A B C D E
1 tau= | 1.35 h
2 T0=| 60 deg-C
3 = | 3000 JK
4
5 t (hr) T Q Q/1000
6 0.0 60.00 0.00E+00 0
7 0.1 55.72 1.29E+04 13
8 0.2 51.74 2.48E+04 24
13 0.7 35.72 7.28E+04 71
14 0.8 33.17 8.05E+04 79
15 0.9 30.81 8.76E+04 86
16 1.0 28.61 9.42E+04 92
33 2.7 8.12 1.56E+05 152
34 2.8 7.54 1.57E+05 154
35 2.9 7.00 1.59E+05 155

From the table we can see that the temperature of the container drops to 30°C in a little

more than | 0.9h. |If we wanted to know this time to the nearest hundredth of an hour,

we could change the step size in the spreadsheet program to 0.01 h. A graph of Tas a
function of z is shown in the following graph.
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A graph of Q as a function of ¢ follows.
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67 (1 1]

Picture the Problem We can use the Stefan-Boltzmann equation and the definition of

heat capacity to obtain the differential equation expressing the rate at which the

temperature of the copper block decreases. We can then approximate the differential
equation with a difference equation for the purpose of solving for the temperature of the
block as a function of time using Euler’s method.

(@) Express the rate at which heat is
radiated away from the cube:

Using the definition of heat
capacity, relate the thermal current
to the rate at which the temperature
of the cube is changing:

Equate these expressions to obtain:

Approximate the differential
equation by the difference equation:

Solve for AT:

‘;—? = eod(T* -T})

Q9 _ 4T
di di

AT = —%(T“ ~T} At
or
R Y

(1)
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Use the definition of heat capacity C=mc=plc
to obtain:
Substitute numerical values (see C = (8.93><103 kg/mz”)(10*6 m3)

Figure 13-1 for pc, and Table 19-1

for ccy) and evaluate C: x(0.386 kJ/kg - K)

=3.45J/K

(b) A spreadsheet program to calculate 7 as a function of 7 using equation (1) is shown
below. The formulas used to calculate the quantities in the columns are as follows:

Cell Formula/Content Algebraic Form
B1 5.67x10°° c
B2 6.00x10™* A
B3 3.45 C
B4 273 To
B5 10 At
A9 A8+$B$5 t+At
B9 | B8-($B$1*$B$2/$B$3) ecA
*(B8M4—$B$474)*$B$5 | L ‘T(Tf - Ty )
A B C
1 sigma= | 5.67E-08 W/m"2-K"4
2 = | 6.00E-04 m”"2
3 =|3.45 JIK
4 T0=| 273 K
5 dt= | 10 S
6
7 t (s) T (K)
8 0 573.00
9 10 562.92
10 20 553.56
11 30 544.85
248 2400 288.22
249 2410 288.08
250 2420 287.95
251 2430 287.82

From the spreadsheet solution, the time to cool to 15°C (288 K) is about 2420 s or
40.5min. | A graph of T as a function of ¢ follows.
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