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Chapter 20 
Thermal Properties and Processes 
 
Conceptual Problems 
 
*1 •  
Determine the Concept The glass bulb warms and expands first, before the mercury 
warms and expands. 

 
2 •   
Determine the Concept The heating of the sheet causes the average separation of its 
molecules to increase. The consequence of this increased separation is that the area of the 
hole always increases. correct. is )(b  

 
3 •  
Determine the Concept Actually, it can be hard boiled, but it does take quite a bit longer 
than at sea level. response.best   theis )(c  

 
4 •  
Determine the Concept Gases that cannot be liquified by applying pressure at 20°C are 
those for which Tc < 293 K. These are He, Ar, Ne, H2, O2, NO. 

 
*5 ••   
(a) With increasing altitude, P decreases; from curve OF, T of the liquid-gas interface 
diminishes, so the boiling temperature decreases. Likewise, from curve OH, the melting 
temperature increases with increasing altitude. 
 
(b) Boiling at a lower temperature means that the cooking time will have to be increased. 
 
 
6 •  
Picture the Problem We can apply the Stefan-Boltzmann law to relate the rate at which 
an object radiates thermal energy to its environment. 
 
Using the Stefan-Boltzmann law, 
relate the power radiated by a body 
to its temperature: 

4
r ATeP σ=  

where A is the surface area of the body, σ is 
Stefan’s constant, and e is the emissivity of 
the object. 
 

Because P varies with the fourth power of T, tripling the temperature increases the rate at 
which it radiates by a factor of 34 and correct. is )(d  
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*7 •  
Determine the Concept The thermal conductivity of metal and marble is much greater 
than that of wood; consequently, heat transfer from the hand is more rapid. 

 
8 •  
(a) True 
 
(b) True 
 
(c) False. The rate at which an object radiates energy is proportional to the fourth power of 
its absolute temperature. 
 
(d) False. Water contracts on heating between 0°C and 4°C. 
 
(e) True 
 
9 •  
Determine the Concept Because atoms are few and far between in space, the earth can 
not lose heat by conduction or convection. Thermal energy is radiated through space in the 
form of electromagnetic waves that move at the speed of light. correct. is )(c  

  
10 •  
Determine the Concept Because there is little, if any, molecule-to-molecule 
transportation of energy into a fireplace-heated room, the mechanisms are radiation and 
convection. 

 
11 •  
Determine the Concept In the absence of matter to support conduction and convection, 
radiation is the only mechanism. 
 
12 ••  
Determine the Concept Because the amount of heat lost by the house is proportional to 
the difference between the house temperature and that of the outside air, the rate at which 
the house loses heat (that must be replaced by the furnace) is greater at night when the 
temperature of the house is kept high than when it is allowed to cool down. 
 
13 ••  
Picture the Problem The rate at which heat is conducted through a cylinder is given by 

xTkAdtdQI ∆∆== // where A is the cross-sectional area of the cylinder. 

 
Express the rate at which heat is 
conducted through cylinder A: x

TdkI
∆
∆

= 2
AAA π  



Thermal Properties and Processes 
 

 

1503

Express the rate at which heat is 
conducted through cylinder B: 
 

x
TdkI

∆
∆

= 2
BBB π  

Equate these expressions to obtain: 
x
Tdk

x
Tdk

∆
∆

=
∆
∆ 2

BB
2
AA ππ  

or 
2
BB

2
AA dkdk =  

 
Because dA = 2dB: ( ) 2

BB
2

BA 2 dkdk =  

and 

BA4 kk = ⇒ correct. is )(a  

 
14 •  
Determine the Concept Most objects of everyday experience are at temperatures near 
the mean temperature of the earth, about 300 K.  Their blackbody spectrum therefore has 
a peak near λmax = 2.898 mm K/ 300 K  ≈ 0.01 mm = 10 µm = 10,000 nm.  These 
wavelengths are in the infrared region of the spectrum, so the heat which most objects 
radiate away can be detected most easily in the infrared, which is the spectral region 
where most night-vision goggles and other types of optical "heat detectors" operate.  
However, if the temperature of the object increases, the wavelength decreases; so the 
peak radiation can be found in any spectral region, not just the infrared. 
 
*15 •  
Determine the Concept The temperature of an object is inversely proportional to the 
maximum wavelength at which the object radiates (Wein’s displacement law). Because 
blue light has a shorter wavelength than red light, an object for which the wavelength of 
the peak of thermal emission is blue is hotter than one that is red. 
 
Estimation and Approximation  
 
16 •••  
Picture the Problem We can express the heat current through the insulation 
in terms of the rate of evaporation of the liquid helium and in terms of the temperature 
gradient across the superinsulation. Equating these equations will 
allow us to solve for the thermal conductivity k of the superinsulation. 

 
Express the heat current in terms of 
the rate of evaporation of the liquid 
helium: 
 

dt
dmLI v=  

 

Express the heat current in terms of 
the temperature gradient across the 
superinsulation and the conductivity 
of the superinsulation: 

x
TkAI

∆
∆

=  
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Equate these expressions and solve 
for k: 
 TA

dt
dmxL

k
∆

∆
=

v
 

 
Using the definition of density, 
express the rate of loss of liquid 
helium: 
 

dt
dV

dt
dm ρ=  

Substitute to obtain: 
 

TA
dt
dVxL

k
∆

∆
=

ρv
 

 
Express the ratio of the area of the 
spherical container to its volume: 
 

3
3
4

24
r
r

V
A

π
π

=  

Solve for A: 
 

3 236 VA π=  

Substitute to obtain: 

TV
dt
dVxL

k
∆

∆
=

3 2

v

36π

ρ
 

 
Substitute numerical values and evaluate k: 
 

( )( )( )

( ) ( )
KW/m1013.3

K288m1020036

s86400
m100.7kg/m125m107kJ/kg21

6

3 233

33
32

⋅×=
×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
×

= −

−

−
−

π
k  

 
17 ••  
Picture the Problem We can use the thermal current equation for the thermal 
conductivity of the skin. 
 
Use the thermal current equation to 
express the rate of conduction of 
thermal energy: 
 

I = kA
∆T
∆x

 

Solve for k to obtain: 
 

x
TA

Ik

∆
∆

=  

 
Substitute numerical values and 
evaluate k: ( )

KmW/m1.18

m10
K4m8.1

W130

3
2

⋅==

−

k  
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*18 ••  
Picture the Problem The amount of heat radiated by the earth must equal the solar flux 
from the sun, or else the temperature on earth would continually increase.  The emissivity 
of the earth is related to the rate at which it radiates energy into space by the Stefan-
Boltzmann law 4

r ATeP σ= . 
 
Using the Stefan-Boltzmann law, 
express the rate at which the earth 
radiates energy as a function of its 
emissivity e and temperature T: 
 

4
r A'TeP σ=  

where A′ is the surface area of the earth. 

Solve for the emissivity of the earth: 
 4

r

A'T
Pe

σ
=  

 
Use its definition to express the 
intensity of the radiation received 
by the earth: 
 

A
PI absorbed=  

where A is the cross-sectional area of the 
earth. 
 

For 70% absorption of the sun’s 
radiation incident on the earth: 
 A

PI r7.0
=  

Substitute for Pr and A  and simplify 
to obtain: 
 

442

2

4 4
7.0

4
7.07.0

T
I

TR
IR

AT
AIe

σσπ
π

σ
===  

Substitute numerical values and 
evaluate e: 

( )
( )( )

615.0

K288KW/m10670.54
W/m13707.0

4428

2

=

⋅×
=

−
e

 

 
19  ••  
Picture the Problem The wavelength at which maximum power is radiated by the gas 
falling into a black hole is related to its temperature by Wien’s displacement law. 
 
Express Wien’s displacement law: 

T
Kmm898.2

max
⋅

=λ  

 
Substitute for T and evaluate λmax: nm90.2

K10
Kmm898.2

6max =
⋅

=λ  
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Thermal Expansion 
 
20 •  
Picture the Problem We can find the length of the ruler at 100°C by adding its 
elongation due to the increase in temperature to its length at 20°C. We can find its 
elongation using the definition of the coefficient of linear expansion ( ) .TLL ∆∆=α  

 
Express the length of the ruler at 
100°C in terms of its length at 20°C, 
its coefficient of linear expansion, 
and the change in its temperature: 
 

( )TL
TLL

LLL

∆+=
∆+=

∆+=

°

°°

°°

α
α

1C20

C20C20

C20C100

 

Substitute numerical values and 
evaluate L100°C: 

( ) ( )( )[ ]
cm026.30

K80/K10111cm30 6
C100

=

×+= −
°L

 

 
21 ••    
Picture the Problem We can let the definition of the coefficient of linear expansion 

( ) TLL ∆∆=α , with ∆A replacing ∆L  and A replacing L suggest a definition of the 

coefficient of area expansion. 
 

(a) Letting γ represent the 
coefficient of area expansion we 
have: 
 

T
AA

∆
∆

≡γ                            (1) 

(b) For a square: ( )[ ]
( )
( )22

2222

22

2
21

1

TTA
LTTL

LTLA

∆+∆=

−∆+∆+=

−∆+=∆

αα

αα

α

 

 
Divide both sides of the equation by 
A to obtain: 

222 TT
A
A

∆+∆=
∆ αα  

 
Substitute in equation (1) to obtain: 

T
T

TT
∆+=

∆
∆+∆

= 2
22

22 ααααγ  

 
Let ∆T→0 to obtain: T∆≈ αγ 2  

 
For a circle: ( )[ ]

( )
( )22

2222

22

2
21

1

TTA
RTTR

RTRA

∆+∆=

−∆+∆+=

−∆+=∆

αα

πααπ

παπ
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Divide both sides of the equation by 
A to obtain: 

222 TT
A
A

∆+∆=
∆ αα  

 
Substitute in equation (1) to obtain: 

T
T

TT
∆+=

∆
∆+∆

= 2
22

22 ααααγ  

 
Let ∆T→0 to obtain: T∆≈ αγ 2  

 
22 ••  
Picture the Problem While the mass of a sample of aluminum will remain constant with 
increasing temperature, its volume will increase due to thermal expansion. Consequently, 
its density will decrease with increasing temperature. We can use the definition of density 
(mass/unit volume) to express the density when its volume has increased by ∆V and the 
definition of the coefficient of volume expansion to relate ∆V to the increase in 
temperature ∆T. The relationship β = 3α will allow us to relate the coefficient of volume 
expansion to the coefficient of linear expansion.  

 
Express the density of aluminum ρ′ 
when its volume has changed  
by ∆V: 
 

VV
Vm

VV
m'

∆+
=

∆+
=

1
ρ  

 

Using the definition of the 
coefficient of volume expansion, 
substitute for ∆V/V to obtain: 
 

TT
'

∆+
=

∆+
=

α
ρ

β
ρρ

311
 

because β = 3α. 
 

Substitute numerical values and 
evaluate ρ′: ( )( )

33

6

33

kg/m102.66

K200/K102431
kg/m102.70

×=

×+
×

= −'ρ
 

 
23 ••  
Picture the Problem Because the temperature of the steel shaft does not change, we need 
consider just the expansion of the copper collar. We can express the required temperature 
in terms of the initial temperature and the change in temperature that will produce the 
necessary increase in the diameter D of the copper collar. This increase in the diameter is 
related to the diameter at 20°C and the increase in temperature through the definition of the 
coefficient of linear expansion. 

 
Express the temperature to which 
the copper collar must be raised in 
terms of its initial temperature and 

TTT ∆+= i  
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the increase in its temperature: 
 
Apply the definition of the 
coefficient of linear expansion to 
express the change in temperature 
required for the collar to fit on the 
shaft: 
 

α

⎟
⎠
⎞

⎜
⎝
⎛ ∆

=∆ D
D

T  

Substitute to obtain: 
D
DTT

α
∆

+= i  

 
Substitute numerical values and 
evaluate T: ( )( )

C217K490

cm5.98/K1017
cm0.02K293 6

°==

×
+= −T

 

 
*24 ••  
Picture the Problem Because the temperatures of both the steel shaft and the copper 
collar change together, we can find the temperature change required for the collar to fit the 
shaft by equating their diameters for a temperature increase ∆T.  These diameters are 
related to their diameters at 20°C and the increase in temperature through the definition of 
the coefficient of linear expansion. 

 
Express the temperature to which the 
collar and the shaft must be raised in 
terms of their initial temperature and 
the increase in their temperature: 
 

TTT ∆+= i             (1) 

Express the diameter of the steel 
shaft when its temperature has been 
increased by ∆T: 
 

( )TDD ∆+= ° steelCsteel,20steel 1 α  

Express the diameter of the copper 
collar when its temperature has been 
increased by ∆T: 
 

( )TDD ∆+= ° CuCCu,20Cu 1 α  

If the collar is to fit over the shaft 
when the temperature of both has 
been increased by ∆T: 
 

( )
( )TD

TD
∆+=

∆+

°

°

steelCsteel,20

CuCCu,20

1
1

α

α
 

Solve for ∆T to obtain: 

steelCsteel,20CuCCu,20

CCu,20Csteel,20

αα °°

°°

−
−

=∆
DD

DD
T  
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Substitute in equation (1) to obtain: 

steelCsteel,20CuCCu,20

CCu,20Csteel,20
i αα °°

°°

−
−

+=
DD

DD
TT  

 
Substitute numerical values and evaluate T: 
 

( )( ) ( )( ) C581K854
/K1011cm6.00/K1017cm5.98

cm5.9800cm6.0000K293 66 °==
×−×

−
+= −−T  

 
25 ••  
Picture the Problem The linear expansion coefficient of the container is one-third its 
coefficient of volume expansion. We can relate the changes in volume of the mercury and 
the container to their initial volumes, temperature change, and coefficients of volume 
expansion, and, because we know the amount of spillage, obtain an equation that we can 
solve for βc. 

 
Relate the linear expansion 
coefficient of the container to its 
coefficient of volume expansion: 
 

c3
1

c βα =                      (1) 

Express the difference in the change 
in the volume of the mercury and 
the container in terms of the 
spillage: 
 

mL5.7cHg =∆−∆ VV  

Express HgV∆ using the definition 

of the coefficient of volume 
expansion: 
  

TVV ∆=∆ HgHgHg β  

Express cV∆ using the definition of 

the coefficient of volume expansion: 
  

TVV ∆=∆ ccc β  

Substitute to obtain: 
 

mL5.7ccHgHg =∆−∆ TVTV ββ  

Solve for βc: 
TV

mLTV
∆

−∆
=

c

HgHg
c

5.7β
β  

or, because V = VHg = Vc, 

TV
mL
TV

mLTV

∆
−=

∆
−∆

=

5.7

5.7

Hg

Hg
c

β

β
β
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Substitute in equation (1) to obtain: 
 

TV
mL

TV
mL

∆
−=

∆
−=

3
5.7
3

5.7

Hg

Hg3
1

c

α

βα
 

 
Substitute numerical values and 
evaluate αc: 

( ) ( )( )
16

3
3
1

c

K104.15

K40L4.13
mL5.7K/1018.0

−−

−

×=

−×=α
 

 
26 ••  
Picture the Problem We can use dFe,168°C = dFe,20°C(1+αFe∆T) to find the diameter of the 
hole in the aluminum sheet at 168°C and then dAl,20°C = dAl,168°C(1−αAl∆T) to find the 
diameter of the hole when the sheet has cooled to room temperature. 

 
Relate the diameter of the hole/steel 
drill bit at 168°C to its diameter at  
20° C: 
 

dFe,168°C = dFe,20°C(1+αFe∆T) 

Substitute numerical values and evaluate dFe,168°C: 
 

( ) ( )[ ] cm255.6K148K10111cm245.6 16
CFe,168 =×+= −−

°d  

 
Express the diameter of the hole in 
the plate at 20° C: 
 

( )Tdd ∆−= °° AlCAl,168CAl,20 1 α  

Substitute numerical values and evaluate dAl,20°C: 
 

( ) ( )( )[ ] cm6.233K148K10241cm6.255 16
CAl,20 =×−= −−

°d  

 
Remarks: Note that the diameter of the hole in the plate at 20°C is less than the diameter of 
the drill bit at 20°C. 
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*27 ••  
Picture the Problem Let L be the length 
of the rail at 20°C and L′ its length at 
25°C. The diagram shows these 
distances and the height h of the buckle. 
We can use Pythagorean theorem to 
relate the height of the buckle to the 
distances L and L′ and the definition of 
the coefficient of linear expansion to 
relate L and L′. 

 
 

 

 
Apply the Pythagorean theorem to 
obtain: 
  

22
2
1

22

22
LL'LL'h −=⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=  

 
Use the definition of the coefficient 
of linear expansion to relate L and 
L′: 

L′2 = L2(1 + αsteel∆T )2 
or, because (αsteel∆T )2 << 2αsteel∆T, 
 L′2 ≈ L2(1 + 2αsteel∆T) 
 

Substitute to obtain: 
 

( )

TL

LTLh

∆=

−∆+=

steel

2
steel

2

2
2

21
2
1

α

α
 

 
Substitute numerical values and 
evaluate h: 

( )( )

m24.5

K5K10112
2

m1000 16

=

×= −−h
 

 
28 ••  

Picture the Problem The amount of gas that spills is the difference between the change in 
the volume of the gasoline and the change in volume of the tank. We can find this 
difference by expressing the changes in volume of the gasoline and the tank in terms of 
their common volume at 10°C, their coefficients of volume expansion, and the change in 
the temperature. 

 
Express the spill in terms of the 
change in volume of the gasoline 
and the change in volume of the 
tank: 
 

Vspill = ∆Vgas − ∆Vtank 

Relate ∆Vgas to the coefficient of 
volume expansion for gasoline: 

∆Vgas = βgasV∆T 
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Relate ∆Vtank to the coefficient of 
linear expansion for steel: 
 

∆Vtank = βtankV∆T 
or, because βsteel = 3αsteel, 
∆Vtank= 3αsteelV∆T 
 

Substitute to obtain: 
 

Vspill = βgasV∆T − 3αsteelV∆T 
        = V∆T (βgas − 3αsteel) 
 

Substitute numerical values and evaluate Vspill: 
 

( )( )[ ( )] L780.0K10113K109.0K15L60 1613
spill =×−×= −−−−V  

 
29 ••  

Picture the Problem We can relate the diameter of the capillary tube to the height the 
mercury rises for a 1°C increase in temperature and to the difference in the volume changes 
of the mercury in the bulb and the glass bulb. These volume changes can, in turn, be 
expressed in terms of the coefficients of volume expansion of mercury and glass. 

 
Express the net change in volume of 
the mercury in the thermometer and 
the bulb and tube of the glass 
thermometer: 
 

∆V = ∆VHg − ∆Vglass = A∆L 
where A = πd2/4 is the cross-sectional area 
of the capillary tube and d is its diameter. 
 

Relate ∆VHg to the coefficient of 
linear expansion for mercury: 
 

∆VHg = βHgV∆T 
          
 

Relate ∆Vglass to the coefficient of 
linear expansion for glass: 
 

∆Vglass = βglassV∆T 
or, because βglass = 3αglass, 
∆Vglass = 3αglassV∆T 
 

Substitute to obtain: 
 

( )glassHg

glassHg

2

3

3
4

αβ

αβπ

−∆=

∆−∆=

TV

TVTVd
 

 
Solve for d: ( )glassHg 34 αβ

π
−

∆
∆

=
L
TVd  

 
Substitute numerical values and evaluate d: 
 

( )( )
( ) ( )( ) mm255.0K1093K100.18

m103
K1m104 1613

3

36

=×−×
×

= −−−−
−

−

π
d  
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30 ••  
Picture the Problem We can relate the volume of the thermometer bulb to the height the 
mercury rises for the 8 C° increase in temperature and to the difference in the volume 
changes of the mercury in the bulb and the glass bulb. These volume changes can, in turn, 
be expressed in terms of the coefficients of volume expansion of mercury and glass. 

 
Express the net change in volume of 
the mercury in the thermometer and 
the bulb and tube of the glass 
thermometer: 
 

∆V = ∆VHg − ∆Vglass = A∆L 
where A = πd2/4 is the cross-sectional area 
of the capillary tube and d is its diameter. 
 

Relate ∆VHg to the coefficient of 
linear expansion for mercury: 
 

∆VHg = βHgV∆T 
or, because βHg = 3αHg, 
∆VHg= 3αHgV∆T 
 

Relate ∆Vglass to the coefficient of 
linear expansion for glass: 
 

∆Vglass = βglassV∆T 
or, because βglass = 3αglass, 
∆Vglass    = 3αglassV∆T 
 

Substitute to obtain: 
 

LATVTV ∆=∆−∆ glassHg 3αβ  

Solve for V and substitute for A: 
 ( )

( ) T
Ld

T
LAV

∆−
∆

=

∆−
∆

=

glassHg

2

glassHg

34

3

αβ
π

αβ
 

 
Substitute numerical values and evaluate V: 
 

( ) ( )
( )[ ]( ) mL70.7

K8K1093K1018.04
m105.7m104.0
1613

223

=
×−×

××
= −−−−

−−πV  

 
31 •••  
Picture the Problem We can determine whether the clock runs fast or slow from the 
expression for the period of a simple pendulum and the dependence of its length on the 
temperature. Letting TP represent the period of the pendulum and T the temperature, we 
can evaluate dTP/dT and use a differential approximation to find the time gained or lost in 
a 24-h period. 

 
(a) Express the period of the 
pendulum in terms of its length: 
 

g
LT π2P =  
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Because LT ∝P  and L is 

temperature dependent: 
 

slow. runsclock  The  

 

(b) Because the clock runs slow at 
the higher temperature, we know 
that it will lose time. Express the 
loss in terms of the loss each period 
and the elapsed time ∆t: 
 

t
T
T

∆
∆

=
P

PLoss                        (1) 

Write 
dT
dTP as the product of 

dL
dTP and 

dT
dL

: 

 

dT
dL

dL
dT

dT
dT

⋅= PP  

 

Evaluate 
dL
dTP  and simplify to obtain: 

L
T

g
L

LL
g

g

g
L

gg
L

dL
d

dL
dT

2

2
2
12

2
1

2
2
12

P

P
2
1

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎥

⎦

⎤
⎢
⎣

⎡
=

−

ππ

ππ

 

 
Express the dependence of the 
length of the pendulum on its 
calibration length L0 and the 
coefficient of linear expansion of 
brass α: 
 

( )TLL ∆+= α10  

Evaluate 
dT
dL

: ( )[ ] 00 1 LTL
dT
d

dT
dL αα =∆+=  

 
Substitute to obtain: ( ) P0

0

PP

22
TL

L
T

dT
dT αα =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

 
Use the differential approximation 
to obtain: 
  

P
P

2
T

T
T α

=
∆
∆

or T
T
T

∆=
∆

2P

P α
 

 
Substitute numerical values and 
evaluate ∆TP/TP: 

( )( )
5

6
2
1

P

P

1050.9

K10/K1019

−

−

×=

×=
∆
T
T
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Substitute in equation (1) to obtain: ( )

s21.8

h
s3600h241050.9Loss 5

=

⎟
⎠
⎞

⎜
⎝
⎛ ××= −

 

 
32 •••  
Picture the Problem The steel tube will fit inside the brass tube when its outside diameter 
equals the inside diameter of the brass tube. We can use the definition of the coefficient of 
linear expansion to express the diameters of the tubes when they fit in terms of the 
required temperature change and equate these expressions to find ∆T. 

 
Express the temperature at which 
the steel tube will fit inside the brass 
tube in terms of their initial 
temperature and the change in 
temperature: 
 

TTTT ∆+=∆+= K293i      (1) 

Express the condition that the steel 
tube will fit inside the brass tube: 
 

brasssteel dd =  

Relate the diameter of the steel tube 
to its initial diameter, coefficient of 
linear expansion, and the change in 
temperature: 
 

( )Tdd ∆+= steelsteel,0steel 1 α  

Relate the diameter of the brass tube 
to its initial diameter, coefficient of 
linear expansion, and the change in 
temperature: 
 

( )Tdd ∆+= brassbrass,0brass 1 α  

Substitute to obtain: ( ) ( )TdTd ∆+=∆+ brassbrass,0steelsteel,0 11 αα  

Solve for ∆T: 
 steelsteel,0brassbrass,0

brass,0steel,0

αα dd
dd

T
−
−

=∆  

 
Substitute numerical values and evaluate ∆T: 
 

( )( ) ( )( ) K125
K1011cm2.997K1019cm3.000

cm2.997cm3.000
1616 =

×−×
−

==∆ −−−−T  

 
Substitute in equation (1) to evaluate ∆T: C145K418K125K293 °==+=T  
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*33 •••  
Picture the Problem We can use the definition of Young’s modulus to express the 
tensile stress in the copper in terms of the strain it undergoes as its temperature returns to 
20°C. We can show that ∆L/L for the circumference of the collar is the same as ∆d/d for 
its diameter.  

 
Using Young’s modulus, relate the 
stress in the collar to its strain: 
 

 

where L20°C is the circumference of the 
collar at 20°C. 
 

Express the circumference of the 
collar at the temperature at which it 
fits over the shaft: 
 

 

Express the circumference of the 
collar at 20°C: 
 

 

Substitute to obtain: 
 

 
 
 
 
 

Substitute numerical values and 
evaluate the stress: 

( )
212

210

N/m1068.3

cm5.98
cm0.02N/m1011Stress

−

−

×=

×=
 

 
The van der Waals Equation, Liquid-Vapor Isotherms, and Phase 
Diagrams 
 
34 •  
Picture the Problem We can apply the ideal-gas law to find the volume of 1 mol of steam 
at 100°C and a pressure of 1 atm and then use the van der Waals equation to find the 
temperature at which the steam will this volume. 

 

C20

StrainStress
°

∆
=×=

L
LYY

TT dL π=

C20C20 °° = dL π

C20

C20

C20

C20Stress

°

°

°

°

−
=

−
=

d
ddY

d
ddY

T

T

π
ππ
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(a) Use the ideal-gas law to find the 
volume: 
 ( )( )( )

L6.30

m10
L1m1006.3

atom
kPa101.325atm1

K373KJ/mol314.8mol1

33
32

=

××=

×

⋅
=

=

−
−

P
nRTV

 

 
(b) Solve van der Waals equation for 
T to obtain: 
 

( )

nR

bnV
V
anP

T
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=
2

2

 

 
Substitute numerical values and evaluate T: 
 

( ) ( ) ( )
( )

( ) ( )
( ) ( )

K375

KJ/mol8.314mol1
mol1/molm1030m103.06

m103.06
mol1/molmPa0.55kPa3.101

3632

232

2262

2

=

⋅
×−×

×

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

×

⋅
+=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

−−

−nR

bnV
V
anP

T

 

 
35 ••  
Picture the Problem We can find these temperatures and pressure by consulting Figure 
20-3. 

 
(a) At 70 kPa, water boils at: C90°≈t  

 
(b) At 0.5 atm (about 51 kPa): C82boil °≈t  

 
(c) For tboil = 115°C: kPa170≈P  

  
*36 ••  
Picture the Problem Assume that a helium atom is spherical. Then we can find its radius 
from 3

3
4 rV π= and its volume from the van der Waals equation. 
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Express the radius of a spherical 
atom in terms of its volume:  
 

3

4
3
π
Vr =  

In the van der Waals equation, b is 
the volume of 1 mol of molecules. 
For He, 1 molecule = 1 atom. Use 
Avogadro’s number to express b in 
cm3/atom: 
 

( )( )

/atomcm103.94
atoms/mol106.022

/Lcm10L/mol0.0237

323

23

33

−×=

×
=b

 

Substitute numerical values and 
evaluate r: 
 

( )

nm211.0cm1011.2
4

cm1094.33
4
3

8

3
323

3

=×=

×
==

−

−

ππ
br

 

 
37 •••   
Picture the Problem Because, at the critical point, dP/dV = 0 and d2P/dV2 = 0, we can 
solve the van der Waals equation for P and set its first and second derivatives equal to zero 
to find Vc. We can then eliminate Vc between these equations to find Tc and then substitute 
in the van der Waals equation to express Pc. Finally, we can use their definitions to rewrite 
the van der Waals equation in terms of the reduced variables.  

 
(a) Solve the van der Waals 
equation for P: 
 

2

2

V
an

bnV
nRTP −
−

=                           (1) 

Evaluate dP/dV: 
 

( )
extremafor  0

2
3

2

2

2

2

=

+
−

−=

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

V
an

nbV
nRT

V
an

bnV
nRT

dV
d

dV
dP

                  (2) 

 

Evaluate 2

2

dV
Pd

: 

 
( )

( )
points criticalfor  0

62

2

4

2

3

3

2

22

2

=

−
−

=

⎥
⎦

⎤
⎢
⎣

⎡
+

−
−=

V
an

nbV
nRT

V
an

nbV
nRT

dV
d

dV
Pd

       (3) 

 

Solve equation (2) for 3

22
V
an

: 
( )23

22
nbV

nRT
V
an

−
=                               (4) 
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Solve equation (3) for 4

26
V
an

: 
( )34

2 26
nbV

nRT
V
an

−
=                                (5) 

 
Divide equation (4) by equation (5) 
and simplify to obtain: 
 

( )nbVV −= 2
1

3
1  

Solve for V = Vc: nbV 3c =  

 
Substitute in equation (4): 

( )2
c

33

2

327
2

nbnb
nRT

bn
an

−
=  

 
Simplify and solve for Tc: 

Rb
aT

27
8

c =  

 
Substitute for Vc and Tc in equation 
(1) and simplify to obtain: 
 ( ) 22

2

c 2733
27

8

b
a

bn
an

bnbn
Rb
anR

P =−
−

=  

 
(b) Using the result for Vc from (a), 
express the reduced volume Vr: nb

V
V
VV

3c
r ==  and r3nbVV =  

 
Using the result for Tc from (a), 
express the reduced temperature Tr: 
 

a
RbT

T
TT

8
27

c
r ==  

and 

r27
8 T

Rb
aT =  

 
Using the result for Pc from (a), 
express the reduced pressure Pr: 
 

a
Pb

P
PP

2

c
r

27
==  

and 

r227
P

b
aP =  

 
Substitute in the van der Waals 
equation to obtain: 
 

( )
( )

r

r2
r

2

r2

27
8

3
327

T
Rb
anR

bnnbV
nbV
anP

b
a

=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
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Simplify to obtain: 
( ) rr2

r
r 8133 TV

V
P =−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+  

 
Heat Conduction 
 
38 •  
Picture the Problem We can use their definitions to find the thermal resistance of the bar, 
the thermal current in the bar, and the temperature gradient in the bar. Because the 
temperature varies linearly with distance along the bar, we can express the temperature in 
terms of the thermal gradient and evaluate this expression 25 cm from the hot end. 

 
(a) Using its definition, find the 
thermal resistance of the bar: 

( ) ( )[ ]
K/W9.15

m10KW/m401
m2

24

2

=

⋅
=

∆
=

∆
=

−π

π rk
x

kA
xR

 

 
(b) Using its definition, find the 
thermal current in the bar: 
 

W.296
K/W15.9
K100

==
∆

=
R
TI  

 
(c) Substitute numerical values and 
evaluate the temperature gradient: 
 

K/m50K/m50
m2
K100

===
∆
∆

x
T

 

 
(d) Express the linear dependence of 
the temperature in the bar on the 
distance from the cold end: 
 

x
dx
dTTT ∆+= 0  

Substitute numerical values and 
evaluate T(1.75 m): 

( ) ( )( )
C87.5K5.360

m1.75K/m50K273m75.1

°==

+=T
 

 
39 •  
Picture the Problem We can use its definition to express the thermal current in the slab 
in terms of the temperature differential across it and its thermal resistance and use the 
definition of the R factor to express I as a function of ∆T, the cross-sectional area of the 
slab, and Rf. 

 
Express the thermal current through 
the slab in terms of the temperature 
difference across it and its thermal 

R
TI ∆

=  
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resistance: 
 
Substitute to express R in terms of 
the insulation’s R factor: ff / R

TA
AR

TI ∆
=

∆
=  

 
Substitute numerical values and 
evaluate I: 

( )( )( )

kBtu/h2.07

/BtuFfth11
F30F68ft30ft20

2

=

°⋅⋅
°−°

=I
 

 
40 ••  
Picture the Problem We can use kAxR ∆= to find the thermal resistance of each cube 

and the fact that they are in series to find the thermal resistance of the two-cube system. 
We can use RTI ∆=  to find the thermal current through the cubes and the temperature 

at their interface. 
 

(a) Using its definition, express the 
thermal resistance of each cube: 
 

kA
xR ∆

=  

Substitute numerical values and 
evaluate the thermal resistance of 
the copper cube: 
 

( )( )
K/W0831.0

cm3KW/m401
cm3

2Cu

=

⋅
=R

 

Substitute numerical values and 
evaluate the thermal resistance of 
the aluminum cube: 
 

( )( )
K/W141.0

cm3KW/m372
cm3

2Al

=

⋅
=R

 

(b) Because the cubes are in series, 
their thermal resistances are 
additive: 
 

K/W0.224

K/W0.141K/W0.0831
AlCu

=

+=
+= RRR

 

 
(c) Using its definition, find the 
thermal current: 
 

W357
K/W0.224

K293K373
=

−
=

∆
=

R
TI  

 
(d) Express the temperature at the 
interface between the two cubes: 
 

Cuinterface K373 TT ∆−=  

 

Express the temperature differential 
across the copper cube: 
 

CuCuCuCu IRRIT ==∆
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Substitute numerical values and 
evaluate Tinterface: 
 

( )( )
C3.70K3.343

K/W0831.0W357K373
K373 Cuinterface

°==

−=
−= IRT

 

 
41 ••  
Picture the Problem We can use RTI ∆= and kAxR ∆= to find the thermal current in 

each cube. Because the currents are additive, we can find the equivalent resistance of the 
two-cube system from ITR ∆=eq .  

 
(a) Using its definition, express the 
thermal current through each cube: 
 

R
TI ∆

=  

Using its definition, express the 
thermal resistance of each cube: 
 

kA
xR ∆

=  

Substitute to obtain: 
 x

TkAI
∆
∆

=  

 
Substitute numerical values and 
evaluate the thermal current in the 
copper cube: 
 
 

( )( )

( )
W962

K293K373
cm3

cm3KW/m401 2

Cu

=

−×

⋅
=I

 

 
Substitute numerical values and 
evaluate the thermal current in the 
aluminum cube: 
 
 

( )( )

( )
W569

K293K373
cm3

cm3KW/m372 2

Al

=

−×

⋅
=I

 

 
(b) Because the cubes are in parallel, 
their total thermal currents are 
additive: 
 

kW1.53

W695W629AlCu

=

+=+= III
 

 

(c) Use the relationship between the 
thermal current, temperature 
differential and thermal resistance to 
find Req: 

K/W0.0523

kW1.53
K293K373

eq

=

−
=

∆
=

I
TR

 

 



Thermal Properties and Processes 
 

 

1523

42 ••  
Picture the Problem The cost of operating the air conditioner is proportional to the 
energy used in its operation. We can use the definition of the COP to relate the rate at 
which the air conditioner removes heat from the house to rate at which it must do work  
to maintain a constant temperature differential between the interior and the exterior of the 
house. To obtain an expression for the minimum rate at which the air conditioner must do 
work, we’ll assume that it is operating with the maximum efficiency possible. Doing so 
will allow us to derive an expression for the rate at which energy is used by the air 
conditioner that we can integrate to obtain the energy (and hence the cost of operation) 
required. 
 
Relate the cost C of air conditioning 
the energy W required to operate the 
air conditioner: 
 

uWC =                                   (1) 
where u is the unit cost of the energy. 

Express the rate dQ/dt at which heat 
flows into a house provided the 
house is maintained at a constant 
temperature: 
 

Tk
dt
dQP ∆==  

where ∆T is the temperature difference 
between the interior and exterior of the 
house. 
 

Use the definition of the COP to 
relate the rate at which the air 
conditioner must remove heat dW/dt 
to maintain a constant temperature: 
 

dtdW
dtdQ

=COP  

Solve for dW/dt: 
 COP

dtdQ
dtdW =  

 
Express the maximum value of the 
COP: T

T
∆

= c
maxCOP  

where Tc is the temperature of the cold 
reservoir. 
 

Letting COP = COPmax, substitute to 
obtain an expression for the 
minimum rate at which the air 
conditioner must do work in order to 
maintain a constant temperature: 

T
T

dtdQ
dt

dW
∆=

c

 

Substitute for dQ/dt to obtain: ( )2

cc

T
T
kT

T
Tk

dt
dW

∆=∆
∆

=  

 
Separate variables and integrate this 
equation to obtain: 
 

( ) ( ) tT
T
kdt'T

T
kW

t

∆∆=∆= ∫
∆

2

c0

2

c

 

 
Substitute in equation (1) to obtain: ( ) ( )22

c

TtT
T
kuC ∆∝∆∆=  
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43 •••  
Picture the Problem We can follow the step-by-step instructions given in the problem 
statement to obtain the differential equation describing the variation of T with r. 
Integrating this equation will yield an equation that we can solve for the current I. 

 
(a)  

same.  thebe shell
each rough current th althat therm

requiresenergy  ofon Conservati
 

 
(b) Express the thermal current I 
through such a shell element in 
terms of the area A = 4π r2, the 
thickness dr, and the temperature 
difference dT across the element: 

dr
dTkr

dr
dTkAI 24π−=−=  

where the minus sign is a consequence of 
the heat current being opposite the 
temperature gradient. 
 

(c) Separate the variables: 
24 r

dr
k

IdT
π

−=  

 
Integrate from r = r1 to r = r2: 
 ∫∫ −=

2

1

2

1

24

r

r

T

T r
dr

k
IdT
π

 

and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎥⎦

⎤
⎢⎣
⎡=−

21
12

11
4

1
4

2

1
rrk

I
rk

ITT
r

r ππ
 

 
Solve for I to obtain: 
 

( )12
12

214 TT
rr
rkrI −

−
=

π
 

 
(d) When r2 − r1 << r1: rrr =≈ 21  

 
Let r2 − r1 = ∆r and substitute to obtain: ( )

r
TkrTT

r
krI

∆
∆

=−
∆

= 2
12

2

44 ππ
           

which is Equation 20-7. 
 
*44 ••  
Picture the Problem We can use the expression for the thermal current to express the 
thickness of the walls in terms of the thermal conductivity of copper, the area of the walls, 
and the temperature difference between the inner and outer surfaces. Letting ∆A/∆x′ 
represent the area per unit length of the pipe and L its length, we can eliminate the surface 
area and solve for and evaluate L. 
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Write the expression for the thermal 
current: 
 

x
TkAI

∆
∆

=  

Solve for A: 
Tk
xIA

∆
∆

=  

 
Express the total surface area of the 
pipe: 
 

L
x'
AA

∆
∆

=  

Substitute for A and solve for L to 
obtain: 
 x'A

Tk
xI

L
∆∆

∆
∆

=  

 
Substitute numerical values and 
evaluate L: 

( )( )
( )( )

m665

m12.0
K498K873KW/m401

m104GW3 3

=

⎥
⎦

⎤
⎢
⎣

⎡
−⋅

×

=

−

L  

 
45 •••  
Picture the Problem Consider an element with a cylindrical area of length L, radius r, 
and thickness dr. We can relate the heat current through this element to the conductivity 
of the walls of the pipe, its length and radius, and the temperature gradient across the 
wall. We can separate the variables in the resulting differential equation and integrate to 
find the rate of heat transfer. 

 
(a) Express the heat current through 
the cylindrical element: dr

dTkLr
dr
dTkAI π2−=−=  

where the minus sign is a consequence of 
the heat current being opposite the 
temperature gradient. 

Separate the variables: 
r
dr

kL
IdT

π2
−=  

 
Integrate from r = r1 to r = r2 and  
T = T1 to T = T2: 
 

∫∫ −=
2

1

2

1
2

r

r

T

T r
dr

kL
IdT

π
 

and 
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]

2

1

1

2

12

ln
2

ln
2

ln
2

2

1

r
r

kL
I

r
r

kL
I

r
kL

ITT r
r

π

π

π

=

−=

−=−

 

 
Solve for I to obtain: 
 ( ) ( )12

21ln
2 TT

rr
kLI −=

π
 

 
 Remarks: If we use the above result in Problem 44 (take 0.12 m2 to be the outside 
area per unit length of the pipe), then r1 = 1.91 cm and r2 = 1.51 cm. Solving for L one 
obtains 746 m. 
 
Radiation 

 
46 •  
Picture the Problem We can apply Wein’s displacement law to find the wavelength at 
which the power is a maximum. 
 
Use Wein’s displacement law to 
relate the wavelength at which the 
power is a maximum to the surface 
temperature of the skin: 
 

T
Kmm898.2

max
⋅

=λ  

Substitute numerical values and 
evaluate λmax: 

m47.9
K33K273
Kmm2.898

max µλ =
+

⋅
=  

 
47 •  
Picture the Problem We can apply the Stefan-Boltzmann law to find the net power 
radiated by the wires of its heater to the room. 

 
Relate the net power radiated to the 
surface area of the heating wires, their 
temperature, and the room 
temperature: 
 

( )4
0

4
net TTAeP −= σ  

Solve for A: 
( )4

0
4
net

TTe
PA

−
=

σ
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Substitute numerical values and evaluate A: 
 

( )( ) ( ) ( )[ ]
23

44428
m1035.9

K293K1173KW/m105.67031
kW1 −

−
×=

−⋅×
=A  

 
48 ••  
Picture the Problem The rate at which the sphere absorbs radiant energy is given by 

dtmcdTdtdQ // =  and, from the Stephan-Boltzmann law, ( )4
0

4
net TTAeP −= σ , where 

A is the surface area of the sphere, T0 is its temperature, and T is the temperature of the 
walls. We can solve the first equation for dT/dt and substitute Pnet for dQ/dt in order to 
find the rate at which the temperature of the sphere changes. 

 
Relate the rate at which the sphere 
absorbs radiant energy to the rate at 
which its temperature changes: 
 

dt
dTmc

dt
dQP ==net  

 

Solve for dT/dt: 
cr

P
Vc

P
mc
P

dt
dT

ρπρ 3
3
4

netnetnet ===  

 
Apply the Stefan-Boltzmann law to 
relate the net power radiated to the 
sphere to the difference in 
temperature of the walls and the 
blackened copper sphere: 
 

( )
( )4

0
42

4
0

4
net

4 TTer

TTAeP

−=

−=

σπ

σ
 

Substitute to obtain: ( )

( )
cr

TTe

cr
TTer

dt
dT

ρ
σ

ρπ
σπ

4
0

4

3
3
4

4
0

42

3

4

−
=

−
=

 

 
Substitute numerical values and evaluate dT/dt: 
 

( )( ) ( ) ( )[ ]
( )( )( ) K/s1024.2

KkJ/kg0.386kg/m108.93m104
K273K293KW/m105.670313 3

332

44428
−

−

−

×=
⋅××

−⋅×
−=

dt
dT

 

 
49 ••  
Picture the Problem We can apply the Stephan-Boltzmann law to express the net power 
radiated by the incandescent lamp to its surroundings.  
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Express the rate at which energy is 
radiated to the surroundings: 

( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

−=
4

04

4
0

4
net

1
T
TATe

TTAeP

σ

σ

 

 
Evaluate ( ) :4

0 TT  
4

44
0 109

K1573
K273 −×≈⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎠
⎞

⎜
⎝
⎛

T
T

 

and, because this ratio is so small, we can 
neglect the temperature of the surroundings.
 

Substitute to obtain: 
 

4
net ATeP σ≈  

Solve for T: 41
net ⎟

⎠
⎞

⎜
⎝
⎛=

Ae
PT
σ

 

 
Express the temperature T ′when the 
electric power input is doubled: 
 

41
net2

⎟
⎠
⎞

⎜
⎝
⎛=

Ae
PT'
σ

 

Divide the second of these equations 
by the first, simplify, and substitute 
numerical values and evaluate T ′: 
 

( ) 412=
T
T'

 

and 
( ) ( ) ( )

C1598K1871

K157322 4141

°==

== TT'
 

 
50 ••  
Picture the Problem We can differentiate Q = mL, where L is the latent heat of boiling 
for helium, with respect to time to obtain an expression for the rate at which the helium 
boils away. 

 
Express the rate at which the helium 
boils away in terms of the rate at 
which its container absorbs radiant 
energy: 
 

( )

( )

4
2

4
04

2

4
0

42

4
0

4
net

1

T
L

de

T
TT

L
de

L
TTde
L

TTAe
L

P
dt
dm

σπ

σπ

σπ

σ

≈

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

−
=

−
==

 

when T0 << T. 
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Substitute numerical values and evaluate dm/dt: 
 

( )( ) ( ) ( )

g/h96.6kg/h109.66

h
s3600

s
kg102.68K77

kJ/kg21
m3.0KW/m105.67031

2

54
2428

=×=

××=
⋅×

≈

−

−
− π

dt
dm

 

 
General Problems 
 
*51 •  
Picture the Problem The distance by which the tape clears the ground equals 
the change in the radius of the circle formed by the tape placed around the  
earth at the equator. 

 
Express the change in the radius of 
the circle defined by the steel tape: 
 

TRR ∆=∆ α  
where R is the radius of the earth, α is the 
coefficient of linear expansion of steel, and 
∆T is the increase in temperature. 
 

Substitute numerical values and 
evaluate ∆R. 

( )( )( )

km10.2

m1010.2
K30K1011m106.37

3

166

=

×=

××=∆ −−R
 

 
52 ••   
Picture the Problem We can differentiate the definition of the density of an  
isotropic material with respect to T and use the definition of the coefficient of  
volume expansion to express the rate at which the density of the material  
changes with respect to temperature. Once we have an expression for dρ in  
terms of dT, we can apply a differential approximation to obtain ∆ρ in terms  
of  ∆T. 
Using its definition, relate the 
density of the material to its mass 
and volume: 
 

V
m

=ρ  

Using its definition, relate the 
volume of the material to its 
coefficient of volume expansion: 
 

TVV ∆=∆ β  



Chapter 20  
 

 

1530 

Differentiate ρ with respect to T and 
simplify to obtain: 

ρββρ

βρρ

−=−=

−==

V
V

V

V
V
m

dT
dV

dV
d

dT
d

2

2

 

or 
dTd ρβρ −=  

 
Use a differential approximation to 
obtain: 

T∆−=∆ ρβρ  

 
53 ••  
Picture the Problem We can apply the Stefan-Boltzmann law to express the effective 
temperature of the sun in terms of the total power it radiates. We can, in turn, use the 
intensity of the sun’s radiation in the upper atmosphere  
of the earth to approximate the total power it radiates. 

 
Apply the Stefan-Boltzmann law to 
relate the energy radiated by the sun 
to its temperature: 
 

4
r ATeP σ=  

Solve for T: 
4 r

Ae
PT
σ

=  

 
Express the area of the sun: 2

S4 RA π=  

 
Relate the intensity of the sun’s 
radiation in the upper atmosphere to 
the total power radiated by the sun: 
 

24 R
PI r

π
=  

where R is the earth-sun distance. 

Solve for Pr: IRPr
24π=  

 
Substitute for Pr and A and simplify to 
obtain: 4

2
S

2

4
2
S

2

4
4

Re
IR

Re
IRT

σπσ
π

==  

 
Substitute numerical values and evaluate T: 
 

( ) ( )
( )( )( ) K5767

m106.96KW/m105.671
kW/m1.35m101.5

4
2828

2211

=
×⋅×

×
=

−
T  
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54 ••  
Picture the Problem We can solve the thermal-current equation for the R factor  
of the material. 

 
Use the equation for the thermal 
current to express I in terms of the 
temperature gradient across the 
insulation: 
 

x
TkAI

∆
∆

=  

Rewrite this expression in terms of 
the R factor of the material: ff R

TA

A
R
T

kA
x
TI ∆

=
∆

=
∆
∆

=  

 
Solve for the R factor: 

I
TA

I
TAR

∆
=

∆
= sideone

f

6
 

 
Substitute numerical values and evaluate R: 
 

( )

Btu
hftF21.2

s3600
h1

Btu
J1054

m
ft10.76

K5
F9

s
J
mK0.390

W
mK0.390K293K363

W100
in

m102.54in126

2

2

22

2

22

f

⋅⋅°
=×××

°
×

⋅
=

⋅
=−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
×

=

−

R
 

 
55 ••  
Picture the Problem Because the temperature of the copper-aluminum interface is  
(T1 + T2)/2, we can conclude that the temperature differences across the two sheets must 
be the same. We also know, because the sheets are in series, that the heat currents 
through them are equal. 

 
Express the thermal current through 
the aluminum sheet: 
 

Al

Al
AlAlAl x

TAkI
∆
∆

=  

Express the thermal current through 
the copper sheet: 
 

Cu

Cu
CuCuCu x

TAkI
∆
∆

=  

Equate these currents and solve for 
∆xAl: Cu

Cu
CuCu

Al

Al
AlAl x

TAk
x
TAk

∆
∆

=
∆
∆

 

and 
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Cu

Al
CuAl k

kxx ∆=∆  

 
Substitute numerical values and 
evaluate ∆xAl:  

( ) cm18.1
KW/m014
KW/m237cm2Al =

⋅
⋅

=∆x  

 
56 ••  
Picture the Problem We can relate the stress in the bar to the strain due to its elongation 
using the definition of Young’s modulus and express the strain 
in terms of the coefficient of linear expansion and the change in temperature  
of the bar.  

 
Using the definition of Young’s 
modulus, relate the force exerted by 
the bar on each wall to the strain in 
the bar due to the change in its 
length: 
 

L
L

A
F

Y
∆

=  

Using the definition of the 
coefficient of linear expansion, 
express the strain in the bar: 
 

T
L
L

∆=
∆ α  

Substitute to obtain: 
 TA

FY
∆

=
α

 

 
Solve for F: 
 

TAYF ∆= α  

Substitute numerical values and evaluate F: 
 

( ) ( ) ( )( ) N101.34K40GN/m200m0.022K1011 52216 ×=×= −− πF  

 
57 ••  
Picture the Problem We can use the definition of the coefficient of volume expansion 
with the ideal-gas law to show that β = 1/T.  

 
(a) Use the definition of the 
coefficient of volume expansion to 
express β in terms of the rate of 
change of the volume with 
temperature: 

dT
dV

V
1

=β  

 
 
 
 



Thermal Properties and Processes 
 

 

1533

For an ideal gas: 
 P

nRTV =  and 
P

nR
dT
dV

=  

 
Substitute to obtain: 
 TP

nR
V

11
==β  

 
(b) Express the ratio of the 
experimental value to the theoretical 
value: 

%3.0

K
273
1

K
273
1K0.003673

1

11

th

thexp

<

−
=

−

−

−−

β
ββ

 

 
58 ••  
Picture the Problem We can express L as the difference between LB and LA  
and express these lengths in terms of the coefficients of linear expansion brass 
and steel. Requiring that L be constant will lead us to the condition that  
LA/LB = αB/αA. 

 
(a) Express the condition that L does 
not change when the temperature of 
the materials changes: 
 

constant
AB

=
−= LLL

 

 
 

Using the definition of the 
coefficient of linear expansion, 
substitute for LB and LA:  
 

( ) ( )
( ) ( )

( ) TLLL
TLLLL

TLLTLLL

∆−+=
∆−+−=

∆+−∆+=

AABB

AABBAB

AAABBB

αα
αα

αα
 

or 
( ) 0AABB =∆− TLL αα  

and 
0AABB =− LL αα  

is the condition that L remain constant when 
the temperature changes by ∆T. 
 

Solve for the ratio of LA to LB: 

A

B

B

A

α
α

=
L
L
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(b) From (a) we have: 
 

( )

cm432

K1011
K1019cm250 16

16
steel

brass
brass

B

A
AsteelB

=

×
×

=

===

−−

−−

α
α

α
α LLLL

 

and 

cm182

cm250cm432AB

=

−=−= LLL
 

 
59 ••  
Picture the Problem We can apply the thermal-current equation to calculate  
the heat loss of the earth per second due to conduction from its core. We can  
also use the thermal-current equation to find the power per unit area radiated  
from the earth and compare this quantity to the solar constant. 

 
Express the heat loss of the earth per 
unit time as a function of the thermal 
conductivity of the earth and its 
temperature gradient: 
 

x
TkA

dt
dQI

∆
∆

==                 (1) 

or 

 
x
TkR

dt
dQ

∆
∆

= 2
E4π        

          
Substitute numerical values and 
evaluate dQ/dt: 
 

( )

( )

kW1026.1

m30
C1KsJ/m0.74

m1037.64

10

26

×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ °
⋅⋅×

×= π
dt
dQ

 

 
Rewrite equation (1) to express the 
thermal current per unit area: 
 

x
Tk

A
I

∆
∆

=  

Substitute numerical values and 
evaluate I/A: 

( )

2W/m0.0247

m30
C1KsJ/m0.74

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ °
⋅⋅=

A
I

 

Express the ratio of I/A to the solar 
constant: 

%002.0

kW/m1.35
W/m0.0247

constantsolar 2

2

<

=
AI

 

 



Thermal Properties and Processes 
 

 

1535

60 ••  
Picture the Problem We can find the temperature of the outside of the copper bottom by 
finding the temperature difference between the outside of the saucepan and the boiling 
water. This temperature difference is related to the rate at which the water is evaporating 
through the thermal-current equation. 

 
Express the temperature outside the 
pan in terms of the temperature 
inside the pan: 
 

T
TTT

∆+=
∆+=

K373
inout  

Relate the thermal current through 
the bottom of the saucepan to its 
thermal conductivity, area, and the 
temperature gradient between its 
surfaces: 
 

x
TkA

t
Q

∆
∆

=
∆
∆

 

Solve for ∆T: x
t
Q

kA
T ∆

∆
∆

=∆
1

 

 
Because the water is boiling: vmLQ =∆  

 
Substitute to obtain: 
 tkA

xmLT
∆
∆

=∆ v  

 
Substitute numerical values and evaluate ∆T: 
 

( )( )( )
( ) ( ) ( )

K28.1
s600m0.15

4
KW/m401

m103MJ/kg2.26kg0.8
2

3

=

⎥⎦
⎤

⎢⎣
⎡⋅

×
=∆

−

π
T  

 
Substitute and evaluate Tout: 

C101.3

K3.374K28.1K373out

°=

=+=T
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*61 ••  
Picture the Problem We’ll do this problem twice. First, we’ll approximate the answer 
by disregarding the fact that the surrounding insulation is cylindrical. In the second 
solution, we’ll obtain the exact answer by taking into account the cylindrical insulation 
surrounding the side of the tank. In both cases, the power required to maintain the 
temperature of the water in the tank is equal to the rate at which thermal energy is 
conducted through the insulation. 

 
1st solution: 
 

 

Using the thermal current equation, 
relate the rate at which energy is 
transmitted through the insulation to 
the temperature gradient, thermal 
conductivity of the insulation, and 
the area of the insulation/tank: 
 

x
TkAI

∆
∆

=  

 

Letting d represent the inside 
diameter of the tank and L its inside 
height, express and evaluate its 
surface area: 
 ( )

( )( ) ( )[ ]
2

2
2
1

2
2
1

2

basesside

m55.2

m0.55m1.2m0.55

4
2

=

+=

+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

+=

π

π

ππ

ddL

ddL

AAA

 

 
Substitute numerical values and 
evaluate I: ( )( )

W132

m05.0
K74m2.55KW/m0.035 2

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=I

 

 
2nd solution: 
 

 

Express the total heat loss as the 
sum of the losses through the top 
and bottom and the side of the hot-
water tank: 
 

sidebottomandtop III +=  

Express I through the top and 
bottom surfaces: 
 

x
Tkd

x
TkAI

∆
∆

=

⎟
⎠
⎞

⎜
⎝
⎛

∆
∆

=

2
2
1

bottomandtop 2

π
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Substitute numerical values and 
evaluate Itop and bottom: 
 

( )
( )( )

W6.24
m0.05

K74KW/m0.035

m55.0 2
2
1

bottomandtop

=

⋅
×

= πI

 

 
Letting r represent the inside radius 
of the tank, express the heat current 
through the cylindrical side: 

dr
dTkLr

dr
dTkAI π2side −=−=  

where the minus sign is a consequence of 
the heat current being opposite the 
temperature gradient. 
 

Separate the variables: 
r

dr
kL

IdT
π2

side−=  

 
Integrate from r = r1 to r = r2 and  
T = T1 to T = T2: 
 

∫∫ −=
2

1

2

1
2

side
r

r

T

T r
dr

kL
IdT
π

 

and 

]

2

1side

1

2side

side
12

ln
2

ln
2

ln
2

2

1

r
r

kL
I

r
r

kL
I

r
kL

ITT r
r

ππ

π

=−=

−=−
 

 
Solve for Iside to obtain: 
 

( )12

2

1
side

ln

2 TT

r
r
kLI −=

π
 

 
Substitute numerical values and 
evaluate Iside: 

( )( ) ( )

W117

K74

m0.275
m0.325ln

m1.2KW/m0.0352
side

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

=
πI

 

 
Substitute for Iside and evaluate I: W142W171W4.62 =+=I  

 
62 •••    
Picture the Problem We can use R = ∆T/I and I = −kAdT/dt to express dT in terms of the 
linearly increasing diameter of the rod. Integrating this expression will allow us to find ∆T 
and, hence, R. 
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Express the thermal resistance of the 
rod in terms of the thermal current in 
it: 
 

I
TR ∆

=                                    (1) 

Relate the thermal current in the rod 
to its thermal conductivity k, cross-
sectional area A, and temperature 
gradient: 

dx
dTkAI −=  

where the minus sign is a consequence of 
the heat current being opposite the 
temperature gradient. 
 

Using the dependence of the 
diameter of the rod on x, express the 
area of the rod: 
 

( )22
0

2

1
44

axddA +==
ππ

 

 

Substitute to obtain: 
 

( )
dx
dTaxdkI ⎥⎦

⎤
⎢⎣
⎡ +−= 22

0 1
4
π

 

 
Separate variables to obtain: 
 ( )

( )22
0

22
0

1
4

1
4

ax
dx

kd
I

axdk

IdxdT

+
−=

⎥⎦
⎤

⎢⎣
⎡ +

−=

π

π
 

 
Integrate T from T1 to T2 and x from 
0 to L: ( )∫∫ +

−=
LT

T ax
dx

kd
IdT

0
22

0 1
42

1
π

 

and 

( )aLkd
ILTTT

+
=∆=−

1
4
2
0

12 π
 

 
Substitute for ∆T and I in equation 
(1) and simplify to obtain: ( )

( )aLkd
L

I
aLkd

IL

R
+

=
+

=
1

41
4

2
0

2
0

π
π

 

 
63 •••    
Picture the Problem Let ∆T = T2 – T1. We can apply Newton’s 2nd law to establish the 
relationship between L2 and L1 and angular momentum conservation to relate ω2 and ω1. 
We can express both E2 and E1 in terms of their angular momenta and rotational inertias 
and take their ratio to establish their relationship. 
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Apply 
t
L

∆
∆

=∑τ to the spinning disk: Because 0=∑τ , ∆L = 0  

and 

12 LL =  

 
Apply conservation of angular 
momentum to relate the angular 
velocity of the disk at T2 to the 
angular velocity at T1: 
 

1122 ωω II =  

and 

1
2

1
2 ωω

I
I

=  

Express I2: ( )
( )( )

( )TI
TTI

TmrmrI

∆+≈
∆+∆+=

∆+==

α
αα

α

21
21

1

1

2
1

22
1

2
22

 

because (α∆T)2 is small compared to α∆T. 
 

Substitute and apply the binomial 
expansion formula to obtain: 
 

( ) 1
1

1
2 21

ω
α

ω
TI

I
∆+

=  

and, because 2α∆T << 1, 
( ) 12 21 ωαω T∆−≈  

 
Express E2 in terms of L2 and I2: 

2

2
1

2

2
2

2 22 I
L

I
LE ==  

because L2 = L1. 
 

Express E1 in terms of L1 and I1: 

1

2
1

1 2I
LE =  

 
Express the ratio of E2 to E1: 

2

1

1

2
1

2

2
1

1

2

2

2
I
I

I
L
I

L

E
E

==  

 
Solve for E2 and substitute for the 
ratio of I1 to I2: 

( )TE
I
IEE ∆−== α211

2

1
12  

 
64 •••  
Picture the Problem The amount of heat radiated by the earth must equal the solar flux 
from the sun, or else the temperature on earth would continually increase.  The emissivity 
of the earth is related to the rate at which it radiates energy into space by the Stefan-
Boltzmann law .4

r ATeP σ=  
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Using the Stefan-Boltzmann law, 
express the rate at which the earth 
radiates energy as a function of its 
emissivity e and temperature T: 
 

4
r A'TeP σ=  

where A′ is the surface area of the earth. 

Use its definition to express the 
intensity of the radiation Pa 
absorbed by the earth: 
 

A
PI a=  or AIP =a  

where A is the cross-sectional area of the 
earth. 
 

For 70% absorption of the sun’s 
radiation incident on the earth: 
 

AIP 7.0a =  

Equate Pr and Pa and simplify: 
 

47.0 A'TeAI σ=  
or 

( )422 47.0 TReIR σππ =  
 

Solve for T to obtain: 
414

4
7.0 −== Ce
e
IT

σ
                   (1) 

 
Substitute numerical values for I and σ 
and simplify to obtain: 
 

( )
( )

( ) 41

4
428

2

K255

KW/m10670.54
W/m13707.0

−

−

=

⋅×
=

e

e
T

 

 
 
A spreadsheet program to evaluate T as a function of e is shown below. The formulas 
used to calculate the quantities in the columns are as follows: 
 

Cell Formula/Content Algebraic Form
B1 255  
B4 0.4 e 
B5 B4+0.01 e + 0.1 
C4 $B$1/(B4^0.25) ( ) 41K255 −e   

 
 A B C D 

1 T= 255 K  
2     
3  e T  
4  0.40 321  
5  0.41 319  
6  0.42 317  
7  0.43 315  
     

23  0.59 291  
24  0.60 290  
25  0.61 289  
26  0.62 287   
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A graph of T as a function of e is shown below. 
 

285

290

295

300

305

310

315

320

325

0.40 0.45 0.50 0.55 0.60

e

T
 (K

)

 
 
Treating e as a variable, differentiate 
equation (1) to obtain: deCe

de
dT 45

4
1 −−=           (2) 

 
Divide equation (2) by equation (1) 
to obtain: 

e
de

Ce

deCe

T
dT

4
14

1

41

45

−=
−

= −

−

 

 
Use a differential approximation to 
obtain: 
 e

e
T
T ∆

−=
∆

4
1

 

Solve for ∆e: 
 T

Tee ∆
−=∆ 4  

 
Substitute numerical values  
(e ≈ 0.615 for Tearth = 288 K) and 
evaluate ∆e: 

( ) 00854.0
K288

K1615.04 −=−=∆e  

or about a 1.39% change in e. 
 
65 •••  
Picture the Problem We can differentiate the expression for the heat that must be 
removed from water in order to form ice to relate dQ/dt to the rate of ice build-up dm/dt. 
We can apply the thermal-current equation to express the rate at which heat is removed 
from the water to the temperature gradient and solve this equation for dm/dt. In part (b) we 
can separate the variables in the differential equation relating dm/dt and ∆T and integrate 
to find out how long it takes for a 20-cm layer of ice to be built up. 
 
(a) Relate the heat that must be 
removed from the water to freeze it 
to its mass and heat of fusion: 
 

fmLQ =  
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Differentiate this expression with 
respect to time: 
 

dt
dmL

dt
dQ

f=  

Using the definition of density, 
relate the mass of the ice added to 
the bottom of the layer to its density 
and volume: 
 

AxVm ρρ ==  

Differentiate with respect to time to 
express the rate of build-up of the 
ice: 
 

dt
dxA

dt
dm ρ=  

Substitute to obtain: 
dt
dxAL

dt
dQ ρf=  

 
Apply the thermal-current equation: 

x
TkA

dt
dQ ∆

=  

 
Equate these expressions and solve 
for dx/dt: x

TkA
dt
dxAL ∆

=ρf  

and 

x
T

L
k

dt
dx ∆

=
ρf

                     (1) 

 
Substitute numerical values and 
evaluate dx/dt: 

( )( )
( )( )( )

cm/h0.698

m/s94.1
m0.01kg/m917kJ/kg333.5

K10KW/m0.592
3

=

=

⋅
=

µ
dt
dx

 

 
(b) Separate the variables in equation 
(1): 
 

dt
L

Tkxdx
ρf

∆
=  

Integrate x from xi to xf and t′ from  
0 to t: 'dt

L
Tkxdx

tx

x
∫∫

∆
=

0f

f

i
ρ

 

and 

( ) t
L
Tkxx
f

2
i

2
f2

1

ρ
∆

=−  

 
Solve for t to obtain: 
 

( )
Tk

xxLt
∆

−
=

2

2
i

2
ffρ
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Substitute numerical values and evaluate t: 
 

( )( )
( )( ) ( ) ( )[ ]

d9.11

h24
d1

s3600
h1s1003.1m0.01m0.2

K10KW/m0.5922
kJ/kg333.5kg/m917 622

3

=

×××=−
⋅

=t
 

 
*66 •••   
Picture the Problem We can use the thermal current equation and the definition of heat 
capacity to obtain the differential equation describing the rate at which the temperature of 
the water in the 200-g container is changing. Integrating this equation will 
yield .0

RCteTT −=  Substituting for dT/dt in dQ/dt = −CdT/dt and integrating will lead 

to ( )RCteCTQ −−= 10 . 
 

 

 
 

(a) Use the thermal current equation 
to express the rate at which heat is 
conducted from the water at 60°C by 
the rod:  
 

R
T

R
TI =

∆
=  

because the temperature of the second 
container is maintained at 0°C. 

Using the definition of heat capacity, 
relate the thermal current to the rate 
at which the temperature of the 
water initially at 60°C is changing: 
 

dt
dTC

dt
dQI −==                            (1) 

Equate these two expressions to 
obtain: T

Rdt
dTC 1

−= , the differential equation 

describing the rate at which the temperature 
of the water in the 200-g container is 
changing. 
 

Separate variables to obtain: 
dt

RCT
dT 1

−=  

 
Integrate dT from T0 to T and dt 
from 0 to t: 
 

'dt
RCT

dT' tT

T
∫∫ −=
0

1
'

0
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or 

t
RCT

T 1ln
0

−=  

 
Transform from logarithmic to 
exponential form and solve for T to 
obtain: 

RCteTT −= 0                              (2) 

 
 

(b) Use its definition to express the 
thermal resistance R: kA

xR ∆
=  

 
Substitute numerical values (see 
Table 20-8 for the thermal 
conductivity of copper) and evaluate 
R: 
 

( )( )
K/W66.1

m105.1KW/m401
m1.0

24

=

×⋅
= −R

 

 
Use its definition to express the heat 
capacity of the water and the copper 
container: 
 

wwwccwwcc cVcmcmcmC ρ+=+=  
 

Substitute numerical values (see 
Table 18-1 for the specific heats of 
water and copper) and evaluate C: 
 

( )( )
( )( )( )

kJ/K00.3

KkJ/kg18.4L7.0kg/m10
KkJ/kg386kg2.0

33

=

⋅+

⋅=C
 

 
Evaluate the product of R and C to 
find the ″time constant″ τ : 
 

( )( )
h38.1s4985

kJ/K00.3K/W66.1

==

== RCτ
 

 
(c) Solve equation (1) for dQ to obtain: 

CdTdt
dt
dTCdQ −=⎟

⎠
⎞

⎜
⎝
⎛−=  

 
Integrate dQ′ from Q = 0 to Q  
and dT from T0 to T: ∫∫ −=

T

T

Q

CdTdQ'
00

 

or 
( )( )tTTCQ −= 0  

 
Substitute (equation (2) for T(t) to obtain: 
 

( ) ( )RCtRCt eCTeTTCQ −− −=−= 1000  

 
A spreadsheet program to evaluate Q as a function of t is shown below. The formulas 
used to calculate the quantities in the columns are as follows: 
 
 

Cell Formula/Content Algebraic Form 
D1 1.35 τ 
D2 60 T0 
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D3 3000 C 
A6 0 t 
A7 A6+0.1 t + ∆t 
B6 $B$2*EXP(−A6/$B$1) RCteT −

0  
C7 $B$3*$B$2*(1−EXP(−A6/$B$1)) ( )RCteCT −−10   

 
 

 A B C D E 
1 tau= 1.35 h   
2 T0= 60 deg-C   
3 C= 3000 J/K   
4      
5 t (hr) T Q Q/1000  
6 0.0 60.00 0.00E+00 0  
7 0.1 55.72 1.29E+04 13  
8 0.2 51.74 2.48E+04 24  
      

13 0.7 35.72 7.28E+04 71  
14 0.8 33.17 8.05E+04 79  
15 0.9 30.81 8.76E+04 86  
16 1.0 28.61 9.42E+04 92  

      
33 2.7 8.12 1.56E+05 152  
34 2.8 7.54 1.57E+05 154  
35 2.9 7.00 1.59E+05 155  

 
 
From the table we can see that the temperature of the container drops to 30°C in a little 
more than h.9.0 If we wanted to know this time to the nearest hundredth of an hour, 

we could change the step size in the spreadsheet program to 0.01 h. A graph of T as a 
function of t is shown in the following graph. 
 

0

10

20

30

40

50

60

70

0.0 0.5 1.0 1.5 2.0 2.5 3.0

t  (h)

T
 (d

eg
 C

)

 
 



Chapter 20  
 

 

1546 

 
A graph of Q as a function of t follows. 
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67 •••  
Picture the Problem We can use the Stefan-Boltzmann equation and the definition of 
heat capacity to obtain the differential equation expressing the rate at which the 
temperature of the copper block decreases. We can then approximate the differential 
equation with a difference equation for the purpose of solving for the temperature of the 
block as a function of time using Euler’s method. 
 
(a) Express the rate at which heat is 
radiated away from the cube:  
 

( )4
0

4 TTAe
dt
dQ

−= σ  

Using the definition of heat 
capacity, relate the thermal current 
to the rate at which the temperature 
of the cube is changing: 
 

dt
dTC

dt
dQ

−=                          

Equate these expressions to obtain: ( )4
0

4 TT
C

Ae
dt
dT

−−=
σ

 

 
Approximate the differential 
equation by the difference equation: ( )4

0
4 TT

C
Ae

t
T

−−=
∆
∆ σ

 

 
Solve for ∆T: ( ) tTT

C
AeT ∆−−=∆ 4

0
4σ

 

or 

( ) tTT
C

AeTT nnn ∆−−=+
4

0
4

1
σ

           (1) 
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Use the definition of heat capacity 
to obtain: 

VcmcC ρ==  
 
 

Substitute numerical values (see 
Figure 13-1 for ρCu and Table 19-1 
for cCu) and evaluate C: 

( )( )
( )

J/K45.3
KkJ/kg386.0

m10kg/m1093.8 3633

=
⋅×

×= −C
 

 
(b)  A spreadsheet program to calculate T as a function of t using equation (1) is shown 
below. The formulas used to calculate the quantities in the columns are as follows: 
 

Cell Formula/Content Algebraic Form 
B1 5.67×10−8 σ 
B2 6.00×10−4 A 
B3 3.45 C 
B4 273 T0 
B5 10 ∆t 
A9 A8+$B$5 t+∆t 
B9 B8-($B$1*$B$2/$B$3) 

*(B8^4−$B$4^4)*$B$5 ( ) tTT
C

AeT nn ∆−− 4
0

4σ
 

 
 

 A B C 
1 sigma= 5.67E−08 W/m^2⋅K^4 
2 A= 6.00E−04 m^2 
3 C= 3.45 J/K 
4 T0= 273 K 
5 dt= 10 s 
6    
7 t (s) T (K)  
8 0 573.00  
9 10 562.92  

10 20 553.56  
11 30 544.85  

    
248 2400 288.22  
249 2410 288.08  
250 2420 287.95  
251 2430 287.82   

 
From the spreadsheet solution, the time to cool to 15°C (288 K) is about 2420 s or  

.min5.40  A graph of T as a function of t follows.  
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