
Chapter 21 
The Electric Field 1: Discrete Charge Distributions 
 
Conceptual Problems 
 
*1 ••  
Similarities: 
 

Differences:

The force between charges and 
masses varies as 1/r2. 

There are positive and negative charges but 
only positive masses. 
 

The force is directly proportional to 
the product of the charges or 
masses. 
 

Like charges repel; like masses attract. 
 

 The gravitational constant G is many orders 
of magnitude smaller than the Coulomb 
constant k. 

 
2 •  
Determine the Concept No. In order to charge a body by induction, it must have charges 
that are free to move about on the body. An insulator does not have such charges. 

 
3 ••  
Determine the Concept During this sequence of events, negative charges are attracted 
from ground to the rectangular metal plate B. When S is opened, these charges are trapped 
on B and remain there when the charged body is removed. Hence B is negatively charged 
and correct. is )(c   

 
4 ••  
(a) Connect the metal sphere to ground; bring the insulating rod near the metal sphere 
and disconnect the sphere  from ground; then remove the insulating rod. The sphere will 
be negatively charged. 
 
(b) Bring the insulating rod in contact with the metal sphere; some of the positive charge 
on the rod will be transferred to the metal sphere. 
 
(c) Yes. First charge one metal sphere negatively by induction as in (a). Then use that 
negatively charged sphere to  charge the second metal sphere positively by induction. 

 

1 
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*5 ••  
Determine the Concept Because the spheres are conductors, there are free electrons on 
them that will reposition themselves when the positively charged rod is brought nearby. 

 
(a) On the sphere near the positively 
charged rod, the induced charge is negative 
and near the rod. On the other sphere, the 
net charge is positive and on the side far 
from the rod. This is shown in the diagram. 

 

 
 

 
(b) When the spheres are separated and far 
apart and the rod has been removed, the 
induced charges are distributed uniformly 
over each sphere. The charge distributions 
are shown in the diagram. 

 

 

 
6 •  
Determine the Concept The forces acting 
on +q are shown in the diagram. The force 
acting on +q due to −Q is along the line 
joining them and directed toward −Q. The 
force acting on +q due to +Q is along the 
line joining them and directed away from 
+Q.  

 
Because charges +Q and −Q are equal in magnitude, the forces due to these charges are 
equal and their sum (the net force on +q) will be to the right and so correct. is )(e  Note 

that the vertical components of these forces add up to zero. 
 

*7 •  
Determine the Concept The acceleration of the positive charge is given by 

.0 EFa
r

r
r

m
q

m
== Because q0 and m are both positive, the acceleration is in the same 

direction as the electric field. correct. is )(d   

 
*8 •  
Determine the Concept E

r
is zero wherever the net force acting on a test charge is 

zero. At the center of the square the two positive charges alone would produce a net 
electric field of zero, and the two negative charges alone would also produce a net 
electric field of zero. Thus, the net force acting on a test charge at the midpoint of the 
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square will be zero. correct. is )(b  

 
9 ••  
(a) The zero net force acting on Q could be the consequence of equal collinear charges 
being equidistant from and on opposite sides of Q. 
 
(b) The charges described in (a) could be either positive or negative and the net force on 
Q would still be zero. 
 
(c) Suppose Q is positive. Imagine a negative charge situated to its right and a larger 
positive charge on the same line and the right of the negative charge. Such an arrangement 
of charges, with the distances properly chosen, would result in a net force of zero acting 
on Q. 
 
(d) Because none of the above are correct, correct. is )(d  

 
10 •   
Determine the Concept We can use the 
rules for drawing electric field lines to 
draw the electric field lines for this system. 
In the sketch to the right we’ve assigned 2 
field lines to each charge q. 

 
 
*11 •  
Determine the Concept We can use the 
rules for drawing electric field lines to 
draw the electric field lines for this system. 
In the field-line sketch to the right we’ve 
assigned 2 field lines to each charge q. 
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*12 •  
Determine the Concept We can use the 
rules for drawing electric field lines to 
draw the electric field lines for this system. 
In the field-line sketch to the right we’ve 
assigned 7 field lines to each charge q. 

 
 
13 •  
Determine the Concept A positive charge will induce a charge of the opposite sign on 
the near surface of the nearby neutral conductor. The positive charge and the induced 
charge on the neutral conductor, being of opposite sign, will always attract one another. 

correct. is )(a  

  
*14 •  
Determine the Concept Electric field lines around an electric dipole originate at the 
positive charge and terminate at the negative charge. Only the lines shown in (d) satisfy 
this requirement. correct. is )(d  

  
*15 ••  
Determine the Concept Because θ ≠ 0, a dipole in a uniform electric field will 
experience a restoring torque whose magnitude is θsinxpE . Hence it will oscillate 

about its equilibrium orientation, θ = 0. If θ << 1, sinθ ≈ θ, and the motion will be simple 
harmonic motion. Because the field is nonuniform and is larger in the x direction, the 
force acting on the positive charge of the dipole (in the direction of increasing x) will be 
greater than the force acting on the negative charge of the dipole (in the direction of 
decreasing x) and thus there will be a net electric force on the dipole in the direction of 
increasing x. Hence, the dipole will accelerate in the x direction as it oscillates about  
θ  = 0. 
  
16 ••  
(a)  False. The direction of the field is toward a negative charge. 
 
(b)  True. 
 
(c)  False. Electric field lines diverge from any point in space occupied by a positive 
charge. 
 
(d)  True 
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(e)  True 
  
17 ••  
Determine the Concept The diagram 
shows the metal balls before they are 
placed in the water. In this situation, the net 
electric field at the location of the sphere 
on the left is due only to the charge –q on 
the sphere on the right.  If the metal balls 
are placed in water, the water molecules 
around each ball tend to align themselves 
with the electric field.  This is shown for 
the ball on the right with charge –q. 
 

 

 
 
 

 

(a) The net electric field       
r 
E net  that produces a force on the ball on the left is the 

field     
r 
E  due to the charge –q on the ball on the right plus the field due to the layer 

of positive charge that surrounds the ball on the right.  This layer of positive 
charge is due to the aligning of the water molecules in the electric field, and the 
amount of positive charge in the layer surrounding the ball on the left will be less 
than +q.  Thus, Enet < E.  Because Enet < E, the force on the ball on the left is less 
than it would be if the balls had not been placed in water. Hence, the force will 

decrease  when the balls are placed in the water. 

 
(b) When a third uncharged metal ball is 
placed between the first two, the net 
electric field at the location of the sphere 
on the right is the field due to the charge +q 
on the sphere on the left, plus the field due 
to the charge –Q and +Q on the sphere in 
the middle. This electric field is directed to 
the right. 
 

 
 

 

The field due to the charge –Q and +Q on the sphere in the middle at the location of the 
sphere on the right is to the right.  It follows that the net electric field due to the charge 
+q on the sphere on the left, plus the field due to the charge –Q and +Q on the sphere in 
the middle is to the right and has a greater magnitude than the field due only to the charge 
+q on the sphere on the left. Hence, the force on either sphere will increase if a third 

uncharged metal ball is placed between them. 
 
Remarks:  The reduction of an electric field by the alignment of dipole moments 
with the field is discussed in further detail in Chapter 24. 
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*18 ••  
Determine the Concept Yes. A positively charged ball will induce a dipole on the metal 
ball, and if the two are in close proximity, the net  force can be attractive. 
 
*19 ••  
Determine the Concept Assume that the wand has a negative charge.  When the charged 
wand is brought near the tinfoil, the side nearer the wand becomes positively charged by 
induction, and so it swings toward the wand.  When it touches the wand, some of the 
negative charge is transferred to the foil, which, as a result, acquires a net negative charge 
and is now repelled by the wand. 
 
Estimation and Approximation 
 
20 ••  
Picture the Problem Because it is both very small and repulsive, we can ignore the 
gravitational force between the spheres. It is also true that we are given no information 
about the masses of these spheres. We can find the largest possible value of Q by 
equating the electrostatic force between the charged spheres and the maximum force the 
cable can withstand. 
 
Using Coulomb’s law, express the 
electrostatic force between the two 
charged spheres: 
 

2

2

l

kQF =  

Express the tensile strength Stensile of 
steel in terms of the maximum force 
Fmax in the cable and the cross-
sectional area of the cable and solve 
for F: 
 

A
FS max

tensile = ⇒ tensilemax ASF =  

Equate these forces to obtain: 
tensile2

2

ASkQ
=

l
 

 
Solve for Q: 

k
ASQ tensilel=  

 
Substitute numerical values and evaluate Q: 
 

( ) ( )( ) mC95.2
C/mN1099.8
N/m102.5m105.1m1 229

2824

=
⋅×
××

=
−

Q  

 
21 ••  
Picture the Problem We can use Coulomb’s law to express the net force acting on the 
copper cube in terms of the unbalanced charge resulting from the assumed migration of 
half the charges to opposite sides of the cube. We can, in turn, find the unbalanced charge 
Qunbalanced from the number of copper atoms N and the number of electrons per atom. 
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(a) Using Coulomb’s law, express 
the net force acting on the copper 
rod due to the imbalance in the 
positive and negative charges: 
 

2

2
unbalanced

r
kQF =                   (1) 

Relate the number of copper atoms 
N to the mass m of the rod, the 
molar mass M of copper, and 
Avogadro’s number NA: 
 

M
V

M
m

N
N rodCu

A

ρ
==  

Solve for N to obtain: 
A

rodCu N
M
VN ρ

=  

 
Substitute numerical values and evaluate N: 
 

( )( ) ( )( )

atoms10461.8
kg/mol1054.63

atoms/mol1002.6m104m105.0kg/m1093.8

22

3

2322233

×=

×
××××

= −

−−

N
 

 
Because each atom has 29 electrons 
and protons, we can express 
Qunbalanced as: 
 

( )( )eNQ 7
2
1

unbalanced 1029 −=  

Substitute numerical values and evaluate Qunbalanced: 
 

( )( )( )( ) C10963.110461.8C106.11029 222197
2
1

unbalanced
−−− ×=××=Q  

 
Substitute for Qunbalanced in equation (1) to obtain: 
 

( )( )
( )

N1046.3
m01.0

C10963.1C/mN1099.8 10
2

22229

×=
×⋅×

=
−

F  

 
(b) Using Coulomb’s law, express 
the maximum force of repulsion 
Fmax in terms of  the maximum 
possible charge Qmax:  
 

2

2
max

max r
kQF =  

Solve for Qmax: 

k
FrQ max

2

max =  

 
Express Fmax in terms of the tensile 
strength Stensile of copper: 
 

ASF tensilemax =  
where A is the cross sectional area of the 
cube. 
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Substitute to obtain: 
 

k
ASrQ tensile

2

max =  

 
Substitute numerical values and evaluate Qmax: 
 

( ) ( )( ) C1060.1
C/mN1099.8

m10N/m103.2m01.0 5
229

24282

max
−

−

×=
⋅×

×
=Q  

 
Because : maxunbalanced 2QQ = ( )

C0.32

C1060.12 5
unbalanced

µ=

×= −Q
 

 
Remarks: A net charge of −32 µC means an excess of 2.00×1014 electrons, so the net 
imbalance as a percentage of the total number of charges is 4.06×10−11 = 4×10−9 %. 
 
22 •••  
Picture the Problem We can use the definition of electric field to express E  in terms of 
the work done on the ionizing electrons and the distance they travel λ between collisions. 
We can use the ideal-gas law to relate the number density of molecules in the gas ρ and 
the scattering cross-section σ to the mean free path and, hence, to the electric field. 
 
(a) Apply conservation of energy to 
relate the work done on the 
electrons by the electric field to the 
change in their kinetic energy: 
 

sFKW ∆=∆=  
 
 
 

From the definition of electric field 
we have: 
 

qEF =  

Substitute for F and ∆s to obtain: λqEW = , where the mean free path λ is 
the distance traveled by the electrons 
between ionizing collisions with nitrogen 
atoms. 
 

Referring to pages 545-546 for a 
discussion on the mean-free path,  
use its definition to relate λ to the 
scattering cross-section σ and the 
number density for air molecules n: 
 

nσ
λ 1
=  

Substitute for λ and solve for E to 
obtain: q

nWE σ
=  

 
Use the ideal-gas law to obtain: 
 kT

P
V
Nn ==  
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Substitute for n to obtain: 
 qkT

PWE σ
=                             (1) 

 
Substitute numerical values and evaluate E: 
 

( )( )( )( )
( )( )( ) N/C1041.2

K300J/K1038.1C106.1
J/eV106.1eV1N/m10m10 6

2319

1925219

×=
××

×
= −−

−−

E  

 
(b) From equation (1) we see that: PE ∝ and 1−∝ TE  

i.e., E increases linearly with pressure and 
varies inversely with temperature. 

 
*23 ••  
Picture the Problem We can use Coulomb’s law to express the charge on the rod in 
terms of the force exerted on it by the soda can and its distance from the can. We can 
apply Newton’s 2nd law in rotational form to the can to relate its acceleration to the 
electric force exerted on it by the rod. Combining these equations will yield an expression 
for Q as a function of the mass of the can, its distance from the rod, and its acceleration. 
 
Use Coulomb’s law to relate the 
force on the rod to its charge Q and 
distance r from the soda can: 
 

2

2

r
kQF =  

Solve for Q to obtain: 
 

k
FrQ

2

=                      (1) 

 
Apply to the 
can: 

ατ I=∑ mass ofcenter 

 

αIFR =  

Because the can rolls without 
slipping, we know that its linear 
acceleration a and angular 
acceleration α are related according 
to: 
 

R
a

=α  

where R is the radius of the soda can. 

Because the empty can is a hollow 
cylinder: 
 

2MRI =  
where M is the mass of the can. 

Substitute for I and α and solve for 
F to obtain: 
 

Ma
R

aMRF == 2

2

 

Substitute for F in equation (1): 
 

k
MarQ

2

=  
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Substitute numerical values and 
evaluate Q: ( ) ( )( )

nC141

C/mN1099.8
m/s1kg018.0m1.0

229

22

=

⋅×
=Q

 

 
24 ••  
Picture the Problem Because the nucleus is in equilibrium, the binding force must be 
equal to the electrostatic force of repulsion between the protons. 
 
Apply 0=∑F

r
to a proton: 

 

0ticelectrostabinding =− FF  

Solve for Fbinding: ticelectrostabinding FF =  
 

Using Coulomb’s law, substitute for 
Felectrostatic: 
 

2

2

binding r
kqF =  

Substitute numerical values and evaluate Felectrostatic: 
 

( )( )
( ) N230

m10
C106.1C/mN1099.8

215

219229

binding =
×⋅×

=
−

−

F  

 
Electric Charge 
 
25 •  
Picture the Problem The charge acquired by the plastic rod is an integral number of 
electronic charges, i.e., q = ne(−e). 

 
Relate the charge acquired by the 
plastic rod to the number of 
electrons transferred from the wool 
shirt: 
 

( )enq −= e  

Solve for and evaluate ne: 12
19e 1000.5

C101.6
C8.0

×=
×−

−
=

−
= −

µ
e

qn

 
26 •  
Picture the Problem One faraday = NAe. We can use this definition to find the number of 
coulombs in a faraday. 

 
Use the definition of a faraday to calculate the number of coulombs in a faraday: 
 

( )( ) C1063.9C/electron106.1electrons1002.6faraday1 41923
A ×=××== −eN  
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*27 •  
Picture the Problem We can find the number of coulombs of positive charge there are in 
1 kg of carbon from , where nenQ C6= C is the number of atoms in 1 kg of carbon and 

the factor of 6 is present to account for the presence of 6 protons in each atom. We can 
find the number of atoms in 1kg of carbon by setting up a proportion relating Avogadro’s 
number, the mass of carbon, and the molecular mass of carbon to nC. 

 
Express the positive charge in terms 
of the electronic charge, the number 
of protons per atom, and the number 
of atoms in 1 kg of carbon: 
 

enQ C6=  

Using a proportion, relate the 
number of atoms in 1 kg of carbon 
nC, to Avogadro’s number and the 
molecular mass M of carbon: 
 

M
m

N
n C

A

C =  ⇒ 
M

mNn CA
C =  

Substitute to obtain: 
M

emNQ CA6
=  

 
Substitute numerical values and evaluate Q: 
 

( )( )( ) C1082.4
kg/mol012.0

C101.6kg1atoms/mol106.026 7
1923

×=
××

=
−

Q  

 
Coulomb’s Law 
 
28 •  
Picture the Problem We can find the forces the two charges exert on each by applying 
Coulomb’s law and Newton’s 3rd law. Note that because the vector pointing from 

q

ir ˆˆ 2,1 =

1 to q2 is in the positive x direction. 
 

(a) Use Coulomb’s law to express 
the force that q1 exerts on q2: 
 

2,12
2,1

21
2,1 r̂F

r
qkq

=
r

 

Substitute numerical values and evaluate 2,1F
r

: 

 
( )( )( )

( )
( )iiF ˆmN0.24

m3
µC6µC4/CmN108.99

2

229

2,1 =
⋅×

=
r
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(b) Because these are action-and-
reaction forces, we can apply 
Newton’s 3rd law to obtain: 
 

( )iFF ˆmN0.242,11,2 −=−=
rr

 

(c) If q2 is −6.0 µC: 
 

( )( )( )
( )

( )iiF ˆmN0.24ˆ
m3

µC6µC4/CmN108.99
2

229

2,1 −=
−⋅×

=
r

 

and 

( )iFF ˆmN0.242,11,2 =−=
rr

 

 
29 •  
Picture the Problem q2 exerts an attractive force 1,2F

r
 on q1 and q3 a repulsive force 1,3F

r
. 

We can find the net force on q1 by adding these forces. 

 
 

Express the net force acting on q1: 
 

1,31,21 FFF
rrr

+=  

Express the force that q2 exerts on 
q1: 
 

iF ˆ
2
1,2

21
1,2 r

qqk
=

r
 

Express the force that q3 exerts on 
q1: 
 

( )iF ˆ
2
1,3

31
1,3 −=

r
qqkr

 

Substitute and simplify to obtain: 
 

i

iiF

ˆ

ˆˆ

2
1,3

3
2
1,2

2
1

2
1,3

31
2
1,2

21
1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

−=

r
q

r
q

qk

r
qqk

r
qqkr

 

 
Substitute numerical values and evaluate 1F

r
: 

 

( )( )
( ) ( )

( )iiF ˆN1050.1ˆ
m6

C6
m3

C4C6/CmN1099.8 2
22

229
1

−×=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅×=

µµµ
r
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30 ••  
Picture the Problem The configuration of 
the charges and the forces on the fourth 
charge are shown in the figure … as is a 
coordinate system. From the figure it is 
evident that the net force on q4 is along the 
diagonal of the square and directed away 
from q3. We can apply Coulomb’s law to 
express 4,1F

r
, 4,2F

r
and 4,3F

r
 and then add 

them to find the net force on q4.  
 

Express the net force acting on q4: 
 

4,34,24,14 FFFF
rrrr

++=  

Express the force that q1 exerts on 
q4: 
 

jF ˆ
2
4,1

41
4,1 r

qkq
=

r
 

 
Substitute numerical values and evaluate 4,1F

r
: 

 

( )( )
( )

( )jjF ˆN1024.3ˆ
m05.0

nC3nC3/CmN1099.8 5
2

229
4,1

−×=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅×=

r
 

 
Express the force that q2 exerts on q4: 
 

iF ˆ
2

4,2

42
4,2 r

qkq
=

r
 

 
Substitute numerical values and evaluate 4,2F

r
: 

 

( )( )
( )

( )iiF ˆN1024.3ˆ
m05.0

nC3nC3/CmN1099.8 5
2

229
4,2

−×=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅×=

r
 

 
Express the force that q3 exerts on q4: 
 4,32

4,3

43
4,3 r̂F

r
qkq

=
r

, where is a unit vector 

pointing from q

4,3̂r

3 to q4. 
 

Express 4,3r
r

in terms of 1,3r
r

and 4,1r
r

: 

( ) ( ji

rrr
ˆm05.0ˆm05.0

4,11,34,3

+= )
+=

rrr
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Convert to : 4,3r
r

4,3̂r

 
( ) ( )
( ) ( )

ji

ji
r
r

r

ˆ707.0ˆ707.0

m05.0m05.0

ˆm05.0ˆm05.0ˆ
22

4,3

4,3
4,3

+=

+

+
== r

r

 

 
Substitute numerical values and evaluate 4,3F

r
: 

 

( )( ) ( ) ( )

( ) ( )ji

jiF

ˆN1014.1ˆN1014.1

ˆ707.0ˆ707.0
m205.0

nC3nC3/CmN1099.8

55

2
229

4,3

−− ×−×−=

+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⋅×=

r

 

 
Substitute and simplify to find 4F

r
: 

 
( ) ( ) ( ) ( )
( ) ( )ji

jiijF
ˆN1010.2ˆN1010.2

ˆN1014.1ˆN1014.1ˆN1024.3ˆN1024.3
55

5555
4

−−

−−−−

×+×=

×−×−×+×=
r

 

 
31 ••  
Picture the Problem The configuration of the charges and the forces on q3 are shown in 
the figure … as is a coordinate system. From the geometry of the charge distribution it is 
evident that the net force on the 2 µC charge is in the negative y direction. We can apply 
Coulomb’s law to express 3,1F

r
and 3,2F

r
 and then add them to find the net force on q3. 

 
 

 
The net force acting on q3 is given by: 3,23,13 FFF

rrr
+=  
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Express the force that q1 exerts on 
q3: 
 

jiF ˆsinˆcos3,1 θθ FF −=
r

 

where 

 
( )( )(

( ) ( )
)

N3.12
m0.08m0.03

C2C5C/mN1099.8
22

229

2
31

=
+

⋅×
=

=

µµ
r

qkqF

and  

°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= − 6.20

cm8
cm3tan 1θ  

 
Express the force that q2 exerts on 
q3: 
 

jiF ˆsinˆcos3,2 θθ FF −−=
r

 

 

Substitute for 3,1F
r

and 3,2F
r

and 

simplify to obtain: 

j

j

ijiF

ˆsin2

ˆsin

ˆcosˆsinˆcos3

θ

θ

θθθ

F

F

FFF

−=

−

−−=
r

 

 
Substitute numerical values and 
evaluate 3F

r
: 

 

( )
( ) j

jF
ˆN66.8

ˆ6.20sinN3.1223

−=

°−=
r

 

 
*32 ••  
Picture the Problem The positions of the 
charges are shown in the diagram. It is 
apparent that the electron must be located 
along the line joining the two charges. 
Moreover, because it is negatively charged, 
it must be closer to the −2.5 µC than to the 
6.0 µC charge, as is indicated in the figure. 
We can find the x and y coordinates of the 
electron’s position by equating the two 
electrostatic forces acting on it and solving 
for its distance from the origin.   

 
We can use similar triangles to express this 
radial distance in terms of the x and y 
coordinates of the electron. 

 
Express the condition that must be ee FF ,2,1 =  
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satisfied if the electron is to be in 
equilibrium: 
 
Express the magnitude of the force 
that q1 exerts on the electron: 
 

( )2
1

,1
m25.1+

=
r

ekqF e  

Express the magnitude of the force 
that q2 exerts on the electron: 
 

2
2

,2 r
eqk

F e =  

Substitute and simplify to obtain: 
 ( ) 2

2
2

1

m25.1 r
q

r

q
=

+
 

 
Substitute for q1 and q2 and 
simplify: 
 

( ) ( )
0m25.1

m2361.2m4.1 122

=+
+− −− rr

 

Solve for r to obtain: 

m0.4386
and

m036.2

−=

=

r

r
 

Because r < 0 is unphysical, we’ll consider 
only the positive root. 
 

Use the similar triangles in the 
diagram to establish the proportion 
involving the y coordinate of the 
electron: 
 

m1.12
m2.036

m5.0
=ey

 

Solve for ye: m909.0=ey  

 
Use the similar triangles in the 
diagram to establish the proportion 
involving the x coordinate of the 
electron: 
 

m1.12
m2.036

m1
=ex

 

Solve for xe: m82.1=ex  

 
The coordinates of the electron’s 
position are: 

( ) ( )m0.909m,1.82, −−=ee yx  
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*33 ••  
Picture the Problem Let q1 represent the 
charge at the origin, q2 the charge at (0, 0.1 
m), and q3 the charge at  
(0.2 m, 0). The diagram shows the forces 
acting on each of the charges. Note the 
action-and-reaction pairs. We can apply 
Coulomb’s law and the principle of 
superposition of forces to find the net 
force acting on each of the charges.  

 
Express the net force acting on q1: 1,31,21 FFF

rrr
+=  

 
Express the force that q2 exerts on q1: 

1,23
1,2

12

1,2

1,2
2
1,2

12
1,22

1,2

12
1,2 ˆ r

r
rF

r
r

r

r
qkq

rr
qkq

r
qkq

===  

 
Substitute numerical values and evaluate 1,2F

r
: 

 

( )( ) ( )
( )

( ) ( jjF ˆN80.1ˆm1.0
m1.0

C1C2/CmN1099.8 3
229

1,2 =− )−
⋅×=

µµ
r

 

 
Express the force that q3 exerts on q1: 
 1,33

1,3

13
1,3 rF

rr

r
qkq

=  

 
Substitute numerical values and evaluate 1,3F

r
: 

 

( )( ) ( )
( )

( ) ( iiF ˆN899.0ˆm2.0
m2.0
C1C4/CmN1099.8 3

229
1,3 =− )−

⋅×=
µµ

r
 

 
Substitute to find : 1F

r
( ) ( ) jiF ˆN80.1ˆN899.01 +=

r
 

 
Express the net force acting on q2: 

( ) jF

FF

FFF

ˆN80.12,3

1,22,3

2,12,32

−=

−=

+=

r

rr

rrr

 

because 2,1F
r

and 1,2F
r

are action-and-reaction 

forces. 
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Express the force that q3 exerts on q2: 

( ) ([ ]ji

rF

ˆm1.0ˆm2.03
2,3

23

2,33
2,3

23
2,3

+−=

=

r
qkq

r
qkq r

)

r

 

 
Substitute numerical values and evaluate 2,3F

r
: 

 

( )( ) ( )
( )

( ) ( )[ ]
( ) ( ) ji

jiF

ˆN640.0ˆN28.1

ˆm1.0ˆm2.0
m224.0

C2C4/CmN1099.8 3
229

2,3

+−=

+−⋅×=
µµ

r

 

 
Find the net force acting on q2: 
 

( ) ( ) ( ) ( )
( ) ( ) ji

jjijFF

ˆN16.1ˆN28.1

ˆN80.1ˆN640.0ˆN28.1ˆN80.12,32

−−=

−+−=−=
rr

 

 
Noting that 3,1F

r
and 1,3F

r
are an action-and-reaction pair, as are 3,2F

r
and 2,3F

r
, 

express the net force acting on q3: 
 

( ) ( ) ( )[ ]
( ) ( ) ji

jiiFFFFF

ˆN640.0ˆN381.0

ˆN640.0ˆN28.1ˆN899.02,31,33,23,13

−=

+−−−=−−=+=
rrrrr

 

 
34 ••  
Picture the Problem Let q1 represent the 
charge at the origin and q3 the charge 
initially at (8 cm, 0) and later at (17.75 
cm, 0). The diagram shows the forces 
acting on q3 at (8 cm, 0). We can apply 
Coulomb’s law and the principle of 
superposition of forces to find the net 
force acting on each of the charges. 

 

 

 
Express the net force on q2 when it 
is at (8 cm, 0): 
 

( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

+=

+=

3,23
3,2

2
3,13

3,1

1
3

3,23
3,2

32
3,13

3,1

31

3,23,12 0,cm8

rr

rr

FFF

rr

rr

rrr

r
Q

r
qkq

r
qkQ

r
qkq  
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Substitute numerical values to obtain: 
 
( )

( )( )
( )

( )
( )

( ) ⎥
⎦

⎤
+⎢

⎣

⎡
⋅×

=−

ii

i

ˆm04.0
m04.0

ˆm08.0
m0.08
C5C2/CmN1099.8

ˆN7.19

3
2

3
229 Qµµ

 

 
Solve for and evaluate Q2: C00.32 µ−=Q  

 
Remarks: An alternative solution is to equate the electrostatic forces acting on q2 when it is 
at (17.75 cm, 0). 
 
35 ••  
Picture the Problem By considering the symmetry of the array of charges we can see that 
the y component of the force on q is zero. We can apply Coulomb’s law and the principle 
of superposition of forces to find the net force acting on q. 

 
Express the net force acting on q: qQqxQq ,45ataxis,on 2 °+= FFF

rrr
 

 
Express the force on q due to the 
charge Q on the x axis: 
 

iF ˆ
2axis,on R

kqQ
qxQ =

r
 

Express the net force on q due to the 
charges at 45°: 
 i

iF

ˆ
2

2

ˆ45cos22

2

2,45at

R
kqQ

R
kqQ

qQ

=

°=°

r

 

Substitute to obtain: 
 

i

iiF

ˆ
2
21

ˆ
2

2ˆ

2

22

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

+=

R
kqQ

R
kqQ

R
kqQ

q

r

 

 
36 •••  
Picture the P oblem Let the Hr + ions be in the x-y plane with H1 at (0, 0, 0), H2 at (a, 0, 
0), and H3 at ( )0,23,2 aa . The N−3 ion, q4 in our notation, is then at 

( )32,32,2 aaa  where a =1.64×10−10 m. To simplify our calculations we’ll set 

N1056.8 922 −×== Cake . We can apply Coulomb’s law and the principle of 

superposition of forces to find the net force acting on each ion. 
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Express the net force acting on q1: 
 

1,41,31,21 FFFF
rrrr

++=  

Find 1,2F
r

: 

 
( ) iirF ˆˆˆ 1,22

1,2

21
1,2 CC

r
qkq

−=−==
r

 

 
Find 1,3F

r
: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟

⎠
⎞

⎜
⎝
⎛ −

=

=

ji

ji

rF

ˆ
2
3ˆ

2
1

ˆ
2

30ˆ
2

0

ˆ 1,32
1,3

13
1,3

C

a

aa

C

r
qkqr

 

 
Noting that the magnitude of q4 is three times that of the other charges and that it is 
negative, express 1,4F

r
: 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟

⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −

−==

kji
kji

kji
rF

ˆ
3
2ˆ

32
1ˆ

2
13

ˆ
3
2ˆ

32
ˆ

2
3

3
2

322

ˆ
3
20ˆ

32
0ˆ

2
0

3ˆ3
222

1,41,4

C
a

aaa

C

aaa

aaa

CC
r
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Substitute to find : 1F
r

 

k

kji

jiiF

ˆ6

ˆ
3
2ˆ

32
1ˆ

2
13

ˆ
2
3ˆ

2
1ˆ

1

C

C

CC

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−=

r

 

 
From symmetry considerations: 
 

kFFF ˆ6132 C===
rrr

 

 
Express the condition that molecule is 
in equilibrium: 
 

04321 =+++ FFFF
rrrr

 

 

Solve for and evaluate : 4F
r ( )

k

FFFFF
ˆ63

3 13214

C−=

−=++−=
rrrrr

 

 
The Electric Field 
 
*37 •  
Picture the Problem Let q  represent the charge at the origin and use Coulomb’s law for 
E
r

due to a point charge to find the electric field at x = 6 m and −10 m. 
 

(a) Express the electric field at a point 
P located a distance x from a charge 
q: 
 

( ) P,02 r̂E
x
kqx =

r
 

Evaluate this expression for  
x = 6 m: 

( ) ( )( )
( )

( )i

iE

ˆN/C999

ˆ
m6

C4/CmN1099.8m6 2

229

=

⋅×
=

µr

 

 
(b) Evaluate E

r
at x = −10 m: 

 

( ) ( )( )
( )

( ) ( )iiE ˆN/C360ˆ
m10

C4/CmN1099.8m10 2

229

−=−
⋅×

=−
µr

 

 
(c) The following graph was plotted using a spreadsheet program: 
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-500

-250

0

250

500

-2 -1 0 1 2

x  (m)

E x
 (N

/C
)

 
 
*38 •  
Picture the Problem Let q represent the charges of +4 µC and use Coulomb’s law for 
E
r

due to a point charge and the principle of superposition for fields to find the electric 
field at the locations specified.  

 
Noting that q1 = q2, use Coulomb’s law and the principle of superposition to express the 
electric field due to the given charges at a point P a distance x from the origin: 
 

( ) ( ) ( )
( ) ( )

( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−
+⋅=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+=

−
+=+=

P,2P,2
2

P,2P,21P,2
2

P,2
1

21

212121

ˆ
m8

1ˆ1/CmkN36

ˆ
m8

1ˆ1ˆ
m8

ˆ

qq

qqqqqq

xx

xx
kq

x
kq

x
kqxxx

rr

rrrrEEE
rrr

 

 
(a) Apply this equation to the point at x = −2 m: 
 

( ) ( )
( )

( )
( )

( ) ( )iiiE ˆkN/C36.9ˆ
m10
1ˆ

m2
1/CmkN36m2 22

2 −=⎥
⎦

⎤
−+⎢

⎣

⎡
−⋅=−

r
 

 
(b) Evaluate E

r
at x = 2 m: 

 

( ) ( )
( )

( )
( )

( ) ( )iiiE ˆkN/C00.8ˆ
m6
1ˆ

m2
1/CmkN36m2 22

2 =⎥
⎦

⎤
−+⎢

⎣

⎡
⋅=

r
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(c) Evaluate E
r

at x = 6 m: 

( ) ( )
( )

( )
( )

( ) ( )iiiE ˆkN/C00.8ˆ
m2
1ˆ

m6
1/CmkN36m6 22

2 −=⎥
⎦

⎤
−+⎢

⎣

⎡
⋅=

r
 

 
(d) Evaluate E

r
at x = 10 m: 

 

( ) ( )
( )

( )
( )

( ) ( )iiiE ˆkN/C35.9ˆ
m2
1ˆ

m10
1/CmkN36m10 22

2 =⎥
⎦

⎤
+⎢

⎣

⎡
⋅=

r
 

 
(e) From symmetry considerations: ( ) 0m4 =E  

 
(f) The following graph was plotted using a spreadsheet program: 
 

-100

-50

0

50

100

-4 0 4 8

x  (m)

E x
 ( 

kN
 m

2 /C
)

12

 
 
39 •   
Picture the Problem We can find the electric field at the origin from its definition and 
the force on a charge placed there from EF

rr
q= . We can apply Coulomb’s law to find 

the value of the charge placed at y = 3 cm. 
(a) Apply the definition of electric 
field to obtain: 
 

( ) ( ) jjFE ˆkN/C400
nC2

ˆN108 4

0

=
×

==
−

q

r
r

 
(b) Express and evaluate the force 
on a charged body in an electric 
field: 
 

( )( )
( ) j

jEF
ˆmN60.1

ˆkN/C400nC4

−=

−==
rr

q
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(c) Apply Coulomb’s law to obtain: 
 

( )
( )

( ) ( ) jj ˆmN60.1ˆ
m0.03
nC4

2 −=−
−kq

 

 
Solve for and evaluate q: ( )( )

( )( )
nC40.0

nC4/CmN1099.8
m0.03mN60.1
229

2

−=

⋅×
−=q

 

 
40 •  
Picture the Problem We can compare the electric and gravitational forces acting on an 
electron by expressing their ratio. We can equate these forces to find the charge that 
would have to be placed on a penny in order to balance the earth’s gravitational force on 
it. 

 
(a) Express the magnitude of the 
electric force acting on the electron: 
 

eEFe =  

Express the magnitude of the 
gravitational force acting on the 
electron: 
 

gmF eg =  

Express the ratio of these forces to 
obtain: 
 

mg
eE

F
F

g

e =  

 
Substitute numerical values and 
evaluate Fe/Fg: 

( )( )
( )( )

12

231

19

1069.2

m/s9.81kg109.11
N/C150C101.6

×=

×
×

= −

−

g

e

F
F

 

or 
( ) ge FF 121069.2 ×= , i.e., the electric 

force is greater by a factor of  2.69×1012. 
 

(b) Equate the electric and 
gravitational forces acting on the 
penny and solve for q to obtain: 
 

E
mgq =  

Substitute numerical values and 
evaluate q: 

( )( )

C1096.1

N/C150
m/s9.81kg103

4

23

−

−

×=

×
=q
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41 ••  
Picture the Problem The diagram shows 
the locations of the charges q1 and q2 and 
the point on the x axis at which we are to 
find .E

r
 From symmetry considerations we 

can conclude that the y component of E
r

at 
any point on the x axis is zero. We can use 
Coulomb’s law for the electric field due to 
point charges to find the field at any point 
on the x axis and to find the force 

on a charge q

EF
rr

q=

0 placed on the x axis at  
x = 4 cm. 

 
 

 

  
(a) Letting q = q1 = q2, express the x-
component of the electric field due 
to one charge as a function of the 
distance r from either charge to the 
point of interest: 
 

iE ˆcos2 θ
r
kq

x =
r

 

Express for both charges: xE
r

iE ˆcos2 2 θ
r
kq

x =
r

 

 
Substitute for cosθ and r, substitute numerical values, and evaluate to obtain: 
 

( ) ( )( )( )
( ) ( )[ ]

( )i

iiiE

ˆkN/C4.53

ˆ
m0.04m0.03

m0.04nC6/CmN108.992ˆm04.02ˆm04.02 2322

229

32

=

+

⋅×
===

r
kq

rr
kq

x

r

 

 
(b) Apply to find the force 

on a charge q

EF
rr

q=

0 placed on the x axis at  
x = 4 cm: 

( )( )
( )i

iF
ˆN0.69

ˆkN/C4.53nC2

µ=

=
r

 

 
*42 ••  
Picture the Problem If the electric field at x = 0 is zero, both its x and y components 
must be zero. The only way this condition can be satisfied with the point charges of +5.0 
µC and −8.0 µC are on the x axis is if the point charge of +6.0 µC is also on the x axis. 
Let the subscripts 5, −8, and 6 identify the point charges and their fields. We can use 
Coulomb’s law for E

r
due to a point charge and the principle of superposition for fields 

to determine where the +6.0 µC charge should be located so that the electric field at x = 0 
is zero. 
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Express the electric field at x = 0 in 
terms of the fields due to the charges 
of +5.0 µC, −8.0 µC, and +6.0 µC: 
 

( )
0

0 C6C8C5

=

++= − µµµ EEEE
rrrr

 

 

Substitute for each of the fields to 
obtain: 

0ˆˆˆ 82
8

8
62

6

6
52

5

5 =++ −
−

− rrr
r

kq
r
kq

r
kq

 

or 

( ) ( ) 0ˆˆˆ
2
8

8
2

6

6
2

5

5 =−+−+
−

− iii
r

kq
r
kq

r
kq

 

 
Divide out the unit vector to 
obtain: 

î

 

02
8

8
2

6

6
2

5

5 =−−
−

−

r
q

r
q

r
q

 

Substitute numerical values to 
obtain: ( ) ( )

0
cm4

86
cm3
5

22
6

2 =
−

−−
r

 

 
Solve for r6: cm38.26 =r  

 
43 ••  
Picture the Problem The diagram shows the electric field vectors at the point of interest 
P due to the two charges. We can use Coulomb’s law for E

r
due to point charges and the 

superposition principle for electric fields to find PE
r

. We can apply EF
rr

q= to find the 

force on an electron at (−1 m, 0). 

 
 

(a) Express the electric field at  
(−1 m, 0) due to the charges q1 and q2: 
 

21P EEE
rrr

+=  
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Evaluate : 1E
r

 

( )( )
( ) ( )

( ) ( )
( ) ( )

( )( )
( ) ( ) ji

ji

jirE

ˆkN/C575.0ˆkN/C44.1

ˆ371.0ˆ928.0N/C1055.1

m2m5

ˆm2ˆm5
m2m5

C5/CmN1099.8ˆ

3

2222

229

P1,2
P1,

1
1

−+=

+−×−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

+−
+

−⋅×
==

µ
r
kqr

 

 
Evaluate : 2E

r

 

( )( )
( ) ( )

( ) ( )
( ) ( )

( )( )
( ) ( ) ji

ji

jirE

ˆkN/C54.9ˆkN/C54.9

ˆ707.0ˆ707.0N/C105.13

m2m2

ˆm2ˆm2
m2m2

C12/CmN1099.8ˆ

3

2222

229

P2,2
P2,

2
2

−+−=

−−×=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

−+−
+
⋅×

==
µ

r
kqr

 

 
Substitute for and and simplify to find 1E

r
2E

r
PE

r
: 

 
( ) ( ) ( ) ( )
( ) ( ) ji

jijiE
ˆkN/C1.10ˆkN/C10.8

ˆkN/C54.9ˆkN/C54.9ˆkN/C575.0ˆkN/C44.1P

−+−=

−+−+−+=
r

 

 
The magnitude of is: PE

r

 
( ) ( )

kN/C9.12

kN/C10.1kN/C8.10 22
P

=

−+−=E
 

 
The direction of is: PE

r

 

°=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

= −

231

kN/C8.10
kN/C10.1tan 1

Eθ
 

Note that the angle returned by your 

calculator for ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−−

kN/C8.10
kN/C10.1tan 1 is the 

reference angle and must be increased by 
180° to yield θE. 
 

(b) Express and evaluate the force on an electron at point P: 
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( ) ( ) ( )[ ]
( ) ( )ji

jiEF
ˆN10.621ˆN10.301

ˆkN/C1.10ˆkN/C10.8C10602.1
1515

19
P

−−

−

×+×=

−+−×−==
rr

q
 

 
Find the magnitude of F

r
: ( ) ( )

N1008.2

N1062.1N1030.1
15

215215

−

−−

×=

×+×=F

 
Find the direction of F

r
: 

°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×
×

= −

−
− 3.51

N101.3
N101.62tan 15

15
1

Fθ  

 
44 ••   
Picture the Problem The diagram shows the locations of the charges q1 and q2 and the 
point on the x axis at which we are to find E

r
. From symmetry considerations we can 

conclude that the y component of E
r

at any point on the x axis is zero. We can use 
Coulomb’s law for the electric field due to point charges to find the field at any point on 
the x axis. We can establish the results called for in parts (b) and (c) by factoring the 
radicand and using the approximation 11 ≈+α  whenever α << 1. 

 
 

(a) Express the x-component of the 
electric field due to the charges at y 
= a and y = −a as a function of the 
distance r from either charge to 
point P: 
 

iE ˆcos2 2 θ
r
kq

x =
r

 

Substitute for cosθ and r to obtain: 
 ( )

( ) i

iiiE

ˆ2

ˆ2ˆ2ˆ2

2322

232232

ax
kqx

ax
kqx

r
kqx

r
x

r
kq

x

+
=

+
===

r
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and 

( ) 2322

2
ax

kqxEx
+

=  

 
(b) For a,x << x2 + a2 ≈ a2, so: 

( ) 3232

22
a
kqx

a
kqxEx =≈  

 
For a,x >> x2 + a2 ≈ x2, so: 

( ) 2232

22
x
kq

x
kqxEx =≈  

 

(c) 
.2by given  be  wouldfield Its .2 magnitude of

charge single a be appear to  wouldby  separated charges  the,  For 

2x
kqEq

aax

x =

>>
 

 
Factor the radicand to obtain: 23

2

2
2 12

−

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

x
axkqxEx  

For a << x: 
11 2

2

≈+
x
a

 

and 

[ ] 2

232 22
x
kqxkqxEx ==

−
 

 
*45 ••  
Picture the Problem The diagram shows the electric field vectors at the point of interest 
P due to the two charges. We can use Coulomb’s law for E

r
due to point charges and the 

superposition principle for electric fields to find PE
r

. We can apply EF
rr

q= to find the 

force on a proton at (−3 m, 1 m). 
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(a) Express the electric field at  
(−3 m, 1 m) due to the charges q1 and 
q2: 
 

21P EEE
rrr

+=  

 

Evaluate : 1E
r

 

( )( )
( ) ( )

( ) ( )
( ) ( )

( )( ) ( ) ( jiji

jirE

ˆkN/C544.0ˆkN/C908.0ˆ514.0ˆ857.0kN/C06.1

m3m5

ˆm3ˆm5
m3m5

C4/CmN1099.8ˆ
2222

229

P1,2
1.P

1
1

−+=+−−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

+−
+

−⋅×
==

µ
r
kqr

)

 

 
Evaluate 2E

r
: 

 

( )( )
( ) ( )

( ) ( )
( ) ( )

( )( ) ( ) ( jiji

jirE

ˆkN/C01.1ˆkN/C01.2ˆ447.0ˆ894.0kN/C25.2

m2m4

ˆm2ˆm4
m2m4

C5/CmN1099.8ˆ
2222

229

P2,2
P2,

2
2

−+−=−−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

−+−
+
⋅×

==
µ

r
kqr

)

 

 
Substitute and simplify to find PE

r
: 

 
( ) ( ) ( ) ( )
( ) ( ) ji

jijiE
ˆkN/C55.1ˆkN/C10.1

ˆkN/C01.1ˆkN/C01.2ˆkN/C544.0ˆkN/C908.0P

−+−=

−+−+−+=
r

 

 
The magnitude of is: PE

r

 
( ) ( )

kN/C90.1

kN/C55.1kN/C10.1 22
P

=

+=E
 



The Electric Field 1: Discrete Charge Distributions 
 

 

31

The direction of is: PE
r

 
°=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

= − 235
kN/C10.1
kN/C55.1tan 1

Eθ  

Note that the angle returned by your 

calculator for ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−−

kN/C10.1
kN/C55.1tan 1 is the 

reference angle and must be increased by 
180° to yield θE. 
 

(b) Express and evaluate the force on a proton at point P: 
 

( ) ( ) ( )[ ]
( ) ( )ji

jiEF
ˆN1048.2ˆN10.761

ˆkN/C55.1ˆkN/C10.1C106.1
1616

19
P

−−

−

×−+×−=

−+−×==
rr

q
 

 
The magnitude of F

r
is: 

 

( ) ( ) N1004.3N1048.2N10.761 16216216 −−− ×=×−+×−=F  

 
The direction of F

r
is: 

°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×−
×−

= −

−
− 235

N1076.1
N1048.2tan 16

16
1

Fθ  

where, as noted above, the angle returned 
by your calculator for 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×−
×−

−

−
−

N1076.1
N1048.2tan 16

16
1 is the reference 

angle and must be increased by 180° to 
yield θE. 

 
46 ••  
Picture the Problem In Problem 44 it is shown that the electric field on the x axis, due 
to equal positive charges located at (0, a) and (0,−a), is given by 

( ) .2 2322 −
+= axkqxEx  We can identify the locations at which Ex has it greatest values 

by setting dEx/dx equal to zero. 
  

(a) Evaluate 
dx

dEx : 
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( )[ ] ( )[ ]
( ) ( )

( ) ( ) ( )

( )[ ( ) ]232225222

23222522

23222322

23222322

32

2
2
32

2

22

−−

−−

−−

−−

+++−=

⎥
⎦

⎤
⎢
⎣

⎡
+++⎟

⎠
⎞

⎜
⎝
⎛−=

⎥⎦
⎤

⎢⎣
⎡ +++=

+=+=

axaxxkq

axxaxxkq

axax
dx
dxkq

axx
dx
dkqaxkqx

dx
d

dx
dEx

 

 
Set this derivative equal to zero: 
 

( ) ( ) 03 232225222 =+++−
−− axaxx  

 
Solve for x to obtain: 

2
ax ±=  

 
(b) The following graph was plotted using a spreadsheet program: 
 

2kq  = 1 and a  = 1

-0.4

-0.2

0.0

0.2

0.4

-10 -5 0 5 10

x

E x

 
 
47 •••  
Picture the Problem We can determine the stability of the equilibrium in Part (a) and 
Part (b) by considering the forces the equal charges q at y = +a and y = −a exert on the 
test charge when it is given a small displacement along either the x or y axis. The 
application of Coulomb’s law in Part (c) will lead to the magnitude and sign of the charge 
that must be placed at the origin in order that a net force of zero is experienced by each of 
the three charges.  
 
(a) Because Ex is in the x direction, a positive test charge that is displaced from  
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(0, 0) in either the +x direction or the −x direction will experience a force pointing away 
from the origin and accelerate in the direction of the force.  
 

axis.  the
 alongnt displaceme small afor  unstable is (0,0)at  mequilibriu  thely,Consequent

x

  
If the positive test charge is displaced in the direction of increasing y (the positive y 
direction), the charge at y = +a will exert a greater force than the charge at  
y = −a, and the net force is then in the −y direction; i.e., it is a restoring force. Similarly, 
if the positive test charge is displaced in the direction of decreasing y (the negative y 
direction), the charge at y = −a will exert a greater force than the charge at y = −a, and the 
net force is then in the −y direction; i.e., it is a restoring force.  
 

axis.  the
 alongnt displaceme small afor  stable is (0,0)at  mequilibriu  thely,Consequent

y
 

(b) 

axis.   thealong ntsdisplacemefor  unstable and
axis   thealong ntsdisplacemefor  (0,0)at  stable is mequilibriu  thecharge,

 testnegative afor   that,finds one ),(Part in  as arguments same  theFollowing

y
x

a
 

 
(c) Express the net force acting on the 
charge at y = +a: ( )

0
2 2

2

2
0

at  =+=∑ += a
kq

a
kqqF ayq  

 
Solve for q0 to obtain: 

04
1

0 qq −=  

 
Remarks: In Part (c), we could just as well have expressed the net force acting on 
the charge at y = −a. Due to the symmetric distribution of the charges at y = −a and y 
= +a, summing the forces acting on q0 at the origin does not lead to a relationship 
between q0 and q. 
 
*48 •••  
Picture the Problem In Problem 44 it is shown that the electric field on the x axis, due to 
equal positive charges located at (0, a) and (0,−a), is given by 

( ) .2 2322 −
+= axkqxEx We can use k'mT π2= to express the period of the motion in 

terms of the restoring constant k′. 
 
(a) Express the force acting on the on 
the bead when its displacement from 
the origin is x: 

( ) 2322

22
ax

xkqqEF xx
+

−=−=  
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Factor a2 from the denominator to 
obtain: 
 

23

2

2
2

2

1

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=

a
xa

xkqFx  

 
For x << a: 

x
a
kqFx 3

22
−=  

i.e., the bead experiences a linear restoring 
force. 
 

(b) Express the period of a simple 
harmonic oscillator: 
 

k'
mT π2=  

Obtain k′ from our result in part (a): 
 3

22
a
kqk' =  

Substitute to obtain: 
2

3

3

2 2
2

2
2

kq
ma

a
kq
mT ππ ==  

 
Motion of Point Charges in Electric Fields 
 
49 •  
Picture the Problem We can use Newton’s 2nd law of motion to find the acceleration of 
the electron in the uniform electric field and constant-acceleration equations to find the 
time required for it to reach a speed of 0.01c and the distance it travels while acquiring 
this speed. 
  
(a) Use data found at the back of 
your text to compute e/m for an 
electron: 
 

C/kg1076.1

kg109.11
C106.1

11

31

19

×=

×
×

=
−

−

em
e

 

 
(b) Apply Newton’s 2nd law to relate 
the acceleration of the electron to 
the electric field: 
 

ee m
eE

m
Fa == net  

 
 

Substitute numerical values and 
evaluate a: 

( )( )

213

31

19

m/s1076.1

kg109.11
N/C100C101.6

×=

×
×

= −

−

a
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field. electric
  theopposite iselectron an  of

onaccelerati  theofdirection  The
 

 
(c) Using the definition of 
acceleration, relate the time required 
for an electron to reach 0.01c to its 
acceleration: 
 

a
c

a
vt 01.0
==∆  

Substitute numerical values and 
evaluate ∆t: 

( ) s170.0
m/s101.76
m/s1030.01

213

8

µ=
×
×

=∆t  

 
(d) Find the distance the electron 
travels from its average speed and 
the elapsed time: 

( )[ ]( )
cm5.25

s170.0m/s10301.00 8
2
1

av

=

×+=

∆=∆

µ

tvx

 

 
*50 •  
Picture the Problem We can use Newton’s 2nd law of motion to find the acceleration of 
the proton in the uniform electric field and constant-acceleration equations to find the 
time required for it to reach a speed of 0.01c and the distance it travels while acquiring 
this speed. 
  
(a) Use data found at the back of 
your text to compute e/m for an 
electron: 
 C/kg1058.9

kg1067.1
C106.1

7

27

19

×=

×
×

= −

−

pm
e

 

 
Apply Newton’s 2nd law to relate the 
acceleration of the electron to the 
electric field: 
 

pp m
eE

m
Fa == net  

 

Substitute numerical values and 
evaluate a: 

( )( )

29

72

19

m/s1058.9

kg1067.1
N/C100C101.6

×=

×
×

= −

−

a
 

field. electric the
 ofdirection  in the isproton  a of

onaccelerati  theofdirection  The
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(b) Using the definition of 
acceleration, relate the time required 
for an electron to reach 0.01c to its 
acceleration: 
 

a
c

a
vt 01.0
==∆  

Substitute numerical values and 
evaluate ∆t: 

( ) s313
m/s1058.9
m/s1030.01

29

8

µ=
×
×

=∆t  

 
51 •  
Picture the Problem The electric force acting on the electron is opposite the direction of 
the electric field. We can apply Newton’s 2nd law to find the electron’s acceleration and 
use constant acceleration equations to find how long it takes the electron to travel a given 
distance and its deflection during this interval of time. 
(a) Use Newton’s 2nd law to relate the 
acceleration of the electron first to the 
net force acting on it and then the 
electric field in which it finds itself: 
 

ee m
e

m
EFa
rr

r −
== net  

Substitute numerical values and 
evaluate a : 

r ( )

( )j

ja

ˆm/s1003.7

ˆN/C400
kg109.11
C101.6

213

31

19

×−=

×
×

−= −

−r

 

 
(b) Relate the time to travel a given 
distance in the x direction to the 
electron’s speed in the x direction: 
 

ns0.50
m/s102

m0.1
6 =

×
=

∆
=∆

xv
xt  

 

(c) Using a constant-acceleration 
equation, relate the displacement of 
the electron to its acceleration and 
the elapsed time: 
 

( )
( )( )
( ) j

j

ay

ˆcm79.8

ˆns50m/s1003.7 2213
2
1

2
2
1

−=

×−=

∆=∆ ty
rr

 

i.e., the electron is deflected 8.79 cm 
downward. 

 
52 ••  
Picture the Problem Because the electric field is uniform, the acceleration of the 
electron will be constant and we can apply Newton’s 2nd law to find its acceleration and 
use a constant-acceleration equation to find its speed as it leaves the region in which 
there is a uniform electric field. 
  
Using a constant-acceleration xavv ∆+= 22

0
2  
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equation, relate the speed of the 
electron as it leaves the region of the 
electric field to its acceleration and 
distance of travel: 
 

or, because v0 = 0, 
xav ∆= 2  

Apply Newton’s 2nd law to express 
the acceleration of the electron in 
terms of the electric field: 
 

ee m
eE

m
Fa == net  

 

Substitute to obtain: 
 

em
xeEv ∆

=
2

 

 
Substitute numerical values and evaluate v: 

( )( )( ) m/s1075.3
kg109.11

m0.05N/C108C101.62 7
31

419

×=
×
××

= −

−

v  

 
Remarks: Because this result is approximately 13% of the speed of light, it is only 
an approximation. 
 
53 ••  
Picture the Problem We can apply the work-kinetic energy theorem to relate the change 
in the object’s kinetic energy to the net force acting on it. We can express the net force 
acting on the charged body in terms of its charge and the electric field. 
 
Using the work-kinetic energy 
theorem, express the kinetic energy 
of the object in terms of the net force 
acting on it and its displacement: 
 

xFKW ∆=∆= net  

Relate the net force acting on the 
charged object to the electric field: 
 

QEF =net  

Substitute to obtain: xQEKKK ∆=−=∆ if  

or, because Ki = 0, 
xQEK ∆=f  

 
Solve for Q: 

xE
KQ
∆

= f  
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Substitute numerical values and 
evaluate Q: ( )( ) C800

m0.50N/C300
J0.12 µ==Q  

 
*54 ••  
Picture the Problem We can use constant-acceleration equations to express the x and y 
coordinates of the particle in terms of the parameter t and Newton’s 2nd law to express 
the constant acceleration in terms of the electric field. Eliminating the parameter will 
yield an equation for y as a function of x, q, and m that we can solve for Ey. 
 
Express the x and y coordinates of 
the particle as functions of time: 
 

( )tvx θcos=  

and 
( ) 2

2
1sin tatvy y−= θ  

 
Apply Newton’s 2nd law to relate the 
acceleration of the particle to the net 
force acting on it: 
 

m
qE

m
F

a y
y == ynet,  

 

Substitute in the y-coordinate 
equation to obtain: 
 

( ) 2

2
sin t

m
qE

tvy y−= θ  

Eliminate the parameter t between 
the two equations to obtain: 
  

( ) 2
22 cos2

tan x
mv

qE
xy y

θ
θ −=  

Set y = 0 and solve for Ey: 
 qx

mvEy
θ2sin2

=  

 
Substitute the non-particle specific 
data to obtain: 
 

( )
( )

( )
q
m

q
mEy

214

26

m/s1064.5

m015.0
70sinm/s103

×=

°×
=

 

 
(a) Substitute for the mass and 
charge of an electron and evaluate 
Ey: 
 

( )
kN/C3.21

C101.6
kg109.11m/s105.64 19

31
214

=

×
×

×= −

−

yE
 

 
(b) Substitute for the mass and 
charge of a proton and evaluate Ey: 
 

( )
MN/C89.5

C101.6
kg1067.1m/s105.64 19

72
214

=

×
×

×= −

−

yE
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55 ••  
Picture the Problem We can use constant-acceleration equations to express the x and y 
coordinates of the electron in terms of the parameter t and Newton’s 2nd law to express 
the constant acceleration in terms of the electric field. Eliminating the parameter will 
yield an equation for y as a function of x, q, and m. We can decide whether the electron 
will strike the upper plate by finding the maximum value of its y coordinate. Should we 
find that it does not strike the upper plate, we can determine where it strikes the lower 
plate by setting y(x) = 0. 
 
Express the x and y coordinates of the 
electron as functions of time: 
 

( )tvx θcos0=  

and 
( ) 2

2
1

0 sin tatvy y−= θ  

Apply Newton’s 2nd law to relate the 
acceleration of the electron to the net 
force acting on it: 
 

e

y

e

y
y m

eE
m

F
a == net,  

 

Substitute in the y-coordinate equation 
to obtain: 
 

( ) 2
0 2
sin t

m
eE

tvy
e

y−= θ  

Eliminate the parameter t between the 
two equations to obtain: 
  

( ) ( ) 2
22

0 cos2
tan x

vm
eE

xxy
e

y

θ
θ −=    (1) 

To find ymax, set dy/dx = 0 for 
extrema: 

extremafor0
cos

tan 22
0

=

−= x'
vm
eE

dx
dy

e

y

θ
θ

 

 
Solve for x′ to obtain: 
 y

e

eE
vmx'
2

2sin2
0 θ

=  (See remark below.) 

 
Substitute x′ in y(x) and simplify to 
obtain ymax: 
 

y

e

eE
vmy
2

sin22
0

max
θ

=  

Substitute numerical values and evaluate ymax: 
 

( )( )
( )( ) cm02.1

N/C103.5C101.62
54sinm/s105kg109.11

319

22631

max =
××

°××
= −

−

y  

and, because the plates are separated by 2 cm, the electron does not strike the upper 
plate. 
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To determine where the electron will 
strike the lower plate, set  
y = 0 in equation (1) and solve for x to 
obtain: 
 

y

e

eE
vmx θ2sin2

0=  

 

Substitute numerical values and evaluate x: 
 

( )( )
( )( ) cm07.4

N/C105.3C106.1
90sinm/s105kg1011.9

319

2631

=
××

°××
= −

−

x  

 
Remarks: x′ is an extremum, i.e., either a maximum or a minimum. To show that it 
is a maximum we need to show that d2y/dx2, evaluated at x′, is negative. A simple 
alternative is to use your graphing calculator to show that the graph of y(x) is a 
maximum at x′. Yet another alternative is to recognize that, because equation (1) is 
quadratic and the coefficient of x2 is negative, its graph is a parabola that opens 
downward. 
 
56 ••  
Picture the Problem The trajectory of the electron while it is in the electric field is 
parabolic (its acceleration is downward and constant) and its trajectory, once it is out of 
the electric field is, if we ignore the small gravitational force acting on it, linear. We can 
use constant-acceleration equations and Newton’s 2nd law to express the electron’s x and 
y coordinates parametrically and then eliminate the parameter t to express y(x). We can 
find the angle with the horizontal at which the electron leaves the electric field from the x 
and y components of its velocity and its total vertical deflection by summing its 
deflections over the first 4 cm and the final 12 cm of its flight. 
  
(a) Using a constant-acceleration 
equation, express the x and y 
coordinates of the electron as 
functions of time: 
 

( ) tvtx 0=  

and 
( ) 2

2
1

,0 tatvty yy +=  

 

Because v0,y = 0: 
 

( ) tvtx 0=                       (1) 

and 
( ) 2

2
1 taty y=                    

 
Using Newton’s 2nd law, relate the 
acceleration of the electron to the 
electric field: 
 

e

y

e
y m

eE
m
Fa

−
== net  
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Substitute to obtain: 
 

( ) 2

2
t

m
eE

ty
e

y−=              (2) 

 
Eliminate the parameter t between 
equations (1) and (2) to obtain: 
 

( ) 22
2
0 42

x
K

eE
x

vm
eE

xy y

e

y −=−=  

 
Substitute numerical values and evaluate y(4 cm): 
 

( ) ( )( )( )
( ) mm40.6

J1024
m0.04N/C102C101.6m04.0 16

2419

−=
×
××

−= −

−

y  

 
(b) Express the horizontal and vertical 
components of the electron’s speed as 
it leaves the electric field: 
 

θcos0vvx =  

and 
θsin0vvy =  

Divide the second of these equations 
by the first to obtain: 
 

0

11 tantan
v
v

v
v y

x

y −− ==θ  

 
Using a constant-acceleration 
equation, express vy as a function of 
the electron’s acceleration and its 
time in the electric field: 

tavv yyy += ,0  

or, because v0,y = 0 

0

net,

v
x

m
eE

t
m

F
tav

e

y

e

y
yy −===  

 
Substitute to obtain: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= −−

K
xeE

vm
xeE y

e

y

2
tantan 1

2
0

1θ  

 
Substitute numerical values and evaluate θ : 
 

( )( )( )
( ) °−=⎥

⎦

⎤
⎢
⎣

⎡
×
××

−= −

−
− 7.17

J1022
m0.04N/C102C101.6tan 16

419
1θ  

 
(c) Express the total vertical 
displacement of the electron: 
 

cm12cm4total yyy +=  

Relate the horizontal and vertical 
distances traveled to the screen to  
the horizontal and vertical 
components of its velocity: 
 

tvx x∆=  

and 
tvy y∆=  
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Eliminate ∆t from these equations to 
obtain: 
 

( )xx
v
v

y
x

y θtan==  

 
Substitute numerical values and 
evaluate y: 
 

( )[ ]( ) cm83.3m12.07.17tan −=°−=y  

 

Substitute for y4 cm and y12 cm and 
evaluate ytotal: cm47.4

cm83.3cm640.0total

−=

−−=y
 

i.e., the electron will strike the fluorescent 
screen 4.47 cm below the horizontal axis. 

 
57 •  
Picture the Problem We can use its definition to find the dipole moment of this pair of 
charges. 
  
(a) Apply the definition of electric 
dipole moment to obtain: 
 

Lp
rr q=  

and 
( )( ) mC1000.8m4pC2 18 ⋅×== −µp  

 
(b) If we assume that the dipole is 
oriented as shown to the right, then 

 is to the right; pointing from the 

negative charge toward the positive 
charge. 

pr

 

 

 
*58 •  
Picture the Problem The torque on an electric dipole in an electric field is given by 

and the potential energy of the dipole by Epτ
rrr

×= .Ep
rr

⋅−=U  

  
Using its definition, express the 
torque on a dipole moment in a 
uniform electric field: 
 

Epτ
rrr

×=  

and 
θτ sinpE=  

where θ is the angle between the electric 
dipole moment and the electric field. 
 

(a) Evaluate τ for θ  = 0°: 00sin =°= pEτ  
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(b) Evaluate τ for θ  = 90°: ( )( )
mN1020.3

90sinN/C100.4nm5.0
24

4

⋅×=

°×⋅=
−

eτ
 

 
(c) Evaluate τ for θ  = 30°: ( )( )

mN1060.1

30sinN/C100.4nm5.0
24

4

⋅×=

°×⋅=
−

eτ
 

 
(d) Using its definition, express the 
potential energy of a dipole in an 
electric field: 
 

θcospEU −=⋅−= Ep
rr

 

Evaluate U for θ  = 0°: ( )( )
J1020.3

0cosN/C100.4nm5.0
24

4

−×−=

°×⋅−= eU
 

Evaluate U for θ  = 90°: ( )( )
0

90cosN/C100.4nm5.0 4

=

°×⋅−= eU
 

 
Evaluate U for θ  = 30°: ( )( )

J1077.2

30cosN/C100.4nm5.0
24

4

−×−=

°×⋅−= eU
 

 
*59 ••  
Picture the Problem We can combine the dimension of an electric field with the 
dimension of an electric dipole moment to prove that, in any direction, the dimension of 
the far field is proportional to [ ]31 L and, hence, the electric field far from the dipole falls 

off as 1/r3. 
  
Express the dimension of an electric 
field: 
 

[ ] [ ]
[ ]2L
kQE =  

Express the dimension an electric 
dipole moment: 
 

[ ] [ ][ ]LQp =  

Write the dimension of charge in 
terms of the dimension of an electric 
dipole moment: 
 

[ ] [ ]
[ ]L
pQ =  

Substitute to obtain: 
 

[ ] [ ][ ]
[ ] [ ]

[ ][ ]
[ ]32 L

pk
LL
pkE ==  

This shows that the field E due to a dipole 
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p falls off as 1/r3. 
60 ••  
Picture the Problem We can use its definition to find the molecule’s dipole moment. 
From the symmetry of the system, it is evident that the x component of the dipole 
moment is zero. 
  
Using its definition, express the 
molecule’s dipole moment: 
 

jip ˆˆ
yx pp +=

r
 

From symmetry considerations we 
have: 
 

0=xp  

The y component of the molecule’s 
dipole moment is: 
 

( )( )
mC1086.1

nm0.058C101.62

2

29

19

⋅×=

×=

==

−

−

eLqLpy

 

 
Substitute to obtain: ( )jp ˆmC1086.1 29 ⋅×= −r

 

 
61 ••   
Picture the Problem We can express the net force on the dipole as the sum of the 
forces acting on the two charges that constitute the dipole and simplify this expression 
to show that  We can show that, under the given conditions,  is also 

given by

.ˆnet iF Cp=
r

netF
r

( ) îpdxdEx by differentiating the dipole’s potential energy function with 

respect to x. 
  
(a) Express the net force acting on 
the dipole: 

qq +− += FFF
rrr

net  

 
 

Apply Coulomb’s law to express the 
forces on the two charges: 

( )iEF ˆ
1 axqCqq −−=−=−

rr
 

and 
( )iEF ˆ

1 axqCqq +=+=+

rr
 

 
Substitute to obtain: ( ) ( )

ii

iiF
ˆˆ2

ˆˆ
11net

CpaqC

axqCaxqC

==

++−−=
r

 

where p = 2aq. 
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(b) Express the net force acting on 
the dipole as the spatial derivative of 
U: 

[ ]

i

iiF

ˆ

ˆˆ
net

dx
dEp

Ep
dx
d

dx
dU

x
x

xx

=

−−=−=
r

 

 
62 •••  
Picture the Problem We can express the force exerted on the dipole by the electric field 
as −dU/dr and the potential energy of the dipole as −pE. Because the field is due to a 
point charge, we can use Coulomb’s law to express E. In the second part of the problem, 
we can use Newton’s 3rd law to show that the magnitude of the electric field of the dipole 
along the line of the dipole a distance r away is approximately 2kp/r3. 
  
(a) Express the force exerted by the 
electric field of the point charge on 
the dipole: 
 

rF ˆ
dr
dU

−=
r

 

where is a unit radial vector pointing 
from Q toward the dipole. 

r̂

 
Express the potential energy of the 
dipole in the electric field: 
 

2r
kQppEU −=−=  

 
Substitute to obtain: 

rrF ˆ2ˆ
32 r

kQp
r
kQp

dr
d

−=⎥⎦
⎤

⎢⎣
⎡−−=

r
 

 
(b) Using Newton’s 3rd law, express 
the force that the dipole exerts on 
the charge Q at the origin: 
 

FF
rr

−=Qon  or  rr ˆˆon FF Q −=

and 
FF Q =on  

 
Express in terms of the field in 

which Q finds itself: 
QFon

 

QEF Q =on  

Substitute to obtain: 
3

2
r
kQpQE =   ⇒ 3

2
r
kpE =  

 
General Problems 
 
*63 •  
Picture the Problem We can equate the gravitational force and the electric force acting 
on a proton to find the mass of the proton under the given condition.  
 
(a) Express the condition that must 
be satisfied if the net force on the 

eg FF =  
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proton is zero: 
 

 

Use Newton’s law of gravity and 
Coulomb’s law to substitute for Fg 
and Fe:  
 

2

2

2

2

r
ke

r
Gm

=  

Solve for m to obtain: 

G
kem =  

 
Substitute numerical values and evaluate m: 
 

( ) kg1086.1
kg/mN1067.6
C/mN1099.8C106.1 9

2211

229
19 −

−
− ×=

⋅×
⋅×

×=m  

 
(b) Express the ratio of Fe and Fg: 
 

2
p

2

2

2
p

2

2

Gm
ke

r
Gm

r
ke

=  

 
Substitute numerical values to obtain: 
 

( )( )
( )( )

36
2272211

219229

2
p

2

1024.1
kg1067.1kg/mN1067.6

C106.1C/mN1099.8
×=

×⋅×

×⋅×
=

−−

−

Gm
ke

 

 
64 ••  
Picture the Problem The locations of the charges q1, q2 and q2 and the points at which 
we are calculate the field are shown in the diagram. From the diagram it is evident that 
E
r

 along the axis has no y component. We can use Coulomb’s law for E
r

due to a point 
charge and the superposition principle to find E

r
at points P1 and P2. Examining the 

distribution of the charges we can see that there are two points where E = 0. One is 
between q2 and q3 and the other is to the left of q1. 
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Using Coulomb’s law, express the 
electric field at P1 due to the three 
charges: 
 

i

iii

EEEE

ˆ

ˆˆˆ

2
,3

3
2
,2

2
2
,1

1

2
,3

3
2
,2

2
2
,1

1

111

111

3211

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++=

++=

++=

PPP

PPP

qqqP

r
q

r
q

r
qk

r
kq

r
kq

r
kq

rrrr

 

 
Substitute numerical values and evaluate 

1PE
r

: 

 

( )
( ) ( ) ( )

( ) i

iE

ˆN/C1014.1

ˆ
cm2

C5
cm3

C3
cm4

C5/CmN1099.8

8

222
229

1

×=

⎥
⎦

⎤
⎢
⎣

⎡
++

−
⋅×=

µµµ
P

r

 

 
Express the electric field at P2: 
 

i

EEEE

ˆ
2
,3

3
2
,2

2
2
,1

1

222

3212

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++=

++=

PPP

qqqP

r
q

r
q

r
qk

rrrr

 

Substitute numerical values and evaluate 
2PE

r
: 

 

( )
( ) ( ) ( )

( ) i

iE

ˆN/C1074.1

ˆ
cm14

C5
cm15

C3
cm16

C5/CmN1099.8

6

222
229

2

×=

⎥
⎦

⎤
+⎢

⎣

⎡
+

−
⋅×=

µµµ
P

r

 

 
Letting x represent the x coordinate 
of a point where the magnitude of 
the electric field is zero, express the 
condition that E = 0 for the point 
between x = 0 and x = 1 cm: 

02
,3

3
2
,2

2
2
,1

1 =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++=

PPP
P r

q
r
q

r
qkE  

or 

( ) ( )
0

-cm1
C5C3

cm1
C5

222 =−+
+
−

xxx
µµµ

 

 
Solve this equation to obtain: cm417.0=x  

 
For x < −1 cm, let y  = −x  to obtain: 
 ( ) ( )

0
cm1
C5C3

cm1
C5

222 =
+

−−
− yyy

µµµ
 

 
Solve this equation to obtain: cm95.6=x  and cm95.6−=y  
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65 ••  
Picture the Problem The locations of the charges q1, q2 and q2 and the point P2 at which 
we are calculate the field are shown in the diagram. The electric field on the x axis due to 
the dipole is given by 3

dipole 2 xkpE rr
=  where ip ˆ2 1aq=

r
. We can use Coulomb’s law 

for E
r

due to a point charge and the superposition principle to find E
r

at point P2.  

 
 
Express the electric field at P2 as the 
sum of the field due to the dipole and 
the point charge q2: 
 ( )

i

ii

ii

EEE

ˆ4

ˆˆ22

ˆˆ2

2
1

2

2
2

3
1

2
2

3

dipole 22

⎥⎦
⎤

⎢⎣
⎡ +=

+=

+=

+=

q
x

aq
x
k

x
kq

x
aqk

x
kq

x
kp

qP

rrr

 

where a = 1 cm. 
Substitute numerical values and evaluate 

2PE
r

: 

 

( )
( )( ) ( )iiE ˆN/C1073.1ˆC3

cm15
cm1C54

m1015
C/mN1099.8 6

22

229

2
×=⎥

⎦

⎤
⎢
⎣

⎡
+

×

⋅×
=

−
µµ

P

r
 

 

64. Problem ofwith that agreement excellent in  isresult   this,than 
greatermuch not  is  i.e., interest, ofpoint   the todistance  theof 10%

 thanmore is dipole  theof charges  two theof separation  theWhile

a
x  

 
*66 ••  
Picture the Problem We can find the percentage of the free charge that would have to 
be removed by finding the ratio of the number of free electrons ne to be removed to give 
the penny a charge of 15 µC to the number of free electrons in the penny. Because we’re 
assuming the pennies to be point charges, we can use Coulomb’s law to find the force of 
repulsion between them. 
 
(a) Express the fraction f of the free 
charge to be removed as the quotient 
of the number of electrons to be 
removed and the number of free 

N
nf e=
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electrons: 
  
Relate N to Avogadro’s number, the 
mass of the copper penny, and the 
molecular mass of copper: 
 

M
m

N
N

=
A

 ⇒ 
M
mNN A=  

Relate ne to the free charge Q to be 
removed from the penny: 
 

[ ]enQ −= e  ⇒ 
e

Qn
−

=e  

 

A
A

meN
QM

M
mN
e

Q

f −=−=
 

 
Substitute numerical values and evaluate f: 
 

( )( )
( )( )( ) %1029.31029.3

mol106.02C101.6g3
g/mol5.63C15 79

12319
−−

−− ×=×=
××

−
−=

µf  

(b) Use Coulomb’s law to express the 
force of repulsion between the two 
pennies: 
 

( )
2

2
e

2

2

r
enk

r
kqF ==  

 

Substitute numerical values and evaluate F: 
 

( )( ) ( )
( )

N4.32
m25.0

C106.11038.9/CmN1099.8
2

219213229

=
××⋅×

=
−

F  

 
67 ••  
Picture the Problem Knowing the total charge of the two charges, we can use 
Coulomb’s law to find the two combinations of charge that will satisfy the condition that 
both are positive and hence repel each other. If just one charge is positive, then there is 
just one distribution of charge that will satisfy the conditions that the force is attractive 
and the sum of the two charges is 6 µC. 
 
(a) Use Coulomb’s law to express 
the repulsive force each charge 
exerts on the other: 
 

2
2,1

21

r
qkqF =  

Express q2 in terms of the total 
charge and q1: 
 

12 qQq −=  
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Substitute to obtain: 
 

( )
2
2,1

11

r
qQkqF −

=  

 
Substitute numerical values to obtain: 
 

( ) ( )[ ]
( )2

2
11

229

m3
C6/CmN108.99mN8 qq −⋅×

=
µ

 

 
Simplify to obtain: 
 

( ) ( ) 0C01.8C6 2
1

2
1 =+−+ µµ qq  

 
Solve to obtain: 
 

C01.2andC99.3 21 µµ == qq  

or 
C99.3andC01.2 21 µµ == qq  

 
(b) Use Coulomb’s law to express 
the attractive force each charge 
exerts on the other: 
 

2
2,1

21

r
qkqF −=  

Proceed as in (a) to obtain: ( ) ( ) 0C01.8C6 2
1

2
1 =−−+ µµ qq  

 
Solve to obtain: 
 

C12.1andC12.7 21 µµ −== qq  

 
68 ••  
Picture the Problem The electrostatic forces between the charges are responsible for the 
tensions in the strings. We’ll assume that these are point charges and apply Coulomb’s 
law and the principle of the superposition of forces to find the tension in each string. 
 
Use Coulomb’s law to express the 
net force on the charge +q: 
 

qq FFT 421 +=  

 

Substitute and simplify to obtain: ( ) ( )
( ) 2

2

221
3

2
42

d
kq

d
qkq

d
qkqT =+=  

 
Use Coulomb’s law to express the 
net force on the charge +4q: 
 

qq FFT 22 +=  

 

Substitute and simplify to obtain: ( )( ) ( )
( ) 2

2

222
9

2
442

d
kq

d
qkq

d
qqkT =+=  
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*69 ••   
Picture the Problem We can use Coulomb’s law to express the force exerted on one 
charge by the other and then set the derivative of this expression equal to zero to find the 
distribution of the charge that maximizes this force.  
 
Using Coulomb’s law, express the 
force that either charge exerts on the 
other: 
 

2
21

D
qkqF =  

Express q2 in terms of Q and q1: 12 qQq −=  

 
Substitute to obtain: ( )

2
11

D
qQkqF −

=  

 
Differentiate F with respect to q1 
and set this derivative equal to zero 
for extreme values: 
 

( )[ ]

( )[ ]
extremafor0

1 112

11
1

2
1

=

−+−=

−=

qQq
D
k

qQq
dq
d

D
k

dq
dF

 

 
Solve for q1 to obtain: Qq 2

1
1 =  

and 
QqQq 2

1
12 =−=  

 
To determine whether a maximum 
or a minimum exists at Qq 2

1
1 = , 

differentiate F a second time and 
evaluate this derivative at Qq 2

1
1 = : 

[ ]

( )

. oftly independen 0

2

2

1

2

1
1

22
1

2

q
D
k

qQ
dq
d

D
k

dq
Fd

<

−=

−=

 

. maximizes  2
1

21 FQqq ==∴  

 
*70 ••  
Picture the Problem We can apply Coulomb’s law and the superposition of forces to 
relate the net force acting on the charge q = −2 µC to x. Because Q divides out of our 
equation when F(x) = 0, we’ll substitute the data given for  
x = 8.0 cm. 
 
Using Coulomb’s law, express the net 
force on q as a function of x:  
 

( ) ( )
( )22 cm12

4
x

Qkq
x

kqQxF
−

+−=  
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Simplify to obtain: ( )
( )

Q
xxkq

xF
⎥
⎦

⎤
⎢
⎣

⎡

−
+−= 22 cm12

41
 

 
Solve for Q: 
 

( )

( ) ⎥⎦
⎤

⎢
⎣

⎡

−
+−

=

22 cm12
41

xx
kq

xFQ  

 
Evaluate Q for x = 8 cm: 
 

 

( )( )
( ) ( )

C00.3

cm4
4

cm8
1C2/CmN1099.8

N4.126

22
229

µ
µ

=

⎥
⎦

⎤
⎢
⎣

⎡
+−⋅×

=Q  

 
71 ••  
Picture the Problem Knowing the total charge of the two charges, we can use 
Coulomb’s law to find the two combinations of charge that will satisfy the condition that 
both are positive and hence repel each other. If the spheres attract each other, then there 
is just one distribution of charge that will satisfy the conditions that the force is attractive 
and the sum of the two charges is 200 µC. 
 
(a) Use Coulomb’s law to express 
the repulsive force each charge 
exerts on the other: 
 

2
2,1

21

r
qkqF =  

Express q2 in terms of the total 
charge and q1: 
 

12 qQq −=  

Substitute to obtain: 
 

( )
2
2,1

11

r
qQkqF −

=  

 
Substitute numerical values to obtain: 
 

( ) ( )[ ]
( )2

2
11

229

m6.0
C200/CmN108.99N80 qq −⋅×

=
µ

 

 
Simplify to obtain the quadratic equation: 
 

( ) ( 0mC1020.3mC2.0 23
1

2
1 =×+−+ −qq )

 
Solve to obtain: 
 

C183andC5.17 21 µµ == qq  

or 
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C5.17andC183 21 µµ == qq  

 
(b) Use Coulomb’s law to express 
the attractive force each charge 
exerts on the other: 
 

2
2,1

21

r
qkqF −=  

Proceed as in (a) to obtain: ( ) ( 0mC1020.3mC2.0 23
1

2
1 =×−−+ −qq )

 
 

Solve to obtain: 
 

C215andC0.15 21 µµ =−= qq  

 
72 ••  
Picture the Problem Choose the 
coordinate system shown in the diagram 
and let Ug = 0 where y = 0. We’ll let our 
system include the ball and the earth. Then 
the work done on the ball by the electric 
field will change the energy of the system. 
The diagram summarizes what we know 
about the motion of the ball. We can use 
the work-energy theorem to our system to 
relate the work done by the electric field to 
the change in its energy.  
 
Using the work-energy theorem, 
relate the work done by the electric 
field to the change in the energy of 
the system: 
  

g,1g,212

gfieldelectric

UUKK

UKW

−+−=

∆+∆=
 

or, because K1 = Ug,2 = 0, 
g,12fieldelectric UKW −=  

 
Substitute for Welectric field, K2, and 
Ug,0 and simplify: ( ) mghmghghm

mghmvqEh

=−=

−=
2

2
1

2
12

1

2
 

 
Solve for m: 

g
qEm =  

 
73 ••  
Picture the Problem We can use Coulomb’s law, the definition of torque, and the 
condition for rotational equilibrium to find the electrostatic force between the two 
charged bodies, the torque this force produces about an axis through the center of the 
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meter stick, and the mass required to maintain equilibrium when it is located either 25 cm 
to the right or to the left of the mid-point of the rigid stick. 
 
(a) Using Coulomb’s law, express the 
electric force between the two charges: 
 

2
21

d
qkqF =  

 
Substitute numerical values and evaluate F: 
 

( )( )
( )

N225.0
m1.0

C105C/mN1099.8
2

27229

=
×⋅×

=
−

F  

 
(b) Apply the definition of torque to 
obtain: 
 

lF=τ  

Substitute numerical values and 
evaluate τ: 
 

( )( )
ckwisecounterclo m,N113.0

m5.0N225.0

⋅=

=τ
 

 
(c) Apply  0stickmeter   theofcenter =∑τ
to the meterstick: 
 

0=− 'mglτ  

Solve for m: 
 'g

m
l

τ
=  

 
Substitute numerical values and 
evaluate m: ( )( ) kg0461.0

m25.0m/s81.9
N113.0

2 ==m  

 
(d) Apply  0stickmeter   theofcenter =∑τ
to the meterstick: 
 

0=+− 'mglτ  

Substitute for τ: 0=+− 'mgF ll  
 

Substitute for F: 
02

21 =+− 'mg
d

'qkq
l  

where q′ is the required charge. 
 

Solve for q2′ to obtain: 
 

l

l

1

2

2 kq
'mgdq =  

 
Substitute numerical values and evaluate q2′: 
 

( ) ( )( )( )
( )( )( ) C1003.5

m5.0C105C/mN108.99
m25.0m/s81.9kg0461.0m1.0 7

7229

22

2
−

− ×=
×⋅×

='q  
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ic 
of forces to express the field at the 

rigin and use this equation to solve for Q. 

xpress the electric field at the origin due to the point charges Q: 
 

74 ••  
Picture the Problem Let the numeral 1 refer to the charge in the 1st quadrant and the 
numeral 2 to the charge in the 4th quadrant. We can use Coulomb’s law for the electr
field due to a point charge and the superposition 
o
 
E

( )

( ) ( )[ ] ( ) ( )[ ] ( )

i

ijiji

rrEEE

ˆ

ˆm8ˆm2ˆm4ˆm2ˆm4

ˆˆ0,0

333

0,22
0,2

0,12
0,1

21

xE=
r

kQ
r
kQ

r
kQ

r
kQ

r
kQ

−=+−+−+−=

+=+=
rrr

 

r is the distance from each charge to the origin and where 
( )

3
m8
r

kQEx −= . 

 
Express r in terms of the coordinates  

, y) of the point charges: (x
 

22 yxr +=  

Substitute to obtain: 
 

( )
( ) 2322

m8
yx
kQEx

+
−=  

 
Solve for Q to obtain: ( )

( )m8

2322

k
yxEQ x +

=  

 
merical values and 

evaluate Q: 
Substitute nu ( ) ( ) ( )[ ]

( )( )
C97.4

m8/CmN108.99
m2m4kN/C4
229

2322

µ−=

⋅×
+

−=Q
 

 
75 ••  
Picture the Problem Let the numeral 1 denote one of the spheres and the numeral 2 the 
other. Knowing the total charge Q on the two spheres, we can use Coulomb’s law to fin
the charge on each of them. A second application of Coulomb’s law when the spheres 

d 

arry the same charge and are 0.60 m apart will yield the force each exerts on the other. 

ss 
ach charge 

xerts on the other: 

c
 
(a) Use Coulomb’s law to expre
the repulsive force e
e
 

2
2,1

21

r
qkqF =  
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q2 in terms of the total charge 
nd q1: 

Express 
a
 

12 qQq −=  

Substitute to obtain: 
 

( )
2
2,1

11

r
qQkqF −

=  

 
ubstitute numerical values to obtain: 

 
S

( ) ( )[ ]
( )2

2
11

229

m6.
C200/CmN108.99N201 qq −⋅×

=
µ

 

 
implify to obtain the quadratic equation: 

0

S
 

( ) ( ) 0C4810C200 2
1

2
1 =+−+ µµ qq  

Solve to obtain: 
 

C172andC0.28 21q µµ == q  

or 
C0.28andC172 21 µµ == qq  

 
ss 

arge 
 when  

1 = q2 = 100 µC: 

(b) Use Coulomb’s law to expre
the repulsive force each ch
exerts on the other
q
 

2
2,1

21

r
qkqF =  

Substitute numerical values and evaluate F: 
 

( )( )
( )

N250
m6.0
C100/CmN108.99 2

2
229 =⋅×=

µF  

 
76 ••   
Picture the Problem Let the numeral 1 denote one of the spheres and the numeral 2 the 
other. Knowing the total charge Q on the two spheres, we can use Coulomb’s law to fin
the charge on each of them. A second application of Coulomb’s law when the spheres 

d 

arry the same charge and are 0.60 m apart will yield the force each exerts on the other. 

s 
ach charge 

xerts on the other: 

c
 
(a) Use Coulomb’s law to expres
the attractive force e
e
 

2
2,1

21

r
qkqF −=

 
 

rms of the total 
harge and q1: 

 

Express q2 in te
c

12 qQq −=  
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Substitute to obtain: 
 

( )
2
2,1

11

r
qQkqF −

−=  

 
Substitute numerical values to obtain: 
 

( ) ( )[ ]
( )2

2
11

229

m6.0
C200/CmN108.99N201 qq −⋅×−

=
µ

 

Simplify to obtain the quadratic equation: 
 

( ) ( ) 0C4810C200 2
1

2
1 =−−+ µµ qq  

Solve to obtain: 
 

C222andC7.21 21 µµ =−= qq  

or 
C7.21andC222 21 µµ −== qq  

 
(b) Use Coulomb’s law to express 
the repulsive force each charge 
exerts on the other when  
q1 = q2 = 100 µC: 
 

2
2,1

21

r
qkqF =  

Substitute numerical values and evaluate F: 
 

( )( )
( )

N250
m6.0
C100/CmN108.99 2

2
229 =⋅×=

µF  

 
77 ••  
Picture the Problem The charge configuration is shown in the diagram as are the 
approximate locations, labeled x1 and x2, where the electric field is zero. We can 
determine the charge Q by using Coulomb’s law and the superposition of forces to 
express the net force acting on q2. In part (b), by inspection, the points where  
E = 0 must be between the −3 µC and +4 µC charges. We can use Coulomb’s law for the 
field due to point charges and the superposition of electric fields to determine the 
coordinates x1 and x2. 
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(a) Use Coulomb’s law to express the 
force on the 4.0-µC charge: 
 ( )

ii

ii

FFF

ˆˆ

ˆˆ

22
2,

2
2,1

1
2

2
2,

2
2
2,1

21

2,2,12

F
r
Q

r
qkq

r
kQq

r
qkq

Q

Q

Q

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

−+=

+=
rrr

 

 
Solve for Q: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

2

2
2
2,1

12
2, kq

F
r
qrQ Q  

 
Substitute numerical values and evaluate Q: 

( )
( ) ( )( ) C2.97

C4/CmN108.99
N240

m0.2
C3m12.0 2292

2 µ
µ

µ
−=⎥

⎦

⎤
⋅×

−⎢
⎣

⎡ −
=Q  

 
(b) Use Coulomb’s law for electric fields and the superposition of fields to determine the 
coordinate x at which E = 0: 
 

( ) ( )
0ˆˆ

m2.0
ˆ

m32.0 2
1

2
2

2 =+
−

−
−

−= iiiE
x
kq

x
kq

x
kQr

 

or 

( ) ( )
0

m2.0m32.0 2
1

2
2

2 =+
−

−
−

−
x
q

x
q

x
Q

 

 
Substitute numerical values to obtain: 
 

( ) ( )
0C3

m2.0
C4

m32.0
C2.97

222 =
−

+
−

−
−

−
−

xxx
µµµ

 

and 

( ) ( )
03

m2.0
4

m32.0
2.97

222 =−
−

−
− xxx

 

 
Solve (preferably using a graphing 
calculator!) this equation to obtain: 

m0508.01 =x  and m169.02 =x  
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*78 ••  
Picture the Problem Each sphere is in 
static equilibrium under the influence of 
the tensionT

r
, the gravitational force gF

r
, 

and the electric force . We can use 

Coulomb’s law to relate the electric force 
to the charge on each sphere and their 
separation and the conditions for static 
equilibrium to relate these forces to the 
charge on each sphere.  

EF
r

 
 
(a) Apply the conditions for static 
equilibrium to the charged sphere: 

0sinsin 2

2

E =−=−=∑ θθ T
r

kqTFFx  

and 

∑ =−= 0cos mgTFy θ  

 
Eliminate T between these equations 
to obtain: 2

2

tan
mgr
kq

=θ  

 
Solve for q: 
 k

mgrq θtan
=  

 
Referring to the figure, relate the 
separation of the spheres r to the 
length of the pendulum L: 
 

θsin2Lr =  

Substitute to obtain: 
 k

mgLq θθ tansin2=  

 
(b) Evaluate q for m = 10 g, L = 50 cm, and θ = 10°: 
 

( ) ( )( ) C241.0
/CmN1099.8

10tanm/s81.9kg01.010sinm5.02 229

2

µ=
⋅×

°
°=q  
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79 ••  
Picture the Problem Each sphere is in 
static equilibrium under the influence of 
the tensionT

r
, the gravitational force gF

r
, 

and the electric force . We can use 

Coulomb’s law to relate the electric force 
to the charge on each sphere and their 
separation and the conditions for static 
equilibrium to relate these forces to the 
charge on each sphere.  

EF
r

 
 
(a)Apply the conditions for static 
equilibrium to the charged sphere: 

0sinsin 2

2

E =−=−=∑ θθ T
r

kqTFFx  

and 
0cos =−=∑ mgTFy θ  

 
Eliminate T between these equations 
to obtain: 2

2

tan
mgr
kq

=θ  

 
Referring to the figure for Problem 
80, relate the separation of the spheres 
r to the length of the pendulum L: 
 

θsin2Lr =  

Substitute to obtain: 
 θ

θ 22

2

sin4
tan

mgL
kq

=  

or 

2

2
2

4
tansin

mgL
kq

=θθ                   (1) 

 
Substitute numerical values and evaluate : θθ tansin 2

 
( )( )

( )( )( )
3

22

2229
2 1073.5

m1.5m/s9.81kg0.014
C75.0/CmN1099.8tansin −×=

⋅×
=

µθθ  

 
Because : 1tansin 2 <<θθ
 

θθθ ≈≈ tansin  
and 

33 1073.5 −×≈θ  
 

Solve for θ  to obtain: 
 

°== 3.10rad179.0θ  
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(b) Evaluate equation (1) with replacing q2 with q1q2: 
 

( )( )( )
( )( )( )

33
22

229
2 1009.5

m1.5m/s9.81kg0.014
C1C5.0/CmN1099.8tansin θµµθθ ≈×=

⋅×
= −  

 
Solve for θ  to obtain: 
 

°== 86.9rad172.0θ  

 
 
80 ••  
Picture the Problem Let the origin be at 
the lower left-hand corner and designate 
the charges as shown in the diagram. We 
can apply Coulomb’s law for point charges 
to find the forces exerted on q1 by q2, q3, 
and q4 and superimpose these forces to find 
the net force exerted on q1. In part (b), 
we’ll use Coulomb’s law for the electric 
field due to a point charge and the 
superposition of fields to find the electric 
field at point P(0, L/2). 

 

 
(a) Using the superposition of forces, 
express the net force exerted on q1: 
 

1,41,31,21 FFFF
rrrr

++=  

 

Apply Coulomb’s law to express 1,2F
r

: 

( ) ( ) jj

rrF

ˆˆ

ˆ

2

2

3

1,23
1,2

12
1,22

1,2

12
1,2

L
kqL

L
qqk

r
qkq

r
qkq

=−
−

=

==
rr

 

 
Apply Coulomb’s law to express 1,4F

r
: 

( ) ( ) ii

rrF

ˆˆ

ˆ

2

2

3

1,43
1,4

14
1,42

1,4

14
1,4

L
kqL

L
qqk

r
qkq

r
qkq

=−
−

=

==
rr

 

 
Apply Coulomb’s law to express 1,3F

r
: 

( )

( )ji

ji

rrF

ˆˆ
2

ˆˆ
2

ˆ

223

2

323

2

1,33
1,3

13
1,32

1,3

13
1,3

+−=

−−=

==

L
kq

LL
L

kq

r
qkq

r
qkq rr
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Substitute and simplify to obtain: 
 

( )

( ) ( )

( )ji

jiji

ijijF

ˆˆ
22

11

ˆˆ
2

ˆˆ

ˆˆˆ
2

ˆ

2

2

223

2

2

2

2

2

223

2

2

2

1

+⎟
⎠

⎞
⎜
⎝

⎛ −=

+−+=

++−=

L
kq

L
kq

L
kq

L
kq

L
kq

L
kqr

 

 
(b) Using superposition of fields, 
express the resultant field at point P: 
 

4321 EEEEE
rrrrr

+++=P       (1) 

Use Coulomb’s law to express 1E
r

: 

 

jj

jrE

ˆ4ˆ
2

2

ˆ
2

ˆ

23

3
,1

,12
,1

1
1

L
kqL

L
kq

L
r
kq

r
kq

P
P

P

=⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

=

⎟
⎠
⎞

⎜
⎝
⎛==

r

 

 
Use Coulomb’s law to express 2E

r
: 

 

( )

jj

jrE

ˆ4ˆ
2

2

ˆ
2

ˆ

23

3
,2

,22
,2

2
2

L
kqL

L
kq

L
r

qk
r
kq

P
P

P

=⎟
⎠
⎞

⎜
⎝
⎛−

⎟
⎠
⎞

⎜
⎝
⎛

−
=

⎟
⎠
⎞

⎜
⎝
⎛−

==
r

 

 
Use Coulomb’s law to express 3E

r
: 

 

⎟
⎠
⎞

⎜
⎝
⎛ −−=

⎟
⎠
⎞

⎜
⎝
⎛ −−==

ji

jirE

ˆ
2
1ˆ

5
8

ˆ
2

ˆˆ

223

3
,3

,32
,3

3
3

L
kq

LL
r
kq

r
kq

P
P

P

r

 

 
Use Coulomb’s law to express 4E

r
: 

 

( )

⎟
⎠
⎞

⎜
⎝
⎛ −=

⎟
⎠
⎞

⎜
⎝
⎛ −

−
==

ji

jirE

ˆ
2
1ˆ

5
8

ˆ
2

ˆˆ

223

3
,4

,32
,4

4
4

L
kq

LL
r

qk
r
kq

P
P

P

r

 

 
Substitute in equation (1) and simplify to obtain: 

 

jjijijjE ˆ
25

518ˆ
2
1ˆ

5
8ˆ

2
1ˆ

5
8ˆ4ˆ4

222322322 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=⎟

⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −−++=

L
kq

L
kq

L
kq

L
kq

L
kq

P

r
 

 
81 ••   
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Picture the Problem We can apply Newton’s 2nd law in rotational form to obtain the 
differential equation of motion of the dipole and then use the small angle approximation 
sinθ ≈ θ to show that the dipole experiences a linear restoring torque and, hence, will 
experience simple harmonic motion. 
 
Apply ∑ to the dipole: = ατ I

2

2

sin
dt
dIpE θθ =−  

where τ is negative because acts in such a 
direction as to decrease θ. 
 

For small values of θ, sinθ ≈ θ  
and: 2

2

dt
dIpE θθ =−  

 
Express the moment of inertia of the 
dipole: 
 

2
2
1 maI =  

Relate the dipole moment of the 
dipole to its charge and the charge 
separation: 
 

qap =  

Substitute to obtain: 
θθ qaE

dt
dma −=2

2
2

2
1  

or 

θθ
ma
qE

dt
d 2

2

2

−=  

the differential equation for a simple 
harmonic oscillator with angular frequency 

maqE2=ω . 

 
Express the period of a simple 
harmonic oscillator: ω

π2
=T  

 
Substitute to obtain: 

qE
maT
2

2π=  

 
82 ••  
Picture the Problem We can apply conservation of energy and the definition of the 
potential energy of a dipole in an electric field to relate q to the kinetic energy of the 
dumbbell when it is aligned with the field. 
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Using conservation of energy, relate 
the initial potential energy of the 
dumbbell to its kinetic energy when 
it is momentarily aligned with the 
electric field: 
 

0=∆+∆ UK  
or, because Ki = 0, 

0=∆+ UK  
where K is the kinetic energy when it is 
aligned with the field. 
 

Express the change in the potential 
energy of the dumbbell as it aligns 
with the electric field in terms of its 
dipole moment, the electric field, 
and the angle through which it 
rotates: 
 

( )160cos
coscos ff

if

−°=
+−=

−=∆

qaE
pEpE

UUU
θθ  

Substitute to obtain: ( ) 0160cos =−°+ qaEK  

 
Solve for q: 

( )°−
=

60cos1aE
Kq  

Substitute numerical values and evaluate q: 
( )( )( )

C55.6

60cos1N/C600m0.3
J105 3

µ=

°−
×

=
−

q
 

 
*83 ••  
Picture the Problem The forces the electron and the proton exert on each other 
constitute an action-and-reaction pair. Because the magnitudes of their charges are equal 
and their masses are the same, we find the speed of each particle by finding the speed of 
either one. We’ll apply Coulomb’s force law for point charges and Newton’s 2nd law to 
relate v to e, m, k, and r. 
 
Apply Newton’s 2nd law to the positron: 

r
vm

r
ke

2
1

2

2

2

=  ⇒ 2
2

2mv
r

ke
=  

 
Solve for v to obtain: 

mr
kev
2

2

=  

 
84 ••  
Picture the Problem In Problem 81 it was established that the period of an electric 
dipole in an electric field is given by .22 qEmaT π=  We can use this result to find 

the frequency of oscillation of a KBr molecule in a uniform electric field of 1000 N/C. 
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Express the frequency of the KBr 
oscillator: 
 

ma
qEf 2

2
1
π

=  

Substitute numerical values and 
evaluate f: 

( )( )
( )( )

Hz1053.4

nm0.282kg101.4
N/C1000C101.62

2
1

8

25

19

×=

×
×

= −

−

π
f

 

 
85 •••  
Picture the Problem We can use Coulomb’s force law for point masses and the 
condition for translational equilibrium to express the equilibrium position as a function 
of k, q, Q, m, and g. In part (b) we’ll need to show that the displaced point charge 
experiences a linear restoring force and, hence, will exhibit simple harmonic motion. 
 
(a) Apply the condition for 
translational equilibrium to the point 
mass: 
 

02
0

=−mg
y

kqQ
 

Solve for y0 to obtain: 

mg
kqQy =0  

 
(b) Express the restoring force that 
acts on the point mass when it is 
displaced a distance ∆y from its 
equilibrium position: 
 

( )

2
00

2
0

2
0

2
0

2 y
kqQ

yyy
kqQ

y
kqQ

yy
kqQF

−
∆+

≈

−
∆+

=

 

because ∆y << y0. 
 

Simplify this expression further by 
writing it with a common 
denominator: 
 

3
0

0

4
0

0

3
0

4
0

0

2

21

2
2

2

y
ykqQ

y
yy

ykqQy
yyy

ykqQyF

∆
−≈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∆
+

∆
−=

∆+
∆

−=

 

again, because ∆y << y0. 
 

From the 1st step of our solution: mg
y

kqQ
=2

0
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Substitute to obtain: y
y
mgF ∆−=

0

2
 

 
Apply Newton’s 2nd law to the 
displaced point charge to obtain: 
 

y
y
mg

dt
ydm ∆−=

∆

0
2

2 2
 

or  

02

0
2

2

=∆+
∆ y

y
g

dt
yd

 

the differential equation of simple 

harmonic motion with 02 yg=ω . 

 
86 •••   
Picture the Problem The free-body 
diagram shows the Coulomb force the 
positive charge Q exerts on the bead that is 
constrained to move along the x axis. The x 
component of this force is a restoring 
force, i.e., it is directed toward the bead’s 
equilibrium position. We can show that, 
for x << L, this restoring force is linear 
and, hence, that the bead will exhibit 
simple harmonic motion about its 
equilibrium position. Once we’ve obtained 
the differential equation of SHM we can 
relate the period of the motion to its 
angular frequency.  
 
Using Coulomb’s law for point 
charges, express the force F that +Q 
exerts on −q: 
 

( )
2222 xL

kqQ
xL
QqkF

+
−=

+
−

=  

 

Express the component of this force 
along the x axis: 
 

( )
x

xL
kqQ

xL
x

xL
kqQ

xL
kqQFx

2322

2222

22 cos

+
−=

++
−=

+
−= θ
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Factor L2 from the denominator of this 
equation to obtain: 
 

x
L

kqQx

L
xL

kqQFx 323

2

2
3 1

−≈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=  

because x << L. 
 

Apply ∑ to the bead to 

obtain: 

= xx maF

 

x
L

kqQ
dt

xdm 32

2

−=  

or 

032

2

=+ x
mL
kqQ

dt
xd

 

the differential equation of simple 

harmonic motion with 3mLkqQ=ω . 

 
Express the period of the motion of 
the bead in terms of the angular 
frequency of the motion: 

kqQ
mLL

kqQ
mLT ππ

ω
π 222 3

===  

 
87 •••  
Picture the Problem Each sphere is in 
static equilibrium under the influence of 
the tensionT

r
, the gravitational force gF

r
, 

and the force exerted by the 

electric field. We can use Coulomb’s law 
to relate the electric force to the charges 
on the spheres and their separation and the 
conditions for static equilibrium to relate 
these forces to the charge on each sphere.  

CoulombF
r

EF
r

 
  
(a)Apply the conditions for static 
equilibrium to the charged sphere: 

0sin

sin

2

2

Coulomb

=−=

−=∑
θ

θ

T
r

kq

TFFx

 

and 
0cos =−−=∑ qEmgTFy θ  

 
Eliminate T between these equations 
to obtain: ( ) 2

2

tan
rqEmg

kq
+

=θ  

 
Referring to the figure for Problem 
78, relate the separation of the 

θsin2Lr =  
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spheres r to the length of the 
pendulum L: 
 
Substitute to obtain: 
 ( ) θ

θ 22

2

sin4
tan

LqEmg
kq

+
=  

or 

( ) 2

2
2

4
tansin

LqEmg
kq
+

=θθ         (1) 

 
Substitute numerical values and 
evaluate to obtain: θθ tansin 2

 

32 1025.3tansin −×=θθ  
 

Because : 1tansin 2 <<θθ
 

θθθ ≈≈ tansin  
and 

33 1025.3 −×≈θ  
 

Solve for θ  to obtain: 
 

°== 48.8rad148.0θ  

 
(b) The downward electrical forces 
acting on the two spheres are no 
longer equal. Let the mass of the 
sphere carrying the charge of 0.5 µC 
be m1, and that of the sphere 
carrying the charge of 1.0 µC be m2. 
The free-body diagrams show the 
tension, gravitational, and electrical 
forces acting on each sphere. 
Because we already know from part 
(a) that the angles are small, we can 
use the small-angle approximation 
sinθ ≈ tanθ ≈θ.  
 

 
 

 

Apply the conditions for static 
equilibrium to the charged sphere 
whose mass is m1: 

( )

( )
0

sin
sinsin

sin

112
21

2
21

112
21

21

112
21

1,

=

+
+

−≈

+
+

−=

+−=∑

θ
θθ

θ
θθ

θ

T
L

qkq

T
LL
qkq

T
r

qkqFx

  

and 
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∑ =−−= 011,11, EqgmTF yy  

 
Apply the conditions for static 
equilibrium to the charged sphere 
whose mass is m2: 

( )

( )
0

sin
sinsin

sin

222
21

2
21

222
21

21

222
21

2,

=

+
+

≈

+
+

=

−=∑

θ
θθ

θ
θθ

θ

T
L

qkq

T
LL
qkq

T
r

qkqFx

   

and 
022,22, =−−=∑ EqgmTF yy  

 
Express θ1 and θ  2 in terms of the 
components of T  and : 1

r
2T

r
y

x

T
T

,1

,1
1 =θ                                 (1) 

and 

y

x

T
T

,2

,2
2 =θ                                 (2) 

 
Divide equation (1) by equation (2) 
to obtain: 
 

y

y

y

x

y

x

T
T

T
T
T
T

,1

,2

,2

,2

,1

,1

2

1 ==
θ
θ

 

because the horizontal components of and 1T
r

2T
r

are equal. 

 
Substitute for T2,y and T1,y to obtain: 

Eqgm
Eqgm

11

22

2

1

+
+

=
θ
θ

 

 
Add equations (1) and (2) to obtain: 
 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
+

+
++

=+=+
EqgmEqgmL

qkq
T
T

T
T

y

x

y

x

2211
2

21
2

21

,2

,2

,1

,1
21

11
θθ

θθ  

 
Solve for θ1 + θ2: 
 

3

2211
2

21
21

11
⎥
⎦

⎤
⎢
⎣

⎡
+

+
+

=+
EqgmEqgmL

qkqθθ  
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Substitute numerical values and evaluate 

1 + θ2 and θ1/θ2: 
 
θ

°==+ 4.16rad287.021 θθ  

and 

34.1
2

1 =
θ
θ

 

 
olve for θ1 and θ2 to obtain: °= 42.91θ  and °= 98.61θ  S

 
88 •••   
Picture the Problem Each sphere is in 
static equilibrium under the influence of a 
tension, gravitational and Coulomb forc
Let the mass of the sphere carrying the 
charge of 2.0 µC be m

e. 

C 
s 

to 
e forces to the charges on the 

pheres.  

 

1 = 0.01 kg, and that 
of the sphere carrying the charge of 1.0 µ
be m2 = 0.02 kg. We can use Coulomb’
law to relate the Coulomb force to the 
charge on each sphere and their separation 
and the conditions for static equilibrium 
relate thes

 

 

s
 
Apply the conditions for static equilibrium 
to the charged sphere whose mass is m1: 

( )

( )
0

sin
sinsin

sin

112
21

2
21

112
21

21

112
21

1,

=

+
+

−≈

+
+

−=

+−=∑

θ
θθ

θ
θθ

θ

T
L

qkq

T
LL
qkq

T
r

qkqFx

 and 

∑ =−= 01,11, gmTF yy  

 
 

to the charged sphere whose mass is m2: 
Apply the conditions for static equilibrium

( )

( )
0

sin
sinsin

sin

222
21

2
21

222
21

21

222
21

2,

=

+
+

≈

+
+

=

−=∑

θ
θθ

θ
θθ

θ

T
L

qkq

T
LL
qkq

T
r

qkqFx
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 and 
02,22, =−=∑ gmTF yy  

 

 a
ter ponents of  and 

Using the small-angle approximation 
sinθ ≈ tanθ ≈θ,     express θ1 nd θ2 in 

ms of the com 1T
r

2T
r

: 

y

x

T
T

,1

,1
1 =θ                                 (1) 

and 

y

x

T
T

,2

,2
2 =θ                                 (2) 

ation (1) by equation (2) 
 obtain: 

 

Divide equ
to

y

y

yT ,2

x

y

x

T
T

T
T
T

,1

,2

,2

,1

,1

2

1 ==
θ
θ

 

because the horizontal components of 

1T
r

and 2T
r

are equal. 

 
Substitute for T2,y and T1,y to obtain: 

1

2

2

1

m
m

=
θ
θ

 

 
Add equations (1) and (2) to obtain: 

( ) ⎥
⎦

⎤
+⎢

⎣

⎡
+

=

+=+

gmgmL
qkq

T
T

T
T

y

x

y

x

21
2

21
2

21

,2

,2

,1

,1
21

11
θθ

θθ

 

 
Solve for θ1 + θ2: 

3

21
2

21
21

11
⎥
⎦

⎤
⎢
⎣

⎡
+=+

gmgmL
qkqθθ  

 
 and 

valuate θ1 + θ2 and θ1/θ2: 
 

Substitute numerical values
e

°==+ 4.28rad496.021 θθ  

and 

2
1

2

1 =
θ
θ

 

 
Solve for θ1 and θ2 to obtain: °= 47.91θ  and °= 9.181θ  

 
Remarks: While the small angle approximation is not as good here as it was in the 

receding problems, the error introduced is less than 3%. 
 
p
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89 •••  
Picture the Problem We can find the effective value of the gravitational field by finding 
the force on the bob due to and g

r E
r

and equating this sum to the product of the mass of 

the bob and . We can then solve this equation for 'g
r E

r
in terms of g

r
, 'g

r
, q, and M and 

use the equation for the period of a simple pendulum to find the magnitude of  'gr

 
Express the force on the bob due to 

and gr E
r

: 
'M

M
qMqM gEgEgF rrrrrr

=⎟
⎠
⎞

⎜
⎝
⎛ +=+=  

where 

Egg
rrr

M
q' +=  

 
Solve for E

r
to obtain: 

 
( )ggE rrr

−= '
q
M

 
 

Using the expression for the period 
of a simple pendulum, find the 
magnitude of g′: 

g'
LT' π2=  

and 
( )

( )
2

2

2

2

2

m/s4.27
s1.2
m144

===
ππ

T
Lg'  

 
Substitute numerical values and evaluate E

r
: 

 

( ) ( )[ ] ( )jjjE ˆN/C1010.1ˆm/s81.9ˆm/s4.27
C8.0
kg105 422

3

×−=−
−
×

=
−

µ

r
 

 
*90 •••  
Picture the Problem We can relate the force of attraction that each molecule exerts on 
the other to the potential energy function of either molecule using .dxdUF −=  We can 

relate U to the electric field at either molecule due to the presence of the other through U 
= −pE. Finally, the electric field at either molecule is given by .2 3xkpE =  

 
Express the force of attraction 
between the dipoles in terms of the 
spatial derivative of the potential 
energy function of p1: 
 

dx
dUF 1−=                         (1) 

Express the potential energy of the 
dipole p1: 

111 EpU −=  

where E1 is the field at p1 due to p2. 
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Express the electric field at p1 due to 
p2: 
 

3
2

1
2

x
kpE =  

where x is the separation of the dipoles. 
 

Substitute to obtain: 
3

21
1

2
x

pkpU −=  

 
Substitute in equation (1) and 
differentiate with respect to x: 4

21
3

21 62
x

pkp
x

pkp
dx
dF =⎥⎦

⎤
⎢⎣
⎡−−=  

Evaluate F for p1 = p2 = p and  
x = d to obtain: 4

26
d
kpF =  

 
91 •••  
Picture the Problem We can use Coulomb’s law for the electric field due to a point 
charge and superposition of fields to find the electric field at any point on the y axis. By 
applying Newton’s 2nd law, with the charge on the ring negative, we can show that the 
ring experiences a linear restoring force and, therefore, will execute simple harmonic 
motion. We can find ω from the differential equation of motion and use f = ω/2π to find 
the frequency of the motion. 
 
(a) Use Coulomb’s law for the electric field due to a point charge and 
superposition of fields, express the field at point P on the y axis: 
 

( ) ( )

( ) j

jiji

rrrrEEE

ˆ2

ˆˆ
2

ˆˆ
2

ˆˆ

2322

23222322

,23
,2

,13
,1

,22
,2

2
,12

,1

1
21

ya
kQy

yL
ya

kQyL
ya

kQ

r
kQ

r
kQ

r
kq

r
kq

P
P

P
P

P
P

P
P

P

+
=

⎟
⎠
⎞

⎜
⎝
⎛ +−

+
+⎟

⎠
⎞

⎜
⎝
⎛ +

+
=

+=+=+=
rrrrr

 

where a = L/2. 
 
 
(b) Relate the force on the charged 
ring to its charge and the electric 
field: 
 

( ) jEF ˆ2
2322 ya

kqQyq yy
+

==
rr

 

where q must be negative if yF
r

is to be a 

restoring force. 
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) Apply Newton’s 2nd law to the 
ring to obtain: 
 

(c

( ) y
ya

kqQ
dt

ydm 23222

2 2
+

−=  

or 

( ) y
yam

kqQ
dt

yd
23222

2 2
+

−=  

 
Factor the radicand to obtain: 
 

y
mL
kqQy

ma
kqQ 162

y

a
yma

kqQ
dt

yd

33

23

2

2
3

2

2

1

2

−=−≈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=

 

provided y << a = L . 
 

Thus we have: 

/2

y
mL
kqQ

dt
yd 2

32
16

−=  

or 

016
32

2

+ y
mL
kqQ

dt
yd

=  

 simple 
harmonic motion. 
 

cy of the simple 
 

the differential equation of

Express the frequen
harmonic motion in terms of its
angular frequency: 
 

π
ω
2

=f  

From the differential equation 
describing the motion we have: 3

2 16
mL
kqQ

=ω  

and 

3

16
2
1

mL
kqQf

π
=  

 
Substitute numerical values and evaluate f: 
 

( )( )( )
( )( )

Hz37.9
m0.24kg0.03

C2C5/CmN1099.816
2
1

3

229

=
⋅×

=
µµ

π
f  
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92 •••  
Picture the Problem The free body 
diagram shows the forces acting on the 
microsphere of mass m and having an 
excess charge of q = Ne when the electric 
field is downward. Under terminal-speed 
conditions the sphere is in equilibrium 
under the influence of the electric force eF

r
, 

its weight ,m  and the drag force gr .dF
r

 We 
can apply Newton’s 2nd law, under 
terminal-speed conditions, to relate the 
number of excess charges N on the sphere 
to its mass and, using Stokes’ law, find its 
terminal speed.  
 
(a)  Apply to the 
microsphere: 

∑ = yy maF ymaFmgF =−− de  
or, because ay = 0, 

0terminald,e =−− FmgF  
 

Substitute for Fe, m, and Fd,terminal to 
obtain: 
 

06 t =−− rvVgqE πηρ  
or, because q = Ne, 

06 t
3

3
4 =−− rvgrNeE πηρπ  

 
Solve for N to obtain: 
 eE

rvgr
N t

3
3
4 6πηρπ +

=               

 
Substitute numerical values and 
evaluate gr ρπ 3

3
4 : 

( )
( )(

N1018.7
m/s81.9kg/m1005.1

m105.5

15

233

37
3
43

3
4

−

−

×=

××

×= πρπ gr

)

 
Substitute numerical values and 
evaluate t6 rvπη : 

( )( )
( )

N1016.2
m/s1016.1

m105.5sPa108.166

14

4

75
t

−

−

−−

×=

××

×⋅×= ππηrv

 
 

Substitute numerical values in 
equation (1) and evaluate N: ( )( )

3

V/m106C106.1
N1016.2N1018.7

419

1415

=

××
×+×

= −

−−

N
 

 
(b) With the field pointing upward, 
the electric force is downward and 
the application of to ∑ = yy maF

0eterminald, =−− mgFF  
or 

06 3
3
4

t =−−− grNeErv ρππη  
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the bead yields: 
 
Solve for vt to obtain: 

r
grNeE

v
πη

ρπ
6

3
3
4

t
+

=  

 
Substitute numerical values and evaluate vt: 
 

( )( ) ( ) ( )( )
( )( )

m/s1093.1

m105.5sPa108.16
m/s81.9kg/m1005.1m105.5V/m106C106.13

4

75

23337
3
4419

t

−

−−

−−

×=

×⋅×
××+××

=
π

πv
 

 
*93 •••  
Picture the Problem The free body 
diagram shows the forces acting on the 
microsphere of mass m and having an 
excess charge of q = Ne when the electric 
field is downward. Under terminal-speed 
conditions the sphere is in equilibrium 
under the influence of the electric force eF

r
, 

its weight ,m  and the drag force g
r

.dF
r

 We 
can apply Newton’s 2nd law, under 
terminal-speed conditions, to relate the 
number of excess charges N on the sphere 
to its mass and, using Stokes’ law, to its 
terminal speed.  
 
(a)  Apply to the 
microsphere when the electric field is 
downward: 

∑ = yy maF ymaFmgF =−− de  
or, because ay = 0, 

0terminald,e =−− FmgF  
 

Substitute for Fe and Fd,terminal to 
obtain: 
 

06 u =−− rvmgqE πη  
or, because q = Ne, 

06 u =−− rvmgNeE πη  
 

Solve for vu to obtain: 

r
mgNeEv

πη6u
−

=                   (1) 

 
With the field pointing upward, the 
electric force is downward and the 
application of to the 
microsphere yields: 

∑ = yy maF

 

0eterminald, =−− mgFF  
or 

06 d =−− mgNeErvπη  

Solve for vd to obtain: 

r
mgNeEv

πη6d
+

=                 (2) 
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Add equations (1) and (2) to obtain: 

r
qE

r
NeE

r
mgNeE

r
mgNeEvvv

πηπη

πη

πη

33

6

6du

==

+
+

−
=+=

 

 

e.microspher
  theof mass  theknow  toneedt don'you  that advantage  thehas This

 

 
(b) Letting ∆v represent the change 
in the terminal speed of the 
microsphere due to a gain (or loss) 
of one electron we have: 
 

NN vvv −=∆ +1  

Noting that ∆v will be the same 
whether the microsphere is moving 
upward or downward, express its 
terminal speed when it is moving 
upward with N electronic charges on 
it: 
 

r
mgNeEvN πη6

−
=  

Express its terminal speed upward 
when it has N + 1 electronic 
charges: 

( )
r

mgeENvN πη6
1

1
−+

=+  

 
Substitute and simplify to obtain: ( )

r
eE

r
mgNeE

r
mgeENvN

πη

πηπη

6

66
1

1

=

−
−

−+
=∆ +

 

 
Substitute numerical values and 
evaluate ∆v: 

( )( )
( )( )

m/s1015.5

m105.5mPa108.16
V/m106C106.1

5

75

419

−

−−

−

×=

×⋅×
××

=∆
π

v
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