Chapter 21
The Electric Field 1: Discrete Charge Distributions

Conceptual Problems

*1 (L]

Similarities: Differences:

The force between charges and There are positive and negative charges but

masses varies as 1/r%. only positive masses.

The force is directly proportional to Like charges repel; like masses attract.

the product of the charges or

masses.
The gravitational constant G is many orders
of magnitude smaller than the Coulomb
constant k.

2 .

Determine the Concept No. In order to charge a body by induction, it must have charges
that are free to move about on the body. An insulator does not have such charges.

3 o0

Determine the Concept During this sequence of events, negative charges are attracted
from ground to the rectangular metal plate B. When S is opened, these charges are trapped
on B and remain there when the charged body is removed. Hence B is negatively charged

and | (c)is correct.

4 L 1]

(a) Connect the metal sphere to ground; bring the insulating rod near the metal sphere
and disconnect the sphere  from ground; then remove the insulating rod. The sphere will
be negatively charged.

(b) Bring the insulating rod in contact with the metal sphere; some of the positive charge
on the rod will be transferred to the metal sphere.

(c) Yes. First charge one metal sphere negatively by induction as in (a). Then use that
negatively charged sphere to  charge the second metal sphere positively by induction.
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*5 (1)

Determine the Concept Because the spheres are conductors, there are free electrons

on

them that will reposition themselves when the positively charged rod is brought nearby.

(a) On the sphere near the positively

charged rod, the induced charge is negative
and near the rod. On the other sphere, the + o+ o+ )
net charge is positive and on the side far

from the rod. This is shown in the diagram.

(b) When the spheres are separated and far
apart and the rod has been removed, the
induced charges are distributed uniformly
over each sphere. The charge distributions
are shown in the diagram.

6 .
Determine the Concept The forces acting
on +q are shown in the diagram. The force
acting on +q due to —Q is along the line
joining them and directed toward —Q. The
force acting on +q due to +Q is along the Fo
line joining them and directed away from

Q. ° %

Because charges +Q and —Q are equal in magnitude, the forces due to these charges are

equal and their sum (the net force on +q) will be to the right and so| (e) is correct.

that the vertical components of these forces add up to zero.

*7 °

Determine the Concept The acceleration of the positive charge is given by

. F . iy o

a=—-= %E. Because go and m are both positive, the acceleration is in the same
m m

direction as the electric field. | (d) is correct.

*8 °

Determine the Concept E is zero wherever the net force acting on a test charge is
zero. At the center of the square the two positive charges alone would produce a net
electric field of zero, and the two negative charges alone would also produce a net
electric field of zero. Thus, the net force acting on a test charge at the midpoint of the

Note
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square will be zero. | (b) is correct.

9 (L]
(a) The zero net force acting on Q could be the consequence of equal collinear charges
being equidistant from and on opposite sides of Q.

(b) The charges described in (a) could be either positive or negative and the net force on
Q would still be zero.

(c) Suppose Q is positive. Imagine a negative charge situated to its right and a larger
positive charge on the same line and the right of the negative charge. Such an arrangement
of charges, with the distances properly chosen, would result in a net force of zero acting

on Q.

(d) Because none of the above are correct, | (d) is correct.

10 -

Determine the Concept We can use the
rules for drawing electric field lines to
draw the electric field lines for this system.
In the sketch to the right we’ve assigned 2
field lines to each charge g.

*11

Determine the Concept We can use the
rules for drawing electric field lines to
draw the electric field lines for this system.
In the field-line sketch to the right we’ve
assigned 2 field lines to each charge g.
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*12 .

Determine the Concept We can use the
rules for drawing electric field lines to
draw the electric field lines for this system.
In the field-line sketch to the right we’ve kg +q
assigned 7 field lines to each charge g.

13 -

Determine the Concept A positive charge will induce a charge of the opposite sign on
the near surface of the nearby neutral conductor. The positive charge and the induced
charge on the neutral conductor, being of opposite sign, will always attract one another.

(a) is correct.

*14
Determine the Concept Electric field lines around an electric dipole originate at the

positive charge and terminate at the negative charge. Only the lines shown in (d) satisfy
this requirement. | (d) is correct.

*15 oo
Determine the Concept Because 0+ 0, a dipole in a uniform electric field will
experience a restoring torque whose magnitude is pE, sin & . Hence it will oscillate

about its equilibrium orientation, = 0. If << 1, sind~ 6, and the motion will be simple
harmonic motion. Because the field is nonuniform and is larger in the x direction, the
force acting on the positive charge of the dipole (in the direction of increasing x) will be
greater than the force acting on the negative charge of the dipole (in the direction of
decreasing x) and thus there will be a net electric force on the dipole in the direction of
increasing x. Hence, the dipole will accelerate in the x direction as it oscillates about

6 =0.

16 oo
(a) False. The direction of the field is toward a negative charge.

(b) True.

(c) False. Electric field lines diverge from any point in space occupied by a positive
charge.

(d) True
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(e) True

17 oo
Determine the Concept The diagram

shows the metal balls before they are 9 ot
placed in the water. In this situation, the net O O
electric field at the location of the sphere

on the left is due only to the charge —q on

the sphere on the right. If the metal balls

are placed in water, the water molecules %
around each ball tend to align themselves @O
with the electric field. This is shown for ﬂ

the ball on the right with charge —q.

(&) The net electric field Enet that produces a force on the ball on the left is the
field E due to the charge —q on the ball on the right plus the field due to the layer
of positive charge that surrounds the ball on the right. This layer of positive
charge is due to the aligning of the water molecules in the electric field, and the
amount of positive charge in the layer surrounding the ball on the left will be less
than +q. Thus, Eqe < E. Because E, < E, the force on the ball on the left is less
than it would be if the balls had not been placed in water. Hence, the force will

decrease | when the balls are placed in the water.

(b) When a third uncharged metal ball is
placed between the first two, the net

electric field at the location of the sphere +q —q
on the right is the field due to the charge +q R 10

on the sphere on the left, plus the field due Q

to the charge —Q and +Q on the sphere in

the middle. This electric field is directed to

the right.

The field due to the charge —Q and +Q on the sphere in the middle at the location of the
sphere on the right is to the right. It follows that the net electric field due to the charge
+q on the sphere on the left, plus the field due to the charge —Q and +Q on the sphere in
the middle is to the right and has a greater magnitude than the field due only to the charge

+( on the sphere on the left. Hence, the force on either sphere will | increase |if a third

uncharged metal ball is placed between them.

Remarks: The reduction of an electric field by the alignment of dipole moments
with the field is discussed in further detail in Chapter 24.
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*18 oo
Determine the Concept Yes. A positively charged ball will induce a dipole on the metal
ball, and if the two are in close proximity, the net  force can be attractive.

*10 oo
Determine the Concept Assume that the wand has a negative charge. When the charged
wand is brought near the tinfoil, the side nearer the wand becomes positively charged by
induction, and so it swings toward the wand. When it touches the wand, some of the
negative charge is transferred to the foil, which, as a result, acquires a net negative charge
and is now repelled by the wand.

Estimation and Approximation

20 oo

Picture the Problem Because it is both very small and repulsive, we can ignore the
gravitational force between the spheres. It is also true that we are given no information
about the masses of these spheres. We can find the largest possible value of Q by
equating the electrostatic force between the charged spheres and the maximum force the
cable can withstand.

Using Coulomb’s law, express the kQ?

electrostatic force between the two F= /2

charged spheres:

Express the tensile strength Siengie OF F

steel in terms of the maximum force Stensite = Z‘ax = Foax = ASiensite

Fmax in the cable and the cross-
sectional area of the cable and solve

for F:
Equate these forces to obtain: kQ?
7 = AStensiIe
Solve for Q: 01 AS. ..
k

Substitute numerical values and evaluate Q:

Q= =|2.95mC

am) (L.5x107* m?)(5.2x10° N/m?)
8.99x10° N-m?*/C?

21 e
Picture the Problem We can use Coulomb’s law to express the net force acting on the
copper cube in terms of the unbalanced charge resulting from the assumed migration of
half the charges to opposite sides of the cube. We can, in turn, find the unbalanced charge
Qunbalanced from the number of copper atoms N and the number of electrons per atom.
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(a) Using Coulomb’s law, express kQ2
the net force acting on the copper F = —unbanced. 1)
rod due to the imbalance in the r
positive and negative charges:
Relate the number of copper atoms N M PV
N to the mass m of the rod, the N, - M - M
A
molar mass M of copper, and
Avogadro’s number Na:
Solve for N to obtain: N = pCK)I/rod N,

Substitute numerical values and evaluate N:

(8.93x10° kg/m® )(0.5x102 m (4102 m )(6.02 x 10% atoms/mol)

N = >
63.54 x10 kg/mol
=8.461x10% atoms
Because each atom has 29 electrons Qupsinag = %(29)(10_7 )eN
and protons, we can express unbalance
Qunbalanced aS:

Substitute numerical values and evaluate Qunpalanced:

Q —1(29)(107)(1.6 x10*° C)(8.461x10%)=1.963x 102 C

unbalanced — 2

Substitute for Qunpaianced IN €quation (1) to obtain:

(8.99x10° N-m?/C?)(1.963x10°2 C

F= > =|3.46x10" N
(0.01m)
(b) Using Coulomb’s law, express kQ?
the maximum force of repulsion Fro = — 5
Frmax iN terms of the maximum r
possible charge Qmax:
Solve for Qmax: o - rszaX
max k
Express Fmay in terms of the tensile Foo = Seensie A

strength Seensite O COpper: where A is the cross sectional area of the

cube.
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Substitute to obtain: r2S A

Q _ tensile
max

k

Substitute numerical values and evaluate Qpax:

=1.60x10°C

o - (0.01m)?(2.3x10° N/m? )10 m?)
mex 8.99x10° N-m?/C?

Because Qunbalanced = 2Qmax : Qunbalanced = 2(160 X 1075 C)
=132.04C

Remarks: A net charge of —32 4C means an excess of 2.00x10% electrons, so the net
imbalance as a percentage of the total number of charges is 4.06x10™" = 4x10~° %.

22 eee
Picture the Problem We can use the definition of electric field to express E in terms of
the work done on the ionizing electrons and the distance they travel A between collisions.
We can use the ideal-gas law to relate the number density of molecules in the gas p and
the scattering cross-section o to the mean free path and, hence, to the electric field.

(a) Apply conservation of energy to W = AK = FAs
relate the work done on the

electrons by the electric field to the

change in their kinetic energy:

From the definition of electric field F=qE
we have:
Substitute for F and As to obtain: W = qEA, where the mean free path 1 is

the distance traveled by the electrons
between ionizing collisions with nitrogen

atoms.
Referring to pages 545-546 for a 1
discussion on the mean-free path, A= E
use its definition to relate A to the
scattering cross-section o and the
number density for air molecules n:
Substitute for A and solve for E to E_ onW
obtain: =
q

Use the ideal-gas law to obtain: " N P

VKT
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g PW n
gkT

Substitute numerical values and evaluate E:

(10** m?)(10° N/m? )(1eV) (1.6 x 10 J/eV))

=] 2.41x10° N/C

(b) From equation (1) we see that:

*23 oo

(1.6x10™ C)(1.38x10% J/K )(300K)

ExPland | EoxcT™

i.e., E increases linearly with pressure and
varies inversely with temperature.

Picture the Problem We can use Coulomb’s law to express the charge on the rod in
terms of the force exerted on it by the soda can and its distance from the can. We can
apply Newton’s 2™ law in rotational form to the can to relate its acceleration to the
electric force exerted on it by the rod. Combining these equations will yield an expression
for Q as a function of the mass of the can, its distance from the rod, and its acceleration.

Use Coulomb’s law to relate the
force on the rod to its charge Q and
distance r from the soda can:

Solve for Q to obtain:

Apply zfcenterof mass lato the
can:

Because the can rolls without
slipping, we know that its linear
acceleration a and angular
acceleration « are related according
to:

Because the empty can is a hollow
cylinder:

Substitute for | and « and solve for
F to obtain:

Substitute for F in equation (1):

kQ?
F = -z
r’F
= |— 1
Q " (1)
FR=Ila
a
oa=—
R

where R is the radius of the soda can.

| = MR?
where M is the mass of the can.

2
F=M:2a=Ma

r’‘Ma
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Substitute numerical values and 5 ;
evaluate O: o~ (0.1m)*(0.018kg)(1m/s?)
8.99x10° N-m?/C?
=1141nC
24 e

Picture the Problem Because the nucleus is in equilibrium, the binding force must be
equal to the electrostatic force of repulsion between the protons.

Apply ZF =0toa proton: I:binding - Felectrostatic =0
Solve for Fbinding: I:binding = Felectrostaiic
Using Coulomb’s law, substitute for qu
Felectrostatic: I:binding = I,2

Substitute numerical values and evaluate Fejecrostatic:

e _(899x10°N-m*/C?)16x10"C)
binding (10715 m)z

2

230N

Electric Charge

25 o
Picture the Problem The charge acquired by the plastic rod is an integral number of
electronic charges, i.e., g = n,(—e).

Relate the charge acquired by the g=n, (— e)
plastic rod to the number of
electrons transferred from the wool

shirt:

Solve for and evaluate n,: ne:i: —O.SySg _[5.00x102
-e -16x107°C

26

Picture the Problem One faraday = Nae. We can use this definition to find the number of
coulombs in a faraday.

Use the definition of a faraday to calculate the number of coulombs in a faraday:

1faraday = N . = (6.02 x10% electrons)(L.6 x10*° C/electron) = [ 9.63x10* C
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*27 e
Picture the Problem We can find the number of coulombs of positive charge there are in
1 kg of carbon fromQ = 6n.e, where nc is the number of atoms in 1 kg of carbon and

the factor of 6 is present to account for the presence of 6 protons in each atom. We can
find the number of atoms in 1kg of carbon by setting up a proportion relating Avogadro’s
number, the mass of carbon, and the molecular mass of carbon to nc.

Express the positive charge in terms Q=6n.e
of the electronic charge, the number

of protons per atom, and the number

of atoms in 1 kg of carbon:

Using a proportion, relate the Ne _ Mg = N,m.
number of atoms in 1 kg of carbon N, M ¢ M
Nc, to Avogadro’s number and the
molecular mass M of carbon:
Substitute to obtain: o 6N, m.e
M
Substitute numerical values and evaluate Q:
23 -19
0= 6(6.02x10% atoms/mol)(1kg)({1.6x 10 C) (4822107 C

0.012kg/mol

Coulomb’s Law

28 .
Picture the Problem We can find the forces the two charges exert on each by applying
Coulomb’s law and Newton’s 3" law. Note that 1, = i because the vector pointing from

0: to gz is in the positive x direction.

(a) Use Coulomb’s law to express Fo= ke,d, ;
the force that g; exerts on q.: . '1,22 .

Substitute numerical values and evaluate F,,:

~ (8.99x10°N - m?/C?)(4uC)(6C)

F,= ey i=|(24.0mN)i
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(b) Because these are action-and- F, =-F,=| - (24_0 mN)f
reaction forces, we can apply ’
Newton’s 3" law to obtain:

(c) If g2 is —6.0 1C:

. (8.99x10°N-m?/C?)(4uC)(- 6pC)
F,= (3m)z

i =| —(24.0mN)i

and

F,, =-F,,=| (24.0mN)i

29
Picture the Problem g exerts an attractive force 17“2'1 on g, and g a repulsive force F?;,l'

We can find the net force on q; by adding these forces.

= =8 -2 F -1 0 1 2 3
L -] . : : + X, m
g,= —6uC q,=4 pC q,= —6 uC
Express the net force acting on q;: 17“1 = 17“21 + q31
Express the force that g, exerts on - k|q1||q2| 2
. F,, = 2 !
Qs 1
Express the force that g3 exerts on ~ k|q1||q3| :)
. F,, = 2\ !
Qs 31
Substitute and simplify to obtain: — k|q1||q2| 2 k|q1||q3| 2
1= 2 L~ 2 !
r2,1 r3,1
d, Os| |2
=Koy g_g !
r2’1 r3,1

Substitute numerical values and evaluate F; :

F, =(8.99x10° N-mZ/CZ)(GuC)((:::]C):Z - (Z’r:]c)szz (L50x102N)i
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30 e
Picture the Problem The configuration of Y. m AE,
the charges and the forces on the fourth |
charge are shown in the figure ... asis a | 4, =31C
coordinate system. From the figure it is 0.05 F,
evident that the net force on g, is along the
diagonal of the square and directed away y F,
from gs. We can apply Coulomb’s law to /
express 17“1’4, 1’7“2'4 and 17“3’4 and then add // 4.=3nC
them to find the net force on qs. g,= —3nC o5
Express the net force acting on qs: F, = 17*1 +F,,+F,
Express the force that ¢, exerts on F o= ka,q,
Qa: . r1,24
Substitute numerical values and evaluate 17“1 4t

F,, =(8.99x10° N-m?/C?)(3 nc)(%j} =(3.24x10°° N)j

.05m
Express the force that g, exerts on gs: F - kd.,d, i
2,4 —
r22,4

Substitute numerical values and evaluate 17“2' 4

= 9 2)~2 3nC 2 s a)e

F,, =(8.99x10° N-m?/C?)(3nC) Toak =(3.24x10° N)i

.05m
Express the force that g; exerts on q,: Fa \= ka,q, ., where £, , is a unit vector
) 2 40 )
3,4

pointing from g3 to ga.

Express r, ,interms of 7, and 7, ,: Py, =P +1,

=(0.05m)i +(0.05m)j
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Convert 7, ,t0 7y, : . #, (0.05m)i+(0.05m);
"7 J0.05m) +(0.05m)
=0.707i +0.707

Substitute numerical values and evaluate F,,:

3nC
0.05v2mf

= —(1.14x10° N)i - (1.14x10°° N )}

F,, =(8.99x10° N- m2/C2)(—3nC)[ }(0.7072 +0.707j)
Substitute and simplify to find 1’7“4 :

F,=(3.24x10° N)j+(3.24x10° N)i —(1.14x10° N)i - (L.14x10°° N)j
—| (2.10x10° N)i +(2.10x10°° N}j

31 e
Picture the Problem The configuration of the charges and the forces on gz are shown in
the figure ... as is a coordinate system. From the geometry of the charge distribution it is
evident that the net force on the 2 4C charge is in the negative y direction. We can apply
Coulomb’s law to express 1713 and 1323 and then add them to find the net force on gs.

y,m
0.03 451 = 2 HC
~
=
~
~
~
~N_4;=2uC
0 X, m
0.08
// -~ F2,3 F’l,s
-0.03¢7 = —5,C

|

The net force acting on g is given by:

o
Il
el
w
+
N
w
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Express the force that g, exerts on F,=F cosfi —Fsing j
Ge: where
F — kqlq3
r2
~ (8.99x10° N-m?/C?)(5 1C)(2 4C)
(0.03m)* +(0.08m)’
=12.3N
and
o—tan 2" | 2060
8cm

Express the force that g, exerts on FZ’S ——Fcos@i-Fsindj
Qs
Substitute for 17“1’3 and 1’7“2’3 and F,=F cos@i — Fsin 6?}' ~Fcos@i
simplify to obtain: —Fsin 6’}'

=_2Fsin@j
Substitute numerical values and 17“3 - _2(12_3 N)sin 20_60}
evaluate F,: =

: =| —(8.66N);j
*32 e
Picture the Problem The positions of the Y,
charges are shown in the diagram. It is
apparent that the electron must be located q,= 6 uC
along the line joining the two charges. - /T
Moreover, because it is negatively charged, P [0.5m
Xe

it must be closer to the —2.5 4C than to the = q/= _]2 I;an Ay m
6.0 uC charge, as is indicated in the figure. Ye| */ ? -
We can find the x and y coordinates of the /a
electron’s position by equating the two F
electrostatic forces acting on it and solving N

for its distance from the origin.

Express the condition that must be

We can use similar triangles to express this
radial distance in terms of the x and y
coordinates of the electron.
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satisfied if the electron is to be in
equilibrium:

Express the magnitude of the force
that g, exerts on the electron:

Express the magnitude of the force
that g, exerts on the electron:

Substitute and simplify to obtain:

Substitute for g; and g, and
simplify:

Solve for r to obtain:

Use the similar triangles in the
diagram to establish the proportion
involving the y coordinate of the
electron:

Solve for ye:

Use the similar triangles in the
diagram to establish the proportion
involving the x coordinate of the
electron:

Solve for x.:

The coordinates of the electron’s
position are:

E - ka,e
le 2
(r+125m)
kig,le
Fz,e — |r(-122|
9 _ [
2

(1.4m?)r2 +(2.2361m*)r
+1.25m=0

r=2.036m
and
r=-0.4386m

Because r < 0 is unphysical, we’ll consider
only the positive root.

y. _2.036m
0.5m 1.12m

y, =0.909m

X, 2.036m

e

im 1.12m

X, =1.82m

(x.,Y,)=| (~1.82m,~0.909m)
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*33 e

Picture the Problem Let g represent the F,,

charge at the origin, g, the charge at (0, 0.1 N”{; .

m), and g the charge at 0.1 \3\

(0.2 m, Q). The diagram shows the forces F ~ 5

acting on each of the charges. Note the . \\

action-and-reaction pairs. We can apply Fal e

Coulomb’s law and the principle of - — X, m

o . q,=-1uC| £ 702

superposition of forces to find the net 31 13

force acting on each of the charges. F,

Express the net force acting on q: F,=F, +F,

Express the force that g, exerts on g;: P ka,o, ~ ka0, i _ka,q, -
=" 1= =—3 Iy

I‘-2,1 I"2,1 I‘-2,1 r2,1

Substitute numerical values and evaluate F;, :

—

F,, =(8.99x10° N-m?/C?)(2 .C) (_1/‘(:3) (~0.1m)j = (L.8ON)j

(0.1m)
Express the force that gz exerts on q;: F = kg0, i
317 3 31
r3,1

Substitute numerical values and evaluate F;;:

—

F,, =(8.99x10° N-m?/C?)(4 .C) (_1“(:3 (-0.2m)i = (0.899 N)i

(0.2m)
Substitute to find F,: F, =| (0.899N)i +(1.80N)j
Express the net force acting on q: 17“2 = 17“3’2 + 17“1'2
= Fa,z - Fy,

because F,,and F,, are action-and-reaction

forces.
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Express the force that gz exerts on gs: Fo= ka,a,
32 3

r3,2

K98 g 2m)7-+ (0.1m)j]

r-3,2

r3,

Substitute numerical values and evaluate F;, :

8.99x10° N-m?/c?)(4 ) —2#C)_[C02m)i + (0.1m)j]

F.
32 (0.224mY’

= (-1.28N)i +(0.640N)j
Find the net force acting on qa:

F,=F,,—(1L.80N)j=(-1.28N)i +(0.640N); — (1.80N);
=| (-1.28N)i —(1.16 N)j

Noting that 1713 and 17“311 are an action-and-reaction pair, as are 17“2'3 and 17“312 :

express the net force acting on gs:

F,=F+F,,=—F, - F,, =—(0.899N)i — |- 1.28N)7 + (0.640N)}|

~
.

=| (0.381N)i — (0.640N);

34 e
Picture the Problem Let g, represent the
charge at the origin and g; the charge Yy, m

initially at (8 cm, 0) and later at (17.75 ;= 2pC

cm, 0). The diagram shows the forces -
acting on g at (8 cm, 0). We can apply 3, =5pC Q, :z,a Fis
Coulomb’s law and the principle of 0.04 0.08
superposition of forces to find the net
force acting on each of the charges.

Express the net force on g, when it F,(8cm,0)=F,, + F,,
is at (8 cm, 0):

- X, M
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Substitute numerical values to obtain:

(-19.7N)i =
5uC 2 Q 2
8.99x10° N-m?/C?)(2 ———(0.08m ——=2__(0.04m
( X )( /JC) (0.08m)3( )’ + (0.04m)3( )’
Solve for and evaluate Q,: Q,=|-3.00.C

Remarks: An alternative solution is to equate the electrostatic forces acting on ¢, when it is
at (17.75 cm, 0).

35 e
Picture the Problem By considering the symmetry of the array of charges we can see that
the y component of the force on g is zero. We can apply Coulomb’s law and the principle
of superposition of forces to find the net force acting on g.

—

Express the net force acting on q: F, = FQonxaxiS’q +2 ﬁQat g
Express the force on g due to the F o kqQ ;
charge Q on the x axis: Qonxaxisa - p2
- ki N

Express the ne.t force on q due to the 2FQat45°,q -9 CI? c0s45°;
charges at 45°: R

2 kaQ;

V2 R?
Substitute to obtain: F, = kaQ- 2 kaQ -

RZ 2 R?
= kqQ[l+£j§

R? 2

36 eee
Picture the Problem Let the H" ions be in the x-y plane with H; at (0, 0, 0), H, at (a, 0,
0), and Hz at (a/Z,a\/g/Z,O). The N3 ion, g, in our notation, is then at

(a/2, a/2\/§, a\/%) where a =1.64x107® m. To simplify our calculations we’ll set
kez/a2 =C =8.56x10"° N . We can apply Coulomb’s law and the principle of
superposition of forces to find the net force acting on each ion.
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\
T\
\ £
D L(g‘z‘:‘.;’”\'i)
a2l |
|
|
% ! m;z . .
\ #
\ | 7
a2 ____\\L___‘;:[g‘i];‘[})
O H0,a.0,0)
Express the net force acting on q;: F,=F, +F, +F,
CB . kad. . - .
Find oy F,, = q12q2 h,= (_ i): —Ci
r2,l
ind F,.: = ko,q, ~
Find F;,: F, = q32,q1 P,
r3,1
0-2)isl0-23;
2 2
=C
a
1, 34
=—C| =i +£j
2 2

Noting that the magnitude of g, is three times that of the other charges and that it is

negative, express F,
a): a ) a2 |-
O-—fi+|0-——=|j+|0——F~= |k
( 2 [ zﬁj’ [ ﬁ}

2) [zasjz{agf

_l_
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- - 1~
F=-Ci-C|=i+—
1 l [2’ 5 J

<[ K

C/6k

Substitute to find F, :

From symmetry considerations: 132 = 17*3 = ”l —| C/6k

Express the condition that molecule is
in equilibrium:

Solve for and evaluate 17’4 ; F4 = —(17“1 + 1’7“2 + 17“3): —31’7“1

The Electric Field

*37 .
Picture the Problem Let g represent the charge at the origin and use Coulomb’s law for
Eduetoa point charge to find the electric field at x = 6 m and —10 m.

(a) Express the electric field at a point =\ kg .
. E(X) =2
P located a distance x from a charge X
q:
. . 9 212 R
E\ialuatfe this expression for E(6 m) _ (8.99 x10° N - m2 IC )(4 yC)l.
X=6m: (6 m)
=[ (999N/C)i
(b) Evaluate Eatx=-10m:
9 2y~2 R _
F(10m)- 89910 N-m'/C )(‘“’C)(—i): (-360N/C)7

(10m)

(c) The following graph was plotted using a spreadsheet program:



22  Chapter 21

500
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é 0 ’\
Ui \
-250
-500
2 1 0 1 2
X (m)

*38 o

Picture the Problem Let g represent the charges of +4 4C and use Coulomb’s law for
Eduetoa point charge and the principle of superposition for fields to find the electric
field at the locations specified.

Noting that g; = g, use Coulomb’s law and the principle of superposition to express the
electric field due to the given charges at a point P a distance x from the origin:

_ ~ . kg, ~ k A 1. 1 -
E(X): qu (X)+ EqZ (X): i;rqu +%I’qu = kq]-L?rql’P + (8 m— X)Z erle

(a) Apply this equation to the point at x = -2 m:

E(—2m)=(36kN~m2/c){L(—i)+ L (—i)}: (-9.36kN/C)i

(2m)’

(b) Evaluate E at x = 2 m:

E(2m)=(36kN- mZ/C){ v rln ; (F)+ G rln ; - 1)} - [ (8.00kN/C)i
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©) Evaluate E at x = 6 m:

E(Bm):(36kN-m2/C){ L) ( 1)2(—2)} (~8.00kN/C)i

(6m)

(d) Evaluate E at x = 10 m:

E(lOm):(36kN-m2/C)[ (10lm ; () + v rln ; (E)}: (9.35kN/C)7

(e) From symmetry considerations: E(4 m) = @

(f) The following graph was plotted using a spreadsheet program:

100

50

E, (kN m?/C)
o

-50 4

-100

X (m)

39 -
Picture the Problem We can find the electric field at the origin from its definition and
the force on a charge placed there from F= qE . We can apply Coulomb’s law to find

the value of the charge placed aty =3 cm.
(a) Apply the definition of electric

~
.

i F (8 x10™* N)] 3
field to obtain: E= @ 2nCc (400kN/C);
(b) Express and evaluate the force F=qE = (_ 4 nC)(400 kN/C)}

on a charged body in an electric =
field: = (CL60mMN);
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(c) Apply Coulomb’s law to obtain: kq(—4nC) _3)=(-1.60mN);
(0.03m)’ ( ]) -1 )

Solve for and evaluate g: q=- (1.60mN)(0.03m)’
(8.99x10° N -m2/C?)(4nC)

=| -40.0nC

40 -

Picture the Problem We can compare the electric and gravitational forces acting on an
electron by expressing their ratio. We can equate these forces to find the charge that
would have to be placed on a penny in order to balance the earth’s gravitational force on
it.

(a) Express the magnitude of the F, =¢eE
electric force acting on the electron:

Express the magnitude of the Fg =m.g
gravitational force acting on the
electron:
Express the ratio of these forces to F _eE
obtain: F, mg
Substitute numerical values and F, (1.6 x10™*° C)(L50 N/C)
evaluate Fe/Fy: F, (9.11x10 kg)(9.81m/s?)
= 2.69x10%
or

F, =| (2.69x10%F, |, i.e., the electric

e

force is greater by a factor of 2.69x10".

(b) Equate the electric and q= mg
gravitational forces acting on the E

penny and solve for q to obtain:

Substitute numerical values and . (3 x107 kg)(9.81m/sz)
evaluate q: B 150N/C

1.96x10°*C
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41 e
Picture the Problem The diagram shows

the locations of the charges g; and g, and

the point on the x axis at which we are to

find E. From symmetry considerations we
can conclude that the y component of E at
any point on the x axis is zero. We can use
Coulomb’s law for the electric field due to
point charges to find the field at any point
on the x axis and F = qE‘ to find the force

on a charge o placed on the x axis at
X=4cm.

(a) Letting g = g1 = gy, express the x-
component of the electric field due
to one charge as a function of the
distance r from either charge to the
point of interest:

Express EX for both charges:

¥y, m

003451 = 6nC
M
~~
T
™~ 0.04
]
0 6 ~
NL‘
E,
~0.03¢g, = 6nC
k
E = —?cos Oi
r
kg

E, =2—cos0i
r

Substitute for cos@and r, substitute numerical values, and evaluate to obtain:

E

X r.2 r r3

(34.5kN/C)i

(b) Apply qE to find the force

on a charge o placed on the x axis at
X=4cm:

*42 e

Picture the Problem If the electric field at x = 0 is zero, both its x and y components
must be zero. The only way this condition can be satisfied with the point charges of +5.0
uC and —8.0 4C are on the x axis is if the point charge of +6.0 «C is also on the x axis.
Let the subscripts 5, —8, and 6 identify the point charges and their fields. We can use

1(0.03mY

+(0.04my "

F =(2nC)(34.5kN/C)i

(69.0 uN )i

x,

,kq0.04m - _ 2kq(0.04m)l: _ 2(8.99x10° N - m?/C?)(6nC)(0. °4m)f

m

Coulomb’s law for E dueto a point charge and the principle of superposition for fields
to determine where the +6.0 #C charge should be located so that the electric field atx =0

is zero.

25
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Express the electric field at x = 0 in E(0)=Eg,+E 4, +Eg,
terms of the fields due to the charges -0
of +5.0 4C, —8.0 1C, and +6.0 4C:

' ' kas ~  kgs ~ kg -
Substtltute for each of the fields to qzs . qze Pt qgg Fa=0
obtain: I I Iy

or
kds kas (7)), Kas( 2
+ i)l+——=-i)=0
%7 ),
Divide out the unit vector 7 to 9 % 9. _ 0
. 2 2 2
obtain: b Te I
Substitute numerical values to > _6__-8 g
. 2 2 2
obtain: (Bem) 7 (4cm)
Solve for rg: I, =| 2.38cm
43 e

Picture the Problem The diagram shows the electric field vectors at the point of interest
P due to the two charges. We can use Coulomb’s law for E due to point charges and the
superposition principle for electric fields to find EP . We can apply F= qE to find the

force on an electron at (-1 m, 0).
Y, m

(a) Express the electric field at E.=E + Ez
(=1 m, 0) due to the charges q; and q.:
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—

Evaluate E:

5 ko . (8.99x10°N-m*/C?)(=54C)[ (-5m)i +(2m);
LT (Bm) +(@2m)’ \/(5m)2 +(2mY
— (-1.55x10° N/C)(-0.9287 +0.371})

— (L.44KN/C)i + (- 0.575kN/C)j

Evaluate E,:

kg, . (8.99x10° N-m*/C?)(124C)| (-2m)i +(-2m)j
e (2m) +(2m)

E. =
TR J@my +@2my
- (13.5x10° N/C)(-0.707F - 0.707)
(-9.54kN/C)i + (- 9.54kN/C);

Substitute for E,and E, and simplify to find E, :

(1.44KN/C)i +(~ 0.575kN/C)j + (~9.54kN/C)i + (—9.54kN/C);
(~8.10kN/C)i +(—10.1kN/C)j

E,

The magnitude of E, is: E, =+/(~8.10KN/C)’ +(~10.1kN/C)

=|12.9kN/C

The direction of E, is: . —10.1kN/C
O =tan™| —————
—-8.10kN/C

=| 231°

Note that the angle returned by your

calculator for tan?| —————
—8.10kN/C

reference angle and must be increased by

180° to yield &.

(b) Express and evaluate the force on an electron at point P:

—10.1kN/CJ.
is the

27
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F =qE, =(~1.602x10 C)|(~8.10kN/C)i + (~10.1kN/C)j
= (1.30x10N)i +(1.62x 10 N)j

Find the magnitude of F : F- \/(1.3())(10—15 N)2 n (1.62><10‘15 N)2
=[2.08x10 "N
Find the direction of F : 6. —ta . 1.62x10;:5 N e
1.3x10™ N
44 e

Picture the Problem The diagram shows the locations of the charges g; and g, and the
point on the x axis at which we are to find E . From symmetry considerations we can
conclude that the y component of E at any point on the x axis is zero. We can use
Coulomb’s law for the electric field due to point charges to find the field at any point on
the x axis. We can establish the results called for in parts (b) and (c) by factoring the

radicand and using the approximation 1+ « ~1 whenever a << 1.
Yy

7, =1

aell
—

t’.‘ut]‘3=(j

(a) Express the x-component of the - k_q
electric field due to the charges at y 2
= aandy = -a as a function of the
distance r from either charge to
point P:

Substitute for cos@and r to obtain:
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2kagx

(b) For |x| << a,x* + &’ ~ @, 50 2kgx | 2kgx
E, = ( V2 3
a ) a
For x| >> a,x* + a’ ~ ¥, so: 2kgx | 2kq
EX ~ (2—3/2 = —2
X ) X

For x >> a, the charges separated by a would appear to be a single charge

(©) : . : 2kq
of magnitude 2q. Its field would be given by E, =—-.
X

Factor the radicand to obtain: 32 32

E, = 2kgx x2[1+—J

X
F << X 2
orassx 1+2 ~1
X
and
_3/2 2k

E, :2kqx[x2] = X—Zq

*45 e

Picture the Problem The diagram shows the electric field vectors at the point of interest
P due to the two charges. We can use Coulomb’s law for E due to point charges and the
superposition principle for electric fields to find E‘P . We can apply F= qE to find the

force on a proton at (-3 m, 1 m).
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Rl

| } { | { X, m

(a) Express the electric field at EP =E + E2
(=3 m, 1 m) due to the charges g, and

Q2!

Evaluate El ;

£ =% —(8'99><109N'm2/(32)(4ﬂc){(5m)3+(3m)}J
1 2 "1p \/(Sm)2+(3m)2

r% (5m)* +(3m)’
~ (~1.06kN/C)(- 0.8577 + 0514 )= (0.908KN/C)i + (- 0.544 kN/C)j

Evaluate E,:

£ _ka, _(8.99x109N-mZ/CZ)(sﬂc)[(—4m)E+(—2m)}j
Conp (4m)* +(2m)’ J@my +(2mY

~ (2.25KN/C)(-0.8947 —0.447 )= (- 2.01kN/C)i + (~1.01KN/C);]

Substitute and simplify to find EP :

E, = (0.908kN/C)i + (- 0.544kN/C)j + (~ 2.01kN/C)i + (~1.0LkN/C)j
= (~1.10kN/C)i + (—1.55kN/C)j
The magnitude of E, is: E, =+/(1.IOKN/C)? + (1.55kN/CY’

=[1.90kN/C
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The direction of E, is: 9, = tan™* —1.55kN/C | _ 359
—1.10kN/C
Note that the angle returned by your
—1.55kN/C ).
———  |isth
—1.10kN/C

reference angle and must be increased by
180° to yield &:.

calculator for tanl(

(b) Express and evaluate the force on a proton at point P:

F =qE, =(1.6x10" C)|(-1.10kN/C){ + (~1.55kN/C)j] |
=(-1.76x10 " N)i + (- 2.48x10 N);j

The magnitude of Fis:

F=y(-1.76x10"°N) + (- 2.48x10"*N)’ =[3.04x10° N

~1.76x10°N |

where, as noted above, the angle returned
by your calculator for

1(— 2.48x107° N
tan

The direction of F is: -2. e
e direction of Fis eF:tanl( 2.48x10 N]_ 2350

~1.76x10™ N

angle and must be increased by 180° to
yield &.

J is the reference

46 oo
Picture the Problem In Problem 44 it is shown that the electric field on the x axis, due

to equal positive charges located at (0, a) and (0,—a), is given by
E, = 2kqx(x2 + az)fg/ ?. We can identify the locations at which E, has it greatest values

by setting dE,/dx equal to zero.

X

(a) Evaluate
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ddlf(X :%[qux(xz +a2)—3/2]: qu%[x(xz +az)—3/z]

- 2kq:x%(xz + az)—s/z N (Xz N az)—s/z}

= qu_X(— %)(xz + az)_5/2(2x)+ (x2 + az)_g/z}

=2kq — 3x2(x2 + az)_5/2+ (x2 + az)_s/z]

Set this derivative equal to zero: _ 3x2(x2 " aZ)—5/2 + (Xz n az)-3/2 ~0

Solve for x to obtain:

a
+
V2

(b) The following graph was plotted using a spreadsheet program:

2kg=landa=1

0.4

\
o

-0.2 \J
-0.4 ‘ ‘
-10 -5 0 5 10

47 eoo

Picture the Problem We can determine the stability of the equilibrium in Part (a) and
Part (b) by considering the forces the equal charges g at y = +a and y = —a exert on the
test charge when it is given a small displacement along either the x or y axis. The
application of Coulomb’s law in Part (c) will lead to the magnitude and sign of the charge
that must be placed at the origin in order that a net force of zero is experienced by each of
the three charges.

(a) Because E is in the x direction, a positive test charge that is displaced from
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(0, 0) in either the +x direction or the —x direction will experience a force pointing away
from the origin and accelerate in the direction of the force.

Consequently, the equilibrium at (0,0) is unstable for a small displacement along
the x axis.

If the positive test charge is displaced in the direction of increasing y (the positive y
direction), the charge at y = +a will exert a greater force than the charge at

y = —a, and the net force is then in the —y direction; i.e., it is a restoring force. Similarly,
if the positive test charge is displaced in the direction of decreasing y (the negative y
direction), the charge at y = —a will exert a greater force than the charge at y = —a, and the
net force is then in the —y direction; i.e., it is a restoring force.

Consequently, the equilibrium at (0,0) is stable for a small displacement along
the y axis.

(b)
Following the same arguments as in Part (a), one finds that, for a negative test
charge, the equilibrium is stable at (0,0) for displacements along the x axis
and unstable for displacements along the y axis.

(c) Express the net force acting on the Z F _ kaq, N kq
charge aty = +a: Y= a? o (2a)

Solve for g, to obtain: qQ = _;qo

Remarks: In Part (c), we could just as well have expressed the net force acting on
the charge at y = —a. Due to the symmetric distribution of the charges at y = —a and y
= +a, summing the forces acting on ¢, at the origin does not lead to a relationship
between ¢, and q.

*48 o000
Picture the Problem In Problem 44 it is shown that the electric field on the x axis, due to
equal positive charges located at (0, a) and (0,—a), is given by

E, = 2kqx(x2 +a’ )73/2. We can use T = 27,/m/k' to express the period of the motion in

terms of the restoring constant k'.

_ 2kg’x
(x2 + a2)3/2

(a) Express the force acting on the on
the bead when its displacement from
the origin is x:

I:x = _qu =
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Factor a’ from the denominator to E_ 2kg®x
obtain: X W2 32
2
a (2 + lj
a
For x << a: 2
Fo=|- Zk? X
a
i.e., the bead experiences a linear restoring
force.
(b) Express the period of a simple m
; ; ) T=2r,|—
harmonic oscillator: '
Obtain k' from our result in part (a): K- 2kq2
a3
Substitute to obtain: 3
T=2x —m2 =| 27 —ma2
2kq 2kq
a3

Motion of Point Charges in Electric Fields

49 .

Picture the Problem We can use Newton’s 2" law of motion to find the acceleration of
the electron in the uniform electric field and constant-acceleration equations to find the
time required for it to reach a speed of 0.01c and the distance it travels while acquiring
this speed.

(a) Use data found at the back of e 16x10°C
your text to compute e/m for an m, 09.11x107% kg
electron:

=|1.76 x10"™ C/kg
(b) Apply Newton’s 2™ law to relate qo e €E
the acceleration of the electron to m, m,

the electric field:

Substitute numerical values and o (1.6 x107% C)(lOO N/C)
evaluate a: B 9.11x10"*" kg

=[1.76 x10"° m/s?
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The direction of the acceleration
of an electron is opposite the

electric field.
(c) Using the definition of A=Y 0.01c
acceleration, relate the time required a a
for an electron to reach 0.01c to its
acceleration:
Substitute numerical values and 013%x10°m

ubstitute numerical valu At:00(3><0 /S): 0.1708
evaluate At: 1.76 x10" m/s?
(d) Find the distance the electron AX =V, At
travels from its average speed and = %[0 + 0_01(3 x10°® m/s)](O.l?O ps)
the elapsed time:
=| 25.5cm

*50 .

Picture the Problem We can use Newton’s 2" law of motion to find the acceleration of
the proton in the uniform electric field and constant-acceleration equations to find the
time required for it to reach a speed of 0.01c and the distance it travels while acquiring
this speed.

(a) Use data found at the back of e 16x10¥C
your text to compute e/m for an m, - 1.67x107% kg
electron: -
_[9.58x10 Clkg

Apply Newton’s 2™ law to relate the q- e _ EE
acceleration of the electron to the m, m,
electric field:
Substitute numerical values and 4 (1.6 x107% C)(lOO N/C)
evaluate a: ~ 167x10% kg

=| 9.58x10° m/s*

The direction of the acceleration
of a proton is in the direction of
the electric field.
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(b) Using the definition of A=Y 0.01c
acceleration, relate the time required a
for an electron to reach 0.01c to its

acceleration:

| <

Substitute numerical values and 0.01(3 x 108 m/s)
evaluate At: 9.58x10° m/s?
51 -

Picture the Problem The electric force acting on the electron is opposite the direction of
the electric field. We can apply Newton’s 2™ law to find the electron’s acceleration and

use constant acceleration equations to find how long it takes the electron to travel a given
distance and its deflection during this interval of time.

(a) Use Newton’s 2" law to relate the . F, -—eE
acceleration of the electron first to the 4= m, B Te
net force acting on it and then the
electric field in which it finds itself:

. . -19
Substltuteﬁnumerlcal values and G—_ 1.6 ><10_ C (400 N/C)}
evaluate a : 9.11x10* kg

(- 7.03x10% m/s? )j

(b) Relate the time to travel a given At = AX 0.1m

distance in the x direction to the v, ©2x10°m/fs
electron’s speed in the x direction:

50.0ns

(c) Using a constant-acceleration Ay
equation, relate the displacement of

the electron to its acceleration and

the elapsed time:

ia (Aty
1(=7.03x10" m/s? )(50ns)’ j

~
.

(-8.79cm);

i.e., the electron is deflected 8.79 cm
downward.

52 e
Picture the Problem Because the electric field is uniform, the acceleration of the
electron will be constant and we can apply Newton’s 2" law to find its acceleration and
use a constant-acceleration equation to find its speed as it leaves the region in which
there is a uniform electric field.

Using a constant-acceleration V2 =V + 2aAX
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equation, relate the speed of the or, because vy =0,
electron as it leaves the region of the V =+/2aAX
electric field to its acceleration and

distance of travel:

Apply Newton’s 2™ law to express
the acceleration of the electron in m, m,

terms of the electric field:

Substitute to obtain: 2eEAx

Substitute numerical values and evaluate v:
,_ |20.6x107 C)(8x10* N/C)(0.05m)
9.11x107* kg

=|3.75x10" m/s

Remarks: Because this result is approximately 13% of the speed of light, it is only
an approximation.

53 oo

Picture the Problem We can apply the work-kinetic energy theorem to relate the change
in the object’s kinetic energy to the net force acting on it. We can express the net force
acting on the charged body in terms of its charge and the electric field.

Using the work-kinetic energy W = AK = FAX
theorem, express the kinetic energy

of the object in terms of the net force

acting on it and its displacement:

Relate the net force acting on the F.o =QE
charged object to the electric field:

Substitute to obtain: AK = K; — K, = QEAX
or, because K; =0,
K; = QEAX

Solve for Q: Q- K;
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Substitute numerical values and
evaluate Q:

*54 e

0.12]
= BooN/c)(0.50m) a

Picture the Problem We can use constant-acceleration equations to express the x and y
coordinates of the particle in terms of the parameter t and Newton’s 2™ law to express
the constant acceleration in terms of the electric field. Eliminating the parameter will
yield an equation for y as a function of x, g, and m that we can solve for E,.

Express the x and y coordinates of
the particle as functions of time:

Apply Newton’s 2" law to relate the
acceleration of the particle to the net
force acting on it:

Substitute in the y-coordinate
equation to obtain:

Eliminate the parameter t between
the two equations to obtain:

Set'y = 0 and solve for E,:

Substitute the non-particle specific
data to obtain:

(a) Substitute for the mass and
charge of an electron and evaluate
Ey:

(b) Substitute for the mass and
charge of a proton and evaluate E,:

x = (vcos o)t
and
y=(vsin@)t—1at’

a = I:net,y :q_Ey

Y m m

; qgE
=(vsin @)t - —*t?
y =(vsing) o
qE 2
=(tan@)x - —————
y=( ) 2mv? cos® @
2 -
Ey _mv7sin 20
X

E _ m(3x10° ms)’ sin 70°

Y q(0.015m)

= (5.64 x10* m/s? )m
q
-31
E, = (5.64x10 m/s?) 21 1X10 kg
1.6x107C
=| 3.21kN/C
27

E, = (5.64x10% myjs? 10720 kg

1.6x107°C

=| 5.89MN/C
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55 e

Picture the Problem We can use constant-acceleration equations to express the x and y
coordinates of the electron in terms of the parameter t and Newton’s 2" law to express
the constant acceleration in terms of the electric field. Eliminating the parameter will
yield an equation for y as a function of x, g, and m. We can decide whether the electron
will strike the upper plate by finding the maximum value of its y coordinate. Should we
find that it does not strike the upper plate, we can determine where it strikes the lower
plate by setting y(x) = 0.

Express the x and y coordinates of the X = (VO cos 9)t
electron as functions of time: and
y=(vsin@)t—Lat’
Apply Newton’s 2" law to relate the Q- Foey _ €E,
acceleration of the electron to the net y m m

e e

force acting on it:

- - _ - - ] eE
Substitute in the y-coordinate equation y= (Vosm 9),[ = Y 42
m

to obtain: .
Eliminate the parameter t between the eE
e paramerer y(x)=(tang)x - ——~——x* (1)
two equations to obtain: 2m,Vv, cos” @
To find Yinax, Set dy/dx = 0 fi eE
0 find Yimax, St dy/dx = 0 for ﬂ:tanﬁ——z X
extrema: dx m,V, Cos” &
= Oforextrema
Solve for x’ to obtain: 2si
v X ! X'= M,V $in 26 (See remark below.)
2eE,
Substitute X’ in y(x) and simplify to _ my¢sin? @
obtain Ymax: Yinax = 2eE

y

Substitute numerical values and evaluate Ymax:

_ (9.11x10* kg)(5x10° m/s)°sin?45°
Yma =56 %10 C)[3.5x10° NIC)

and, because the plates are separated by 2 cm, the electron does not strike the upper
plate.

=1.02cm
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To determine where the electron will = m,v¢ sin 26
strike the lower plate, set B eE,

y = 0 in equation (1) and solve for x to

obtain:

Substitute numerical values and evaluate Xx:

_ (9.11x10* kg )(5x10° m/s)” sin 90° _

(L.6x10™ C)(3.5x10° N/C) A07em

Remarks: x' is an extremum, i.e., either a maximum or a minimum. To show that it
is a maximum we need to show that dy/dx?, evaluated at x', is negative. A simple
alternative is to use your graphing calculator to show that the graph of y(x) is a
maximum at x'. Yet another alternative is to recognize that, because equation (1) is
quadratic and the coefficient of x? is negative, its graph is a parabola that opens
downward.

56  ee

Picture the Problem The trajectory of the electron while it is in the electric field is
parabolic (its acceleration is downward and constant) and its trajectory, once it is out of
the electric field is, if we ignore the small gravitational force acting on it, linear. We can
use constant-acceleration equations and Newton’s 2" law to express the electron’s x and
y coordinates parametrically and then eliminate the parameter t to express y(x). We can
find the angle with the horizontal at which the electron leaves the electric field from the x
and y components of its velocity and its total vertical deflection by summing its
deflections over the first 4 cm and the final 12 cm of its flight.

(a) Using a constant-acceleration X(t) =V, t
equation, express the x and y and

1 2
coordinates of the electron as y(t) =V, b+ %ayt

functions of time:

Because Vo = 0: X(t) =V,t (1)

Using Newton’s 2™ law, relate the F. —¢€E
acceleration of the electron to the Y m m
electric field:
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Substitute to obtain: eE, ,
y(t)=———"t 0)

2m,
Eliminate the parameter t between y(x)= - ek, e eE, ¥
equations (1) and (2) to obtain: 2mev§ 4K
Substitute numerical values and evaluate y(4 cm):

1.6x10™ C)(2x10* N 4m
y(0.04m):—( 6x10° C)(2x 0] Cooamy g
4(2x10"))
(b) Express the horizontal and vertical Vv, =V, c0s0
components of the electron’s speed as and
it leaves the electric field: vV, =V, sin@
ivi i v v
Divide t_he second _of these equations O=tantY —tantYy
by the first to obtain: v, Vo
Using a constant-acceleration v, =V, +at
equation, express vy as a function of or, because Vg, = 0
the el'ectron’s acc_ele'ration and its v o—ate Fnet,y (o eEy X
time in the electric field: y y m, m, v,
Substitute to obtain: 4 eEx 4 eEx
f@=tan"| —— |=tan"| ——2
m,V, 2K

Substitute numerical values and evaluate @

~19 4
5 tan ] _ 16x10 C)(2x1016N/C)(O.O4m) T
2(2x107))
(c) Express the total vertical Yoot = Yaem T Yizem

displacement of the electron:

Relate the horizontal and vertical X =V,At
distances traveled to the screen to and
the horizontal and vertical y = vyAt

components of its velocity:
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Eliminate At from these equations to
obtain:

Substitute numerical values and
evaluate y:

Substitute for y, ¢m and Y12 ¢m and
evaluate Viotar:

SYAR

y =V—yx:(tan6')x

X

y = [tan(~17.7°)](0.12m) = -3.83cm

Yiota = —0.640cm —3.83cm
=| —4.47cm

i.e., the electron will strike the fluorescent
screen 4.47 cm below the horizontal axis.

Picture the Problem We can use its definition to find the dipole moment of this pair of

charges.

(a) Apply the definition of electric
dipole moment to obtain:

(b) If we assume that the dipole is

oriented as shown to the right, then
P is to the right; pointing from the

negative charge toward the positive
charge.

*58 .

p=(2pC)(4m)=| 8.00x10*C-m

Picture the Problem The torque on an electric dipole in an electric field is given by
T= ﬁxE and the potential energy of the dipoleby U =—p - E.

Using its definition, express the
torque on a dipole moment in a
uniform electric field:

(a) Evaluate zfor @ = 0°:

T=pxE
and
7= pEsing

where @is the angle between the electric
dipole moment and the electric field.

T= pEsinO°:@



The Electric Field 1: Discrete Charge Distributions 43

(b) Evaluate zfor 6 = 90°: r=(0.5¢e- nm)(4.0 x10* N/C)sin 90°
=(3.20x10* N-m

(c) Evaluate 7 for 6 = 30°: r=(0.5¢e- nm)(4.0 x10* N/C)sin 30°
= 1.60x10* N-m

—

(d) Using its definition, express the U=-p-E=-pEcosd

potential energy of a dipole in an

electric field:

Evaluate U for 6 = 0°: U =—(0.5¢-nm)(4.0x10* N/C)cos0°
= -3.20x107**J

Evaluate U for ¢ = 90°: U =—(0.5e-nm)(4.0x10* N/C)cos90°
[0}

Evaluate U for ¢ = 30°: U =—(0.5e-nm)(4.0x10* N/C)cos 30°
=|-2.77x107%J

*59 (L]

Picture the Problem We can combine the dimension of an electric field with the
dimension of an electric dipole moment to prove that, in any direction, the dimension of
the far field is proportional to :I/[L]3 and, hence, the electric field far from the dipole falls

off as 1/r°.

Express the dimension of an electric [ ]: [kQ]
field: [L]?
Express the dimension an electric [p] = [Q][L]

dipole moment:

Write the dimension of charge in [Q]
terms of the dimension of an electric L]
dipole moment:

Substitute to obtain: [E]- [k][p] [Tk]Ip]

[N (S (9

This shows that the field E due to a dipole
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p falls off as 1/r°,
60 oo
Picture the Problem We can use its definition to find the molecule’s dipole moment.
From the symmetry of the system, it is evident that the x component of the dipole
moment is zero.
Using its definition, express the P=0i+p,Jj
molecule’s dipole moment:

From symmetry considerations we p,=0

have:

The y component of the molecule’s p, =gL=2eL

dipole moment is: _ 2(1.6 %107 C)(0.058 nm)

=1.86x10°C-m

Substitute to obtain: (1.86 x107# C- m)}

=T
Il

61 oo
Picture the Problem We can express the net force on the dipole as the sum of the

forces acting on the two charges that constitute the dipole and simplify this expression
to show that F, = Cpi. We can show that, under the given conditions, F

net net

is also
given by (dEX/dx)pf by differentiating the dipole’s potential energy function with

respect to x.

(a) Express the net force acting on F, = qu +F,
the dipole:
Apply Coulomb’s law to express the F_q = —qE = —qC(X1 - a)f

forces on the two charges: and

F,,=+qE =qC(x +a)i

Substitute to obtain: F,,=—qC(x —a)i +qC(x +a)i

= 2anf= Cpf

where p = 2ag.
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(b) Express the net force acting on Fo= du. d [ 2
. . .. et — Lo =T prx]l
the dipole as the spatial derivative of dx dx
v _| p 9
" dx
62 o00

Picture the Problem We can express the force exerted on the dipole by the electric field
as —dU/dr and the potential energy of the dipole as —pE. Because the field is due to a
point charge, we can use Coulomb’s law to express E. In the second part of the problem,
we can use Newton’s 3" law to show that the magnitude of the electric field of the dipole
along the line of the dipole a distance r away is approximately 2kp/r®,

(a) Express the force exerted by the F=_ d_U ;
electric field of the point charge on dr
the dipole: where 7 is a unit radial vector pointing

from Q toward the dipole.

Express the potential energy of the _ _ kQ
N o U=-pE=-p—
dipole in the electric field: r
Substitute to obtain: = ~ ~
ubstitute to obtain F:—i[—pk—?}r: _Zk?pr
dr r r
(b) Using Newton’s 3 law, express F“OHQ =—F or FonQ"; =—Fr
the force that the dipole exerts on and
the charge Q at the origin: Fro = F
Express F,,, in terms of the field in Foo =QE
which Q finds itself:
Substitute to obtain: O - 2k(33p LE- 2_k3p
r r

General Problems

*63 o
Picture the Problem We can equate the gravitational force and the electric force acting
on a proton to find the mass of the proton under the given condition.

(a) Express the condition that must F=F
be satisfied if the net force on the
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proton is zero:

Use Newton’s law of gravity and Gm’® _ ke?

Coulomb’s law to substitute for F, S

and F.:

Solve for m to obtain: / k
m=e a

Substitute numerical values and evaluate m:

6.67x10 N-m?/kg?

9 2 2
m=(16x10" C)\/ 8.99x10 N-m*/C" I g6x10kg

(b) Express the ratio of F. and Fg: ke?
T ke?
2 2
Gm, Gm;

r2

Substitute numerical values to obtain:

ke’ (8.99x10° N-m?/C?)(L6x107° Cf

Gm?  (6.67x10" N-m?/kg?)(L.67x10 kg

=11.24x10%

64 e
Picture the Problem The locations of the charges g1, g, and g, and the points at which
we are calculate the field are shown in the diagram. From the diagram it is evident that
E along the axis has no y component. We can use Coulomb’s law for Eduetoa point
charge and the superposition principle to find E at points P, and P,. Examining the
distribution of the charges we can see that there are two points where E = 0. One is
between g, and gsand the other is to the left of q;.
@]
Y
vov
o oy oo P P

— b o | \/\
T T |

-1 0 1 3 15

]

X, cm
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Using Coulomb’s law, express the Ea = qu +Eq2 + E‘qg
electric field at P; due to the three
! _kqlf quf quf
charges: BT I
rl,F’1 2,P r3,F’1
hen L lp

Substitute numerical values and evaluate E B

- <10°N - m2/C2 —ouC 3uC SuC |2
E, =(8.99x10°N-m?/C )[ oy oy (2cm)2}

=| (L14x10° NIC) i

Express the electric field at P.: E‘Pz -E +E,_+E

Substitute numerical values and evaluate E}, :

o on 22| —5AC 3uC ouC |2
E, = (8.99x10°N-m?/C ){(16cm)2 +(15cm)2+(140m)2}

| (1.74x10° NIC)i
Letting X represent the x coordinate
9 X 1P _ E ook G, % %,
of a point where the magnitude of P N

the electric field is zero, express the
condition that E = 0 for the point
between x=0and x =1 cm:

or

5uC 3uC_ 5.0
(x+lemf  x*  (lem-xY

Solve this equation to obtain: Xx=|0.417cm
Forx<—1cm, lety =—x to obtain: SuC 3uC S5uC 0
(y=1cm) y* (y+1lcm)

Solve this equation to obtain: X =6.95cm and y =| —6.95cm

47
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65 oo
Picture the Problem The locations of the charges g1, g, and g, and the point P, at which
we are calculate the field are shown in the diagram. The electric field on the x axis due to
the dipole is given by Edipole = 2kp/x® where p = 2aq,i . We can use Coulomb’s law

for E duetoa point charge and the superposition principle to find E at point P,.

@]
N v
2 INPN
vy P .
DR A i x,cm
-1 0 1 3 15
Express the electric field at P, as the EPZ = Edipo,e + qu
sum of the field due to the dipole and 2kp . kg, 2
the point charge g -8 ! + X_zzl
_ Zk(jgla) Py kxqzz ;
k | 40,2 2
=—|——+0q, |i
xz{ X qz}

wherea=1cm.

—

Substitute numerical values and evaluate E; :

9 2 2 ~ =
E. _8.99x10 N-m2/C 4(5yC)(1cm)+3ﬂC P~ [73x10° NIC)7
* (15x102m) 15¢cm

While the separation of the two charges of the dipole is more than
10% of the distance to the point of interest, i.e., x is not much greater
than a, this result is in excellent agreement with that of Problem 64.

*GE oo
Picture the Problem We can find the percentage of the free charge that would have to
be removed by finding the ratio of the number of free electrons n, to be removed to give
the penny a charge of 15 4C to the number of free electrons in the penny. Because we’re
assuming the pennies to be point charges, we can use Coulomb’s law to find the force of
repulsion between them.

(a) Express the fraction f of the free fo Ne
charge to be removed as the quotient N
of the number of electrons to be
removed and the number of free
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electrons:
Relate N to Avogadro’s number, the N M N=N m
mass of the copper penny, and the N, M AM

molecular mass of copper:

Relate n, to the free charge Q to be Q=n[-e]=n, - Q
removed from the penny: —-e
Q
f=——€ __ QM
N, m  meN,
M
Substitute numerical values and evaluate f:
f=o (-154C)(63 59/ m°'2)3 =3.29x10"° =[ 3.29x10 7%
(39)(1.6x10™ C)(6.02x10% mol )
(b) Use Coulomb’s law to express the o ka®  k(ne)
force of repulsion between the two T g2

pennies:

Substitute numerical values and evaluate F:

- _ (8.99x10°N-m*/C?)(9.38x10°)"(L.6x10 C) =
(0.25mY’

67 oo

Picture the Problem Knowing the total charge of the two charges, we can use
Coulomb’s law to find the two combinations of charge that will satisfy the condition that
both are positive and hence repel each other. If just one charge is positive, then there is
just one distribution of charge that will satisfy the conditions that the force is attractive
and the sum of the two charges is 6 xC.

(a) Use Coulomb’s law to express E— ka,d,
the repulsive force each charge rfz
exerts on the other:

Express g, in terms of the total 0, =Q0-¢
charge and q:
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Substitute to obtain: E_ ke, (Q—ay)

Substitute numerical values to obtain:

A~ (8.99x10° N-m?/C?)[(6 4C)q, — ¢

(8m)’

. . . 2 2
Simplify to obtain: ¢ +(~64C)q, +8.01(xC) =0
Solve to obtain: g, =|3.994C |andq, =| 2.01.C

or

g, =| 2.014C |andq, =| 3.99 .C

(b) Use Coulomb’s law to express Eo_ ka,d,
the attractive force each charge rfz
exerts on the other:

Proceed as in (a) to obtain: ¢/ +(-64C)g, —8.01(uCY =0
Solve to obtain: g, =|7.124C |andq, =| -1.12 u.C
68 oo

Picture the Problem The electrostatic forces between the charges are responsible for the
tensions in the strings. We’ll assume that these are point charges and apply Coulomb’s
law and the principle of the superposition of forces to find the tension in each string.

Use Coulomb’s law to express the T, =F,+F,
net force on the charge +q:

Substitute and simplify to obtain: T kq(2q) kq(4q) 3kg?

1 dz +(2d)2_ dz

Use Coulomb’s law to express the T,=F+F,
net force on the charge +4q:

Substitut d simplify to obtain: 2
ubstitute and simplify to obtain T k(2q)(4q) kq(4q) 9kq

20 g2 (2d Y d?
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*6O oo
Picture the Problem We can use Coulomb’s law to express the force exerted on one
charge by the other and then set the derivative of this expression equal to zero to find the
distribution of the charge that maximizes this force.

Using Coulomb’s law, express the E— ka,d,
force that either charge exerts on the D?
other:
Express ¢, in terms of Q and q;: 9, =Q-¢q,
Substitute to obtain: E- ka,(Q - a,)
= D
Differentiate F with respect to g daF _k d 0,(Q=q)]
and set this derivative equal to zero dq, D’ dg, ' '

for extreme values:

= %[ql(_l)_'_Q - Q1]

= Oforextrema

Solve for g to obtain: 0, =+Q

and

g, = Q- 0, = %Q
To determine whether a maximum d?F _k d [ ]
or a minimum exists at ¢, =1 Q, dg’> D?dg, Q-2q,
differentiate F a second time and k
evaluate this derivative at g, =1 Q: - F(_ 2)

< 0independently of q,.

5.0, =0, =5Q maximizes F.

*70 oo
Picture the Problem We can apply Coulomb’s law and the superposition of forces to
relate the net force acting on the charge q = -2 xC to x. Because Q divides out of our
equation when F(x) = 0, we’ll substitute the data given for

x=8.0cm.

Using Coulomb’s law, express the net F(x)=— kaQ N kq(4Q)
force on q as a function of x: x> (12cm-x)
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Simplify to obtain: F(x) { 1 4 }
_—t = __+—

Solve for Q:

Evaluate Q forx =8 cm:

o 126.4N _[3.00,0
9Nl . m2/C2 _ 1 4
(8.99%10° N-m?/C?)(2 ,uC){ gomy * (4cm)2}

71 e
Picture the Problem Knowing the total charge of the two charges, we can use
Coulomb’s law to find the two combinations of charge that will satisfy the condition that
both are positive and hence repel each other. If the spheres attract each other, then there
is just one distribution of charge that will satisfy the conditions that the force is attractive
and the sum of the two charges is 200 xC.

(@) Use Coulomb’s law to express E— ka,d,
the repulsive force each charge rfz
exerts on the other:

Express g, in terms of the total d,=Q-0q,
charge and q;:

Substitute to obtain: = key(Q-a,)

Substitute numerical values to obtain:

99x10° N - m?/C?)[(200 .C) g, — 2

6
SON= (0.6mY

Simplify to obtain the quadratic equation: o’ + (— 0.2 mC)ql +3.20 x 10’3(mC)2 =0

Solve to obtain: 0, =|17.54C |andq, =| 183 .C

or
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(b) Use Coulomb’s law to express
the attractive force each charge
exerts on the other:

Proceed as in (a) to obtain:

Solve to obtain:

72 e
Picture the Problem Choose the
coordinate system shown in the diagram
and let Uy = 0 where y = 0. We’ll let our
system include the ball and the earth. Then
the work done on the ball by the electric
field will change the energy of the system.
The diagram summarizes what we know
about the motion of the ball. We can use
the work-energy theorem to our system to
relate the work done by the electric field to
the change in its energy.

Using the work-energy theorem,
relate the work done by the electric

field to the change in the energy of
the system:

Substitute f0r We|ectric field K2, and
Ugo and simplify:

Solve for m:

73 o0

g, =[1834C |andq, = 17.54C
F - _ kqqu
r1,22

¢/ +(~0.2mC)g, —3.20x10*(mC)’ =0

g, =| -15.04C |andq, =| 2154C
(l)x',, =0
m,q .
0
EI
Welectricfield =AK + AUg

=K, -K; +Ug,z -U
or, because K; = Uy, = 0,
w =K, —Ug,1

electricfield

g1

gEh = mv —mgh
- %m(z\/ﬁ)z —mgh = mgh

qE
Y

Picture the Problem We can use Coulomb’s law, the definition of torque, and the
condition for rotational equilibrium to find the electrostatic force between the two
charged bodies, the torque this force produces about an axis through the center of the
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meter stick, and the mass required to maintain equilibrium when it is located either 25 cm
to the right or to the left of the mid-point of the rigid stick.

(a) Using Coulomb’s law, express the ka,q,
electric force between the two charges: F= q2

Substitute numerical values and evaluate F:

2

9 2 2 -7
- _(8.99x10°N-m /c J6x107C)" _romen
(0.1m)
(b) Apply the definition of torque to T=F¢
obtain:
Substitute numerical values and 7 =(0.225N)(0.5m)
evaluate 7. :
=| 0.113N - m, counterclockwise
(C) Apply zrcenter of the meter stick — 0 r= mgf' =0
to the meterstick:
Solve for m: T
m=———
g’
Substitute numerical values and 0.113N
) m= =10.0461k
evaluate m: (9.81m/s? )(0.25m) s
(d) Apply zrcenter of the meter stick — O —Tt mg[ = O
to the meterstick:
Substitute for z: —F/+mgl' =0
Substitute for F: '
- k?jl# +mgl' =0
where ¢’ is the required charge.
Solve for g, to obtain: d’mg¢'

q, = kqlf

Substitute numerical values and evaluate g,

. (0.1m)?(0.0461kg)(9.81m/s? )(0.25m) -
) = S — ~ =| 5.03x107 C
(8.99x10° N-m?/C?)(5x107" C)(0.5m)
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74 e

Picture the Problem Let the numeral 1 refer to the charge in the 1¥ quadrant and the
numeral 2 to the charge in the 4™ quadrant. We can use Coulomb’s law for the electric
field due to a point charge and the superposition of forces to express the field at the
origin and use this equation to solve for Q.

Express the electric field at the origin due to the point charges Q:

= -~ kQ. kQ.
E(0,0) =E +E,= _?’"1,0 + TQrz,o
r1,0 2,0
= KO am)i + (- 2m)i] K- am)i + 2m)j]- - ETHQ;
=E,i
where r is the distance from each charge to the origin and E, = — (8 nr]sz
Express r in terms of the coordinates r=.x2+ y?
(x, y) of the point charges:
Substitute to obtain: E __ BmkQ
X (g2 2 )32
(x +y )
Solve for Q to obtain: E ( 2 2!3/2
Q=— Xty
k(8m)
Substitute numerical values and (4 kN/C)[(4m)2 " (2 m)z] 32
evaluate Q: Q=" (8.99x10° N-m?/C?)(8m)
=|-4.97uC
75 e

Picture the Problem Let the numeral 1 denote one of the spheres and the numeral 2 the
other. Knowing the total charge Q on the two spheres, we can use Coulomb’s law to find
the charge on each of them. A second application of Coulomb’s law when the spheres
carry the same charge and are 0.60 m apart will yield the force each exerts on the other.

(a) Use Coulomb’s law to express E- ka,d,
the repulsive force each charge rfz
exerts on the other:

55
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Express g, in terms of the total charge q,=Q-q
and qq:
Substitute to obtain: E- ka,(Q —a,)
- 2
r1,2

Substitute numerical values to obtain:

99x10° N - m?/C2)[(200 .C) g, - 6]

120N -8 2
(0.6m)

Simplify to obtain the quadratic equation: g2 + (— 200 C)q, + 4810(uC) =0

Solve to obtain: 0, =| 28.0C |andq, =| 172 u.C

or

g, =|172C |andq, =| 28.0 uC

(b) Use Coulomb’s law to express E- %
the repulsive force each charge rfz
exerts on the other when

01 =02 = 100 xC:

Substitute numerical values and evaluate F:

2
F =(8.99x10°N- m2/(:2)M [ 250N

(0.6m)

76 oo
Picture the Problem Let the numeral 1 denote one of the spheres and the numeral 2 the
other. Knowing the total charge Q on the two spheres, we can use Coulomb’s law to find
the charge on each of them. A second application of Coulomb’s law when the spheres
carry the same charge and are 0.60 m apart will yield the force each exerts on the other.

(a) Use Coulomb’s law to express E—_ ka,d,
the attractive force each charge rfz
exerts on the other:

Express g, in terms of the total 4,=Q0-q
charge and q;:
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Substitute to obtain: Fo_ kg,(Q-q,)
- 2

r1,2
Substitute numerical values to obtain:

120N —(8.99x10° N-m?/C?)[(200 .C)q, - ¢?]
(0.6m)’

Simplify to obtain the quadratic equation: g2 + (— 200 C)q, — 4810(.C)’ =0

Solve to obtain: g, =| —21.7 xC |andq, =| 222 .C

or

0, =| 222 uC |andq, =| —21.7 u.C

(b) Use Coulomb’s law to express = %
the repulsive force each charge rfz
exerts on the other when

01 =02 = 100 xC:

Substitute numerical values and evaluate F:

2
F =(8.99x10°N.- mz/cz)M —[ 250N

(0.6m)

17 oo

Picture the Problem The charge configuration is shown in the diagram as are the
approximate locations, labeled x; and X,, where the electric field is zero. We can
determine the charge Q by using Coulomb’s law and the superposition of forces to
express the net force acting on . In part (b), by inspection, the points where

57

E = 0 must be between the —3 #C and +4 uC charges. We can use Coulomb’s law for the

field due to point charges and the superposition of electric fields to determine the
coordinates x; and Xs.

g, = —3.0 uC g, = 4.0 uC Q

)
=

0 x x, 02 0.32
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(a) Use Coulomb’s law to express the 17"2 = 17“112 + FQ,Z
force on the 4.0-uC charge: k -~k .
— q1q2 l + Q2q2 (—l)

2
I, I

Q,2
_ kq{q_;_%}; Y
1,2 Q.2
Solve for Q:
Q Q — erz|:q_21 _k|:—2:|
’ I’1,2 q2

Substitute numerical values and evaluate Q:

Q:(O.12m)2{ -3.uC 3 240N :|: ~97.2.C

(0.2mY (8.99x10° N-m?/C?)(4 1C)

(b) Use Coulomb’s law for electric fields and the superposition of fields to determine the
coordinate x at which E = 0:

o kQ 3 ka, : kg,
E=- - 0
032m-xP  (02m-xp %'

or
_ Q _ qz +i — 0
(0.32m-xf (0.2m-xf X’

Substitute numerical values to obtain:

-9724C  4uC  -3C_,
(0.32m-xy (02m-x) %’

and
97.2 _ 4 _i_o
(0.32m-x)* (0.2m-x)* x°
Solve (preferably using a graphing X, =| 0.0508m | and x, =| 0.169m

calculator!) this equation to obtain:
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Picture the Problem Each sphere is in
static equilibrium under the influence of

=~

the tension T , the gravitational force F ,

and the electric force F. We can use 4

Coulomb’s law to relate the electric force
to the charge on each sphere and their
separation and the conditions for static
equilibrium to relate these forces to the
charge on each sphere.

- %
-
F :

E

) A g

(a) Apply the conditions for static

: kq® :
equilibrium to the charged sphere: 2. F =Fc-Tsing="5-Tsing=0

e
and
> F,=Tcosd-mg=0

Eliminate T between these equations tan g kq?
to obtain: B mgr2
Solve for q: mg tan &
Q=r———
k
Referring to the figure, relate the r=2Lsiné

separation of the spheres r to the
length of the pendulum L:

Substitute to obtain:
g=|2Lsin N%&m@

(b) Evaluate g form=10g, L =50 cm, and 6= 10°:

(0.01kg)(9.81m/s? )tan10°
8.99x10°N-m?/C*

q=2(0.5 m)sin10°\/ 0.2414C
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79 e
Picture the Problem Each sphere is in

static equilibrium under the influence of
the tension T , the gravitational force F ,

and the electric force FE . We can use

Coulomb’s law to relate the electric force
to the charge on each sphere and their
separation and the conditions for static
equilibrium to relate these forces to the
charge on each sphere.

(a)Apply the conditions for static
equilibrium to the charged sphere:

Eliminate T between these equations
to obtain:

Referring to the figure for Problem
80, relate the separation of the spheres
r to the length of the pendulum L:

Substitute to obtain:

ar)

e
‘FE

YE=m¢

2
SF, =FE—Tsin9=kri2—Tsine=o
and
D F,=Tcos¢-mg =0

2
tang =<9
mgr

r=2Lsiné@

2
tané’:%
4mgL”sin“ @

or

sin®@tand = kg - (1)

Substitute numerical values and evaluate sin’@tan @ :

sin®fdtané =

(8.99x10° N - m?/C?)(0.75 .C)

=5.73x1073

Because sin® @tan @ << 1:

Solve for @ to obtain:

4(0.01kg)(9.81m/s? (1.5m)

sin@~=tan@ =0
and
6® ~5.73x10°°

6 =0.179rad =| 10.3°
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(b) Evaluate equation (1) with replacing g° with g.0y:

8.99x10° N - m?/C?)(0.5 4C)(1.C)

in2 ot e=( =5.09x10"° = ¢°
P = 0.01kg) 0 81m/s? 1. 5mY "

Solve for @ to obtain: 0=0.172rad =| 9.86°

80 oo
Picture the Problem Let the origin be at
the lower left-hand corner and designate '

the charges as shown in the diagram. We G= G ——— L — A% =+
can apply Coulomb’s law for point charges _ o
. E, j -~ 7 |
to find the forces exerted on g, by 05, 03, R P
. . E, | —~ 7~ |
and g4 and superimpose these forces to find N /1 a L f'z ,
3, , ) y
the net force exerted on g;. In part (b), E‘A/\ }// |
we’ll use Coulomb’s law for the electric . AN - :
field due to a point charge and the o | // et - |
superposition of fields to find the electric i {’I/*Th_ - _{?:*_7 .
field at point P(0, L/2). F
(a) Using the superposition of forces, F, = Fm +F, +F,
express the net force exerted on q:
Apply Coulomb’s law to express F,, : Fo= kg,q, ;o kg,q; -
’ 21— 2 21— 3 21
r2,1 r2 1
_k(=a)g [CLj)-k;
L L
’ F - ~ k - k —
Apply Coulomb’s law to express F, ;: F, = ngl Po= ngl »
r4,1 r4,1
k(- LG
k(o g)_ka;
L L
Apply Coulomb’s law to express 17‘31: Fo= kd,0, P kg0, ;
’ 31— 2 317 3 31
r3,1 r3,1
kq? 2 -
= 23/2L3 (_ Ll - L-l)
ka® (2 4
== 232 2 (l +1)
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Substitute and simplify to obtain:

(b) Using superposition of fields,

express the resultant field at point P:

Use Coulomb’s law to express El:

Use Coulomb’s law to express EZ :

Use Coulomb’s law to express E3:

Use Coulomb’s law to express E4 :

2 = N 2 N ~
=%(i +j)—%(i +j)
) k%;[l_zi?j(h})

Substitute in equation (1) and simplify to obtain:

P L2 Jt L2 -]+53/2L2

81 o0

E _4kq 5 4kg,  8kqg (_?_EI

= Kkq, kq (L~
E =—1 =1 =
' r1,2P o 1:,)’P(2.]j
kg (L+)_ 4kq-~
_(LJS(ZJJ_ T
2
E _ka, - _k(_Q)(Ltj
2= hp=7"3 J
r2,P rZ,P 2
_ kg L=)_4kq:
_(LT( 2’)‘ 27
2
= kg, ~ K ~ L+
E :_3 _ ™ _L.__ .
T ( ' 2’)
8kq P
e
= kg, - k(- > L~
E4:%”3,P: (3q)(|-l __Jj
lyp Mhp 2
8kq (» 14
“gerel )
14 8kgq (» 14 _ 8kq \/g A
j!S/—L(EJJ ?[“2—5]1
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Picture the Problem We can apply Newton’s 2" law in rotational form to obtain the
differential equation of motion of the dipole and then use the small angle approximation
sind~ @to show that the dipole experiences a linear restoring torque and, hence, will

experience simple harmonic motion.

Apply D" 7 = lato the dipole:

For small values of 8, sind~ @
and:

Express the moment of inertia of the
dipole:

Relate the dipole moment of the
dipole to its charge and the charge

separation:

Substitute to obtain:

Express the period of a simple
harmonic oscillator:

Substitute to obtain:

82 oo

) d2eo
—pEsinfg=1—
P dt?

where 7 is negative because acts in such a
direction as to decrease 6.

d?e
—pEO=1—+
P dt?
| =ima’
p=qga

d?e
%maz F = —an9

or

dt>  ma
the differential equation for a simple
harmonic oscillator with angular frequency

®=./20E/ma .

2
d<o 2qE9

T=2
w

T=|2x ma
2qE

Picture the Problem We can apply conservation of energy and the definition of the
potential energy of a dipole in an electric field to relate g to the kinetic energy of the

dumbbell when it is aligned with the field.
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Using conservation of energy, relate AK +AU =0

the initial potential energy of the or, because K; =0,

dumbbell to its kinetic energy when K+AU =0

it is momentarily aligned with the where K is the kinetic energy when it is
electric field: aligned with the field.

Express the change in the potential AU =U; -U,

energy of the dumbbell as it aligns =—pEcosé; + pE coso,

with the electric field in terms of its _ an(cos 60° _1)

dipole moment, the electric field,
and the angle through which it

rotates:
Substitute to obtain: K +gaE(cos60°~1)=0
Solve for g 3 K
0= = eos607)
aE(1—cos60°)
Substitute numerical values and evaluate g: B 5x107°J
~ (0.3m)(600N/C)(1-cos60°)
=155.6C
*83 e

Picture the Problem The forces the electron and the proton exert on each other
constitute an action-and-reaction pair. Because the magnitudes of their charges are equal
and their masses are the same, we find the speed of each particle by finding the speed of
either one. We’ll apply Coulomb’s force law for point charges and Newton’s 2™ law to
relatevtoe, m, k, andr.

Apply Newton’s 2" law to the positron: ke? v2 ke®
PRl P —zzm—:>—:2mv2
r 3r r
Solve for v to obtain: ,e \/ ke?
2mr

84 oo
Picture the Problem In Problem 81 it was established that the period of an electric
dipole in an electric field is given by T = 27,/ma/2qE. We can use this result to find

the frequency of oscillation of a KBr molecule in a uniform electric field of 1000 N/C.
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Express the frequency of the KBr
oscillator:

Substitute numerical values and
evaluate f:

85 00

_ 1 J2qE

f =
27\ ma

_ 1 [2(1.6x10™° C){2000 N/C)
27\ [L.4x10% kg)(0.282nm)

=| 4.53x10° Hz

Picture the Problem We can use Coulomb’s force law for point masses and the
condition for translational equilibrium to express the equilibrium position as a function
of k, g, Q, m, and g. In part (b) we’ll need to show that the displaced point charge
experiences a linear restoring force and, hence, will exhibit simple harmonic motion.

(a) Apply the condition for
translational equilibrium to the point
mass:

Solve for y, to obtain:

(b) Express the restoring force that
acts on the point mass when it is
displaced a distance Ay from its
equilibrium position:

Simplify this expression further by
writing it with a common
denominator:

From the 1* step of our solution:

kq—?—mg =0
Yo
k
Yo = q_Q
mg

_ kaQ  kaQ
F= 2 2
(Yo+4AY) Yo
. kQ  kaQ
Yo +2YoAY Y,
because Ay << ;.

- 4 3
Yo +2Y,Ay

_2y,AykqQ

y§£1+ 2ij
Yo

__2AykqQ
Yo
again, because Ay <<yq.

kaQ _
2

Yo

mg
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Substitute to obtain:

Apply Newton’s 2" law to the
displaced point charge to obtain:

86  eee

Picture the Problem The free-body
diagram shows the Coulomb force the
positive charge Q exerts on the bead that is
constrained to move along the x axis. The x
component of this force is a restoring
force, i.e., it is directed toward the bead’s
equilibrium position. We can show that,
for x <<'L, this restoring force is linear
and, hence, that the bead will exhibit
simple harmonic motion about its
equilibrium position. Once we’ve obtained
the differential equation of SHM we can
relate the period of the motion to its
angular frequency.

Using Coulomb’s law for point
charges, express the force F that +Q
exerts on —q:

Express the component of this force
along the x axis:

2mg

F=- Ay
Yo
2
md Azy:_ng Ay
dt Yo
or
2
d A2y+2—gAy:0
dt Yo

the differential equation of simple

harmonic motion with | @ =4/2g/y

+X L2+ x?
B cf(z cosd
kqQ X
L2+ X% 12+ x2
kaQ «
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Factor L? from the denominator of this 3 kgQ kqQ
. . Fx - N3z Xx®——73X
equation to obtain: 5 NG L
L° 1+ B

because x << L.

Apply D" F, =ma, to the bead to . d*x __kaQ
obtain: dt® L
or
2
d ;( + kq? x=0
dt® mL

the differential equation of simple

harmonic motion with @ = /kqQ/mL? .

Express the period of the motion of 27 \/mL3 27zL\/ mL

kaQ

the bead in terms of the angular T= P 27
frequency of the motion:

kaQ

87 00

Picture the Problem Each sphere is in
static equilibrium under the influence of
the tension T , the gravitational force F ,

FCoulomb and the force 17“E exerted by the

electric field. We can use Coulomb’s law
to relate the electric force to the charges
on the spheres and their separation and the
conditions for static equilibrium to relate
these forces to the charge on each sphere.

(a)Apply the conditions for static Z F. = Feouioms — T SINEO
equilibrium to the charged sphere: kq?
=——Tsind=0
r

and
D> F,=Tcos¢-mg—qE =0

Eliminate T between these equations tan g — kq?
to obtain: - (mg +qE)r2
Referring to the figure for Problem r=2Lsiné

78, relate the separation of the
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spheres r to the length of the

pendulum L:
Substitute to obtain: kq?
tan@ = 9 TR
4(mg +qE)L*sin’ @
or
. kq?
S|n26’tan6?:#2 (1)
4(mg + gE )L
Substitute numerical values and sin® ftan @ = 3.25x10°°
evaluate sin? @ tan @ to obtain:
Because sin®@tan@ <<1: sind~tand ~ 0
and
0° ~3.25x10°°
Solve for 6 to obtain: 0 =0.148rad =| 8.48°
(b) The downward electrical forces
acting on the two spheres are no - .
longer equal. Let the mass of the -'|” L Ly v
sphere carrying the charge of 0.5 x.C | 6|
be m,, and that of the sphere l6, |
carrying the charge of 1.0 4C be m,. o | | A
The free-body diagrams show the -t —x = - —x
tension, gravitational, and electrical
forces acting on each sphere. VE,=mF
Because we already know from part YE,=m3g
(a) that the angles are small, we can E Y=ok
use the small-angle approximation VE,=qF

sin@~ tan@=6.

Apply the conditions for static Z £ __ kg,q, LT sine
equilibrium to the charged sphere X r? e
whose mass is m;: _ ka,q, T sing
(Lsing, +Lsing,}
k
=~ —%4—-&91
(6, +6,)
=0

and
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Z I:y,l =T1,y —-mg - qlE =0

Apply the conditions for static ka,q .
PRIy T D F.=—52-T,sin,

equilibrium to the charged sphere r

whose mass is m;: ka,d,

= +T,siné
(Lsing, +Lsing,)’ *

ka,d,
TGy
=0
and
z Fy,2 =T2,y -m,g-qg,E=0

Express 6, and 6 in terms of the 0 — T, 1)
components of Tl and Tz: ' 1y
and
T
@:;J )
2.y
Divide equation (1) by equation (2) T,
to obtain: 6 T, T,
02 T2,X 1y
T,y
because the horizontal components of Tland
TZ are equal.
Substitute for T,, and T, to obtain: 6 _mg+0q,E

o
6, mg+q,E

Add equations (1) and (2) to obtain:

T T - kag, 1 1
Orl=1"%7 T L2(6,+6,) Mg+ GE Mg+ aE
Ly 2,y 1 2 1 1 2 2

Solve for 6, + 6:

0,+0,=: kqlzq{ 1 . L }
L [mg+gE mg+0q,E
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Substitute numerical values and evaluate &, + 6, = 0.287rad =16.4°

6.+ 6 and 61/ 6;: and
G =1.34
2
Solve for & and 6 to obtain: 6, =|9.42° | and 6, =| 6.98°
88 (1 1]

Picture the Problem Each sphere is in
static equilibrium under the influence of a
tension, gravitational and Coulomb force.
Let the mass of the sphere carrying the
charge of 2.0 xC be m; = 0.01 kg, and that
of the sphere carrying the charge of 1.0 xC
be m, = 0.02 kg. We can use Coulomb’s
law to relate the Coulomb force to the
charge on each sphere and their separation
and the conditions for static equilibrium to
relate these forces to the charges on the
spheres.

Apply the conditions for static equilibrium
to the charged sphere whose mass is m;:

SF,=- qulzqz +T,sin 6,

ka,q )
=— L ~+T,sin6,

(Lsing, +Lsiné,)

ka,d,
N2 4T 0
L6, +6,f

=0
and
Z Fy,l =Tl,y _mlg =0

Apply the conditions for static equilibrium SF,, = ko,d,
to the charged sphere whose mass is my: x2 r?

T,siné,

ka,q )
= 132 ~+T,sin0,

(Lsin@, + Lsing,)

ka,d,
~l2 79
L*(6,+6,f °°

=0
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Using the small-angle approximation
sind~tanf~6, express & and &in
terms of the components of f‘l and

T,:

Divide equation (1) by equation (2)
to obtain:

Substitute for T,y and T, to obtain:

Add equations (1) and (2) to obtain:

Solve for 6, + 6:

Substitute numerical values and
evaluate 6, + & and 4,/6:

Solve for 6, and & to obtain:

Remarks: While the small angle approximation is not as good here as it was in the

and
Z I:y,2 :T2,y -m,g = 0

T1 X
'91 = (1)
Tl’y
and
TZ X
‘92 = (2)
Tz’y
Tl,x
O _ Ty Ty
‘92 T2v>< 1y
Tz,y

because the horizontal components of
T, and T, are equal.

O _m,
92 ml
T, T.
O, +0, =5+ 2%
Ly T2,y

__ kag, 1 1
L*(6,+6,) [ mg  m,g

0,+6,=3 kqlzqz[ 1,1 }
L [mg myg

6, + 6, =0.496rad = 28.4°

and
0,

1
0,

1
2

6,=19.47° | and 6, =| 18.9°

preceding problems, the error introduced is less than 3%.

71
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89 00
Picture the Problem We can find the effective value of the gravitational field by finding
the force on the bob due to g and Eand equating this sum to the product of the mass of

the bob and g'. We can then solve this equation for E in terms of g, g',q,and Mand
use the equation for the period of a simple pendulum to find the magnitude of g'

Express the force on the bob due to

F:M§+qE:M(§+iEj: Mg’

gand E: M
where
-1 - q -
g =g+ VE
Solve for E to obtain: B M(g, _5)
q
Using the expression for the period L
. . T =27 |—
of a simple pendulum, find the g'
magnitude of ¢’: and

. A7’L 4z*(lm)

=7 = 12 =27.4m/s?

—

Substitute numerical values and evaluate E :

(27.4m/s?)j - (0.81m/s2)j|=[ (- 1.10x10° NIC);

*90 oo0

Picture the Problem We can relate the force of attraction that each molecule exerts on
the other to the potential energy function of either molecule using F = —dU/dx. We can
relate U to the electric field at either molecule due to the presence of the other through U
= —pE. Finally, the electric field at either molecule is given by E = 2kp/x3.

Express the force of attraction E—_ du,
between the dipoles in terms of the dx
spatial derivative of the potential

energy function of p;:

)

Express the potential energy of the U, =-pE
dipole p;: where E; is the field at p; due to p,.
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2kp,

3

Express the electric field at p; due to E -
P2: ! X
where x is the separation of the dipoles.

Substitute to obtain: U 2ke.p,

1= X3
Substitute in equation (1) and F_ _d | 2kp.p, _ 6kp, p,
differentiate with respect to x: dx x> x*
Evaluate F for p; = p, = p and 6kp®
x = d to obtain: F= q°

91  eee

Picture the Problem We can use Coulomb’s law for the electric field due to a point
charge and superposition of fields to find the electric field at any point on the y axis. By
applying Newton’s 2" law, with the charge on the ring negative, we can show that the
ring experiences a linear restoring force and, therefore, will execute simple harmonic
motion. We can find @ from the differential equation of motion and use f = @/2zto find
the frequency of the motion.

(a) Use Coulomb’s law for the electric field due to a point charge and
superposition of fields, express the field at point P on the y axis:

Eo=E+E, =0 Kby KQu  KQ;

r1,2p 1P r22,P hep= ﬁrl,P +¥r2,P
kQ (L 2 cj kQ [ L. “.j
= | —i+ Y|t ———5 | =P+ Y]
(az + y2)3/2 2 (az + y2)3/2 2
B 2kQy
B (a2 + y2)3/2 ’
where a = L/2.
(b) Relate the force on the charged F —ab - 2kgqQy -
i i i y =k, = 2 2 )3/2 J
ring to its charge and the electric (a +y )
field:

where g must be negative if Fy isto be a

restoring force.
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(c) Apply Newton’s 2" law to the . d’y _ 2kqQ
ring to obtain: dt? (az " y2)3/2
or
d’y  2kqQ

dtz m(az n y2)3/2 y

Factor the radicand to obtain: d’y B 2kgQ
dt?> y?
ma3(1+ 2]
a
_2kqQ ~_ 16kqQ

" ma mL®
provided y << a = L/2.

3/2 y

Thus we have: d’y _ 16kgQ
dt2 ml
or

d’y 16kqQ
—+——=y=0
a2 me

the differential equation of simple
harmonic motion.

Express the frequency of the simple fo o
harmonic motion in terms of its 2r
angular frequency:

From the differential equation W = 16kgQ
describing the motion we have: mL®
and

f_i 116kqQ
27\ mL®

Substitute numerical values and evaluate f:

fot 16(8-99><109N'mZ’CZ)(F’é‘C)(Z”C)= 9.37Hz
2 (0.03kg)(0.24m)
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92 oo

Picture the Problem The free body
diagram shows the forces acting on the
microsphere of mass m and having an
excess charge of g = Ne when the electric
field is downward. Under terminal-speed
conditions the sphere is in equilibrium

under the influence of the electric force 1’7“e :

its weight mg, and the drag force Fd. We

can apply Newton’s 2" law, under
terminal-speed conditions, to relate the
number of excess charges N on the sphere
to its mass and, using Stokes’ law, find its
terminal speed.

(@) Apply > F, =ma, to the
microsphere:

Substitute for Fe, m, and Fg terminal 1O
obtain:

Solve for N to obtain:

Substitute numerical values and
4 3 .
evaluate 3 71~ oQ :

Substitute numerical values and
evaluate 677rv,:

Substitute numerical values in
equation (1) and evaluate N:

(b) With the field pointing upward,
the electric force is downward and

the application of ) F, =ma, to

y

AE

m, 9

yng

F.—-mg-F,=ma,
or, because a, = 0,

F,—-mg-F, 0

Jterminal —

qE — pVg —67z7rv, =0
or, because g = Ne,
NeE — 4 71°pg —677rv, =0

_ 4ar°pg + 671V,
eE

N

47r°pg =47(5.5x107 mf

75

x (1.05x10° kg/m*)(9.81m/s? )

=7.18x10° N

67z7rv, = 67(1.8x10° Pa-s)(5.5x10 " m)

x (.16 x10* m/s)
=2.16x10™N

7.18x10™° N +2.16x10™ N

~ [L6x10™C)(6x10" V/m)
=13

F -F,-mg=0

d, terminal

or
67nrv, — NeE — 4 ar°pg—=0
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the bead yields:

- W 3
Solve for v; to obtain: v NeE + 4 71° pg

6xnr
Substitute numerical values and evaluate v

~ 3(1.6x10™° C)(6x10* V/m )+ £ (5.5x107 m)’(1.05x10° kg/m*)(9.81m/s?)
v 67(1.8x10° Pa-s)(5.5x107 m)

=[1.93x10* m/s

*03 eee

Picture the Problem The free body
diagram shows the forces acting on the
microsphere of mass m and having an
excess charge of g = Ne when the electric
field is downward. Under terminal-speed
conditions the sphere is in equilibrium

under the influence of the electric force Fe :

its weight mg, and the drag force I7d. We

can apply Newton’s 2" law, under
terminal-speed conditions, to relate the
number of excess charges N on the sphere
to its mass and, using Stokes’ law, to its
terminal speed.

(@) Apply > F, =ma, tothe F,—mg-F,=ma,
microsphere when the electric field is or, because a, = 0,
downward: Fe —mg — I:d,terminal =0
Substitute for Fe and Fg terminal tO gE —mg —6znrv, =0
obtain:

or, because g = Ne,
NeE —mg —6z7rv, =0

Solve for v, to obtain: -

u v = NeE —mg 1)

67nr

With the field pointing upward, the Fy erminat — F. —M@ =0
electric force is downward and the or ’
application of )" F, =ma, to the 67V, — NeE —mg =0
microsphere yields: ’
Solve for vq4 to obtain: NeE + m

“ V=9 @)

6znr



Add equations (1) and (2) to obtain:

The Electric Field 1: Discrete Charge Distributions
NeE —mg
V=V, +Vy=—-—"—
6znr
N NeE + mg
67znr
_ NeE | gE
3mnr | 3anr

microsphere.

This has the advantage that you don't need to know the mass of the

(b) Letting Av represent the change
in the terminal speed of the
microsphere due to a gain (or loss)
of one electron we have:

Noting that Av will be the same
whether the microsphere is moving
upward or downward, express its
terminal speed when it is moving
upward with N electronic charges on
it:

Express its terminal speed upward
when it has N + 1 electronic
charges:

Substitute and simplify to obtain:

Substitute numerical values and
evaluate Av:

AV =V 5 = Vy

NeE —mg
Vy=———>
67znr
(N +1)eE —mg
Vg = 6
nr
(N+1)eE-mg NeE-mg
AVy,, = -
6znr 6znr
_ ek
67znr

_ [Lex10™C)(6x10* V/m)
~ 67{1.8x10° Pa-m)(5.5x107 m)

=15.15x10° m/s
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