Chapter 22
The Electric Field 2: Continuous Charge
Distributions

Conceptual Problems

*1 (1]
(a) False. Gauss’s law states that the net flux through any surface is given
by @ = £EndA = 47KQ; i - While it is true that Gauss’s law is easiest to apply to

symmetric charge distributions, it holds for any surface.
(b) True

2 (1]
Determine the Concept Gauss’s law states that the net flux through any surface is given
bY @t = §s E,dA = 47KQ, g - TO use Gauss’s law the system must display some

symmetry.

3 (1 1]

Determine the Concept The electric field is that due to all the charges, inside and
outside the surface. Gauss’s law states that the net flux through any surface is given

bY @t = £EndA = 47KQ,siqe - The lines of flux through a Gaussian surface begin on

charges on one side of the surface and terminate on charges on the other side of the
surface.

4 (1]

Picture the Problem We can show that the charge inside a sphere of radius r is
proportional to r’ and that the area of a sphere is proportional to r’. Using Gauss’s law,
we can show that the field must be proportional to r*/r® =r.

Use Gauss’s law to express the E— A7KQingice

electric field inside a spherical A

charge distribution of constant where A=4ar?.

volume charge density:

Express Qinsice &S a function of p and Qinsice = PV = %ﬁpr3

r:

Substitute to obtain: £ 47k 4 mor® _| 4kap i
4ar? 3
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*5 °
(a) False. Consider a spherical shell, in which there is no charge, in the vicinity of an
infinite sheet of charge. The electric field due to the infinite sheet would be non-zero
everywhere on the spherical surface.

(b) True (assuming there are no charges inside the shell).
(c) True.

(d) False. Consider a spherical conducting shell. Such a surface will have equal charges
on its inner and outer surfaces but, because their areas differ, so will their charge
densities.

6 .
Determine the Concept Yes. The electric field on a closed surface is related to the net
flux through it by Gauss’s law: ¢ = £EdA = Qinsice /€0 - If the net flux through the closed

surface is zero, the net charge inside the surface must be zero by Gauss’s law.

7 .
Determine the Concept The negative point charge at the center of the conducting shell

induces a charge +Q on the inner surface of the shell. | (a) is correct.

8 .
Determine the Concept The negative point charge at the center of the conducting shell
induces a charge +Q on the inner surface of the shell. Because a conductor does not have

to be neutral, | (d) is correct.

*Q  ee
Determine the Concept We can apply Gauss’s law to determine the electric field for
r <R;and r > R,. We also know that the direction of an electric field at any point is
determined by the direction of the electric force acting on a positively charged object
located at that point.

From the application of Gauss’s law E — k_Q
we know that the electric field in "o’
both of these regions is not zero and

is given by:

A positively charged object placed in either of these regions would experience an
attractive force from the charge —Q located at the center of the shell. | (b) is correct.
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*10 L 1]

Determine the Concept We can decide what will happen when the conducting shell is
grounded by thinking about the distribution of charge on the shell before it is grounded
and the effect on this distribution of grounding the shell.

The negative point charge at the center of the conducting shell induces a positive charge
on the inner surface of the shell and a negative charge on the outer surface.
Grounding the shell attracts positive charge from ground; resulting in the outer surface

becoming electrically neutral. | (b) is correct.

11 e
Determine the Concept We can apply Gauss’s law to determine the electric field for r <
R; and r > R,. We also know that the direction of an electric field at any point is
determined by the direction of the electric force acting on a positively charged object
located at that point.

From the application of Gauss’s law we know that the electric field in the region r < R;
isgivenby E_ = —? A positively charged object placed in the region r < R; will
r

experience an attractive force from the charge —Q located at the center of the shell. With
the conducting shell grounded, the net charge enclosed by a spherical Gaussian surface
of radius r > R; is zero and hence the electric field in this region is zero.

(c)iscorrect.

12 e
Determine the Concept No. The electric field on a closed surface is related to the net
flux through it by Gauss’s law: ¢ = §SEdA = Qisice /€ - # Can be zero without E being

zero everywhere. If the net flux through the closed surface is zero, the net charge inside
the surface must be zero by Gauss’s law.

13 oo

False. A physical quantity is discontinuous if its value on one side of a boundary differs
from that on the other. We can show that this statement is false by citing a
counterexample. Consider the field of a uniformly charged sphere. p is discontinuous at
the surface, E is not.

Estimation and Approximation

*14 e
Picture the Problem We’ll assume that the total charge is spread out uniformly (charge
density = o) in a thin layer at the bottom and top of the cloud and that the area of each
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surface of the cloud is 1 km? We can then use the definition of surface charge density
and the expression for the electric field at the surface of a charged plane surface to
estimate the total charge of the cloud.

Express the total charge Q of a Q=0A
thundercloud in terms of the surface
area A of the cloud and the charge

density o:

Express the electric field just outside E-C
the cloud: €
Solve for o: o=, E
Substitute for o to obtain: Q=¢, EA

Substitute numerical values and evaluate Q:

Q=(8.85x107? C?*/N-m?)(3x10° V/m)(1km?)=] 26.6C

Remarks: This charge is in reasonably good agreement with the total charge
transferred in a lightning strike of approximately 30 C.

15 e
Picture the Problem We’ll assume that the field is strong enough to produce a spark.
Then we know that field must be equal to the dielectric strength of air. We can then use
the relationship between the field and the charge density to estimate the latter.

Suppose the field is large enough to E ~| 3x10°V/m
produce a spark. Then:

Because rubbing the balloon leaves it E-_9
with a surface charge density of +o 2¢,
and the hair with a surface charge

density of —g; the electric field

between the balloon and the hair is:

Solve for o: c=2¢,E

Substitute numerical values and evaluate o:

o =2(8.85x10"2C?/N-m?)(3x10° V/m )= 5.31x10"° C/m’
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16 -
Picture the Problem For x << r, we can model the disk as an infinite plane. For
X >>r, we can approximate the ring charge by a point charge.

For x << r, express the electric field E, =27ko
near an infinite plane of charge:

(a) and (b) Because E, is E, = 27(8.99x10° N-m?/C?)(3.6 £C/m?)
independent of x for x <<r: _[2.03x10° N/C

For x >>r, use Coulomb’s law for kQ kar’c

. g . EX(X) 2 2
the electric field due to a point X X
charge to obtain:

(c) Evaluate Exatx =5 m:

(5m)= 7(8.99x10° N-m?/C?)(2.5¢m)(3.6 1C/m?)

- By

X

= 2.54N/C

(d) Evaluate Eyat x =5 cm:

7(8.99x10° N-m?/C?)(2.5cm (3.6 1C/m?)
(0.05m)’
Note that this is a very poor approximation because x = 2r is not much greater thanr.

E (5cm)= =| 2.54x10* N/C

Calculating E From Coulomb’s Law

*17 .

Picture the Problem We can use the definition of A to find the total charge of the line of
charge and the expression for the electric field on the axis of a finite line of charge to
evaluate E, at the given locations along the x axis. In part (d) we can apply Coulomb’s law
for the electric field due to a point charge to approximate the electric field at x = 250 m.

() Use the definition of linear Q=1L
charge density to express Q in terms - (3.5 nC/m)(5 m) =|17.5nC
of 4.
Express the electric field on the axis kQ
P Ex(XO) =

of a finite line charge:
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(b) Substitute numerical values and

(6m)= (8.99x10°N - m?/C?)(17.5nC)

evaluate E, at x = 6 m: = (6m)(6m—5m)
=] 26.2N/C
(c) Substitute numerical values and £ (om)= (8.99 x10°N - m?/C? )(17.5 nC)

evaluate E, at x = 9 m: (9m)(Om-5m)

4.37N/C

(d) Substitute numerical values and evaluate E at x = 250 m:

8.99x10°N-m?/C?)(17.5nC)

E, (250 =( =| 2.57mN/C
(250m) (250m)(250m —5m) m

(e) Use Coulomb’s law for the E (x) kQ
electric field due to a point charge to g X
obtain:

Substitute numerical values and evaluate E,(250 m):

9 2 2
EX(ZSOm):(s.ggxlo N-m*/C°)A7.5nC) _ ey i

(250m)’
Note that this result agrees to within 2% with the exact value obtained in (d).

18 -

Picture the Problem Let the charge

densities on the two plates be o1 and o / /
and denote the three regions of interest as
1, 2, and 3. Choose a coordinate system in -
which the positive x direction is to the

right. We can apply the equation for

E near an infinite plane of charge and the 1 /2 /
superposition of fields to find the field in > >
each of the three regions.

7,
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(a) Use the equation for E near E = Eal +E,,

an infinite pl_ane (_)f cha_rge to _ —Zﬂkalf B 27zk0'2iA
express the field in region 1 R

when o1 = o> = +3 £C/m*: =-4rkoi

Substitute numerical values and evaluate E, :

—

E, = -47(8.99x10° N-m?/C?)(3 uC/m? )i =| - (3.39x10° N/C)i

Proceed as above for region 2: E,=E, +E,_ =2kKo,i - 27ko,i
= 27Koi — 27kl =

Proceed as above for region 3: E,=E, +E,, =2ka,i +27ko,i
= 47kl

= 47(8.99%10° N -m?/C?)(3 uC/m? )i
(3.39x10° N/Cfi

The electric field lines are shown - -

to the right:
- —_—
-~ —_—

E E;

- —_—
- —_—

(b) Use the equation for E near E, = Eal + EUZ = Zﬂkalf— 2ﬂk02f

an infinite plane of charge to - ~

P # = 27kai — 27kol =

express and evaluate the field in

region 1 when o; = +3 £C/m? and

oy = -3 ﬂC/mZZ

Proceed as above for region 2: E,=E, +E, =2mka,i +27ko,i

= 47kol

— 47(8.99x10° N-m?/C? )(34C)i
(3.39x10° N/C)i
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Proceed as above for region 3: E,=E, +E, =2ko,i —27ko,i
= 27koi — 27Kol =
The electric field lines are shown to the H—
right: :
——
E
—_—
—
19 -

Picture the Problem The magnitude of the electric field on the axis of a ring of charge
is given by E (x)= kQX/(x2 + a2)3/2 where Q is the charge on the ring and a is the
radius of the ring. We can use this relationship to find the electric field on the x axis at
the given distances from the ring.

Express E on the axis of a ring charge: E (x _ kox
X 2 2 /2
(x? + a2}

(a) Substitute numerical values and evaluate E, for x = 1.2 cm:

(8.99x10° N - m?/C?)(2.75 4C)(L.2cm)

) —[4.69x10° N/C
(1.2cm? +(85cm)?

E (1.2cm)=

(b) Proceed as in (a) with x = 3.6 cm:

8.99x10° N - m?/C?)(2.75 4C)(3.6cm)

EX(3.6cm):( = 1.13x10° N/C
[(3.6cm)2 + (8.5cm)2]3/2

(c) Proceed as in (a) with x =4.0 m:

(4m)= (8.99x10° N-m?/C?)(2.75 4C)(4m)

E =11.54x10° N/C

' (am) +(8.5cmy )"
(d) Using Coulomb’s law for the E.(x)= kQ
electric field due to a point charge, g G

express Ey:



The Electric Field 2: Continuous Charge Distributions 87

Substitute numerical values and evaluate E, at x = 4.0 m:

9 2 2
E (4m)= (8.99x10 N(-Llf:‘n)/f J2754C) _ 1.55x10° N/C

This result agrees to within 1% with the result obtained in Part (c). It is
slightly larger because the point charge is nearer x =4 m than is the ring.

20 -

Picture the Problem We can use E, (x)= 27zk0'[1—

X , the expression for the
Vx?+R?

electric field on the axis of a disk charge, to find E, at x = 0.04 cm and 5 m.

Express the electric field on the axis E ( )_ 2kol 1 X
of a disk charge: )= ERT _VX2+R2

(a) Evaluate this expression for x = 0.04 cm:

E, =27(8.99x10° N-m?/C?)(3.6 ,uC/mz)[l 0.04cm J

J(0.04cm)y +(2.5cm)’

=1 2.00x10° N/C

This value is about 1.5% smaller than the approximate value obtained in Problem 9.

(b) Proceed as in (a) for x =5 m:

E. = 27(8.99x10° N-m?/C?)(3.6 uC/m? ) 1— il _[2.54N/C
=2r(B9910" N-m'iC? 3.4 m){ \/(Sm)2+(2.5cm)2J

Note that the exact and approximate (from Problem 16) agree to within 1%.

21 -

Picture the Problem We can use the definition of A to find the total charge of the line of
charge and the expression for the electric field on the perpendicular bisector of a finite
line of charge to evaluate E, at the given locations along the y axis. In part (e) we can
apply Coulomb’s law for the electric field due to a point charge to approximate the
electric field aty = 4.5 m.

(a) Use the definition of linear Q= AL =(6nC/m)(5cm)=| 0.300nC
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charge density to express Q in terms

of A

Express the electric field on the E.(y)= 2kA 1L
perpendicular bisector of a finite line ! y \/(% |_)2 +y?
charge:

(b) Evaluate Ey aty = 4 cm:

(acm) = 2(8.99x10° N-m?/C?)  4(6nC/m)(0.05m)

E =|1.43kN/C

y 0.04m J(0.025m)? +(0.04m)

(c) Evaluate Eyaty = 12 cm:

9 2 2
Ey(lzcm)zz(s.ggxlo N-m?/C?) 3(6nC/m)(0.05m) _ EaNe

0.12m J(0.025my +(0.12mY’

(d) Evaluate Eyaty = 4.5 m:

2(8.99x10° N-m?C?) &(6nC/m)(0.05m)

E,(4.5m)= =| 0.133N/C

45m J(0.025m) + (45mYy

(e) Using Coulomb’s law for the electric E (y) kQ
field due to a point charge, express E,: Y y

Substitute numerical values and evaluate E, aty = 4.5 m:

9 2 2
Ey(4.5m)=(8'99X10 N-m*/C*)(0:30C) _ s Taanic

(4.5m)
This result agrees to three decimal places with the value calculated in Part (d).

22 e
Picture the Problem The electric field on the axis of a disk charge is given by

E,= 27qu(1— ] . We can equate this expression and E, =1 0/2 €, and

x? +a®
solve for x.

Express the electric field on the axis of a

X
disk charge: E, = Zﬂkq[l_ [\2 + a2 j
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We’re given that: E,=30/2¢,

Equate these expressions:
q P % ko1

4, Vx? +a?

Simplify to obtain:

o
—=27Ko|1-—e=
4g, m
or, because k = 1/4 &,

1, X

2 Vx? +a?

Solve for x to obtain: = a
V3
23 e
. kQx . L .
Picture the Problem We canuse E, = 7 vz Lo find the electric field at the given
(x2 + az)3
distances from the center of the charged ring.
a) Evaluate E, at x = 0.2a: kQ(0.2a
@ EX(0.2a)= (2 2) 32
l(O.Za) +a J
= 0.189k—?
a
b) Evaluate E, at x = 0.5a: kQ(0.5a
() E, (0.52)= (2 2) -
[(O.Sa) +a ]
= O.358k—?
a
c) Evaluate E, at x = 0.7a: kQ(0.7a
© E, (0.7a)= (2 2) -
[(O.?a) +a ]
= 0.385k—?
a
(d) Evaluate E, at x = a: E.(a)= kQa - O.354k—?
[a2 + az] / a
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(e) Evaluate E, at x = 2a: 2kQa

kQ
R P

The field along the x axis is plotted below. The x coordinates are in units of x/a and E is in
units of kQ/a%

0.4
0.2 | \\
u 0.0
-0.2 1
-0.4 :
3 2 1 0 1 2 3
X/a

24 .

Picture the Problem We can use E, = 27Zk0'[1— J where R is the radius of

X
Vx? +R?

the disk, to find the electric field on the axis of a disk charge.

Express Ey in terms of &: E _ 2no 1 X
Y 4n o Vx? +R?
2¢, \/X2 +R?
(a) Evaluate E, at x = 0.2a:
E,(0.2a)=-Z 1028
2¢, (0.2a)" +a’
= 0.804-Z

So
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(b) Evaluate E, at x = 0.5a:

(c) Evaluate E, at x = 0.7a:

(d) Evaluate E, at x = a:

(e) Evaluate E, at x = 2a:

E, (0.5a)= -2 (1 ( 052 }

2 & 0.5a)" +a’

—| 0.553-2

So

E.(0.7a)= o |4 0.7a }
-

2e 0.7a) +a?

—| 0427-2

So

E(2a)= 220 (l_ (2a§?+ a’ J

o

=| 0.106

2 e,

The field along the x axis is plotted below. The x coordinates are in units of x/a and E is

in units of o/2 ;.

2.0

12

0.8

0.4 1

0.0
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*25 e
Picture the Problem

(a) The electric field on the x axis of

X
a disk of radius r carrying a surface E, = Zﬂka[l_ /Xz 42 J
charge density ois given by:

(b) The electric field due to an Epae = 27KO
infinite sheet of charge density o'is

independent of the distance from the

plane and is given by:

A spreadsheet solution is shown below. The formulas used to calculate the quantities in
the columns are as follows:

Cell Content/Formula Algebraic Form
B3 9.00E+09 k

B4 5.00E-10 o

B5 0.3 r

A8 0 Xo

A9 0.01 Xo +0.01

B8 | 2*PI()*$B$3*$B$4*(1-A8/ X
(A8"2+$B$5"2)"2)"0.5) 27ko Lﬁ
X" +r

C8 2*P1()*$B$3*$B$4 27Ko
A B c

1
2
3 = | 9.00E+09 | Nm~"2/C"2
4 sigma= | 5.00E-10 | C/m"2
5 r= 03| m
6
7 X E(x) E plate
8 0.00 28.27 28.3
9 0.01 27.33 28.3
10 0.02 26.39 28.3
11 0.03 25.46 28.3
12 0.04 24.54 28.3
13 0.05 23.63 28.3
14 0.06 22.73 28.3
15 0.07 21.85 28.3
73 0.65 2.60 28.3
74 0.66 2.53 28.3
75 0.67 2.47 28.3
76 0.68 241 28.3
77 0.69 2.34 28.3
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| 78 | o070 | 229 | 283 |

The following graph shows E as a function of x. The electric field from an infinite sheet
with the same charge density is shown for comparison — the magnitude of the electric
fields differ by more than 10 percent for x = 0.03 m.

30
25

20 \ E
\ = = = .Eplate

[®]
=
15
<
= \\
10 \
5 \\\
0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

x (m)

26 oo

Picture the Problem Equation 22-10 expresses the electric field on the axis of a ring
charge as a function of distance along the axis from the center of the ring. We can show
that it has its maximum and minimum values at X = +a/\/§ and X = —a/\/i by setting
its first derivative equal to zero and solving the resulting equation for x. The graph of E
will confirm that the maximum and minimum occur at these coordinates.

Express the variation of E,with x on £ kQx

the axis of a ring charge: § (x2 + a2)3/2

Differentiate this expression with respect to x to obtain:

x2 4 32 3/2—Xi W2 + 32 3/2
Eszi% ZkQ( * ) dX( + )
dx dx | (x2 +a?)” (Xz ra)
(XZ + a2) x(3 (X +a ) (Xz N a2)3/2 —3X2(X2 N a2)1/2
=k 2 =k
© +a’) © (x*+ az)3
Set this expression equal to zero for (x +a )3/ _3x2 (x +a )‘/
extrema and simplify: (x ta )3 =Y,

(x> +a?f* —3x?(x* +a’)* =0,
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Solve for x to obtain:

and

x2+a’>-3x>=0

X =

a
+ =
V2

as our candidates for maxima or minima.

A plot of E, in units of kQ/a?, versus x/a is shown to the right. This graph shows that E is
aminimumat X = —a/\/§ and a maximum at X = a/\/z

0.4

0.2

[\

-0.4

N

xla

27 e
Picture the Problem The line charge and

point (0, y) are shown in the diagram. Also
shown is a line element of length dx and the

field dE its charge produces at (0, y). We
can find dE, from dE and then integrate
from x = X1 to X = Xo.

Express the x component of dE :
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Integrate from x = x; to X, to obtain:

From the diagram we see that:

Substitute to obtain:

28 e

Picture the Problem The diagram shows a
segment of the ring of length ds that has a
charge dq = Ads. We can express the

electric field dE at the center of the ring
due to the charge dq and then integrate this
expression from ¢=0to 2xto find the
magnitude of the field in the center of the
ring.

(a) and (b) The field dE at the
center of the ring due to the charge
dq is:

The magnitude dE of the field at the
center of the ring is:

kif;—:;jydx

S| DR S
i X+ y? )
=—-kA| - L + L ]

JX§+y2 VX +y?
ki y
\/x +y? \/xf+y2

E, = —%[— cos 6, +cos 4, |

= k%[eos 6, —cosd,]

dE = dE, + dE
o .
=—dEcos@i —dEsing |
e -8

95
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Because dq = Ads:

The linear charge density varies with
@according to
A6) = Ao sin G

Substitute rd@for ds:

Substitute for dE in equation (1) to
obtain:

Integrate dE from 6=0to 27

dE = k)tgjs
r
dE = kA, 5|r21 @ds
r

_kA,sin@rdd ki, sinodo

dE
r’ r
dE — — kA, sin Hcos&’d&i
r
_kZ,sin®6d6 j
r

2r
E-_Kb jsin 20d0i
2r

2z
—%Isinzedej
r 0

ﬂk/Iojf

r
_7Zk/10 I
r

-0-

The field at the origin is in the negative y direction and its magnitude is

kA,

20 e
Picture the Problem The line charge and
the point whose coordinates are

(0, y) are shown in the diagram. Also
shown is a segment of the line of length dx.
The field that it produces at (0, y) is dE.
We can find dE, from dE and then
integrate from x = 0 to x = a to find the y
component of the electric field at a point on
the y axis.

(a) Express the magnitude of the
field dE due to charge dq of the

dE \
()]

dx a
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element of length dx:

Because dg = Adx:

Express the y component of dE:

Refer to the diagram to express cosé
in terms of x and y:

Substitute for cosé in the expression
for dE, to obtain:

Integrate from x =0 to x = a and
simplify to obtain:

*30 (1 1]
Picture the Problem Consider the ring

with its axis along the z direction shown in
the diagram. Its radius is z = rcos@and its
width is rd €. We can use the equation for

the field on the axis of a ring charge and
then integrate to express the field at the
center of the hemispherical shell.

Express the field on the axis of the
ring charge:

where r? = x> +y?

kAdx
dE = o
y
dE, = zk/l 5 C0s 6 dx
X +y
y
C0SH = ———
VX2 +y?
aE, = x
(x2 + y2)3
E, = kﬂyj;w_dx
! (XZ + yz)
X
- kly! 2 2 2 ]
yAXT+y
Ty —
yya’+y?
[k a
y Ja*+y?
//;: —___‘_:;i:l‘-l‘:ln‘}' T re
g > 10
f_.-——?,——-. dae
/// {b#] H“M"‘\
)
dE
dE = kzdq .
(rzsin2¢9+ r? cos? 6?)3
kzdq
:r—3

where z = rcosé

97
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Express the charge dg on the ring: dg=odA= 0'(27zf sin 9)I’dl9
=2zor?sinado

Substitute to obtain: dE = k(rcos@)2zor?sinad@
- 5

= 27Kkosin@cos&d @

/2

Integrate dE from 6= 0 to #/2 to obtain: .
g E:Zﬂka_[smé?cos@d&
0

= 27kolssin? 07 =[ ke

Gauss’s Law

31 -
Picture the Problem The definition of electric flux is¢ = {%E -NdA . We can apply this

definition to find the electric flux through the square in its two orientations.
(a) Apply the definition of ¢ to find ¢ = £ (2KN/C)i - idA = (2 kN/C)ifé dA

the flux of the field when the square
is parallel to the yz plane:

=(2kN/C)(0.1m)* =| 20.0N-m*/C

(b) Proceed as in (a) with i -A=c0s30°: = £ (2kN/C)cos30°dA
= (2kN/C)cos30°¢ dA

(2kN/C)(0.1mY cos30°
=[17.3N-m?/C

*32 .

Determine the Concept While the number of field lines that we choose to draw radially
outward from q is arbitrary, we must show them originating at g and, in the absence of
other charges, radially symmetric. The number of lines that we draw is, by agreement, in
proportion to the magnitude of q.
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(a) The sketch of the field lines and of the
sphere is shown in the diagram to the
right.

Given the number of field linesdrawn from g, 3 lines enter the sphere.
Had we chosen to draw 24 field lines, 6 would haveentered the spherical surface.

(b) | The net number of linescrossing the surface is zero.

(c) | The net flux is zero.

33 -

Picture the Problem The field at both circular faces of the cylinder is parallel to the
outward vector normal to the surface, so the flux is just EA. There is no flux through the
curved surface because the normal to that surface is perpendicular to E. The net flux

through the closed surface is related to the net charge inside by Gauss’s law.
Y, <

T
S
..--'/
e

A A
|

=)

L]

\J \

AL N ST
-4
(a) Use Gauss’s law to calculate the ¢,ight = Eright . ﬁrightA
flux through the right circular B (300 N/C)f- f(;z)(O O4m)2
surface: B '
=[1.51N-m?/C
Apply Gauss’s law to left circular Gt = Epert - Mo A
surface:

= (-300N/C)i - (— f)(ﬂ)(0-04 m)’
=[151N-m?/C
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(b) Because the field lines are
parallel to the curved surface of the
cylinder:

(c) Express and evaluate the net flux
through the entire cylindrical
surface:

(d) Apply Gauss’s law to obtain:
Solve for Qinsige:

Substitute numerical values and
evaluate Qjnsige:

34

¢curved = @

¢net = ¢right + ¢Ieft + ¢curved
=1.51IN-m?/C+1.51N-m?/C+0

=[3.02N-m?/C

¢net = 47Zinnside

—_ ¢net
Qinside - 47Zk
3.02N-m?/C
Qinside = 9 2 2
47(8.99x10° N-m?/C?)
=1 2.67x10C

Picture the Problem We can use Gauss’s law in terms of g to find the net charge inside

the box.

(a) Apply Gauss’s law in terms of
& to find the net charge inside the
box:

Substitute numerical values and
evaluate Qinsige:

1

¢net = _Qinside

So

Qinside =EO ¢net

Quace = (8.85x1072 C*/N-m?)(6 kN - m?/C)

=[5.31x10°%C

(b)

You can only conclude that the net charge is zero. There may be an equal
number of positive and negative charges present inside the box.

35 -

Picture the Problem We can apply Gauss’s law to find the flux of the electric field

through the surface of the sphere.

(a) Use the formula for the surface
area of a sphere to obtain:

A=4m* =4z(05m) =| 3.14m”?
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(b) Apply Coulomb’s law to express E— 1 q
and evaluate E: dr e, r?

~ 1 2 1C
~ 47(8.85x10™ C*/N-m?)(0.5m)’

—|7.19x10* N/C

(c) Apply Gauss’s law to obtain: ¢= § E -AdA = § EdA
S S

(7.19x10* N/C)(3.14m?)

2.26x10° N-m?/C

No. The flux through the surface is independent of where the
charge is located inside the sphere.

(d)

(e) Because the cube encloses the sphere, B =| 2.26% 10° N-m?/C
the flux through the surface of the sphere
will also be the flux through the cube:

*36 o

Picture the Problem We’ll define the flux of the gravitational field in a manner that is
analogous to the definition of the flux of the electric field and then substitute for the
gravitational field and evaluate the integral over the closed spherical surface.

Define the gravitational flux as: ¢y = it;s g -ndA

Substitute for g and evaluate the R

_ J ¢ =4 _Gm; -ndA:—G—HdA
integral to obtain: s r r- -s

=(—G—mj(4;zr2)= — 42Gm

37 e
Picture the Problem We’ll let the square be one face of a cube whose side is 40 cm.
Then the charge is at the center of the cube and we can apply Gauss’s law in terms of &
to find the flux through the square.

Apply Gauss’s law to the cube to 4 = 1 Q
net — inside
express the net flux: S
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Express the flux through one face of p 1 Q
. square inside
the cube: 6,

Substitute numerical values and y _ 2.uC
evaluate dqyare: sauare 6(8.85><1O‘12 C?IN - mz)

=[3.77x10* N-m?/C

38 e
Picture the Problem We can treat this portion of the earth’s atmosphere as though it is a
cylinder with cross-sectional area A and height h. Because the electric flux increases with
altitude, we can conclude that there is charge inside the cylindrical region and use
Gauss’s law to find the charge and hence the charge density of the atmosphere in this
region.

The definition of volume charge _Q
o P=
density is: Vv
Express the charge inside a cylinder Q= pAh
of base area A and height h for a
charge density p:
Taking upward to be the positive Q=-(E,A-E,A)e,=(E,A-E,A)¢g,
direction, apply Gauss’s law to the where we’ve taken our zero at 250 m above
charge in the cylinder: the surface of a flat earth.
Substitute to obtain: o (E,A-E,A)e, _ (E,—Ey)eg

Ah h

Substitute numerical values and evaluate o:

=| —~7.08x102 C/m?®

(150 N/C —170N/C)(8.85x102 C?/N - m?)
p =
250m

where we’ve been able to neglect the curvature of the earth because the maximum height
of 400 m is approximately 0.006% of the radius of the earth.

Spherical Symmetry

39 -
Picture the Problem To find E, in these three regions we can choose Gaussian surfaces
of appropriate radii and apply Gauss’s law. On each of these surfaces, E, is constant and
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Gauss’s law relates E, to the total charge inside the surface.

(a) Use Gauss’s law to find the
electric field in the region r <R;:

Apply Gauss’s law in the region
Ri<r<Ry:

Using Gauss’s law, find the electric
field in the region r > Ry:

(b) Set E,_, = 0to obtain:

(c) The electric field lines for the

situation in (b) with g, positive is shown

to the right.

40

1

So

§S EndA = Qinside

and

Qinsice
Er<R1 = EO—Z\ = @

because Qinsige = 0.

0 +d, _|k(g,+a,)
2

S N=N (47zf2) r
q, +4d, =0
or
S
a,

Picture the Problem We can use the definition of surface charge density and the formula
for the area of a sphere to find the total charge on the shell. Because the charge is
distributed uniformly over a spherical shell, we can choose a spherical Gaussian surface
and apply Gauss’s law to find the electric field as a function of the distance from the

center of the spherical shell.

(a) Using the definition of surface
charge density, relate the charge on
the sphere to its area:

Q=cA=4ror’
= 47(9nC/m?)(0.06 m)?
=[0.407nC
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Apply Gauss’s law to a spherical § E dA— iQ- _
surface of radius r that is concentric s " g,
the spherical shell to obtain: or

47Z'r2E — Qinside

n
So
Solve for En: E = Qinside i — innside
" 4rx =N re r

(b) Qinsice a Sphere whose radius is 2 E,(2cm)= @

cm is zero and hence:

(¢) Qinsice @ Sphere whose radius is E,(5.9cm)= @
5.9 cm is zero and hence:

(d) Qinsice @ Sphere whose radius is 6.1 cm is 0.407 nC and hence:

(8.99x10° N-m?/C?)(0.407 nC)

E (6.1cm)= =| 983N/C
4 ) (0.061mY’
(e) Qinsice @ Sphere whose radius is 10 cm is 0.407 nC and hence:
9 2 2
. 10cm) = (8.9910° N-m?/C*(0.407nC) _ s

(0.1m)’

41 e
Picture the Problem We can use the definition of volume charge density and the
formula for the volume of a sphere to find the total charge of the sphere. Because the
charge is distributed uniformly throughout the sphere, we can choose a spherical
Gaussian surface and apply Gauss’s law to find the electric field as a function of the
distance from the center of the sphere.

(a) Using the definition of volume Q=pV =470’
charge density, relate the charge on _ %”(450 nC/mg)(0.0G m)3
the sphere to its volume:
=| 0.407nC

Apply Gauss’s law to a spherical 1

S . P . § En dA = _Qinside
surface of radius r <R that is s S
concentric with the spherical shell to or

obtain:
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Solve for E,:

Because the charge distribution is
uniform, we can find the charge
inside the Gaussian surface by using
the definition of volume charge
density to establish the proportion:

Solve for Qjnsige t0 Obtain:

Substitute to obtain:

(b) Evaluate E, atr =2 cm:

Qinside

S

Aar’E_ =

n

E = Qinside i: innside
4r e, r? r

where V' is the volume of the Gaussian
surface.

V'
Qinside - QV - QE

En(r<R):4(.Qinside izsz_Qgr
TET

339N/C

8.99x10° N-m?/C?)(0.407nC
En(zcm): ( & (0 O6m)3)( )(

(c) Evaluate E, at r =5.9 cm:

0.02m)=

999 N/C

En(5.90m):(

Apply Gauss’s law to the Gaussian
surface with r > R:

Solve for E, to obtain:

(d) Evaluate E, at r = 6.1 cm:

8.99x10° N - m?/C?)(0.407 nC) (
(0.06m)’

_ (8.99x10° N-m?/C?)(0.407 nC)

0.059m)=

47Zf2 En — Qinside
&o

=| 983N/C

E,(6.1cm)=

(e) Evaluate E, at r = 10 cm:

(0.061mY’
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9 2 2
f0cm)= (8.99x10° N-m Ic )(0.407nC)
(0.1m)
Note that, for r > R, these results are the same as those obtained for in Problem 40 for a

uniform charge distribution on a spherical shell. This agreement is a consequence of the
choices of o and p so that the total charges on the two spheres is the same.

E =| 366 N/C

n

*42 oo
Determine the Concept The charges on a conducting sphere, in response to the repulsive
Coulomb forces each experiences, will separate until electrostatic equilibrium conditions
exit. The use of a wire to connect the two spheres or to ground the outer sphere will cause
additional redistribution of charge.

(a) Because the outer sphere is conducting, the field in the thin shell must vanish.
Therefore, —2Q, uniformly distributed, resides on the inner surface, and -5Q, uniformly
distributed, resides on the outer surface.

(b) Now there is no charge on the inner surface and —5Q on the outer surface of the
spherical shell. The electric field just outside the surface of the inner sphere changes from
a finite value to zero.

(c) Inthis case, the —5Q is drained off, leaving no charge on the outer surface and —2Q
on the inner surface. The total charge on the outer sphere is then —2Q.

43 e

Picture the Problem By symmetry; the electric field must be radial. To find E; inside
the sphere we choose a spherical Gaussian surface of radius r < R. On this surface, E; is
constant. Gauss’s law then relates E, to the total charge inside the surface.

Apply Gauss’s law to a spherical 1
PRLY . P . § ErdA = _Qinside
surface of radius r <R that is S N
concentric with the nonconducting or
sphere to obtain: "
4721’2Er — Q|n5|de

So

Solve for Er: E = Qinside i — innside
" A4re, r? re

Use the definition of charge density Qirise = M caussiansurface = = 071°

to relate Qinsige 10 p and the volume
defined by the Gaussian surface:
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Substitute to obtain:

4 3
3pr722kr =§p7zkr

E.(r<R)=

Substitute numerical values and evaluate E, at r = 0.5R = 0.05 m:

E,(0.05m) =4 z(2nC/m?)(8.99x10° N - m?/C?)(0.05m)=] 3.77 N/C

44 e

Picture the Problem We can find the total charge on the sphere by expressing the charge
dq in a spherical shell and integrating this expression between r = 0 and

r = R. By symmetry, the electric fields must be radial. To find E; inside the charged
sphere we choose a spherical Gaussian surface of radius r < R. To find E; outside the
charged sphere we choose a spherical Gaussian surface of radius r > R. On each of these
surfaces, E, is constant. Gauss’s law then relates E, to the total charge inside the surface.

(a) Express the charge dq in a shell
of thickness dr and volume 4% dr:

Integrate this expression from
r =0 to R to find the total charge on
the sphere:

(b) Apply Gauss’s law to a spherical
surface of radius r > R that is
concentric with the nonconducting
sphere to obtain:

Solve for E,:

Apply Gauss’s law to a spherical
surface of radius r <R that is
concentric with the nonconducting
sphere to obtain:

dq = 47r® pdr = 4zr?(Ar)dr
= 47Ardr

Q= 47rAT ridr = [zArt [ =[ AR
0

1
§S ErdA = Qinside
So
or
4721-2E — Qinside
r <,

Er(l’ > R)= Qinsise 1 — KQingice

Ar €, r? r?
_kAR* [ AR
r? 4e,r?

1

§S ErdA = Qinside
So

or

4721-2E — Qinside

r
So
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E (r< R)_ Qinside — 7z-A|"4 — Arz
r dm*e, Am’e, |4eg,

Solve for E;;

The graph of E, versus r/R, with E, in units of A/4 <y, was plotted using a spreadsheet

program.
1.0
0.4 | \\

0.2 - \

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
rIR

Remarks: Note that the results for (a) and (b) agree atr = R.

45 oo

Picture the Problem We can find the total charge on the sphere by expressing the charge
dq in a spherical shell and integrating this expression between r =0 and r = R. By
symmetry, the electric fields must be radial. To find E; inside the charged sphere we
choose a spherical Gaussian surface of radius r < R. To find E; outside the charged sphere
we choose a spherical Gaussian surface of radius r > R. On each of these surfaces, E; is
constant. Gauss’s law then relates E, to the total charge inside the surface.

(@) E_xpress the charge dq in as?ell dq = 47zr2pdr _ 47erEdr
of thickness dr and volume 4 7r< dr: r
= 478rdr

Integrate this expression from
r = 0 to R to find the total charge on
the sphere:

Q=— 47zB_T rdr = [278r?]
0

=| 22BR?
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(b) Apply Gauss’s law to a spherical
surface of radius r > R that is
concentric with the nonconducting
sphere to obtain:

Solve for E;:

Apply Gauss’s law to a spherical

surface of radius r < R that is

concentric with the nonconducting
sphere to obtain:

Solve for E;:

The graph of E, versus r/R, with E; in units of B/2 &, was plotted using a spreadsheet

program.

1

§S ErdA = _Qinside
So
or
47ZT2E — Qinside
r <,

Er(r > R): Qinside i — innside

2 2

Arey r r
_k27BR? | BR?
r 2¢,1°
§ ErdA:iQinside
or
47Zf2Er — Qinside
So
2
E.(r<R)= Q"‘;ide - 2”?"
Anr e, 4’ e,
| B
2¢,

1.2

1.0

0.8 -

0.4 -

0.2

\

0.0

\\

0.0 0.5

1.0

15 2.0 2.5 3.0
r/iR

Remarks: Note that our results for (a) and (b) agree atr = R.

109
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*46 oo

Picture the Problem We can find the total charge on the sphere by expressing the charge
dqg in a spherical shell and integrating this expression between r =0 and r = R. By
symmetry, the electric fields must be radial. To find E; inside the charged sphere we
choose a spherical Gaussian surface of radius r < R. To find E; outside the charged sphere
we choose a spherical Gaussian surface of radius r > R. On each of these surfaces, E; is
constant. Gauss’s law then relates E, to the total charge inside the surface.

(a) Express the charge dq in a shell
of thickness dr and volume 4zr? dr:

Integrate this expression from
r =0 to R to find the total charge on
the sphere:

(b) Apply Gauss’s law to a spherical
surface of radius r > R that is
concentric with the nonconducting
sphere to obtain:

Solve for E;:

Apply Gauss’s law to a spherical
surface of radius r <R that is
concentric with the nonconducting
sphere to obtain:

Solve for E;:

dg = 4ar’pdr = 47zr2rC—2dr
= 47Cdr

Q=4aC[dr =[4Cr]g

=| 42CR
§ ErdA:iQinside
or
47Zf2E — Qinside
r &,

Er(r > R): Qinside i — innside

2 2

Areyr r
_k4zCR [ CR
re €, I’
§ ErdA:iQinside
S EO
or
4_721.-2Er — Qinside
So
A e, 4nr” e,
| C
< r

The graph of E; versus r/R, with E, in units of C/ €, R, was plotted using a spreadsheet



The Electric Field 2: Continuous Charge Distributions 111

program.

10

0.0 0.5

1.5 2.0 2.5 3.0
rIR

47 (1 1]

Picture the Problem By symmetry, the electric fields resulting from this charge
distribution must be radial. To find E, for r < a we choose a spherical Gaussian surface of
radius r < a. To find E, for a < r < b we choose a spherical Gaussian surface of radius a <
r <b. To find E, for r > b we choose a spherical Gaussian surface of radius r > b. On
each of these surfaces, E; is constant. Gauss’s law then relates E, to the total charge

inside the surface.
(a), (b) Apply Gauss’s law to a
spherical surface of radius r that is

concentric with the nonconducting
spherical shell to obtain:

Solve for E;:

Evaluate E/(r < a):

1
§S ErdA = _Qinside
So
or
47Zf2 E = Qinside
r <,

Er(r — Qinside iz: inr;side
dre,r r

Er(r < a)= Qinside i: innside =@

Ar e, r2 r?

because p(r < a) = 0 and, therefore, Qjnsige =
0.
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Integrate dq from r =ato r to find -
the total charge in the spherical shell Qinsice = 4”/)! redr=
in the interval a<r <b: ¢

4;zc:r'31r

a

2l
Evaluate E.(a <r <b): Er(a< r<b): inr;side
r
_ 4nkp 3 .3
A ()
_ P 3 .3
B 3¢, r? (r a)
Forr>b: Q.. = 4Lp(b3_ as)
and
47K
E(r>b)= 3rgo(bs—as)
_ P 3.3
- 3¢g, r? (b a)

Remarks: Note that E is continuous at r = b.

Cylindrical Symmetry

48 oo

Picture the Problem From symmetry, the field in the tangential direction must vanish.
We can construct a Gaussian surface in the shape of a cylinder of radius r and length L
and apply Gauss’s law to find the electric field as a function of the distance from the
centerline of the infinitely long, uniformly charged cylindrical shell.

Apply Gauss’s law to the cylindrical 1

PPLY . Y § EndA = _Qinside
surface of radius r and length L that S €
is concentric with the infinitely long, or

uniformly charged cylindrical shell: 2 afLE. - Qinsice
n
So
where we’ve neglected the end areas
because no flux crosses them.

Solve for En: E = Qinside :Zinnside
" 2arLe, Lr
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For r <R, Qinsige = 0 and: En(r < R) — @
For r > R, Qinsice = AL and: E (r>R)= 2kIL _ 2kA _ 2k(27Ro)
" Lr r r
| Ro
e

49 e

Picture the Problem We can use the definition of surface charge density to find the total
charge on the shell. From symmetry, the electric field in the tangential direction must
vanish. We can construct a Gaussian surface in the shape of a cylinder of radius r and
length L and apply Gauss’s law to find the electric field as a function of the distance from
the centerline of the uniformly charged cylindrical shell.

() Using its definition, relate the Q=0A
surface charge density to the total =27RLo
charge on the shell:

Substitute numerical values and Q = 2(0.06m)(200 m)(9 nC/mZ)
evaluate Q: —[679nC
(b) From Problem 48 we have, for E(2cm)= @
r=2cm:
(c) From Problem 48 we have, for E(5.9 Cm) = @
r=59cm:
(d) From Problem 48 we have, forr =6.1 cm:
E = oR
€I
and
2
£(610m)=,—ONCM)008M) e
(8.85x1072 C*/N-m?)(0.061m)
(e) From Problem 48 we have, for r = 10 cm:
2
E(l0cm)= (encim?Jo.0sm) _rerre

(8.85x10* C*/N-m?)(0.1m)




114 Chapter 22

50 e
Picture the Problem From symmetry, the field tangent to the surface of the cylinder
must vanish. We can construct a Gaussian surface in the shape of a cylinder of radius r
and length L and apply Gauss’s law to find the electric field as a function of the distance
from the centerline of the infinitely long nonconducting cylinder.

Apply Gauss’s law to a cylindrical 1

PP . y § EndA = _Qinside
surface of radius r and length L that s =N
is concentric with the infinitely long or

nonconducting cylinder: 2 ofLE. - Qinsice
n
So
where we’ve neglected the end areas
because no flux crosses them.

SOIVe fOI’ En: E — Qinside — 2innside
" 2mrLeg, Lr
Express Qinsice for r <R: Que = ATV = pylar’L)
Substitute to obtain: E (r<R)= 2k(7zp0 er) [,
Lr 2 g,
or, because A = paR?
E.(r<R)= % r
2r €y R
EXpress Qinsige for r > R: Quice = ATV = 4 (”RZL)
Substitute to obtain: 2 2
£ (r>R)= 2k(7p,LR?) _[ poR
Lr 2¢,r
or, because A = pzaR®
E.(r>R)= A
2w ey ¥

51 e
Picture the Problem We can use the definition of volume charge density to find the total
charge on the cylinder. From symmetry, the electric field tangent to the surface of the
cylinder must vanish. We can construct a Gaussian surface in the shape of a cylinder of
radius r and length L and apply Gauss’s law to find the electric field as a function of the
distance from the centerline of the uniformly charged cylinder.
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(a) Use the definition of volume Qu =pV = p(;szL)
charge density to express the total
charge of the cylinder:

Substitute numerical values to Qu = 7(300nC/m?)(0.06 m)?(200m)
obtain: _[679nC

From Problem 50, for r <R, we E-_F ¢

have: " 2e,

(b) Forr=2cm:

)< (300nC/m?)(0.02m)

E (2 =| 339N/C
(2om 2(8.85x10 C*/N-m?)
(c) Forr=59cm:
3
E,(5.9cm)= (s00nc/ mlz)(02'059 mz =[1.00kN/C
2(8.85x10% C*/IN-m?)
From Problem 50, for r > R, we have: E — PR’
"2 €I
(d) Forr=6.1cm:
3 2
E. (6.10m) = (300nC/m*)(0.06 m) o0k

2(8.85x10% C*N-m?)(0.061m)

(e) Forr=10cm:

(300nC/m*)(0.06m
2(8.85x10% C?/N-m?)(0.1m)
Note that, given the choice of charge densities in Problems 49 and 51, the electric fields
for r > R are the same.

=| 610N/C

E (10cm)=

*52  ee
Picture the Problem From symmetry; the field tangent to the surfaces of the shells must
vanish. We can construct a Gaussian surface in the shape of a cylinder of radius r and

length L and apply Gauss’s law to find the electric field as a function of the distance from
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the centerline of the infinitely long, uniformly charged cylindrical shells.

(a) Apply Gauss’s law to the
cylindrical surface of radius r and
length L that is concentric with the
infinitely long, uniformly charged
cylindrical shell:

Solve for E,:

For r <Ry, Qinsige = 0 and:

Express Qinsige fOr Ry <r <Ry:

Substitute in equation (1) to obtain:

Express Qinsige fOr r > Ry:

Substitute in equation (1) to obtain:

(b) Set E = 0 for r > R, to obtain:

Solve for the ratio of o1 to o:

1

§ En dA = _Qinside
S EO
or
27ZfLEn — Qinside
So

where we’ve neglected the end areas
because no flux crosses them.

En — 2innside
Lr

E.(r<R)=[0]

Qinside = UlAi = 272-61R1L

)

2k(2zo,R,L)
Lr
oR

€ r

E.(R <r<R,)=

Qinsige = O1A +0,A,
=2no,R L +270,R,L

) 2k(2zo,R L + 2770,R,L)
Lr

o,R +0o,R,

E.(r>R,

€ I
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Becaus'e the electric field |.s . En(Rl r< Rz): Ul_Rl
determined by the charge inside the g r
Gaussian surface, the field under

these conditions would be as given

above:

(c) Assuming that o is positive, the “'

field lines would be directed as Q‘
shown to the right. =
53 e

Picture the Problem The electric field is directed radially outward. We can construct a
Gaussian surface in the shape of a cylinder of radius r and length L and apply Gauss’s
law to find the electric field as a function of the distance from the centerline of the
infinitely long, uniformly charged cylindrical shell.

a) Apply Gauss’s law to a 1

( ) pp y . § EndAZ_Qinside
cylindrical surface of radius r and S €,
length L that is concentric with the or

inner conductor: Qinsice
2nLE, =~
So
where we’ve neglected the end areas
because no flux crosses them.

Solve for E,: E — 2KQipsige (1)

! Lr
For r < 1.5 cm, Qinsige = 0 and: E,(r<15cm)=[ 0]
Letting R = 1.5 cm, express Qinsice Qinsice = AL
for1.5cm<r<4.5cm: =2noRL
Substitute in equation (1) to obtain: E (1 Scm<r <4 5cm) _ ZK(M-)

e ' Lr

_ 2kA
r

Substitute numerical values and evaluate E (1.5 cm <r <4.5 cm):
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E,(L5cm < r < 4.5cm)= 2(6.99x10° N-m?/c?){8 ”S/m): (108 Nr' m/C)

Express Qinsige TOr Qinsice =0
45cm<r<6.5cm; and

E.(45cm<r<6.5cm)= @

Letting o represent the charge Qv = 0, A, =270,R,L
density on the outer surface, express where R, = 6.5 cm.
Qinside forr>6.5cm:

Substitute in equation (1) to obtain: E (r >R )_ 2k(27r0'2 R, L) _0,R,
n 2] -
Lr € r

In (b) we show that o, = 21.2 nC/m?. Substitute numerical values to obtain:

(21.2nc/m?)(6.5cm)  [156N-m/C

85x10™2 C?/N-m?)r r

E,(r>6.5cm)= g

(b) The surface charge densities on o = _— A
=

the inside and the outside surfaces of 27R,
the outer conductor are given by:

and o, = -0,

i i —-6nC/m
Substitute numerical values and evaluate o3 —21.2nC/m?

o, = =
and o ' 27(0.045m)

and

o, =| 21.2nC/m?

54 oo

Picture the Problem From symmetry considerations, we can conclude that the field
tangent to the surface of the cylinder must vanish. We can construct a Gaussian surface in
the shape of a cylinder of radius r and length L and apply Gauss’s law to find the electric
field as a function of the distance from the centerline of the infinitely long nonconducting
cylinder.

a) Apply Gauss’s law to a 1

( ) pp y . § EndAz_Qinside
cylindrical surface of radius r and s €,
length L that is concentric with the or

infinitely long nonconducting

o 27rLE =@
cylinder: n <,

where we’ve neglected the end areas



The Electric Field 2: Continuous Charge Distributions 119

Solve for E,;

Express dQinsige fOr po(r) = ar:

because no flux crosses them.

_Qusice

= 1
2nrl g, @

n

innside = p(r)dv = ar(27lf|_)dr

= 2zar’Ldr
Integrate dQinsice from r = 0to R to ? 37
obtain: Qinsice = 27zaL'[ redr = 2zalL 3
0 0
_ 2mal R
3
Divide both sides of this equation Qireide 27aR?
by L to obtain an expression for the A= L | 3
charge per unit length A of the
cylinder:
(b) Substitute for Qinsice in equation 2mL
(1) to obtain: E (r < R) __3 _| 2 2
" 2r ey Lr | 3¢,
Forr>R: 2mal
Qinside = T RS
Substitute for Qinsige in equation (1) 2nal R g
to obtain: E (r S R): 3 _ aR
" 2arL g, 3re,

55 oo

Picture the Problem From symmetry; the field tangent to the surface of the cylinder
must vanish. We can construct a Gaussian surface in the shape of a cylinder of radius r
and length L and apply Gauss’s law to find the electric field as a function of the distance
from the centerline of the infinitely long nonconducting cylinder.

a) Apply Gauss’s law to a 1

( ) pp y . § EndAz_Qinside
cylindrical surface of radius r and S S
length L that is concentric with the or

infinitely long nonconducting
cylinder:
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Solve for E,:

Express dQinsice for p(r) = br?:

Integrate dQinsige fromr=0to R to
obtain:

Divide both sides of this equation
by L to obtain an expression for the
charge per unit length A of the
cylinder:

(b) Substitute for Qjnsige iN €quation
(1) to obtain:

Forr>R:

Substitute for Qinsige iN equation (1)
to obtain:

56 (1 1]

27ZfLEn — Qinside

So
where we’ve neglected the end areas
because no flux crosses them.

_ Qusice

= 1
2ml e, @

n

innside = p(r)dv = br2(272'r|_)dr
= 27brLdr

R 4 R
Qinsige = ZﬂbLI ridr = 27ZbL|:r—:|

0 4 o
AL
2

R4

ﬂ, — Qinside _ ﬂbR4

L 2
L,
e b
E(r<R)=—2 = r3
27lre, | 4e,
L _,
R
Q|n5|de 2
L _,
—R 7
E(r>R)=-2 | R
2L e, | 4re,

Picture the Problem From symmetry; the field tangent to the surface of the cylinder
must vanish. We can construct a Gaussian surface in the shape of a cylinder of radius r
and length L and apply Gauss’s law to find the electric field as a function of the distance
from the centerline of the infinitely long nonconducting cylindrical shell.

Apply Gauss’s law to a cylindrical

surface of radius r and length L that

§ EdA=

1

€

Qinside
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is concentric with the infinitely or
long nonconducting cylindrical 27rLE, = Qinsice
shell: =N

where we’ve neglected the end areas
because no flux crosses them.

Solve for E,: E — Qinsice
" 2mrLe,
For r < a, Qipsice = 0: E,(r<a)=[0]
Express Qinsie for a < r < b: Q. = PV = par’L— pma’l
= pr(r*-a?)
i L in: 2 — 2
Substitute for Qjnsige to Obtain: 3 (a <r< b) _ p;zL!r a ’
2w €, Lr
_| et e
2¢,r1
Express Qinsige for r > b Q. ige = PV = pab°L - pma’L
= ,07zL(b2 —~ a2)
1 . . i - 2 - 2
Substitute for Qjnsice to Obtain: E (r S b) _ pﬂL!b a ,
2 e, L
_| plb*-2°)
2,1
57 (1 1]

Picture the Problem We can integrate the density function over the radius of the inner
cylinder to find the charge on it and then calculate the linear charge density from its
definition. To find the electric field for all values of r we can construct a Gaussian surface
in the shape of a cylinder of radius r and length L and apply Gauss’s law to each region of
the cable to find the electric field as a function of the distance from its centerline.

(a) Find the charge Qjnner ON the R RC
inner cylinder: Qinner = _([p(r)dV = I?Zder

0

R
- 27zCLJ'dr — 22CLR
0
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Relate this charge to the linear : 272CLR
. g ﬂ’lnner = aner = = ZﬂCR
charge density: L
Substitute numerical values and Ainer = 272(200nC/m)(0.015m)
evaluate iinner: =118.8nC/m
b) Apply Gauss’s law to a 1
( ) pp y . § EndA:_Qinside
cylindrical surface of radius r and s =h
length L that is concentric with the or
infinitely long nonconducting 2 afLE. - Qinsice

cylinder: A

where we’ve neglected the end areas
because no flux crosses them.

Solve for E,: E — Qinsice
" 2mle,
Substitute to obtain, for E (r <1.5cm)= 22CLr _ C
r<21.5cm: 2r ey Lr
Substitute numerical values and £ (r <1 5cm)— 200nC/m?
evaluate E,(r < 1.5 cm): n ' © 8.85x102C2/N-m?
=| 22.6kN/C

Express Qinside for Qinsige = 27CLR
15cm<r<45cm:
Substitute to obtain, for En(l.SCm <r< 4.5cm): 2CARL
15cm<r<45cm: 2w e, L

_ CR

€ I

where R =1.5cm.

Substitute numerical values and evaluate E,(1.5 cm <r < 4.5 cm):
(200nC/m?)(0.015m) _[339N-m/C

E,(L5cm<r<45cm)= (6.85x 102 CIN-m?)r .

Because the outer cylindrical shell E,(4.5cm<r<6.5cm)= @
is a conductor:
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inside

Forr>6.5 cm, Q =272CLR 339N-m/C
and:

Charge and Field at Conductor Surfaces

*58 o

Picture the Problem Because the penny is in an external electric field, it will have
charges of opposite signs induced on its faces. The induced charge ois related to the
electric field by E = o/ g. Once we know o, we can use the definition of surface charge
density to find the total charge on one face of the penny.

(a) Relate the electric field to the E— o

charge density on each face of the €

penny:

Solve for and evaluate o oc=¢, E
= (8.85x10"2C?/N - m? )(1.6 kN/C)
=|14.2nC/m?

(b) Use the definition of surface oo2_Q

charge density to obtain: A ar?

Solve for and evaluate Q: Q=om?= 72(14.2 nC/mz)(0_01m)2
=|4.45pC

59 .

Picture the Problem Because the metal slab is in an external electric field, it will have
charges of opposite signs induced on its faces. The induced charge o is related to the
electric fieldby E=0o/¢, .

Relate the magnitude of the electric E-C

field to the charge density on the €

metal slab:

Use its definition to express o': s.2_Q9
A L

Substitute to obtain: e__Q
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Substitute numerical values and _ 1.2nC

evaluate E: (0.12m)*(8.85x10%2 C?/N-m?)
=|9.42kN/C

60

Picture the Problem We can apply its definition to find the surface charge density of the
nonconducting material and calculate the electric field at either of its surfaces from
ol2e4. When the same charge is placed on a conducting sheet, the charge will distribute
itself until half the charge is on each surface.

(a) Use its definition to find o: s __6nC _~[150nC/m?
A (0.2m)

(b) Relate the electric field on either E__ O _ 150nC/m?®
side of the sheet to the density of 2e, 2(8.85x10™C*N-m?)
charge on its surfaces: _[8A7KN/C
(c) Because t_he s_Iab_is a con_ductor _Q __ 6nC _=[75.0nC/m?
the charge will distribute uniformly 2A  2(0.2m)
on its two surfaces so that:
(d) The electric field just outside the _ o _ 75nC/m?
surface of a conductor is given by: g, 8.85x10™C*N-m?

=| 8.47kN/C

61

Picture the Problem We can construct a Gaussian surface in the shape of a sphere of
radius r with the same center as the shell and apply Gauss’s law to find the electric field
as a function of the distance from this point. The inner and outer surfaces of the shell will
have charges induced on them by the charge q at the center of the shell.

(a) Apply Gauss’s law to a spherical § E dA— iQ. _
surface of radius r that is concentric s " N inside
with the point charge: or
47zr2E — Qinside
n
So
Solve for Ey: E - Qinsice )
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For r < a, Qinsige = . Substitute in £ (r - a): q _ m
equation (1) and simplify to obtain: n 4nr? e, r?
Because the spherical shell is a Qinsie =0

conductor, a charge —q will be and

induced on its inner surface. Hence, En(a <r< b):@
fora<r<bh:

For r > b, Qinsice = 9. Substitute in
equation (1) and simplify to obtain:

(b) The electric field lines are shown
in the diagram to the right:

(c) A charge —q is induced on the o = q q
inner surface. Use the definition of mer 4% | 4zal
surface charge density to obtain:

A charge q is induced on the outer | q

surface. Use the definition of surface T outer = 47b?

charge density to obtain:

62 oo

Picture the Problem We can construct a spherical Gaussian surface at the surface of the
earth (we’ll assume the Earth is a sphere) and apply Gauss’s law to relate the electric
field to its total charge.

Apply Gauss’s law to a spherical 1

i . p § En dA = _Qinside
surface of radius Rg that is S €
concentric with the earth: or

47[Ré En — Qinside

So

RZE
k

Solve for Qinsige = Qeartn 10 Obtain:

n

Qearth = 47[ eO RéEn =
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Substitute numerical values and (6,37 x10° m)2 (150 N/C)

evaluate Qearth: Quarin = 8.99x10° N - m?/C?
=|6.77x10°C

*63 oo

Picture the Problem Let the inner and outer radii of the uncharged spherical conducting
shell be a and b and q represent the positive point charge at the center of the shell. The
positive point charge at the center will induce a negative charge on the inner surface of
the shell and, because the shell is uncharged, an equal positive charge will be induced on
its outer surface. To solve part (b), we can construct a Gaussian surface in the shape of a
sphere of radius r with the same center as the shell and apply Gauss’s law to find the
electric field as a function of the distance from this point. In part (c) we can use a similar
strategy with the additional charge placed on the shell.

(a) Express the charge density on o = Qinner
H inner
the inner surface: A
Express the relationship between the 0 + Qipper =0
positive point charge q and the
charge induced on the inner surface
qinner:
Substitute for Qiner to obtain: _ —q
Oimner = 2
4ra
i i -2.5
Substitute numerical values and o= ﬂCZ ~[~0.553uC/m?
evaluate ciner: 47(0.6m)
Express the charge density on the o = Qouter
outer —
outer surface: A
Because the spherical shell is Qouter + Ainner =0
uncharged:
Substitute for gouer to obtain: _ " Qinner
Oouter =5 , 2
47b
Substitute numerical values and ) R YT
. Ootter = 7 (mae |V He/m
evaluate coyter: 47[(0.9 m)
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(b) Apply Gauss’s law to a spherical
surface of radius r that is concentric
with the point charge:

Solve for E;;

1

§S EndA = Qinside
So

or

47zr2E — Qinside

n
S

Qs
En — inside (1)
4’ e,

For r <a=0.6 m, Qinsige = (. Substitute in equation (1) and evaluate

En(r < 0.6 m) to obtain:

E.(r<a)= 1 .9

2
Anr e,

kg _ (8.99x10° N-m?/C?)(2.5 4C)

r2

=| (2.25x10* N-m?/C)

1
2

Because the spherical shell is a
conductor, a charge —q will be
induced on its inner surface. Hence,
for0.6m<r<09m:

Qinside :0
and
E,(0.6m<r<0.9m)=[0]

For r > 0.9 m, the net charge inside the Gaussian surface is g and:

En(r>0.9m):k—?:

r

(c) Because E = 0 in the conductor:

Express the relationship between the
charges on the inner and outer
surfaces of the spherical shell:

Oouter IS NOW given by:

(2.25x10* N - mZ/(:)ri2

Qipner = —2-04C

and

Gy =| —0.553 uC/m?
as before.

Qovter  Uinner = 3.5uC
and

Qovter = 35,UC “Qinner = 60,UC

__SC _sg9ucim?

outer 47(0.9my
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Forr <a=0.6 m, Qinsige = q and B 4 2\ 1
En(r <0.6 m) is as it was in (a): E”(r < a)— (2.25><10 N-m /C) r?
Because the spherical shell is a Qinsige =0
conductor, a charge —q will be and
induced on its inner surface. Hence, E (0.6m <r< 0.9m): @
for0.6m<r<0.9m: "
For r > 0.9 m, the net charge inside the Gaussian surface is 6 #C and:
kq 9 2)~2 1 4 2 1
E,(r>0.9m)=—'=(8.99x10° N-m?/C?)(6 .C)= =| (5.39x10* N-m?/C)—
r r r

64 oo
Picture the Problem From Gauss’s law we know that the electric field at the surface of
the charged sphere is given by E = kQ/R2 where Q is the charge on the sphere and R is

its radius. The minimum radius for dielectric breakdown corresponds to the maximum
electric field at the surface of the sphere.

Use Gauss’s law to express the E— kQ
electric field at the surface of the R?
charged sphere:

Express the relationship between E E = kQ
and R for dielectric breakdown: mOR2
Solve for Rpn: R - kQ
min Emax
Substitute numerical values and (8.99 %10° N - mZ/CZ)(lg 4C)
evaluate Ryin: Roin = 3x10% N/C

=| 23.2cm
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65 L 1]

Picture the Problem We can use its

definition to find the surface charge Jig

density just outside the face of the slab. D
- -

The electric field near the surface of the p —

slab is given by E = o, /€,. We can — =

find the electric field on each side of the g

slab by adding the fields due to the slab T

and the plane of charge. i Zm?

(a) Express the charge density per o = 9

face in terms of the net charge on the e L2

slab:

- - 80

Subs_tltute numerical values to Cr, = ﬂCZ ~[1.60 1C/m?

obtain: 2(5m)

Express the electric field just outside E - Otace

one face of the slab in terms of its e,

surface charge density:

Substitute numerical values and B 1.60 uC/m?

evaluate Efe: 8 85x107? C%/N - m?

—=[1.81x10° N/C

(b) Express the total field on the side Epear = Ep,ane + Es,ab
of the slab closest to the infinite _ Eplanef —E,,f
charged plane:
_ Tptane o Oface 2
2¢, =N

where T is a unit vector pointing away from
the slab.

Substitute numerical values and = 2 uCim? ;

R E_ =
evaluate E,, : " 2(8.85%107%2 C2N-m?)
~(1.81x10° NIC) 7

= | (-0.680x10° N/C) F
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Express the total field on the side of E _ O plane F o Ttace ¢

the slab away from the infinite " 2e, <,

charged plane:

Substitute numerical values and = 2 uClm? ;

evaluate E,, : " 2(8.85x10™ C*/N-m?)
+(1.81x10° N/C)
= (2.94x10° N/C)

The charge density on the side of the slab near the plane is:

¢, E,.., =(8.85x107 C?*/N-m?)(0.680x10° N/C)=] 0.602 ..C/m”

near

o}

near

The charge density on the far side of the slab is:

O-near =EO Enear

=(8.85x10™ C?/N - m?)(2.94x10° N/C) = 2.60 1C/m’

General Problems

66 oo
Determine the Concept We can determine the direction of the electric field between
spheres I and 11 by imagining a test charge placed between the spheres and determining
the direction of the force acting on it. We can determine the amount and sign of the
charge on each sphere by realizing that the charge on a given surface induces a charge of
the same magnitude but opposite sign on the next surface of larger radius.

(a) The charge placed on sphere 111 has no bearing on the electric field between spheres |
and Il. The field in this region will be in the direction of the force exerted on a test charge
placed between the spheres. Because the charge at the center is negative,

the field will point toward the center.

(b) The charge on sphere | (-Qo) will induce a charge of the same magnitude but

opposite sign on sphere II: | +Q,

(c) The induction of charge +Qg on the inner surface of sphere Il will leave its outer

surface with a charge of the same magnitude but opposite sign: | —Q,

(d) The presence of charge —Qo on the outer surface of sphere 11 will induce a charge of

the same magnitude but opposite sign on the inner surface of sphere I11:| +Q,
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(e) The presence of charge +Qg on the inner surface of sphere 111 will leave the outer
surface of sphere Il neutral: @

(f) A graph of E as a function of r is shown
Rk R, R R Ry ;

to the right: —

67 oo

Picture the Problem Because the difference between the field just to the right of the
origin E, ;,, and the field just to the left of the origin E, . is the field due to the

nonuniform surface charge, we can express E, . and the difference between E

o/e,.

Xx,right and

o
Ex,left = Ex,right -

X,right 0

Express the electric field just to the
left of the origin in terms of E

and o/e,

Substitute numerical values and evaluate E, . :

2
3.10_1L:C/£n > =|1.15x10° N/C
8.85x10™? C?/N-m

E, e = 4.65x10° N/C—
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68 oo
Picture the Problem Let P denote the point of interest at (2 m, 1.5 m). The electric field
at P is the sum of the electric fields due to the infinite line charge and the point charge.

¥, M

(1,2)
2_ _____
A 7
g=13uC |
A =—1.5 uC/m 1.5+ ———— —— P(2,1.5)

; T x,m
Express the resultant electric field at P: E=E, +E,
Find the field at P due the infinite line charge:
9 2 2\(_ ~ ~
g Mg 208.99x10° N-m*/C?)(~1.5 4C/m) _ (C6.74kNIC);
r 4m
Express the field at P due the point E — mf
charge: A
Referring to the diagram above, r=112m
determine rand f : and

F =0.893i —0.446
Substitute and evaluate E (2m,1.5m):

(8.99x10° N-m?/C?)(1.3 .C)
(1.12m)

(2.32kN/C)(0.8931 —0.446)

(8.32KN/C)i —(4.16 KN/C)j

E,(2m,1.5m)= (0.893i - 0.446)

Substitute to obtain:
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E(2m,1.5m)=(-6.74kN/C)i +(8.35kN/C)i —(4.17kN/C)]

A

= | (L.6IKN/C)i — (4.17KkN/C)]

~

*60 oo

Picture the Problem If the patch is small enough, the field at the center of the patch
comes from two contributions. We can view the field in the hole as the sum of the field
from a uniform spherical shell of charge Q plus the field due to a small patch with surface
charge density equal but opposite to that of the patch cut out.

(a) Express the magnitude of the
electric field at the center of the
hole:

Apply Gauss’s law to a spherical
gaussian surface just outside the
given sphere:

Solve for Egpherical sheit t0 0Obtain:

The electric field due to the small
hole (small enough so that we can
treat it as a plane surface) is:

Substitute and simplify to obtain:

(b) Express the force on the patch:

Assuming that the patch has radius
a, express the proportion between

its charge and that of the spherical
shell:

Substitute for g and E in the

expression for F to obtain:

(c) The pressure is the force
divided by the area of the patch:

E=E +E

spherical shel hole

47Zf2 ) — Qenclosed — 2

spherical shell (
So So

E

e - Q
spherical shell
P 4r €, r?
-0

hole —
2 0

E

- O "
dre,r° 2e,

_Q Q
dre,r’ 2e, (47r rz)
|
8re, I’
F=qE
where q is the charge on the patch.
g Q a’
gl arre O 97T g Q
2 242
F= azQ 0 2 |~ 9 4
4r 8reyr 2re,r
QZaZ
p_ R2r e, rt B Q?

4

7 R2r% ey r
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70 oo

Picture the Problem The work done by the electrostatic force in expanding the soap

bubble is W = j PdV.

From Problem 69:

Express W in terms of dr:

Substitute for P and simplify:

Evaluating the integral yields:

Q2

" 321 € r

W = [PdV = [ P4ar’dr

2 02m
w=9 j d—!
87T €y o1 I

W - QZ [_l:|.m_

r

2.02x1077 ]

71 e

omm 87(8.85x10%2C?/N-m?)

(3nCy’ ( -1 1 j

+
0.2m 0.1m

Picture the Problem We can use E = kg/R? where R is the radius of the droplet, to find
the electric field at its surface. We can find R by equating the volume of the bubble at the
moment it bursts to the volume of the resulting spherical droplet.

Express the field at the surface of
the spherical water droplet:

Express the volume of the bubble
just before it pops:

Express the volume of the sphere
into which the droplet collapses:

Because the volume of the droplet
and the volume of the bubble are
equal:

Solve for R:

Assume a thickness t of 1 xm and
evaluate R:

k
B )
where R is the radius of the droplet and q is
its charge.

V ~4ar’t
where t is the thickness of the soap bubble.

v :f;zR3
3

4rr’t =ﬂ7zR3
3

R=4/3r%

R =3/3(0.2m)*(Lum) = 4.93x10°m
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Substitute numerical values in
equation (1) and evaluate E:

72 e
Picture the Problem Let the numeral 1
refer to the infinite plane at x = -2 m and
the numeral 2 to the plane at x = 2 m and
let the letter A refer to the region to the left
of plane 1, B to the region between the
planes, and C to the region to the right of
plane 2. We can use the expression for the
electric field of in infinite plane of charge
to express the electric field due to each
plane of charge in each of the three
regions. Their sum will be the resultant
electric field in each region.

Express the resultant electric field as
the sum of the fields due to planes 1

and 2:

(a) Express and evaluate the field
due to plane 1 in region A:

Express and evaluate the field due to
plane 2 in region A:

Substitute in equation (1) to obtain:

(8.99x10° N-m?/C?)(3nC)
(4.93x10°° mYf
=[1.11x10° N/C

E=

o, = —3.5 puC/m? o, =6 uC/m?
| |
I |
| I
I |
A B | ¢
| | | X, m
-2 0f |2
I |
I |
E=E,+E, (1)
= o} o
E,(A)= 21
=)
_ —3.54Clm’ (_ f)
2(8.85x10%* C?*/N - m?)
= (198KkN/C)i
= o -
E,(A)=—2|-
(M=)
_ 6 4C/m’ (_ f)
2(8.85x10"2 C*/N-m?)
= (—339kN/C)i

E(A)=(198 KN/C)i +(~339 kN/C)i
=| (-141kN/C)i
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(b) Express and evaluate the field
due to plane 1 in region B:

Express and evaluate the field due
to plane 2 in region B:

Substitute in equation (1) to obtain:

(c) Express and evaluate the field
due to plane 1 in region C:

Express and evaluate the field due to
plane 2 in region C:

Substitute in equation (1) to obtain:

*73 oo

E,(B)="21i

_260

—~3.5 4C/m? |
2(8.85x10%* C?*/N - m?)

= (-198KkN/C)i

£, (B)=-2(-i)

2 €
6 uC/m’ (_ f)
2(8.85x1072 C*/N-m?)

= (- 339kN/C)i

E(B)=(~198KN/C)i +(~339KkN/C)i
=| (-537KkN/C)i

o, °

E,(C)=-C1i

2¢,

-35.C/m° -
2(8.85x10% C*/IN-m?)

= (-198KkN/C)i
o, ¢

Ez(c): 2 I
0

6yC/m2 IA
2(8.85x10 C*/N-m?)

= (339kN/C)i

E(C)=(~198kN/C)i +(339kN/C)i
= (141kN/C)i

Picture the Problem We can find the electric fields at the three points of interest by
adding the electric fields due to the infinitely long cylindrical shell and the spherical
shell. In Problem 42 it was established that, for an infinitely long cylindrical shell of
radius R, E,(r <R)=0, and E,(r >R)= oR/e, r.We know that, for a spherical shell

of radius R, E,(r <R)=0, and E,(r >R)=0R?/e, r?.
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i, cm
LT T~ 6 uC/m?

r T~ %

| - | o = —12 uC/m?

| -~ -~ ~

Ve

I % (20,10) * 020 \\

| 10+ | 7o\

| [ |( - . \\

T < i reem

| 0 15 20 2{ ~_ 7

| [ N /

| [ ~ 7

| [ T~

S~
Express the resultant electric field as E=E, +E,, )
the sum of the fields due to the
cylinder and sphere:
(a) Express and evaluate the electric Ecyl (0,0) =0
field due to the cylindrical shell at because the origin is inside the cylindrical
the origin: shell

Express and evaluate the electric field due to the spherical shell at the origin:

£, 00== (—f)z( (12 4€im?)(0.25m) ; (-7)= (39 knic)i

2

- 8.85x1072 C?/N-m?)(0.5m
Substitute in equation (1) to obtain: E(0,0)=0+(339kN/C)i
= | (339kN/C)i
or
E(0,0)=| 339kN/C
and
0=]0°

(b) Express and evaluate the electric field due to the cylindrical shell at
(0.2m, 0.1 m):
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~ 2 ~ ~
E,,(02m0.1m)= " { - (6”_?2/ mz)(0.152m) i — (508KN/C)]
& r (8.85x10™C%N-m?)(0.2m)
Express the electric field due to the E (r) _ oR? ;
charge on the spherical shell as a st/ €, I’

function of the distance from its where f is a unit vector pointing from (50

center: cm, 0) to (20 cm, 10 cm).
Referring to the diagram shown r=0.316m
above, find rand  : and

F =-0.949i +0.316]
Substitute to obtain:

(-12 uCim?)(0.25m)’
(8.85x102 C%/N-m?)(0.316m
(- 849kN/C)(- 0.9497 +0.316]

A

= (806 kN/C)i + (~ 268kN/C)]

E(0-2m,0.1m) ; (- 0.949i +0.316]

Substitute in equation (1) to obtain:

E(0.2m,0.1m) = (508KkN/C)i + (806 KN/C)i + (- 268kN/C)j

~

= | (1310KkN/C)i + (— 268KkN/C)]

or

E(0.2m,0.1m)=/(1310kN/C)’ + (— 268KN/C)’ =[ 1340kN/C

and

O =tan? M —| 348°
1310 kN/C

(c) Express and evaluate the electric field due to the cylindrical shell at
(0.5m, 0.2 m):

- 6.C/m?f0.15m) - -
E.,(05m,0.2m)= ( = (203kN/C
or(0.5m,0.2m) 8.85x10 2 C?/N-m?)0.5m) ( )

Express and evaluate the electric Esph (0.5m,0.2m)=0
field due to the spherical shell at
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(0.5m, 0.5m): because (0.5 m, 0.2 m) is inside the
spherical shell.

Substitute in equation (1) to obtain: E(0.5m,0.2m)=(203 kN/C)f +0
— | (203kN/C)i
or
E(0.5m,0.2m)=| 203kN/C
and
6=|0°
74 e

Picture the Problem Let the numeral 1 refer to the plane with charge density o ; and the
numeral 2 to the plane with charge density o ,. We can find the electric field at the two
points of interest by adding the electric fields due to the charge distributions of the two
infinite planes.

Express the electric field at any E=E + Ez (1)
point in space due to the charge
distributions on the two planes:

(a) Express the electric field at (6 m, 2 m) due to plane 1:

~

j=(3.67kN/C)]

o, = 65nC/m?
J =

E,(6m,2m)=
1(6m.2m) 2¢,  2(8.85x10?C%N-m?)

Express the electric field at (6 m, 2 m) due to plane 2:

2
E,(6m2m)=-22f = 45nC/m
2¢, 2(8.85x10™2C¥N-m
where T is a unit vector pointing from plane 2 toward the point whose coordinates are (6

m, 2 m).

. )f: (2.54KkN/C)F

A

Refer to the diagram below to obtain: f =sin30°i —cos 30°]
Yy
"1, T
Q= ;
|30
|
30° | .
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Substitute to obtain:

~ A

E,(6m,2m)=(2.54kN/C)sin 30°] - cos30° )= (L.27kN/C)i + (~ 2.20kN/C)]

Substitute in equation (1) to obtain:

E(6m,2m)=(3.67kN/C)j + (1.27kN/C)i + (- 2.20kN/C)j

~

=| (1.27kN/C)i +(1.47kN/C)]

(b) Note that E,(6m,5m)=E,(6m,2m) so that:

~

j = (3.67kN/C)j

_ - 65nC/m°
E,(6m,5m)=—"—]=
1(6m.5m) 2¢, " 2(885x10C2/N-m?)

Note also that E,(6m,5m)=—E,(6m,2m) so that:

A

E,(6m,5m)=(~1.27kN/C)i +(2.20kN/C)]

Substitute in equation (1) to obtain:

E(6m,5m)=(3.67kN/C)j +(~1.27kN/C)i +(2.20kN/C)j

~

=| (-1.27kN/C)i +(5.87kN/C)j]

75 e
Picture the Problem Because the atom is uncharged, we know that the integral of the
electron’s charge distribution over all of space must equal its charge e. Evaluation of this
integral will lead to an expression for . In (b) we can express the resultant field at any
point as the sum of the fields due to the proton and the electron cloud.

0

p(r)av = jp(r)47r rdr

0

(a) Because the atom is uncharged:
e =

O 8

Substitute for p(r):
e =

O —y 8

o8 2 Arridr = 4ﬂpojr2e‘2*/adr
0

Use integral tables or integration by © a’
- 2,-2r/a _
parts to obtain: jr e “odr = "
0
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Substitute to obtain:

Solve for py:

(b) The field will be the sum of the
field due to the proton and that of
the electron charge cloud:

Express the field due to the electron
cloud:

Substitute to obtain:

As in (a), Q(r) is given by:

Integrate to find Q(r) and substitute
in the expression for E to obtain:

*70 oo

3

e = 47p, (%) = ma’p,

€
pO = 7Z'a.3
k
E = Ep + Ecloud = r__(z']+ Ecloud
kQ(r
Ecloud (r): Qg )

r
where Q(r) is the net negative charge
enclosed a distance r from the proton.

£(r)- 12 1)

Q(r) = [ 4ar’ p(r)dr

2
E(r) = Eezr’e‘(14r£+2Lj

r? a a’

Picture the Problem We will assume that the radius at which they balance is large
enough that only the third term in the expression matters. Apply a condition for
equilibrium will yield an equation that we can solve for the distance r.

Apply D" F =0 to the proton:

To solve for r, isolate the
exponential factor and take the

natural logarithm of both sides of the

equation:

Substitute numerical values and evaluate r:

2(8.99x10° N-m?/C?)(1.60x 10 C)’

2
2ke e—Zr/a
2
a

a ( 2ke? J
r=—In 5
2 | mga

-mg=0

0.0529 nm
r= In

2 (L.67x107% kg)(9.81m/s? )(0.0529nm)?

] =|1.16nm
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Thus, even though the unscreened electrostatic force is 40 orders of magnitude
larger than the gravitational force, screening reduces it to smaller than the
gravitational force within a few nanometers.

Remarks: Note that the argument of the logarithm contains the ratio between the
gravitational potential energy of a mass held a distance a, above the surface of the
earth and the electrostatic potential energy for two unscreened charges a distance ap
apart.

77 e
Picture the Problem In parts (a) and (b) we can express the charges on each of the
elements as the product of the linear charge density of the ring and the length of the
segments. Because the lengths of the segments are the product of the angle subtended at
P and their distances from P, we can express the charges in terms of their distances from
P. By expressing the ratio of the fields due to the charges on s; and s, we can determine
their dependence on r; and r, and, hence, the resultant field at P. We can proceed
similarly in part (c) with E varying as 1/r rather than 1/r%. In part (d), with s, and s,
representing areas, we’ll use the definition of the solid angle subtended by these areas to
relate their charges to their distances from point P.

(a) Express the charge g; on the g, =4s, = A6y,
element of length s;: where @is the angle subtended by the arcs
of length s; and s,.

Express the charge g, on the q, =4s, = A6,
element of length s;:

Divide the first of these equations q _Aon | r
by the second to obtain: q, A6r, |r,
Express the electric field at P due to E — kg, _ kAs, _ kA6, — kAo
the charge associated with the A r’ r,
element of length s;:
Express the electric field at P due to E _ kA0
the charge associated with the 2 r,
element of length s,:
Divide the first of these equations k16
by the second to obtain: E_n
E2 Mi rl
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(b) The two fields point away from
their segments of arc.

(c) If E varies as 1/r:

Therefore:

(d) Use the definition of the solid
angle Q subtended by the area s; to
obtain:

Express the charge q; of the area s;:

Similarly, for an element of area s,:

Express the ratio of g; to g, to
obtain:

Proceed as in (a) to obtain:

and, because r, > ry,
E,>E,

Because E, > E,, the resultant
field points toward s,.

E, :ﬁ: kAs, _ kA6x, ey
r-1 r-1 I’l

and

E, - ka, _ kis, _ kidr, ey
r2 r-2 r2

E1 = Ez

Q_ 5

Az 47z1’l2

or

s, =Qr]

0, =08 = Gerz

s, =Qr;

and

q, = OQF22

q _oQr’ |’

4, oQr, |
ka,

143
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Because the two fields are of equal
magnitude and oppositely directed:

m
I
o

If E oc 1/r, then s, would produce the stronger field at P and E would point
toward s;

78 e
Picture the Problem We can apply the condition for translational equilibrium to the
particle and use the expression for the electric field on the axis of a ring charge to obtain
an expression for |g|/m. Doing so will lead us to the conclusion that |g|/m will be a
minimum when E; is a maximum and so we’ll use the result from Problem 26 that

Z= —R/\/E maximizes E,.

1, q

(@) Apply Y F, =0to the particle: |oE, —mg =0

Solve for |g|/m: g
W_g (1)
m E,
Note that this result tells us that the
minimum value of |g|/m will be where the

field due to the ring is greatest.

Express the electric field along the z E kQz
axis due to the ring of charge: ’ (22 n R2)3/2

Differentiate this expression with respect to z to obtain:

dE, K d|  x 0 (22+R2)3/2_Z;((22+R2)3/z
de |t e By,
=kQ (22+R2)3/2_Z(%)(22 +R2)1/2(22) _kQ (22+R2)3/2—322(22+R2)1/2
(22+R2)1 (22+R2)1
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Set this expression equal to zero for (22 " R2)3/2 _322(22 " Rz)l/z
extrema and simplify: (ZZ N R2)3 =0,
(22 +R?)** —322(2 +R?)" =0,
and
72 +R*-32°=0

Solve for x to obtain: 7 =

R
4+
V2

as candidates for maxima or minima.

You can either plot a graph of E, or - R
evaluate its second derivative at \/5
these points to show that it is a

maximum at:

Substitute to obtain an expression

R
Ez,max: kOl — —
- () | ae

BRI

Substitute in equation (1) to obtain: |q| [279R?

m | 2kQ
(b) If |g|/m is twice as great as in (a), kQ _ kQz
then the electric field should be half J2TR® (22 +R?)"
its value in (a), i.e.: or

1 z°
27R* 72\’
R® 1+?

Let a = z%/R? and simplify to obtain: a®+3a’-24a+1=0

The graph of f (a) =a’+3a”—24a+1 shown below was plotted using a spreadsheet
program.
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: /
N
ol \ /
20 \ /

:25 1 \/

f(a)

-30 . . .
0.0 1.0 2.0 3.0 4.0
a
Use your calculator or trial-and-error a=0.04188 and a =3.596
methods to obtain:
The corresponding z values are: z=-0.205R and z=-1.90R

The condition for a stable equilibrium position is that the particle, when displaced from
its equilibrium position, experiences a restoring force, i.e. a force that acts toward the
equilibrium position. When the particle in this problem is just above its equilibrium
position the net force on it must be downward and when it is just below the equilibrium
position the net force on it must be upward. Note that the electric force is zero at the
origin, so the net force there is downward and remains downward to the first equilibrium
position as the weight force exceeds the electric force in this interval. The net force is
upward between the first and second equilibrium positions as the electric force exceeds
the weight force. The net force is downward below the second equilibrium position as the
weight force exceeds the electric force. Thus, the first (higher) equilibrium position is
stable and the second (lower) equilibrium position is unstable.
You might also find it instructive to use
your graphing calculator to plot a graph of
the electric force (the gravitational force is
constant and only shifts the graph of the
total force downward). Doing so will x:f 90R /\ B
produce a graph similar to the one shown 0.205R
in the sketch to the right.

Note that the slope of the graph is negative on both sides of —0.205R whereas it is
positive on both sides of —1.90R; further evidence that —0.205R is a position of stable
equilibrium and —1.90R a position of unstable equilibrium.
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Picture the Problem The loop with the
small gap is equivalent to a closed loop and
a charge of —Q//27R at the gap. The field
at the center of a closed loop of uniform
line charge is zero. Thus the field is
entirely due to the charge —Q//27R .

(a) Express the field at the center of
the loop:

Relate the field at the center of the
loop to the charge in the gap:

Use the definition of linear charge
density to relate the charge in the
gap to the length of the gap:

Substitute to obtain:

Substitute in equation (1) to obtain:

‘-"_FE"_""‘-‘

0
Ecenter = EIoop + Egap (1)
-~ kg .
Egap = —FI’
¢ 27R

or

_ Q!
q 27R
_ kQ/ .

gp Re r
Ecenter =V~ ka?, F=- kas r

27R 27R

If Qs positive, the field at the origin points radially outward.

(b) From our result in (a) we see
that the magnitude of E

center IS:

80 oo

kQ¢
Ecenter = Q 3
27R

Picture the Problem We can find the electric fields at the three points of interest,
labeled 1, 2, and 3 in the diagram, by adding the electric fields due to the charge
distributions on the nonconducting sphere and the spherical shell.

147
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Express the electric field due to the E=E
nonconducting sphere and the
spherical shell at any point in space:

+ Esheu (1)

sphere

(a) Because (4.5 m, 0) is inside the Eshe,, (4.5 m,O) =0
spherical shell:

Apply Gauss’s law to a spherical =~ 4r =~ =
PP P P . Esphere (r) = _kprl
surface inside the nonconducting 3

sphere to obtain:

Evaluate Esphere (0.5m):

E e (0.5m) = 4?7[(8.988><109 N-m2/C?)(51C/m?)(0.5m)i = (94.1kN/C)i

Substitute in equation (1) to obtain: E(4,5 m,O) = (94.1kN/C)f +0
= | (94.1kN/C)i
Find the magnitude and direction of E(4.5 m,O) =| 94.1kN/C
E(4.5m,0): and
0=|0°
(b) Because (4 m, 1.1m) is inside E.(4ml.1m)=0

the spherical shell:
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Evaluate Esphere (1.1m):

E

_ 47{8.99x10° N-m?/C?)(5 C/m? J0.6m ) -

A

j =(33.6kN/C)j

sphere (1 1 m) -

Substitute in equation (1) to obtain:

Find the magnitude and direction of
E(45m1.1m):

(c) Because (2 m, 3 m) outside the
spherical shell:

Evaluate Qshen:

Refer to the diagram below to find r and r:

¥, m
2,3)

a2
3 4

=

- \ X, m
2 +

Substitute and evaluate E,,(2m,3m):

Esheu (3-61m) =

31.1m)

(8.99x10° N-m?/C?)(- 27.14C)

E(4.5m,0)=(33.6kN/C)j+0

=| (33.6kN/C)j
E(4.5m,1.1m)=| 33.6kN/C
and
0 =|90°
= stheII e

E hen (r): 2 |
r
where T is a unit vector pointing from

(4m,0)to (2m, 3m).

Qutetl = OAypen = 4”(_1'5/“C/m2)(1'2 m)’
=-27.1,C

r=3.61m
and
r =-0.555i +0.832]j

r

(10.4KkN/C)i +(~15.6 kN/C)]

(3.61m)’

(~18.7KN/C)(- 05551 +0.832] )

A
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Express the electric field due to the = stphere ~
H Es here (r) = r

charged nonconducting sphere at a P r?

distance r from its center that is

greater than its radius:

Find the charge on the sphere: Ar
g p Qsphefe = pvsphere = ? (5 IUC/mZ XOG m)3

=452 1C
Evaluate Esphere (3.61m):

—

z _ (8.99x10° N-m?/C?)(4.52 .C)

(2m,3m)= @oim) F =(3.12kN/C)F
.olm

(3.12KN/C)(- 05551 +0.832]

= (-1.73kN/C)i +(2.59kN/C)]

sphere

Substitute in equation (1) to obtain:

E(2m,3m)=(10.4kN/C)i +(~15.6kN/C)j + (~1.73kN/C)i +(2.59kN/C)j

~

= | (8.67kN/C)i +(~13.0kN/C)]

Find the magnitude and direction of E(2m,3m):

E(2m,3m)=4/(8.67kN/C)’ +(—13.0kN/C)* =[ 15.6kN/C

and
0 = tan —13.0kN/C _ 3020
8.67 kN/C
81 oo
Picture the Problem Let the numeral 1
refer to the infinite plane whose charge ym | o = =2 uC/m?

density is o1 and the numeral 2 to the
infinite plane whose charge density is

o 2. We can find the electric fields at the
two points of interest by adding the electric
fields due to the charge distributions on the
infinite planes and the sphere.

T 3 uC/m?
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Express the electric field due to the E =Eqpee + E, + B, (1)

infinite planes and the sphere at any

point in space:

(a) Because (0.4 m, 0) is inside the E gnere (0.4M,0)=0

sphere:

Find the field at (0.4 m, 0) due to El(0.4m,0)= o, ]

plane 1: 2¢,
B 3 uC/m? j

2(8.85x10" C*/IN-m?)

= (169kN/C)]

Find the field at (0.4 m, 0) due to plane 2:

= lox . - 2,LIC/m2 o o
E,(0.4m,0)=—2-|-i )= —i)=(113kN/C
2( m ) 260( I) 2(885X10—12C2/Nm2)( I) ( )I
Substitute in equation (1) to obtain: E(0.4m,0)=0+(169 kN/C)]
+(113kN/C)i

A

= (113KN/C)i + (169KkN/C)]

Find the magnitude and direction of E(O.4 m,O) - \/(113 kN/C)2 + (169 kN/C)2
E(0.4m,0):
(0.4m ) [ 203kN/C
and
f=tan" 169KNIC | _ 56.2°
113kN/C
. . _ k R
(b) Because (2.5 m, 0) is outside the E er (O. 4 m,O) _ Qprere 7

sphere: r’
where T is a unit vector pointing from

(1 m,-0.6 m) to (2.5 m, 0).
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Evaluate Qgphere: QSphere = OAsphere = 470R?
= 4z(-3 4C/m? f1m)
= _37.7,C

Referring to the diagram above, r=162m

determine rand T : and

F =0.928i +0.371]
Substitute and evaluate Esphere (2.5 m,O):

(8.99x10° N-m2/C?)(-37.7 1C)
(1.62m)’

(~129kN/C)(0.9281 +0.371]
= (~120kN/C)i + (- 47.9KN/C)j

E ghere (2.5M,0) = f

Find the field at (2.5 m, 0) due to E (2 5m 0): o, ]
plane 1: BT 2,
_ 3,uC/m2 ]
2(8.85x10 C*/IN-m?)
— (169KkN/C)j
Find the field at (2.5 m, 0) due to E (2 5m 0)= oy}
plane 2: e 2¢,
B —2 uC/m? Y
2(8.85x10 C*/N-m?)
— (~113kN/C)i

Substitute in equation (1) to obtain:

E(0.4m,0)=(~120kN/C)i + (- 47.9kN/C)]j + (169kN/C)] + (~113kN/C)i

(- 233KN/C)i + (121kN/C)]

Find the magnitude and direction of E(2.5m,0):
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E(2.5m,0)=+/(— 233KN/C)? + (121kN/C)? =[ 263kN/C

and

f=tan™ _121kNIC ) _ 153°
—233kN/C

82 e
Picture the Problem Let P represent the point of interest at (1.5 m, 0.5 m). We can find
the electric field at P by adding the electric fields due to the infinite plane, the infinite
line, and the sphere. Once we’ve expressed the field at P in vector form, we can find its
magnitude and direction.

Express the electric field at P: E=E_ .+ EI_ +E X

plane ine sphere
Find E . at P: Eplane __ 20' e

So
_ 2 1Clm? Y
2(8.85x10%* C?*/N - m?)

= (~113kN/C)i

Express E,, at P: E _2ki.
line —
r

Refer to the diagram to obtain:

? y,m

F=(0.5m)i —(0.5m)] |
and |o =2 pC/m2

N |
5 — =\

|
457 | I
i ]

T
1 1.5 2

A

F =(0.707)i - (0.707)]

¥

X, m

1

_ |

p=—6 uC/m? |
A=4uC/m |

Substitute to obtain:

9 2)~2 . ~
o 2(8.99x10° N-m?/C? (4 ,uC/m)[(OJO?)i _(0.707]]
0.707m

- (102kN/C)[(0.707)i - (0.707)] |= (72.1KN/C)i + (- 72.1kN/C)]

E

Letting r’ represent the distance E
from the center of the sphere to P,

sphere

4r X
=—Kkr'pr'
3 P
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apply Gauss’s law to a spherical where [ is directed toward the center of
surface of radius r’ centered at the sphere.

(1 m, 0) to obtain an expression

for E e at P

~

Refer to the diagram used above to obtain: ' = —(0.5m)i —(0.5m)]
and
' =—(0.707)i —(0.707)j
Substitute to obtain:

E - %”(8.99 x10° N -m?/C?)(0.707 m)(~ 6 4C/m?)|(0.707)i + (0.707)j

sphere

A~ A

= (-113kN/C)(i + )= (-113KN/C)i + (~113KN/C)]
Substitute and evaluate E :

E =(~113KN/C)i + (72.1KN/C)i + (- 72.1kN/C)j + (~113kN/C)i

+(~113kN/C)]
= (~154kN/C)i + (~185kN/C)}

Finally, find the magnitude and direction E = \/(_ 154 kN/C)Z + (—185 kN/C)Z
of E:

=| 241kN/C
and
0 =tan™ —154kN/C ) _ 220°
—185kN/C
83 oo

Picture the Problem We can find the T

period of the motion from its angular

frequency and apply Newton’s 2™ law to
relate wto m, g, R, and the electric field *

due to the infinite line charge. Because the :
electric field is given by E, = 2kA/r we |
|

L
can express w and, hence, T as a function /
ofm, g, R, and 4. x |

Relate the period T of the particle to T= 2z
its angular frequency w: w
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Apply Newton’s 2™ law to the Y Fragia = GE, = MR’
particle to obtain:

Solve for w: qE,
w=,—
mR
Express the electric field at a E — 2ki
distance R from the infinite line ' R
charge:
Substitute in the expression for w: \/ 2kig 1 \/ 2kAq
w = = —_—
mR> RV m
Substitute in equation (1) to obtain: m
T=|2R |——
2kAq
*84 oo

Picture the Problem Starting with the equation for the electric field on the axis of ring
charge, we can factor the denominator of the expression to show that, for

X << R, Ey is proportional to x. We can use F, = qE, to express the force acting on the
particle and apply Newton’s 2™ law to show that, for small displacements from
equilibrium, the particle will execute simple harmonic motion. Finally, we can find the
period of the motion from its angular frequency, which we can obtain from the
differential equation of motion.

(a) Express the electric field on the E — kQx
axis of the ring of charge: g (X2 +R? )3/2
Factor R? from the denominator of E — kQx
E, to obtain: g X2 ¥?
R 1+,
R
kQx kQ

= x| —X

NE R3
R3(1+ 22]

provided x << R.

(b) Express the force acting on the kaQ

. . . F, =qE, =
particle as a function of its charge RS
and the electric field:

X

X
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(c) Because the negatively charged
particle experiences a linear
restoring force, we know that its
motion will be simple harmonic.
Apply Newton’s 2" law to the
negatively charged particle to
obtain:

Relate the period T of the simple
harmonic motion to its angular
frequency w:

From the differential equation we
have:

Substitute to obtain:

85 oo

Picture the Problem Starting with the equation for the electric field on the axis of a ring
charge, we can factor the denominator of the expression to show that, for x << R, Ey is
proportional to x. We can use F, = qE, to express the force acting on the particle and
apply Newton’s 2™ law to show that, for small displacements from equilibrium, the
particle will execute simple harmonic motion. Finally, we can find the angular frequency
of the motion from the differential equation and use this expression to find its value when

2
dt R
or

2
X k
d—z + qQ3 X= O
dt mR
the differential equation of simple
harmonic motion.

ro2
@
»_kaQ
mR?
3
T= Zﬂ\/mR
kaQ

the radius of the ring is doubled and all other parameters remain unchanged.

Express the electric field on the axis
of the ring of charge:

Factor R? from the denominator of
E, to obtain:

_ kQx
= (x2 + RZ)S/2
B kQx
X = 2 3/2
o7
B kQx _kQ

R 1+?

provided x << R.
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Express the force acting on the F =qE, = kqQ X

particle as a function of its charge g * R®

and the electric field:

Because the negatively charged m d?x kgQ

particle experiences a linear dt? R®

restoring force, we know that its or

motion will be simple harmonic. d?x kaQ

Apply Newton’s 2™ law to the dt? + mR3 x=0
nega.tively charged particle to the differential equation of simple
obtain: harmonic motion.

The angular frequency of the simple L
harmonic motion of the particle is 1)

given by:

Express the angular frequency of the
motion if the radius of the ring is
doubled:

Divide equation (2) by equation (1)

kaQ
m
m

qQ

RS

(2R)

kaQ
m2r) 1
[kgQQ 8
mR?

W=
o= | K 0
o
a

to obtain:

Solve for and evaluate /' oo @ _2lradls o e
NCRN]

86 oo

Picture the Problem Starting with the equation for the electric field on the axis of a ring
charge, we can factor the denominator of the expression to show that, for x << R, Ey is
proportional to x. We can use F, = qE, to express the force acting on the particle and
apply Newton’s 2™ law to show that, for small displacements from equilibrium, the
particle will execute simple harmonic motion. Finally, we can find the angular frequency
of the motion from the differential equation and use this expression to find its value when
the radius of the ring is doubled while keeping the linear charge density on the ring
constant.

Express the electric field on the axis E — kQx
of the ring of charge: (x2 +R? )3/2
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Factor R? from the denominator of
E, to obtain:

Express the force acting on the
particle as a function of its charge
and the electric field:

Because the negatively charged
particle experiences a linear
restoring force, we know that its
motion will be simple harmonic.
Apply Newton’s 2" law to the
negatively charged particle to
obtain:

The angular frequency of the simple

harmonic motion of the particle is
given by:

Express the angular frequency of
the motion if the radius of the ring
is doubled while keeping the linear
charge density constant (i.e.,
doubling Q):

Divide equation (2) by equation (1)
to obtain:

Solve for and evaluate «':

= x| —X

2 3/2 R3
R3(1+ ?z?}

provided x << R.

d’x Kk
m-——7 = q_gg
dt R

or
2
d—:( + kqQS x=0,
dt® mR
the differential equation of simple
harmonic motion.

kg
= 1
@ R (1)
. ka(2Q
w'= 2
m(2R) @
kq(2Q
o' m(2R)3 1
@ kaQ 2
mR?
o _20radls e
2 2
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87 [T}

Picture the Problem We can apply Gauss’s law to express E as a function of r. We can
use the hint to think of the fields at points 1 and 2 as the sum of the fields due to a sphere
of radius a with a uniform charge distribution p and a sphere of radius b, centered at a/2
with uniform charge distribution —p.

(a) The electric field at a distance r E-Ef 1)
fr'om the_center of the sphere is where T is a unit vector pointing radially
given by:

outward.

Apply Gauss’s law to a spherical 2\ Q.
surface of radius r centered at the ﬂ E,dA= E("'”r ): S

origin to obtain: o
Relate Qenciosed t0 the charge density Q
pP- P= Aerﬁssed = Qenclosed :%pﬂrg
3
Substitute for Qenclosed: c (47zr2 ) _ 4p g
So
Solve for E to obtain: £ pr
3¢,
Substitute for E in equation (1) to _ o .
obtain: E=|—rr
3¢,

(b) The electric field at point 1 is E -E +E =Ef+E f 2)
the sum of the electric fields due to ! Lo r -’
the two charge distributions:
Apply Gauss’s law to relate the 4 a3
magnitude of the field due to the E, (47laz)= Gt _ 370 P
positive charge distribution to the o o
charge enclosed by the sphere:
Solve for E,;: E . _ 20

’ 3¢, 3¢,
Proceed similarly for the spherical 4 73
hole to obtain: E_p(4ﬂb2)= Oene __ 570

So So

Solve for E_,: Eo__ oo}

P
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Substitute in equation (2) to obtain: ~ ~ ~ R
E = 20 - P r= o0 r
3¢, 3¢, 3¢,
The electric field at point 2 is the E.—E +E =Ef+E f ©)
sum of the electric fields due to the ? peTr P -’
two charge distributions:
Because point 2 is at the center of E, = 0
the larger sphere:
The magnitude of the field at point ob
2 due to the negative charge E,= 3c.
0

distribution is:

Substitute in equation (3) to obtain:

E o+ | Ay
3e, 3¢,

88 (1 1]

Picture the Problem The electric field in the cavity is the sum of the electric field due to
the uniform and positive charge distribution of the sphere whose radius is a and the
electric field due to any charge in the spherical cavity whose radius is b.

The electric field at any point inside = _E = _E T ¢
the cavity is the sum 01)! t?\e electric E= Ef + ECha'_gemSide B Ep_ ' + ECha'g_ei"Sider
fields due to the two charge where I is a unit vector pointing radially
distributions: outward.

tl?]eecszjﬁ ;here is no charge inside E crargeinsize = 0

The magnitude of the field inside ob

the cavity due to the positive charge E,= 3c

distribution is: 0

Substityte in the expression for E E_04 o P o) bf

to obtain: 3¢, 3¢,

89 e

Picture the Problem We can use the hint given in Problem 87 to think of the fields at
points 1 and 2 as the sum of the fields due to a sphere of radius a with a uniform charge
distribution p and a sphere of radius b, centered at a/2 with charge Q spread uniformly
throughout its volume.

The electric field at point 1 is the E,=E + EQ =E,f+E,f (1)
sum of the electric fields due to the 7 7 o _
two charge distributions: where I is a unit vector pointing radially

outward.



Apply Gauss’s law to relate the
field due to the positive charge
distribution to the charge of the
sphere:

Solve for E,

Apply Gauss’s law to relate the
field due to the negative charge
distributed uniformly throughout
the volume of the cavity :

Substitute for Q to obtain:

Solve for Eq:

Substitute in equation (1) to obtain:

The Electric Field 2: Continuous Charge Distributions 161
4 3
Ep(47za2):ﬂ _3mp
So So
E .30 _2pb
? 3¢, 3¢,
£, (4nb?)= e - Q
So S
where Q = p'V = p'47b°
4 p'®
Eq(4nd”)= S
0
E, = rb
3¢,
g _2;, Py 2p+p) ;
3¢, 3¢ 3¢e,

The electric field at point 2 is the
sum of the electric fields due to the
two charge distributions:

Because point 2 is at the center of
the larger sphere:

The magnitude of the field at point
2 due to the uniformly distributed
charge Q was shown above to be:

Substitute in equation (2) to obtain:

90 oo

E,=0
£, =20
3e,

E, =0+ 2P 7| Ppp
=N 3e,

Picture the Problem Let the length of the cylinder be L, its radius R, and charge Q. Let
P be a generic point of interest on the x axis. We can find the electric field at P by
expressing the field due to an elemental disk of radius R, thickness dx, and charge dq and

then integrating E, = 27zka(1— x/\/ x* +R? )
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¥ .
! dq=%dx
\ | L )
=12m I
1 ' p =750 uC/m?|
—_————— = -l-—l—— — — — —e—X,m
-1 0 | l | 1

Express the electric field on the x X

. . dE, =27kp| 1 - ——— |dx
axis due to the charge carried by the X x2 + R2
disk of thickness dx:

Integrate dE, for P beyond the end of the cylinder:

x+L/2 X
E, =27p | [1——de

x-L/2 \/X2+R2
2 2
:Zﬂkp{L\/(%-l-Xj +R? +\/(%—X) +R2}

Integrate dE, for P inside the cylinder:

[L/2+x X J L/2—x( X j
E, =27k 1-————— dx— [ [1-—— [dx
] [ ey el o

LY L Y
=27kp 2x—\/(5+xj +R2+\/(E_Xj +R?

The effective charge density of the disk o= Q/L

is given by: R?
Substitute numerical values and o= 50;12C — 553 4C/m°
evaluate p: z(L.2m)(2m)

Evaluate 27kp :

27kp = 272(8.99x10° N -m?/C? )(5.53 £C/m? )= 3.12x10° N/C - m
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(a) Evaluate E,(0.5 m):

E,(0.5m)=(3.12x10° N/C-m)

x [2(0.5 m)—\/(27m+ 0.5 m]z +(L.2m) + \/(27”1—0.5 m]z +(1.2 m)z}

=[118KkN/C

(b) Evaluate Ex(2 m):

E,(2m)=(3.12x10° N/C-m)

x[Zm —\/(27m+2m)2 +(@.2mYy +\/(27m—2mj2 +(1.2m)2]

=[103kN/C

(c) Evaluate E4(20 m):

E,(20m)=(3.12x10° N/C-m)

x{zm —\/[ZT”H 20 mjz +(1.2m) +\/[27m— 20 mjz +(1.2 m)z}

=[1.12kN/C

Remarks: Note that, in (c), the distance of 20 m is much greater than the length of
the cylinder that we could have used E, = kQ/xz.

91 oo
Picture the Problem We can use E, = kQ/[X0 (x, — L )]to express the electric fields at

Xo= 2L and X, = 3L and take the ratio of these expressions to find the field at x, = 3L.

Express the electric field along the x E (x ): kQ

axis due to a uniform line charge on e Xo (x0 - L)

the x axis:

Evaluate E, at X, = 2L: E.(2L)= kQ  _ sz )
2L(2L-L) 2L

Evaluate Ey at X, = 3L: E.(3L)= kQ  _ kQ2 @
3L(3L-L) 6L
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Divide equation (2) by equation (1)
to obtain:

Solve for and evaluate E, (3L):

92 (1 1]

kQ
E,(BL) &2 1
E(2L) kQ 3
212

E (3L)= % E (2L)= %(600 N/C)

=| 200N/C

Picture the Problem Let the coordinates of one corner of the cube be (x,y,z), and assume
that the sides of the cube are Ax, Ay, and Az and compute the flux through the faces of
the cube that are parallel to the yz plane. The net flux of the electric field out of the
gaussian surface is the difference between the flux out of the surface and the flux into the

surface.

The net flux out of the cube is given

by:

Brer = P+ AX) = $(x)

Use a Taylor series expansion to express the net flux through faces of the cube

that are parallel to the yz plane:

e = 9()+ (Ax)¢'(x)+ (X" g7 (x) +..= B(x) = (X' (x) + 5 (Ax) ¢ (x) +..

Neglecting terms higher than first
order we have:

Because the electric field is in the x
direction, ¢ (x) is:

Substitute for ¢'(x) to obtain:

¢net = AX¢|(X)
#(x) = E, AyAz
and
oE
(X )= —2 AYA
#(x)=—xAyAz
oE
=A X (AYA
¢net X 6X ( y Z)
_0 F;( (AxAyAz)
_ oE, AV
OX
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93 e
Picture the Problem We can use the definition of electric flux in conjunction with the

result derived in Problem 92 to show that V- E = p/ € -

From Gauss’s law, the net flux Uore 0
through any surface is: s =—— ="V

S0 So
Generalizing our result from OE. OE. CE .
Problem 92 (see the remark Dret :( Xy —L 4 Z)V = (V- E)\/
following Problem 92): ox oy o
Equate these two expressions to _ ) - )
obtain: VEN=Lvov.E=|£Z
o So

*94 oo0
Picture the Problem We can find the field due to the infinitely long line charge from
E = 2kA/r and the force that acts on the dipole using F = pdE/dr .

Express the force acting on the F=p dE

dipole: dr

The electric field at the location of E_ 2k4

the dipole is given by: r

Substitute to obtain: Fop d|2ki| | 2kip
dr| r r’

where the minus sign indicates that the
dipole is attracted to the line charge.

95 e
Picture the Problem We can find the distance from the center where the net force on
either charge is zero by setting the sum of the forces acting on either point charge equal
to zero. Each point charge experiences two forces; one a Coulomb force of repulsion due
to the other point charge, and the second due to that fraction of the sphere’s charge that is
between the point charge and the center of the sphere that creates an electric field at the
location of the point charge.

Apply D F =0 to either of the Feoutoms — Frieg = 0 (1)
point charges:

Express the Coulomb force on the ke? ke?

proton: Feoutomn = W = 12

The force exerted by the field E is: Fiog = €E
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Apply Gauss’s law to a spherical 2\ Qencosed
surface of radius a centered at the E(47za ): c
origin: 0
Relate the charge density of the 2e 2e33
electron sphere t0 Qenciosed: o Qe““'“;" = Qenclosed =53~
2R 4 ma R
Substitute for Qenciosed: c (4 2) 23
B S R®
Solve for E to obtain: ea ela

=——>Fn=""—5
27 ¢, R® "2 e, R

Substitute for Fcouloms @and Figig in ke? ela 0
equation (1): 1 2n o R =

or

ke? 2ke’a

7= s =0

4a R
Solve for a to obtain: 1

a=3—R=| 0.5R

8

96 (11}

Picture the Problem We can use the result of Problem 96 to express the force acting on
both point charges when they are separated by 2a. We can then use this expression to
write the force function when the point charges are each displaced a small distance x
from their equilibrium positions and then expand this function binomially to show that
each point charge experiences a linear restoring force.

From Problem 95, the force function ( ) ke* 2ke’a 0

at the equilibrium position is: 432 R®

When the charges are displaced a ke? ,  2ke?
distance x symmetrically from their Fla+x)= T(a +x)7 - x (a+x)

equilibrium positions, the force
function becomes:

Expand this function binomially to obtain:

2 5 ,
F(a+x):k%(a_2—2a‘3x+.,,)_ 2;(2 a_ZIIS N

N ke? ~ ke? . 2ke? 4 2ke?
4a® 2a° R® R3

X
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Substitute for R using the result
obtained in Problem 96 and
simplify to obtain:

F

restoring

~ 3ke?
433

J

Hence, we’ve shown

that, for a small

displacement from equilibrium, the point
charges experience a linear restoring force.

Remarks: An alternative approach that you might find instructive is to expand the

force function using the Taylor series.

97

Picture the Problem Because the restoring force found in Problem 96 is linear, we can
express the differential equation of the proton’s motion and then identify «? from this

equation.

Apply > F, =mato the displaced
proton to obtain:

Solve for w:

Substitute numerical values and evaluate w:

d?x
X=m—
dt

~ 3ke?
4r3

o, 3ke’
4mr?

/ 3ke?
= 3
dmr

where @

2

3(8.99x10° N-m?/C?)(1.6x10™ C)
4(1.67 107 kg)(0.08nm)’

4.49x10%s™




168 Chapter 22



