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Chapter 22 
The Electric Field 2: Continuous Charge 
Distributions 
 
Conceptual Problems 
 
*1 ••  
(a)  False.  Gauss’s law states that the net flux through any surface is given 
by insideS nnet 4 kQdAE πφ == ∫ . While it is true that Gauss’s law is easiest to apply to 

symmetric charge distributions, it holds for any surface. 
 
(b)  True 
 
2 ••  
Determine the Concept Gauss’s law states that the net flux through any surface is given 
by insideS nnet 4 kQdAE πφ == ∫ . To use Gauss’s law the system must display some 

symmetry. 
 
3 •••  
Determine the Concept The electric field is that due to all the charges, inside and 
outside the surface. Gauss’s law states that the net flux through any surface is given 
by insideS nnet 4 kQdAE πφ == ∫ . The lines of flux through a Gaussian surface begin on 

charges on one side of the surface and terminate on charges on the other side of the 
surface. 
 
4  ••  
Picture the Problem We can show that the charge inside a sphere of radius r is 
proportional to r3 and that the area of a sphere is proportional to r2. Using Gauss’s law, 
we can show that the field must be proportional to r3/r2 = r. 
 
Use Gauss’s law to express the 
electric field inside a spherical 
charge distribution of constant 
volume charge density: 
 

A
kQE inside4π

=  

where 24 rA π= . 

Express Qinside as a function of ρ and 
r: 
 

3
3
4

inside rVQ πρρ ==  

 

Substitute to obtain: 
rk

r
rkE

3
4

4
4

2

3
3
4 πρ
π
πρπ

==  
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*5 •  
(a) False. Consider a spherical shell, in which there is no charge, in the vicinity of an 
infinite sheet of charge. The electric field due to the infinite sheet would be non-zero 
everywhere on the spherical surface. 
 
(b) True (assuming there are no charges inside the shell). 
 
(c) True. 
 
(d) False. Consider a spherical conducting shell. Such a surface will have equal charges 
on its inner and outer surfaces but, because their areas differ, so will their charge 
densities. 
 
6 •  
Determine the Concept Yes. The electric field on a closed surface is related to the net 
flux through it by Gauss’s law: 0insideS

∈== ∫ QEdAφ . If the net flux through the closed 

surface is zero, the net charge inside the surface must be zero by Gauss’s law. 
 
7 •   
Determine the Concept The negative point charge at the center of the conducting shell 
induces a charge +Q on the inner surface of the shell. correct. is )(a  

 
8 •  
Determine the Concept The negative point charge at the center of the conducting shell 
induces a charge +Q on the inner surface of the shell. Because a conductor does not have 
to be neutral, correct. is )(d  

 
*9 ••  
Determine the Concept We can apply Gauss’s law to determine the electric field for  
r < R1 and r > R2. We also know that the direction of an electric field at any point is 
determined by the direction of the electric force acting on a positively charged object 
located at that point.  
 
From the application of Gauss’s law 
we know that the electric field in 
both of these regions is not zero and 
is given by: 
 

2n r
kQE =  

A positively charged object placed in either of these regions would experience an 
attractive force from the charge –Q located at the center of the shell. correct. is )(b  
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*10 ••  
Determine the Concept We can decide what will happen when the conducting shell is 
grounded by thinking about the distribution of charge on the shell before it is grounded 
and the effect on this distribution of grounding the shell. 
 
The negative point charge at the center of the conducting shell induces a positive charge 
on the inner surface of the shell and a negative charge on the outer surface. 
Grounding the shell attracts positive charge from ground; resulting in the outer surface 
becoming electrically neutral. correct. is )(b  

 
11 ••  
Determine the Concept We can apply Gauss’s law to determine the electric field for r < 
R1 and r > R2. We also know that the direction of an electric field at any point is 
determined by the direction of the electric force acting on a positively charged object 
located at that point.  
 
From the application of Gauss’s law we know that the electric field in the region r < R1 

is given by 2n r
kQE = . A positively charged object placed in the region r < R1 will 

experience an attractive force from the charge –Q located at the center of the shell. With 
the conducting shell grounded, the net charge enclosed by a spherical Gaussian surface 
of radius r > R2 is zero and hence the electric field in this region is zero.  

correct. is )(c  

 
12 ••  
Determine the Concept No. The electric field on a closed surface is related to the net 
flux through it by Gauss’s law: 0insideS

∈== ∫ QEdAφ . φ can be zero without E being 

zero everywhere. If the net flux through the closed surface is zero, the net charge inside 
the surface must be zero by Gauss’s law. 
 
13 ••  
False. A physical quantity is discontinuous if its value on one side of a boundary differs 
from that on the other. We can show that this statement is false by citing a 
counterexample. Consider the field of a uniformly charged sphere. ρ is discontinuous at 
the surface, E is not. 
 
Estimation and Approximation  
 
*14 ••  
Picture the Problem We’ll assume that the total charge is spread out uniformly (charge 
density = σ) in a thin layer at the bottom and top of the cloud and that the area of each 
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surface of the cloud is 1 km2. We can then use the definition of surface charge density 
and the expression for the electric field at the surface of a charged plane surface to 
estimate the total charge of the cloud. 
 
Express the total charge Q of a 
thundercloud in terms of the surface 
area A of the cloud and the charge 
density σ : 
 

AQ σ=  

Express the electric field just outside 
the cloud: 0∈

=
σE   

 
Solve for σ : 
 

E0=∈σ  

Substitute for σ to obtain: 
 

EAQ 0=∈  

Substitute numerical values and evaluate Q: 
 

( )( )( ) C6.26km1V/m103mN/C1085.8 262212 =×⋅×= −Q  

 
Remarks: This charge is in reasonably good agreement with the total charge 
transferred in a lightning strike of approximately 30 C. 
 
15 ••  
Picture the Problem We’ll assume that the field is strong enough to produce a spark. 
Then we know that field must be equal to the dielectric strength of air. We can then use 
the relationship between the field and the charge density to estimate the latter. 
 
Suppose the field is large enough to 
produce a spark. Then:  
 

V/m103 6×≈E  

Because rubbing the balloon leaves it 
with a surface charge density of +σ 
and the hair with a surface charge 
density of −σ, the electric field 
between the balloon and the hair is: 
 

02∈
=

σE  

Solve for σ : E02∈=σ  

 
Substitute numerical values and evaluate σ : 
 

( )( ) 2562212 C/m1031.5V/m103mN/C1085.82 −− ×=×⋅×=σ  
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16 •  
Picture the Problem For x << r, we can model the disk as an infinite plane. For  
x >> r, we can approximate the ring charge by a point charge. 
 

For x << r, express the electric field 
near an infinite plane of charge: 
 

σπkEx 2=  

(a) and (b) Because Ex is 
independent of x for x << r: 

( )( )
N/C1003.2

C/m6.3/CmN1099.82
5

2229

×=

⋅×= µπxE

 
 

For x >> r, use Coulomb’s law for 
the electric field due to a point 
charge to obtain: 
 

( ) 2

2

2 x
rk

x
kQxEx

σπ
==  

 

(c) Evaluate Ex at x = 5 m: 
 

( ) ( )( ) ( )
( )

N/C54.2
m5

C/m6.3cm5.2/CmN1099.8m5 2

22229

=
⋅×

=
µπ

xE  

 
(d) Evaluate Ex at x = 5 cm: 
 

( ) ( )( ) ( )
( )

N/C1054.2
m05.0

C/m6.3cm5.2/CmN1099.8cm5 4
2

22229

×=
⋅×

=
µπ

xE  

Note that this is a very poor approximation because x = 2r is not much greater than r. 
 

Calculating E
r

 From Coulomb’s Law 
 
*17 •  
Picture the Problem We can use the definition of λ to find the total charge of the line of 
charge and the expression for the electric field on the axis of a finite line of charge to 
evaluate Ex at the given locations along the x axis. In part (d) we can apply Coulomb’s law 
for the electric field due to a point charge to approximate the electric field at x = 250 m. 
 
(a) Use the definition of linear 
charge density to express Q in terms 
of λ: 

( )( ) nC17.5m5nC/m3.5 ==

= LQ λ
 

 
Express the electric field on the axis 
of a finite line charge: 

( ) ( )Lxx
kQxEx −

=
00

0  
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(b) Substitute numerical values and 
evaluate Ex at x = 6 m: 
 

( ) ( )( )
( )( )

N/C26.2

m5m6m6
nC17.5/CmN108.99m6

229

=

−
⋅×

=xE

 
 

(c) Substitute numerical values and 
evaluate Ex at x = 9 m: 
 

( ) ( )( )
( )( )

N/C37.4

m5m9m9
nC17.5/CmN108.99m9

229

=

−
⋅×

=xE

 
 

(d) Substitute numerical values and evaluate Ex at x = 250 m: 
 

( ) ( )( )
( )( ) mN/C57.2

m5m502m502
nC17.5/CmN108.99m502

229

=
−

⋅×
=xE  

 
(e) Use Coulomb’s law for the 
electric field due to a point charge to 
obtain: 
 

( ) 2x
kQxEx =  

Substitute numerical values and evaluate Ex(250 m): 
 

( ) ( )( )
( )

mN/C52.2
m250

nC17.5/CmN108.99m250 2

229

=
⋅×

=xE  

Note that this result agrees to within 2% with the exact value obtained in (d). 
 
18 •  
Picture the Problem Let the charge 
densities on the two plates be σ1 and σ2 
and denote the three regions of interest as 
1, 2, and 3. Choose a coordinate system in 
which the positive x direction is to the 
right. We can apply the equation for 
E
r

near an infinite plane of charge and the 
superposition of fields to find the field in 
each of the three regions. 
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(a) Use the equation for E
r

near 
an infinite plane of charge to 
express the field in region 1 
when σ1 = σ2  = +3 µC/m2: 
 

i

ii

EEE

ˆ4

ˆ2ˆ2 21

1 21

σπ

σπσπ

σσ

k

kk

−=

−−=

+=
rrr

 

Substitute numerical values and evaluate :1E
r

 

 

( )( ) ( )iiE ˆN/C1039.3ˆC/m3/CmN1099.84 52229
1 ×−=⋅×−= µπ
r

 

 
Proceed as above for region 2: 

0ˆ2ˆ2

ˆ2ˆ2 212 21

=−=

−=+=

ii

iiEEE

σπσπ

σπσπσσ

kk

kk
rrr

 

 
Proceed as above for region 3: 

( )( )
( )i

i

i

iiEEE

ˆN/C1039.3

ˆC/m3/CmN1099.84

ˆ4

ˆ2ˆ2

5

2229

213 21

×=

⋅×=

=

+=+=

µπ

σπ

σπσπσσ

k

kk
rrr

 

 
The electric field lines are shown 
to the right: 

 
 

(b) Use the equation for E
r

near 
an infinite plane of charge to 
express and evaluate the field in 
region 1 when σ1 = +3 µC/m2 and 
σ2  = −3 µC/m2: 
 

0ˆ2ˆ2

ˆ2ˆ2 211 21

=−=

−=+=

ii

iiEEE

σπσπ

σπσπσσ

kk

kk
rrr

 

 

Proceed as above for region 2: 

( )( )
( )i

i

i

iiEEE

ˆN/C1039.3

ˆC3/CmN1099.84

ˆ4

ˆ2ˆ2

5

229

211 21

×=

⋅×=

=

+=+=

µπ

σπ

σπσπσσ

k

kk
rrr
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Proceed as above for region 3: 

0ˆ2ˆ2

ˆ2ˆ2 213 21

=−=

−=+=

ii

iiEEE

σπσπ

σπσπσσ

kk

kk
rrr

 

 
The electric field lines are shown to the 
right: 

 
 
19 •  
Picture the Problem The magnitude of the electric field on the axis of a ring of charge 

is given by ( ) ( ) 2322 axkQxxEx += where Q is the charge on the ring and a is the 

radius of the ring. We can use this relationship to find the electric field on the x axis at 
the given distances from the ring. 
 
Express E

r
on the axis of a ring charge: 

 
( ) ( ) 2322 ax

kQxxEx
+

=  

 
(a) Substitute numerical values and evaluate Ex for x = 1.2 cm: 
 

( ) ( )( )( )
( ) ( )[ ] N/C1069.4

cm5.8cm2.1

cm2.1C75.2/CmN1099.8cm2.1 5
2322

229

×=
+

⋅×
=

µ
xE  

 
(b) Proceed as in (a) with x = 3.6 cm: 
 

( ) ( )( )( )
( ) ( )[ ] N/C1013.1

cm5.8cm6.3

cm6.3C75.2/CmN1099.8cm6.3 6
2322

229

×=
+

⋅×
=

µ
xE  

 
(c) Proceed as in (a) with x = 4.0 m: 
 

( ) ( )( )( )
( ) ( )[ ] N/C1054.1

cm5.8m4

m4C75.2/CmN1099.8m4 3
2322

229

×=
+

⋅×
=

µ
xE  

 
(d) Using Coulomb’s law for the 
electric field due to a point charge, 
express Ex: 
 

( ) 2x
kQxEx =  
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Substitute numerical values and evaluate Ex at x = 4.0 m: 
 

( ) ( )( )
( )

N/C1055.1
m4

C75.2/CmN1099.8m4 3
2

229

×=
⋅×

=
µ

xE  

 

ring.  theis than m 4  nearer  is chargepoint   thebecauselarger slightly 
 isIt  ).(Part in  obtainedresult   with the1% within  toagreesresult  This

=x
c

 

 
20 •  

Picture the Problem We can use ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−=

22
12

Rx
xkxEx σπ , the expression for the 

electric field on the axis of a disk charge, to find Ex at x = 0.04 cm and 5 m. 
 
Express the electric field on the axis 
of a disk charge: 
 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−=

22
12

Rx
xkxEx σπ  

(a) Evaluate this expression for x = 0.04 cm: 
 
 

( )( )
( ) ( )

N/C1000.2

cm5.2cm0.04

cm04.01C/m6.3C/mN1099.82

5

22

2229

×=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
−⋅×= µπxE

 

This value is about 1.5% smaller than the approximate value obtained in Problem 9. 
 
(b) Proceed as in (a) for x = 5 m: 
 

( )( )
( ) ( )

N/C54.2
cm2.5m5

m51C/m6.3/CmN1099.82
22

2229 =⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
−⋅×= µπxE  

Note that the exact and approximate (from Problem 16) agree to within 1%. 
 
21 •  
Picture the Problem We can use the definition of λ to find the total charge of the line of 
charge and the expression for the electric field on the perpendicular bisector of a finite 
line of charge to evaluate Ey at the given locations along the y axis. In part (e) we can 
apply Coulomb’s law for the electric field due to a point charge to approximate the 
electric field at y = 4.5 m. 
 
(a) Use the definition of linear ( )( ) nC300.0cm5nC/m6 === LQ λ  
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charge density to express Q in terms 
of λ: 
 

 

Express the electric field on the 
perpendicular bisector of a finite line 
charge: 
 

( )
( ) 22

2
1

2
12

yL

L
y
kyEy

+
=

λ
 

(b) Evaluate Ey at y = 4 cm: 
 

( ) ( ) ( )( )
( ) ( )

kN/C43.1
m04.0m025.0

m05.0nC/m6
m04.0

/CmN1099.82cm4
22

2
1229

=
+

⋅×
=yE  

 
(c) Evaluate Ey at y = 12 cm: 
 

( ) ( ) ( )( )
( ) ( )

N/C183
m12.0m025.0

m05.0nC/m6
m12.0

/CmN1099.82cm12
22

2
1229

=
+

⋅×
=yE  

 
(d) Evaluate Ey at y = 4.5 m: 
 

( ) ( ) ( )( )
( ) ( )

N/C133.0
m5.4m025.0

m05.0nC/m6
m5.4

/CmN1099.82m.54
22

2
1229

=
+

⋅×
=yE  

 
(e) Using Coulomb’s law for the electric 
field due to a point charge, express Ey: 
 

( ) 2y
kQyEy =  

Substitute numerical values and evaluate Ey at y = 4.5 m: 
 

( ) ( )( )
( )

N/C133.0
m5.4

nC3.0/CmN1099.8m5.4 2

229

=
⋅×

=yE  

This result agrees to three decimal places with the value calculated in Part (d). 
 
22 •  
Picture the Problem The electric field on the axis of a disk charge is given by 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−=

22
12

ax
xkqEx π . We can equate this expression and 02

1 2∈= σxE  and 

solve for x. 
 
Express the electric field on the axis of a 
disk charge: ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
−=

22
12

ax
xkqEx π  
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We’re given that: 02
1 2∈= σxE  

 
Equate these expressions: 
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
−=

22
0

12
4 ax

xkσπ
ε
σ

 

 
Simplify to obtain: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−=

22
0

12
4 ax

xkσπ
ε
σ

 

or, because k = 1/4πε0, 

22
1

2
1

ax
x
+

−=  

 
Solve for x to obtain: 

3
ax =  

 
23 •  

Picture the Problem We can use ( ) 2322 ax
kQxEx
+

= to find the electric field at the given 

distances from the center of the charged ring. 
 
(a) Evaluate Ex at x = 0.2a: ( ) ( )

( )[ ]
2

2322

189.0

2.0

2.02.0

a
kQ

aa

akQaEx

=

+
=

 

 
(b) Evaluate Ex at x = 0.5a: ( ) ( )

( )[ ]
2

2322

358.0

5.0

5.05.0

a
kQ

aa

akQaEx

=

+
=

 

 
(c) Evaluate Ex at x = 0.7a: ( ) ( )

( )[ ]
2

2322

385.0

7.0

7.07.0

a
kQ

aa

akQaEx

=

+
=

 

 
(d) Evaluate Ex at x = a: ( ) [ ] 22322

354.0
a
kQ

aa
kQaaEx =
+

=  
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(e) Evaluate Ex at x = 2a: ( )
( )[ ] 22322

179.0
2

22
a
kQ

aa

kQaaEx =
+

=  

 
The field along the x axis is plotted below. The x coordinates are in units of x/a and E is in 
units of kQ/a2. 
 

-0.4

-0.2

0.0

0.2

0.4

-3 -2 -1 0 1 2 3

x /a

E x

 
 
24 •  

Picture the Problem We can use ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−=

22
12

Rx
xkEx σπ , where R is the radius of 

the disk, to find the electric field on the axis of a disk charge. 
 
Express Ex in terms of ε0: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−

∈
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−

∈
=

22
0

22
0

1
2

1
4
2

Rx
x

Rx
xEx

σ

π
πσ

 

 
(a) Evaluate Ex at x = 0.2a: 

( )
( )

0

22
0

2
804.0

2.0

2.01
2

2.0

∈
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
−

∈
=

σ

σ

aa

aaEx
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(b) Evaluate Ex at x = 0.5a: 
( )

( )

0

22
0

2
553.0

5.0

5.01
2

5.0

∈
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
−

∈
=

σ

σ

aa

aaEx

 

 
(c) Evaluate Ex at x = 0.7a: 

( )
( )

0

22
0

2
427.0

7.0

7.01
2

7.0

∈
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
−

∈
=

σ

σ

aa

aaEx

 

 
(d) Evaluate Ex at x = a: ( )

0

22
0

2
293.0

1
2

∈
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−

∈
=

σ

σ
aa

aaEx

 

 
(e) Evaluate Ex at x = 2a: 

( )
( )

0

22
0

2
106.0

2

21
2

2

∈
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
−

∈
=

σ

σ

aa

aaEx

 

 
The field along the x axis is plotted below. The x coordinates are in units of x/a and E is 
in units of .2 0∈σ  

 

0.0

0.4

0.8

1.2

1.6

2.0

-3 -2 -1 0 1 2 3

x/R

E x
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*25 ••  
Picture the Problem 
 
(a) The electric field on the x axis of 
a disk of radius r carrying a surface 
charge density σ is given by: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−=

22
12

rx
xkEx σπ  

(b)  The electric field due to an 
infinite sheet of charge density σ is 
independent of the distance from the 
plane and is given by: 
 

σπkE 2plate =  

A spreadsheet solution is shown below. The formulas used to calculate the quantities in 
the columns are as follows: 
 

Cell Content/Formula Algebraic Form 
B3 9.00E+09 k 
B4 5.00E−10 σ 
B5 0.3 r 
A8 0 x0 
A9 0.01 x0 + 0.01 
B8 2*PI()*$B$3*$B$4*(1−A8/ 

(A8^2+$B$5^2)^2)^0.5) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−

22
12

rx
xkσπ  

C8 2*PI()*$B$3*$B$4 σπk2   
 

 A B C 
1    
2    
3 k= 9.00E+09 Nm^2/C^2
4 sigma= 5.00E-10 C/m^2 
5 r= 0.3 m 
6    
7 x E(x) E plate 
8 0.00 28.27 28.3 
9 0.01 27.33 28.3 

10 0.02 26.39 28.3 
11 0.03 25.46 28.3 
12 0.04 24.54 28.3 
13 0.05 23.63 28.3 
14 0.06 22.73 28.3 
15 0.07 21.85 28.3 

    
73 0.65 2.60 28.3 
74 0.66 2.53 28.3 
75 0.67 2.47 28.3 
76 0.68 2.41 28.3 
77 0.69 2.34 28.3 
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78 0.70 2.29 28.3  
 
The following graph shows E as a function of x. The electric field from an infinite sheet 
with the same charge density is shown for comparison – the magnitude of the electric 
fields differ by more than 10 percent for x = 0.03 m. 
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26 ••    
Picture the Problem Equation 22-10 expresses the electric field on the axis of a ring 
charge as a function of distance along the axis from the center of the ring. We can show 
that it has its maximum and minimum values at 2ax += and 2ax −= by setting 

its first derivative equal to zero and solving the resulting equation for x. The graph of Ex 
will confirm that the maximum and minimum occur at these coordinates. 
 
Express the variation of Ex with x on 
the axis of a ring charge: 
 

( ) 2322 ax
kQxEx
+

=  

Differentiate this expression with respect to x to obtain: 
 

( )
( ) ( )

( )
( ) ( )( ) ( )

( )
( ) ( )

( )322

212222322

322

2122
2
32322

322

23222322

2322

32
ax

axxaxkQ
ax

xaxxaxkQ

ax

ax
dx
dxax

kQ
ax
x

dx
dkQ

dx
dEx

+

+−+
=

+

+−+
=

+

+−+
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
=

 

 
Set this expression equal to zero for 
extrema and simplify: 

( ) ( )
( ) 03

322

212222322

=
+

+−+

ax
axxax

, 

( ) ( ) 03 212222322 =+−+ axxax , 
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and 
03 222 =−+ xax  

 
Solve for x to obtain: 
 2

ax ±=  

as our candidates for maxima or minima. 
 

A plot of E, in units of kQ/a2, versus x/a is shown to the right. This graph shows that E is 
a minimum at 2ax −= and a maximum at 2ax = . 

 

-0.4

-0.2

0.0

0.2

0.4

-3 -2 -1 0 1 2 3

x/a

E x

 
 
27 ••  
Picture the Problem The line charge and 
point (0, y) are shown in the diagram. Also 
shown is a line element of length dx and the 
field E

r
d its charge produces at (0, y). We 

can find dEx from E
r

d and then integrate 
from x = x1 to x = x2. 

 
 
Express the x component of E

r
d : 

( ) dx
yx
xk

dx
yx

x
yx

k

dx
yx

kdEx

2322

2222

22 sin

+
−=

++
−=

+
−=

λ

λ

θλ
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Integrate from x = x1 to x2 to obtain: 

( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
+

+
−−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
+

+
−−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−−=

+
−= ∫

22
1

22
2

22
1

22
2

22

2322

11

1
2

1

2

1

yx
y

yx
y

y
k

yxyx
k

yx
k

dx
yx

xkE

x

x

x

x
x

λ

λ

λ

λ

 

 
From the diagram we see that: 

22
2

2cos
yx

y
+

=θ or ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

y
x21

2 tanθ  

and 

22
1

1cos
yx

y
+

=θ or ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

y
x11

1 tanθ  

 
Substitute to obtain: [ ]

[ ]12

12

coscos

coscos

θθλ

θθλ

−=

+−−=

y
k

y
kEx

 

 
28 ••  
Picture the Problem The diagram shows a 
segment of the ring of length ds that has a 
charge dq = λds. We can express the 
electric field E

r
d at the center of the ring 

due to the charge dq and then integrate this 
expression from θ = 0 to 2π to find the 
magnitude of the field in the center of the 
ring.  
 
(a) and (b) The field E

r
d at the 

center of the ring due to the charge 
dq is:  
 

ji

EEE
ˆsinˆcos θθ dEdE

ddd yx

−−=

+=
rrr

         (1) 

The magnitude dE of the field at the 
center of the ring is: 2r

kdqdE =  
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Because dq = λds: 
 2r

dskdE λ
=  

 
The linear charge density varies with 
θ according to  
λ(θ) = λ0 sin θ : 
 

2
0 sin

r
dskdE θλ

=  

Substitute rdθ for ds: 
 r

dk
r

rdkdE θθλθθλ sinsin 0
2

0 ==  

 
Substitute for dE in equation (1) to 
obtain: 
 

j

iE

ˆsin

ˆcossin

2
0

0

r
dk

r
dkd

θθλ

θθθλ

−

−=
r

 

 
Integrate E

r
d  from θ = 0 to 2π: 

j

j

j

iE

ˆ

ˆ0

ˆsin

ˆ2sin
2

0

0

2

0

20

2

0

0

r
k
r
k

d
r

k

d
r

k

λπ

λπ

θθλ

θθλ

π

π

−=

−=

−

−=

∫

∫
r

 

 

. is magnitude its anddirection   negative in the isorigin  at the field The 0

r
ky λπ

 

 
29 ••  
Picture the Problem The line charge and 
the point whose coordinates are  
(0, y) are shown in the diagram. Also 
shown is a segment of the line of length dx. 
The field that it produces at (0, y) is .E

r
d  

We can find dEy from E
r

d and then 
integrate from x = 0 to x = a to find the y 
component of the electric field at a point on 
the y axis.  
 
(a) Express the magnitude of the 
field E

r
d due to charge dq of the 2r

kdqdE =  
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element of length dx: 
 

where 222 yxr +=  

Because :dxdq λ=  
22 yx

dxkdE
+

=
λ

 

 
Express the y component of dE: 
 

dx
yx

kdEy θλ cos22 +
=  

 
Refer to the diagram to express cosθ 
in terms of x and y: 
 

22
cos

yx
y
+

=θ  

 
Substitute for cosθ in the expression 
for dEy  to obtain: 
 

( ) dx
yx
ykdEy 2322 +

=
λ

 

Integrate from x = 0 to x = a and 
simplify to obtain: 
 

( )

22

22

0
222

0
2322

1

ya
a

y
k

yay
ak

yxy
xyk

dx
yx

ykE

a

a

y

+
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
=

+
= ∫

λ

λ

λ

λ

 

 
*30 •••    
Picture the Problem Consider the ring 
with its axis along the z direction shown in 
the diagram. Its radius is z = rcosθ and its 
width is rdθ. We can use the equation for 
the field on the axis of a ring charge and 
then integrate to express the field at the 
center of the hemispherical shell. 

 
 
Express the field on the axis of the 
ring charge: 
 

( )
3

232222 cossin

r
kzdq

rr
kzdqdE

=

+
=

θθ  

where z = rcosθ 
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Express the charge dq on the ring: ( )
θθπσ

θθπσσ

dr
rdrdAdq

sin2
sin2

2=

==
 

 
Substitute to obtain: ( )

θθθσπ

θθπσθ

dk
r

drrkdE

cossin2

sin2cos
3

2

=

=  

 
Integrate dE from θ = 0 to π/2 to obtain: 

[ ] σπθσπ

θθθσπ

π

π

kk

dkE

==

= ∫
2

0
2

2
1

2

0

sin2

cossin2
 

 
Gauss’s Law 
 
31 •  
Picture the Problem The definition of electric flux is ∫ ⋅=

S
ˆdAnE

r
φ . We can apply this 

definition to find the electric flux through the square in its two orientations. 
 
(a) Apply the definition of φ to find 
the flux of the field when the square 
is parallel to the yz plane: 
 

( ) ( )

( )( ) /CmN0.20m1.0kN/C2

kN/C2ˆˆkN/C2

22

SS

⋅==

=⋅= ∫∫ dAdAiiφ
 

 
(b) Proceed as in (a) with °=⋅ 30cosˆˆ ni : ( )

( )
( )( )

/CmN3.17

30cosm1.0kN/C2

30coskN/C2

30coskN/C2

2

2
S

S

⋅=

°=

°=

°=

∫
∫

dA

dAφ

 

 
*32 •  
Determine the Concept While the number of field lines that we choose to draw radially 
outward from q is arbitrary, we must show them originating at q and, in the absence of 
other charges, radially symmetric. The number of lines that we draw is, by agreement, in 
proportion to the magnitude of q. 
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(a) The sketch of the field lines and of the 
sphere is shown in the diagram to the 
right.  

 

surface. spherical  theenteredhave  would6 lines, field 24draw chosen to  weHad
 sphere. enter the lines 3 , fromdrawn lines field ofnumber  Given the q

 

 
(b) zero. is surface  thecrossinglines ofnumber net  The  

 
(c) zero. isflux net  The  

 
33 •  
Picture the Problem The field at both circular faces of the cylinder is parallel to the 
outward vector normal to the surface, so the flux is just EA. There is no flux through the 
curved surface because the normal to that surface is perpendicular to .E

r
 The net flux 

through the closed surface is related to the net charge inside by Gauss’s law. 

 
 
(a) Use Gauss’s law to calculate the 
flux through the right circular 
surface: 
 

( ) ( )( )
/CmN51.1

m04.0ˆˆN/C300

ˆ

2

2

rightrightright

⋅=

⋅=

⋅=

π

φ

ii

nE A
r

 

 
Apply Gauss’s law to left circular 
surface: 
 

( ) ( )( )( )
/CmN51.1

m04.0ˆˆN/C300

ˆ

2

2

leftleftleft

⋅=

−⋅−=

⋅=

π

φ

ii

nE A
r
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(b) Because the field lines are 
parallel to the curved surface of the 
cylinder: 
 

0curved =φ  

(c) Express and evaluate the net flux 
through the entire cylindrical 
surface: 
 /CmN02.3

0/CmN51.1/CmN51.1
2

22

curvedleftrightnet

⋅=

+⋅+⋅=

++= φφφφ

 

 
(d) Apply Gauss’s law to obtain: 
 

insidenet 4 kQπφ =  

Solve for Qinside: 
k

Q
π
φ
4

net
inside =  

 
Substitute numerical values and 
evaluate Qinside: ( )

C1067.2

/CmN1099.84
/CmN20.3

11

229

2

inside

−×=

⋅×
⋅

=
π

Q
 

 
34 •  
Picture the Problem We can use Gauss’s law in terms of ε0 to find the net charge inside 
the box. 
 
(a) Apply Gauss’s law in terms of 
ε0 to find the net charge inside the 
box: 
 

inside
0

net
1 Q
∈

=φ  

or 
net0inside φ=∈Q  

 
Substitute numerical values and 
evaluate Qinside: 
 

( )( )
C1031.5

/CmkN6m/NC1085.8
8

22212
inside

−

−

×=

⋅⋅×=Q
 

 

(b) 
box.  theinsidepresent  charges negative and positive ofnumber 

 equalan  bemay  There zero. is chargenet   that theconcludeonly can You 
 

 
35 •  
Picture the Problem We can apply Gauss’s law to find the flux of the electric field 
through the surface of the sphere. 
 
(a) Use the formula for the surface 
area of a sphere to obtain: 

( ) 222 m14.3m5.044 === ππrA  
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(b) Apply Coulomb’s law to express 
and evaluate E: 

( ) ( )
N/C1019.7

m5.0
C2

m/NC1085.84
1

4
1

4

22212

2
0

×=

⋅×
=

∈
=

−

µ
π

π r
qE

 

 
(c) Apply Gauss’s law to obtain: 

( )( )
/CmN1026.2

m14.3N/C1019.7

ˆ

25

24
SS

⋅×=

×=

=⋅= ∫∫ EdAdAnE
r

φ

 

 

(d) 
sphere.  theinside located is charge

  the whereoft independen is surface gh theflux throu The No.
 

 
(e) Because the cube encloses the sphere, 
the flux through the surface of the sphere 
will also be the flux through the cube: 

/CmN1026.2 25
cube ⋅×=φ  

 
*36 •  
Picture the Problem We’ll define the flux of the gravitational field in a manner that is 
analogous to the definition of the flux of the electric field and then substitute for the 
gravitational field and evaluate the integral over the closed spherical surface. 
 
Define the gravitational flux as: 
 

∫ ⋅=
Sg ˆdAng
r

φ  

Substitute for g
r

and evaluate the 

integral to obtain: 
 ( ) Gmr

r
Gm

dA
r

GmdA
r

Gm

ππ

φ

44

ˆˆ

2
2

S2S 2g

−=⎟
⎠
⎞

⎜
⎝
⎛−=

−=⋅⎟
⎠
⎞

⎜
⎝
⎛−= ∫∫ nr

 

 
37 ••  
Picture the Problem We’ll let the square be one face of a cube whose side is 40 cm. 
Then the charge is at the center of the cube and we can apply Gauss’s law in terms of ε0 
to find the flux through the square. 
 
Apply Gauss’s law to the cube to 
express the net flux: 
 

inside
0

net
1 Q
∈

=φ  
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Express the flux through one face of 
the cube: inside

0
square 6

1 Q
∈

=φ  

 
Substitute numerical values and 
evaluate φsquare: ( )

/CmN1077.3

m/NC1085.86
C2

24

2212square

⋅×=

⋅×
= −

µφ
 

 
38 ••  
Picture the Problem We can treat this portion of the earth’s atmosphere as though it is a 
cylinder with cross-sectional area A and height h. Because the electric flux increases with 
altitude, we can conclude that there is charge inside the cylindrical region and use 
Gauss’s law to find the charge and hence the charge density of the atmosphere in this 
region. 
 
The definition of volume charge 
density is: 
 

V
Q

=ρ  

Express the charge inside a cylinder 
of base area A and height h for a 
charge density ρ: 
 

AhQ ρ=  

Taking upward to be the positive 
direction, apply Gauss’s law to the 
charge in the cylinder: 
 

( ) ( ) 0000 ∈−=∈−−= AEAEAEAEQ hh  

where we’ve taken our zero at 250 m above 
the surface of a flat earth. 
 

Substitute to obtain: ( ) ( )
h
EE

Ah
AEAE hh 0000 ∈−

=
∈−

=ρ  

 
Substitute numerical values and evaluate ρ: 
 

( )( ) 313
2212

C/m1008.7
m250

m/NC1085.8N/C170N/C150 −
−

×−=
⋅×−

=ρ  

where we’ve been able to neglect the curvature of the earth because the maximum height 
of 400 m is approximately 0.006% of the radius of the earth. 
 
Spherical Symmetry 
 
39 •  
Picture the Problem To find En in these three regions we can choose Gaussian surfaces 
of appropriate radii and apply Gauss’s law. On each of these surfaces, Er is constant and 
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Gauss’s law relates Er to the total charge inside the surface. 
 
(a) Use Gauss’s law to find the 
electric field in the region r < R1: 
 

inside
0

S n
1 QdAE
∈

=∫  

and 

0
0

inside
1

=
∈

=< A
Q

E Rr  

because Qinside = 0. 
 

Apply Gauss’s law in the region  
R1 < r < R2: 
 

( ) 2
1

2
0

1

411 r
kq

r
q

E RrR =
∈

=<< π
 

 
Using Gauss’s law, find the electric 
field in the region r > R2: 
 

( )
( )

2
21

2
0

21

42 r
qqk

r
qqE Rr

+
=

∈
+

=> π
 

 
(b) Set 0

2
=>RrE to obtain: 

 

021 =+ qq  

or 

1
2

1 −=
q
q

 

 
(c) The electric field lines for the 
situation in (b) with q1 positive is shown 
to the right. 

 
 
40 •  
Picture the Problem We can use the definition of surface charge density and the formula 
for the area of a sphere to find the total charge on the shell. Because the charge is 
distributed uniformly over a spherical shell, we can choose a spherical Gaussian surface 
and apply Gauss’s law to find the electric field as a function of the distance from the 
center of the spherical shell.  
 
(a) Using the definition of surface 
charge density, relate the charge on 
the sphere to its area: 
 

( )( )
nC407.0

m06.0nC/m94

4
22

2

=

=

==

π

πσσ rAQ
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Apply Gauss’s law to a spherical 
surface of radius r that is concentric 
the spherical shell to obtain: 

inside
0

S n
1 QdAE
∈

=∫  

or 

0

inside
n

24
∈

=
QErπ  

 
Solve for En: 
 2

inside
2

0

inside
n

1
4 r

kQ
r

QE =
∈

=
π

 

 
(b) Qinside a sphere whose radius is 2 
cm is zero and hence: 
 

( ) 0cm2n =E  

(c) Qinside a sphere whose radius is 
5.9 cm is zero and hence: 
 

( ) 0cm9.5n =E  

(d) Qinside a sphere whose radius is 6.1 cm is 0.407 nC and hence: 
 

( ) ( )( )
( )

N/C983
m061.0

nC407.0/CmN1099.8cm1.6 2

229

n =
⋅×

=E  

 
(e) Qinside a sphere whose radius is 10 cm is 0.407 nC and hence: 
 

( ) ( )( )
( )

N/C366
m1.0

nC407.0/CmN1099.8cm10 2

229

n =
⋅×

=E  

 
41 ••  
Picture the Problem We can use the definition of volume charge density and the 
formula for the volume of a sphere to find the total charge of the sphere. Because the 
charge is distributed uniformly throughout the sphere, we can choose a spherical 
Gaussian surface and apply Gauss’s law to find the electric field as a function of the 
distance from the center of the sphere.  
 
(a) Using the definition of volume 
charge density, relate the charge on 
the sphere to its volume: 
 

( )( )
nC407.0

m06.0nC/m450 33
3
4

3
3
4

=

=

==

π

πρρ rVQ

 

 
Apply Gauss’s law to a spherical 
surface of radius r < R that is 
concentric with the spherical shell to 
obtain: 

inside
0

S n
1 QdAE
∈

=∫  

or 
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0

inside
n

24
∈

=
QErπ  

 
Solve for En: 
 2

inside
2

0

inside
n

1
4 r

kQ
r

QE =
∈

=
π

 

 
Because the charge distribution is 
uniform, we can find the charge 
inside the Gaussian surface by using 
the definition of volume charge 
density to establish the proportion: 
 

V'
Q

V
Q inside=  

where V′ is the volume of the Gaussian 
surface. 

Solve for Qinside to obtain: 
 3

3

inside R
rQ

V
V'QQ ==  

 
Substitute to obtain: 
 

( ) r
R
kQ

r
QRrE 32

0

inside
n

1
4

=
∈

=<
π

 

(b) Evaluate En at r = 2 cm: 
 

( ) ( )( )
( )

( ) N/C339m0.02
m0.06

nC0.407/CmN1099.8cm2 3

229

n =
⋅×

=E  

 
(c) Evaluate En at r = 5.9 cm: 
 

( ) ( )( )
( )

( ) N/C999m0.059
m0.06

nC0.407/CmN1099.8cm9.5 3

229

n =
⋅×

=E  

 
Apply Gauss’s law to the Gaussian 
surface with r > R: 
 

0

inside
n

24
ε

π QEr =  

Solve for En to obtain: 
 22

inside
n r

kQ
r

kQE ==  

 
(d) Evaluate En at r = 6.1 cm: 
 

( ) ( )( )
( )

N/C983
m0.061

nC0.407/CmN1099.8cm1.6 2

229

n =
⋅×

=E  

 
(e) Evaluate En at r = 10 cm: 
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( ) ( )( )
( )

N/C366
m0.1

nC0.407/CmN1099.8cm10 2

229

n =
⋅×

=E  

Note that, for r > R, these results are the same as those obtained for in Problem 40 for a 
uniform charge distribution on a spherical shell. This agreement is a consequence of the 
choices of σ  and ρ so that the total charges on the two spheres is the same. 
 
*42  ••  
Determine the Concept The charges on a conducting sphere, in response to the repulsive 
Coulomb forces each experiences, will separate until electrostatic equilibrium conditions 
exit. The use of a wire to connect the two spheres or to ground the outer sphere will cause 
additional redistribution of charge. 
 
(a) Because the outer sphere is conducting, the field in the thin shell must vanish. 
Therefore, −2Q, uniformly distributed, resides on the inner surface, and −5Q, uniformly 
distributed, resides on the outer surface. 
 
(b) Now there is no charge on the inner surface and −5Q on the outer surface of the 
spherical shell. The electric field just outside the surface of the inner sphere changes from 
a finite value to zero. 
 
(c) In this case, the −5Q is drained off, leaving no charge on the outer surface and −2Q 
on the inner surface. The total charge on the outer sphere is then −2Q. 
 
43 ••  
Picture the Problem By symmetry; the electric field must be radial. To find Er inside 
the sphere we choose a spherical Gaussian surface of radius r < R. On this surface, Er is 
constant. Gauss’s law then relates Er to the total charge inside the surface. 
 
Apply Gauss’s law to a spherical 
surface of radius r < R that is 
concentric with the nonconducting 
sphere to obtain: 

inside
0

S r
1 QdAE
∈

=∫  

or 

0

inside
r

24
∈

=
QErπ  

 
Solve for Er: 
 2

inside
2

0

inside
r

1
4 r

kQ
r

QE =
∈

=
π

 

 
Use the definition of charge density 
to relate Qinside to ρ and the volume 
defined by the Gaussian surface: 
 

3
3
4

surfaceGaussianinside rVQ ρπρ ==  
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Substitute to obtain: 
 

( ) kr
r

krRrE ρπρπ
3
4

2

3
3
4

r ==<  

 
Substitute numerical values and evaluate Er at r = 0.5R = 0.05 m: 
 

( ) ( )( )( ) N/C77.3m05.0/CmN108.99nC/m2m05.0 2293
3
4

r =⋅×= πE  

 
44 ••   
Picture the Problem We can find the total charge on the sphere by expressing the charge 
dq in a spherical shell and integrating this expression between r = 0 and  
r = R. By symmetry, the electric fields must be radial. To find Er inside the charged 
sphere we choose a spherical Gaussian surface of radius r < R. To find Er outside the 
charged sphere we choose a spherical Gaussian surface of radius r > R. On each of these 
surfaces, Er is constant. Gauss’s law then relates Er to the total charge inside the surface. 
 
(a) Express the charge dq in a shell 
of thickness dr and volume 4πr2 dr: 
 

( )
drAr

drArrdrrdq
3

22

4
44

π

πρπ

=

==
 

Integrate this expression from  
r = 0 to R to find the total charge on 
the sphere: 
 

[ ] 4
0

4

0

34 ARArdrrAQ R
R

πππ === ∫  

 

(b) Apply Gauss’s law to a spherical 
surface of radius r > R that is 
concentric with the nonconducting 
sphere to obtain: 

inside
0

S r
1 QdAE
∈

=∫  

or 

0

inside
r

24
∈

=
QErπ  

 
Solve for Er: 
 

( )

2
0

4

2

4

2
inside

2
0

inside
r

4

1
4

r
AR

r
RkA

r
kQ

r
QRrE

∈
==

=
∈

=>

π

π
 

 
Apply Gauss’s law to a spherical 
surface of radius r < R that is 
concentric with the nonconducting 
sphere to obtain: 

inside
0

S r
1 QdAE
∈

=∫  

or 

0

inside
r

24
∈

=
QErπ  
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Solve for Er: ( )
0

2

0
2

4

0
2

inside
r 444 ∈

=
∈

=
∈

=<
Ar

r
Ar

r
QRrE

π
π

π

 
 

The graph of Er versus r/R, with Er in units of A/4∈0, was plotted using a spreadsheet 
program. 
 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

r/R

E r

 
 

Remarks: Note that the results for (a) and (b) agree at r = R. 
 
45 ••   
Picture the Problem We can find the total charge on the sphere by expressing the charge 
dq in a spherical shell and integrating this expression between r = 0 and r = R. By 
symmetry, the electric fields must be radial. To find Er inside the charged sphere we 
choose a spherical Gaussian surface of radius r < R. To find Er outside the charged sphere 
we choose a spherical Gaussian surface of radius r > R. On each of these surfaces, Er is 
constant. Gauss’s law then relates Er to the total charge inside the surface. 
 
(a) Express the charge dq in a shell 
of thickness dr and volume 4πr2 dr: 
 Brdr

dr
r
Brdrrdq

π

πρπ

4

44 22

=

==  

 
Integrate this expression from  
r = 0 to R to find the total charge on 
the sphere: 
 

[ ]
2

0
2

0

2

24

BR

BrdrrBQ R
R

π

ππ

=

=== ∫
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(b) Apply Gauss’s law to a spherical 
surface of radius r > R that is 
concentric with the nonconducting 
sphere to obtain: 

inside
0

S r
1 QdAE
∈

=∫  

or 

0

inside
r

24
∈

=
QErπ  

 
Solve for Er: 
 

( )

2
0

2

2

2

2
inside

2
0

inside
r

2
2

1
4

r
BR

r
BRk

r
kQ

r
QRrE

∈
==

=
∈

=>

π

π
 

 
Apply Gauss’s law to a spherical 
surface of radius r < R that is 
concentric with the nonconducting 
sphere to obtain: 

inside
0

S r
1 QdAE
∈

=∫  

or 

0

inside
r

24
∈

=
QErπ  

 
Solve for Er: ( )

0

0
2

2

0
2

inside
r

2

4
2

4

∈
=

∈
=

∈
=<

B

r
Br

r
QRrE

π
π

π
 

 
The graph of Er versus r/R, with Er in units of B/2∈0, was plotted using a spreadsheet 
program. 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

r /R

E r

 
Remarks: Note that our results for (a) and (b) agree at r = R. 
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*46 ••   
Picture the Problem We can find the total charge on the sphere by expressing the charge 
dq in a spherical shell and integrating this expression between r = 0 and r = R. By 
symmetry, the electric fields must be radial. To find Er inside the charged sphere we 
choose a spherical Gaussian surface of radius r < R. To find Er outside the charged sphere 
we choose a spherical Gaussian surface of radius r > R. On each of these surfaces, Er is 
constant. Gauss’s law then relates Er to the total charge inside the surface. 
 
(a) Express the charge dq in a shell 
of thickness dr and volume 4πr2 dr: 
 Cdr

dr
r
Crdrrdq

π

πρπ

4

44 2
22

=

==  

 
Integrate this expression from  
r = 0 to R to find the total charge on 
the sphere: 
 

[ ]

CR

CrdrCQ R
R

π

ππ

4

44 0
0

=

== ∫
 

 
(b) Apply Gauss’s law to a spherical 
surface of radius r > R that is 
concentric with the nonconducting 
sphere to obtain: 

inside
0

S r
1 QdAE
∈

=∫  

or 

0

inside
r

24
∈

=
QErπ  

 
Solve for Er: 
 

( )

2
0

2

2
inside

2
0

inside
r

4

1
4

r
CR

r
CRk

r
kQ

r
QRrE

∈
==

=
∈

=>

π

π
 

 
Apply Gauss’s law to a spherical 
surface of radius r < R that is 
concentric with the nonconducting 
sphere to obtain: 

inside
0

S r
1 QdAE
∈

=∫  

or 

0

inside
r

24
∈

=
QErπ  

 
Solve for Er: ( )

r
C

r
Cr

r
QRrE

0

0
2

0
2

inside
r 4

4
4

∈
=

∈
=

∈
=<

π
π

π
 

 
The graph of Er versus r/R, with Er in units of RC 0/∈ , was plotted using a spreadsheet 
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program. 
 

0

2

4

6

8

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0

r/R

E r

 
 
47 •••   
Picture the Problem By symmetry, the electric fields resulting from this charge 
distribution must be radial. To find Er for r < a we choose a spherical Gaussian surface of 
radius r < a. To find Er for a < r < b we choose a spherical Gaussian surface of radius a < 
r < b. To find Er for r > b we choose a spherical Gaussian surface of radius r > b. On 
each of these surfaces, Er is constant. Gauss’s law then relates Er to the total charge 
inside the surface. 
 
(a), (b)  Apply Gauss’s law to a 
spherical surface of radius r that is 
concentric with the nonconducting 
spherical shell to obtain: 

inside
0

S r
1 QdAE
∈

=∫  

or 

0

inside
r

24
∈

=
QErπ  

 
Solve for Er: 
 

( ) 2
inside

2
0

inside
r

1
4 r

kQ
r

QrE =
∈

=
π

 

 
Evaluate Er(r < a): 
 

( ) 01
4 2

inside
2

0

inside
r ==

∈
=<

r
kQ

r
QarE
π

 

because ρ(r < a) = 0 and, therefore, Qinside = 
0. 
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Integrate dq from r = a to r to find 
the total charge in the spherical shell 
in the interval a < r < b: 
 ( )33

3
2

inside

3
4

3
'4''4

ar

CrdrrQ
r

a

r

a

−=

⎥
⎦

⎤
⎢
⎣

⎡
== ∫

πρ

ππρ
 

 
Evaluate Er(a < r < b): 
 

( )

( )

( )33
2

0

33
2

2
inside

r

3

3
4

ar
r

ar
r
k
r

kQbraE

−
∈

=

−=

=<<

ρ

ρπ
 

 
For r > b: ( )33

inside 3
4 abQ −=
πρ

 

and 

( ) ( )

( )33
2

0

33
2r

3

3
4

ab
r

ab
r
kbrE

−
∈

=

−=>

ρ

ρπ

 

 
Remarks: Note that E is continuous at r = b. 
    
Cylindrical Symmetry 
 
48 ••   
Picture the Problem From symmetry, the field in the tangential direction must vanish. 
We can construct a Gaussian surface in the shape of a cylinder of radius r and length L 
and apply Gauss’s law to find the electric field as a function of the distance from the 
centerline of the infinitely long, uniformly charged cylindrical shell. 
 
Apply Gauss’s law to the cylindrical 
surface of radius r and length L that 
is concentric with the infinitely long, 
uniformly charged cylindrical shell: 

inside
0

S n
1 QdAE
∈

=∫  

or 

0

inside
n2

∈
=

QrLEπ  

where we’ve neglected the end areas 
because no flux crosses them. 
 

Solve for En: 
 Lr

kQ
rL

QE inside

0

inside
n

2
2

=
∈

=
π

 



The Electric Field 2: Continuous Charge Distributions 
 

 

113

For r < R, Qinside = 0 and: ( ) 0n =< RrE  

 
For r > R, Qinside = λL and: ( ) ( )

r
R

r
Rk

r
k

Lr
LkRrE

0

n
2222

∈
=

===>

σ

σπλλ

 

 
49 ••  
Picture the Problem We can use the definition of surface charge density to find the total 
charge on the shell. From symmetry, the electric field in the tangential direction must 
vanish. We can construct a Gaussian surface in the shape of a cylinder of radius r and 
length L and apply Gauss’s law to find the electric field as a function of the distance from 
the centerline of the uniformly charged cylindrical shell. 
 
(a) Using its definition, relate the 
surface charge density to the total 
charge on the shell: 

σπ
σ

RL
AQ

2=
=

 

 
 

Substitute numerical values and 
evaluate Q: 
 

( )( )( )
nC679

nC/m9m200m0.062 2

=

= πQ
 

 
(b) From Problem 48 we have, for 
 r = 2 cm: 

( ) 0cm2 =E  

 
(c) From Problem 48 we have, for  
r = 5.9 cm: 

( ) 0cm9.5 =E  

 
(d) From Problem 48 we have, for r = 6.1 cm: 
 

r
RE

0
r ∈
=
σ

 

and 

( ) ( )( )
( )( ) kN/C00.1

m0.061m/NC108.85
m0.06nC/m9cm1.6 2212

2

=
⋅×

= −E  

 
(e) From Problem 48 we have, for r = 10 cm: 
 

( ) ( )( )
( )( ) N/C610

m1.0m/NC108.85
m0.06nC/m9cm10 2212

2

=
⋅×

= −E  
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50 ••  
Picture the Problem From symmetry, the field tangent to the surface of the cylinder 
must vanish. We can construct a Gaussian surface in the shape of a cylinder of radius r 
and length L and apply Gauss’s law to find the electric field as a function of the distance 
from the centerline of the infinitely long nonconducting cylinder. 
 
Apply Gauss’s law to a cylindrical 
surface of radius r and length L that 
is concentric with the infinitely long 
nonconducting cylinder: 

inside
0

S n
1 QdAE
∈

=∫  

or 

0

inside
n2

∈
=

QrLEπ  

where we’ve neglected the end areas 
because no flux crosses them. 
 

Solve for En: 
 Lr

kQ
rL

QE inside

0

inside
n

2
2

==
επ

 

 
Express Qinside for r < R: ( ) ( )LrVrQ 2

0inside πρρ ==  

 
Substitute to obtain: ( ) ( ) r

Lr
LrkRrE

0

0
2

0
n 2

2
∈

==<
ρπρ

 

or, because 2Rρπλ =  

( ) r
R

RrE 2
0

n 2 ∈
=<

π
λ

 

 
Express Qinside for r > R: ( ) ( )LRVrQ 2

0inside πρρ ==  

 
Substitute to obtain: 

( ) ( )
r

R
Lr

LRkRrE
0

2
0

2
0

n 2
2

∈
==>

ρπρ
 

or, because 2Rρπλ =  

( )
r

RrE
0

n 2 ∈
=>

π
λ

 

 
51 ••  
Picture the Problem We can use the definition of volume charge density to find the total 
charge on the cylinder. From symmetry, the electric field tangent to the surface of the 
cylinder must vanish. We can construct a Gaussian surface in the shape of a cylinder of 
radius r and length L and apply Gauss’s law to find the electric field as a function of the 
distance from the centerline of the uniformly charged cylinder. 
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(a) Use the definition of volume 
charge density to express the total 
charge of the cylinder:  
 

( )LRVQ 2
tot πρρ ==  

 

Substitute numerical values to 
obtain: 
 

( )( ) ( )
nC679

m200m0.06nC/m300 23
tot

=

= πQ
 

 
From Problem 50, for r < R, we 
have: 

rEr
02∈

=
ρ

 

 
(b) For r = 2 cm: 
 

( ) ( )( )
( ) N/C339

m/NC108.852
m0.02nC/m300cm2 2212

3

=
⋅×

= −rE  

 
(c) For r = 5.9 cm: 
 

( ) ( )( )
( ) kN/C00.1

m/NC108.852
m0.059nC/m300cm9.5 2212

3

=
⋅×

= −rE  

 
From Problem 50, for r > R, we have: 

r
REr

0

2

2∈
=

ρ
 

 
(d) For r = 6.1 cm: 
 

( ) ( )( )
( )( ) kN/C00.1

m061.0m/NC108.852
m06.0nC/m300cm1.6 2212

23

=
⋅×

= −rE  

 
(e) For r = 10 cm: 
 

( ) ( )( )
( )( ) N/C610

m1.0m/NC108.852
m06.0nC/m300cm10 2212

23

=
⋅×

= −rE  

Note that, given the choice of charge densities in Problems 49 and 51, the electric fields 
for r > R are the same. 
 
*52 ••   
Picture the Problem From symmetry; the field tangent to the surfaces of the shells must 
vanish. We can construct a Gaussian surface in the shape of a cylinder of radius r and 
length L and apply Gauss’s law to find the electric field as a function of the distance from 
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the centerline of the infinitely long, uniformly charged cylindrical shells. 
 
(a) Apply Gauss’s law to the 
cylindrical surface of radius r and 
length L that is concentric with the 
infinitely long, uniformly charged 
cylindrical shell: 

inside
0

S n
1 QdAE
∈

=∫  

or 

0

inside
n2

∈
=

QrLEπ  

where we’ve neglected the end areas 
because no flux crosses them. 
 

Solve for En: 
 Lr

kQE inside
n

2
=                       (1) 

 
For r < R1, Qinside = 0 and: ( ) 01n =< RrE  

 
Express Qinside for R1 < r < R2: LRAQ 1111inside 2πσσ ==  

 
Substitute in equation (1) to obtain: 
 

( ) ( )

r
R

Lr
LRkRrRE

0

11

11
21n

22

∈
=

=<<

σ

πσ

 

 
Express Qinside for r > R2: 
 LRLR

AAQ

2211

2211inside

22 πσπσ
σσ
+=

+=
 

 
Substitute in equation (1) to obtain: 
 

( ) ( )

r
RR
Lr

LRLRkRrE

0

2211

2211
2n

222

∈
+

=

+
=>

σσ

πσπσ

 

 
(b) Set E = 0 for r > R2 to obtain: 0

0

2211 =
∈
+

r
RR σσ

 

or 
02211 =+ RR σσ  

 
Solve for the ratio of σ1 to σ2: 

1

2

2

1

R
R

−=
σ
σ
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Because the electric field is 
determined by the charge inside the 
Gaussian surface, the field under 
these conditions would be as given 
above: 
 

( )
r

RRrRE
0

11
21n ∈
=<<

σ
 

(c) Assuming that σ1 is positive, the 
field lines would be directed as 
shown to the right. 

 
 
53 ••  
Picture the Problem The electric field is directed radially outward. We can construct a 
Gaussian surface in the shape of a cylinder of radius r and length L and apply Gauss’s 
law to find the electric field as a function of the distance from the centerline of the 
infinitely long, uniformly charged cylindrical shell. 
 
(a) Apply Gauss’s law to a 
cylindrical surface of radius r and 
length L that is concentric with the 
inner conductor: 

inside
0

S n
1 QdAE
∈

=∫  

or 

0

inside
n2

∈
=

QrLEπ  

where we’ve neglected the end areas 
because no flux crosses them. 
 

Solve for En: 
 Lr

kQE inside
n

2
=                       (1) 

 
For r < 1.5 cm, Qinside = 0 and: ( ) 0cm5.1n =<rE  

 
Letting R = 1.5 cm, express Qinside 
for 1.5 cm < r < 4.5 cm: RL

LQ
πσ
λ
2

inside

=
=

 

 
Substitute in equation (1) to obtain: 
 

( ) ( )

r
k

Lr
LkrE

λ

λ

2

2cm5.4cm5.1n

=

=<<

 
Substitute numerical values and evaluate En(1.5 cm < r < 4.5 cm): 
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( ) ( ) ( ) ( )
rr

rE m/CN108nC/m6/CmN108.992cm5.4cm5.1 229
n

⋅
=⋅×=<<  

 
Express Qinside for  
4.5 cm < r < 6.5 cm: 
 

0inside =Q  

and 
( ) 0cm5.6cm5.4n =<< rE  

 
Letting σ2 represent the charge 
density on the outer surface, express 
Qinside for r > 6.5 cm: 
 

LRAQ 2222inside 2πσσ ==  

where R2 = 6.5 cm. 
 

Substitute in equation (1) to obtain: 
 

( ) ( )
r

R
Lr

LRkRrE
0

2222
2n

22
∈

==>
σπσ

 

 
In (b) we show that σ2 = 21.2 nC/m2. Substitute numerical values to obtain: 
 

( ) ( )( )
( ) rr

rE m/CN156
mN/C1085.8
cm5.6nC/m2.21cm5.6 2212

2

n
⋅

=
⋅×

=> −  

 
(b) The surface charge densities on 
the inside and the outside surfaces of 
the outer conductor are given by: 
 

1
1 2 Rπ

λσ −
= and 12 σσ −=  

Substitute numerical values and evaluate σ1 
and σ2: ( )

2
1 nC/m2.21

m045.02
nC/m6

−=
−

=
π

σ  

and 
2

2 nC/m2.21=σ  

 
54 ••     
Picture the Problem From symmetry considerations, we can conclude that the field 
tangent to the surface of the cylinder must vanish. We can construct a Gaussian surface in 
the shape of a cylinder of radius r and length L and apply Gauss’s law to find the electric 
field as a function of the distance from the centerline of the infinitely long nonconducting 
cylinder. 
(a) Apply Gauss’s law to a 
cylindrical surface of radius r and 
length L that is concentric with the 
infinitely long nonconducting 
cylinder: 

inside
0

S n
1 QdAE
∈

=∫  

or 

0

inside
n2

∈
=

QrLEπ  

where we’ve neglected the end areas 



The Electric Field 2: Continuous Charge Distributions 
 

 

119

because no flux crosses them. 
 

Solve for En: 
 0

inside
n 2 ∈
=

rL
QE
π

                     (1) 

 
Express dQinside for ρ(r) = ar: ( ) ( )

Ldrar

drrLardVrdQ
2

inside

2

2

π

πρ

=

==
 

 
Integrate dQinside from r = 0 to R to 
obtain: 
 

3

0

3

0

2
inside

3
2

3
22

RaL

raLdrraLQ
RR

π

ππ

=

⎥
⎦

⎤
⎢
⎣

⎡
== ∫

 

 
Divide both sides of this equation 
by L to obtain an expression for the 
charge per unit length λ of the 
cylinder: 
 

3
2 3

inside aR
L

Q πλ ==  

(b) Substitute for Qinside in equation 
(1) to obtain: ( ) 2

00

3

n 32
3

2

ra
Lr

raL

RrE
∈

=
∈

=<
π

π

 

 
For r > R: 3

inside 3
2 RaLQ π

=  

 
Substitute for Qinside in equation (1) 
to obtain: ( )

0

3

0

3

n 32
3

2

∈
=

∈
=>

r
aR

rL

RaL

RrE
π

π

 

 
 
55  ••  
Picture the Problem From symmetry; the field tangent to the surface of the cylinder 
must vanish. We can construct a Gaussian surface in the shape of a cylinder of radius r 
and length L and apply Gauss’s law to find the electric field as a function of the distance 
from the centerline of the infinitely long nonconducting cylinder. 
 
(a) Apply Gauss’s law to a 
cylindrical surface of radius r and 
length L that is concentric with the 
infinitely long nonconducting 
cylinder: 

inside
0

S n
1 QdAE
∈

=∫  

or 



Chapter 22 
 

 

120 

0

inside
n2

∈
=

QrLEπ  

where we’ve neglected the end areas 
because no flux crosses them. 
 

Solve for En: 
 0

inside
n 2 ∈
=

rL
QE
π

                     (1) 

 
Express dQinside for ρ(r) = br2: ( ) ( )

Ldrbr

drrLbrdVrdQ
3

2
inside

2

2

π

πρ

=

==
 

 
Integrate dQinside from r = 0 to R to 
obtain: 
 

4

0

4

0

3
inside

2

4
22

RbL

rbLdrrbLQ
RR

π

ππ

=

⎥
⎦

⎤
⎢
⎣

⎡
== ∫

 

 
Divide both sides of this equation 
by L to obtain an expression for the 
charge per unit length λ of the 
cylinder: 
 

2

4
inside bR
L

Q πλ ==  

(b) Substitute for Qinside in equation 
(1) to obtain: ( ) 3

00

4

n 42
2 rb
Lr

rbL

RrE
∈

=
∈

=<
π

π

 

 
For r > R: 4

inside 2
RbLQ π

=  

 
Substitute for Qinside in equation (1) 
to obtain: ( )

0

4

0

4

n 42
2

∈
=

∈
=>

r
bR

rL

RbL

RrE
π

π

 

 
56 •••  
Picture the Problem From symmetry; the field tangent to the surface of the cylinder 
must vanish. We can construct a Gaussian surface in the shape of a cylinder of radius r 
and length L and apply Gauss’s law to find the electric field as a function of the distance 
from the centerline of the infinitely long nonconducting cylindrical shell. 
 
Apply Gauss’s law to a cylindrical 
surface of radius r and length L that inside

0
S n

1 QdAE
∈

=∫  
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is concentric with the infinitely 
long nonconducting cylindrical 
shell: 

or 

0

inside
n2

∈
=

QrLEπ  

where we’ve neglected the end areas 
because no flux crosses them. 
 

Solve for En: 
 0

inside
n 2 ∈
=

rL
QE
π

 

 
For r < a, Qinside = 0: ( ) 0n =< arE  

 
Express Qinside for a < r < b: 

( )22

22
inside

arL

LaLrVQ

−=

−==

ρπ

ρπρπρ
 

 
Substitute for Qinside to obtain: ( ) ( )

( )
r
ar

Lr
arLbraE

0

22

0

22

n

2

2

∈
−

=

∈
−

=<<

ρ

π
ρπ

 

 
Express Qinside for r > b: 

( )22

22
inside

abL

LaLbVQ

−=

−==

ρπ

ρπρπρ
 

 
Substitute for Qinside to obtain: ( ) ( )

( )
r
ab

rL
abLbrE

0

22

0

22

n

2

2

∈
−

=

∈
−

=>

ρ

π
ρπ

 

 
57 •••  
Picture the Problem We can integrate the density function over the radius of the inner 
cylinder to find the charge on it and then calculate the linear charge density from its 
definition. To find the electric field for all values of r we can construct a Gaussian surface 
in the shape of a cylinder of radius r and length L and apply Gauss’s law to each region of 
the cable to find the electric field as a function of the distance from its centerline. 
(a) Find the charge Qinner on the 
inner cylinder: ( )

CLRdrCL

rLdr
r
CVdrQ

R

RR

ππ

πρ

22

2

0

00
inner

==

==

∫

∫∫
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Relate this charge to the linear 
charge density: 
 

CR
L
CLR

L
Q ππλ 22inner

inner ===  

 
Substitute numerical values and 
evaluate λinner: 
 

( )( )
nC/m8.18

m0.015nC/m2002inner

=

= πλ
 

(b) Apply Gauss’s law to a 
cylindrical surface of radius r and 
length L that is concentric with the 
infinitely long nonconducting 
cylinder: 

inside
0

S n
1 QdAE
∈

=∫  

or 

0

inside
n2

∈
=

QrLEπ  

where we’ve neglected the end areas 
because no flux crosses them. 
 

Solve for En: 
 0

inside
n 2 ∈
=

rL
QE
π

 

 
Substitute to obtain, for  
r < 1.5 cm: 

( )
00

n 2
2cm5.1

∈
=

∈
=<

C
Lr

CLrrE
π
π

 

 
Substitute numerical values and 
evaluate En(r < 1.5 cm): 

( )

kN/C22.6

m/NC108.85
nC/m200cm5.1 2212

2

n

=

⋅×
=< −rE

 

 
Express Qinside for  
1.5 cm < r < 4.5 cm: 
 

CLRQ π2inside =  

 

Substitute to obtain, for  
1.5 cm < r < 4.5 cm: 

( )

r
CR

rL
RLCrE

0

0
n 2

2cm5.4cm5.1

∈
=

∈
=<<

π
π

 

where R = 1.5 cm. 
 

Substitute numerical values and evaluate En(1.5 cm < r < 4.5 cm): 

( ) ( )( )
( ) rr

rE m/CN339
m/NC108.85

m0.015nC/m200cm5.4cm5.1 2212

2

n
⋅

=
⋅×

=<< −  

 
Because the outer cylindrical shell 
is a conductor: 

( ) 0cm5.6cm5.4n =<< rE  
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For r > 6.5 cm, CLRQ π2inside =  

and: 
( )

r
rE m/CN339cm5.6n

⋅
=>  

 
Charge and Field at Conductor Surfaces 
 
*58 •  
Picture the Problem Because the penny is in an external electric field, it will have 
charges of opposite signs induced on its faces. The induced charge σ is related to the 
electric field by E = σ/ε0. Once we know σ, we can use the definition of surface charge 
density to find the total charge on one face of the penny. 

 
(a) Relate the electric field to the 
charge density on each face of the 
penny: 

0∈
=
σE  

 
 

Solve for and evaluate σ: 
( )( )

2

2212
0

nC/m2.14

kN/C1.6m/NC108.85

=

⋅×=

=∈
−

Eσ

 

 
(b) Use the definition of surface 
charge density to obtain: 
 

2r
Q

A
Q

π
σ ==  

 
Solve for and evaluate Q: ( )( )

pC4.45

m0.01nC/m14.2 222

=

== πσπrQ
 

 
59 •  
Picture the Problem Because the metal slab is in an external electric field, it will have 
charges of opposite signs induced on its faces. The induced charge σ is related to the 
electric field by ./ 0∈=σE   

 
Relate the magnitude of the electric 
field to the charge density on the 
metal slab: 
 

0∈
=
σE  

Use its definition to express σ :  
2L

Q
A
Q
==σ  

 
Substitute to obtain: 

0
2 ∈

=
L

QE  
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Substitute numerical values and 
evaluate E: ( ) ( )

kN/C9.42

m/NC108.85m0.12
nC1.2

22122

=

⋅×
=

−
E

 

 
60 •  
Picture the Problem We can apply its definition to find the surface charge density of the 
nonconducting material and calculate the electric field at either of its surfaces from 
σ/2∈0. When the same charge is placed on a conducting sheet, the charge will distribute 
itself until half the charge is on each surface.  
 
(a) Use its definition to find σ : 

( )
2

2 nC/m150
m0.2

nC6
===

A
Qσ  

 
(b) Relate the electric field on either 
side of the sheet to the density of 
charge on its surfaces: 
 

( )
kN/C47.8

m/NC108.852
nC/m150

2 2212

2

0

=

⋅×
=

∈
= −

σE
 

 
(c) Because the slab is a conductor 
the charge will distribute uniformly 
on its two surfaces so that: 
 

( )
2

2 nC/m0.57
m0.22

nC6
2

===
A

Qσ  

 

(d) The electric field just outside the 
surface of a conductor is given by: 
 kN/C47.8

m/NC108.85
nC/m75

2212

2

0

=

⋅×
=

∈
= −

σE
 

 
61 •  
Picture the Problem We can construct a Gaussian surface in the shape of a sphere of 
radius r with the same center as the shell and apply Gauss’s law to find the electric field 
as a function of the distance from this point. The inner and outer surfaces of the shell will 
have charges induced on them by the charge q at the center of the shell. 
 
(a) Apply Gauss’s law to a spherical 
surface of radius r that is concentric 
with the point charge: 

inside
0

S n
1 QdAE
∈

=∫  

or 

0

inside
n

24
∈

=
QErπ  

 
Solve for En: 
 0

2
inside

n 4 ∈
=

r
QE
π

                                (1) 
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For r < a, Qinside = q. Substitute in 
equation (1) and simplify to obtain: 
 

( ) 2
0

2n 4 r
kq

r
qarE =
∈

=<
π

 

 
Because the spherical shell is a 
conductor, a charge –q will be 
induced on its inner surface. Hence, 
for a < r < b: 
 

0inside =Q  

and 
( ) 0n =<< braE  

For r > b, Qinside = q. Substitute in 
equation (1) and simplify to obtain: 
 

( ) 2
0

2n 4 r
kq

r
qbrE =
∈

=>
π

 

(b) The electric field lines are shown 
in the diagram to the right: 

 
(c) A charge –q is induced on the 
inner surface. Use the definition of 
surface charge density to obtain: 
 

22inner 44 a
q

a
q

ππ
σ −=

−
=  

 

A charge q is induced on the outer 
surface. Use the definition of surface 
charge density to obtain: 

2outer 4 b
q
π

σ =  

 
62 ••  
Picture the Problem We can construct a spherical Gaussian surface at the surface of the 
earth (we’ll assume the Earth is a sphere) and apply Gauss’s law to relate the electric 
field to its total charge.  
 
Apply Gauss’s law to a spherical 
surface of radius RE that is 
concentric with the earth: 

inside
0

S n
1 QdAE
∈

=∫  

or 

0

inside
n

2
E4

∈
=

QERπ  

 
Solve for Qinside = Qearth to obtain: 

k
ERERQ n

2
E

n
2
E0earth 4 =∈= π  
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Substitute numerical values and 
evaluate Qearth: 

( ) ( )

C106.77

/CmN108.99
N/C150m106.37

5

229

26

earth

×=

⋅×
×

=Q
 

 
*63 ••  
Picture the Problem Let the inner and outer radii of the uncharged spherical conducting 
shell be a and b and q represent the positive point charge at the center of the shell. The 
positive point charge at the center will induce a negative charge on the inner surface of 
the shell and, because the shell is uncharged, an equal positive charge will be induced on 
its outer surface. To solve part (b), we can construct a Gaussian surface in the shape of a 
sphere of radius r with the same center as the shell and apply Gauss’s law to find the 
electric field as a function of the distance from this point. In part (c) we can use a similar 
strategy with the additional charge placed on the shell. 

 
(a) Express the charge density on 
the inner surface: 
 

A
qinner

inner =σ  

 
Express the relationship between the 
positive point charge q and the 
charge induced on the inner surface 
qinner: 
 

0inner =+ qq  

Substitute for qinner to obtain: 
 2inner 4 a

q
π

σ −
=  

 
Substitute numerical values and 
evaluate σinner: ( )

2
2inner C/m553.0

m6.04
C5.2 µ−=

−
=

π
µσ  

 
Express the charge density on the 
outer surface: A

qouter
outer =σ  

 
Because the spherical shell is 
uncharged: 

0innerouter =+ qq  

Substitute for qouter to obtain: 
 2

inner
outer 4 b

q
π

σ −
=  

 
Substitute numerical values and 
evaluate σouter: ( )

2
2outer C/m246.0

m9.04
C5.2 µ==

π
µσ  

 



The Electric Field 2: Continuous Charge Distributions 
 

 

127

(b) Apply Gauss’s law to a spherical 
surface of radius r that is concentric 
with the point charge: 

inside
0

S n
1 QdAE
∈

=∫  

or 

0

inside
n

24
∈

=
QErπ  

 
Solve for En: 
 0

2
inside

n 4 ∈
=

r
QE
π

                                (1) 

 
For r < a = 0.6 m, Qinside = q. Substitute in equation (1) and evaluate  
En(r < 0.6 m) to obtain: 
 

( ) ( )( )

( ) 2
24

2

229

2
0

2n

1/CmN1025.2

C5.2/CmN1099.8
4

r

rr
kq

r
qarE

⋅×=

⋅×
==

∈
=<

µ
π

 

 
Because the spherical shell is a 
conductor, a charge –q will be 
induced on its inner surface. Hence, 
for 0.6 m < r < 0.9 m: 
 

0inside =Q  

and 
( ) 0m9.0m6.0n =<< rE  

 

For r > 0.9 m, the net charge inside the Gaussian surface is q and: 
 

( ) ( ) 2
24

2n
1/CmN1025.2m9.0
rr

kqrE ⋅×==>  

 
(c) Because E = 0 in the conductor: 
 

C5.2inner µ−=q  

and 
2

inner C/m553.0 µ−=σ  

as before. 
Express the relationship between the 
charges on the inner and outer 
surfaces of the spherical shell: 
 

C5.3innerouter µ=+ qq  

and 
C0.6-C5.3 innerouter µµ == qq  

 
σouter is now given by: 

( )
2

2outer C/m589.0
m9.04

C6 µ==
π

µσ  
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For r < a = 0.6 m, Qinside = q and 
En(r < 0.6 m) is as it was in (a): 
 

( ) ( ) 2
24

n
1/CmN1025.2
r

arE ⋅×=<  

Because the spherical shell is a 
conductor, a charge –q will be 
induced on its inner surface. Hence, 
for 0.6 m < r < 0.9 m: 
 

0inside =Q  

and 
( ) 0m9.0m6.0n =<< rE  

 

For r > 0.9 m, the net charge inside the Gaussian surface is 6 µC and: 
 

( ) ( )( ) ( ) 2
24

2
229

2n
1/CmN1039.51C6/CmN1099.8m9.0
rrr

kqrE ⋅×=⋅×==> µ  

 
64 ••  
Picture the Problem From Gauss’s law we know that the electric field at the surface of 
the charged sphere is given by 2RkQE = where Q is the charge on the sphere and R is 

its radius. The minimum radius for dielectric breakdown corresponds to the maximum 
electric field at the surface of the sphere. 
 
Use Gauss’s law to express the 
electric field at the surface of the 
charged sphere: 
 

2R
kQE =  

Express the relationship between E 
and R for dielectric breakdown: 
 

2
min

max R
kQE =  

Solve for Rmin: 

max
min E

kQR =  

 
Substitute numerical values and 
evaluate Rmin: 

( )( )

cm2.23

N/C103
C18/CmN1099.8

6

229

min

=

×
⋅×

=
µR
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65 ••  
Picture the Problem We can use its 
definition to find the surface charge 
density just outside the face of the slab. 
The electric field near the surface of the 
slab is given by .0face ∈=σE  We can 

find the electric field on each side of the 
slab by adding the fields due to the slab 
and the plane of charge.  
 
(a) Express the charge density per 
face in terms of the net charge on the 
slab: 
 

2face 2L
q

=σ  

Substitute numerical values to 
obtain: ( )

2
2face C/m60.1

m52
C80 µµσ ==  

 
Express the electric field just outside 
one face of the slab in terms of its 
surface charge density: 
 

0

face
slab ∈

=
σE  

Substitute numerical values and 
evaluate Eface: 

N/C101.81

m/NC108.85
C/m1.60

5

2212

2

slab

×=

⋅×
= −

µE
 

 
(b) Express the total field on the side 
of the slab closest to the infinite 
charged plane: 
 rr

rr

EEE

ˆˆ
2

ˆˆ

0

face

0

plane

slabplane

slabplanenear

∈
−

∈
=

−=

+=

σσ

EE

rrr

 

where r̂ is a unit vector pointing away from 
the slab. 
 

Substitute numerical values and 
evaluate nearE

r
: ( )

( )
( ) r

r

rE

ˆN/C10680.0

ˆN/C1081.1

ˆ
m/NC108.852

C/m2

5

5

2212

2

near

×−=

×−

⋅×
= −

µr
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Express the total field on the side of 
the slab away from the infinite 
charged plane: 
 

rrE ˆˆ
2 0

face

0

plane
far ∈

+
∈

=
σσr

 

 

Substitute numerical values and 
evaluate farE

r
: ( )

( )
( ) r

r

rE

ˆN/C1094.2

ˆN/C1081.1

ˆ
m/NC108.852

C/m2

5

5

2212

2

far

×=

×+

⋅×
= −

µr

 

 
The charge density on the side of the slab near the plane is: 
 

( )( ) 252212
near0near C/m602.0N/C10680.0m/NC108.85 µσ =×⋅×==∈ −E  

 
The charge density on the far side of the slab is: 
 

( )( ) 252212
near0near C/m60.2N/C1094.2m/NC108.85 µσ =×⋅×==∈ −E  

 
General Problems 
 
66 ••  
Determine the Concept We can determine the direction of the electric field between 
spheres I and II by imagining a test charge placed between the spheres and determining 
the direction of the force acting on it. We can determine the amount and sign of the 
charge on each sphere by realizing that the charge on a given surface induces a charge of 
the same magnitude but opposite sign on the next surface of larger radius. 
 
(a) The charge placed on sphere III has no bearing on the electric field between spheres I 
and II. The field in this region will be in the direction of the force exerted on a test charge 
placed between the spheres. Because the charge at the center is negative, 

center.  therdpoint towa  willfield the  

 
(b) The charge on sphere I (−Q0) will induce a charge of the same magnitude but 
opposite sign  on sphere II: 0Q+  

 
(c) The induction of charge +Q0 on the inner surface of sphere II will leave its outer 
surface with a charge of the same magnitude but opposite sign: 0Q−  

 
(d) The presence of charge −Q0 on the outer surface of sphere II will induce a charge of 
the same magnitude but opposite sign on the inner surface of sphere III: 0Q+  
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(e) The presence of charge +Q0 on the inner surface of sphere III will leave the outer 
surface of sphere III neutral: 0  

 
(f) A graph of E as a function of r is shown 
to the right: 

 
 
67  ••  
Picture the Problem Because the difference between the field just to the right of the 
origin right,xE and the field just to the left of the origin left,xE is the field due to the 

nonuniform surface charge, we can express left,xE and the difference between right,xE  and 

.0∈σ  

 
Express the electric field just to the 
left of the origin in terms of right,xE  

and 0∈σ : 

 

0
right,left, ∈

−=
σ

xx EE  

Substitute numerical values and evaluate left,xE : 

 

N/C1015.1
m/NC108.85

C/m3.10N/C1065.4 5
2212

2
5

left, ×=
⋅×

−×= −

µEx  
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68 ••  
Picture the Problem Let P denote the point of interest at (2 m, 1.5 m). The electric field 
at P is the sum of the electric fields due to the infinite line charge and the point charge.  
 

 
 
Express the resultant electric field at P: 
 

qEEE
rrr

+= λ  

Find the field at P due the infinite line charge: 
 

( )( ) ( )iirE ˆkN/C74.6ˆ
m4

C/m5.1/CmN1099.82ˆ2 229

−=
−⋅×

==
µλ

λ r
kr

 

 
Express the field at P due the point 
charge: 
 

rE ˆ
2r

kq
q =
r

 

 
Referring to the diagram above, 
determine r and r̂ : 

m12.1=r  

and 
jir ˆ446.0ˆ893.0ˆ −=  

 
Substitute and evaluate ( )mm,1.52qE

r
: 

 

( ) ( )( )
( )

( )
( )( )
( ) ( ) ji

ji

jiE

ˆkN/C16.4ˆkN/C32.8

ˆ446.0ˆ893.0kN/C32.9

ˆ446.0ˆ893.0
m12.1

C3.1/CmN1099.8mm,1.52 2

229

−=

−=

−
⋅×

=
µ

q

r

 

 
Substitute to obtain: 
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( ) ( ) ( ) ( )
( ) ( ) ji

jiiE
ˆkN/C17.4ˆkN/C61.1

ˆkN/C17.4ˆkN/C35.8ˆkN/C74.6mm,1.52

−=

−+−=
r

 

*69 ••  
Picture the Problem If the patch is small enough, the field at the center of the patch 
comes from two contributions.  We can view the field in the hole as the sum of the field 
from a uniform spherical shell of charge Q plus the field due to a small patch with surface 
charge density equal but opposite to that of the patch cut out.    
 
(a) Express the magnitude of the 
electric field at the center of the 
hole: 
 

holeshell spherical EEE +=  

Apply Gauss’s law to a spherical 
gaussian surface just outside the 
given sphere: 
 

( )
00

enclosed2
shell spherical 4

∈
=

∈
=

QQrE π  

Solve for Espherical shell to obtain: 
 2

0
shell spherical 4 r

QE
∈

=
π  

 
The electric field due to the small 
hole (small enough so that we can 
treat it as a plane surface) is: 
 

0
hole 2∈

−
=

σE  

 
Substitute and simplify to obtain: 

( )

2
0

2
0

2
0

0
2

0

8

424

24

r
Q

r
Q

r
Q

r
QE

∈
=

∈
−

∈
=

∈
−

+
∈

=

π

ππ

σ
π

 

 
(b) Express the force on the patch: 
 

qEF =  
where q is the charge on the patch. 
 

Assuming that the patch has radius 
a, express the proportion between 
its charge and that of the spherical 
shell: 
 

22 4 r
Q

a
q

ππ
= or Q

r
aq 2

2

4
=  

 

Substitute for q and E in the 
expression for F to obtain: 
 

4
0

22

2
0

2

2

3284 r
aQ

r
QQ

r
aF

∈
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∈⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

ππ
 

(c) The pressure is the force 
divided by the area of the patch: 

4
0

2

2

2

4
0

22

32
32

r
Q

a
r

aQ

P
∈

=
∈

=
ππ

π
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70 ••  
Picture the Problem The work done by the electrostatic force in expanding the soap 
bubble is ∫= .PdVW  

 
From Problem 69: 
 4

0
2

2

32 r
QP
∈

=
π

 

 
Express W in terms of dr: ∫∫ == drrPPdVW 24π  

 
Substitute for P and simplify: 
 ∫∈

=
m2.0

m1.0
2

0

2

8 r
drQW

π
 

 
Evaluating the integral yields: 
 

( )
( )

J1002.2

m1.0
1

m2.0
1

mN/C1085.88
nC31

8
7

2212

2m0.2

m1.00

2

−

−

×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
⋅×

=⎥⎦
⎤

⎢⎣
⎡−

∈
=

ππ r
QW

 

 
71    ••     
Picture the Problem We can use E = kq/R2, where R is the radius of the droplet, to find 
the electric field at its surface. We can find R by equating the volume of the bubble at the 
moment it bursts to the volume of the resulting spherical droplet. 
 
Express the field at the surface of 
the spherical water droplet: 
 

2R
kqE =                          (1) 

where R is the radius of the droplet and q is 
its charge. 
 

Express the volume of the bubble 
just before it pops: 
 

trV 24π≈  
where t is the thickness of the soap bubble. 
 

Express the volume of the sphere 
into which the droplet collapses: 
 

3

3
4 RV π=  

Because the volume of the droplet 
and the volume of the bubble are 
equal: 
 

32

3
44 Rtr ππ =  

Solve for R: 3 23 trR =  
 

Assume a thickness t of 1 µm and 
evaluate R: 
 

( ) ( ) m1093.4m1m2.03 33 2 −×== µR  
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Substitute numerical values in 
equation (1) and evaluate E: 
 

( )( )
( )

N/C1011.1

m1093.4
nC3C/mN1099.8

6

23

229

×=

×

⋅×
=

−
E

 

 
72 ••  
Picture the Problem Let the numeral 1 
refer to the infinite plane at x = −2 m and 
the numeral 2 to the plane at x = 2 m and 
let the letter A refer to the region to the left 
of plane 1, B to the region between the 
planes, and C to the region to the right of 
plane 2. We can use the expression for the 
electric field of in infinite plane of charge 
to express the electric field due to each 
plane of charge in each of the three 
regions. Their sum will be the resultant 
electric field in each region. 

 
 

 
 

 
Express the resultant electric field as 
the sum of the fields due to planes 1 
and 2: 
 

21 EEE
rrr

+=             (1) 

(a) Express and evaluate the field 
due to plane 1 in region A: 

( ) ( )

( ) ( )
( )i

i

iE

ˆkN/C198

ˆ
m/NC1085.82

C/m5.3

ˆ
2

2212

2
0

1
1

=

−
⋅×

−
=

−
∈

=

−

µ

σA
r

 

 
Express and evaluate the field due to 
plane 2 in region A: 

( ) ( )

( ) ( )
( )i

i

iE

ˆkN/C339

ˆ
m/NC1085.82

C/m6

ˆ
2

2212

2
0

2
2

−=

−
⋅×

=

−
∈

=

−

µ

σA
r

 

 
Substitute in equation (1) to obtain: 
 

( ) ( ) ( )
( )i

iiE
ˆkN/C141

ˆkN/C339ˆkN/C198

−=

−+=A
r
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(b) Express and evaluate the field 
due to plane 1 in region B: 

( )

( )
( )i

i

iE

ˆkN/C198

ˆ
m/NC1085.82

C/m5.3

ˆ
2

2212

2
0

1
1

−=

⋅×
−

=

∈
=

−

µ

σB
r

 

 
Express and evaluate the field due 
to plane 2 in region B: 

( ) ( )

( ) ( )
( )i

i

iE

ˆkN/C339

ˆ
m/NC1085.82

C/m6

ˆ
2

2212

2
0

2
2

−=

−
⋅×

=

−
∈

=

−

µ

σB
r

 

 
Substitute in equation (1) to obtain: 
 

( ) ( ) ( )
( )i

iiE
ˆkN/C537

ˆkN/C339ˆkN/C198

−=

−+−=B
r

 

 
(c) Express and evaluate the field 
due to plane 1 in region C: 

( )

( )
( )i

i

iE

ˆkN/C198

ˆ
m/NC1085.82

C/m5.3

ˆ
2

2212

2
0

1
1

−=

⋅×
−

=

∈
=

−

µ

σC
r

 

 
Express and evaluate the field due to 
plane 2 in region C: 

( )

( )
( )i

i

iE

ˆkN/C339

ˆ
m/NC1085.82

C/m6

ˆ
2

2212

2
0

2
2

=

⋅×
=

∈
=

−

µ

σC
r

 

 
Substitute in equation (1) to obtain: 
 

( ) ( ) ( )
( )i

iiE
ˆkN/C141

ˆkN/C339ˆkN/C198

=

+−=C
r

 

 
*73 ••  
Picture the Problem We can find the electric fields at the three points of interest by 
adding the electric fields due to the infinitely long cylindrical shell and the spherical 
shell. In Problem 42 it was established that, for an infinitely long cylindrical shell of 
radius R, ( ) ,0=< RrEr  and ( ) .0 rRRrEr ∈=> σ We know that, for a spherical shell 

of radius R, ( ) ,0=< RrEr  and ( ) .2
0

2 rRRrEr ∈=> σ  
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Express the resultant electric field as 
the sum of the fields due to the 
cylinder and sphere: 
 

sphcyl EEE
rrr

+=           (1) 

(a) Express and evaluate the electric 
field due to the cylindrical shell at 
the origin: 
 

( ) 00,0cyl =E
r

 

because the origin is inside the cylindrical 
shell. 

Express and evaluate the electric field due to the spherical shell at the origin: 
 

( ) ( ) ( )( )
( )( )

( ) ( )iiiE ˆkN/C339ˆ
m0.5m/NC1085.8

m25.0C/m12ˆ0,0 22212

22

2
0

2

sph =−
⋅×

−
=−

∈
=

−

µσ
r

Rr
 

 
Substitute in equation (1) to obtain: 
 

( ) ( )
( )i

iE
ˆkN/C339

ˆkN/C33900,0

=

+=
r

 

or 
( ) kN/C3390,0 =E  

and 
°= 0θ  

 
(b) Express and evaluate the electric field due to the cylindrical shell at  
(0.2 m, 0.1 m): 
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( ) ( )( )
( )( ) ( )iiiE ˆkN/C508ˆ

m0.2m/NC1085.8
m15.0C/m6ˆmm,0.10.2 2212

2

0
cyl =

⋅×
=

∈
= −

µσ
r

Rr
 

 
Express the electric field due to the 
charge on the spherical shell as a 
function of the distance from its 
center: 
 

( ) rE ˆ
2

0

2

sph r
Rr

∈
=
σr

 

where r̂ is a unit vector pointing from (50 
cm, 0) to (20 cm, 10 cm). 
 

Referring to the diagram shown 
above, find r and r̂ : 
 

m316.0=r  

and 
jir ˆ316.0ˆ949.0 +−=

r
 

 
Substitute to obtain: 
 

( ) ( )( )
( )( )

( )
( )( )
( ) ( ) ji

ji

jiE

ˆkN/C268ˆkN/C806

ˆ316.0ˆ949.0kN/C849

ˆ316.0ˆ949.0
m0.316m/NC1085.8

m25.0C/m12mm,0.10.2 22212

22

sph

−+=

+−−=

+−
⋅×

−
=

−

µr

 

 
Substitute in equation (1) to obtain: 
 

( ) ( ) ( ) ( )
( ) ( ) ji

jiiE
ˆkN/C268ˆkN/C1310

ˆkN/C268ˆkN/C806ˆkN/C508mm,0.10.2

−+=

−++=
r

 

or 
 

( ) ( ) ( ) kN/C1340kN/C268kN/C1310mm,0.10.2 22 =−+=E  

and 

°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= − 348

kN/C1310
kN/C268tan 1θ  

 
(c) Express and evaluate the electric field due to the cylindrical shell at  
(0.5 m, 0.2 m): 
 

( ) ( )( )
( )( ) ( )iiE ˆkN/C203ˆ

m0.5m/NC1085.8
m15.0C/m6mm,0.20.5 2212

2

cyl =
⋅×

= −

µr
 

 
Express and evaluate the electric 
field due to the spherical shell at  

( ) 0mm,0.20.5sph =E
r
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(0.5 m, 0.5 m): 
 
 

because (0.5 m, 0.2 m) is inside the 
spherical shell. 
 

Substitute in equation (1) to obtain: 
 

( ) ( )
( )i

iE
ˆkN/C203

0ˆkN/C203mm,0.20.5

=

+=
r

 

or 
( ) kN/C203mm,0.20.5 =E  

and 
°= 0θ  

 
74  ••  
Picture the Problem Let the numeral 1 refer to the plane with charge density σ 1 and the 
numeral 2 to the plane with charge density σ 2. We can find the electric field at the two 
points of interest by adding the electric fields due to the charge distributions of the two 
infinite planes. 
 
Express the electric field at any 
point in space due to the charge 
distributions on the two planes: 
 

21 EEE
rrr

+=                       (1) 

(a) Express the electric field at (6 m, 2 m) due to plane 1: 
 

( ) ( ) ( ) jjjE ˆkN/C67.3ˆ
m/NC108.852

nC/m65ˆ
2

mm,26 2212

2

0

1
1 =

⋅×
=

∈
= −

σr
 

 
Express the electric field at (6 m, 2 m) due to plane 2: 
 

( ) ( ) ( )rrrE ˆkN/C54.2ˆ
m/NC108.852

nC/m45ˆ
2

mm,26 2212

2

0

2
2 =

⋅×
=

∈
= −

σr
 

where r̂ is a unit vector pointing from plane 2 toward the point whose coordinates are (6 
m, 2 m). 
 
Refer to the diagram below to obtain: 

 

jir ˆ30cosˆ30sinˆ °−°=  
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Substitute to obtain: 
 

( ) ( )( ) ( ) ( ) jijiE ˆkN/C20.2ˆkN/C27.1ˆ30cosˆ30sinkN/C54.2mm,262 −+=°−°=
r

 
 
Substitute in equation (1) to obtain: 
 

( ) ( ) ( ) ( )
( ) ( ) ji

jijE
ˆkN/C47.1ˆkN/C27.1

ˆkN/C20.2ˆkN/C27.1ˆkN/C67.3mm,26

+=

−++=
r

 

 
(b) Note that ( ) ( )mm,26mm,56 11 EE

rr
=  so that: 

 

( ) ( ) ( ) jjjE ˆkN/C67.3ˆ
mN/C1085.82

nC/m65ˆ
2

m5m,6 2212

2

0
1 =

⋅×
=

∈
= −

σr
 

 
Note also that ( ) ( )mm,26mm,56 22 EE

rr
−=  so that: 

 
( ) ( ) ( ) jiE ˆkN/C20.2ˆkN/C27.1mm,562 +−=

r
 

 
Substitute in equation (1) to obtain: 
 

( ) ( ) ( ) ( )
( ) ( ) ji

jijE
ˆkN/C87.5ˆkN/C27.1

ˆkN/C20.2ˆkN/C27.1ˆkN/C67.3mm,56

+−=

+−+=
r

 

 
75 ••  
Picture the Problem Because the atom is uncharged, we know that the integral of the 
electron’s charge distribution over all of space must equal its charge e. Evaluation of this 
integral will lead to an expression for ρ0. In (b) we can express the resultant field at any 
point as the sum of the fields due to the proton and the electron cloud. 
 
(a) Because the atom is uncharged: 
 ( ) ( )∫∫

∞∞

==
0

2

0

4 drrrdVre πρρ  

 
Substitute for ρ(r): 
 ∫∫

∞
−

∞
− ==

0

22
0

0

22
0 44 drerdrree arar πρπρ  

 
Use integral tables or integration by 
parts to obtain: 

4

3

0

22 adrer ar =∫
∞

−  

 



The Electric Field 2: Continuous Charge Distributions 
 

 

141

Substitute to obtain: 
 0

3
3

0 4
4 ρππρ aae =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

 
Solve for ρ0: 

30 a
e

π
ρ =  

 
(b)  The field will be the sum of the 
field due to the proton and that of 
the electron charge cloud:   
 

cloud2cloudp E
r
kqEEE +=+=  

Express the field due to the electron 
cloud: ( ) ( )

2cloud r
rkQrE =  

where Q(r) is the net negative charge 
enclosed a distance r from the proton. 
 

Substitute to obtain: ( ) ( )
22 r
rkQ

r
kerE +=  

 
As in (a), Q(r) is given by: 

')'('4)(
0

drrrrQ
r

ρπ∫=  

 
Integrate to find Q(r) and substitute 
in the expression for E to obtain: ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++= −

2

2
/2

2

221)(
a
r

a
re

r
kerE ar  

 
*76 ••  
Picture the Problem We will assume that the radius at which they balance is large 
enough that only the third term in the expression matters. Apply a condition for 
equilibrium will yield an equation that we can solve for the distance r.  
 
Apply 0=∑F  to the proton: 
 

02 /2
2

2

=−− mge
a
ke ar  

 
To solve for r, isolate the 
exponential factor and take the 
natural logarithm of both sides of the 
equation: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 2

22ln
2 mga

kear  

 

Substitute numerical values and evaluate r: 
 

( )( )
( )( )( )

nm16.1
nm0529.0m/s81.9kg1067.1

C1060.1C/mN1099.82ln
2

nm0529.0
2227

219229

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

×
×⋅×

=
−

−

r  
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.nanometers few a within force nalgravitatio
 an thesmaller th it to reduces screening force, nalgravitatio n thelarger tha

 magnitude of orders 40 is force ticelectrosta unscreened h theeven thoug Thus,
 

 
Remarks:  Note that the argument of the logarithm contains the ratio between the 
gravitational potential energy of a mass held a distance a0 above the surface of the 
earth and the electrostatic potential energy for two unscreened charges a distance a0 
apart. 
 
77 ••  
Picture the Problem In parts (a) and (b) we can express the charges on each of the 
elements as the product of the linear charge density of the ring and the length of the 
segments. Because the lengths of the segments are the product of the angle subtended at 
P and their distances from P, we can express the charges in terms of their distances from 
P. By expressing the ratio of the fields due to the charges on s1 and s2 we can determine 
their dependence on r1 and r2 and, hence, the resultant field at P. We can proceed 
similarly in part (c) with E varying as 1/r rather than 1/r2. In part (d), with s1 and s2 
representing areas, we’ll use the definition of the solid angle subtended by these areas to 
relate their charges to their distances from point P. 
 
(a) Express the charge q1 on the 
element of length s1: 

111 rsq λθλ ==  

where θ is the angle subtended by the arcs 
of length s1 and s2. 
 

Express the charge q2 on the 
element of length s2: 
 

222 rsq λθλ ==  

 

Divide the first of these equations 
by the second to obtain: 
 

2

1

2

1

2

1

r
r

r
r

q
q

==
λθ
λθ

 

 
Express the electric field at P due to 
the charge associated with the 
element of length s1: 
 

1
2

1

1
2

1

1
2

1

1
1 r

k
r

rk
r

sk
r
kqE λθλθλ

====  

 

Express the electric field at P due to 
the charge associated with the 
element of length s2: 
 

2
2 r

kE λθ
=  

Divide the first of these equations 
by the second to obtain: 
 1

2

2

1

2

1

r
r

r
k

r
k

E
E

== λθ

λθ
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and, because r2 > r1, 

21 EE >  

 
(b) The two fields point away from 
their segments of arc.  .  towardpoints field

resultant  the,   Because

2

21

s
EE >

 

 
(c) If E varies as 1/r: λθλθλ k

r
rk

r
sk

r
kqE ====

1

1

1

1

1

1
1  

and 

λθλθλ k
r

rk
r
sk

r
kqE ====

2

2

2

2

2

2
2  

 
Therefore: 

21 EE =  

 
(d) Use the definition of the solid 
angle Ω subtended by the area s1 to 
obtain: 

 
 

2
1

1

44 r
s
ππ

=
Ω

 

or  
2

11 rs Ω=  

 

Express the charge q1 of the area s1: 
 

2
111 rsq Ω== σσ  

 
Similarly, for an element of area s2: 2

22 rs Ω=  

and 
2

22 rq Ω=σ  

 
Express the ratio of q1 to q2 to 
obtain: 
 

2
2

2
1

2
2

2
1

2

1

r
r

r
r

q
q

=
Ω
Ω

=
σ
σ

 

 
Proceed as in (a) to obtain: 

12
2

2
1

2
1

2
2

2
2

1

1
2

2

2
2

2

2
1

1

2

1 =
Ω
Ω

===
rr
rr

qr
qr

r
kq
r
kq

E
E

σ
σ
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Because the two fields are of equal 
magnitude and oppositely directed: 
 

0=E
r

 

1.

2

 toward
point   would and at  fieldstronger   theproduce  would then ,1/  If

s
PsrE E

r
∝

 

 
78 ••   
Picture the Problem We can apply the condition for translational equilibrium to the 
particle and use the expression for the electric field on the axis of a ring charge to obtain 
an expression for |q|/m. Doing so will lead us to the conclusion that |q|/m will be a 
minimum when Ez is a maximum and so we’ll use the result from Problem 26 that 

2Rz −= maximizes Ez. 

 
 
(a) Apply ∑ = 0zF to the particle: 

 

0=−mgEq z  

 
Solve for |q|/m: 

zE
g

m
q
=                             (1) 

Note that this result tells us that the 
minimum value of |q|/m will be where the 
field due to the ring is greatest. 
 

Express the electric field along the z 
axis due to the ring of charge: 
 

( ) 2322 Rz
kQzEz
+

=  

Differentiate this expression with respect to z to obtain: 
 

( )
( ) ( )

( )
( ) ( )( ) ( )

( )
( ) ( )

( )322

212222322

322

2122
2
32322

322

23222322

2322

32
Rz

RzzRzkQ
Rz

zRzzRzkQ

Rz

Rz
dx
dzRz

kQ
Rz
x

dz
dkQ

dz
dEx

+

+−+
=

+

+−+
=

+

+−+
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
=
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Set this expression equal to zero for 
extrema and simplify: 

( ) ( )
( ) 03

322

212222322

=
+

+−+

Rz
RzzRz

, 

( ) ( ) 03 212222322 =+−+ RzzRz , 

and 
03 222 =−+ zRz  

 
Solve for x to obtain: 
 2

Rz ±=  

as candidates for maxima or minima. 
 

You can either plot a graph of Ez or 
evaluate its second derivative at 
these points to show that it is a 
maximum at: 
 

2
Rz −=  

Substitute to obtain an expression 
Ez,max: 
 

223

2
2max, 27

2

2

2
R

kQ

RR

RkQ
Ez =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎠

⎞
⎜
⎝

⎛−

⎟
⎠
⎞

⎜
⎝
⎛−

=  

 
Substitute in equation (1) to obtain: 
 kQ

gR
m
q

2
27 2

=  

 
(b) If |q|/m is twice as great as in (a), 
then the electric field should be half 
its value in (a), i.e.: 
 

( ) 2322227 Rz
kQz

R
kQ

+
=  

or 

3

2

2
6

2

4

1
27

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

R
zR

z
R

 

 
Let a = z2/R2 and simplify to obtain: 
 

01243 23 =+−+ aaa  
 
 

The graph of ( ) 1243 23 +−+= aaaaf  shown below was plotted using a spreadsheet 

program. 
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-30

-25

-20

-15

-10

-5

0

5

10

15

20
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a

f(
a

)

 
Use your calculator or trial-and-error 
methods to obtain: 
 

04188.0=a  and 596.3=a  
 

The corresponding z values are: Rz 205.0−=  and Rz 90.1−=  
 

The condition for a stable equilibrium position is that the particle, when displaced from 
its equilibrium position, experiences a restoring force, i.e. a force that acts toward the 
equilibrium position. When the particle in this problem is just above its equilibrium 
position the net force on it must be downward and when it is just below the equilibrium 
position the net force on it must be upward. Note that the electric force is zero at the 
origin, so the net force there is downward and remains downward to the first equilibrium 
position as the weight force exceeds the electric force in this interval. The net force is 
upward between the first and second equilibrium positions as the electric force exceeds 
the weight force. The net force is downward below the second equilibrium position as the 
weight force exceeds the electric force. Thus, the first (higher) equilibrium position is 
stable and the second (lower) equilibrium position is unstable.  
 
You might also find it instructive to use 
your graphing calculator to plot a graph of 
the electric force (the gravitational force is 
constant and only shifts the graph of the 
total force downward). Doing so will 
produce a graph similar to the one shown 
in the sketch to the right. 
 

 

Note that the slope of the graph is negative on both sides of −0.205R whereas it is 
positive on both sides of −1.90R; further evidence that −0.205R is a position of stable 
equilibrium and −1.90R a position of unstable equilibrium. 
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79 ••  
Picture the Problem The loop with the 
small gap is equivalent to a closed loop and 
a charge of RQ π2l−  at the gap. The field 

at the center of a closed loop of uniform 
line charge is zero. Thus the field is 
entirely due to the charge RQ π2l− .  
 
(a) Express the field at the center of 
the loop: 
 

gaploopcenter EEE
rrr

+=            (1) 

Relate the field at the center of the 
loop to the charge in the gap: 
 

rE ˆ
2gap R

kq
−=

r
 

Use the definition of linear charge 
density to relate the charge in the 
gap to the length of the gap: 
 

R
Qq
π

λ
2

==
l

 

or 

R
Qq
π2
l

=  

 
Substitute to obtain: 
 

rE ˆ
2 3gap R
kQ
π
lr

−=                     

 
Substitute in equation (1) to obtain: 
 

rrE ˆ
2

ˆ
2

0 33center R
kQ

R
kQ

ππ
llr

−=−=  

 
outward.radially  pointsorigin  at the field  thepositive, is  If Q  

 
(b) From our result in (a) we see 
that the magnitude of centerE

r
 is: 3center 2 R

kQE
π
l

=  

 
80 ••  
Picture the Problem We can find the electric fields at the three points of interest, 
labeled 1, 2, and 3 in the diagram, by adding the electric fields due to the charge 
distributions on the nonconducting sphere and the spherical shell. 
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Express the electric field due to the 
nonconducting sphere and the 
spherical shell at any point in space: 
 

shellsphere EEE
rrr

+=                  (1) 

(a) Because (4.5 m, 0) is inside the 
spherical shell: 
 

( ) 00,m5.4shell =E
r

 

Apply Gauss’s law to a spherical 
surface inside the nonconducting 
sphere to obtain: 
 

( ) iE ˆ
3

4
sphere rkr ρπ

=
r

 

Evaluate ( )m5.0sphereE
r

: 

 

( ) ( )( )( ) ( )iiE ˆkN/C1.94ˆm5.0C/m5/CmN10988.8
3

4m5.0 2229
sphere =⋅×= µπr

 

 
Substitute in equation (1) to obtain: ( ) ( )

( )i
iE

ˆkN/C1.94

0ˆkN/C1.940,m5.4

=

+=
r

 

 
Find the magnitude and direction of 
( )0,m5.4E
r

: 

 

( ) kN/C1.940,m5.4 =E  

and 
°= 0θ  

 
(b) Because (4 m, 1.1m) is inside 
the spherical shell: 
 

( ) 0m1.1,m4shell =E
r
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Evaluate ( )m1.1sphereE
r

: 

 

( ) ( )( )( )
( )

( ) jjE ˆkN/C6.33ˆ
m1.13

m6.0C/m5/CmN1099.84m1.1 2

32229

sphere =
⋅×

=
µπr

 

 
Substitute in equation (1) to obtain: ( ) ( )

( ) j
jE
ˆkN/C6.33

0ˆkN/C6.330,m5.4

=

+=
r

 

 
Find the magnitude and direction of 
( )m1.1,m5.4E
r

: 

 

( ) kN/C6.33m1.1,m5.4 =E  

and 
°= 90θ  

 
(c) Because (2 m, 3 m) outside the 
spherical shell: 
 

( ) rE ˆ
2
shell

shell r
kQr =

r
 

where r̂ is a unit vector pointing from 
(4 m, 0) to (2 m, 3 m). 
 

Evaluate Qshell: 
 

( )( )
C1.27

m2.1C/m5.14 22
shellshell

µ
µπσ

−=
−== AQ

 
  

Refer to the diagram below to find r̂ and r: 

 

m61.3=r  
and 

jir ˆ832.0ˆ555.0ˆ +−=  

Substitute and evaluate ( )mm,32shellE
r

: 

 

( ) ( )( )
( )

( )( )
( ) ( ) ji

ji

rE

ˆkN/C6.15ˆkN/C4.10

ˆ832.0ˆ555.0kN/C7.18

ˆ
m3.61

C1.27/CmN1099.8m61.3 2

229

shell

−+=

+−−=

−⋅×
=

µr
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Express the electric field due to the 
charged nonconducting sphere at a 
distance r from its center that is 
greater than its radius: 
 

( ) rE ˆ
2

sphere
sphere r

kQ
r =

r
 

 

Find the charge on the sphere: 
 

( )( )

C52.4

m6.0C/m5
3

4 32
spheresphere

µ

µπρ

=

== VQ
 

 
Evaluate ( )m61.3sphereE

r
: 

 

( ) ( )( )
( )

( )

( )( )
( ) ( ) ji

ji

rrE

ˆkN/C59.2ˆkN/C73.1

ˆ832.0ˆ555.0kN/C12.3

ˆkN/C12.3ˆ
m61.3

C52.4/CmN1099.8mm,32 2

229

sphere

+−=

+−=

=
⋅×

=
µr

 

 
Substitute in equation (1) to obtain: 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ji

jijiE
ˆkN/C0.13ˆkN/C67.8

ˆkN/C59.2ˆkN/C73.1ˆkN/C6.15ˆkN/C4.10m3,m2

−+=

+−+−+=
r

 

 
Find the magnitude and direction of ( )m3,m2E

r
: 

 

( ) ( ) ( ) kN/C6.15kN/C0.13kN/C67.8m3,m2 22 =−+=E  

and 

°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= − 304

kN/C67.8
kN/C0.13tan 1θ  

 
81 ••  
Picture the Problem Let the numeral 1 
refer to the infinite plane whose charge 
density is σ 1 and the numeral 2 to the 
infinite plane whose charge density is  
σ 2. We can find the electric fields at the 
two points of interest by adding the electric 
fields due to the charge distributions on the 
infinite planes and the sphere. 
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Express the electric field due to the 
infinite planes and the sphere at any 
point in space: 
 

21sphere EEEE
rrrr

++=                  (1) 

(a) Because (0.4 m, 0) is inside the 
sphere: 
 

( ) 00,m4.0sphere =E
r

 

Find the field at (0.4 m, 0) due to 
plane 1: 
 

( )

( )
( ) j

j

jE

ˆkN/C169

ˆ
m/NC1085.82

C/m3

ˆ
2

0,m4.0

2212

2
0

1
1

=

⋅×
=

∈
=

−

µ

σr

 
 

Find the field at (0.4 m, 0) due to plane 2: 
 

( ) ( ) ( ) ( ) ( )iiiE ˆkN/C113ˆ
m/NC1085.82

C/m2ˆ
2

0,m4.0 2212

2

0

2
2 =−

⋅×
−

=−
∈

= −

µσr
 

 
Substitute in equation (1) to obtain: ( ) ( )

( )
( ) ( ) ji

i

jE

ˆkN/C169ˆkN/C113

ˆkN/C113

ˆkN/C16900,m4.0

+=

+

+=
r

 
 

Find the magnitude and direction of 
( )0,m4.0E
r

: 

 

( ) ( ) ( )
kN/C203

kN/C169kN/C1130,m4.0 22

=

+=E

 
and 

°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= − 2.56

kN/C113
kN/C169tan 1θ  

 
(b) Because (2.5 m, 0) is outside the 
sphere: 
 

( ) rE ˆ0,m4.0 2
sphere

sphere r
kQ

=
r

 

where r̂ is a unit vector pointing from  
(1 m, −0.6 m) to (2.5 m, 0). 
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Evaluate Qsphere: 
 ( )( )

C7.37
m1C/m34

4
22

2
spheresphere

µ
µπ

πσσ

−=
−=

== RAQ

 

 
Referring to the diagram above, 
determine r and r̂ : 
 

m62.1=r  

and 
jir ˆ371.0ˆ928.0ˆ +=  

 
Substitute and evaluate ( )0,m5.2sphereE

r
: 

 

( ) ( )( )
( )

( )( )
( ) ( ) ji

ji

rE

ˆkN/C9.47ˆkN/C120

ˆ371.0ˆ928.0kN/C129

ˆ
m62.1

7.37/CmN1099.80,m5.2 2

229

sphere

−+−=

+−=

−⋅×
=

Cµr

 

 
Find the field at (2.5 m, 0) due to 
plane 1: 
 

( )

( )
( ) j

j

jE

ˆkN/C169

ˆ
m/NC1085.82

C/m3

ˆ
2

0,m5.2

2212

2
0

1
1

=

⋅×
=

∈
=

−

µ

σr

 
 

Find the field at (2.5 m, 0) due to 
plane 2: 
 

( )

( )
( )i

i

iE

ˆkN/C113

ˆ
m/NC1085.82

C/m2

ˆ
2

0,m5.2

2212

2
0

2
2

−=

⋅×
−

=

∈
=

−

µ

σr

 
 

Substitute in equation (1) to obtain: 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ji

ijjiE
ˆkN/C121ˆkN/C233

ˆkN/C113ˆkN/C169ˆkN/C9.47ˆkN/C1200,m4.0

+−=

−++−+−=
r

 

 
Find the magnitude and direction of ( )0,m5.2E

r
: 
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( ) ( ) ( ) kN/C263kN/C121kN/C2330,m5.2 22 =+−=E  

and 

°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

= − 153
kN/C233

kN/C121tan 1θ  

 
82 ••  
Picture the Problem Let P represent the point of interest at (1.5 m, 0.5 m). We can find 
the electric field at P by adding the electric fields due to the infinite plane, the infinite 
line, and the sphere. Once we’ve expressed the field at P in vector form, we can find its 
magnitude and direction. 
 
Express the electric field at P: 
 

spherelineplane EEEE
rrrr

++=  

Find planeE
r

at P: 

( )
( )i

i

iE

ˆkN/C113

ˆ
m/NC1085.82

C/m2

ˆ
2

2212

2
0

plane

−=

⋅×
−=

∈
−=

−

µ

σr

 

 
Express lineE

r
at P: rE ˆ2

line r
kλ

=
r

 

 
Refer to the diagram to obtain: 

( ) ( ) jir ˆm5.0ˆm5.0 −=
r

 

and 
( ) ( ) jir ˆ707.0ˆ707.0ˆ −=  

 

 
 

Substitute to obtain: 
 

( )( ) ( ) ( )[ ]
( ) ( ) ( )[ ] ( ) ( ) jiji

jiE

ˆkN/C1.72ˆkN/C1.72ˆ707.0ˆ707.0kN/C102

ˆ707.0ˆ707.0
m707.0

C/m4/CmN1099.82 229

line

−+=−=

−
⋅×

=
µr

 

 
Letting r′ represent the distance 
from the center of the sphere to P, 

'kr' rE ˆ
3

4
sphere ρπ

=
r
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apply Gauss’s law to a spherical 
surface of radius r′ centered at  
(1 m, 0) to obtain an expression 
for sphereE

r
at P: 

 

where 'r̂ is directed toward the center of 
the sphere. 

Refer to the diagram used above to obtain: 
 
 

( ) ( ) jir ˆm5.0ˆm5.0 −−='
r

 

and 
( ) ( ) jir ˆ707.0ˆ707.0ˆ −−='  

Substitute to obtain: 
 

( )( )( ) ( ) ( )[ ]
( )( ) ( ) ( ) jiji

jiE

ˆkN/C113ˆkN/C113ˆˆkN/C113

ˆ707.0ˆ707.0C/m6m707.0/CmN1099.8
3

4 3229
sphere

−+−=+−=

+−⋅×= µπr

 

 
Substitute and evaluate E

r
: 

 
( ) ( ) ( ) ( )

( )
( ) ( ) ji

j

ijiiE

ˆkN/C185ˆkN/C154

ˆkN/C113

ˆkN/C113ˆkN/C1.72ˆkN/C1.72ˆkN/C113

−+−=

−+

−+−++−=
r

 

 
Finally, find the magnitude and direction 
of E

r
: 

( ) ( )
kN/C241

kN/C185kN/C154 22

=

−+−=E
 

and 

°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

= − 220
kN/C185
kN/C154tan 1θ  

 
83  ••  
Picture the Problem We can find the 
period of the motion from its angular 
frequency and apply Newton’s 2nd law to 
relate ω to m, q, R, and the electric field 
due to the infinite line charge. Because the 
electric field is given by rkEr λ2=  we 

can express ω and, hence, T as a function 
of m, q, R, and λ.  
 
Relate the period T of the particle to 
its angular frequency ω: 
 

ω
π2

=T                             (1) 
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Apply Newton’s 2nd law to the 
particle to obtain: 
 

2
radial ωmRqEF r ==∑  

Solve for ω: 

mR
qEr=ω  

 
Express the electric field at a 
distance R from the infinite line 
charge: 
 

R
kEr
λ2=  

Substitute in the expression for ω: 

m
qk

RmR
qk λλω 212
2 ==  

 
Substitute in equation (1) to obtain: 

qk
mRT
λ

π
2

2=  

 
*84 ••   
Picture the Problem Starting with the equation for the electric field on the axis of ring 
charge, we can factor the denominator of the expression to show that, for  
x << R, Ex is proportional to x. We can use Fx = qEx to express the force acting on the 
particle and apply Newton’s 2nd law to show that, for small displacements from 
equilibrium, the particle will execute simple harmonic motion. Finally, we can find the 
period of the motion from its angular frequency, which we can obtain from the 
differential equation of motion. 
 
(a) Express the electric field on the 
axis of the ring of charge: 
 

( ) 2322 Rx
kQxEx
+

=  

Factor R2 from the denominator of 
Ex to obtain: 
 

x
R
kQ

R
xR

kQx

R
xR

kQxEx

323

2

2
3

23

2

2
2

1

1

≈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

 

provided x << R. 
 

(b) Express the force acting on the 
particle as a function of its charge 
and the electric field: 

x
R

kqQqEF xx 3==  
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(c) Because the negatively charged 
particle experiences a linear 
restoring force, we know that its 
motion will be simple harmonic. 
Apply Newton’s 2nd law to the 
negatively charged particle to 
obtain: 
 

x
R

kqQ
dt

xdm 32

2

−=  

or 

032

2

=+ x
mR
kqQ

dt
xd

 

the differential equation of simple 
harmonic motion. 
 

Relate the period T of the simple 
harmonic motion to its angular 
frequency ω: 
 

ω
π2

=T  

From the differential equation we 
have: 3

2

mR
kqQ

=ω  

 
Substitute to obtain: 
 kqQ

mRT
3

2π=  

 
85 ••  
Picture the Problem Starting with the equation for the electric field on the axis of a ring 
charge, we can factor the denominator of the expression to show that, for x << R, Ex is 
proportional to x. We can use Fx = qEx to express the force acting on the particle and 
apply Newton’s 2nd law to show that, for small displacements from equilibrium, the 
particle will execute simple harmonic motion. Finally, we can find the angular frequency 
of the motion from the differential equation and use this expression to find its value when 
the radius of the ring is doubled and all other parameters remain unchanged. 
 
Express the electric field on the axis 
of the ring of charge: 
 

( ) 2322 Rx
kQxEx
+

=  

Factor R2 from the denominator of 
Ex to obtain: 
 

x
R
kQ

R
xR

kQx

R
xR

kQxEx

323

2

2
3

23

2

2
2

1

1

≈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

 

provided x << R. 
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Express the force acting on the 
particle as a function of its charge 
and the electric field: 
 

x
R

kqQqEF xx 3==  

Because the negatively charged 
particle experiences a linear 
restoring force, we know that its 
motion will be simple harmonic. 
Apply Newton’s 2nd law to the 
negatively charged particle to 
obtain: 
 

x
R

kqQ
dt

xdm 32

2

−=  

or 

032

2

=+ x
mR
kqQ

dt
xd

 

the differential equation of simple 
harmonic motion. 
 

The angular frequency of the simple 
harmonic motion of the particle is 
given by: 
 

3mR
kqQ

=ω                      (1) 

 
 

Express the angular frequency of the 
motion if the radius of the ring is 
doubled: 
 

( )32
'

Rm
kqQ

=ω                  (2) 

Divide equation (2) by equation (1) 
to obtain: 
 

( )
8

12'

3

3

==

mR
kqQ

Rm
kqQ

ω
ω

 

 
Solve for and evaluate ω′: rad/s7.42

8
rad/s21

8
' ===

ωω  

 
86 ••  
Picture the Problem Starting with the equation for the electric field on the axis of a ring 
charge, we can factor the denominator of the expression to show that, for x << R, Ex is 
proportional to x. We can use Fx = qEx to express the force acting on the particle and 
apply Newton’s 2nd law to show that, for small displacements from equilibrium, the 
particle will execute simple harmonic motion. Finally, we can find the angular frequency 
of the motion from the differential equation and use this expression to find its value when 
the radius of the ring is doubled while keeping the linear charge density on the ring 
constant.  
 
Express the electric field on the axis 
of the ring of charge: 
 

( ) 2322 Rx
kQxEx
+

=  
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Factor R2 from the denominator of 
Ex to obtain: 
 

x
R
kQ

R
xR

kQx

R
xR

kQxEx

323

2

2
3

23

2

2
2

1

1

≈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

 

provided x << R. 
 

Express the force acting on the 
particle as a function of its charge 
and the electric field: 
 

x
R

kqQqEF xx 3==  

Because the negatively charged 
particle experiences a linear 
restoring force, we know that its 
motion will be simple harmonic. 
Apply Newton’s 2nd law to the 
negatively charged particle to 
obtain: 
 

x
R

kqQ
dt

xdm 32

2

−=  

or 

032

2

=+ x
mR
kqQ

dt
xd

, 

the differential equation of simple 
harmonic motion. 
 

The angular frequency of the simple 
harmonic motion of the particle is 
given by: 
 

3mR
kqQ

=ω                       (1) 

 
 

Express the angular frequency of 
the motion if the radius of the ring 
is doubled while keeping the linear 
charge density constant (i.e., 
doubling Q): 
 

( )
( )32

2'
Rm
Qkq

=ω                  (2) 

Divide equation (2) by equation (1) 
to obtain: 
 

( )
( )

2
12

2
'

3

3

==

mR
kqQ

Rm
Qkq

ω
ω

 

 
Solve for and evaluate ω′: rad/s5.01

2
rad/s21

2
' ===

ωω  
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87 ••  
Picture the Problem We can apply Gauss’s law to express E

r
 as a function of r. We can 

use the hint to think of the fields at points 1 and 2 as the sum of the fields due to a sphere 
of radius a with a uniform charge distribution ρ and a sphere of radius b, centered at a/2 
with uniform charge distribution −ρ. 
 
(a) The electric field at a distance r 
from the center of the sphere is 
given by: 
 

rE ˆE=
r

                                       (1) 
where r̂  is a unit vector pointing radially 
outward. 

Apply Gauss’s law to a spherical 
surface of radius r centered at the 
origin to obtain: 
 

( )
0

enclosed2

S n 4
∈

==∫
QrEdAE π  

 
Relate Qenclosed to the charge density 
ρ: 
 

3
3
4
enclosed

r
Q
π

ρ =  ⇒ 3
3
4

enclosed rQ ρπ=  

 
Substitute for Qenclosed: 
 ( )

0

3
3
4

24
∈

=
rrE ρπ

π  

 
Solve for E to obtain: 
 

03∈
=

rE ρ
 

 
Substitute for E in equation (1) to 
obtain: 
 

rE ˆ
3 0

r
∈

=
ρr

 

 
(b) The electric field at point 1 is 
the sum of the electric fields due to 
the two charge distributions: 
 

rrEEE ˆˆ1 ρρρρ −− +=+= EE
rrr

      (2) 

Apply Gauss’s law to relate the 
magnitude of the field due to the 
positive charge distribution to the 
charge enclosed by the  sphere: 
 

( )
0

3
3
4

0

encl24
∈

=
∈

=
ρπ

πρ
aqaE  

Solve for Eρ: 

00 3
2

3 ∈
=

∈
=

baE ρρ
ρ  

 
Proceed similarly for the spherical 
hole to obtain: ( )

0

3
3
4

0

encl24
∈

−=
∈

=−

ρπ
πρ

bqbE  

 
Solve for E−ρ: 

03∈
−=−

bE ρ
ρ  
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Substitute in equation (2) to obtain: 
 rrrE ˆ

3
ˆ

3
ˆ

3
2

000
1 ∈

=
∈

−
∈

=
bbb ρρρr

 

 
The electric field at point 2 is the 
sum of the electric fields due to the 
two charge distributions: 
 

rrEEE ˆˆ2 ρρρρ −− +=+= EE
rrr

        (3) 

Because point 2 is at the center of 
the larger sphere: 
 

0=ρE  

The magnitude of the field at point 
2 due to the negative charge 
distribution is: 
 

03∈
=−

bE ρ
ρ  

Substitute in equation (3) to obtain: 
rrE ˆ

3
ˆ

3
0

00
2 ∈

=
∈

+=
bb ρρr

 

 
88 •••  
Picture the Problem The electric field in the cavity is the sum of the electric field due to 
the uniform and positive charge distribution of the sphere whose radius is a and the 
electric field due to any charge in the spherical cavity whose radius is b. 
 
The electric field at any point inside 
the cavity is the sum of the electric 
fields due to the two charge 
distributions: 
 

rrEEE ˆˆ inside chargeinside charge EE +=+= ρρ

rrr
 

where r̂  is a unit vector pointing radially 
outward.        

Because there is no charge inside  
the cavity: 
 

0inside charge =E  

The magnitude of the field inside 
the cavity due to the positive charge 
distribution is: 
 

03∈
=

bE ρ
ρ  

Substitute in the expression for E
r

 
to obtain: rrE ˆ

3
ˆ

3
0

00

bb
∈

=
∈

+=
ρρr

 

 
89 ••  
Picture the Problem We can use the hint given in Problem 87 to think of the fields at 
points 1 and 2 as the sum of the fields due to a sphere of radius a with a uniform charge 
distribution ρ and a sphere of radius b, centered at a/2 with charge Q spread uniformly 
throughout its volume. 
 
The electric field at point 1 is the 
sum of the electric fields due to the 
two charge distributions: 
 

rrEEE ˆˆ1 QQ EE +=+= ρρ

rrr
            (1) 

where r̂  is a unit vector pointing radially 
outward. 
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Apply Gauss’s law to relate the 
field due to the positive charge 
distribution to the charge of the 
sphere: 
 

( )
0

3
3
4

0

encl24
∈

=
∈

=
ρπ

πρ
aqaE  

Solve for Eρ: 

00 3
2

3 ∈
=

∈
=

baE ρρ
ρ  

 
Apply Gauss’s law to relate the 
field due to the negative charge 
distributed uniformly throughout 
the volume of the cavity : 
 

( )
00

encl24
∈

=
∈

=
QqbEQ π  

where 3
3
4'' bVQ πρρ ==  

 
Substitute for Q to obtain: 
 ( )

0

3
3
4

2 '4
∈

=
bbEQ

πρ
π  

 
Solve for EQ: 

03
'
∈

=
bEQ

ρ
 

 
Substitute in equation (1) to obtain: 
 

( ) rrrE ˆ
3

'2ˆ
3

'ˆ
3
2

000
1 ∈

+
=

∈
+

∈
=

bbb ρρρρr
 

 
The electric field at point 2 is the 
sum of the electric fields due to the 
two charge distributions: 
 

rrEEE ˆˆ2 QQ EE +=+= ρρ

rrr
          (2) 

Because point 2 is at the center of 
the larger sphere: 
 

0=ρE  

The magnitude of the field at point 
2 due to the uniformly distributed 
charge Q was shown above to be: 
 

03
'
∈

=
bEQ

ρ
 

Substitute in equation (2) to obtain: 
rrE ˆ

3
'ˆ

3
'0

00
2 bb

∈
=

∈
+=

ρρr
 

 
90  ••   
Picture the Problem Let the length of the cylinder be L, its radius R, and charge Q. Let 
P be a generic point of interest on the x axis. We can find the electric field at P by 
expressing the field due to an elemental disk of radius R, thickness dx, and charge dq and 

then integrating ( )2212 RxxkEx +−= σπ . 
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Express the electric field on the x 
axis due to the charge carried by the 
disk of thickness dx: 
 

dx
Rx

xkdEx ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−=

22
12 ρπ  

Integrate dEx for P beyond the end of the cylinder: 
 

⎥
⎥
⎦

⎤
+⎟

⎠
⎞

⎜
⎝
⎛ −+

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ +−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−= ∫

+

−

2
2

2
2

2

2
22

22
2

12

RxLRxLLk

dx
Rx

xkE
Lx

Lx
x

ρπ

ρπ

 

 
Integrate dEx for P inside the cylinder: 
 

⎥
⎥
⎦

⎤
+⎟

⎠
⎞

⎜
⎝
⎛ −+

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ +−=

⎥
⎥
⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−−

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−= ∫∫

−+

2
2

2
2

2

0
22

2

0
22

22
22

112

RxLRxLxk

dx
Rx

xdx
Rx

xkE
xLxL

x

ρπ

ρπ

 

 
The effective charge density of the disk 
is given by: 
 

2R
LQ

π
ρ =  

 
Substitute numerical values and 
evaluate ρ: 
 

( ) ( )
3

2 C/m53.5
m2m2.1

C50 µ
π

µρ ==  

Evaluate 2πkρ : 
 

( )( ) mN/C1012.3C/m53.5/CmN1099.822 53229 ⋅×=⋅×= µπρπk  
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(a) Evaluate Ex(0.5 m): 
 

( ) ( )

( ) ( ) ( )

kN/C118

m2.1m5.0
2
m2m2.1m5.0

2
m2m5.02

mN/C1012.3m5.0

2
2

2
2

5

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ −++⎟

⎠
⎞

⎜
⎝
⎛ +−×

⋅×=xE

 

 
(b) Evaluate Ex(2 m): 
 

( ) ( )

( ) ( )

kN/C103

m2.1m2
2
m2m2.1m2

2
m2m2

mN/C1012.3m2

2
2

2
2

5

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ −++⎟

⎠
⎞

⎜
⎝
⎛ +−×

⋅×=xE

 

 
(c) Evaluate Ex(20 m): 
 

( ) ( )

( ) ( )

kN/C12.1

m2.1m20
2
m2m2.1m20

2
m2m2

mN/C1012.3m20

2
2

2
2

5

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ −++⎟

⎠
⎞

⎜
⎝
⎛ +−×

⋅×=xE

 

 
Remarks: Note that, in (c), the distance of 20 m is much greater than the length of 
the cylinder that we could have used Ex = kQ/x2. 
  
91 ••  
Picture the Problem We can use ( )[ ]LxxkQEx −= 00 to express the electric fields at 

x0 = 2L and x0 = 3L and take the ratio of these expressions to find the field at x0 = 3L. 
 
Express the electric field along the x 
axis due to a uniform line charge on 
the x axis: 
 

( ) ( )Lxx
kQxEx −

=
00

0  

Evaluate Ex at x0 = 2L: ( ) ( ) 2222
2

L
kQ

LLL
kQLEx =

−
=           (1) 

Evaluate Ex at x0 = 3L: ( ) ( ) 2633
3

L
kQ

LLL
kQLEx =
−

=           (2) 
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Divide equation (2) by equation (1) 
to obtain: 
 

( )
( ) 3

1

2

6
2
3

2

2
==

L
kQ
L

kQ

LE
LE

x

x  

 
Solve for and evaluate ( )LEx 3 : ( ) ( ) ( )

N/C200

N/C600
3
12

3
13

=

== LELE xx
 

 
92 •••  
Picture the Problem Let the coordinates of one corner of the cube be (x,y,z), and assume 
that the sides of the cube are ∆x, ∆y, and ∆z  and compute the flux through the faces of 
the cube that are parallel to the yz plane. The net flux of the electric field out of the 
gaussian surface is the difference between the flux out of the surface and the flux into the 
surface. 
 
The net flux out of the cube is given 
by: 
 

( ) ( )xxx φφφ −∆+=net  

Use a Taylor series expansion to express the net flux through faces of the cube 
that are parallel to the yz plane: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ...'''...''' 2
2
12

2
1

net +∆+∆=−+∆+∆+= xxxxxxxxxx φφφφφφφ  
 

Neglecting terms higher than first 
order we have: 
 

( )x'xφφ ∆=net  

Because the electric field is in the x 
direction, φ (x) is: 
 

( ) zyEx ∆∆= xφ    
and 

( ) zy
x

Ex' ∆∆
∂
∂

= xφ  

 
Substitute for φ ′(x) to obtain: 
 ( )

( )

V
x

E

zyx
x

E

zy
x

Ex

x

x

x

∆
∂
∂

=

∆∆∆
∂
∂

=

∆∆
∂
∂

∆=netφ
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93 ••  
Picture the Problem We can use the definition of electric flux in conjunction with the 
result derived in Problem 92 to show that 0/∈=⋅∇ ρE

r
. 

 
From Gauss’s law, the net flux 
through any surface is: V

q

00

encl
net ∈

=
∈

=
ρφ  

 
Generalizing our result from 
Problem 92 (see the remark 
following Problem 92): 
 

( )VV
z

E
y

E
x

E zyx E
r

⋅∇=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

=netφ  

 
Equate these two expressions to 
obtain: 
 

( ) VV
0∈

=⋅∇
ρE

r
or 

0∈
=⋅∇

ρE
r

 

 
*94 •••  
Picture the Problem We can find the field due to the infinitely long line charge from 

rkE λ2= and the force that acts on the dipole using drdEpF = . 

 
Express the force acting on the 
dipole: dr

dEpF =  

 
The electric field at the location of 
the dipole is given by: r

kE λ2
=  

 
Substitute to obtain: 

2
22

r
pk

r
k

dr
dpF λλ

−=⎥⎦
⎤

⎢⎣
⎡=  

where the minus sign indicates that the 
dipole is attracted to the line charge. 

 
95 ••  
Picture the Problem We can find the distance from the center where the net force on 
either charge is zero by setting the sum of the forces acting on either point charge equal 
to zero. Each point charge experiences two forces; one a Coulomb force of repulsion due 
to the other point charge, and the second due to that fraction of the sphere’s charge that is 
between the point charge and the center of the sphere that creates an electric field at the 
location of the point charge. 
 
Apply 0=∑F  to either of the 
point charges: 
 

0fieldCoulomb =− FF                 (1) 

Express the Coulomb force on the 
proton: 
 ( ) 2

2

2

2

Coulomb 42 a
ke

a
keF ==  

The force exerted by the field E is: 
 

eEF =field  
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Apply Gauss’s law to a spherical 
surface of radius a centered at the 
origin: 
 

( )
0

enclosed24
∈

=
QaE π  

Relate the charge density of the 
electron sphere to Qenclosed: 
 

3
3
4
enclosed

3
3
4

2
a

Q
R
e

ππ
=  ⇒ 3

3

enclosed
2
R
eaQ =  

 
Substitute for Qenclosed: 
 
 

( ) 3
0

3
2 24

R
eaaE

∈
=π  

 
Solve for E to obtain: 
 3

02 R
eaE
∈

=
π

⇒ 3
0

2

field 2 R
aeF

∈
=

π
 

 
Substitute for FCoulomb and Ffield in 
equation (1): 
 

0
24 3

0

2

2

2

=
∈

−
R

ae
a

ke
π

 

or 

02
4 3

2

2

2

=−
R

ake
a

ke
 

 
Solve for a to obtain: 
 RRa 5.0

8
1

3 ==  

 
96 •••  
Picture the Problem We can use the result of Problem 96 to express the force acting on 
both point charges when they are separated by 2a. We can then use this expression to 
write the force function when the point charges are each displaced a small distance x 
from their equilibrium positions and then expand this function binomially to show that 
each point charge experiences a linear restoring force. 
 
From Problem 95, the force function 
at the equilibrium position is: 
 

( ) 02
4 3

2

2

2

=−=
R

ake
a

keaF  

When the charges are displaced a 
distance x symmetrically from their 
equilibrium positions, the force 
function becomes: 
 

( ) ( ) ( )xa
R
kexakexaF +−+=+ −

3

2
2

2 2
4

 

Expand this function binomially to obtain: 
 

( ) ( )

x
R
kea

R
kex

a
ke

a
ke

x
R
kea

R
kexaakexaF

3

2

3

2

3

2

2

2

3

2

3

2
32

2

22
24

22...2
4

−−−≈

−−+−=+ −−

 

 



The Electric Field 2: Continuous Charge Distributions 
 

 

167

Substitute for R using the result 
obtained in Problem 96 and 
simplify to obtain: 

x
a
keF ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= 3

2

restoring 4
3

 

Hence, we’ve shown that, for a small 
displacement from equilibrium, the point 
charges experience a linear restoring force. 
 

Remarks: An alternative approach that you might find instructive is to expand the 
force function using the Taylor series. 
 
97 •••  
Picture the Problem Because the restoring force found in Problem 96 is linear, we can 
express the differential equation of the proton’s motion and then identify ω2 from this 
equation.  
 
Apply maFx =∑ to the displaced 
proton to obtain: 
 

2

2

3

2

4
3

dt
xdmx

r
ke

=−  

or 

xx
mr
ke

dt
xd 2

3

2

2

2

4
3 ω−=−=  

where 3

2
2

4
3
mr
ke

=ω  

 
Solve for ω : 
 3

2

4
3
mr
ke

=ω  

 
Substitute numerical values and evaluate ω: 
 

( )( )
( )( )

114
327

219229

s1049.4
nm08.0kg1067.14

C106.1C/mN1099.83 −
−

−

×=
×

×⋅×
=ω  
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