Chapter 23
Electrical Potential

Conceptual Problems

*1 °

Determine the Concept A positive charge will move in whatever direction reduces its
potential energy. The positive charge will reduce its potential energy if it moves toward a
region of lower electric potential.

2 oo
Picture the Problem A charged particle placed in an electric field experiences an
accelerating force that does work on the particle. From the work-kinetic energy theorem
we know that the work done on the particle by the net force changes its kinetic energy
and that the kinetic energy K acquired by such a particle whose charge is q that is
accelerated through a potential difference V is given by K = qV. Let the numeral 1 refer
to the alpha particle and the numeral 2 to the lithium nucleus and equate their kinetic
energies after being accelerated through potential differences V; and V..

Express the kinetic energy of the K, =0q,V, =2eV,
alpha particle when it has been

accelerated through a potential

difference Vi:

Express the kinetic energy of the K, =0q,V, =3¢V,
lithium nucleus when it has been

accelerated through a potential

difference V,:

Equate the kinetic energies to 2eV, =3eV,
obtain: or

V, =2V, and| (b)is correct.

3 .
Determine the Concept If V is constant, its gradient is zero; consequently E =0.

4 .

Determine the Concept No. E can be determined from either E, = —%—\2 provided V is

AV
known and differentiable or from E, = ———provided V is known at two or more points.
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5 .
Determine the Concept Because the field lines are always perpendicular to equipotential
surfaces, you move always perpendicular to the field.

6 (1]

Determine the Concept V along the axis of the ring does not depend on the charge
distribution. The electric field, however, does depend on the charge distribution, and the
result given in Chapter 21 is valid only for a uniform distribution.

*7 e
Picture the Problem The electric field
lines, shown as solid lines, and the
equipotential surfaces (intersecting the
plane of the paper), shown as dashed lines,
are sketched in the adjacent figure. The
point charge +Q is the point at the right,
and the metal sphere with charge —Q is at
the left. Near the two charges the
equipotential surfaces are spheres, and the
field lines are normal to the metal sphere at
the sphere’s surface.

8 oo

Picture the Problem The electric field
lines, shown as solid lines, and the
equipotential surfaces (intersecting the
plane of the paper), shown as dashed lines,
are sketched in the adjacent figure. The
point charge +Q is the point at the right,
and the metal sphere with charge +Q is at
the left. Near the two charges the
equipotential surfaces are spheres, and the
field lines are normal to the metal sphere at
the sphere’s surface. Very far from both
charges, the equipotential surfaces and
field lines approach those of a point charge
2Q located at the midpoint.




9 o
Picture the Problem The equipotential
surfaces are shown with dashed lines, the
field lines are shown in solid lines. It is
assumed that the conductor carries a
positive charge. Near the conductor the
equipotential surfaces follow the
conductor’s contours; far from the
conductor, the equipotential surfaces are
spheres centered on the conductor. The
electric field lines are perpendicular to the
equipotential surfaces.

10 oo

Picture the Problem The equipotential
surfaces are shown with dashed lines, the
electric field lines are shown with solid
lines. Near each charge, the equipotential
surfaces are spheres centered on each
charge; far from the charges, the
equipotential  is a sphere centered at the

midpoint between the charges. The electric

field lines are perpendicular to the
equipotential surfaces.

*11 -
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Picture the Problem We can use Coulomb’s law and the superposition of fields to find E
at the origin and the definition of the electric potential due to a point charge to find V at

the origin.
Apply Coulomb’s law and the

superposition of fields to find the
electric field E at the origin:

Express the potential V at the origin:

V=V +V

+Qat-a +Qata

_kQ kQ _2kQ

and

a a a

(b) is correct.
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12 -

. = ov ~ . .
Picture the Problem We can use E = —a—l to find the electric field corresponding the
X
given potential and then compare its form to those produced by the four alternatives

listed.

Fi.nd the eI_ectric fit?ld corresponding to E__N=_ —i[4|x| +V0]|
this potential function: OX
~ 1lif x>0 |-
:-43[|x|]i =4 i
OX -1if x<0

_ —4ifx20iA
| 4if x<0

Of the alternatives provided above, only a uniformly charged sheet in the yz plane would

produce a constant electric field whose direction changes at the origin. | () is correct.

13 -

Picture the Problem We can use Coulomb’s law and the superposition of fields to find E
at the origin and the definition of the electric potential due to a point charge to find V at
the origin.

Apply Coulomb’s law and the E = Eouat EQM
superposition of fields to find the kQ~ kQ:r 2kQ -
. . P =—] — = ]
electric field E at the origin: al a’ a’
Express the potential V at the origin: \ =V+Qat—a +V—Qata
— k_Q + —k(_ Q) =0
a a

and | (c)is correct

14 e

(a) False. As a counterexample, consider two equal charges at equal distances from the
origin on the x axis. The electric field due to such an array is zero at the origin but the
electric potential is not zero.

(b) True.
(c) False. As a counterexample, consider two equal-in-magnitude but opposite-in-sign

charges at equal distances from the origin on the x axis. The electric potential due to such
an array is zero at the origin but the electric field is not zero.



Electric Potential 173

(d) True.

(e) True.

(f) True.

(g9) False. Dielectric breakdown occurs in air at an electric field strength of approximately
3x10° V/m.

15 oo
(a) No. The potential at the surface of a conductor also depends on the local radius of the
surface. Hence r and o can vary in such a way that V is constant.

(b) Yes; yes.
*16 o

Determine the Concept When the two spheres are connected, their charges will
redistribute until the two-sphere system is in electrostatic equilibrium. Consequently, the

entire system must be an equipotential. | () is corrent.

Estimation and Approximation Problems

17
Picture the Problem The field of a thundercloud must be of order 3x10° \//m just before
a lightning strike.

Express the potential difference V =Ed
between the cloud and the earth as a

function of their separation d and

electric field E between them:

Assuming that the thundercloud is at V = (3X106 V/m)(103 m)
a distance of about 1 km above the 5
surface of the earth, the potential =| 3.00x10° V

difference is approximately:

Note that this is an upper bound, as there will be localized charge distributions on the
thundercloud which raise the local electric field above the average value.

*18

Picture the Problem The potential difference between the electrodes of the spark plug is
the product of the electric field in the gap and the separation of the electrodes. We’ll
assume that the separation of the electrodes is 1 mm.

Express the potential difference V =Ed
between the electrodes of the spark
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plug as a function of their separation
d and electric field E between them:

Substitute numerical values and V = (2 x10’ V/m)(lO‘3 m)
evaluate V:

=| 20.0kV
19 L 1]

Picture the Problem We can use conservation of energy to relate the initial kinetic
energy of the protons to their electrostatic potential energy when they have approached
each other to the given "radius".

(a) Apply conservation of energy to Ki +U; =K +U;
relate the initial kinetic energy of the or, because U; = K¢ = 0,
protons to their electrostatic Ki =U;
potential when they are separated by
a distance r:
B H H 2 2
ecause each proton has kinetic IK — e K= e
energy K: Are,r 8re, r
Substitute numerical values and evaluate K:
(L6x10™ Cf " leV
= = s = 4.19x1077 I X ————
87(8.85x10™ C?/N-m?){10™° m) 1.6x107%° ]
=| 0.719 MeV
(b) Express ar.ld evaluate the ratio of fo K _0.719MeV _ 0.0767%
the two energies: E.e 938MeV

20 oo
Picture the Problem The magnitude of the electric field for which dielectric breakdown
occurs in air is about 3 MV/m. We can estimate the potential difference between you and
your friend from the product of the length of the spark and the dielectric constant of air.

Express the product of the length of V = (3 MV/m)(Z mm) —| 6000V
the spark and the dielectric constant of

alr:




Electric Potential 175

Potential Difference

21 -

Picture the Problem We can use the definition of finite potential difference to find the
potential difference V(4 m) — V(0) and conservation of energy to find the kinetic energy
of the charge when it is at x = 4 m. We can also find V(x) if V(x) is assigned various
values at various positions from the definition of finite potential difference.

(a) Apply the definition of finite B b ~ 4m
potential difference to obtain: v(4m)-v(0)= _!: E-de=- ! Ed¢
=—(2kN/C)(4m)
=| -8.00kV
(b) By definition, AU is given by: AU =qAV = (3.C)(-8kV)
=[-24.0mJ
(c) Use conservation of energy to AK +AU =0
relate AU and AK: or

K, —K,+AU =0

Because K, = 0: Kym =—AU =| 24.0mJ
Use the definition of finite potential V(x)=V (%)= —E,(x—X,)
difference to obtain: =—(2kV/m)(x—x,)
(d) For V(0) = 0: V(x)-0=—(2kV/m)(x-0)

or

V(x)=| —(2kV/m)x

(e) For V(0) = 4 kV: V(x)-4KkV = —-(2kV/m)(x - 0)

(f) For V(1m) = 0: V(x)-0=—(2kVv/m)(x-1)

V(x)=| 2kV —(2kV/m)x
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22 .

Picture the Problem Because the electric field is uniform, we can find its magnitude
from E = AV/Ax. We can find the work done by the electric field on the electron from the
difference in potential between the plates and the charge of the electron and find the
change in potential energy of the electron from the work done on it by the electric field.
We can use conservation of energy to find the kinetic energy of the electron when it
reaches the positive plate.

(a) E)fprejss the magnitude of the_ E- AV _ 500V _5.00kV/m
electric field between the plates in Ax  0.1m
terms of their separation and the

potential difference between them:

Because the electric force on a test charge is away from the positive
plate and toward the negative plate, the positive plate is at the
higher potential.

(b) Relate the work done by the W =(gAV = (1.6 x107" C)(SOOV)
electric field on the electron to the 8.01x10" J
difference in potential between the

plates and the charge of the electron:

Convert 8.01x10" J to eV: 1eV
W = (8.01x107J) —
1.6x107J
=| 500eV
(c) Relate the change in potential AU =-W =| —=500eV
energy of the electron to the work
done on it as it moves from the
negative plate to the positive plate:
Apply conservation of energy to AK = —-AU =| 500eV
obtain:
23 -

Picture the Problem The Coulomb potential at a distance r from the origin relative to V
= 0 at infinity is given by V = kq/r where q is the charge at the origin. The work that must
be done by an outside agent to bring a charge from infinity to a position a distance r from
the origin is the product of the magnitude of the charge and the potential difference due to
the charge at the origin.



Electric Potential 177

(a) Express and evaluate the Coulomb V = k_q
potential of the charge: r
~ (8.99x10° N-m?/C?)(2 .C)
4m
=| 4.50kV
(b) Relate the work that must be W =gAV =(34C)(4.50kV)
done to the magnitude of the charge =113.5mJ
and the potential difference through
which the charge is moved:
(c) Express the vyork that must be W = g,AV, = ka,0s,
done by the outside agent in terms r
of the potential difference through
which the 2-4C is to be moved:
Substitute numerical values and W= (8.99 x10° N - m?/C?)(2 1C)(3 1C)
evaluate W: B 4m

13.5mJ

24 e
Picture the Problem In general, the work done by an external agent in separating the
two ions changes both their kinetic and potential energies. Here we’re assuming that they
are at rest initially and that they will be at rest when they are infinitely far apart. Because
their potential energy is also zero when they are infinitely far apart, the energy Wey
required to separate the ions to an infinite distance apart is the negative of their potential
energy when they are a distance r apart.

Express the energy required to separate W, = AK +AU =0-U;

the ions in terms of the work required kq_q, k(— e)e ke?
by an external agent to bring about this - r - r - r
separation:

Substitute numerical values and evaluate Wey;:

W _ (899x10° N-m*/C?)6x10™ cf

ext 10 =8.24x 10_19 J
2.80x107" m
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Convert Wy to eV:
: W =(8.24x10J) —1evilg
1.6x107J

=| 5.14eV

25 e
Picture the Problem We can find the final speeds of the protons from the potential
difference through which they are accelerated and use E = AV/Ax to find the accelerating
electric field.

(a) Apply the work-kinetic energy W =AK = K;
theorem to the accelerated protons: or
eAV =1imy?
Solve for v to obtain: Ve 2eAV
\''m
Substitute numerical values and 2(1.6 x107%° c)(5 MV)
evaluate v: V= 1.67x107 kg
=|3.10x10" m/s
(b) Assuming the same potential E - AV _5MV _ > 50MV/m
change occurred uniformly over the AX 2m

distance of 2.0 m, we can use the
relationship between E, AV, and Ax
express and evaluate E:

*26 e

Picture the Problem The work done on the electrons by the electric field changes their
kinetic energy. Hence we can use the work-kinetic energy theorem to find the kinetic
energy and the speed of impact of the electrons.

Use the work-kinetic energy W =AK =K,
theorem to relate the work done by or
the electric field to the change in the K =eAV (1)

kinetic energy of the electrons:

(a) Substitute numerical values and K, =(1e)(30kV)=| 3x10*eV
evaluate Ks:




(b) Convert this energy to eV:

(c) From equation (1) we have:

Solve for v; to obtain:

Substitute numerical values and
evaluate vs:
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-19
K, =(3x10° ev)(w]
eV
=| 4.80x107™]
imv; =eAV

2eAV
Vi =, /
m

_ |2(L6x10" C)(30kV)
9.11x10* kg

=[1.03x10® m/s

Remarks: Note that this speed is about one-third that of light.

27 oo

Picture the Problem We know that energy is conserved in the interaction between the «
particle and the massive nucleus. Under the assumption that the recoil of the massive
nucleus is negligible, we know that the initial kinetic energy of the « particle will be
transformed into potential energy of the two-body system when the particles are at their

distance of closest approach.

(a) Apply conservation of energy to
the system consisting of the « particle
and the massive nucleus:

Because Ki=U;=0and K; = E:
Letting r be the separation of the
particles at closest approach, express

Uf:

Substitute to obtain:

Solve for r to obtain:

AK +AU =0
or
K -K;+U; -U, =0

~E+U, =0
U. = kqnucleusqa _ k(ze)(ze) _ 2kze2
f r r r
2
_E4 2kze” _ 0
r
2kze’
r =
E

(b) For a 5.0-MeV « particle and a gold nucleus:
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~ 2(8.99x10° N-m?/C?)(79)(1.6 x10™ Cf

=455%x10" m=| 45.4f
° (5MeV)[L.6x107 J/eV) e i

For a 9.0-MeV « particle and a gold nucleus:

~ 2(8.99x10° N-m?/C?)(79)(1.6x 10" Cf

= =2.53x10™" m =| 25.3f
(9MeV)(1.6x107° J/eV) e i

Ty

Potential Due to a System of Point Charges

28 -

Picture the Problem Let the numerals 1, 2, 3, and 4 denote the charges at the four
corners of square and r the distance from each charge to the center of the square. The
potential at the center of square is the algebraic sum of the potentials due to the four
charges.

Express the potential at the center of v Ko Kk,  ka;  ka,
the square: r r r r
K
:?(ql +0; +0; +q4)

k &
:_ZQi
riz

(a) If the charges are positive: _ 8.99x10° N-m?/C?

\Y 4)(2
o (@)2uc)

=| 25.4kV

b) If three of the charges are positive 8.99x10° N - m?/C?

z(an)d one is negative: ’ i V= (2)(2,uC)

gative: 22m

=|12.7kV

(c) If two are positive and two are V=0

negative:

29 -

Picture the Problem The potential at the point whose coordinates are (0, 3 m) is the
algebraic sum of the potentials due to the charges at the three locations given.
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Express the potential at the point 3. 0.

P potentl P I_ V:kzi:k G % G
whose coordinates are (0, 3 m): =lle Loror
(@) Forqi =02=03=2 «C:

1 1 1
V =1(8.99x10° N-m?/C?)(2 + + =112.9kV
( )( ﬂc)(3m 3W2m 3x/§mj

(b) For g1 =g, =2 xC and g3 = -2 C:

J’_ p—
3m 3/2m 3/5m

Vv :(8.99><109N-m2/C2)(2,uC)( . L 1 J: 7.55kV

(c) Foragi=gs=2 4Cand g, = -2 uC:

1 1 1
V =(8.99x10° N-m?/C?)(2 - =| 4.44kV
( § )( ﬂc)(3m 3\/§m+3\/§m]

30 -

Picture the Problem The potential at point C is the algebraic sum of the potentials due to
the charges at points A and B and the work required to bring a charge from infinity to
point C equals the change in potential energy of the system during this process.

(a) Express the potential at point C q q

. V. =k| &+
as the sum of the potentials due to ¢ r, Iy
the charges at points A and B:
Substitute numerical values and evaluate V¢:

1 1 1 1
Ve =kg| —+—|=(8.99x10° N-m?/C?)(2 —+—|=]|12.0kV
¢ q(A rBj ( )(ﬂC)Sm 3m

(b) Express the required work in W =AU =q,V,
terms of the change in the potential _ (5 uC)(lZ.O kV) ~[60.0mJ

energy of the system:

(c) Proceed as in (a) with qg = —2 uC:
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Ve = k(q—A+q—Bj:(8.99x109 N.mZ/CZ)(%+ —2ﬂ0j=@

rn Iy 3m 3m
and W = AU =g,V = (54C)(0)= 0|

31 -

Picture the Problem The electric potential at the origin and at the north pole is the
algebraic sum of the potentials at those points due to the individual charges distributed
along the equator.

. 6

(a? I?xpress the potential at the_ V = kZ& _ 6kﬂ
origin as the sum of the potentials i I r
due to the charges placed at 60°

intervals along the equator of the

sphere:
Substitute numerical values and V = 6(8.99x10° N-m?/C?) 3uC
evaluate V: ' 0.6m
=| 270kV
(b) Using geometry, find the r'=0.642m
distance from each charge to the
north pole:
Proceed as in (a) with r'= 0.6v2m: V= ki& _ 6kg
=i r
- 6(8.99x10° N-m?/c2)HC
0.6v/2m
=|191kV
*32

Picture the Problem We can use the fact that the electric potential at the point of interest
is the algebraic sum of the potentials at that point due to the charges g and g’ to find the
ratio g/q'.

Express the potential at the point of ka . kq' _
interest as the sum of the potentials a/3 2a/3
due to the two charges:
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Simplify to obtain:

q
+—=0
a 2
Solve for the ratio g/q": q_ _1
ql

33 e
Picture the Problem For the two charges, I =|x—a|and |x+a| respectively and the

electric potential at x is the algebraic sum of the potentials at that point due to the charges
atx=+aand x = -a.

(a) Express V(x) as the sum of the 1 1

i V=lkq ——+——
potentials due to the charges at q |x _ a| |X N a|
X=+aand x = -a:

(b) The following graph of V(x) versus x for kg = 1 and a = 1 was plotted using a
spreadsheet program:

10
8
6 -
S
>
4 4
24
/ \
0
3 2 1 0 1 2 3
x (m)
(c) At x =0: av _ and E __av _ 0
=0 and B, =——-=[0]

34 o
Picture the Problem For the two charges, I =|x—a|and |X| respectively and the electric

potential at x is the algebraic sum of the potentials at that point due to the charges at x = a
and x = 0. We can use the graph and the function found in part (a) to identify the points at
which V(x) = 0. We can find the work needed to bring a third charge +e to the point
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X =1 a on the x axis from the change in the potential energy of this third charge.

Express the potential at x: V(x): k(3e)+ k(— 29)
X x4

The following graph of V(x) for ke = 1 and a =1 was plotted using a spreadsheet
program.

25

20 -

15

10

s . |/
> —
O 4

-5 n

-10

-15 :

3 2 1 0 1 2 3
X (m)
(b) From the graph we can see that X=| too
V(x) = 0 when:
Examining the function, we see that 3 2 _ 0
V(x) is also zero provided: X [x-a
For x >0, V(x) = 0 when: X =| 3a
For 0 <x<a, V(x) = 0 when: X =| 0.6a
(c) Express the work that must be W =AU =qV(}a)
done in terms of the change in
potential energy of the charge:
Evaluate the potential at X = 3a: C k(3e)  k(-2e)
V(;a): 1 + 1
24 [a-4|
_ bke 4ke _ 2ke

a a a
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Substitute to obtain: 2ke 2ke?
W=¢ — |=
a a

Computing the Electric Field from the Potential

35 -
Picture the Problem We can use the relationship E, = — (dV/dx) to decide the sign of V,
—Vzand E = AV/Ax to find E.

(a) Because E, = — (dV/dx), V is V, -V, is positive.
greater for larger values of x. So:

(b) Express E in terms of V, — V, and E — AV _ Vi -V,
the separation of points a and b: *AX AX
Substitute numerical values and >

ubstitute numerical valu EX=10V= 25 0 kvV/m
evaluate E: 4m
*36 o

Picture the Problem Because E, = —dV/dx, we can find the point(s) at which
Ex = 0 by identifying the values for x for which dV/dx = 0.

Examination of the graph indicates X=|45m
that dvV/dx =0 atx =4.5m. Thus E, =

0 at:

37 .

Picture the Problem We can use V(x) = kg/x to find the potential V on the x axis at x =
3.00 mand at x = 3.01 m and E(x) = kq/r” to find the electric field at
x =3.00 m. In part (d) we can express the off-axis potential using V(x) = kq/r, where

(a) Express the potential on the x axis kg
. V(x)
as a function of x and q: X

Evaluate V at x = 3 m: ) (8.99x10° N - m?/C?)(34C)

V(3m)=
3m

=] 8.99kV
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- . 9N . m2/C2
Evaluate V at x = 3.01 m: V(3.01m)= (8.99><10 N-m°/C )(B,uC)
3.01m
=1 8.96kV
(b) The potential decreases as x _AV _ 896 kV -8.99kV
increases and: AX 3.01m-3.00m
=] 3.00kV/m
(c) Express the Coulomb field as a _kq
. E(x)=—
function of x: X
Evaluate this expression at E(3m)= (8.99 x10° N - m2/C2)(3 4C)
x = 3.00 m to obtain: a (3m)
=] 3.00kV/m

in agreement with our result in (b).

(d) Express the potential at (x, y) V (x y) _ kg
due to a point charge q at the origin: ’ X% +y?

Evaluate this expression at (3.00 m, 0.01 m):

99x10° N-m?/C?)(3 C)
J(3.00mY +(0.01m)?

V(3.00m,0.01m) = (8 =| 8.99kV

Fory << x, V is independent of y and the points (x, 0) and (x, y) are at the same potential,
i.e., on an equipotential surface.

38 -

Picture the Problem We can find the potential on the x axis at x = 3.00 m by expressing
it as the sum of the potentials due to the charges at the origin and at

X =6 m. We can also express the Coulomb field on the x axis as the sum of the fields due
to the charges g; and ¢, located at the origin and at x = 6 m.

a) Express the potential on the x
(&) Exp P _ V(x)=k G %
axis as the sum of the potentials due Lo,

to the charges g; and ¢, located at
the origin and at
X=6m:
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Substitute numerical values and V(x)=(8.99x10° N-m?/C?)
evaluate V(3 m): _
x 3 +—3’uC
3m 3m
(b) Express the Coulomb field on the E - ka, ko, o G 9
x axis as the sum of the fields due to x _rl_2+?_ "1_2+E
the charges q; and g located at the
origin and at
X=6m:
Substitute numerical values and E, = (8.99><109 N- mZ/CZ)
evaluate E(3 m): 3 _3
X ,LlCZ - ,UCZ:
(Bm)  (3m)
=| 5.99kV/m
(c) Express the potential on the x q 0,
axis as the sum of the potentials due V(x)=k V_1+E

to the charges g, and ¢, located at
the origin and at
X=6m:

Substitute numerical values and evaluate  V(3.01m) = (8.99><1Og N- m2/CZ)
V(3.01 m): ~
{3t 20m)

3.0Im 2.99m
=| -59.9V

Compute —AV/AX: AV -59.9V -0

AX  3.01m-3.00m
—[5.99kV/m
=E,(3.00m)

39 -
Picture the Problem We can use the relationship E, = — (dV/dy) to decide the sign of V,
—V,and E = AV/Ay to find E.

(a) Because E, = — (dV/dx), V is V, -V, is negative.
smaller for larger values of y. So:
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(b) Express E in terms of V, — V, and
the separation of points a and b:

Substitute numerical values and
evaluate E:

40

E :ﬂ:Vb—Va
Ty Yy
4
g, =220V _ 5 o0kvim
4m

Picture the Problem Given V(x), we can find E, from —dV/dx.

(a) Find E, from —dV/dx:

(b) Find E, from —dV/dx:

(c) Find E4 from —dV/dx:

(d) Find E, from —dV/dx:

41 e

_d
dx

=| —3.00kV/m

E =

X

[2000 +3000x]

__4d
dx
=| —3.00kV/m

[4000 +3000x]

<

a
dx

=|3.00kV/m

m
I

[2000—3000x]

d
E = —— —2 =
X dx[ OOO] @

Picture the Problem We can express the potential at a general point on the x axis as the
sum of the potentials due to the charges at x = 0 and x = 1 m. Setting this expression
equal to zero will identify the points at which V(x) = 0. We can find the electric field at

any point on the x axis from E, = —dV/dx.

(a) Express V(x) as the sum of the
potentials due to the point charges at x
=0andx=1m:

(b) Set V(x) =0:




For x < 0:

ForO<x<1:

Note also that:

(c) Evaluate V(x) for0 <x < 1:

Apply E, = —dV/dx to find E, in this
region:

Evaluate this expression at
x =0.25 m to obtain:

Evaluate V(x) for x <0:

Apply E, = —dV/dx to find E, in this
region:
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_ 3
X [x-1
13 o x=[—0500m
-x —(x-1)
3
1 —0=x=|0250m
—(x-1)

V(x)— 0asx — oo

V(0<x<1)= k(ﬂ+3—qj
X x-1

EX(O<x<1):_di[k(ﬂ+3_QH

X X x-1
1 3
=kq =+
q{xz <x—1>2}

E (0.25m)= kq{

1, 3 }
(0.25m)*  (0.75m)’
=| (21.3m?)kq

Evaluate this expression at x = —0.5 m to obtain:

1

(-2.67m™)kq

E (-05m)= kq[— Cosmy

’ (1.53m)2} B

(d) The following graph of V(x) for kg = 1 and a = 1 was plotted using a spreadsheet
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program:

. \ /

-15

vV (V)

-20

-25

X (m)

*42 oo
Picture the Problem Because V(x) and E, are related through E, = — dV/dx, we can find
V from E by integration.

Separate variables to obtain: dv =-E,dx = —(2.OX3 kN/C)dx

Integrate V from V; to V, and x from V2 X2
| LR [ dv = —(2.0kN/C) [ x*dx

Imto2m:
\A Xy
= —(2.0kN/IC)E x|
Simplify to obtain: V, -V, = =7.50kV
43 oo

Picture the Problem Let r; be the distance from (0, a) to (X, 0), r, the distance from (0,
—a), and r3 the distance from (a, 0) to (x, 0). We can express V(x) as the sum of the
potentials due to the charges at (0, a), (0, —a), and (a, 0) and then find E, from —dV/dx.

(a) Express V(x) as the sum of the V(x)= ka, +ﬁ + ka,
potentials due to the charges at (0, a), r r, r
(0, —a), and (a, O)Z where 01=02=03=(

At x = 0, the fields due to g, and g cancel, so E,(0) = —kg/a; this is also obtained from
(b) ifx=0.
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As x—oo, i.e., for x >> a, the three charges appear as a point charge 3q, so
E, = 3kg/x?; this is also the result one obtains from (b) for x >> a.

Substitute for the r; to obtain:

1 1

1 2 1

V(x)= kq[

(b) For x> a, x—a>0and:

Use E, = —dV/dx to find E,:

+ +
x2+a? Wx2+a’

A

V—d:x—a

|

+
et k-4

X~

d 2 1 2kgx kq
E .(x>a)=——k =
x( > ) Xm: q(\/xz-yaz +X—&J:| (X2+a2)3/2 +(X—a)2
Forx<a, x —a <0 and: x—al=—(x-a)=a-x
Use E, = —dV/dx to find Ey;
2 1 2kgx kq
E.(x<a)=——/Kk = _
x( < ) X{ QL NPT +a_xﬂ (x2+a2)3/2 (a—X)Z

Calculations of V for Continuous Charge Distributions

44 -

Picture the Problem We can construct Gaussian surfaces just inside and just outside the
spherical shell and apply Gauss’s law to find the electric field at these locations. We can

use the expressions for the electric potential
the potential at these locations.

(a) Apply Gauss’s law to a spherical
Gaussian surface of radius r < 12 cm:

Apply Gauss’s law to a spherical
Gaussian surface of radius

inside and outside a spherical shell to find

Qenclosed

€

§|§-d/&= =0
S

because the charge resides on the outer
surface of the spherical surface. Hence

E(r <120m):@
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r>12cm: and
E(r >12cm):L2=k—i1
drree, r
Substitute numerical values and evaluate E(r >12cm):
9 2 2 -8
E(r>12cm)= (8.99x10° N-m /(2: Jao*c) =| 6.24kV/m
(0.12m)
(b) Express and evaluate the potential just inside the spherical shell:
9 2 2 -8
Vir<r)= K (8.99x10°N-m*/C*)10°C) o
R 0.12m
Express and evaluate the potential just outside the spherical shell:
9 2 2 -8
VirzR)= K (8.99x10° N-m?/C*)10°C) _ -~
r 0.12m

(c) The electric potential inside a uniformly charged spherical shell is constant and
given by:

9 2 2 -8
V(rSR):%:(8.99x10 slrznnfc J10°C) =25y

In part (a) we showed that: E(r <12cm)= @

45
Picture the Problem We can use the expression for the potential due to a line

r . . .
chargeV = —-2kAIn—, where V = 0 at some distance r = a, to find the potential at these
a

distances from the line.

Express the potential due to a line V = —2kA Ini
charge as a function of the distance a
from the line:

Because V=0atr=25m: 0= —2kAln 2.5m
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0=1In 2.5m ,
a
and
2:5m _ In"0=1
a

Thus we have a = 2.5 m and:

— 9 . 2 2 ' = ) ’ r
V = -2(8.99x10° N-m?/C )(1.5yC/m)ln[2.5mJ (270x10*N m/C)'”£2.5mJ

(a) Evaluate Vatr =2.0 m:

V =—(2.70x10* N-m/C)In(sz j

.5m
=| 6.02kV
b) Evaluate Vatr=4.0 m:
(b) Bvalu V = (2.70%10* N- m/C)in| 2™
2.5m
=| -12.7kV
c) Evaluate Vatr=12.0 m:
(¢) Bvaly V = (2.70x10* N-m/C)in| 22M
2.5m
=| -42.3kV

46 oo
Picture the Problem The electric field on the x axis of a disk charge of radius R is given

X
Jx?+R?

X to obtain Equation 23-21.

by E, = 27zka(1— ] . We’ll choose V() = 0 and integrate from x’ = oo to X’ =

Relate the electric potential on the dVvV =-E,dx
axis of a disk charge to the electric
field of the disk:

Express the electric field on the x

X
axis of a disk charge: E, = Zﬂko{l_ 2 R ]
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Substitute to obtain:

Let V(o) = 0 and integrate from x’ =
oo to X' = X:

4T e

Picture the Problem Let the charge per
unit length be 4 = Q/L and dy be a line
element with charge Ady. We can express
the potential dV at any point on the x axis
due to Ady and integrate of find V(x, 0).

(a) Express the element of potential
dV due to the line element dy:

Integrate dV fromy =—-L/2 to
y=L/2:

(b) Factor x from the numerator and
denominator within the parentheses to
obtain:

a .
Use InE =Ina-Inbto obtain:

dv = —ZﬂKU(l

V= —Zﬂkgj (1

—27zka\/x +R? —x)

mJ

= 27zk0|x|(

which is Equation 23-21.

—V

k=

dv =44
r
where 1 =,/x* +y?
L/2
V(x,o)=k_Q _dy
L {2yx2+y?
_|kQ,, X2+ L2442
L | yx2+1%/a-L/2
> L
I+—+ —
v (x,0) kTQIn 4xC_ 2x
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L -
Let & = e and use (1+5)]/2 =1+1e—1¢%+.. toexpand |1+ e ;
X X

2 \¥2 2 2 \?
(1+L_J =1+£L_—1(L] +..~1 forx>>L.

Substitute to obtain:

V(x0)= kTQ{ln(u 2—")() - ln(l—z—l_xj}

Let 5=Land use In(l+8)=5—15% +... to expand In(liL}:
2X 2X

2 2
In(l+£jzi— L and In(l—sz—L— Lz for x >> L.
2X 2X  4x

Substitute and simplify to obtain:

48 e
Picture the Problem We can find Q by
integrating the charge on a ring of radius r
and thickness dr fromr =0to

r = R and the potential on the axis of the
disk by integrating the expression for the
potential on the axis of a ring of charge
between the same limits.

(a) Express the charge dq on a ring

_ ) dq =2zarodr = 2ar O'OB dr
of radius r and thickness dr: r

= 27o,Rdr

Integrate from r = 0 to r = R to obtain:

R
Q= 27Z'O'ORJ.dr =| 270,R?
0
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(b) Express the potential on the axis

_kdgq  27ko,Rdr

dv
of the disk due to a circular element r X2 412
of charge dq = 2zrodr :
Integrate from r = 0 to r = R to obtain: T
ntegrate fromr=0tor o obtain V=27Z|(O'ORI dr
o VX +r?
2 2
_ ZMOR.{FH_ X+ R J
X

49 oo

Picture the Problem We can find Q by
integrating the charge on a ring of radius r
and thickness dr from r = 0 to

r = R and the potential on the axis of the
disk by integrating the expression for the
potential on the axis of a ring of charge
between the same limits.

(a) Express the charge dg on a ring
of radius r and thickness dr:

Integrate from r = 0 to r = R to obtain:

(b)Express the potential on the axis of
the disk due to a circular element of
2

:fo rédr:

charge dq =

Integrate from r = 0 to r = R to obtain:

2
dq = 2arodr = 2721’(0'0 R—]dr

r
2

= 2:?’ ridr
2ro, ? 3 1 2
Q :—er dl’ = E”O-OR
R 0
3
dv - kdq _27ko, r dr

r

R x?+r?

27K o, T ridr 27K o,
0 X2 + r2 R2

|

3

3
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Picture the Problem Let the charge per
unit length be 4 = Q/L and dy be a line
element with charge Ady. We can express
the potential dV at any point on the x axis
due to Ady and integrate to find V(x, 0).

Express the element of potential dV
due to the line element dy:

Integrate dV fromy = -L/2 to
y=L/2:

*5]  ee
Picture the Problem The potential at any
location on the axis of the disk is the sum
of the potentials due to the positive and
negative charge distributions on the disk.
Knowing that the total charge on the disk is
zero and the charge densities are equal in
magnitude will allow us to find the radius
of the region that is positively charged. We
can then use the expression derived in the
text to find the potential due to this charge
closest to the axis and integrate dV from
r= R/\Eto r = R to find the potential at x

due to the negative charge distribution.

(a) Express the potential at a
distance x along the axis of the disk
as the sum of the potentials due to
the positively and negatively
charged regions of the disk:

We know that the charge densities
are equal in magnitude and that the

kA

dv =—dy
r

where r =/x* +y?

V(x,0)

L/2

kQ

Electric Potential

dy

—4./2 X2 +y?

197

k—an
L

|

X2+ L4+ L)/2

X2+ L2412

|

=e

V(x)=V, (x)+V.(x)

Qr<a - Qr>a

or
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total charge carried by the disk is o,m’ = o,aR? — o ma
zero. Express this condition in terms

of the charge in each of two regions

of the disk:

Solve for a to obtain: R

Use this result and the general , R?
expression for the potential on the V, (x)=27ka,| \[x +7 =X

axis of a charged disk to express

Vi(x):
Express the potential on the axis of dv (x) — _2ko Ldr
the disk due to a ring of charge a - Oy
distance r > a from the axis of the where r'=+/x2+r?2.
ring:
Integrate this expression from g r
0 P V_(x)=—27ko, [ ———dr

r =R/+/2 to r =R to obtain: X+
Substitute and simplify to obtain:

V(x)= Zﬂkﬁo[w/xz +R?2 - XJ— ZMGO[W—W/XZ +R72J
2ﬂk00(1{X2+R?2—X—\/m+1/X2 +R72}

2
= anao[Z x2+R7—\/x2+R2 —x}

(b) To determine V for . R’ R? 2
x >> R, factor x from the square roots X +—-=X 1+?
and expand using the binomial
o R> R?
expansion: Xl 1+
4x*  32x*

and
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2\¥2
VX2 +R? = x(l+R—2J

X

Substitute to obtain:

2 4 2 4 4
V(x)~ znka{zx[uR———R 4]— x[1+R——R—j - xJ _| KooR
X X 8x

52 ee
Picture the Problem Given the potential function

V(x) = 27ko, (2\/x2 +R%2-/X* +R? - x) found in Problem 51(a), we can find E
from —dV/dx. In the second part of the problem, we can find the electric field on the axis
of the disk by integrating Coulomb’s law for the oppositely charged regions of the disk

and expressing the sum of the two fields.
Relate E, to dV/dx:

-
dx

From Problem 51(a) we have:
2
V(x)= 27zk0'{2 x? +R7 —Vx?+R? - XJ
Evaluate the negative of the derivative of V(x) to obtain:

2
E, 2—27Zk0'0di(2 x° +R7—\/x2 +R? —x]
X

_| —27ko,| 2% 7 =1
\/Xz LROACHR
2
Express the field on the axis of the E,=E,+E_,

disk as the sum of the field due to
the positive charge on the disk and
the field due to the negative charge



200 Chapter 23

on the disk:

The field due to the positive charge
(closest to the axis) is: X

To determine E,_ we integrate the
field due to a ring charge:

X
=-27Ko, —
0 \/X2+R2 \/X2+R2
2
Substitute and simplify to obtain:

E, =-27ko X — X + 27Ko,| 1 X
' ’ R /x?+R? ’ R?
\/X2+ X2+7
2 2

| okoy XX
\/X2+ R VIR
2

53 oo

Picture the Problem We can express the electric potential dV at x due to an elemental
charge dq on the rod and then integrate over the length of the rod to find V(x). In the
second part of the problem we use a binomial expansion to show that, for x >> L/2, our

result reduces to that due to a point charge Q.

dg = Adu
l

) * |
—L/2 0o u L/2

-~




(a) Express the potential at x due to
the element of charge dq located at
u:

Integrate V from u =—-L/2 to L/2 to
obtain:

(b) Divide the numerator and
denominator of the argument of the
logarithm by x to obtain:

Divide 1 + a by 1 — a to obtain:

Expand In(1 + L/x) binomially to
obtain:

Substitute to express V(x) for
X >>L/2:

Electric Potential

dv = kda _ kidu
r X—Uu
or, because 4 = Q/L,
dv =KQ du_
L x—u

L/2
v()=kQ [ du_

L 7,x-u

k L/2
:TQIn(x—u)| /

-L/2

[ gt

X+ o

_ kQ 12

B L

L], L

2

L

X+— 1+ —
In —In| —2X || (“a
w_ L L 1-a

2 2X

where a = L/2x.

201

2
In[“—ajzln 1+2a+ 2a j
l1-a 1-a
LZ
)
n| 14 L4 X -
X o_L
X
~In 1-+-£1j
X
provided x >> L/2.
|I’][:|.+£)zL
X X
provided x >> L/2.
v(x)=k—Q£= kQ , the field due to a
L x X
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point charge Q.

54 oo

Picture the Problem The diagram is a
cross-sectional view showing the charges
on the sphere and the spherical conducting
shell. A portion of the Gaussian surface

over which we’ll integrate E in order to

find V in the region r > b is also shown. For &’
a <r<b, the sphere acts like point charge ‘
Q and the potential of the metal sphere is ‘

the sum of the potential due to a point
charge at its center and the potential at its

surface due to the charge on the inner
surface of the spherical shell.

(a) Express Vi s p: Vi, = —J E,..dr

Apply Gauss’s law for r > b: §S Er AdA = Qenclosed -0
&y

and E,.p = 0 because Qenclosed = 0 for

r>bh.
Substitute to obtain: V., = _J' (0)dr = @
(b) Express the potential of the metal Va =Voutiscenter T Vsurtace
sphere:
Express the potential at the surface N k-Q)_ kQ
of the metal sphere: surface b b

Substitut d simplify to obtain:
ubstitute and simplify to obtain y :k_Q_k_Q: kQ(l 1)

*a b a b
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Picture the Problem The diagram is a
cross-sectional view showing the charges
on the inner and outer conducting shells. A
portion of the Gaussian surface over which
we’ll integrate E in order to find V in the
region a <r <b is also shown. Once
we’ve determined how E varies with r, we
can find V, - V, from V, =V, = —I E.dr.

Express the potential difference

Vp — Va:

Apply Gauss’s law to cylindrical
Gaussian surface of radius r and

length L:

Solve for E,:

Substitute for E; and integrate from r
=zatoh:

56 oo
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V, -V, =—[Edr

fE-AdA=E, (2mrL)=1
S 80

Picture the Problem Let R be the radius of the sphere and Q its charge. We can express
the potential at the two locations given and solve the resulting equations simultaneously

for Rand Q.

Relate the potential of the sphere at
its surface to its radius:

Express the potential at a distance of
20 cm from its surface:

kQ _ 450v 1)
R

_ K _i50v @
R+0.2m
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Divide equation (1) by equation (2)
to obtain:

Solve for R to obtain:

Solve equation (1) for Q:

Substitute numerical values and evaluate

Q:

57 e
Picture the Problem Let the charge
density on the infinite plane at x =a be oy

and that on the infinite plane at x = 0 be o».

Call that region in space for which x <0,
region I, the region for which0 <x<a
region |1, and the region for which a < x
region I11. We can integrate E due to the
planes of charge to find the electric
potential in each of these regions.

(a) Express the potential in region |
in terms of the electric field in that
region:

Express the electric field in region |
as the sum of the fields due to the
charge densities o1 and o»:

kQ
R 450V
_ kQ 150V
R+0.2m
or
R+0.2m _,
R
R=|0.100m
Q= (450v)%
Q= (450V) (0.1m)

7(8.99x10° N-m?/C?)

=|5.01nC

&

S —
|
|1
|

T T T T |
| |
| |
| | II
o
v II
V,=-[E,-dx
0
E| :_201 - 202 v 20 r__O
€ & € 2¢,
o -
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Substitute and evaluate V: V = I-( o jdx o X+V(O)
[ =
o\ %o €o
=2 x+0=| Tx
€ €o
Express the potential in region Il in V, = _j E, -dx+V(0)
terms of the electric field in that
region:
Express the electric field in region Il = __ O 07 O F OF
as the sum of the fields due to the ! 2¢, 2¢, 2¢, 2¢,
charge densities o1 and oy: =0
Substitute and evaluate V,;: P
! Vi =-[(0)dx=0+Vv(0)=[ 0]
0
Express the potential in region Il in t = .
terms of the electric field in that Vin = _.[ Eyy-dx
a
region:
Express the electric field in region = 0O . O, - o 0 o
I11 as the sum of the fields due to the "2 & 2 €, 2 €, 2 ¢,
charge densities o1 and o»: o -
=—1I
€o
Substitute and evaluate Vy;: V. = _jx- e P
11 ) EO EO EO
= Z(a-x)
€o
(b) Proceed as in (a) with o3 = —cand V, = ,
0> = o'to obtain: - >
Vy=|—-——X]|andV,, = ——a
So So

*58 e
Picture the Problem The potential on the axis of a disk charge of radius R and charge
density ois given byV = 27zkal(x2 + Rz)'/2 - xJ.
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Express the potential on the axis of the V = ZﬂkGl(Xz n Rz)VZ _ XJ
disk charge:

Factor x from the radical and use the binomial expansion to obtain:

o oo B ) o B2 2)E ]

Substitute for the radical term to R2 R*
obtain: V =27koq X 1+§—W —X

2
~ ZﬂKG(R—j _|
2X

provided x >> R.

59 oo

Picture the Problem The diagram shows a
sphere of radius R containing a charge Q
uniformly distributed. We can use the
definition of density to find the charge ¢’
inside a sphere of radius r and the potential
V; at r due to this part of the charge. We
can express the potential dV, at r due to the
charge in a shell of radius r’ and thickness
dr at r' > r using dV, =kdq'/r and then
integrate this expression fromr’' =rtor' =
R to find V,.

(a) Express the potential V, at r due to V. = ki

q" ! r

Use the definition of density and the D= g _ Q
fact that the charge density is uniform izr® 4zRP

to relate q' to Q:



Solve for g":

Substitute to express Vi:

(b) Express the potential dV; at r due
to the charge in a shell of radius r’
and thickness dr’ at

r>r:

Express the charge dq’ in a shell of
radius r' and thickness dr' at
r>r:

Substitute to obtain:

(c) Integrate dV, fromr' =rto
r' =R to find V,:

(d) Express the potential V at r as the
sum of V; and Vs:

60

Picture the Problem We can equate the expression for the electric field due to an infinite

Electric Potential 207

, T
TR
k(r® kQ
WZF[WQ]_ R
dv, = K99
r

3Q
dg' =4 pdr'= 47r'? dar'
q o (mﬁJ

::;—er'zdr'

av, = 3kQ r'dr'

R3

V, = 3:?.Tr'dr' = 3k—Q(R2 —r?)

2R®
V =V, +V,
kQ » 3kQo .2
=—TI"+ R°—r
R3 2R3( )

_|kQf5 1
| 2R R?

plane of charge and —AV/Ax and solve the resulting equation for the separation of the

equipotential surfaces.

Express the electric field due to the
infinite plane of charge:

Relate the electric field to the
potential:

p—
2¢,
E__AV
AX
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Equate these expressions and solve
for Ax to obtain:

Substitute numerical values and
evaluate |Ax|:

61 -

26, AV
o

AX

2(8.85x10 C?/N-m?)(100V)
4= 3.50C/m’
SuC/m

=| 0.506 mm

Picture the Problem The equipotentials are spheres centered at the origin with radii r; =

kQ/V|

Evaluate r for V=20 V:

Evaluate r for V =40 V:

Evaluate r for V=60 V:

Evaluate r for V=80 V:

Evaluate r for V =100 V:

~ (8.99x10° N-m?/C?)(2x10 C)

r20V 20 V

=10.499m

_ (8.99x10° N-m?/C?)(:x10*C)

"
v 40V

=|0.250m

_ (8.99x10° N-m?/c?)(3x10° C)

r-GOV 6OV

=|0.166m

_ (8.99x10° N-m?/C?)(xx10° C)

sov 80V
~-10.125m

(8.99x10° N-m?/C?)(; x10°* C)

Moov = 100V

={ 0.0999m
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The equipotential surfaces are
shown in cross-section to the right:

The equipotential surfaces are not equally spaced.

62 -

Picture the Problem We can relate the dielectric strength of air (about 3 MV/m) to the
maximum net charge that can be placed on a spherical conductor using the expression for
the electric field at its surface. We can find the potential of the sphere when it carries its
maximum charge using V = kQ,,. /R

(a) Express the dielectric strength of E _ KQimax
a spherical conductor in terms of the preskcown = R2
charge on the sphere:

Solve for Quax: E preskcionn R
Qmax = T
Substitute numerical values and _ (3MV/m)(0.16m)’
evaluate Qmax: Qe = 8.99x10° N-m?/C?
_[854,.C
(b) Because the charge carried by the V. =+ KQimax
sphere could be either positive or ™R
negative: _ . (8.99x10° N-m?/C?)(8.54 4C)
B 0.16m
=| £480kV
*63 o

Picture the Problem We can solve the equation giving the electric field at the surface of
a conductor for the greatest surface charge density that can exist before dielectric
breakdown of the air occurs.

Relate the electric field at the surface E-C
of a conductor to the surface charge =
density:
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Solve for o under dielectric O max =€0 Ebreaddown
breakdown of the air conditions:

Substitute numerical values and O = (8.85x1072 C?/N-m?)(3MV/m)

64 e

Picture the Problem Let L and S refer to the larger and smaller spheres, respectively.
We can use the fact that both spheres are at the same potential to find the electric fields
near their surfaces. Knowing the electric fields, we can use o =€, E to find the surface

charge density of each sphere.

Express the electric fields at the E K e kK
S 2 L 2
surfaces of the two spheres: RS R.
Divide the first of these equations by kQs
the second to obtain: E RS QR
EL k& QL RSZ
R!
Because the potentials are equal at the kQ _kQ QR
surfaces of the spheres: R, Rs Q R
Substitute to obtain: Es RR’ R,
EL RL R52 RS
Solve for Eg: E_Rip _ 12cm (200kV/m)
S L
R c
=480kV/m

Use o =€, E to find the surface charge density of each sphere:

Gipem =€o Expem = (8.85x102 C?/N -m?)(200kV/m) =] 1.77 uC/m?

12¢cm

and

Cyem =€o Egen = (8.85x1072 C2/N-m? )(480KV/m) = 4.25 1C/m?
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Picture the Problem The diagram is a
cross-sectional view showing the charges
on the concentric spherical shells. The
Gaussian surface over which we’ll
integrate E in order to find V in the region r
> b is also shown. We’ll also find E in the
region for which a <r < b. We can then

use the relationship V = —J‘ Edr to find V,

and V, and their difference.

Express Vp:

Apply Gauss’s law for r > b:

Substitute to obtain:
Express V,:

Apply Gauss’s law for r > a:

Substitute to obtain:

The potential difference between the
shells is given by:

*66 (X1}
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Gaussian
( surface
—

A

b
Vb = _J. Erzadr

§S Er .AdA = Qenclosed =0

€o
and E,», = 0 because Qencloseg = 0 for
r>b.

€o
and

q kq

Erza_4 2= 2

e r
dr kg kq

V. =—kg| =5=—"-
@ J-rz a b

Picture the Problem We can find the potential relative to infinity at the center of the
sphere by integrating the electric field for 0 to «o. We can apply Gauss’s law to find the
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electric field both inside and outside the spherical shell.

The potential relative to infinity the
center of the spherical shell is:

Apply Gauss’s law to a spherical
surface of radius r < R to obtain:

Using the fact that the sphere is
uniformly charged, express Qinsige in
terms of Q:

Substitute for Qjnsige t0 Obtain:

Solve for E, <g:

Apply Gauss’s law to a spherical
surface of radius r > R to obtain:

Solve for E,-r to obtain:

Substitute for E,<g and E,>g in
equation (1) and evaluate the
resulting integral:

67 [ 1]
Picture the Problem

(a) The field lines are shown on the figure.
The charged spheres induce charges of
opposite sign on the spheres near them so
that sphere 1 is negatively charged, and
sphere 2 is positively charged. The total
charge of the system is zero.

\Y :TEr<Rdr+]§Er>Rdr (1)
0 R

[.E.dA= Er<R(4m.2):M

S

3
Qinside _ Q r

3 7 4 = Qinside =¥

Q

£ A~ o) Q2
€ S
c __Q K
>R — 4 2 2
re 1t r

0
2R ®
=k_3r_ +kQ|:_1}=3k_Q
R*| 2 | rl. | 2R

foso8
G0

(b)

V, =V, because the spheres are connected. From the direction of
the electric field lines it follows that V, > V.
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on each sphere s zero.

If 3and 4 are connected,V, =V, and the conditions of part (b) can
(c) | only be satisfied if all potentials are zero. Consequently the charge

General Problems

68 -

Picture the Problem Because the charges at either end of the electric dipole are point
charges, we can use the expression for the Coulomb potential to find the field at any

distance from the dipole charges.

Using the expression for the potential
due to a system of point charges,
express the potential at the point
9.2x10**m from each of the two
charges:

Because g. = —q.:

69

Picture the Problem The potential V at
any point on the x axis is the sum of the
Coulomb potentials due to the two point
charges. Once we have found V, we can
use E = —@v to find the electric field

at any point on the x axis.

(a) Express the potential due to a system of
point charges:

Substitute to obtain:

V :&_Fki
d d

=§(q++q_)

q,+9 =0,V =0and

(b) is correct.

=

p+q

” g
~
-~
Pl ;
r
—a¥tg
V = Zﬂ
i
V (X) = Vcharge at+a +Vcharge at-a
__ka_ . kg
VE+a® x2+a’
2kq

Vx* +a’
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(b) The electric field at any point on
the x axis is given by:

70 -

= — d 2kq -~
E(X): —gradV = —&{W} |

2kgx :
(x2 + a2)3/2

Picture the Problem The radius of the sphere is related to the electric field and the
potential at its surface. The dielectric strength of air is about 3 MV/m.

Relate the electric field at the surface
of a conducting sphere to the potential
at the surface of the sphere:

Solve forr;

When E is a maximum, r is a
minimum:

Substitute numerical values and
evaluate rmin:

*71 e

Picture the Problem The geometry of the
wires is shown to the right. The potential at
the point whose coordinates are (X, y) is the
sum of the potentials due to the charge
distributions on the wires.

(a) Express the potential at the point
whose coordinates are

(x, y):

f=—+2
Er
I’mm = V(r)
Emax
4
i = 10"V =| 3.33mm
3MV/m

+V

V(X’ y) :Vwireat—a wireata

= 2kA |n[rﬂj T 2k(~ ﬂ)ln[n—efj
rl r2
- ZkE{In(n—efj - In(rﬂﬂ
r‘1 r2
2re, \n

where V(0) = 0.




Because I, = /(x +a)’ + y? and

r, =

(x—a) +y?:

On the y-axis, x = 0 and:

(b) Evaluate the potential at
(+a,0)=(1.25¢cm,0):

Equate V(x,y) and V (% a,O) :

Solve for y to obtain:

Electric Potential
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Vixy)- L.n[ (x-

(x+af +y

27 €,

a)

Ty

)

27 €,

V(O,y)= A [qla +y J

\/a +y?

_ 2;“60 In2)=[0]

V(ra0)= 27reo [
(

3
In| =
27r eo 5

3

5 (x+5) +y?

y = +4/21.25x— x> - 25

a+a

A spreadsheet program to plot y = i\/21.25x —x?—25 is shown below. The formulas
used to calculate the quantities in the columns are as follows:

Cell Content/Formula Algebraic Form
A2 1.25 +a
A3 A2 +0.05 X + AX
B2 | SQRT(21.25%*A2 — A2"2 — 25) y = J21.25x— x2 — 25
B4 | -SQRT(21.25*A2 — A2"\2 — 25) y= _J21.25x—x2 - 25
A B C
1 X y_pos y_neg
2 1.25 0.00 0.00
3 1.30 0.97 -0.97
4 1.35 1.37 -1.37
5 1.40 1.67 -1.67
6 1.45 1.93 -1.93
7 1.50 2.15 -2.15
370 19.65 2.54 —2.54
371 19.70 2.35 -2.35
372 19.75 2.15 -2.15
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SiE 19.80 1.93 -1.93
374 19.85 1.67 -1.67
375 19.90 1.37 -1.37
376 19.95 0.97 -0.97

The following graph shows the equipotential curve in the xy plane for

V(ta,0)= 2 §j.
i
\

2re, \5

=
o

y (cm)
o & AN ONNO ®
‘ L A

N
%

——/

0 15 20

KR
o

X (cm)

72 e
Picture the Problem We can use the expression for the potential at any point in the xy
plane to show that the equipotential curve is a circle.

(a) Equipotential surfaces must satisfy 1 r
the condition: V= In| %
2re, \ N
Solve for ry/ry: r 2meQV
2=e¢ * =Corr,=Cr,
r1

where C is a constant.

Substitute for ry and r, to obtain: (x—a) +y? =C? l(x +af+ yZJ
Expand this expression, combine like ) 2 , )
terms, and simplify to obtain: X +23C2 _1x+y =-a

c?+1)

2 J }to both sides of the equation:

Complete the square by adding {a{



Electric Potential 217

, - CP1 | (cre1) |, | Lfcrei)| , 4a’c?
X“+28——X+|a’| - ty' =|la’| | |- =5
c’-1 c’-1 c’-1 (Cz_l)

Leta=2acz+land f=2a 2C (X+a)2+y2:,6’2, the equation of
) C*- c -1 circle in the xy plane with its center at
to obtain: (~a,0).

(b)| The three - dimensional surfaces are cylinders parallel to the wires.

73 oo

Picture the Problem Expressing the charge dq in a spherical shell of volume 4 zr’dr
within a distance r of the proton and setting the integral of this expression equal to e will
allow us to solve for the value of p, needed for charge neutrality. In part (b), we can use
the given charge density to express the potential function due to this charge and then
integrate this function to find V as a function of r.

Express the charge dg in a spherical dq = pdV = (poe—zr/a )(47zr2dr)
shell of volume 4zr?dr within a 2. 2r/a
distance r of the proton: = 4mp,rie dr
Express the condition for charge o
neutrality: e= 47zp0.[ rle 2"2dr
0
Integrate by parts twice to obtain: as

e = 4np, i 7p,a°

Solve for py:
Po =

e
Al

74 .
Picture the Problem Let Q be the sphere’s charge, R its radius, and n the number of
electrons that have been removed. ThenQ = ne, where e is the electronic charge. We can

use the expression for the Coulomb potential of the sphere to express Q and then
Q =neto find n.

Letting n be the number of electrons Q=ne
that have been removed, express the

sphere’s charge Q in terms of the

electronic charge e:

Solve for n:

(1)

o O
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Relate the potential of the sphere to V = kQ
its charge and radius: R

Solve for the sphere’s charge: o VR
k

Substitute in equation (1) to obtain: N VR
ke

Substitute numerical values and evaluate n:

B (400V)(0.05m)

— 10
= (8.99><109 N'mz/Cz)(1.6x10‘19 C)_ 1.39x10

75 e

Picture the Problem We can use conservation of energy to relate the change in the
kinetic energy of the particle to the change in potential energy of the charge-and-particle
system as the particle moves from x = 1.5 m to x = 1 m. The change in potential energy
is, in turn, related to the change in electric potential.

¢ m, q
Q _
0 @ — 1% X, m
Apply conservation of energy to the AK +AU =0
point charge Q and particle system: or, because K; =0,
K +AU; =0
Solve for K: K =-AUy
Relate the difference in potential AUy =—0QAV; = —q(Vf —Vi)
between points i and f to the change in kQ kQ 1 1
potential energy of the system as the =0 % x =-kqQ < x
f i f i

body whose charge is g moves from i
to f:

Substitute to obtain: 1 1
K =—kqQ| -~~~
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Solve for Q: Q=- K

Substitute numerical values and evaluate Q:

o-- 0.24] ]: 200.0

R
8.99x10° N- m2/C?)(4pC)| -~ — -
(B9910°N- m/C 4 )[1m 15m

*76 oo
Picture the Problem We can use the definition of power and the expression for the work
done in moving a charge through a potential difference to find the minimum power
needed to drive the moving belt.

Relate the power need to drive the P dw
moving belt to the rate at which the dt
generator is doing work:

Express the work done in moving a W =qAV
charge g through a potential
difference AV:

Substitute to obtain: p_ i[qAV]: VAL
dt dt
Substitute numerical values and P =(1.25MV)(200 .C/s)=| 250 W
evaluate P:
17 oo

Picture the Problem We can use W, g nosition = JAV,_, ¢ to find the work required to
move these charges between the given points.

(a) Express the required work in W+Qa+a =QAV,,..

terms of the charge being moved and =Q[Vv(a)-V(w)]

the potential due to the charge at x =

+a: =QV(a)= Q(E—g] = k;
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(b) Express the required work in
terms of the charge being moved and
the potentials due to the charges at
X=+aand x = -a:

(c) Express the required work in
terms of the charge being moved and
the potentials due to the charges at
X=+aand x =-a:

78 oo

W_Qﬁo QAVoHo
=-QV(0)-V ()]
= -QV(0)
= _Q B/chargeat -a +Vchargeat+a]
Q( kQ , ij - 2kQ
a a
WfQ—>2a = _QAVO—>2a
- Qv (2a)-V (0)]
= _Q [Vcharge at-a +Vchafge at+a -V (0)]
--q<Q.ke_29)
3a a a
| 2kQ?
| _3a

Picture the Problem Let g represent the charge being moved from x = 50 cm to the
origin, Q the ring charge, and a the radius of the ring. We can use

W

g—final position

=(QAV,,; , where V is the expression for the axial field due to a ring

charge, to find the work required to move g from x = 50 cm to the origin.

Express the required work in terms of
the charge being moved and the
potential due to the ring charge at
x=50cmand x =0:

The potential on the axis of a
uniformly charged ring is:

Evaluate V(0):

Evaluate V(0.5 m):

W =gAV

=qlv(0)-

V(0.5m)]

8.99x10° N -m?/C?)(2nC)
0.1m

=180V

v(0)= (8.99x10° N-m?/C?)(2nC)

JO5m) +(0.1m)

=353V



Substitute in the expression for W to
obtain:

79 oo

Picture the Problem We can find the speed of the proton as it strikes the negatively

Electric Potential

W =(1nC)(180V -35.3V)

=[1.45%x107"J

—1.45x107 Jx &Y
1.6x107°

=|9.06x10" eV

221

charged sphere from its kinetic energy and, in turn, its kinetic energy from the potential

difference through which it is accelerated.

Use the definition of kinetic energy
to express the speed of the proton
when it strikes the negatively
charged sphere:

Use the work-kinetic energy
theorem to relate the kinetic energy
of the proton to the potential
difference through which it is
accelerated:

Express the work done on the proton
in terms of its charge e and the
potential difference AV between the

spheres:

Substitute to obtain:

Substitute in equation (1) to obtain:

Substitute numerical values and
evaluate v:

v=_|—F 1)

W =AK =K, - K;
or, because K; = 0 and Ks = K,
W =AK = Kp

W =eAV

K =eAV

p

/ZeAV
V=
mp
,_ |2L6x10™ C)a00v)
B 1.67x107% kg

=11.38x10°m/s
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80 e
Picture the Problem Equation 23-20 is V = kQ/\/a2 +x°.

(a) A spreadsheet solution is shown below for kQ = a = 1. The formulas used to calculate
the quantities in the columns are as follows:

Cell Content/Formula Algebraic Form
A4 A3+0.1 X + AX
B3 1(1+A3"2)N(1/2) kQ
A B
1
2 X | V(X
3 | -5.0]0.196
4 | -4.8 | 0.204
S5 | -46]0.212
6 | —4.4]0.222
7 | -4.210.232
8 | -4.0]0.243
9 | -3.8]0.254
49 | 42 |0.232
50 | 44 |0.222
51| 4.6 |0.212
52 | 4.8 | 0.204
53| 5.0 | 0.196

The following graph shows V as a function of x:

1.0

0.8 1

v (V)

. / N

02 / \
-5 -4 -3 -2 -1 0 1 2 3 4 5

X (arbitrary units)




(b) Examining the graph we see that
the maximum value of V occurs
where:

Because E = —dV/dx, examination of
the graph tells us that:

81 oo
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Picture the Problem Let R, be the radius of the second sphere and Q; and Q; the charges
on the spheres when they have been connected by the wire. When the spheres are
connected, the charge initially on the sphere of radius R; will redistribute until the

spheres are at the same potential.

Express the common potential of the
spheres when they are connected:

Express the potential of the first
sphere before it is connected to the
second sphere:

Solve equation (1) for Q;:

Solve equation (2) for Q,:

Substitute in equation (3) to obtain:

Solve for Ry:

_kQ
12kv =~ )

1
and
12kV = % (2)

2

20 kV — k(Ql + QZ) (3)

1

0, - (12kV)R,
k
(12kV)R,

Q, = k

2kV)R, . (12 kV)sz

k((l
20KV = k k
Rl

=12kV +12 kV[%}

1

or
8= 12[&J
Rl

R,=| =R
2 31




224 Chapter 23

*82 e
Picture the Problem We can use the definition of surface charge density to relate the
radius R of the sphere to its charge Q and the potential function V(r) =kQ/r to relate Q

to the potential at r =2 m.

Use its definition, relate the surface o= Q
charge density oto the charge Q on 47R?
the sphere and the radius R of the
sphere:
Solve for R to obtain: R - Q

“Ndro
Relate the potential at r = 2.0 m to the _kQ

V(r)==<
charge on the sphere: r
Solve for Q to obtain: V()
Q=
k

Substitute to obtain: R _\/rV (r) \/47[ & rV(r)

Ndrko dro

B &, rv(r)

o
Substitute numerical values and evaluate R:
-12 ~2 2
o (8.85x10%2 C?/N-m )2(2 m)(500V) _r5so0mm
24.6nC/m

83 e
Picture the Problem We can use the definition of surface charge density to relate the
radius R of the sphere to its charge Q and the potential function V(r) = kQ/r to relate Q

to the potential at r =2 m.

Use its definition, relate the surface Q
charge density oto the charge Q on R?
the disk and the radius R of the disk:

Solve for Q to obtain: Q = 7oR? (1)



Relate the potential at r to the charge
on the disk:

Substitute V(0.6 m) =80 V:

Substitute V(1.5 m) =40 V:

Divide the first of these equations
by the second to obtain:

Solve for R to obtain:

Express the electric field on the axis of
a disk charge:

Solve for oto obtain:

Evaluate ousing R =0.8 m and
E(1.5m)=235V/m:

Substitute in equation (1) and
evaluate Q:

84 e
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V(r)= 27zka(\/x2 +R? - x)

80V = 27kof [(0.6m) +R? —0.6m)

40V:2ﬂka(w/(1 5m) + R? —1. 5m)
_J(0.6m)* +R*-0.6m

\/15m +R?—15m

R =0.800m

E, = 2ﬂka(1—L]
Jx? +R?

E

X

X
27K 11— ———
( \/x2+R2]

2¢, E

O =

X

X

Vx? +R?

_ 2(8.85x102 C?/N -m?)(23.5V/m)
B 1.5m

Jasmy +(0.8my

=3.54nC/m?

1—

Q = z(3.54nC/m?)(0.8mY’
=17.12nC

Picture the Problem We can use U = kqg:0./R to relate the electrostatic potential energy

of the particles to their separation.

Express the electrostatic potential
energy of the two particles in terms of
their charge and separation:

U — kqqu
R
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Solve for R: R= ka,d,
u

Substitute numerical values and evaluate R:

(8.99x10° N-m?/C?)(2)(82)(1.6x10 ™ Cf

1.6x10%C -
eV

R= 44.6fm

5.30MeV x

85 e
Picture the Problem We can use AV = EA/ and the expression for the electric field due
to a plane of charge to find the potential difference between the two planes. The
conducting slab introduced between the planes in part (b) will have a negative charge
induced on its surface closest to the plane with the positive charge density and a positive
charge induced on its other surface. We can proceed as in part (a) to find the potential
difference between the planes with the conducting slab in place.

(a) Express the potential difference AV = EA/ = Ed
between the two planes:

The electric field due to each plane E-_©C

is: 2 g,

Because the charge densities are of E =Eer + Epiane2
opposite sign, the fields are additive o o o

and the resultant electric field - 2¢ 2 & c
0 0 0

between the planes is:

Substitute to obtain: d
AV =| 22
€o
. AV,
(b) The diagram shows the T Ay, 1 av, -0

conducting slab between the two
planes and the electric field lines in
the region between the original two
planes.




Express the new potential difference
AV’ between the planes in terms of the
potential differences AVy, AV, and
AV3:

Express the electric fields in regions 1,
2and 3:

Substitute to obtain:

Express ¢, + ¢, in terms of a and d:

Substitute to obtain:

86 00
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AV'= AV, + AV, + AV,
=E/(, +E,a+Ey/,

E,=E,=Z and E, =0

€o
av'=20v+%0,
€o €o
=£(f1 "‘fz)
€o
l,+0,=d-a
AV'=| Z(d-a)
€o

Picture the Problem We need to consider three regions, as in Example 23-5. Region I, x
> a; region Il, 0 < x < a; and region Ill, x < 0. We can find V in each of these regions and

then find E fromE = —dV/d/.

(a) Relate E, to V;:

In region | we have:

Substitute and evaluate E;:

Because x > 0:
For x> a:

Substitute to obtain:

dv
E, =gt
V|:ﬁ+ ka,
X [x—a]
c__dfig ke
dx| |x  |x—a]
|4:x
x-al=x-a
(-2, Ja
dx| x x-a
ka, . kq,
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Proceed as above for regions Il and I11
to obtain:

(b) The distance between g; and a
point on y axis is y and the distance
between a point on the y axis and g,

is \/y? +a” . Using these distances,

express the potential at a point on
the y axis:

(c) To obtain the y component of

Eata point on the y axis we take
the derivative of V(y). Fory > 0:

Fory<O0:

E. = ﬁ_ qu
e ey
and
k k
E|||_ _%_(X_q;)z

g __d|ka ki,
Toody|ly Ly +a’
kg, kayy

y’ (y2+az)3/2

Eo_d( k& kg,
oAy Yy yPea?
_ﬂJr ka,y

y’ (y2+a2)3/2

using Coulomb's law.

These are the components of the fields due to g, and g, that one obtains

*87 (XY}

Picture the Problem We can consider the relationship between the potential and the
electric field to show that this arrangement is equivalent to replacing the plane by a point
charge of magnitude —q located a distance d beneath the plane. In (b) we can first find the
field at the plane surface and then use o =€, E to find the surface charge density. In (c)
the work needed to move the charge to a point 2d away from the plane is the product of
the potential difference between the points at distances 2d and 3d from —g multiplied by

the separation Ax of these points.
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The potential anywhere on the plane is 0 in either arrangement and the
electricfield is perpendicular to the plane in both arrangements, so they
must give the same potential everywherein the xy plane. Also, because
the net charge is zero, the potential at infinity is zero.

(@)

(b) The surface charge density is o=, E (1)
given by:
i k
At any p(_)lnt on_the F)Iane, the _ E=— q _cos 6
electric field points in the negative x d®+r
direction and has magnitude: where @is the angle between the horizontal

and a vector pointing from the positive
charge to the point of interest on the xz
plane and r is the distance along the plane
from the origin (i.e., directly to the left of

the charge).
Because c0sé = : E-= qu 5 d
d?+r? d*+r° Jd? +r?
_ kad
_(dz +r2)3/2

= qd
Ar g, (d 2 4 r2)3/2

Substitute for E in equation (1) to qd
obtain: o= ( PR CTF

- 4z(d® +r?)
88 (1 1]

Picture the Problem We can express the potential due to the ring charges as the sum of
the potentials due to each of the ring charges. To show that V(x) is a minimum at x = 0,
we must show that the first derivative of V(x) = 0 at x = 0 and that the second derivative
is positive. In part (c) we can use a Taylor expansion to show that, for x << L, the
potential is of the form V(x) = V(0) + ax. In part (d) we can obtain the potential energy
function from the potential function and, noting that it is quadratic in x, find the "spring”
constant and the angular frequency of oscillation of the particle provided its displacement
from its equilibrium position is small.

(a) EXpI'ESS the pOtentiaI due to the V (X) :Vringtotheleft +Vringtotheright
ring charges as the sum of the
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potentials due to each of their

charges:
The potential for a ring of charge is: v (x) _ kQ
Vx> +R?
where R is the radius of the ring and Q is
the charge of the ring.
For the ring to the left we have: v _ kQ
ringtotheleft — —22
(x+ L)y +L
For the ring to the right we have: v _ kQ
ringtotheright — —22
(x—Ly +L

Substitute to obtain:

X)= kQ + KQ
V() Jx+LP+12 0 J(x=LY +12

(b) Evaluate dV/dx to obtain:

dv L-—x L+x
—=kQ =0 for extrema
dx {kL—@2+BFQ kL+xf+Lﬂ”}

Solve for x to obtain: x=0

Evaluate d?v/dx? to obtain:

dz\/:kQ L-x 1 s 3(L+x)
dx’ [(L —x) + LZ]S/2 [(L —x) + L2 ]3/2 [(L +x)° + L2 ]5/2
B 1
(LX) + 2]
Evaluate this expression for d 2V(O) _ kQ 20
x = 0 to obtain: dx2  2421°

HenceV (x) isa maximumat x =0.
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(c) The Taylor expansion of V/(x) is: V(x)=V(0)+V'(0)x+1V"(0)x
+ higher order terms

For x << L: V(x)=V(0)+V'(0)x+1V"(0)x?
Substitute our results from part (b) B ﬁkQ kQ )
to obtain: V(X)_ L +(O)X+%(2\/§L3 "
_JkQ, kQ
L 420

or

V(x)=|V(0)+ax®

where

kQ
) L e 4213

(d) Express the angular frequency of k'
oscillation of a simple harmonic @= m
oscillator: where k' is the restoring constant.
From our result for part (c) and the 1( k

m o part (©) U(x)= v (0)+ < KIQ_1,2
definition of electric potential: 2\ 24213

=gV (0)+1k'x?
kaQ

where kK'=
2421
Substitute for k' in the expression kqQ
: 0= |—F—7
for w: 2m/2L3
89 (1 1]

Picture the Problem The diagram shows
part of the shells in a cross-sectional view
under the conditions of part (a) of the
problem. We can use Gauss’s law to find
the electric field in the regions defined by
the three surfaces and then find the electric
potentials from the electric fields. In part
(b) we can use the redistributed charges to
find the charge on and potentials of the
three surfaces.
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(a) Apply Gauss’s law to a spherical
Gaussian surface of radiusr >cto
obtain:

Because E((c) = 0:

Apply Gauss’s law to a spherical
Gaussian surface of radiusb<r <c
to obtain:

Use E, (b <r <c)to find the
potential difference between ¢ and b:

Because V(c) = 0:

The inner shell carries no charge, so
the field between r = a and
r = b is zero and:

(b) When the inner and outer shells
are connected their potentials become
equal as a consequence of the
redistribution of charge.

The charges on surfaces a and c are
related according to:

Er(47l' r2): Qenclosed =0

€

and E, = 0 because the net charge enclosed

by the Gaussian surface is zero.

1 1
- kQ(B‘zj

Q. +Q. =—Q M)



Qp does not change with the
connection of the inner and outer
shells:

Express the potentials of shells a
and c:

In the region between the r = a and
r = b, the field is kQ,/r? and the
potential at r = b is then:

The enclosed charge forb <r<cis
Q. + Q, and by Gauss’s law the field

in this region is:

Express the potential difference
between b and c:

Solve for V(b) to obtain:

Equate equations (2) and (3) and
solve for Q,to obtain:

Substitute equation (4) in equation (1)
and solve for Q. to obtain:

Substitute (4) and (5) in (3) to obtain:
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Qb: Q

V(b)=kQ, & -ij @
Eb<r<c = k(Q:_:_Q)

--V(o)
because V(c) = 0.

V(b)=k(Q, + Q)(E—%j )

b
_| _palc-b)
Qa - Q b(C _ a) (4)
_|_oclb-2a)
Qc - Q b(c—a) (5)
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*Q0) eoe
Picture the Problem The diagram shows a
cross-sectional view of a portion of the
concentric spherical shells. Let the charge
on the inner shell be g. The dashed line
represents a spherical Gaussian surface
over which we can integrate E - AdAin
order to find E, for r > b. We can find V(b)
from the integral of E; between r = o0 and

r = b. We can obtain a second expression
for V(b) by considering the potential
difference between a and b and solving the
two equations simultaneously for the
charge g on the inner shell.

Apply Gauss’s law to a spherical surface of
radius r > b:

Solve for E, to obtain:

Use E, to find V(b):

We can also determine V(b) by
considering the potential difference
between a, i.e., 0 and b:

Equate these expressions for V(b) to
obtain:

Solve for g to obtain:

91 (1 1]

Picture the Problem We can use the hint to derive an expression for the electrostatic
potential energy dU required to bring in a layer of charge of thickness dr and then
integrate this expression from r = 0 to R to obtain an expression for the required work.
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If we build up the sphere in layers, r)?
then at a given radius r the net Q(r)=Q R
charge on the sphere will be given
by:
When the radius of the sphere s, Q(I’) Q r?
- - - - . O V r — — _
the potential relative to infinity is: ( dre,r dre, R?
Express the work dW required to dW =dU =V (r)dQ
bring in charge dQ from infinity to )
the surface of a uniformly charged __Q r 4rr? 3Q dr
sphere of radius r: 4r g, R 4R®
2
-9 =rdr
4r e, R
Integrate dW from O to R to obtain: 2 R
W=U = Ls.[ rédr
drey R
4re,R°| 5 o | 20meg R
92 oo

Picture the Problem We can equate the rest energy of an electron and the result of
Problem 91 in order to obtain an expression that we can solve for the classical electron
radius.

From Problem 91 we have: 3p?

U=s——
20r e, R

The rest mass of the electron is E, = m,c?

given by:

Equate these energies to obtain: 3p2 )
———=m,C
20re, R °

Solve for R: 3p2

207 €, m,C

Substitute numerical values and evaluate R:

o 3(1.6x10 Cf
~ 207(8.85x10™2 C? /N -m?)(5.11x10° eV )(1.6x10™ J/eV)

=11.69x10"m
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This model does not explain how the electron holds together against its own
mutual repulsion.

93 oo
Picture the Problem Because the post-fission volumes of the fission products are equal,
we can express the post-fission radii in terms of the radius of the pre-fission sphere.

(a) Relate the initial volume V of the V=2
uniformly charged sphere to the
volumes V' of the fission products:

Substitute for Vand V ': %ﬂR3 = 2(§7zR'3)
Solve for and evaluate R":
Y Vel R'= - R=[0.794R

32

(b) Express the difference AE in the AE=E-FE'

total electrostatic energy as a result

of fissioning:

From Problem 91 we have: 2

F-_3Q

20r e, R

After fissioning:

12 1 2
E'ZZ( 3Q IJZZ 3(2 Q)l
20r €, R 207 €, R

32

3 2
_V2( 30" )_ga0e
2 (20rey R
Substitute for E and E’ to obtain: AE = E —0.630E =| 0.370E

*Q/]  eee
Picture the Problem We can use the definition of density to express the radius R of a
nucleus as a function of its atomic mass N. We can then use the result derived in
Problem 91 to express the electrostatic energies of the ?*°U nucleus and the nuclei of the
fission fragments *°Xe and *Sr.

The energy released by this fission AE=U,, (U, +U..) @
process is: v xe o
Express the mass of a nucleus in Nm = %pﬂm

terms of its density and volume: where N is the nuclear number.
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Solve for R to obtain: 3Nm
R=3
dmp

Substitute numerical values and 27
evaluate R as a function of N: R=3 3(1'660 X1170 k%) NY3
47(4x10" kg/m®)
= (0.97x10% m)N*?
The 'radius' of the °U nucleus is 16 3
Ry =(9.97x10% m)(235
therefore: v ( % )( )M
=6.15x10"m
From Problem 91 we have: 2
Uo_ Q"
20r e, R

Substitute numerical values and evaluate the electrostatic energy of the **°U
nucleus:

3(92x1.6x10™ Cf
207(8.85x10%2C?/N-m?)(6.15x10™° m)
leV

=1.91x10™" Jx 5 =1189 MeV
1.6x107" J/eV

235 U

Proceed as above to find the electrostatic energy of the fission fragments **>Xe and *Sr:

o 3(54x1.6x10™ Cf
e 207(8.85x1072C* /N -m?)(6.15x107° m)
leV

=6.57x10" I x — =410 MeV
1.6x107° J/eV

and
U - 3(38x1.6x10™ Cf
"s T 207(8.85%10 C? /N -m?)(6.15x10%° m)
leV

=3.25x10™M I x = =203 MeV
1.602x107" J/eV
Substitute for U ., Us, , and AE =1189MeV — (410 MeV + 203 MeV)
U.., in equation (1) and evaluate =| 576 MeV
AE:
95 (1 1]

Picture the Problem The geometry of the point charge and the sphere is shown below.
The charge is a distance R away from the center of a spherical shell of radius a.
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(a) The average potential over the kdq kodA

surface of the sphere is given by: Va = ﬁphereT - jgsphere

Substitute for k, o, and dA to obtain: 1 = q(zﬂa sin H)(ad g)
Y Ax S Ama’r

A_pply the law (_Jf cosines to the r— \/RZ +a2_2aRcosd

triangle to obtain:

Substitute for r and simplify to q ¢ sinado

obtain: V, =
87 €y (R2 +a’ —2aRcos 9)‘/2

Change variables by letting du=-sin&dé
u = cosé. Then: and
-1
- du
Vo= @

87 €, 1 (R2 +a’ —2aRu)V2
To simplify the integrand, let: a=R*+a?, pf=2aR,and v=a-pAu
Then dv =—/du and:

-1

¢ 1tdv 2 1
I= ariEol e

1 2aRu)U
:—%[\/0{+ﬂ —\/a—ﬂ]

Substitute for « and Sto obtain:
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-1
| W L/R"ra2aRR?+a’ 2R
1 (R?+a*-2aRu}® @R

— [ JR+af -R-aF |
———[R+a)-(R-a)]--2
Substitute in equation (1) to obtain: v —q 2 q
Y 8r € (_E)_ 4r e, R

Note that this result is the potential at the center of the sphere due to the
point charge.

The superposition principle tells us that the potential at any point is the
sum of the potentials due to any charge distributions in space. Because
this result is independent of any properties of the sphere, this result
must hold for any sphere and any configuration of charges outside of it.

(b)
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