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Chapter 23 
Electrical Potential 
 
Conceptual Problems 
 
*1 •  
Determine the Concept A positive charge will move in whatever direction reduces its 
potential energy. The positive charge will reduce its potential energy if it moves toward a 
region of lower electric potential. 
 
2 ••  
Picture the Problem A charged particle placed in an electric field experiences an 
accelerating force that does work on the particle. From the work-kinetic energy theorem 
we know that the work done on the particle by the net force changes its kinetic energy 
and that the kinetic energy K acquired by such a particle whose charge is q that is 
accelerated through a potential difference V is given by K = qV. Let the numeral 1 refer 
to the alpha particle and the numeral 2 to the lithium nucleus and equate their kinetic 
energies after being accelerated through potential differences V1 and V2. 
 
Express the kinetic energy of the 
alpha particle when it has been 
accelerated through a potential 
difference V1: 
 

1111 2eVVqK ==  

Express the kinetic energy of the 
lithium nucleus when it has been 
accelerated through a potential 
difference V2: 
 

2222 3eVVqK ==  

Equate the kinetic energies to 
obtain: 

21 32 eVeV =  

or 

13
2

2 VV = and ( ) correct. is b  

 
3 •  
Determine the Concept If V is constant, its gradient is zero; consequently E

r
 = 0. 

 
4 •  

Determine the Concept No. E can be determined from either 
l

l d
dVE −= provided V is 

known and differentiable or from 
l

l ∆
∆

−=
VE provided V is known at two or more points. 
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5 •  
Determine the Concept Because the field lines are always perpendicular to equipotential 
surfaces, you move always perpendicular to the field. 
 
6 ••  
Determine the Concept V along the axis of the ring does not depend on the charge 
distribution. The electric field, however, does depend on the charge distribution, and the 
result given in Chapter 21 is valid only for a uniform distribution.  
 
*7 ••  
Picture the Problem The electric field 
lines, shown as solid lines, and the 
equipotential surfaces (intersecting the 
plane of the paper), shown as dashed lines, 
are sketched in the  adjacent figure. The 
point charge +Q is the point at the right, 
and the metal sphere with charge −Q is at 
the left. Near the two charges the 
equipotential surfaces are spheres, and the 
field lines are normal to the metal sphere at 
the sphere’s surface.  
 
8 ••  
Picture the Problem The electric field 
lines, shown as solid lines, and the 
equipotential surfaces (intersecting the 
plane of the paper), shown as dashed lines, 
are sketched in the adjacent figure. The 
point charge +Q is the point at the right, 
and the metal sphere with charge +Q is at 
the left. Near the two charges the 
equipotential surfaces are spheres, and the 
field lines are normal to the metal sphere at 
the sphere’s surface. Very far from both 
charges, the equipotential surfaces and 
field lines approach those of a point charge 
2Q located at the midpoint. 
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9 ••  
Picture the Problem The equipotential 
surfaces are shown with dashed lines, the 
field lines are shown in solid lines. It is 
assumed that the conductor carries a 
positive charge. Near the conductor the 
equipotential surfaces follow the 
conductor’s contours; far from the 
conductor, the equipotential surfaces are 
spheres centered on the conductor. The 
electric field lines are perpendicular to the 
equipotential surfaces. 

 

 

 
10 ••  
Picture the Problem The equipotential 
surfaces are shown with dashed lines, the 
electric field lines are shown with solid 
lines. Near each charge, the equipotential 
surfaces are spheres centered on each 
charge; far from the charges, the 
equipotential  is a sphere centered at the 
midpoint between the charges. The electric 
field lines are perpendicular to the 
equipotential surfaces.  
 
*11 •  
Picture the Problem We can use Coulomb’s law and the superposition of fields to find E 
at the origin and the definition of the electric potential due to a point charge to find V at 
the origin. 
 
Apply Coulomb’s law and the 
superposition of fields to find the 
electric field E at the origin: 
 

0ˆˆ
22

atat

=−=

+= +−+

ii

EEE

a
kQ

a
kQ

aQaQ

rrr

 

 
Express the potential V at the origin: 
 

a
kQ

a
kQ

a
kQ

VVV aQaQ

2
atat

=+=

+= +−+

 

and correct. is )(b  
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12 •  

Picture the Problem We can use iE ˆ
x
V

∂
∂

−=
r

to find the electric field corresponding the 

given potential and then compare its form to those produced by the four alternatives 
listed. 
 
Find the electric field corresponding to 
this potential function: 
 

[ ]

[ ]

i

ii

iiE

ˆ
0 if4
0if4

ˆ
0 if1

0if1
4ˆ4

ˆ4ˆ
0

⎥
⎦

⎤
⎢
⎣

⎡
<
≥−

=

⎥
⎦

⎤
⎢
⎣

⎡
<−

≥
−=

∂
∂

−=

+
∂
∂

−=
∂
∂

−=

x
x

x
x

x
x

Vx
xx

Vr

 

 
Of the alternatives provided above, only a uniformly charged sheet in the yz plane would 
produce a constant electric field whose direction changes at the origin. correct. is )(c  

 
13 •  
Picture the Problem We can use Coulomb’s law and the superposition of fields to find E 
at the origin and the definition of the electric potential due to a point charge to find V at 
the origin. 
Apply Coulomb’s law and the 
superposition of fields to find the 
electric field E at the origin: 
 

iii

EEE

ˆ2ˆˆ
222

atat

a
kQ

a
kQ

a
kQ

aQaQ

=+=

+= −−+

rrr

 

 
Express the potential V at the origin: 
 ( ) 0

atat

=
−

+=

+= −−+

a
Qk

a
kQ

VVV aQaQ

 

and correct is )(c  

 
14 ••  
(a) False. As a counterexample, consider two equal charges at equal distances from the 
origin on the x axis. The electric field due to such an array is zero at the origin but the 
electric potential is not zero. 
 
(b) True. 
 
(c)  False. As a counterexample, consider two equal-in-magnitude but opposite-in-sign 
charges at equal distances from the origin on the x axis. The electric potential due to such 
an array is zero at the origin but the electric field is not zero.  
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(d) True. 
 
(e) True. 
 
(f) True. 
 
(g) False. Dielectric breakdown occurs in air at an electric field strength of approximately 
3×106 V/m. 
 
15 ••  
(a) No. The potential at the surface of a conductor also depends on the local radius of the 
surface. Hence r and σ can vary in such a way that V is constant. 
 
(b) Yes; yes. 
 
*16 •  
Determine the Concept When the two spheres are connected, their charges will 
redistribute until the two-sphere system is in electrostatic equilibrium. Consequently, the 
entire system must be an equipotential. corrent. is )(c  

 
Estimation and Approximation Problems 
 
17 •  
Picture the Problem The field of a thundercloud must be of order 3×106 V/m just before 
a lightning strike.   
 
Express the potential difference 
between the cloud and the earth as a 
function of their separation d and 
electric field E between them: 
 

EdV =  

Assuming that the thundercloud is at 
a distance of about 1 km above the 
surface of the earth, the potential 
difference is approximately: 
 

( )( )
V1000.3

m10V/m103
9

36

×=

×=V
 

Note that this is an upper bound, as there will be localized charge distributions on the 
thundercloud which raise the local electric field above the average value. 
 
*18 •  
Picture the Problem The potential difference between the electrodes of the spark plug is 
the product of the electric field in the gap and the separation of the electrodes. We’ll 
assume that the separation of the electrodes is 1 mm. 
 
Express the potential difference 
between the electrodes of the spark 

EdV =  



Chapter 23    
 

 

174 

plug as a function of their separation 
d and electric field E between them: 
 
Substitute numerical values and 
evaluate V: 

( )( )
kV0.20

m10V/m102 37

=

×= −V
 

 
19 ••  
Picture the Problem We can use conservation of energy to relate the initial kinetic 
energy of the protons to their electrostatic potential energy when they have approached 
each other to the given "radius". 
 
(a) Apply conservation of energy to 
relate the initial kinetic energy of the 
protons to their electrostatic 
potential when they are separated by 
a distance r: 
  

ffii UKUK +=+  

or, because Ui = Kf = 0, 
fi UK =  

Because each proton has kinetic 
energy K: 
 

r
eK

0

2

4
2

∈
=

π
 ⇒ 

r
eK

0

2

8 ∈
=

π
 

Substitute numerical values and evaluate K: 
 

( )
( )( )

MeV719.0

J106.1
eV1J1015.1

m10mN/C1085.88
C106.1

19
13

152212

219

=

×
××=

⋅×
×

= −
−

−−

−

π
K

 

 
(b) Express and evaluate the ratio of 
the two energies: 

%0767.0
MeV938
MeV719.0

rest

===
E
Kf  

 
20 ••  
Picture the Problem The magnitude of the electric field for which dielectric breakdown 
occurs in air is about 3 MV/m. We can estimate the potential difference between you and 
your friend from the product of the length of the spark and the dielectric constant of air. 
 
Express the product of the length of 
the spark and the dielectric constant of 
air: 

( )( ) V6000mm2MV/m3 ==V  
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Potential Difference 
 
21 •  
Picture the Problem We can use the definition of finite potential difference to find the 
potential difference V(4 m) − V(0) and conservation of energy to find the kinetic energy 
of the charge when it is at x = 4 m. We can also find V(x) if V(x) is assigned various 
values at various positions from the definition of finite potential difference. 
 
(a) Apply the definition of finite 
potential difference to obtain: ( ) ( )

( )( )
kV8.00

m4kN/C2

0m4
m4

0

−=

−=

−=⋅−=− ∫∫ ll
rr

EddVV
b

a

E

 

 
(b) By definition, ∆U is given by: ( )( )

mJ0.24

kV8C3

−=

−=∆=∆ µVqU
 

 
(c) Use conservation of energy to 
relate ∆U and ∆K: 

0=∆+∆ UK  
or 

00m4 =∆+− UKK  

 
Because K0 = 0: mJ0.24m4 =∆−= UK  

 
Use the definition of finite potential 
difference to obtain: 
 

( ) ( ) ( )
( )( )0

00

kV/m2 xx
xxExVxV x

−−=
−−=−

 

(d) For V(0) = 0: ( ) ( )( )0kV/m20 −−=− xxV  

or 
( ) ( )xxV kV/m2−=  

 
(e) For V(0) = 4 kV: ( ) ( )( )0kV/m2kV4 −−=− xxV  

or 
( ) ( )xxV kV/m2kV4 −=  

 
(f) For V(1m) = 0: ( ) ( )( )1kV/m20 −−=− xxV  

or 
( ) ( )xxV kV/m2kV2 −=  
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22 •  
Picture the Problem Because the electric field is uniform, we can find its magnitude 
from E = ∆V/∆x. We can find the work done by the electric field on the electron from the 
difference in potential between the plates and the charge of the electron and find the 
change in potential energy of the electron from the work done on it by the electric field. 
We can use conservation of energy to find the kinetic energy of the electron when it 
reaches the positive plate. 
 
(a) Express the magnitude of the 
electric field between the plates in 
terms of their separation and the 
potential difference between them: 
 

kV/m5.00
m0.1
V500

==
∆
∆

=
x
VE  

potential.higher 
 at the is plate positive  theplate, negative  the towardand plate

 positive  thefromaway  is charge test aon  force electric  theBecause
 

 
(b) Relate the work done by the 
electric field on the electron to the 
difference in potential between the 
plates and the charge of the electron: 
 

( )( )
J1001.8

V005C106.1
17

19

−

−

×=

×=∆= VqW
 

Convert 8.01×10−17 J to eV: ( )

eV500

J101.6
eV1J108.01 19

17

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

×= −
−W

 

 
(c) Relate the change in potential 
energy of the electron to the work 
done on it as it moves from the 
negative plate to the positive plate: 
 

eV500−=−=∆ WU  

Apply conservation of energy to 
obtain: 

eV500=∆−=∆ UK  

 
23 •  
Picture the Problem The Coulomb potential at a distance r from the origin relative to V 
= 0 at infinity is given by V = kq/r where q is the charge at the origin. The work that must 
be done by an outside agent to bring a charge from infinity to a position a distance r from 
the origin is the product of the magnitude of the charge and the potential difference due to 
the charge at the origin.  
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(a) Express and evaluate the Coulomb 
potential of the charge: 
 ( )( )

kV50.4

m4
C2/CmN1099.8 229

=

⋅×
=

=

µ
r

kqV

 

 
(b) Relate the work that must be 
done to the magnitude of the charge 
and the potential difference through 
which the charge is moved: 
 

( )( )
mJ5.13

kV50.4C3

=

=∆= µVqW
 

(c) Express the work that must be 
done by the outside agent in terms 
of the potential difference through 
which the 2-µC is to be moved:  
 

r
qkqVqW 32

32 =∆=  

Substitute numerical values and 
evaluate W: 

( )( )( )

mJ5.13

m4
C3C2/CmN1099.8 229

=

⋅×
=

µµW
 

 
24 ••  
Picture the Problem In general, the work done by an external agent in separating the 
two ions changes both their kinetic and potential energies. Here we’re assuming that they 
are at rest initially and that they will be at rest when they are infinitely far apart. Because 
their potential energy is also zero when they are infinitely far apart, the energy Wext 
required to separate the ions to an infinite distance apart is the negative of their potential 
energy when they are a distance r apart. 
 
Express the energy required to separate 
the ions in terms of the work required 
by an external agent to bring about this 
separation: 
 

( )
r

ke
r

eek
r
qkq

UUKW
2

iext 0

=
−

−=−=

−=∆+∆=

+−
 

 

Substitute numerical values and evaluate Wext: 
 

( )( ) J1024.8
m102.80

C106.1/CmN1099.8 19
10

219229

ext
−

−

−

×=
×

×⋅×
=W  
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Convert Wext to eV: ( )

eV14.5

J101.6
eV1J1024.8 19

19

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

×= −
−W

 

 
25 ••  
Picture the Problem We can find the final speeds of the protons from the potential 
difference through which they are accelerated and use E = ∆V/∆x to find the accelerating 
electric field. 
 
(a) Apply the work-kinetic energy 
theorem to the accelerated protons: 
 

fKKW =∆=  

or 
2

2
1 mvVe =∆  

 
Solve for v to obtain: 

m
Vev ∆

=
2

 

 
Substitute numerical values and 
evaluate v: 

( )( )

m/s1010.3

kg101.67
MV5C101.62

7

27

19

×=

×
×

= −

−

v
 

 
(b) Assuming the same potential 
change occurred uniformly over the 
distance of 2.0 m, we can use the 
relationship between E,  ∆V, and ∆x  
express and evaluate E: 

MV/m2.50
m2

MV5
==

∆
∆

=
x
VE  

 
*26 ••  
Picture the Problem The work done on the electrons by the electric field changes their 
kinetic energy. Hence we can use the work-kinetic energy theorem to find the kinetic 
energy and the speed of impact of the electrons. 
 
Use the work-kinetic energy 
theorem to relate the work done by 
the electric field to the change in the 
kinetic energy of the electrons: 
 

fKKW =∆=  

or 
VeK ∆=f                      (1) 

 

(a) Substitute numerical values and 
evaluate Kf: 

( )( ) eV103kV301 4
f ×== eK  
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(b)  Convert this energy to eV: ( )

J1080.4

eV
J101.6eV103

15

19
4

f

−

−

×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
×=K

 

 
(c) From equation (1) we have: 
 

Vemv ∆=2
f2

1  

Solve for vf to obtain: 

m
Vev ∆

=
2

f  

 
Substitute numerical values and 
evaluate vf: 

( )( )

m/s1003.1

kg1011.9
kV03C101.62

8

13

19

f

×=

×
×

= −

−

v
 

 
Remarks: Note that this speed is about one-third that of light. 
 
27 ••  
Picture the Problem We know that energy is conserved in the interaction between the α 
particle and the massive nucleus. Under the assumption that the recoil of the massive 
nucleus is negligible, we know that the initial kinetic energy of the α particle will be 
transformed into potential energy of the two-body system when the particles are at their 
distance of closest approach. 
 
(a) Apply conservation of energy to 
the system consisting of the α particle 
and the massive nucleus: 
 

0=∆+∆ UK  
or 

0ifif =−+− UUKK  

Because Kf = Ui = 0 and Ki = E: 0f =+− UE  

 
Letting r be the separation of the 
particles at closest approach, express 
Uf: 
 

( )( )
r

kZe
r

eZek
r

qkqU
2

nucleus
f

22
=== α  

Substitute to obtain: 
02 2

=+−
r

kZeE  

 
Solve for r to obtain: 

E
kZer

22
=  

 
(b) For a 5.0-MeV α particle and a gold nucleus: 
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( )( )( )
( )( ) fm45.4m1055.4

J/eV106.1MeV5
C101.679/CmN108.992 14

19

219229

5 =×=
×

×⋅×
= −

−

−

r  

 
For a 9.0-MeV α particle and a gold nucleus: 
 

( )( )( )
( )( ) fm25.3m1053.2

J/eV106.1MeV9
C101.679/CmN108.992 14

19

219229

9 =×=
×

×⋅×
= −

−

−

r  

 
Potential Due to a System of Point Charges 
 
28 •  
Picture the Problem Let the numerals 1, 2, 3, and 4 denote the charges at the four 
corners of square and r the distance from each charge to the center of the square. The 
potential at the center of square is the algebraic sum of the potentials due to the four 
charges.  
 
Express the potential at the center of 
the square: 

( )

∑
=

=

+++=

+++=

4

1

4321

4321

i
iq

r
k

qqqq
r
k

r
kq

r
kq

r
kq

r
kqV

 

 
(a) If the charges are positive: ( )( )

kV4.25

C24
m22

/CmN108.99 229

=

⋅×
= µV

 

 
(b) If three of the charges are positive 
and one is negative: 
 

( )( )

kV7.12

C22
m22

/CmN108.99 229

=

⋅×
= µV

 

 
(c) If two are positive and two are 
negative: 

0=V  

 
29 •  
Picture the Problem The potential at the point whose coordinates are (0, 3 m) is the 
algebraic sum of the potentials due to the charges at the three locations given. 
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Express the potential at the point 
whose coordinates are (0, 3 m): ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++== ∑

= 3

3

2

2

1

1
3

1 r
q

r
q

r
qk

r
qkV

i i

i  

 
(a) For q1 = q2 = q3 = 2 µC: 
 

( )( ) kV9.12
m53

1
m23

1
m3
1C2/CmN1099.8 229 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++⋅×= µV  

 
(b) For q1 = q2 = 2 µC and q3 = −2 µC: 
 

( )( ) kV55.7
m53

1
m23

1
m3
1C2/CmN1099.8 229 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+⋅×= µV  

 
(c) For q1 = q3 = 2 µC and q2 = −2 µC: 
 

( )( ) kV44.4
m53

1
m23

1
m3
1C2/CmN1099.8 229 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−⋅×= µV  

 
30 •  
Picture the Problem The potential at point C is the algebraic sum of the potentials due to 
the charges at points A and B and the work required to bring a charge from infinity to 
point C equals the change in potential energy of the system during this process. 
 
(a) Express the potential at point C 
as the sum of the potentials due to 
the charges at points A and B: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

B

B

A

A
C r

q
r
qkV  

Substitute numerical values and evaluate VC: 
 

( )( ) kV0.12
m3
1

m3
1C2/CmN1099.811 229

BA
C =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⋅×=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= µ

rr
kqV  

 
(b) Express the required work in 
terms of the change in the potential 
energy of the system: 
 

( )( ) mJ60.0kV12.0µC5
C5

==

=∆= VqUW
 

 

(c) Proceed as in (a) with qB =  −2 µC: 
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( ) 0
m3

C2
m3
C2/CmN1099.8 229

B

B

A

A
C =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+⋅×=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

µµ
r
q

r
qkV  

and ( )( ) 00µC5C5 ===∆= VqUW  

 
31 •  
Picture the Problem The electric potential at the origin and at the north pole is the 
algebraic sum of the potentials at those points due to the individual charges distributed 
along the equator. 
 
(a) Express the potential at the 
origin as the sum of the potentials 
due to the charges placed at 60° 
intervals along the equator of the 
sphere: 
 

r
qk

r
qkV

i i

i 6
6

1

== ∑
=

 

 

Substitute numerical values and 
evaluate V: 

( )

kV270

m6.0
C3/CmN1099.86 229

=

⋅×=
µV

 

 
(b) Using geometry, find the 
distance from each charge to the 
north pole: 
 

m26.0'=r  

Proceed as in (a) with m26.0'=r : 

( )

kV191

m26.0
C3/CmN1099.86

'
6

229

6

1
'

=

⋅×=

== ∑
=

µ
r
qk

r
qkV

i i

i

 

 
*32 •  
Picture the Problem We can use the fact that the electric potential at the point of interest 
is the algebraic sum of the potentials at that point due to the charges q and q′ to find the 
ratio q/q'. 
 
Express the potential at the point of 
interest as the sum of the potentials 
due to the two charges: 
 

0
323

=+
a
kq'

a
kq
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Simplify to obtain: 0
2

=+
q'q  

 
Solve for the ratio q/q': 

2
1

−=
q'
q

 

  
33 ••  
Picture the Problem For the two charges, axr −= and ax +  respectively and the 

electric potential at x is the algebraic sum of the potentials at that point due to the charges 
at x = +a and x = −a.  
 
(a) Express V(x) as the sum of the 
potentials due to the charges at 
x = +a and x = −a: 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+

−
=

axax
kqV 11

 

(b) The following graph of V(x) versus x for kq = 1 and a = 1 was plotted using a 
spreadsheet program: 
 

0

2

4

6

8

10

-3 -2 -1 0 1 2 3

x  (m)

V
 (V

)

 
(c) At x = 0: 0=

dx
dV

 and 0=−=
dx
dVEx  

 
*34 ••  
Picture the Problem For the two charges, axr −= and x  respectively and the electric 

potential at x is the algebraic sum of the potentials at that point due to the charges at x = a 
and x = 0. We can use the graph and the function found in part (a) to identify the points at 
which V(x) = 0. We can find the work needed to bring a third charge +e to the point 
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ax 2
1= on the x axis from the change in the potential energy of this third charge. 

 
Express the potential at x: ( ) ( ) ( )

ax
ek

x
ekxV

−
−

+=
23

 

 
The following graph of V(x) for ke = 1 and a =1 was plotted using a spreadsheet 
program. 
 

-15

-10

-5

0

5

10

15

20

25

-3 -2 -1 0 1 2 3

x  (m)

V
 (V

)

 
(b) From the graph we can see that 
V(x) = 0 when: 
 

∞±=x  

Examining the function, we see that 
V(x) is also zero provided: 
 

023
=

−
−

axx
 

For x > 0, V(x) = 0 when: 
 

ax 3=  

For 0 < x < a, V(x) = 0 when: 
 

ax 6.0=  

(c) Express the work that must be 
done in terms of the change in 
potential energy of the charge: 
 

( )aqVUW 2
1=∆=  

Evaluate the potential at ax 2
1= : ( ) ( ) ( )

a
ke

a
ke

a
ke

aa
ek

a
ekaV

246

23

2
1

2
12

1

=−=

−
−

+=
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Substitute to obtain: 

a
ke

a
keeW

222
=⎟

⎠
⎞

⎜
⎝
⎛=  

 
Computing the Electric Field from the Potential 
 
35 •  
Picture the Problem We can use the relationship Ex = − (dV/dx) to decide the sign of Vb 
− Va and E = ∆V/∆x to find E. 
 
(a) Because Ex = − (dV/dx), V is 
greater for larger values of x. So: 
 

positive. is ab VV −  

(b) Express E in terms of Vb − Va and 
the separation of points a and b: 
 

x
VV

x
VE ab

x ∆
−

=
∆
∆

=  

Substitute numerical values and 
evaluate Ex: 

kV/m25.0
m4
V105

==xE  

 
*36 •  
Picture the Problem Because Ex  = −dV/dx, we can find the point(s) at which  
Ex = 0 by identifying the values for x for which dV/dx = 0. 
 
Examination of the graph indicates 
that dV/dx = 0 at x = 4.5 m. Thus Ex = 
0 at: 

m5.4=x  

 
37 •  
Picture the Problem We can use V(x) = kq/x to find the potential V on the x axis at x = 
3.00 m and at x = 3.01 m and E(x) = kq/r2 to find the electric field at  
x = 3.00 m. In part (d) we can express the off-axis potential using V(x) = kq/r, where 

22 yxr += . 

 
(a) Express the potential on the x axis 
as a function of x and q: 
 

( )
x

kqxV =  

Evaluate V at x = 3 m: ( ) ( )( )

kV99.8

m3
C3/CmN1099.8m3

229

=

⋅×
=

µV
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Evaluate V at x = 3.01 m: ( ) ( )( )

kV96.8

m01.3
C3/CmN1099.8m01.3

229

=

⋅×
=

µV

 
(b) The potential decreases as x 
increases and: 

kV/m00.3

m3.00m3.01
kV8.99kV8.96

=

−
−

−=
∆
∆

−
x
V

 

 
(c) Express the Coulomb field as a 
function of x: 
 

( ) 2x
kqxE =  

Evaluate this expression at  
x = 3.00 m to obtain: 
 

( ) ( )( )
( )

kV/m00.3

m3
C3/CmN1099.8m3 2

229

=

⋅×
=

µE
 

in agreement with our result in (b). 
 

(d) Express the potential at (x, y) 
due to a point charge q at the origin: 
 

( )
22

,
yx

kqyxV
+

=  

Evaluate this expression at (3.00 m, 0.01 m): 
 

( ) ( )( )
( ) ( )

kV99.8
m01.0m00.3

C3/CmN1099.8mm,0.01.003
22

229

=
+

⋅×
=

µV  

 
For y << x, V is independent of y and the points (x, 0) and (x, y) are at the same potential, 
i.e., on an equipotential surface. 
 
38 •  
Picture the Problem We can find the potential on the x axis at x  = 3.00 m by expressing 
it as the sum of the potentials due to the charges at the origin and at  
x = 6 m. We can also express the Coulomb field on the x axis as the sum of the fields due 
to the charges q1 and q2 located at the origin and at x = 6 m. 
 
(a) Express the potential on the x 
axis as the sum of the potentials due 
to the charges q1 and q2 located at 
the origin and at  
x = 6 m: 
 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

2

2

1

1

r
q

r
qkxV  
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Substitute numerical values and 
evaluate V(3 m): 

( ) ( )

0

m3
C3

m3
C3

/CmN1099.8 229

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+×

⋅×=

µµ

xV

 

 
(b) Express the Coulomb field on the 
x axis as the sum of the fields due to 
the charges q1 and q2 located at the 
origin and at  
x = 6 m: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=+= 2

2

2
2

1

1
2

2

2
2

1

1

r
q

r
qk

r
kq

r
kqEx  

Substitute numerical values and 
evaluate E(3 m): 

( )

( ) ( )
kV/m99.5

m3
C3

m3
C3

/CmN1099.8

22

229

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−×

⋅×=

µµ
xE

 

 
(c) Express the potential on the x 
axis as the sum of the potentials due 
to the charges q1 and q2 located at 
the origin and at  
x = 6 m: 
 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

2

2

1

1

r
q

r
qkxV  

Substitute numerical values and evaluate 
V(3.01 m): 

( ) ( )

V9.59

m99.2
C3

m01.3
C3

/CmN1099.8m01.3 229

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+×

⋅×=

µµ

V

 

 
Compute −∆V/∆x: 

( )m00.3

kV/m99.5

m3.00m3.01
0V59.9

xE

x
V

=

=

−
−−

−=
∆
∆

−

 

39 •  
Picture the Problem We can use the relationship Ey = − (dV/dy) to decide the sign of Vb 
− Va and E = ∆V/∆y to find E. 
 
(a) Because Ex = − (dV/dx), V is 
smaller for larger values of y. So: 

negative. is ab VV −  
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(b) Express E in terms of Vb − Va and 
the separation of points a and b: 
 

y
VV

y
VE ab

y ∆
−

=
∆
∆

=  

Substitute numerical values and 
evaluate Ey: 

kV/m00.5
m4

V102 4

=
×

=yE  

 
40 •  
Picture the Problem Given V(x), we can find Ex from −dV/dx. 
 
(a) Find Ex from −dV/dx: [ ]

kV/m00.3

30002000

−=

+−= x
dx
dEx

 

 
(b) Find Ex from −dV/dx: [ ]

kV/m00.3

30004000

−=

+−= x
dx
dEx

 

 
(c) Find Ex from −dV/dx: [ ]

kV/m00.3

30002000

=

−−= x
dx
dEx

 

 
(d) Find Ex from −dV/dx: [ ] 02000 =−−=

dx
dEx  

 
41 ••  
Picture the Problem We can express the potential at a general point on the x axis as the 
sum of the potentials due to the charges at x = 0 and x = 1 m. Setting this expression 
equal to zero will identify the points at which V(x) = 0. We can find the electric field at 
any point on the x axis from Ex = −dV/dx. 
 
(a) Express V(x) as the sum of the 
potentials due to the point charges at x 
= 0 and x = 1 m: 
 

( ) ( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−=

−
−

+=

1
3

1
3

x
q

x
qk

x
qk

x
kqxV

 

 
(b) Set V(x) = 0: 

0
1

3
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

x
q

x
qk  

or 
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0
1

31
=

−
−

xx
 

 
For x < 0: 

( ) m500.00
1

31
−=⇒=

−−
−

−
x

xx
 

 
For 0 < x < 1: 

( ) m250.00
1

31
=⇒=

−−
− x

xx
 

 
Note also that: 
 

( ) ±∞→→ xxV as0  

(c) Evaluate V(x) for 0 < x < 1: 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

−
+=<<

1
310

x
q

x
qkxV  

 
Apply Ex = −dV/dx to find Ex in this 
region: 
 

( )

( ) ⎥
⎦

⎤
⎢
⎣

⎡

−
+=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

−
+−=<<

22 1
31

1
310

xx
kq

x
q

x
qk

dx
dxEx

 

 
Evaluate this expression at  
x = 0.25 m to obtain: 
 

( )
( ) ( )

( )kq

kqEx

2

22

m3.21

m75.0
3

m25.0
1m25.0

−=

⎥
⎦

⎤
⎢
⎣

⎡
+=

 
 

Evaluate V(x) for  x < 0: 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

−
+−=<

xx
kqxV

1
310  

 
Apply Ex = −dV/dx to find Ex in this 
region: 
 

( )

( ) ⎥
⎦

⎤
⎢
⎣

⎡

−
+−=

⎥⎦
⎤

⎢⎣
⎡

−
+−=<

22 1
31

1
310

xx
kq

xxdx
dkqxEx

 

 
Evaluate this expression at x = −0.5 m to obtain: 
 

( )
( ) ( )

( )kqkqEx
2

22 m67.2
m5.1

3
m5.0

1m5.0 −−=⎥
⎦

⎤
⎢
⎣

⎡
+

−
−=−  

 
(d) The following graph of V(x) for kq = 1 and a = 1 was plotted using a spreadsheet 
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program: 
 

-25

-20

-15

-10

-5

0

5

-2 -1 0 1 2 3

x  (m)

V
 (V

)

 
 
*42 ••  
Picture the Problem Because V(x) and Ex are related through Ex = − dV/dx, we can find 
V from E by integration. 
 
Separate variables to obtain: ( )dxxdxEdV x kN/C0.2 3−=−=  

 
Integrate V from V1 to V2 and x from 
1 m to 2 m: ( )

( )[ ] m2

m1
4

4
1

3

kN/C0.2

kN/C0.2
2

1

2

1

x

dxxdV
x

x

V

V

−=

−= ∫∫
 

 
Simplify to obtain: kV50.712 −=−VV  

 
43 ••  
Picture the Problem Let r1 be the distance from (0, a) to (x, 0), r2 the distance from (0, 
−a), and r3 the distance from (a, 0) to (x, 0). We can express V(x) as the sum of the 
potentials due to the charges at (0, a), (0, −a), and (a, 0) and then find Ex from −dV/dx. 
 
(a) Express V(x) as the sum of the 
potentials due to the charges at (0, a), 
(0, −a), and (a, 0): 
 

( )
3

3

2

2

1

1

r
kq

r
kq

r
kqxV ++=  

where q1 = q2 = q3 = q 

At x = 0, the fields due to q1 and q2 cancel, so Ex(0) = −kq/a2; this is also obtained from 
(b) if x = 0. 
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As x→∞, i.e., for x >> a, the three charges appear as a point charge 3q, so 
Ex = 3kq/x2; this is also the result one obtains from (b) for x >> a. 
 
Substitute for the ri to obtain: 
 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+

+
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+

+
+

+
=

axax
kq

axaxax
kqxV 12111

222222
 

 
(b) For x > a, x − a > 0 and:  axax −=−  

 
Use Ex = −dV/dx to find Ex: 
 

( ) ( ) ( )2232222

212
ax

kq
ax

kqx
axax

kq
dx
daxEx −

+
+

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
+

−=>  

 
For x < a, x − a < 0 and:  ( ) xaaxax −=−−=−  

 
Use Ex = −dV/dx to find Ex: 
 

( ) ( ) ( )2232222

212
xa

kq
ax

kqx
xaax

kq
dx
daxEx −

−
+

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
+

−=<  

 
Calculations of V for Continuous Charge Distributions 
 
44 •  
Picture the Problem We can construct Gaussian surfaces just inside and just outside the 
spherical shell and apply Gauss’s law to find the electric field at these locations. We can 
use the expressions for the electric potential inside and outside a spherical shell to find 
the potential at these locations. 
 
(a) Apply Gauss’s law to a spherical 
Gaussian surface of radius r < 12 cm: 
 

0
0

enclosed

S

==⋅∫ ∈
QdAE

rr
 

because the charge resides on the outer 
surface of the spherical surface. Hence 

( ) 0cm12 =<rE
r

 

 
Apply Gauss’s law to a spherical 
Gaussian surface of radius  

( )
0

24
∈

π qrE =  
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r > 12 cm: and 

( ) 2
0

24
cm12

r
kq

r
qrE ==>

∈π
 

 
Substitute numerical values and evaluate ( )cm12>rE : 

 

( ) ( )( )
( )

kV/m24.6
m0.12

C10/CmN108.99cm12 2

8229

=
⋅×

=>
−

rE  

 
(b) Express and evaluate the potential just inside the spherical shell: 
 

( ) ( )( ) V749
m0.12

C10/CmN108.99 8229

=
⋅×

==≤
−

R
kqRrV  

 
Express and evaluate the potential just outside the spherical shell: 
 

( ) ( )( ) V749
m0.12

C10/CmN108.99 8229

=
⋅×

==≥
−

r
kqRrV  

 
(c) The electric potential inside  a uniformly charged spherical shell is constant and 
given by: 
 

( ) ( )( ) V749
m0.12

C10/CmN108.99 8229

=
⋅×

==≤
−

R
kqRrV  

 
In part (a) we showed that: ( ) 0cm12 =<rE

r
 

 
45 •  
Picture the Problem We can use the expression for the potential due to a line 

charge
a
rkV ln2 λ−= , where V = 0 at some distance r = a, to find the potential at these 

distances from the line. 
 
Express the potential due to a line 
charge as a function of the distance 
from the line: 
 

a
rkV ln2 λ−=  

Because V = 0 at r = 2.5 m: 
a

k m5.2ln20 λ−= , 
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a
m5.2ln0 = , 

and 

10lnm5.2 1 == −

a
 

 
Thus we have a = 2.5 m and: 
 

( )( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅×−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅×−=

m5.2
lnm/CN1070.2

m5.2
lnC/m5.1/CmN1099.82 4229 rrV µ  

 
(a) Evaluate V at r = 2.0 m: ( )

kV02.6

m5.2
m2lnm/CN1070.2 4

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅×−=V

 

 
(b) Evaluate V at r = 4.0 m: ( )

kV7.12

m5.2
m4lnm/CN1070.2 4

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅×−=V

 

 
(c) Evaluate V at r = 12.0 m: ( )

kV3.42

m5.2
m12lnm/CN1070.2 4

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅×−=V

 

 
46 ••   
Picture the Problem The electric field on the x axis of a disk charge of radius R is given 

by ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−=

22
12

Rx
xkEx σπ . We’ll choose V(∞) = 0 and integrate from x′ = ∞ to x′ = 

x to obtain Equation 23-21. 
 
Relate the electric potential on the 
axis of a disk charge to the electric 
field of the disk: 
 

dxEdV x−=  

Express the electric field on the x 
axis of a disk charge: ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
−=

22
12

Rx
xkEx σπ  
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Substitute to obtain: 
dx

Rx
xkdV ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
−−=

22
12 σπ  

 
Let V(∞) = 0 and integrate from x′ = 
∞ to x′ = x: 

( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+=

−+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−−= ∫

∞

112

2

'
'12

2

2

22

22

x
Rxk

xRxk

dx'
Rx

xkV
x

σπ

σπ

σπ

 

which is Equation 23-21. 
 
*47 ••  
Picture the Problem Let the charge per 
unit length be λ = Q/L and dy be a line 
element with charge λdy. We can express 
the potential dV at any point on the x axis 
due to λdy and integrate of find V(x, 0).  
 
(a) Express the element of potential 
dV due to the line element dy: 

dy
r

kdV λ
=  

where 22 yxr +=  

Integrate dV from y = −L/2 to 
y = L/2: 
 

( )

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−+

++
=

+
= ∫

−

24

24
ln

0,

22

22

2

2
22

LLx

LLx
L

kQ

yx
dy

L
kQxV

L

L

 

 
(b) Factor x from the numerator and 
denominator within the parentheses to 
obtain: 
 

( )
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−+

++
=

x
L

x
L

x
L

x
L

L
kQxV

24
1

24
1

ln0,

2

2

2

2

 

 

Use ba
b
a lnlnln −= to obtain: 

 

( )
⎪⎭

⎪
⎬
⎫

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++=

x
L

x
L

x
L

x
L

L
kQxV

24
1ln

24
1ln0, 2

2

2

2
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Let 2

2

4x
L

=ε and use ( ) ...11 2
8
1

2
121 +−+=+ εεε  to expand 2

2

4
1

x
L

+ : 

 

1...
48

1
42

11
4

1
2

2

2

2

221

2

2

≈+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

x
L

x
L

x
L

 for x >> L. 

 
Substitute to obtain: 
 

( )
⎭
⎬
⎫

⎟
⎠
⎞

⎜
⎝
⎛ −−

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ +=

x
L

x
L

L
kQxV

2
1ln

2
1ln0,  

 

Let 
x

L
2

=δ and use ( ) ...1ln 2
2
1 +−=+ δδδ  to expand ⎟

⎠
⎞

⎜
⎝
⎛ ±

x
L
2

1ln : 

 

2

2

422
1ln

x
L

x
L

x
L

−≈⎟
⎠
⎞

⎜
⎝
⎛ +  and 2

2

422
1ln

x
L

x
L

x
L

−−≈⎟
⎠
⎞

⎜
⎝
⎛ −  for x >> L. 

 
Substitute and simplify to obtain: 
 

( )
x

kQ
x

L
x

L
x

L
x

L
L

kQxV =
⎭
⎬
⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−

⎩
⎨
⎧

−= 2

2

2

2

4242
0,  

 
48 ••  
Picture the Problem We can find Q by 
integrating the charge on a ring of radius r 
and thickness dr from r = 0 to  
r = R and the potential on the axis of the 
disk by integrating the expression for the 
potential on the axis of a ring of charge 
between the same limits.  
 
(a) Express the charge dq on a ring 
of radius r and thickness dr: 
 Rdr

dr
r
Rrdrrdq

0

0

2

22

πσ

σπσπ

=

⎟
⎠
⎞

⎜
⎝
⎛==

 

 
Integrate from r = 0 to r = R to obtain: 2

0
0

0 22 RdrRQ
R

πσπσ == ∫  

 



Chapter 23    
 

 

196 

(b) Express the potential on the axis 
of the disk due to a circular element 
of charge drrdq σπ2= : 

 

22

02
' rx

Rdrk
r

kdqdV
+

==
σπ

 

Integrate from r = 0 to r = R to obtain: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++
=

+
= ∫

x
RxRRk

rx
drRkV

R

22

0

0
220

ln2

2

σπ

σπ

 

 
49 ••  
Picture the Problem We can find Q by 
integrating the charge on a ring of radius r 
and thickness dr from r = 0 to  
r = R and the potential on the axis of the 
disk by integrating the expression for the 
potential on the axis of a ring of charge 
between the same limits.  
 
(a) Express the charge dq on a ring 
of radius r and thickness dr: 
 

drr
R

dr
R
rrdrrdq

3
2

0

2

2

0

2

22

πσ

σπσπ

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

 

 
Integrate from r = 0 to r = R to obtain: 2

02
1

0

3
2

02
Rdrr

R
Q

R

πσ
πσ

== ∫  

 
(b)Express the potential on the axis of 
the disk due to a circular element of 

charge drr
R

dq 3
2

02πσ
= : 

 

dr
rx

r
R
k

r
kdqdV

22

3

2
02

' +
==

σπ
 

 

Integrate from r = 0 to r = R to obtain: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

−
=

+
= ∫ 3

2
3

222 3
22

22

2
0

0
22

3

2
0 xRxxR

R
k

rx
drr

R
kV

R σπσπ
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50 ••  
Picture the Problem Let the charge per 
unit length be λ = Q/L and dy be a line 
element with charge λdy. We can express 
the potential dV at any point on the x axis 
due to λdy and integrate to find V(x, 0).  
 
Express the element of potential dV 
due to the line element dy: 

dy
r

kdV λ
=  

where 22 yxr +=  

 
Integrate dV from y = −L/2 to 
y = L/2: 
 

( )

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−+

++
=

+
= ∫

−

24

24
ln

0,

22

22

2

2
22

LLx

LLx
L

kQ

yx
dy

L
kQxV

L

L

 

 
*51 ••  
Picture the Problem The potential at any 
location on the axis of the disk is the sum 
of the potentials due to the positive and 
negative charge distributions on the disk. 
Knowing that the total charge on the disk is 
zero and the charge densities are equal in 
magnitude will allow us to find the radius 
of the region that is positively charged. We 
can then use the expression derived in the 
text to find the potential due to this charge 
closest to the axis and integrate dV from 

2Rr = to r = R to find the potential at x 

due to the negative charge distribution. 

 

 

 
(a) Express the potential at a 
distance x along the axis of the disk 
as the sum of the potentials due to 
the positively and negatively 
charged regions of the disk: 
 

( ) ( ) ( )xVxVxV -+= +  

We know that the charge densities 
are equal in magnitude and that the 

arar QQ >< =  

or 
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total charge carried by the disk is 
zero. Express this condition in terms 
of the charge in each of two regions 
of the disk: 
 

2
0

2
0

2
0 aRa πσπσπσ −=  

Solve for a to obtain: 
 2

Ra =  

 
Use this result and the general 
expression for the potential on the 
axis of a charged disk to express 
V+(x): 
 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+=+ xRxkxV

2
2

2
2

0σπ  

Express the potential on the axis of 
the disk due to a ring of charge a 
distance r > a from the axis of the 
ring: 
 

( ) dr
r
rkxdV
'

2 0σπ−=−  

where 22' rxr += . 

Integrate this expression from 
2Rr = to r = R to obtain: 

 

( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−+−=

+
−= ∫−

2
2

2

2
222

0

2
220

RxRxk

dr
rx

rkxV
R

R

σπ

σπ

 
Substitute and simplify to obtain: 
 

( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−+=

⎟
⎟
⎠

⎞
+++−⎜

⎜
⎝

⎛
−+=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−+−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+=

xRxRxk

RxRxxRxk

RxRxkxRxkxV

22
2

2
0

2
222

2
2

0

2
222

0

2
2

0

2
22

22
2

2
2

2
2

σπ

σπ

σπσπ

 

 
(b) To determine V for  
x >> R, factor x from the square roots 
and expand using the binomial 
expansion: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+≈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=+

4

4

2

2

21

2

22
2

324
1

2
1

2

x
R

x
Rx

x
RxRx

 

and 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+≈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=+

4

4

2

2

21

2

2
22

82
1

1

x
R

x
Rx

x
RxRx

 

 
Substitute to obtain: 
 

( ) 3

4
0

4

4

2

2

4

4

2

2

0 882
1

324
122

x
Rkx

x
R

x
Rx

x
R

x
RxkxV σπσπ =⎟⎟

⎠

⎞
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+−⎜⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+≈  

 
52 ••  
Picture the Problem Given the potential function            

( ) ( )xRxRxkxV −+−+= 2222
0 222 σπ  found in Problem 51(a), we can find Ex 

from −dV/dx. In the second part of the problem, we can find the electric field on the axis 
of the disk by integrating Coulomb’s law for the oppositely charged regions of the disk 
and expressing the sum of the two fields. 
Relate Ex to dV/dx: 

dx
dVEx −=  

 
From Problem 51(a) we have: 
 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−+= xRxRxkxV 22

2
2

0 2
22 σπ  

 
Evaluate the negative of  the derivative of V(x) to obtain:  
 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
+

−

+

−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−+−=

1

2

22

2
22

222
2

0

22
2

2
0

Rx
x

Rx

xk

xRxRx
dx
dkEx

σπ

σπ

 

 
Express the field on the axis of the 
disk as the sum of the field due to 
the positive charge on the disk and 
the field due to the negative charge 

+− += xxx EEE  
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on the disk: 
 
The field due to the positive charge 
(closest to the axis) is: 
 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+

−=+

2

12
2

2
0

Rx

xkEx σπ  

 
To determine Ex− we integrate the 
field due to a ring charge: 
 

( )

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+
−

+

−=

+
−= ∫−

222
2

0

2
23220

2

2

2

Rx
x

Rx

xk

rx
rdrkE

R

R
x

σπ

σπ

 

 
Substitute and simplify to obtain: 
 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
+

−

+

−=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+

−+

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+
−

+

−=

1

2

22

2

12

2

2

222
2

0

2
2

0222
2

0

Rx
x

Rx

xk

Rx

xk
Rx

x
Rx

xkEx

σπ

σπσπ

 

 
53 ••  
Picture the Problem We can express the electric potential dV at x due to an elemental 
charge dq on the rod and then integrate over the length of the rod to find V(x). In the 
second part of the problem we use a binomial expansion to show that, for x >> L/2, our 
result reduces to that due to a point charge Q. 
 

 
 



Electric Potential 
 

 

201

(a) Express the potential at x due to 
the element of charge dq located at 
u: 
 

ux
duk

r
kdqdV

−
==

λ
 

or, because λ = Q/L, 

ux
du

L
kQdV

−
=  

 
Integrate V from u = −L/2 to L/2 to 
obtain: ( )

( )

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−

+
=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛ −−=

−=

−
=

−

−
∫

2

2ln

2
ln

2
ln

ln 2

2

2

2

Lx

Lx

L
kQ

LxLx

ux
L

kQ

ux
du

L
kQxV

L

L

L

L

 

 
(b) Divide the numerator and 
denominator of the argument of the 
logarithm by x to obtain: 
 

⎟
⎠
⎞

⎜
⎝
⎛

−
+

=
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−

+
=

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−

+

a
a

x
L
x

L

Lx

Lx

1
1ln

2
1

2
1

ln

2

2ln  

where a = L/2x. 
 

Divide 1 + a by 1 − a to obtain: 
 

⎟
⎠
⎞

⎜
⎝
⎛ +≈

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
++=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

++=⎟
⎠
⎞

⎜
⎝
⎛

−
+

x
L

x
L

x
L

x
L

a
aa

a
a

1ln

2
1ln

1
221ln

1
1ln

2

2

2

 

provided x >> L/2. 
 

Expand ln(1 + L/x) binomially to 
obtain: x

L
x
L

≈⎟
⎠
⎞

⎜
⎝
⎛ +1ln  

provided x >> L/2. 
 

Substitute to express V(x) for  
x >> L/2: 

( )
x

kQ
x
L

L
kQxV == , the field due to a 
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point charge Q. 
 
54 ••  
Picture the Problem The diagram is a 
cross-sectional view showing the charges 
on the sphere and the spherical conducting 
shell. A portion of the Gaussian surface 
over which we’ll integrate E in order to 
find V in the region r > b is also shown. For 
a < r < b, the sphere acts like point charge 
Q and the potential of the metal sphere is 
the sum of the potential due to a point 
charge at its center and the potential at its 
surface due to the charge on the inner 
surface of the spherical shell. 

 

 

 
(a) Express Vr > b: ∫ >> −= drEV brbr  

 
Apply Gauss’s law for r > b: 0ˆ

0

enclosed
S

==⋅∫ ε
QdAr nE

r
 

and Er>b = 0 because Qenclosed = 0 for  
r > b. 
 

Substitute to obtain: 
 

( ) 00 =−= ∫> drV br  

(b) Express the potential of the metal 
sphere: 
 

surfacecenter itsat  VVV Qa +=  

Express the potential at the surface 
of the metal sphere: 
 

( )
b

kQ
b

QkV −=
−

=surface  

Substitute and simplify to obtain: 
⎟
⎠
⎞

⎜
⎝
⎛ −=−=

ba
kQ

b
kQ

a
kQVa

11
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55 ••  
Picture the Problem The diagram is a 
cross-sectional view showing the charges 
on the inner and outer conducting shells. A 
portion of the Gaussian surface over which 
we’ll integrate E in order to find V in the 
region a < r  < b is also shown. Once 
we’ve determined how E varies with r, we 
can find Vb – Va from ∫−=− drEVV rab . 

 
 
Express the potential difference  
Vb – Va: 
 

∫−=− drEVV rab  

Apply Gauss’s law to cylindrical 
Gaussian surface of radius r and 
length L: 
 

( )
0

S
2ˆ

ε
π qrLEdA r ==⋅∫ nE

r
 

Solve for Er: 
rL

qEr
02πε

=  

 
Substitute for Er and integrate from r 
= a to b: 

⎟
⎠
⎞

⎜
⎝
⎛−=

−=− ∫

a
b

L
kq

r
dr

L
qVV

b

a
ab

ln2

2 0πε
 

 
56 ••  
Picture the Problem Let R be the radius of the sphere and Q its charge. We can express 
the potential at the two locations given and solve the resulting equations simultaneously 
for R and Q. 
 
Relate the potential of the sphere at 
its surface to its radius: 
 

V450=
R

kQ
                           (1) 

Express the potential at a distance of 
20 cm from its surface: 
 

V150
m2.0

=
+R
kQ

                  (2) 
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Divide equation (1) by equation (2) 
to obtain: 

V150
V450

m2.0

=

+R
kQ
R

kQ

 

or 

3m2.0
=

+
R

R
 

 
Solve for R to obtain: 
 

m100.0=R  

Solve equation (1) for Q: ( )
k
RQ V450=  

 
Substitute numerical values and evaluate 
Q: 

( ) ( )
( )

nC01.5

/CmN108.99
m0.1V450 229

=

⋅×
=Q

 

 
57 ••  
Picture the Problem Let the charge 
density on the infinite plane at x = a be σ1 
and that on the infinite plane at x = 0 be σ2. 
Call that region in space for which x < 0, 
region I, the region for which 0 < x < a 
region II, and the region for which a < x 
region III. We can integrate E due to the 
planes of charge to find the electric 
potential in each of these regions. 

 
 
(a) Express the potential in region I 
in terms of the electric field in that 
region: 
 

∫ ⋅−=
x

dV
0

II xE
rr

 

 

Express the electric field in region I 
as the sum of the fields due to the 
charge densities σ1 and σ2: 
 i

iiiiE

ˆ

ˆ
2

ˆ
2

ˆ
2

ˆ
2

0

000

2

0

1
I

∈
σ

∈
σ

∈
σ

∈
σ

∈
σ

−=

−−=−−=
r
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Substitute and evaluate VI: ( )

xx

VxdxV
x

00

00 0
I

0

0

∈
σ

∈
σ

∈
σ

∈
σ

=+=

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= ∫

 

 
Express the potential in region II in 
terms of the electric field in that 
region: 
 

( )0IIII VdV +⋅−= ∫ xE
rr

 

 

Express the electric field in region II 
as the sum of the fields due to the 
charge densities σ1 and σ2: 
 

0

ˆ
2

ˆ
2

ˆ
2

ˆ
2 000

2

0

1
II

=

+−=+−= iiiiE
∈
σ

∈
σ

∈
σ

∈
σr

 
 

Substitute and evaluate VII: ( ) ( ) 0000
0

II =+=−= ∫ VdxV
x

 

 
Express the potential in region III in 
terms of the electric field in that 
region: 
 

∫ ⋅−=
x

a

dV xE
rr

IIIIII  

 

Express the electric field in region 
III as the sum of the fields due to the 
charge densities σ1 and σ2: 
 i

iiiiE

ˆ

ˆ
2

ˆ
2

ˆ
2

ˆ
2

0

000

2

0

1
III

∈
σ

∈
σ

∈
σ

∈
σ

∈
σ

=

+=+=
r

 

 
Substitute and evaluate VIII: 

( )xa

axdxV
x

a

−=

+−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∫

0

000
III

∈
σ

∈
σ

∈
σ

∈
σ

 

 
(b) Proceed as in (a) with σ1 = −σ and 
σ2 = σ to obtain: 

0I =V , 

xV
0

II ∈
σ

−=  and aV
0

III ∈
σ

−=  

 
*58 ••   
Picture the Problem The potential on the axis of a disk charge of radius R and charge 

density σ is given by ( )[ ]xRxkV −+=
21222 σπ . 
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Express the potential on the axis of the 
disk charge: 
 

( )[ ]xRxkV −+=
21222 σπ  

Factor x from the radical and use the binomial expansion to obtain: 
 

( )

⎥
⎦

⎤
⎢
⎣

⎡
−+≈

⎥
⎦

⎤
+⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛+⎢

⎣

⎡
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=+

4

4

2

2

4

4

2

221

2

2
2122

82
1

...
2
1

2
1

2
1

2
11

x
R

x
Rx

x
R

x
Rx

x
RxRx

 

 
Substitute for the radical term to 
obtain: 

x
kQ

x
Rk

x
R

x
Rk

x
x

R
x

RxkV

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎭
⎬
⎫

⎩
⎨
⎧

−⎥
⎦

⎤
⎢
⎣

⎡
−+=

2
2

82
2

82
12

2

3

42

4

4

2

2

σπ

σπ

σπ

 

provided x >> R. 
 
59 ••  
Picture the Problem The diagram shows a 
sphere of radius R containing a charge Q 
uniformly distributed. We can use the 
definition of density to find the charge q′ 
inside a sphere of radius r and the potential 
V1 at r due to this part of the charge. We 
can express the potential dV2 at r due to the 
charge in a shell of radius r′ and thickness 
dr′ at r′ > r using rkdq'dV =2 and then 

integrate this expression from r′ = r to r′ = 
R to find V2.   

 

 
(a) Express the potential V1 at r due to 
q′: 
 

r
kq'V =1  

Use the definition of density and the 
fact that the charge density is uniform 
to relate q′ to Q: 
 

3
3
43

3
4 R

Q
r

q'
ππ

ρ ==  
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Solve for q′: 
Q

R
rq' 3

3

=  

 
Substitute to express V1: 2

33

3

1 r
R
kQQ

R
r

r
kV =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

 
(b) Express the potential dV2 at r due 
to the charge in a shell of radius r′ 
and thickness dr′ at  
r′ > r: 
 
 

r
kdq'dV =2  

Express the charge dq′ in a shell of 
radius r′ and thickness dr′ at  
r′ > r: 

dr'r'
R
Q

dr'
R
Qr'drr'dq'

2
3

3
22

3
4
34'4

=

⎟
⎠
⎞

⎜
⎝
⎛==

π
πρπ

 

 
Substitute to obtain: 

r'dr'
R
kQdV 32

3
=  

 
(c) Integrate dV2 from r′ = r to  
r′ = R to find V2: 
 

( )22
332 2

33 rR
R
kQr'dr'

R
kQV

R

r

−== ∫  

(d) Express the potential V at r as the 
sum of V1 and V2: ( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−+=

+=

2

2

22
3

2
3

21

3
2

2
3

R
r

R
kQ

rR
R
kQr

R
kQ

VVV

 

 
60 •  
Picture the Problem We can equate the expression for the electric field due to an infinite 
plane of charge and −∆V/∆x and solve the resulting equation for the separation of the 
equipotential surfaces. 
 
Express the electric field due to the 
infinite plane of charge: 
 

02∈
σ

=E  

Relate the electric field to the 
potential: 
 

x
VE

∆
∆

−=  
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Equate these expressions and solve 
for ∆x to obtain: 
 

σ
∈ Vx ∆

=∆ 02
 

Substitute numerical values and 
evaluate x∆ : 

( )( )

mm0.506

µC/m3.5
V100m/NC108.852

2

2212

=

⋅×
=∆

−

x
 

 
61 •  
Picture the Problem The equipotentials are spheres centered at the origin with radii ri = 
kq/Vi. 
 
Evaluate r for V = 20 V: ( )( )

m499.0

V20
C10/CmN108.99 8

9
1229

V20

=

×⋅×
=

−

r
 

 
Evaluate r for V = 40 V:  ( )( )

m250.0

V40
C10/CmN108.99 8

9
1229

V40

=

×⋅×
=

−

r
 

 
Evaluate r for V = 60 V: ( )( )

m166.0

V60
C10/CmN108.99 8

9
1229

V60

=

×⋅×
=

−

r
 

 
Evaluate r for V = 80 V: ( )( )

m125.0

V80
C10/CmN108.99 8

9
1229

V80

=

×⋅×
=

−

r
 

 
Evaluate r for V = 100 V: ( )( )

m0999.0

V100
C10/CmN108.99 8

9
1229

V100

=

×⋅×
=

−

r
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The equipotential surfaces are 
shown in cross-section to the right: 
 

 
spaced.equally not  are surfaces ialequipotent The  

 
62 •  
Picture the Problem We can relate the dielectric strength of air (about 3 MV/m) to the 
maximum net charge that can be placed on a spherical conductor using the expression for 
the electric field at its surface. We can find the potential of the sphere when it carries its 
maximum charge using RkQV max= . 

 
(a) Express the dielectric strength of 
a spherical conductor in terms of the 
charge on the sphere: 
 

2
max

breakdown R
kQE =  

Solve for Qmax: 
k

REQ
2

breakdown
max =  

 
Substitute numerical values and 
evaluate Qmax: 

( )( )

C54.8

/CmN108.99
m0.16MV/m3

229

2

max

µ=

⋅×
=Q

 

 
(b) Because the charge carried by the 
sphere could be either positive or 
negative: 
 

( )( )

kV480

m16.0
C54.8/CmN1099.8 229

max
max

±=

⋅×
±=

±=

µ
R

kQV

 
*63 •  
Picture the Problem We can solve the equation giving the electric field at the surface of 
a conductor for the greatest surface charge density that can exist before dielectric 
breakdown of the air occurs. 
 
Relate the electric field at the surface 
of a conductor to the surface charge 
density: 

0∈
σ

=E  
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Solve for σ under dielectric 
breakdown of the air conditions: 
 

breaddown0max E∈σ =  

Substitute numerical values and 
evaluate σmax: 

( )( )
2

2212
max

C/m6.26

MV/m3m/NC108.85

µ

σ

=

⋅×= −

 
64 ••  
Picture the Problem Let L and S refer to the larger and smaller spheres, respectively.  
We can use the fact that both spheres are at the same potential to find the electric fields 
near their surfaces. Knowing the electric fields, we can use E0=∈σ to find the surface 

charge density of each sphere. 
 
Express the electric fields at the 
surfaces of the two spheres: 
 

2
S

S
S R

kQE =  and 2
L

L
L R

kQE =  

 
Divide the first of these equations by 
the second to obtain: 
 2

SL

2
LS

2
L

L

2
S

S

L

S

RQ
RQ

R
kQ
R
kQ

E
E

==  

 
Because the potentials are equal at the 
surfaces of the spheres: 
 

S

S

L

L

R
kQ

R
kQ

=  and 
L

S

L

S

R
R

Q
Q

=  

 
Substitute to obtain: 
 

S

L
2
SL

2
LS

L

S

R
R

RR
RR

E
E

==  

 
Solve for ES: ( )

kV/m480

kV/m200
cm5
cm12

L
S

L
S

=

== E
R
RE

 

 
Use E0∈σ = to find the surface charge density of each sphere: 

 
( )( ) 22212

cm120cm12 C/m77.1kV/m200m/NC108.85 µ∈σ =⋅×== −E  

and 
( )( ) 22212

cm50cm5 C/m25.4kV/m804m/NC108.85 µ∈σ =⋅×== −E  
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65 ••  
Picture the Problem The diagram is a 
cross-sectional view showing the charges 
on the concentric spherical shells. The 
Gaussian surface over which we’ll 
integrate E in order to find V in the region r 
≥ b is also shown. We’ll also find E in the 
region for which a < r < b. We can then 
use the relationship ∫−= EdrV to find Va 

and Vb and their difference. 
 

 
Express Vb: 

∫
∞

≥−=
b

arb drEV  

Apply Gauss’s law for r ≥ b: 0ˆ
0

enclosed
S

==⋅∫ ∈
QdAr nE

r
 

and Er≥b = 0 because Qenclosed = 0 for  
r ≥ b. 
 

Substitute to obtain: 
 ( ) 00 =−= ∫

∞

b

b drV  

 
Express Va: 

∫ ≥−=
a

b
ara drEV  

 
Apply Gauss’s law for r ≥ a: ( )

0

24
∈

π qrE ar =≥  

and 

22
04 r

kq
r

qE ar ==≥ ∈π
 

 
Substitute to obtain: 
 b

kq
a
kq

r
drkqV

a

b
a −=−= ∫ 2  

 
The potential difference between the 
shells is given by: ⎟

⎠
⎞

⎜
⎝
⎛ −==−

ba
kqVVV aba

11
 

 
*66 •••  
Picture the Problem We can find the potential relative to infinity at the center of the 
sphere by integrating the electric field for 0 to ∞. We can apply Gauss’s law to find the 
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electric field both inside and outside the spherical shell. 
 
The potential relative to infinity the 
center of the spherical shell is: 
 

drEdrEV
R

Rr

R

Rr ∫∫
∞

>< +=
0

            (1) 

Apply Gauss’s law to a spherical 
surface of radius r < R to obtain: 
 

( )
0

inside2

S n 4
∈

== <∫
QrEdAE Rr π  

Using the fact that the sphere is 
uniformly charged, express Qinside in 
terms of Q: 
 

3
3
43

3
4

inside

R
Q

r
Q

ππ
=  ⇒ Q

R
rQ 3

3

inside =  

 

Substitute for Qinside to obtain: 
 

( ) Q
R

rrE Rr 3
0

3
24

∈
=< π  

Solve for Er < R: 
 

r
R
kQQ

R
rE Rr 33

04
=

∈
=< π

 

 
Apply Gauss’s law to a spherical 
surface of radius r > R to obtain: 
 

( )
00

inside2

S n 4
∈

=
∈

== >∫
QQrEdAE Rr π  

Solve for Er>R to obtain: 
 22

04 r
kQ

r
QE Rr =
∈

=> π
 

 
Substitute for Er<R and Er>R in 
equation (1) and evaluate the 
resulting integral: 

R
kQ

r
kQr

R
kQ

r
drkQdrr

R
kQV

R

R
R

R

2
31

2 0

2

3

2
0

3

=⎥⎦
⎤

⎢⎣
⎡−+⎥

⎦

⎤
⎢
⎣

⎡
=

+=

∞

∞

∫∫
 

 
67 ••  
Picture the Problem 
 
(a) The field lines are shown on the figure. 
The charged spheres induce charges of 
opposite sign on the spheres near them so 
that sphere 1 is negatively charged, and 
sphere 2 is positively charged. The total 
charge of the system is zero. 
  

(b)
. that followsit  lines field electric the

 ofdirection   theFrom connected. are spheres  thebecause   

13

21

VV
VV

>
=

 



Electric Potential 
 

 

213

(c) 
zero. is sphereeach on 

 charge ly theConsequent zero. are potentials all if satisfied beonly 
can  )(part  of conditions  theand    connected, are 4 and 3 If 43 bVV =

 

 
 
General Problems 
 
68 •  
Picture the Problem Because the charges at either end of the electric dipole are point 
charges, we can use the expression for the Coulomb potential to find the field at any 
distance from the dipole charges. 
 
Using the expression for the potential 
due to a system of point charges, 
express the potential at the point 
9.2×10−10 m from each of the two 
charges: 
 

( )−+

−+

+=

+=

qq
d
k

d
kq

d
kqV

 

Because q+ = −q−: 0=+ −+ qq , 0=V and correct. is )(b  

 
69 •  
Picture the Problem The potential V at 
any point on the x axis is the sum of the 
Coulomb potentials due to the two point 
charges. Once we have found V, we can 
use Vgrad−=E

r
to find the electric field 

at any point on the x axis. 
 

 
(a) Express the potential due to a system of 
point charges: ∑=

i i

i

r
kqV  

 
Substitute to obtain: ( )

22

2222

-at  chargeat  charge

2
ax

kq
ax

kq
ax

kq

VVxV aa

+
=

+
+

+
=

+= +
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(b) The electric field at any point on 
the x axis is given by: 
 

( )

( ) i

iE

ˆ2

ˆ2grad

2322

22

ax
kqx

ax
kq

dx
dVx

+
=

⎥
⎦

⎤
⎢
⎣

⎡

+
−=−=

r

 

 
70 •  
Picture the Problem The radius of the sphere is related to the electric field and the 
potential at its surface. The dielectric strength of air is about 3 MV/m. 
 
Relate the electric field at the surface 
of a conducting sphere to the potential 
at the surface of the sphere: 
 

( )
r
rVEr =  

Solve for r: ( )
rE
rVr =  

 
When E is a maximum, r is a 
minimum: 
 

( )
max

min E
rVr =  

Substitute numerical values and 
evaluate rmin: 

mm3.33
MV/m3

V104

min ==r  

 
*71 ••  
Picture the Problem The geometry of the 
wires is shown to the right. The potential at 
the point whose coordinates are (x, y) is the 
sum of the potentials due to the charge 
distributions on the wires. 

 
 
(a) Express the potential at the point 
whose coordinates are 
(x, y): 
 

( )

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∈

=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

+= −

1

2

0

2

ref

1

ref

2

ref

1

ref

at  wireat  wire

ln
2

lnln2

ln2ln2

,

r
r

r
r

r
rk

r
rk

r
rk

VVyxV aa

π
λ

λ

λλ

 
where V(0) = 0. 
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Because ( ) 22
1 yaxr ++= and 

( ) :22
2 yaxr +−=  

 

( ) ( )
( ) ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

++

+−
∈

=
22

22

0

ln
2

,
yax

yax
yxV

π
λ

 

On the y-axis, x = 0 and: 
 ( )

( ) 01ln
2

ln
2

,0

0

22

22

0

=
∈

=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

+
∈

=

π
λ

π
λ

ya

ya
yV

 

 
(b) Evaluate the potential at 
( ) ( ) :0cm,25.10,4

1 =a  ( ) ( )
( )

⎟
⎠
⎞

⎜
⎝
⎛

∈
=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

+

−

∈
=

5
3ln

2

ln
2

0,

0

2
4
1

2
4
1

0
4
1

π
λ

π
λ

aa

aa
aV

 

Equate V(x,y) and ( )0,4
1 aV : 

 
( )
( ) 22

22

5

5
5
3

yx

yx

++

+−
=  

 
Solve for y to obtain: 2525.21 2 −−±= xxy  

 

A spreadsheet program to plot 2525.21 2 −−±= xxy  is shown below. The formulas 
used to calculate the quantities in the columns are as follows: 
 
 

Cell Content/Formula Algebraic Form 
A2 1.25 a4

1  
A3 A2 + 0.05 x + ∆x 
B2 SQRT(21.25*A2 − A2^2 − 25) 2525.21 2 −−= xxy  
B4 −SQRT(21.25*A2 − A2^2 − 25) 2525.21 2 −−−= xxy 

 
 A B C 

1 x y_pos y_neg 
2 1.25 0.00 0.00 
3 1.30 0.97 −0.97 
4 1.35 1.37 −1.37 
5 1.40 1.67 −1.67 
6 1.45 1.93 −1.93 
7 1.50 2.15 −2.15 
    

370 19.65 2.54 −2.54 
371 19.70 2.35 −2.35 
372 19.75 2.15 −2.15 
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373 19.80 1.93 −1.93 
374 19.85 1.67 −1.67 
375 19.90 1.37 −1.37 
376 19.95 0.97 −0.97  

 
The following graph shows the equipotential curve in the xy plane for 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

∈
=

5
3ln

2
0,

0
4
1

π
λaV . 

-10
-8

-6
-4

-2
0
2

4
6

8
10

0 5 10 15 20

x  (cm)

y  
(c

m
)

 
 
72 ••  
Picture the Problem We can use the expression for the potential at any point in the xy 
plane to show that the equipotential curve is a circle. 
 
(a) Equipotential surfaces must satisfy 
the condition:  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∈

=
1

2

0

ln
2 r

rV
π
λ

 

 
Solve for r2/r1: 
 Ce

r
r V

==
∈
λ

π 02

1

2  or 12 Crr =  

where C is a constant. 
 

Substitute for r1 and r2 to obtain: ( ) ( )[ ]22222 yaxCyax ++=+−  
 

Expand this expression, combine like 
terms, and simplify  to obtain: 
 

22
2

2
2

1
12 ayx

C
Cax −=+

−
+

+  

Complete the square by adding 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

2

2

2
2

1
1

C
Ca to both sides of the equation: 
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( )22

22
2

2

2

2
22

2

2

2
2

2

2
2

1
4

1
1

1
1

1
12

−
=−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

=+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

+
−
+

+
C

Caa
C
Cay

C
Cax

C
Cax  

 

Let 
1
12 2

2

−
+

=
C
Caα and 

1
2 2 −

=
C

Caβ  

to obtain: 
 

( ) ,222 βα =++ yx the equation of 

circle in the xy plane with its center at 
(−α,0).  

(b)  wires. the toparallel cylinders are surfaces ldimensiona- threeThe  

 
73 ••  
Picture the Problem Expressing the charge dq in a spherical shell of volume 4πr2dr 
within a distance r of the proton and setting the integral of this expression equal to e will 
allow us to solve for the value of ρ0 needed for charge neutrality. In part (b), we can use 
the given charge density to express the potential function due to this charge and then 
integrate this function to find V as a function of r.   
 
Express the charge dq in a spherical 
shell of volume 4πr2dr within a 
distance r of the proton: 
 

( )( )
drer

drredVdq
ar

ar

22
0

22
0

4

4
−

−

=

==

πρ

πρρ
 

 
Express the condition for charge 
neutrality: 
 

drere ar2

0

2
04 −

∞

∫= πρ  

Integrate by parts twice to obtain: 
3

0

3

0 4
4 aae πρπρ ==  

 
Solve for ρ0: 

30 a
e

π
ρ =  

 
74 •  
Picture the Problem Let Q be the sphere’s charge, R its radius, and n the number of 
electrons that have been removed. Then neQ = , where e is the electronic charge. We can 
use the expression for the Coulomb potential of the sphere to express Q and then 

neQ = to find n. 

 
Letting n be the number of electrons 
that have been removed, express the 
sphere’s charge Q in terms of the 
electronic charge e: 
 

neQ =  

Solve for n: 
 e

Qn =                                   (1) 
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Relate the potential of the sphere to 
its charge and radius: 
 

R
kQV =  

Solve for the sphere’s charge: 
 k

VRQ =  

 
Substitute in equation (1) to obtain: 
 ke

VRn =  

 
Substitute numerical values and evaluate n: 
 

( )( )
( )( )

10
19229 1039.1

C101.6/CmN108.99
m0.05V400

×=
×⋅×

= −n  

 
75 •  
Picture the Problem We can use conservation of energy to relate the change in the 
kinetic energy of the particle to the change in potential energy of the charge-and-particle 
system as the particle moves from x = 1.5 m to x = 1 m. The change in potential energy 
is, in turn, related to the change in electric potential. 
 

 
 
Apply conservation of energy to the 
point charge Q and particle system: 
 

0=∆+∆ UK  
or, because Ki = 0, 

0iff =∆+ UK  

 
Solve for Kf: iff UK ∆−=  

 
Relate the difference in potential 
between points i and f to the change in 
potential energy of the system as the 
body whose charge is q moves from i 
to f: 

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=

−−=∆−=∆

ifif

ififif

11
xx

kqQ
x

kQ
x
kQq

VVqVqU

 
 

Substitute to obtain: 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

if
f

11
xx

kqQK  
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Solve for Q: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=

if

f

11
xx

kq

KQ  

 
Substitute numerical values and evaluate Q: 
 

( )( )
C0.20

m1.5
1

m1
1µC4/CmN108.99

J0.24

229

µ−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅×

−=Q  

 
*76 ••  
Picture the Problem We can use the definition of power and the expression for the work 
done in moving a charge through a potential difference to find the minimum power 
needed to drive the moving belt. 
 
Relate the power need to drive the 
moving belt to the rate at which the 
generator is doing work: 
 

dt
dWP =  

Express the work done in moving a 
charge q through a potential 
difference ∆V: 
 

VqW ∆=  

Substitute to obtain: [ ]
dt
dqVVq

dt
dP ∆=∆=  

 
Substitute numerical values and 
evaluate P: 

( )( ) W250C/s200MV25.1 == µP  

 
77 ••  
Picture the Problem We can use fiq VqW →→ ∆=position final to find the work required to 

move these charges between the given points.  
 
(a) Express the required work in 
terms of the charge being moved and 
the potential due to the charge at x = 
+a: 
 

( ) ( )[ ]

( )
a

kQ
a

kQQaQV

VaVQ

VQW aaQ

22

2

=⎟
⎠
⎞

⎜
⎝
⎛==

∞−=

∆= +→∞+→+
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(b) Express the required work in 
terms of the charge being moved and 
the potentials due to the charges at 
x = +a and x = −a: 
 

( ) ( )[ ]
( )

[ ]

a
kQ

a
kQ

a
kQQ

VVQ
QV

VVQ

VQW

aa

Q

2

at  charge-at  charge

00

2

0
0

−
=⎟

⎠
⎞

⎜
⎝
⎛ +−=

+−=
−=

∞−−=

∆−=

+

→∞→−

 

 
(c) Express the required work in 
terms of the charge being moved and 
the potentials due to the charges at  
x = +a and x = −a: 
 

( ) ( )[ ]
( )[ ]

a
kQ

a
kQ

a
kQ

a
kQQ

VVVQ
VaVQ

VQW

aa

aaQ

3
2

2
3

0
02

2

at  charge-at  charge

202

=

⎟
⎠
⎞

⎜
⎝
⎛ −+−=

−+−=
−−=

∆−=

+

→→−

 
78 ••  
Picture the Problem Let q represent the charge being moved from x = 50 cm to the 
origin, Q the ring charge, and a the radius of the ring. We can use 

fiq VqW →→ ∆=position final , where V is the expression for the axial field due to a ring 

charge, to find the work required to move q from x = 50 cm to the origin. 
 
Express the required work in terms of 
the charge being moved and the 
potential due to the ring charge at  
x = 50 cm and x = 0: 
 

( ) ( )[ ]m5.00 VVq
VqW

−=
∆=

 

The potential on the axis of a 
uniformly charged ring is: 
 

( )
22 ax

kQxV
+

=  

Evaluate V(0): ( )

( )( )

V180
m0.1

nC2/CmN1099.8

0

229

2

=

⋅×
=

=
a

kQV

 

 
Evaluate V(0.5 m): ( ) ( )( )

( ) ( )
V3.35

m0.1m5.0

nC2/CmN1099.80
22

229

=

+

⋅×
=V
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Substitute in the expression for W to 
obtain: 

( )( )

eV1006.9

J101.6
eV1J1045.1

J1045.1

V35.3V180nC1

11

19
7

7

×=

×
××=

×=

−=

−
−

−

W

 

 
79 ••  
Picture the Problem We can find the speed of the proton as it strikes the negatively 
charged sphere from its kinetic energy and, in turn, its kinetic energy from the potential 
difference through which it is accelerated. 
 
Use the definition of kinetic energy 
to express the speed of the proton 
when it strikes the negatively 
charged sphere: 
 

p

p2
m
K

v =                       (1) 

Use the work-kinetic energy 
theorem to relate the kinetic energy 
of the proton to the potential 
difference through which it is 
accelerated: 
 

if KKKW −=∆=  

or, because Ki = 0 and Kf = Kp, 
pKKW =∆=  

Express the work done on the proton 
in terms of its charge e and the 
potential difference ∆V between the 
spheres: 
 

VeW ∆=  

Substitute to obtain: VeK ∆=p  

 
Substitute in equation (1) to obtain: 

p

2
m

Vev ∆
=  

 
Substitute numerical values and 
evaluate v: 

( )( )

m/s1038.1

kg101.67
V100C101.62

5

27

19

×=

×
×

= −

−

v
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80 ••  

Picture the Problem Equation 23-20 is 22 xakQV += .  
 
(a) A spreadsheet solution is shown below for kQ = a = 1. The formulas used to calculate 
the quantities in the columns are as follows: 
 

Cell Content/Formula Algebraic Form 
A4 A3 + 0.1 x + ∆x 
B3 1/(1+A3^2)^(1/2) 

22 xa
kQ

+
 

 
 

 A B 
1   
2 x V(x) 
3 −5.0 0.196 
4 −4.8 0.204 
5 −4.6 0.212 
6 −4.4 0.222 
7 −4.2 0.232 
8 −4.0 0.243 
9 −3.8 0.254 
   

49 4.2 0.232 
50 4.4 0.222 
51 4.6 0.212 
52 4.8 0.204 
53 5.0 0.196  

 
The following graph shows V as a function of x: 

0.2

0.4

0.6

0.8

1.0

-5 -4 -3 -2 -1 0 1 2 3 4 5

x  (arbit rary unit s)

V
 (V

)

 
 



Electric Potential 
 

 

223

(b) Examining the graph we see that 
the maximum value of V occurs 
where: 
 

0=x  

Because E = −dV/dx, examination of 
the graph tells us that: 

( ) 00 =E  

 
81 ••  
Picture the Problem Let R2 be the radius of the second sphere and Q1 and Q2 the charges 
on the spheres when they have been connected by the wire. When the spheres are 
connected, the charge initially on the sphere of radius R1 will redistribute until the 
spheres are at the same potential. 
 
Express the common potential of the 
spheres when they are connected: 1

1kV12
R

kQ
=                            (1) 

and 

  
2

2kV12
R

kQ
=                          (2)       

 
Express the potential of the first 
sphere before it is connected to the 
second sphere: 
 

( )
1

21kV20
R

QQk +
=                  (3) 

Solve equation (1) for Q1: 
 

( )
k

RQ 1
1

kV12
=  

 
Solve equation (2) for Q2: 
 

( )
k

RQ 2
2

kV12
=  

 
Substitute in equation (3) to obtain: ( ) ( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

⎟
⎠
⎞

⎜
⎝
⎛ +

=

1

2

1

21

kV12kV12

kV12kV12

kV20

R
R

R
k

R
k

Rk

 

or 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

2128
R
R

 

 
Solve for R2: 

12 3
2 RR =  
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*82 ••  
Picture the Problem We can use the definition of surface charge density to relate the 
radius R of the sphere to its charge Q and the potential function ( ) rkQrV = to relate Q 

to the potential at r = 2 m. 
 
Use its definition, relate the surface 
charge density σ to the charge Q on 
the sphere and the radius R of the 
sphere: 
 

24 R
Q
π

σ =  

Solve for R to obtain: 

πσ4
QR =  

 
Relate the potential at r = 2.0 m to the 
charge on the sphere: 
 

( )
r

kQrV =  

Solve for Q to obtain: 
 

( )
k

rrVQ =  

 
Substitute to obtain: ( ) ( )

( )
σ

∈
πσ

∈π
σπ

rrV

rrV
k
rrVR

0

0

4
4

4

=

==
 

 
Substitute numerical values and evaluate R: 

 
( )( )( ) m600.0

nC/m6.24
V500m2m/NC1085.8

2

2212

=
⋅×

=
−

R  

 
83 ••  
Picture the Problem We can use the definition of surface charge density to relate the 
radius R of the sphere to its charge Q and the potential function ( ) rkQrV = to relate Q 

to the potential at r = 2 m. 
 
Use its definition, relate the surface 
charge density σ to the charge Q on 
the disk and the radius R of the disk: 
 

2R
Q

π
σ =  

Solve for Q to obtain: 2RQ πσ=                                       (1) 
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Relate the potential at r to the charge 
on the disk: 
 

( ) ( )xRxkrV −+= 222 σπ                        

Substitute V(0.6 m) = 80 V: ( ) ⎟
⎠
⎞⎜

⎝
⎛ −+= m6.0m6.02V80 22 Rkσπ    

Substitute V(1.5 m) = 40 V: 
 

( ) ⎟
⎠
⎞⎜

⎝
⎛ −+= m5.1m5.12V40 22 Rkσπ      

 
Divide the first of these equations 
by the second to obtain: 

( )
( ) m5.1m5.1

m6.0m6.0
2

22

22

−+

−+
=

R

R
 

 
Solve for R to obtain: 
 

m800.0=R  

Express the electric field on the axis of 
a disk charge: ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−=

22
12

Rx

x
kEx σπ  

 
Solve for σ to obtain: 
 

22

0

22

1

2

12

Rx
x
E

Rx
xk

E

x

x

+
−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−

=

∈

π
σ

 

 
Evaluate σ using R = 0.8 m and  
E(1.5 m) = 23.5 V/m: 

( )( )

( ) ( )
2

22

2212

nC/m54.3

m0.8m1.5

m1.51

V/m23.5m/NC108.852

=

+
−

⋅×
=

−

σ

 
Substitute in equation (1) and 
evaluate Q: 

( )( )
nC12.7

m0.8nC/m3.54 22

=

= πQ
 

 
84 ••  
Picture the Problem We can use U = kq1q2/R to relate the electrostatic potential energy 
of the particles to their separation. 
 
Express the electrostatic potential 
energy of the two particles in terms of 
their charge and separation: 
 

R
qkqU 21=  

 
 



Chapter 23    
 

 

226 

Solve for R: 
U

qkqR 21=  

 
Substitute numerical values and evaluate R: 

( )( )( )( ) fm6.44

eV
C101.6MeV30.5

C101.6822/CmN108.99
19

219229

=
×

×

×⋅×
= −

−

R  

 
85 ••   
Picture the Problem We can use l∆=∆ EV and the expression for the electric field due 
to a plane of charge to find the potential difference between the two planes. The 
conducting slab introduced between the planes in part (b) will have a negative charge 
induced on its surface closest to the plane with the positive charge density and a positive 
charge induced on its other surface. We can proceed as in part (a) to find the potential 
difference between the planes with the conducting slab in place. 
 
(a) Express the potential difference 
between the two planes: 
 

EdEV =∆=∆ l  
 
 

The electric field due to each plane 
is: 
 

02 ∈
σ

=E  

 
Because the charge densities are of 
opposite sign, the fields are additive  
and the resultant electric field 
between the planes is: 

000

2plane1plane

22 ∈
σ

∈
σ

∈
σ

=+=

+= EEE
 

 
Substitute to obtain: 

0∈
σ dV =∆  

 
(b) The diagram shows the 
conducting slab between the two 
planes and the electric field lines in 
the region between the original two 
planes. 
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Express the new potential difference 
∆V′ between the planes in terms of the 
potential differences ∆V1, ∆V2 and 
∆V3: 

23211

321'
ll EaEE

VVVV
++=

∆+∆+∆=∆
 

Express the electric fields in regions 1, 
2 and 3: 
 

0
31 ∈

σ
== EE  and 02 =E  

 
Substitute to obtain: 
 

( )21
0

2
0

1
0

'

ll

ll

+=

+=∆

∈
σ

∈
σ

∈
σV

 

 
Express 21 ll + in terms of a and d: ad −=+ 21 ll  

 
Substitute to obtain: ( )adV −=∆

0

'
∈
σ

 

 
86 •••  
Picture the Problem We need to consider three regions, as in Example 23-5. Region I, x 
> a; region II, 0 < x < a; and region III, x < 0. We can find V in each of these regions and 
then find E from lddVE −= . 

 
(a) Relate EI to VI: 
 dx

dVE I
I −=  

 
In region I we have: 

ax
kq

x
kqV

−
+= 21

I  

 
Substitute and evaluate EI: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
+−=

ax
kq

x
kq

dx
dE 21

I  

 
Because x > 0:  xx =  

 
For x > a: axax −=−  

 
Substitute to obtain: 
 

( )2
2

2
1

21
I

ax
kq

x
kq

ax
kq

x
kq

dx
dE

−
+=

⎥⎦
⎤

⎢⎣
⎡

−
+−=
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Proceed as above for regions II and III 
to obtain: ( )2

2
2
1

II ax
kq

x
kqE

−
−=  

and 

( )2
2

2
1

III ax
kq

x
kqE

−
−−=  

 
(b) The distance between q1 and a 
point on y axis is y and the distance 
between a point on the y axis and q2 

is 22 ay + . Using these distances, 

express the potential at a point on 
the y axis: 
 

( )
22

21

ay
kq

y
kqyV

+
+=  

(c) To obtain the y component of 
E
r

at a point on the y axis we take 
the derivative of V(y). For y > 0: 
 

( ) 2322
2

2
1

22
21

ay
ykq

y
kq

ay
kq

y
kq

dy
dEy

+
+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
+−=

 

 
For y < 0: 

( ) 2322
2

2
1

22
21

ay
ykq

y
kq

ay
kq

y
kq

dy
dEy

+
+−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
+−−=

 

 

law. sCoulomb' using
 obtains one that  and   todue fields  theof components  theare These 21 qq

 

 
*87 •••  
Picture the Problem We can consider the relationship between the potential and the 
electric field to show that this arrangement is equivalent to replacing the plane by a point 
charge of magnitude −q located a distance d beneath the plane. In (b) we can first find the 
field at the plane surface and then use E0=∈σ to find the surface charge density. In (c) 
the work needed to move the charge to a point 2d away from the plane is the product of 
the potential difference between the points at distances 2d and 3d from −q multiplied by 
the separation ∆x of these points. 
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(a) 

 zero. isinfinity at  potential  thezero, is chargenet  the
 because Also,  plane.  in the everywhere potential same  thegivemust 

 they so ts,arrangemenboth in  plane  thelar toperpendicu is field electric
  theandt arrangemeneither in  0 is plane on the anywhere potential The

xy
 

 
(b) The surface charge density is 
given by: 
 

E0=∈σ                              (1) 

At any point on the plane, the 
electric field points in the negative x 
direction and has magnitude: 
 

θcos22 rd
kqE
+

=  

where θ is the angle between the horizontal 
and a vector pointing from the positive 
charge to the point of interest on the xz 
plane and r is the distance along the plane 
from the origin (i.e., directly to the left of 
the charge).   
  

Because :cos
22 rd

d
+

=θ  

 

( )

( ) 2322
0

2322

2222

4 rd

qd
rd

kqd
rd

d
rd

kqE

+∈
=

+
=

++
=

π

 

 
Substitute for E in equation (1) to 
obtain: ( ) 2/3224 rd

qd
+

=
π

σ  

 
88 •••  
Picture the Problem We can express the potential due to the ring charges as the sum of 
the potentials due to each of the ring charges. To show that V(x) is a minimum at x = 0, 
we must show that the first derivative of V(x) = 0 at x = 0 and that the second derivative 
is positive. In part (c) we can use a Taylor expansion to show that, for x << L, the 
potential is of the form V(x) = V(0) + α x2. In part (d) we can obtain the potential energy 
function from the potential function and, noting that it is quadratic in x, find the ″spring″ 
constant and the angular frequency of oscillation of the particle provided its displacement 
from its equilibrium position is small. 
 
(a) Express the potential due to the 
ring charges as the sum of the 

( ) rightthetoringleftthetoring VVxV +=  
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potentials due to each of their 
charges: 
 
The potential for a ring of charge is: 
 

( )
22 Rx

kQxV
+

=  

where R is the radius of the ring and Q is 
the charge of the ring. 
 

For the ring to the left we have: 
 ( ) 22leftthetoring

LLx

kQV
++

=  

 
For the ring to the right we have: 
 ( ) 22rightthetoring

LLx

kQV
+−

=  

 
Substitute to obtain: 
 

( )
( ) ( ) 2222 LLx

kQ

LLx

kQxV
+−

+
++

=  

 
(b) Evaluate dV/dx to obtain: 
 

( )[ ] ( )[ ] extremafor 023222322
=

⎪⎭

⎪
⎬
⎫

++

+
−

⎪⎩

⎪
⎨
⎧

+−

−
=

LxL

xL

LxL

xLkQ
dx
dV

 

 
Solve for x to obtain: x = 0 

 
Evaluate d2V/dx2 to obtain: 
 

( )
( )[ ] ( )[ ]

( )
( )[ ]

( )[ ] ⎪⎭

⎪
⎬
⎫

+−
−

++

+
+

+−
−

⎪⎩

⎪
⎨
⎧

+−

−
=

2322

2522

2

23222522

2

2

2

1

313

LxL

LxL

xL

LxLLxL

xLkQ
dx

Vd

 

 
Evaluate this expression for  
x = 0 to obtain: 
 

( ) 0
22

0
32

2

>=
L

kQ
dx
Vd

 

0.  at  maximum a is )( Hence =xxV  
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(c) The Taylor expansion of V(x) is: ( ) ( ) ( ) ( )
sorder termhigher  
0''0'0 2

2
1

+

++= xVxVVxV
 

 
For x << L: 
 

( ) ( ) ( ) ( ) 2
2
1 0''0'0 xVxVVxV ++≈  

Substitute our results from part (b) 
to obtain: 

( ) ( )

2
3

2
32

1

24
2

22
02

x
L

kQ
L
kQ

x
L

kQx
L
kQxV

+=

⎟
⎠

⎞
⎜
⎝

⎛++=
 

or 
( ) ( ) 20 xVxV α+=  

where 

( )
L
kQV 20 = and 

324 L
kQ

=α  

 
(d) Express the angular frequency of 
oscillation of a simple harmonic 
oscillator: 
 

m
k '

=ω  

where k′ is the restoring constant. 

From our result for part (c) and the 
definition of electric potential: 

( ) ( )

( ) 2
2
1

2
3

'0
222

10

xkqV

x
L

kqQqVxU

+=

⎟
⎠
⎞

⎜
⎝
⎛+=

 

where 
322

'
L

kqQk =  

 
Substitute for k′ in the expression 
for ω: 322 Lm

kqQ
=ω  

 
89 •••  
Picture the Problem The diagram shows 
part of the shells in a cross-sectional view 
under the conditions of part (a) of the 
problem. We can use Gauss’s law to find 
the electric field in the regions defined by 
the three surfaces and then find the electric 
potentials from the electric fields.  In part 
(b) we can use the redistributed charges to 
find the charge on and potentials of the 
three surfaces.  
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(a) Apply Gauss’s law to a spherical 
Gaussian surface of radius r  ≥ c to 
obtain: 
 

( ) 04
0

enclosed2 ==
∈

π QrEr  

and Er = 0 because the net charge enclosed 
by the Gaussian surface is zero. 

Because Er(c) = 0: 
 

( ) 0=cV  

Apply Gauss’s law to a spherical 
Gaussian surface of radius b < r  < c 
to obtain: 
 

( )
0

24
∈

π QrEr =  

and 

( ) 2r
kQcrbEr =<<  

 
Use ( )crbEr << to find the 

potential difference between c and b: 
 

( ) ( )

⎟
⎠
⎞

⎜
⎝
⎛ −=

−=− ∫

cb
kQ

r
drkQcVbV

b

c

11

2

 

 
Because V(c) = 0: ( ) ⎟

⎠
⎞

⎜
⎝
⎛ −=

cb
kQbV 11

 

 
The inner shell carries no charge, so 
the field between r = a and  
r = b is zero and: 
 

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −==

cb
kQbVaV 11

 

(b) When the inner and outer shells 
are connected their potentials become 
equal as a consequence of the 
redistribution of charge. 

 
 

The charges on surfaces a and c are 
related according to: 
 

QQQ ca −=+                            (1) 
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Qb does not change with the 
connection of the inner and outer 
shells: 
 

QQ =b  

Express the potentials of shells a 
and c: 

( ) ( ) 0== cVaV  

In the region between the r = a and  
r = b, the field is kQa/r2 and the 
potential at r = b is then: 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −=

ab
kQbV a

11
                    (2) 

The enclosed charge for b < r < c is 
Qa + Q, and by Gauss’s law the field 
in this region is: 
 

( )
2r

QQkE a
crb

+
=<<  

Express the potential difference 
between b and c: 

( ) ( ) ( )

( )bV
bc

QQkbVcV a

−=

⎟
⎠
⎞

⎜
⎝
⎛ −+=−

11
 

because V(c) = 0. 
 

Solve for V(b) to obtain: 
 

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −+=

cb
QQkbV a

11
             (3) 

 
Equate equations (2) and (3) and 
solve for Qa to obtain: 

( )
( )acb

bcaQQa −
−

−=                      (4) 

 
Substitute equation (4) in equation (1) 
and solve for Qc to obtain: 

( )
( )acb

abcQQc −
−

−=                       (5) 

 
Substitute (4) and (5) in (3) to obtain: ( ) ( )( )

( )acb
abbckQbV

−
−−

= 2  
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*90 •••  
Picture the Problem The diagram shows a 
cross-sectional view of a portion of the 
concentric spherical shells. Let the charge 
on the inner shell be q. The dashed line 
represents a spherical Gaussian surface 
over which we can integrate dAnE ˆ⋅

r
in 

order to find Er for r ≥ b. We can find V(b) 
from the integral of Er between r = ∞ and  
r = b. We can obtain a second expression 
for V(b) by considering the potential 
difference between a and b and solving the 
two equations simultaneously for the 
charge q on the inner shell. 

 

 
Apply Gauss’s law to a spherical surface of 
radius r ≥ b: 
 

( )
0

24
ε

π qQrEr
+

=  

Solve for Er to obtain: ( )
2r

qQkEr
+

=  

 
Use Er to find V(b): ( ) ( )

( )
b

qQk
r
drqQkbV

b

+
=

+−= ∫
∞

2

 

 
We can also determine V(b) by 
considering the potential difference 
between a, i.e., 0 and b: 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −=

ab
kqbV 11

 

Equate these expressions for V(b) to 
obtain: 

( )
⎟
⎠
⎞

⎜
⎝
⎛ −=

+
ab

ka
b

qQk 11
 

 
Solve for q to obtain: 

Q
b
aq −=  

 
91 •••  
Picture the Problem We can use the hint to derive an expression for the electrostatic 
potential energy dU required to bring in a layer of charge of thickness dr and then 
integrate this expression from r = 0 to R to obtain an expression for the required work. 
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If we build up the sphere in layers, 
then at a given radius r the net 
charge on the sphere will be given 
by: 
 

Q(r) = Q
r
R

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

3

 

When the radius of the sphere is r, 
the potential relative to infinity is: 
 

( ) ( )
3

2

00 44 R
rQ

r
rQrV

∈
=

∈
=

ππ
 

Express the work dW  required to 
bring in charge dQ  from infinity to 
the surface of a uniformly charged 
sphere of radius r: 
 

( )

drr
R

Q

dr
R
Qr

R
rQ

dQrVdUdW

4
6

0

2

3
2

3

2

0

4
3

4
34

4

∈
=

⎟
⎠
⎞

⎜
⎝
⎛

∈
=

==

π

π
π

π
 

 
Integrate dW from 0 to R to obtain: 

R
Qr

R
Q

drr
R

QUW

R

R

0

2

0

5

6
0

2

0

4
6

0

2

20
3

54
3

4
3

∈
=⎥

⎦

⎤
⎢
⎣

⎡
∈

=

∈
== ∫

ππ

π
 

 
92 ••  
Picture the Problem We can equate the rest energy of an electron and the result of 
Problem 91 in order to obtain an expression that we can solve for the classical electron 
radius. 
 
From Problem 91 we have: 

R
eU

0

2

20
3

∈
=

π
 

 
The rest mass of the electron is 
given by: 
 

2
00 cmE =  

 

Equate these energies to obtain: 
 2

0
0

2

20
3 cm

R
e

=
∈π

 

 
Solve for R: 

2
00

2

20
3

cm
eR

∈
=

π
 

 
Substitute numerical values and evaluate R: 
 

( )
( )( )( )

m1069.1

J/eV106.1eV1011.5mN/C1085.820
C106.13

15

1952212

219

−

−−

−

×=

××⋅×
×

=
π

R
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repulsion. mutual
own itsagainst  together holdselectron   thehowexplain not  does model This

 

 
93 ••  
Picture the Problem Because the post-fission volumes of the fission products are equal, 
we can express the post-fission radii in terms of the radius of the pre-fission sphere.  
 
(a) Relate the initial volume V of the 
uniformly charged sphere to the 
volumes V′ of the fission products: 
 

'2VV =  

Substitute for V and V ′: ( )3
3
43

3
4 '2 RR ππ =  

 
Solve for and evaluate R′: 

RRR 794.0
2

1'
3

==  

 
(b) Express the difference ∆E in the 
total electrostatic energy as a result 
of fissioning: 
 

'EEE −=∆  

From Problem 91 we have: 
 R

QE
0

2

20
3

∈
=

π
 

 
After fissioning: 

( )

E
R

Q

R

Q
R

QE

630.0
20

3
2
2

2
120

32
'20

'32'

0

23

30

2
2
1

0

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∈

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∈
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∈

=

π

ππ
 

 
Substitute for E and E′ to obtain: EEEE 370.0630.0 =−=∆  

 
*94 •••  
Picture the Problem We can use the definition of density to express the radius R of a 
nucleus as a function of its atomic mass N. We can then use the  result derived in 
Problem 91 to express the electrostatic energies of the 235U nucleus and the nuclei of the 
fission fragments 140Xe and 94Sr. 
 
The energy released by this fission 
process is: 
 

( )
SrXeU 94140235 UUUE +−=∆       (1) 

Express the mass of a nucleus in 
terms of its density and volume: 

3
3
4 RNm ρπ=  

where N is the nuclear number. 
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Solve for R to obtain: 
3

4
3

πρ
NmR =  

 
Substitute numerical values and 
evaluate R as a function of N: 
 

( )
( )

( ) 3116

313
317

27

m1097.9

kg/m1044
kg10660.13

N

NR

−

−

×=

×
×

=
π  

 
The 'radius' of the 235U nucleus is 
therefore: 
 

( )( )
m1015.6

235m1097.9
15

3116

−

−

×=

×=UR
 

 
From Problem 91 we have: 

R
QU

0

2

20
3

∈
=

π
 

 
Substitute numerical values and evaluate the electrostatic energy of the 235U 
nucleus: 
 

( )
( )( )

MeV1189
J/eV106.1

eV1J1091.1

m1015.6mN/C1085.820
C106.1923

19
10

152212

219

U235

=
×

××=

×⋅×
××

=

−
−

−−

−

π
U

 

 
Proceed as above to find the electrostatic energy of the fission fragments 140Xe and 94Sr: 
 

( )
( )( )

MeV410
J/eV106.1

eV1J1057.6

m1015.6mN/C1085.820
C106.1543

19
11

152212

219

Xe140

=
×

××=

×⋅×
××

=

−
−

−−

−

π
U

 

and 
( )

( )( )
MeV203

J/eV10602.1
eV1J1025.3

m1015.6mN/C1085.820
C106.1383

19
11

152212

219

Sr94

=
×

××=

×⋅×
××

=

−
−

−−

−

π
U

 

 
Substitute for 

U235U , 
Xe140U , and 

Sr94U in equation (1) and evaluate 
∆E: 

( )
MeV576

MeV203MeV410MeV1189

=

+−=∆E
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Picture the Problem The geometry of the point charge and the sphere is shown below.  
The charge is a distance R away from the center of a spherical shell of radius a.   
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(a) The average potential over the 
surface of the sphere is given by: 
 

∫∫ ==
spheresphereav r

dAk
r

kdqV σ
 

Substitute for k, σ, and dA to obtain: ( )( )
∫∈

=
π

π
θθπ

π 0
2

0
av 4

sin2
4

1
ra

adaqV  

 
Apply the law of cosines to the 
triangle to obtain: θcos222 aRaRr −+=  

 
Substitute for r and simplify to 
obtain: 
 ( )∫ −+∈

=
π

θ
θθ

π 0
2122

0
av

cos2
sin

8 aRaR
dqV  

 
Change variables by letting  
u = cosθ. Then: 
 

θθddu sin−=  
and 

( )∫
−

−+∈
−

=
1

1
2122

0
av

28 aRuaR
duqV

π
     (1) 

 
To simplify the integrand, let: 22 aR +=α , aR2=β , and uv βα −=  

 
Then dudv β−= and: 
 

( )
[ ]βαβα

βα
ββ

−−+−=

−−=−=−=
−+

−−

∫∫

aR

u
aR

v
v

dv
aRuaR

du

1

121
2

1

1

1

1
2122

2

1

2

1

l

l

l

l  

 
Substitute for α and β to obtain: 
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( ) [ ]
( ) ( )

( ) ( )[ ]
R

aRaR
aR

aRaR
aR

aRaRaRaR
aRaRuaR

du

21

1

221
2

22

2222
1

1
2122

−=−−+−=

⎥⎦
⎤

⎢⎣
⎡ −−+−=

−+−++−=
−+∫

−

 

 
Substitute in equation (1) to obtain: 

R
q

R
qV

00
av 4

2
8 ∈

=⎟
⎠
⎞

⎜
⎝
⎛−

∈
−

=
ππ

 

 

 charge.point 
  the todue sphere  theofcenter  at the potential  theisresult   that thisNote

 

 

(b)  

it. of outside charges ofion configuratany  and sphereany for  holdmust 
result   thissphere,  theof propertiesany  oft independen isresult  this

 Because space.in  onsdistributi chargeany   todue potentials  theof sum
  theispoint any at  potential  that theus  tellsprincipleion superposit The
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