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Chapter 24 
Electrostatic Energy and Capacitance 
 
Conceptual Problems 
 
*1 •  
Determine the Concept The capacitance of a parallel-plate capacitor is a function of the 
surface area of its plates, the separation of these plates, and the electrical properties of the 
matter between them. The capacitance is, therefore, independent of the voltage across the 
capacitor. correct. is )(c  

 
2 •  
Determine the Concept The capacitance of a parallel-plate capacitor is a function of the 
surface area of its plates, the separation of these plates, and the electrical properties of the 
matter between them. The capacitance is, therefore, independent of the charge of the 
capacitor. correct. is )(c  

 
3 •  
Determine the Concept True. The energy density of an electrostatic field is given by 

2
02

1
e Eu ∈= .  

 
4 •  
Picture the Problem The energy stored in the electric field of a parallel-plate capacitor is 
related to the potential difference across the capacitor by .2

1 QVU =  

 
Relate the potential energy stored in 
the electric field of the capacitor to the 
potential difference across the 
capacitor: 
 

QVU 2
1=  

. doubles  doubling Hence, .  toalproportiondirectly  is  constant, With UVVUQ  

 
*5 ••  
Picture the Problem The energy stored in a capacitor is given by QVU 2

1= and the 
capacitance of a parallel-plate capacitor by .0 dAC ∈= We can combine these 

relationships, using the definition of capacitance and the condition that the potential 
difference across the capacitor is constant, to express U as a function of d. 
 
Express the energy stored in the 
capacitor: 
 

QVU 2
1=  
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Use the definition of capacitance to 
express the charge of the capacitor: 
 

CVQ =  

Substitute to obtain: 2
2
1 CVU =  

 
Express the capacitance of a 
parallel-plate capacitor in terms of 
the separation d of its plates: 
 

d
AC 0∈

=  

where A is the area of one plate. 

Substitute to obtain: 
 d

AVU
2

2
0∈

=  

 

Because
d

U 1
∝ , doubling the 

separation of the plates will reduce 
the energy stored in the capacitor to 
1/2 its previous value: 

 
 
 
 

correct. is )(d  

  
6 ••  
Picture the Problem Let V represent the initial potential difference between the plates, U 
the energy stored in the capacitor initially, d the initial separation of the plates, and V ′, U 
′, and d ′ these physical quantities when the plate separation has been doubled. We can 
use QVU 2

1= to relate the energy stored in the capacitor to the potential difference 

across it and V = Ed to relate the potential difference to the separation of the plates. 
 
Express the energy stored in the 
capacitor before the doubling of the 
separation of the plates: 
 

QVU 2
1=  

Express the energy stored in the 
capacitor after the doubling of the 
separation of the plates: 
 

QV'U' 2
1=  

because the charge on the plates does not 
change. 

Express the ratio of U′ to U: 
V
V'

U
U'

=  

 
Express the potential differences 
across the capacitor plates before 
and after the plate separation in 
terms of the electric field E between 
the plates: 

EdV =  
and 

Ed'V' =  
because E depends solely on the charge on 
the plates and, as observed above, the 
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 charge does not change during the 
separation process. 
 

Substitute to obtain: 
d
d'

Ed
Ed'

U
U'

==  

 
For d ′ = 2d: 22'

==
d
d

U
U

and correct is )(b  

 
7 •  
Determine the Concept Both statements are true. The total charge stored by two 
capacitors in parallel is the sum of the charges on the capacitors and the equivalent 
capacitance is the sum of the individual capacitances. Two capacitors in series have the 
same charge and their equivalent capacitance is found by taking the reciprocal of the sum 
of the reciprocals of the individual capacitances.  
 
8 ••  
(a) False. Capacitors connected in series carry the same charge. 
 
(b) False. The voltage across the capacitor whose capacitance is C0 is Q/C0 and that 
across the second capacitor is Q/2C0. 
 
(c) False. The energy stored by the capacitor whose capacitance is C0 is 0

2 2CQ and the 

energy stored by the second capacitor is .4 0
2 CQ  

 
(d) True  

 
9 •  
Determine the Concept True. The capacitance of a parallel-plate capacitor filled with a 

dielectric of constant κ is given by 
d

AC 0∈κ
= or C ∝ κ. 

 
*10 ••  
Picture the Problem We can treat the configuration in (a) as two capacitors in parallel 
and the configuration in (b) as two capacitors in series. Finding the equivalent 
capacitance of each configuration and examining their ratio will allow us to decide 
whether (a) or (b) has the greater capacitance. In both cases, we’ll let C1 be the 
capacitance of the dielectric-filled capacitor and C2 be the capacitance of the air 
capacitor. 
 
In configuration (a) we have: 21 CCCa +=  
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Express C1 and C2: 
 d

A
d

A
d

AC
2

02
1

0

1

10
1

∈
=

∈
=

∈
=

κκκ
 

and 

d
A

d
A

d
AC

2
02

1
0

2

20
2

∈
=

∈
=

∈
=  

 
Substitute for C1 and C2 and 
simplify to obtain: 

( )1
222
000 +

∈
=

∈
+

∈
= κκ

d
A

d
A

d
ACa   

 
In configuration (b) we have: 

21

111
CCCb

+=  ⇒ 
21

21

CC
CCCb +

=  

 
Express C1 and C2: 
 d

A
d
A

d
AC 0

2
1
0

1

10
1

2∈
=

∈
=

∈
=  

and 

d
A

d
A

d
AC 0

2
1

0

2

20
2

2 ∈
=

∈
=

∈
=

κκκ
 

 
Substitute for C1 and C2 and 
simplify to obtain: 

( )

⎟
⎠
⎞

⎜
⎝
⎛

+
∈

=

+
∈

⎟
⎠
⎞

⎜
⎝
⎛ ∈
⎟
⎠
⎞

⎜
⎝
⎛ ∈

=

∈
+

∈

⎟
⎠
⎞

⎜
⎝
⎛ ∈
⎟
⎠
⎞

⎜
⎝
⎛ ∈

=

1
2

12

22

22

22

0

0

00

00

00

κ
κ

κ

κ

κ

κ

d
A
d

A
d

A
d

A
d

A
d

A
d

A
d

A

Cb

    

 
Divide Cb by Ca: 
 

( ) ( )20

0

1
4

1
2

1
2

+
=

+
∈

⎟
⎠
⎞

⎜
⎝
⎛

+
∈

=
κ
κ

κ

κ
κ

d
A

d
A

C
C

a

b  

 

Because 
( )

1
1

4
2 <+κ

κ
 for κ > 1: ba CC >  
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11 •  
(a) False. The capacitance of a parallel-plate capacitor is defined to be the ratio of the 
charge on the capacitor to the potential difference across it. 
 
(b) False. The capacitance of a parallel-plate capacitor depends on the area of its plates A, 
their separation d, and the dielectric constant κ of the material between the plates 
according to .0 dAC ∈=κ  

 
(c) False. As in part (b), the capacitance of a parallel-plate capacitor depends on the area 
of its plates A, their separation d, and the dielectric constant κ of the material between the 
plates according to .0 dAC ∈=κ  

 
12 ••  
Picture the Problem We can use the expression 2

2
1 CVU = to express the ratio of the 

energy stored in the single capacitor and in the identical-capacitors-in-series combination. 
 
Express the energy stored in 
capacitors when they are connected 
to the 100-V battery: 
 

2
eq2

1 VCU =  

Express the equivalent capacitance 
of the two identical capacitors 
connected in series: 
 

C
C

CC 2
1

2

eq 2
==  

Substitute to obtain: 
 

( ) 2
4
12

2
1

2
1 CVVCU ==  

Express the energy stored in one 
capacitor when it is connected to the 
100-V battery: 
 

2
2
1

0 CVU =  

Express the ratio of U to U0: 
 2

1
2

2
1

2
4
1

0

==
CV
CV

U
U

 

or 

02
1 UU = and correct is )(d  

 
Estimation and Approximation 
 
13 ••  
Picture the Problem The outer diameter of a "typical" coaxial cable is about  
5 mm, while the inner diameter is about 1 mm. From Table 24-1 we see that a reasonable 
range of values for κ is 3-5. We can use the expression for the capacitance of a 
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cylindrical capacitor to estimate the capacitance per unit length of a coaxial cable. 
 
The capacitance of a cylindrical 
dielectric-filled capacitor is given 
by: 
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∈

=

1

2

0

ln

2

R
R

LC πκ
 

where L is the length of the capacitor, R1 is 
the radius of the inner conductor, and R2 is 
the radius of the second (outer) conductor. 
 

Divide both sides by L to obtain an 
expression for the capacitance per 
unit length of the cable: 
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∈

=

1

2

1

2

0

ln2ln

2

R
Rk

R
RL

C κπκ
 

 
If κ = 3: 
 

( )
nF/m104.0

mm5.0
mm5.2lnC/mN1099.82

3
229

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅×

=
L
C

 

 
If κ = 5: 
 

( )
nF/m173.0

mm5.0
mm5.2lnC/mN1099.82

5
229

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅×

=
L
C

 

 
A reasonable range of values for C/L, 
corresponding to 3 ≤ κ ≤ 5, is: nF/m0.173nF/m104.0 ≤≤

L
C

 

 
*14 ••  
Picture the Problem The energy stored in a capacitor is given by .2

2
1 CVU =  

 
Relate the energy stored in a 
capacitor to its capacitance and the 
potential difference across it: 
 

2
2
1 CVU =  

Solve for C: 
2

2
V
UC =  

 
The potential difference across the 
spark gap is related to the width of 
the gap d and the electric field E in 
the gap: 
 

EdV =  
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Substitute for V in the expression for 
C to obtain: 
 

22
2

dE
UC =  

Substitute numerical values and 
evaluate C: 

( )
( ) ( )

F2.22

m001.0V/m103
J1002

226

µ=

×
=C

 

 
15 ••  
Picture the Problem Because ∆R << RE we can treat the atmosphere as a flat slab with 
an area equal to the surface area of the earth. Then the energy stored in the atmosphere 
can be estimated from U = uV, where u is the energy density of the atmosphere and V is 
its volume. 
 
Express the electric energy stored in 
the atmosphere in terms of its energy 
density and volume: 
 

uVU =  

Because ∆R << RE = 6370 km, we 
can consider the volume: RR

RAV

∆=

∆=
2
E

earth  theof area surface

4π
 

 
Express the energy density of the 
Earth’s atmosphere in terms of the 
average magnitude of its electric 
field: 
 

2
02

1 Eu ∈=  

Substitute for V and u to obtain: ( )( )
k

RERRREU
2

4
22

E2
E

2
02

1 ∆
=∆= π∈  

 
Substitute numerical values and 
evaluate U: 

( ) ( ) ( )
( )

J1003.9

/CmN1099.82
km1V/m200km6370

10

229

22

×=

⋅×
=U

 

 
16 ••  
Picture the Problem We’ll approximate the balloon by a sphere of radius R = 3 m and 
use the expression for the capacitance of an isolated spherical conductor. 
 
Relate the capacitance of an isolated 
spherical conductor to its radius: 
 

k
RRC == 04 ∈π  
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Substitute numerical values and 
evaluate C: 

nF334.0
/CmN108.99

m3
229 =

⋅×
=C  

 
Electrostatic Potential Energy 
 
17 •  
The electrostatic potential energy of this 
system of three point charges is the work 
needed to bring the charges from an 
infinite separation to the final positions 
shown in the diagram. 

 

 

 
Express the work required to 
assemble this system of charges: 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++=

++=

3,2

32

3,1

31

2,1

21

3,2

32

3,1

31

2,1

21

r
qq

r
qq

r
qqk

r
qkq

r
qkq

r
qkqU

 

 
Find the distances r1,2, r1,3, and r2,3: 
 

m6andm,3m,3 3,13,22,1 === rrr  

(a) Evaluate U for q1 = q2 = q3 = 2 µC: 
 

( ) ( )( ) ( )( ) ( )( )

mJ0.30

m3
C2C2

m6
C2C2

m3
C2C2/CmN1099.8 229

=

⎥
⎦

⎤
+⎢

⎣

⎡
+⋅×=

µµµµµµU
 

 
(b) Evaluate U for q1 = q2 = 2 µC and q3 = −2 µC: 
 

( ) ( )( ) ( )( ) ( )( )

mJ99.5

m3
C2C2

m6
C2C2

m3
C2C2/CmN1099.8 229

−=

⎥
⎦

⎤−
+⎢

⎣

⎡ −
+⋅×=

µµµµµµU
 

 
(c) Evaluate U for q1 = q3 = 2 µC and q2 = −2 µC: 
 

( ) ( )( ) ( )( ) ( )( )

mJ0.18

m3
C2C2

m6
C2C2

m3
C2C2/CmN1099.8 229

−=

⎥
⎦

⎤−
+⎢

⎣

⎡
+

−
⋅×=

µµµµµµU
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18 •  
Picture the Problem The electrostatic 
potential energy of this system of three 
point charges is the work needed to bring 
the charges from an infinite separation to 
the final positions shown in the diagram. 

 
 
Express the work required to assemble 
this system of charges: 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++=

++=

3,2

32

3,1

31

2,1

21

3,2

32

3,1

31

2,1

21

r
qq

r
qq

r
qqk

r
qkq

r
qkq

r
qkqU

 

 
Find the distances r1,2, r1,3, and r2,3: 
 

m5.23,13,22,1 === rrr  

(a) Evaluate U for q1 = q2 = q3 = 4.2 µC: 
 

( ) ( )( ) ( )( )

( )( )

J190.0

m5.2
C2.4C2.4

m5.2
C2.4C2.4

m5.2
C2.4C2.4/CmN1099.8 229

=

⎥
⎦

⎤
+

+⎢
⎣

⎡
⋅×=

µµ

µµµµU

 

 
(b) Evaluate U for q1 = q2 = 4.2 µC and q3 = −4.2 µC: 
 

( ) ( )( ) ( )( )

( )( )

mJ4.63

m5.2
C2.4C2.4

m5.2
C2.4C2.4

m5.2
C2.4C2.4/CmN10988.8 229

−=

⎥
⎦

⎤−
+

−
+⎢

⎣

⎡
⋅×=

µµ

µµµµU

 

 
(c) Evaluate U for q1 = q2 = −4.2 µC and q3 = +4.2 µC: 
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( ) ( )( ) ( )( )

( )( )

mJ4.63

m5.2
C2.4C2.4

m5.2
C2.4C2.4

m5.2
C2.4C2.4/CmN1099.8 229

−=

⎥
⎦

⎤−
+

−
+⎢

⎣

⎡ −−
⋅×=

µµ

µµµµU

 

 
*19 •  
Picture the Problem The potential of an isolated spherical conductor is given by 

rkQV = ,where Q is its charge and r its radius, and its electrostatic potential energy 
by QVU 2

1= . We can combine these relationships to find the sphere’s electrostatic 

potential energy. 
 
Express the electrostatic potential 
energy of the isolated spherical 
conductor as a function of its charge 
Q and potential V: 
 

QVU 2
1=  

Express the potential of the spherical 
conductor: 
 

r
kQV =  

Solve for Q to obtain: 
k

rVQ =  

 
Substitute to obtain: 

k
rVV

k
rVU

2

2

2
1 =⎟

⎠
⎞

⎜
⎝
⎛=  

 
Substitute numerical values and 
evaluate U: 

( )( )
( )

J2.22

/CmN108.992
kV2m0.1

229

2

µ=

⋅×
=U

 

 
20 ••  
Picture the Problem The electrostatic 
potential energy of this system of four 
point charges is the work needed to bring 
the charges from an infinite separation to 
the final positions shown in the diagram. In 
part (c), depending on the configuration of 
the positive and negative charges, two 
energies are possible. 
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Express the work required to assemble this system of charges: 
 

⎟
⎟
⎠

⎞
+++⎜

⎜
⎝

⎛
++=

+++++=

4,3

43

4,2

42

3,2

32

4,1

41

3,1

31

2,1

21

4,3

43

4,2

42

3,2

32

4,1

41

3,1

31

2,1

21

r
qq

r
qq

r
qq

r
qq

r
qq

r
qqk

r
qkq

r
qkq

r
qkq

r
qkq

r
qkq

r
qkqU

 

 
Find the distances r1,2, r1,3, r1,4, r2,3, 
r2,4, and r3,4,: 
 

m44,14,33,22,1 ==== rrrr  

and 
m244,23,1 == rr  

 
(a) Evaluate U for q1 = q2 = q3 = q4 = −2 µC: 
 

( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

mJ7.48

m4
C2C2

m24
C2C2

m4
C2C2

m4
C2C2

m24
C2C2

m4
C2C2/CmN1099.8 229

=

⎥
⎦

⎤−−
+

−−
+

−−
+

−−
+

−−
+⎢

⎣

⎡ −−
⋅×=

µµµµµµ

µµµµµµU

 

 
(b) Evaluate U for q1 = q2 = q3 = 2 µC and  q4 = −2 µC: 
 

( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

0

m4
C2C2

m24
C2C2

m4
C2C2

m4
C2C2

m24
C2C2

m4
C2C2/CmN1099.8 229

=

⎥
⎦

⎤−
+

−
++

−
++⎢

⎣

⎡
⋅×=

µµµµµµ

µµµµµµU

 

 
(c) Let q1 = q2 = 2 µC and  q3  = q4 = −2 µC: 
 

( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

mJ7.12

m4
C2C2

m24
C2C2

m4
C2C2

m4
C2C2

m24
C2C2

m4
C2C2/CmN1099.8 229

−=

⎥
⎦

⎤−−
+

−
+

−
+

−
+

−
+⎢

⎣

⎡
⋅×=

µµµµµµ

µµµµµµU

 

 
Let q1 = q3 = 2 µC and q2  = q4 = −2 µC: 
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( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

mJ2.23

m4
C2C2

m24
C2C2

m4
C2C2

m4
C2C2

m24
C2C2

m4
C2C2/CmN1099.8 229

−=

⎥
⎦

⎤−
+

−−
+

−
+

−
++⎢

⎣

⎡ −
⋅×=

µµµµµµ

µµµµµµU

 

 
21 ••  
Picture the Problem The diagram shows 
the four charges fixed at the corners of the 
square and the fifth charge that is released 
from rest at the origin. We can use 
conservation of energy to relate the initial 
potential energy of the fifth particle to its 
kinetic energy when it is at a great distance 
from the origin and the electrostatic 
potential at the origin to express Ui.  
 
Use conservation of energy to relate 
the initial potential energy of the 
particle to its kinetic energy when it 
is at a great distance from the origin: 
 

0=∆+∆ UK  
or, because Ki = Uf = 0, 

0if =−UK  

Express the initial potential energy 
of the particle to its charge and the 
electrostatic potential at the origin: 
 

( )0i qVU =  

Substitute for Kf and Ui to obtain: 
 

( ) 002
2
1 =− qVmv  

Solve for v: ( )
m

qVv 02
=  

 
Express the electrostatic potential at 
the origin: 
 

( )

a
kq

a
kq

a
kq

a
kq

a
kqV

2
6

2
6

2
3

2
2

2
0

=

+
−

++=
 

 
Substitute and simplify to obtain: 

ma
kq

a
kq

m
qv 26

2
62

=⎟
⎠
⎞

⎜
⎝
⎛=  
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Capacitance 
 
*22 •  
Picture the Problem The charge on the spherical conductor is related to its radius and 
potential according to V = kQ/r and we can use the definition of capacitance to find the 
capacitance of the sphere. 
 
(a) Relate the potential V of the 
spherical conductor to the charge on 
it and to its radius: 
 

r
kQV =  

Solve for and evaluate Q: 

( )( ) nC2.22
/CmN108.99

kV2m0.1
229 =

⋅×
=

=
k

rVQ
 

 
(b) Use the definition of capacitance 
to relate the capacitance of the 
sphere to its charge and potential: 
 

pF11.1
kV2

nC22.2
===

V
QC  

(c) radius. its offunction  a is sphere a of ecapacitanc The t.doesn'It  

 
23 •  
Picture the Problem We can use its definition to find the capacitance of this capacitor. 
 
Use the definition of capacitance to 
obtain: 

nF0.75
V400
C30
===

µ
V
QC  

 
24 ••  
Picture the Problem Let the separation of the spheres be d and their radii be R. Outside 
the two spheres the electric field is approximately the field due to point charges of +Q 
and −Q, each located at the centers of spheres, separated by distance d. We can derive an 
expression for the potential at the surface of each sphere and then use the potential 
difference between the spheres and the definition of capacitance and to find the 
capacitance of the two-sphere system. 
 
The capacitance of the two-sphere 
system is given by: 
 

V
QC
∆

=  

where ∆V is the potential difference 
between the spheres. 
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The potential at any point outside 
the two spheres is: 
 

( ) ( )
21 r
Qk

r
QkV −

+
+

=  

where r1 and r2 are the distances from the 
given point to the centers of the spheres. 
 

For a point on the surface of the 
sphere with charge +Q: 
 

δ+== drRr 21  and  
where R<δ  

Substitute to obtain: 
 

( ) ( )
δ+

−
+

+
=+ d

Qk
R

QkV Q  

 
For δ << d: 

d
kQ

R
kQV Q −=+  

and 

d
kQ

R
kQV Q +−=−  

 
The potential difference between the 
spheres is: 

⎟
⎠
⎞

⎜
⎝
⎛ −=

⎟
⎠
⎞

⎜
⎝
⎛ +
−

−−=

−=∆ −

dR
kQ

d
kQ

R
kQ

d
kQ

R
kQ

VVV QQ

112

 

Substitute for ∆V in the expression 
for C to obtain: 

d
R

R
dRdR

kQ

QC

−

∈
=

⎟
⎠
⎞

⎜
⎝
⎛ −

∈
=

⎟
⎠
⎞

⎜
⎝
⎛ −

=

1

2

11
2

112

0

0

π

π

 

 
For d very large: RC 02 ∈= π  

 
The Storage of Electrical Energy  
 
25 •  
Picture the Problem Of the three equivalent expressions for the energy stored in a 
charged capacitor, the one that relates U to C and V is 2

2
1 CVU = . 

 
(a) Express the energy stored in the 
capacitor as a function of C and V: 

2
2
1 CVU =  
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Substitute numerical values and 
evaluate U: 
 

( )( ) mJ0.15V100F3 2
2
1 == µU  

(b) Express the additional energy 
required as the difference between 
the energy stored in the capacitor at 
200 V and the energy stored at 100 
V: 

( ) ( )
( )( )

mJ0.45

mJ0.15V200F3

V100V200
2

2
1

=

−=

−=∆

µ

UUU

 

 
26 •  
Picture the Problem Of the three equivalent expressions for the energy stored in a 

charged capacitor, the one that relates U to Q and C is 
C
QU

2

2
1

= . 

 
(a) Express the energy stored in the 
capacitor as a function of C and Q: 
 

C
QU

2

2
1

=  

Substitute numerical values and 
evaluate U: 
 

( ) J800.0
F10

C4
2
1 2

µ
µ
µ

==U  

(b) Express the energy remaining 
when half the charge is removed: 
 

( ) ( ) J 0.200
F10

C2
2
1 2

2
1 µ

µ
µ

==QU  

 
27 •  
Picture the Problem Of the three equivalent expressions for the energy stored in a 

charged capacitor, the one that relates U to Q and C is 
C
QU

2

2
1

= . 

 
(a) Express the energy stored in the 
capacitor as a function of C and Q: 
 

C
QU

2

2
1

=  

Substitute numerical values and 
evaluate U: 
 

( ) ( ) J625.0
pF20
C5

2
1C5

2

==
µµU  

(b) Express the additional energy 
required as the difference between 
the energy stored in the capacitor 
when its charge is 5 µC and when 
its charge is 10 µC: 
 

( ) ( )
( )

J .881

J 0.625 J 2.50

J625.0
pF20
C10

2
1

C5C10
2

=

−=

−=

−=∆

µ

µµ UUU
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*28 •  
Picture the Problem The energy per unit volume in an electric field varies with the 
square of the electric field according to 22

0 Eu ∈= . 

 
Express the energy per unit volume 
in an electric field: 
 

2
02

1 Eu ∈=  

Substitute numerical values and 
evaluate u: 

( )( )
3

22212
2
1

J/m8.39

MV/m3m/NC1085.8

=

⋅×= −u
 

 
29 •  
Picture the Problem Knowing the potential difference between the plates, we can use E 
= V/d to find the electric field between them. The energy per unit volume is given by 

2
02

1 Eu ∈= and we can find the capacitance of the parallel-plate capacitor using 
.0 dAC =∈  

 
(a) Express the electric field between 
the plates in terms of their separation 
and the potential difference between 
them: 

kV/m100
mm1

V100
==

=
d
VE

 

 
(b) Express the energy per unit 
volume in an electric field: 
 

2
02

1 Eu ∈=  

Substitute numerical values and 
evaluate u: 

( )( )
3

22212
2
1

mJ/m3.44

kV/m001m/NC1085.8

=

⋅×= −u
 

 
(c) The total energy is given by: 

( )( )( )
J

uAduVU

µ6.88

mm1m2mJ/m3.44 23

=

=

==

 

 
(d) The capacitance of a parallel-plate 
capacitor is given by: 
 ( )( )

nF7.17

mm1
m2m/NC108.85 22212

0

=

⋅×
=

∈
=

−

d
AC
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(e) The total energy is given by: 
 

2
2
1 CVU =  

Substitute numerical values and evaluate 
U: 

( )( )
).(with agreement in  J,5.88

V100nF17.7 2
2
1

c

U

µ=

=
 

  
30 ••  
Picture the Problem The total energy stored in the electric field is the product of the 
energy density in the space between the spheres and the volume of this space. 
 
(a) The total energy U stored in the 
electric field is given by: 
 

uVU =                                 
where u is the energy density and V is the 
volume between the spheres. 
 

The energy density of the field is: 
 

2
02

1 Eu ∈=                           

where E is the field between the spheres. 
 

The volume between the spheres is 
approximately: 
 

( )12
2

14 rrrV −≈ π  

Substitute for u and V to obtain: 
 

( )12
2

1
2

02 rrrEU −∈= π        (1) 

 
The magnitude of the electric field 
between the concentric spheres is 
the sum of the electric fields due to 
each charge distribution: 
 

QQ EEE −+=  

Because the two surfaces are so 
close together, the electric field 
between them is approximately the 
sum of the fields due to two plane 
charge distributions: 
 

000 22 ∈
=

∈
+

∈
= − QQQE

σσσ
 

Substitute for σQ to obtain: 
 0

2
14 ∈

≈
r
QE

π
 

 
Substitute for E in equation (1) and 
simplify: ( )

2
1

12

0

2

12
2

1

2

0
2

1
0

8

4
2

r
rrQ

rrr
r
QU

−
∈

=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∈

∈=

π

π
π
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Substitute numerical values and evaluate U: 
 

( ) ( )
( )( )

nJ0.56
cm0.10mN/C1085.88

cm0.10cm5.10nC5
22212

2

=
⋅×
−

=
−π

U  

 
(b) The capacitance of the two-
sphere system is given by: 
 

V
QC
∆

=  

where ∆V is the potential difference 
between the two spheres. 
 

The electric potentials at the 
surfaces of the spheres are: 
 

10
1 4 r

QV
∈

=
π

 and 
20

2 4 r
QV
∈

=
π

 

Substitute for ∆V and simplify to 
obtain: 12

21
0

2010

4

44
rr

rr

r
Q

r
Q

QC
−

∈=

∈
−

∈

= π

ππ

 

 
Substitute numerical values and evaluate C: 
 

( )( )( ) nF234.0
cm0.10cm5.10
cm5.10cm0.10mN/C1085.84 2212 =

−
⋅×= −πC  

 
Use ½ Q2/C to find the total energy 
stored in the electric field between 
the spheres: 
 

( ) nJ4.53
nF234.0

nC5
2
1 2

=⎥
⎦

⎤
⎢
⎣

⎡
=U  

).(in  obtained
resultexact our  of 5% within is )(in result  eapproximatour  that Note

b
a

 

 
*31 ••  
Picture the Problem We can relate the charge Q on the positive plate of the capacitor to 
the charge density of the plate σ using its definition. The charge density, in turn, is 
related to the electric field between the plates according to E0∈σ = and the electric field 
can be found from E = ∆V/∆d. We can use VQU ∆=∆ 2

1 in part (b) to find the increase 

in the energy stored due to the movement of the plates. 
 
(a) Express the charge Q on the 
positive plate of the capacitor in 
terms of the plate’s charge density σ 
and surface area A: 

AQ σ=  
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Relate σ to the electric field E 
between the plates of the capacitor: 
 

E0∈σ =  

Express E in terms of the change in 
V as the plates are separated a 
distance ∆d: 
 

d
VE
∆
∆

=  

Substitute for σ and E to obtain: 
 d

VAEAQ
∆
∆

== 00 ∈∈  

 
Substitute numerical values and evaluate Q: 
 

( )( ) nC1.11
cm0.4
V100cm500m/NC108.85 22212 =⋅×= −Q  

 
(b) Express the change in the 
electrostatic energy in terms of the 
change in the potential difference: 
 

VQU ∆=∆ 2
1  

Substitute numerical values and 
evaluate ∆U: 

( )( ) J553.0V100nC11.12
1 µ==∆U  

 
32 •••  
Picture the Problem By symmetry, the electric field must be radial. In part (a) we can 
find Er both inside and outside the ball by choosing a spherical Gaussian surface first 
inside and then outside the surface of the ball and applying Gauss’s law. 
 
(a) Relate the electrostatic energy 
density at a distance r from the 
center of the ball to the electric field 
due to the uniformly distributed 
charge Q: 
 

2
02

1
e Eu ∈=                               (1) 

Relate the flux through the Gaussian 
surface to the electric field Er on the 
Gaussian surface at r < R: 
  

( )
0

inside24
∈

π QrEr =                      (2) 

Using the fact that the charge is 
uniformly distributed, express the 
ratio of the charge enclosed by the 
Gaussian surface to the total charge 
of the sphere: 

3

3

3
3
4

3
3
4

ball

surfaceGaussian inside

R
r

R
r

V
V

Q
Q

==

=

π
π

ρ
ρ
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Solve for Qinside to obtain: 
 3

3

inside R
rQQ =  

 
Substitute in equation (2): ( ) 3

0

3
24

R
QrrEr ∈

π =  

 
Solve for Er < R: r

R
kQ

R
QrE Rr 33

04
==< ∈π

 

 
Substitute in equation (1) to obtain: ( )

2
6

22
0

2

302
1

e

2
r

R
Qk

r
R
kQRru

∈

∈

=

⎟
⎠
⎞

⎜
⎝
⎛=<

 

 
Relate the flux through the Gaussian 
surface to the electric field Er on the 
Gaussian surface at r > R: 
  

( )
00

inside24
∈∈

π QQrEr ==                       

Solve for Er > R: 2

0
24

−
> == kQr

r
QE Rr ∈π

 

 
Substitute in equation (1) to obtain: ( ) ( )

422
02

1

22
02

1
e

−

−

=

=>

rQk

kQrRru

∈

∈
 

 
(b) Express the energy  dU in a 
spherical shell of thickness dr and 
surface area 4π r2: 
 

( )drrurdU 2
shell 4π=  

For r < R: ( )

drr
R

kQ

drr
R

QkrRrdU

4
6

2

2
6

22
02

shell

2

2
4

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=<

∈π
 

 
For r > R: ( ) ( )

drrkQ

drrQkrRrdU
22

2
1

422
02

12
shell 4

−

−

=

=> ∈π
 

 
(c) Express the total electrostatic energy: 
 

( ) ( )RrURrUU >+<=              (3) 
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Integrate Ushell(r < R) from 0 to R: ( )

R
kQ

drr
R

kQRrU
R

10

2
2

0

4
6

2

shell

=

=< ∫
 

 
Integrate Ushell(r > R) from R to ∞: ( )

R
kQdrrkQRrU

R 2

2
22

2
1

shell ==> ∫
∞

−  

 
Substitute in equation (3) to obtain: 
 R

kQ
R

kQ
R

kQU
5

3
210

222

=+=  

 

sphere.
hin theenergy wit field  theincludesit  because sphere for thegreater  is

result The  vanishes.integralfirst   theso zero, is shell  theinside field The
 

 
Combinations of Capacitors 
 
33 •  
Picture the Problem We can apply the properties of capacitors connected in parallel to 
determine the number of 1.0-µF capacitors connected in parallel it would take to store a 
total charge of 1 mC with a potential difference of 10 V across each capacitor. Knowing 
that the capacitors are connected in parallel (parts (a) and (b)) we determine the potential 
difference across the combination. In part (c) we can use our knowledge of how potential 
differences add in a series circuit to find the potential difference across the combination 
and the definition of capacitance to find the charge on each capacitor. 
(a) Express the number of 
capacitors n in terms of the charge q 
on each and the total charge Q: 
 

q
Qn =  

Relate the charge q on one capacitor 
to its capacitance C and the potential 
difference across it: 
 

CVq =  

Substitute to obtain: 
 CV

Qn =  

 
Substitute numerical values and 
evaluate n: ( )( ) 100

V10F1
mC1

==
µ

n  
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(b) Because the capacitors are 
connected in parallel the potential 
difference across the combination is 
the same as the potential difference 
across each of them: 
 

V10ncombinatio parallel ==VV  

(c) With the capacitors connected in 
series, the potential difference 
across the combination will be the 
sum of the potential differences 
across the 100 capacitors: 
  

( )
kV00.1

V10100
100ncombinatio series

=

=
= VV

 

Use the definition of capacitance to 
find the charge on each capacitor: 

( )( ) C0.10V10F1 µµ === CVq  

 
34 •  
Picture the Problem The capacitor array 
is shown in the diagram. We can find the 
equivalent capacitance of this combination 
by first finding the equivalent capacitance 
of the 3.0-µF and 6.0-µF capacitors in 
series and then the equivalent capacitance 
of this capacitor with the 8.0-µF capacitor 
in parallel.  
 
Express the equivalent capacitance 
for the 3.0-µF and 6.0-µF capacitors 
in series: 

F6
1

F3
11

63 µµ
+=

+C
 

Solve for C3+6: F263 µ=+C  

 
Find the equivalent capacitance of a 
2-µF capacitor in parallel with an 8-
µF capacitor: 

F10F8F282 µµµ =+=+C  

 
*35 •  
Picture the Problem Because we’re interested in the equivalent capacitance across 
terminals a and c, we need to recognize that capacitors C1 and C3 are in series with each 
other and in parallel with capacitor C2. 
 
Find the equivalent capacitance of 
C1 and C3 in series: 
 

3131

111
CCC

+=
+
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Solve for C1+3: 

31

31
31 CC

CCC
+

=+  

 
Find the equivalent capacitance of 
C1+3 and C2 in parallel: 
 

31

31
2312eq CC

CCCCCC
+

+=+= +  

  
36 •  
Picture the Problem Because the capacitors are connected in parallel we can add their 
capacitances to find the equivalent capacitance of the combination. Also, because they 
are in parallel, they have a common potential difference across them. We can use the 
definition of capacitance to find the charge on each capacitor. 
 
(a) Find the equivalent capacitance 
of the two capacitors in parallel: 
 

F30F20F0.10eq µµµ =+=C  

 

(b) Because capacitors in parallel 
have a common potential difference 
across them: 
 

V00.62010 =+= VVV  

(c) Use the definition of capacitance 
to find the charge on each capacitor: 

( )( ) C0.60V6F101010 µµ === VCQ  

and 
( )( ) C120V6F202020 µµ === VCQ  

37 ••  
Picture the Problem We can use the properties of capacitors in series to find the 
equivalent capacitance and the charge on each capacitor. We can then apply the definition 
of capacitance to find the potential difference across each capacitor. 
(a) Because the capacitors are 
connected in series they have equal 
charges: 
 

VCQQ eq2010 ==  

Express the equivalent capacitance 
of the two capacitors in series: 
 

F20
1

F10
11

eq µµ
+=

C
 

Solve for Ceq to obtain: 
 

( )( ) F67.6
F20F10
F20F10

eq µ
µµ
µµ

=
+

=C  

 
Substitute to obtain: ( )( ) C0.40V6F67.62010 µµ === QQ  
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(b) Apply the definition of 
capacitance to find the potential 
difference across each capacitor: 
 

V00.4
F10
C0.40

10

10
10 ===

µ
µ

C
QV  

and 

V00.2
F20
C0.40

20

20
20 ===

µ
µ

C
QV  

 
*38 ••  
Picture the Problem We can use the properties of capacitors connected in series and in 
parallel to find the equivalent capacitances for various connection combinations. 
 
(a) parallel.in  connected bemust  they maximum, a be  tois ecapacitanc their If  

 
Find the capacitance of each 
capacitor: 
 

F153eq µ== CC  

and 
F5µ=C  

 
(b) (1) Connect the three capacitors 
in series: 
  

F5
31

eq µ
=

C
 and F67.1eq µ=C  

(2) Connect two in parallel, with the 
third in series with that 
combination: 
 

( ) F10F52parallelin   twoeq, µµ ==C  

and 

F5
1

F10
11

eq µµ
+=

C
 

 
Solve for Ceq: ( )( ) F33.3

F5F10
F5F10

eq µ
µµ
µµ

=
+

=C  

 
(3) Connect two in series, with the 
third in parallel with that 
combination: 

F5
21

seriesin   twoeq, µ
=

C
  

or  
F5.2seriesin   twoeq, µ=C  

 
Find the capacitance equivalent to  
2.5 µF and 5 µF in parallel: 

F50.7F5F5.2eq µµµ =+=C  

 
39 ••  
Picture the Problem We can use the properties of capacitors connected in series and in 
parallel to find the equivalent capacitance between the terminals and these properties and 
the definition of capacitance to find the charge on each capacitor. 
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(a) Relate the equivalent 
capacitance of the two capacitors in 
series to their individual 
capacitances: 
 

F15
1

F4
11

154 µµ
+=

+C
 

Solve for C4+15: ( )( ) F16.3
F15F4
F15F4

154 µ
µµ
µµ

=
+

=+C  

 
Find the equivalent capacitance of 
C4+15 in parallel with the  
12-µF capacitor: 
 

F2.15F12F16.3eq µµµ =+=C  

(b) Using the definition of 
capacitance, express and evaluate 
the charge stored on the 12-µF 
capacitor: 
 

( )( )
mC40.2

V200F12
12121212

=

=
==

µ
VCVCQ

 

 

Because the capacitors in series 
have the same charge: 
 

( )( )
mC632.0

V200F16.3
154154

=

=
== +

µ
VCQQ

 

 
(c) The total energy stored is given 
by: 
 

2
eqtotal 2

1 VCU =  

Substitute numerical values and 
evaluate Utotal: 

( )( ) J304.0V200F2.15
2
1 2

total == µU  

 
40 ••  
Picture the Problem We can use the properties of capacitors in series to establish the 
results called for in this problem. 
 
(a) Express the equivalent 
capacitance of two capacitors in 
series: 
 

21

12

21eq

111
CC

CC
CCC

+
=+=  

Solve for Ceq by taking the 
reciprocal of both sides of the 
equation to obtain: 

21

21
eq CC

CCC
+

=  
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(b) Divide numerator and 
denominator of this expression by 
C1 to obtain: 
 

2

1

2

2
eq

1
C

C
C

CC <
+

=  

because 11
1

2 >+
C
C

. 

 
Divide numerator and denominator 
of this expression by C2 to obtain: 
 

1

2

1

1
eq

1
C

C
C

CC <
+

=  

because 11
2

1 >+
C
C

. 

 
Using our result from part (a) for 
two of the capacitors, add a third 
capacitor C3 in series to obtain: 
 

321

213231

321

21

eq

11

CCC
CCCCCC

CCC
CC

C
++

=

+
+

=

 

 
Take the reciprocal of both sides of 
the equation to obtain: 313221

321
eq CCCCCC

CCCC
++

=  

  
41 ••  
Picture the Problem Let Ceq1 represent the equivalent capacitance of the parallel 
combination and Ceq the total equivalent capacitance between the terminals. We can use 
the equations for capacitors in parallel and then in series to find Ceq. Because the charge 
on Ceq is the same as on the 0.3-µF capacitor and Ceq1, we’ll know the charge on the 0.3-
µF capacitor when we have found the total charge Qeq stored by the circuit. We can find 
the charges on the 1.0-µF and 0.25-µF capacitors by first finding the potential difference 
across them and then using the definition of capacitance. 
 

 
 
(a) Find the equivalent capacitance 
for the parallel combination: 
 

F1.25F0.25F1eq1 µµµ =+=C  
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The 0.30-µF capacitor is in series 
with Ceq1 … find their equivalent 
capacitance Ceq: 
 

F242.0

and

F25.1
1

F3.0
11

eq

eq

µ

µµ

=

+=

C

C

 

 
(b) Express the total charge stored 
by the circuit Qeq: 
 

( )( )
C42.2

V10 F242.0
eq25.13.0eq

µ

µ

=

=

=== VCQQQ

 

 
The 1-µF and 0.25-µF capacitors, 
being in parallel, have a common 
potential difference. Express this 
potential difference in terms of the 
10 V across the system and the 
potential difference across the 0.3-
µF capacitor:  V93.1

F3.0
C42.2V10

V10

V10

3.0

3.0

3.025.1

=

−=

−=

−=

µ
µ

C
Q
VV

 

 
Using the definition of capacitance, 
find the charge on the 1-µF and 0.25-
µF capacitors: 

( )( ) C93.1V93.1F1111 µµ === VCQ  

and 
( )( )

C483.0

V93.1F25.025.025.025.0

µ

µ

=

== VCQ
 

 
(c) The total stored energy is given 
by: 
 

2
eq2

1 VCU =  

Substitute numerical values and 
evaluate U: 

( )( ) J1.12V10F242.0 2
2
1 µµ ==U  

 
42 ••  
Picture the Problem Note that there are three parallel paths between a and b. We can 
find the equivalent capacitance of the capacitors connected in series in the upper and 
lower branches and then find the equivalent capacitance of three capacitors in parallel. 
 
(a) Find the equivalent capacitance 
of the series combination of 
capacitors in the upper and lower 
branch: 
 02

1

0

2
0

eq

00eq

2
C

or

111

C
C

C

CCC

==

+=
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Now we have two capacitors with 
capacitance C0/2 in parallel with a 
capacitor whose capacitance is C0. 
Find their equivalent capacitance: 
 

002
1

002
1

eq 2CCCCC' =++=  

(b) If the central capacitance is 
10C0, then: 

002
1

002
1

eq 1110 CCCCC' =++=  

 
43 ••  
Picture the Problem Place four of the capacitors in series. Then the potential across each 
is 100 V when the potential across the combination is 400 V. The equivalent capacitance 
of the series is 2/4 µF = 0.5 µF. If we place  four such series combinations in parallel, as 
shown in the circuit diagram, the total capacitance between the terminals is 2 µF. 

 
 
*44 ••  
Picture the Problem We can connect two capacitors in parallel, all three in parallel, two 
in series, three in series, two in parallel in series with the third, and two in series in 
parallel with the third. 
 
Connect 2 in parallel to obtain: F3F2F1eq µµµ =+=C  

or 
F5F4F1eq µµµ =+=C  

or 
F6F4F2eq µµµ =+=C  

 
Connect all three in parallel to 
obtain: 

F7F4F2F1eq µµµµ =++=C  

 
Connect two in series: ( )( ) F

3
2

F2F1
F2F1

eq µ
µµ
µµ

=
+

=C  

or 
( )( ) F

5
4

F4F1
F4F1

eq µ
µµ
µµ

=
+

=C  

or 
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( )( ) F
3
4

F4F2
F4F2

eq µ
µµ
µµ

=
+

=C  

 
Connect all three in series: 
 

( )( )( )
( )( ) ( )( ) ( )( ) F

7
4

F4F1F4F2F2F1
F4F2F1

eq µ
µµµµµµ

µµµ
=

++
=C  

 
Connect two in parallel, in series 
with the third: 
 

( )( ) F
7

12
F4F2F1
F2F1F4

eq µ
µµµ
µµµ

=
++
+

=C  

or 
( )( ) F

7
6

F4F2F1
F2F4F1

eq µ
µµµ
µµµ

=
++
+

=C  

or 
( )( ) F

7
10

F4F2F1
F1F4F2

eq µ
µµµ
µµµ

=
++
+

=C  

 
Connect two in series, in parallel 
with the third: 

( )( ) F
3

14F4
F2F1
F2F1

eq µµ
µµ
µµ

=+
+

=C  

or 
( )( ) F

3
7F1

F2F4
F2F4

eq µµ
µµ
µµ

=+
+

=C  

or 
( )( ) F

5
14F2

F4F1
F4F1

eq µµ
µµ
µµ

=+
+

=C  

 
45 •••  
Picture the Problem Let C be the 
capacitance of each capacitor in the ladder 
and let Ceq be the equivalent capacitance of 
the infinite ladder less the series capacitor 
in the first rung. Because the capacitance is 
finite and non-zero, adding one more stage 
to the ladder will not change the 
capacitance of the network. The 
capacitance of the two capacitor 
combination shown to the right is the 
equivalent of the infinite ladder, so it has 
capacitance Ceq also.   
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(a) The equivalent capacitance of 
the parallel combination of C and 
Ceq is:  
 

  C + Ceq  

 

The equivalent capacitance of the 
series combination of C and   
(C + Ceq) is Ceq, so: 
 

eqeq

111
CCCC +

+=  

Simply this expression to obtain a 
quadratic equation in Ceq: 
 

02
eq

2
eq =−+ CCCC  

Solve for the positive value of Ceq to 
obtain: 
 

CCC 618.0 
2

15
eq =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=  

 
Because C = 1 µF: 
 

F618.0eq µ=C  

(b) The capacitance C′ required so 
that the combination has the same 
capacitance as the infinite ladder is: 
 

eqCCC' +=  

Substitute for Ceq and evaluate C′: 
 

CCCC' 618.10.618 =+=  

Because C = 1 µF: 
 

F618.1 µ=C'  

 
Parallel-Plate Capacitors 
 
46 •  
Picture the Problem The potential difference V across a parallel-plate capacitor, the 
electric field E between its plates, and the separation d of the plates are related according 
to V = Ed. We can use this relationship to find Vmax corresponding to dielectric 
breakdown and the definition of capacitance to find the maximum charge on the 
capacitor.  
 
(a) Express the potential difference 
V across the plates of the capacitor 
in terms of the electric field between 
the plates E and their separation d: 
 

EdV =  

Vmax corresponds to Emax: ( )( ) kV4.80mm1.6MV/m3max ==V  

 
(b) Using the definition of 
capacitance, find the charge Q ( )( ) mC60.9kV80.4F0.2

max

==

=

µ

CVQ
 



Electrostatic Energy and Capacitance 
 

 

271

stored at this maximum potential 
difference: 
 
47 •  
Picture the Problem The potential difference V across a parallel-plate capacitor, the 
electric field E between its plates, and the separation d of the plates are related according 
to V = Ed. In part (b) we can use the definition of capacitance and the expression for the 
capacitance of a parallel-plate capacitor to find the required plate radius. 
 
(a) Express the potential difference 
V across the plates of the capacitor 
in terms of the electric field between 
the plates E and their separation d: 
 

EdV =  

Substitute numerical values and 
evaluate V: 
 

( )( ) V40.0mm2V/m102 4 =×=V  

(b) Use the definition of capacitance 
to relate the capacitance of the 
capacitor to its charge and the 
potential difference across it: 
 

V
QC =  

Express the capacitance of a 
parallel-plate capacitor: 
 

d
R

d
AC

2
00 π∈∈

==  

where R is the radius of the circular plates. 
 

Equate these two expressions for C: 
V
Q

d
R

=
2

0 π∈
 

Solve for R to obtain: 
 V

QdR
π∈0

=  

 
Substitute numerical values and 
evaluate R: 

( )( )
( )( )

m24.4

V40m/NC1085.8
mm2C10

2212

=

⋅×
= −π

µR
 

 
48 ••  
Picture the Problem We can use the expression for the capacitance of a parallel-plate 
capacitor to find the area of each plate and the definition of capacitance to find the 
potential difference when the capacitor is charged to 3.2 µC. We can find the stored 
energy using 2

2
1 CVU = and the definition of capacitance and the relationship between 
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the potential difference across a parallel-plate capacitor and the electric field between its 
plates to find the charge at which dielectric breakdown occurs. Recall that Emax, air = 3 
MV/m. 
 
(a) Relate the capacitance of a 
parallel-plate capacitor to the area A 
of its plates and their separation d: 
 

d
AC 0∈

=  

Solve for A: 

0∈
CdA =  

 
Substitute numerical values and 
evaluate A: 

( )( ) 2
2212 m91.7

m/NC108.85
mm5.0F14.0

=
⋅×

= −

µA  

 
(b) Using the definition of 
capacitance, express and evaluate 
the potential difference across the 
capacitor when it is charged to 3.2 
µC: 
 

V9.22
F0.14

C2.3
===

µ
µ

C
QV  

(c) Express the stored energy as a 
function of the capacitor’s 
capacitance and the potential 
difference across it: 
 

2
2
1 CVU =  

Substitute numerical values and 
evaluate U: 
 

( )( ) J7.36V9.22F14.0 2
2
1 µµ ==U  

(d) Using the definition of 
capacitance, relate the charge on the 
capacitor to breakdown potential 
difference: 
 

maxmax CVQ =  

Relate the maximum potential 
difference to the maximum electric 
field between the plates: 
 

dEV maxmax =  

Substitute to obtain: dCEQ maxmax =  

 
Substitute numerical values and 
evaluate Qmax: 

( )( )( )
C210

mm0.5MV/m3F14.0max

µ

µ

=

=Q
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*49 ••  
Picture the Problem The potential difference across the capacitor plates V is related to 
their separation d and the electric field between them according to  
V = Ed. We can use this equation with Emax = 3 MV/m to find dmin. In part (b) we can use 
the expression for the capacitance of a parallel-plate capacitor to find the required area of 
the plates. 
 
(a) Use the relationship between the 
potential difference across the plates 
and the electric field between them 
to find the minimum separation of 
the plates: 
 

mm333.0
MV/m3

V1000

max
min ===

E
Vd  

 

(b) Use the expression for the 
capacitance of a parallel-plate 
capacitor to relate the capacitance to 
the area of a plate: 
 

d
AC 0∈

=  

 

Solve for A: 

0∈
=

CdA  

 
Substitute numerical values and 
evaluate A: 

( )( ) 2
2212- m76.3

m/NC108.85
mm333.0F1.0

=
⋅×

=
µA  

 
Cylindrical Capacitors 
 
50 •  
Picture the Problem The capacitance of a cylindrical capacitor is given by 

( )120 ln2 rrLC ∈= πκ where L is its length and r1 and r2 the radii of the inner and 

outer conductors. 
 
(a) Express the capacitance of the 
coaxial cylindrical shell: 
 

⎟
⎠
⎞

⎜
⎝
⎛
∈

=

R
r

LC
ln

2 0πκ
 

 
Substitute numerical values and 
evaluate C: 

( )( )( )

pF55.1

mm0.2
cm5.1ln

m12.0m/NC1085.812 2212

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅×

=
−πC
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(b) Use the definition of 
capacitance to express the charge 
per unit length: 
 

L
CV

L
Q
==λ  

Substitute numerical values and 
evaluate λ: 

( )( ) nC/m5.15
m0.12

kV2.1pF55.1
==λ  

 
51 ••  
Picture the Problem The diagram shows a 
partial cross-sectional view of the inner 
wire and the outer cylindrical shell. By 
symmetry, the electric field is radial in the 
space between the wire and the concentric 
cylindrical shell. We can apply Gauss’s 
law to cylindrical surfaces of radii r < R1, 
R1 < r < R2, and r > R2 to find the electric 
field and, hence, the energy density in 
these regions. 

 

 
(a) Apply Gauss’s law to a 
cylindrical surface of radius r < R1 
and length L to obtain: 
 

( ) 02
0

inside =
∈

=
QrLEr π  

and 
0

1
=<RrE  

 
Because E = 0 for r < R1: 0

1
=<Rru  

 
Apply Gauss’s law to a cylindrical 
surface of radius  
R1 < r < R2 and length L to obtain: 
 

( )
00

inside2
∈

=
∈

=
LQrLEr

λπ  

where λ is the linear charge density. 

Solve for Er to obtain: 
r
k

r
LEr

λ
π
λ 2

2 0

=
∈

=  

 
Express the energy density in the 
region R1 < r < R2: 

22

2
0

22

02
1

2

02
12

02
1

22

2

Lr
Qk

rL
kQ

r
kEu r

∈
=⎟

⎠
⎞

⎜
⎝
⎛∈=

⎟
⎠
⎞

⎜
⎝
⎛∈=∈=

λ
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Apply Gauss’s law to a cylindrical 
surface of radius  
r > R2 and length L to obtain: 
 

( ) 02
0

inside =
∈

=
QrLEr π  

and 
0

2
=>RrE  

 
Because E = 0 for r > R2: 0

2
=>Rru  

 
(b) Express the energy residing in a 
cylindrical shell between the 
conductors of radius r, thickness dr, 
and volume 2π rL dr: 
 

( )

dr
rL

kQdr
Lr

QkrL

drrrLudU
2

22

2
0

222

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∈
=

=

π

π
 

 

(c) Integrate dU from r = R1 to R2 to 
obtain: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== ∫

1

2
22

ln
2

1
R
R

L
kQ

r
dr

L
kQU

R

R

 

 
Use 2

2
1 CVU = and the expression 

for the capacitance of a cylindrical 
capacitor to obtain: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
∈

==

=

1

2
2

1

2

0

22

2
1

2
2
1

ln

ln

22

R
R

L
kQ

R
R

L

Q
C
Q

CVU

π

 

in agreement with the result from part (b). 
 
52 •••  
Picture the Problem Note that with the innermost and outermost cylinders connected 
together the system corresponds to two cylindrical capacitors connected in parallel. We 

can use ( )io

0

ln
2

RR
LC κπ ∈

= to express the capacitance per unit length and then calculate and 

add the capacitances per unit length of each of the cylindrical shell capacitors. 
 
Relate the capacitance of a 
cylindrical capacitor to its length L 
and inner and outer radii Ri and Ro: 
 

( )io

0

ln
2

RR
LC κπ ∈

=  

Divide both sides of the equation by 
L to express the capacitance per unit ( )io

0

ln
2

RRL
C κπ ∈
=  
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length: 
 
Express the capacitance per unit 
length of the cylindrical system: 
 

innerouter
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=

L
C

L
C

L
C

               (1) 

Find the capacitance per unit length 
of the outer cylindrical shell 
combination: 
 

( )( )
( )

pF/m3.118
cm0.5cm0.8ln

1m/NC1085.82 2212

outer

=

⋅×
=⎟

⎠
⎞

⎜
⎝
⎛ −π

L
C

 

 
Find the capacitance per unit length 
of the inner cylindrical shell 
combination: 
 

( )( )
( )

pF/m7.60
cm0.2cm0.5ln

1m/NC1085.82 2212

inner

=

⋅×
=⎟

⎠
⎞

⎜
⎝
⎛ −π

L
C

 

 
Substitute in equation (1) to obtain: 

pF/m179

pF/m7.60pF/m3.118

=

+=
L
C

 

 
*53 ••  
Picture the Problem We can use the 
expression for the capacitance of a parallel-
plate capacitor of variable area and the 
geometry of the figure to express the 
capacitance of the goniometer. 

 
 

The capacitance of the parallel-plate 
capacitor is given by: 
 

( )
d

AAC ∆−∈
= 0  

The area of the plates is: 
 ( ) ( )

22
2

1
2
2

2
1

2
2

θ
π
θπ RRRRA −=−=  

 
If the top plate rotates through an 
angle ∆θ, then the area is reduced 
by: 
 

( ) ( )
22

2
1

2
2

2
1

2
2

θ
π
θπ ∆

−=
∆

−=∆ RRRRA  

Substitute for A and ∆A in the 
expression for C to obtain: ( ) ( )

( )( )θθ

θθ

∆−
−∈

=

⎥⎦
⎤

⎢⎣
⎡ ∆

−−−
∈

=

d
RR

RRRR
d

C

2

22
2

1
2
20

2
1

2
2

2
1

2
2

0
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54 ••  
Picture the Problem Let C be the capacitance of the capacitor when the pressure is P 
and C′ be the capacitance when the pressure is P + ∆P.  We’ll assume that (a) the change 
in the thickness of the plates is small, and (b) the total volume of material between the 
plates is conserved.  We can use the expression for the capacitance of a dielectric-filled 
parallel-plate capacitor and the definition of Young’s modulus to express the change in 
the capacitance ∆C of the given capacitor when the pressure on its plates is increased by 
∆P. 
 
Express the change in capacitance 
resulting from the decrease in 
separation of the capacitor plates by 
∆d: 
 

d
A

dd
A'CC'C 00 ∈

−
∆−

∈
=−=∆

κκ
 

 

Because the volume is constant: AdA'd' =   
or 

A
dd

dA
d
dA' ⎟

⎠
⎞

⎜
⎝
⎛

∆−
=⎟

⎠
⎞

⎜
⎝
⎛=

'
 

 
Substitute for A′ in the expression 
for ∆C and simplify to obtain: 

( )

( )

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−

∆−
=

⎥
⎦

⎤
⎢
⎣

⎡
−

∆−
∈

=

∈
−

∆−
∈

=

∈
−⎟

⎠
⎞

⎜
⎝
⎛

∆−∆−
∈

=∆

1

1

2

2

2

2
0

02
2

0

00

dd
dC

dd
d

d
A

d
Ad

ddd
A

d
A

dd
d

dd
AC

κ

κκ

κκ

 

 
From the definition of Young’s 
modulus: 
 Y

P
d
d

−=
∆

 ⇒ d
Y
Pd ⎟
⎠
⎞

⎜
⎝
⎛−=∆  

 
Substitute for ∆d in the expression 
for ∆C to obtain: 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛+=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛+

∈
=∆

−

11

1

2

2

2
0

Y
PC

d
Y
Pd

d
d

AC κ

 

 

Expand 
2

1
−

⎟
⎠
⎞

⎜
⎝
⎛ −

Y
P

binomially to 

obtain: 
 

...3211
22

+⎟
⎠
⎞

⎜
⎝
⎛+−=⎟

⎠
⎞

⎜
⎝
⎛ −

−

Y
P

Y
P

Y
P
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Provided P << Y: 

Y
P

Y
P 211

2

−≈⎟
⎠
⎞

⎜
⎝
⎛ −

−

 

 
Substitute in the expression for ∆C 
and simplify to obtain: 
 

C
Y
P

Y
PCC 2121 −=⎥⎦

⎤
⎢⎣
⎡ −−=∆  

 
Spherical Capacitors 
 
*55 ••  
Picture the Problem We can use the definition of capacitance and the expression for the 
potential difference between charged concentric spherical shells to show that 

( ).4 12210 RRRRC −∈= π  

 
(a) Using its definition, relate the 
capacitance of the concentric 
spherical shells to their charge Q 
and the potential difference V 
between their surfaces: 
 

V
QC =  

Express the potential difference 
between the conductors: 
 

21

12

21

11
RR

RRkQ
RR

kQV −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=  

Substitute to obtain: 
( )

12

210

12

21

21

12

4
RR

RR

RRk
RR

RR
RRkQ

QC

−
∈

=

−
=

−
=

π
 

 
(b) Because R2 = R1 + d: ( )

22
1

1
2

1

1121

RR

dRR

dRRRR

=≈

+=

+=

 

because d is small. 
 

Substitute to obtain: 
 d

A
d

RC 0
2

04 ∈
=

∈
≈

π
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56 ••  
Picture the Problem The diagram shows a 
partial cross-sectional view of the inner and 
outer spherical shells. By symmetry, the 
electric field is radial. We can apply 
Gauss’s law to spherical surfaces of radii r 
< R1, R1 < r < R2, and r > R2 to find the 
electric field and, hence, the energy density 
in these regions. 

 
 
(a) Apply Gauss’s law to a spherical 
surface of radius r < R1 to obtain: 
 

( ) 04
0

inside2 =
∈

=
QrEr π  

and 
0

1
=<RrE  

 
Because E = 0 for r < R1: 0

1
=<Rru  

 
Apply Gauss’s law to a spherical 
surface of radius R1 < r  < R2 to 
obtain: 
 

( )
00

inside24
∈

=
∈

=
QQrEr π  

 

Solve for Er to obtain: 
22

04 r
kQ

r
QEr =
∈

=
π

 

 
Express the energy density in the 
region R1 < r < R2: 

4

2
0

2

2

202
12

02
1

2r
Qk

r
kQEu r

∈
=

⎟
⎠
⎞

⎜
⎝
⎛∈=∈=

 

 
Apply Gauss’s law to a cylindrical 
surface of radius  
r > R2 to obtain: 
 

( ) 04
0

inside2 =
∈

=
QrEr π  

and 
0

2
=>RrE  

 
Because E = 0 for r > R2: 0

2
=>Rru  
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(b) Express the energy in the 
electrostatic field in a spherical shell 
of radius r, thickness dr, and volume 
4π r2dr between the conductors: 
 

( )

dr
r

kQ

dr
r

QkrdrrurdU

2

2

4

2
0

2
22

2

2
44

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∈
== ππ

 

 
(c) Integrate dU from r = R1 to R2 to 
obtain: 
 

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∈
−

=

−
== ∫

210

122

21

12
2

2

2

42
1

22

2

1

RR
RRQ

RR
RRkQ

r
drkQU

R

R

π

 

 
Note that the quantity in parentheses is 1/C , so we have .2

2
1 CQU =  

 
57 •••  
Picture the Problem We know, from Gauss’s law, that the field inside the shell is zero. 
Applying Gauss’s law to a spherical surface of radius R > r will allow us to find the 
energy density in this region. We can then express the energy in the electrostatic field in a 
spherical shell of radius R, thickness dR, and volume 4π R2dR outside the spherical shell 
and find the total energy in the electric field by integrating from r to ∞. If we then 
integrate the same expression from r to R we can find the radius R of the sphere such that 
half the total electrostatic field energy of the system is contained within that sphere. 
 
Apply Gauss’s law to a spherical shell 
of radius R > r to obtain: 
 

( )
00

inside24
∈

=
∈

=
QQREr π  

Solve for Er outside the spherical 
shell: 2R

kQEr =  

Express the energy density in the 
region R > r: 4

2
0

22

202
12

02
1

2R
Qk

R
kQEu R

∈
=⎟

⎠
⎞

⎜
⎝
⎛∈=∈=  

 
Express the energy in the 
electrostatic field in a spherical shell 
of radius R, thickness dR, and 
volume 4πR2dR outside the spherical 
shell: 
 

( )

dR
R

kQ

dR
R

QkR

dRRuRdU

2

2

4

2
0

2
2

2

2

2
4

4

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∈
=

=

π

π

 

 
Integrate dU from r to ∞ to obtain: 
 r

kQ
R
dRkQU

r 22

2

2

2

tot == ∫
∞
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Integrate dU from r to R  to obtain: 
 ⎟

⎠
⎞

⎜
⎝
⎛ −== ∫ Rr

kQ
R'
dR'kQU

R

r

11
22

2

2

2

 

 
Set tot2

1 UU = to obtain: 

r
kQ

Rr
kQ

4
11

2

22

=⎟
⎠
⎞

⎜
⎝
⎛ −  

 
Solve for R: rR 2=  

 
Disconnected and Reconnected Capacitors 
 
58 ••  
Picture the Problem Let C1 represent the capacitance of the 2.0-µF capacitor and C2 the 
capacitance of the 2nd capacitor. Note that when they are connected as described in the 
problem statement they are in parallel and, hence, share a common potential difference. 
We can use the equation for the equivalent capacitance of two capacitors in parallel and 
the definition of capacitance to relate C2 to C1 and to the charge stored in and the 
potential difference across the equivalent capacitor. 
 
Using the definition of capacitance, 
find the charge on capacitor C1: 
 

( )( ) C24V12F211 µµ === VCQ  

Express the equivalent capacitance 
of the two-capacitor system and 
solve for C2: 
 

21eq CCC +=  

and 
1eq2 CCC −=  

Using the definition of capacitance, 
express Ceq in terms of Q2 and V2: 
 

2

1

2

2
eq V

Q
V
QC ==  

where V2 is the common potential 
difference (they are in parallel) across the 
two capacitors and Q1 and Q2 are the 
(equal) charges on the two capacitors. 
 

Substitute to obtain: 
1

2

1
2 C

V
QC −=  

 
Substitute numerical values and 
evaluate C2: 

F00.4F2
V4

C24
2 µµµ

=−=C  
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59 ••  
Picture the Problem Because, when the capacitors are connected as described in the 
problem statement, they are in parallel, they will have the same potential difference 
across them. In part (b) we can find the energy lost when the connections are made by 
comparing the energies stored in the capacitors before and after the connections. 
 
(a) Because the capacitors are in parallel: kV00.2400100 ==VV  

 
(b) Express the energy lost when the 
connections are made in terms of the 
energy stored in the capacitors before 
and after their connection: 
 

afterbefore UUU −=∆  

Express and evaluate Ubefore: 

( )
( ) ( )

mJ00.1
pF500kV2 2

2
1

400100
2

2
1

2
4004002

12
1001002

1

400100before

=
=

+=

+=

+=

CCV

VCVC

UUU

 

 
Express and evaluate Uafter: 
 

( )
( ) ( )

mJ00.1
pF500kV2 2

2
1

400100
2

2
1

2
4004002

12
1001002

1

400100after

=
=

+=

+=

+=

CCV

VCVC

UUU

 

 
Substitute to obtain: 0mJ1.00mJ1.00 =−=∆U  

 
*60 ••  
Picture the Problem When the capacitors are reconnected, each will have the charge it 
acquired while they were connected in series across the 12-V battery and we can use the 
definition of capacitance and their equivalent capacitance to find the common potential 
difference across them. In part (b) we can use 2

2
1 CVU = to find the initial and final 

energy stored in the capacitors. 
 
(a) Using the definition of 
capacitance, express the potential 
difference across each capacitor when 
they are reconnected: 
 

eq

2
C

QV =                                (1) 

where Q is the charge on each capacitor 
before they are disconnected. 
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Find the equivalent capacitance of 
the two capacitors after they are 
connected in parallel: 
 

F16
F12F4

21eq

µ
µµ

=
+=

+= CCC
 

Express the charge Q on each 
capacitor before they are 
disconnected: 
 

VC'Q eq=  

Express the equivalent capacitance 
of the two capacitors connected in 
series: 
 

( )( ) F3
F12F4
F12F4

21

21
eq µ

µµ
µµ

=
+

=
+

=
CC

CCC'  

Substitute to find Q: ( )( ) C36V12F3 µµ ==Q  

 
Substitute in equation (1) and 
evaluate V: 
 

( ) V50.4
F16
C362

==
µ
µV  

(b) Express and evaluate the energy 
stored in the capacitors initially: 
 

( )( )
J216

V12F3 2
2
12

ieq2
1

i

µ

µ

=

== VC'U
 

 
Express and evaluate the energy 
stored in the capacitors when they 
have been reconnected: 

( )( )
J162

V5.4F16 2
2
12

feq2
1

f

µ

µ

=

== VCU
 

 
61 ••  
Picture the Problem Let C1 represent the capacitance of the 1.2-µF capacitor and C2 the 
capacitance of the 2nd capacitor. Note that when they are connected as described in the 
problem statement they are in parallel and, hence, share a common potential difference. 
We can use the equation for the equivalent capacitance of two capacitors in parallel and 
the definition of capacitance to relate C2 to C1 and to the charge stored in and the 
potential difference across the equivalent capacitor. In part (b) we can use 2

2
1 CVU = to 

find the energy before and after the connection was made and, hence, the energy lost 
when the connection was made. 
 
(a) Using the definition of 
capacitance, find the charge on 
capacitor C1: 
 

( )( ) C36V30F2.111 µµ === VCQ  

Express the equivalent capacitance 
of the two-capacitor system and 
solve for C2: 

21eq CCC +=  

and 
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 1eq2 CCC −=  

Using the definition of capacitance, 
express Ceq in terms of Q2 and V2: 
 

2

1

2

2
eq V

Q
V
QC ==  

where V2 is the common potential 
difference (they are in parallel) across the 
two capacitors. 
 

Substitute to obtain: 
1

2

1
2 C

V
QC −=  

 
Substitute numerical values and 
evaluate C2: 
 

F40.2F2.1
V10
C36

2 µµµ
=−=C  

(b) Express the energy lost when the 
connections are made in terms of the 
energy stored in the capacitors 
before and after their connection: 
 

( )2
feq

2
112

1

2
feq2

12
112

1

afterbefore

VCVC

VCVC

UUU

−=

−=

−=∆

 

Substitute numerical values and evaluate ∆U: 
 

( )( )[ ( )( ) ] J360V10F6.3V30F2.1 22
2
1 µµµ =−=∆U  

 
62 ••  
Picture the Problem Because, when the capacitors are connected as described in the 
problem statement, they are in parallel, they will have the same potential difference 
across them. In part (b) we can find the energy lost when the connections are made by 
comparing the energies stored in the capacitors before and after the connections. 
 
(a) Using the definition of 
capacitance, express the charge Q 
on the capacitors when they have 
been reconnected: 
 

( )VCC
VCVC

QQQ

100400

100100400400

100400

−=
−=

−=
 

where V is the common potential difference 
to which the capacitors have been charged. 
 

Substitute numerical values to obtain: 
 

( )( ) nC600kV2pF100pF400 =−=Q  

 
Using the definition of capacitance, 
relate the equivalent capacitance, 
charge, and final potential difference 
for the parallel connection: 

( ) f21 VCCQ +=  
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Solve for and evaluate Vf: 
 

kV20.1

pF400pF100
C600

21
f

=

+
=

+
=

n
CC

QV
 

across both capacitors. 
 

(b) Express the energy lost when the 
connections are made in terms of the 
energy stored in the capacitors before 
and after their connection: 
 

( )2
feq

2
22

2
112

1

2
feq2

12
222

12
112

1

afterbefore

VCVCVC

VCVCVC

UUU

−+=

−+=

−=∆

 

Substitute numerical values and evaluate ∆U: 
 

( )( )[ ( )( ) ( )( ) ] mJ640.0kV2.1pF500kV2pF400kV2pF100 222
2
1 =−+=∆U  

 
63 ••  
Picture the Problem When the capacitors are reconnected, each will have a charge equal 
to the difference between the charges they acquired while they were connected in parallel 
across the 12-V battery. We can use the definition of capacitance and their equivalent 
capacitance to find the common potential difference across them. In part (b) we can use 

2
2
1 CVU = to find the initial and final energy stored in the capacitors. 

 
(a) Using the definition of 
capacitance, express the potential 
difference across the capacitors 
when they are reconnected: 
 

21

f

eq

f
f CC

Q
C
Q

V
+

==                  (1) 

where Qf is the common charge on the 
capacitors after they are reconnected. 

Express the final charge Qf on each 
capacitor: 
 

12f QQQ −=  

Use the definition of capacitance to 
substitute for Q2 and Q1: 
 

( )VCCVCVCQ 1212f −=−=  

Substitute in equation (1) to obtain: 
 

V
CC
CCV

21

12
f +

−
=  

 
Substitute numerical values and 
evaluate Vf: 

( ) V00.6V12
F4F12
F4F12

f =
+
−

=
µµ
µµV  
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(b) Express and evaluate the energy 
stored in the capacitors initially: 
 

( )
( ) ( )

mJ15.1

F4F12V12 2
2
1

21
2

2
1

2
22

12
12

1
i

=

+=

+=

+=

µµ

CCV

VCVCU

 

 
Express and evaluate the energy 
stored in the capacitors when they 
have been reconnected: 
 

( )
( ) ( )

mJ288.0

F4F12V6 2
2
1

21
2

f2
1

2
f22

12
f12

1
f

=

+=

+=

+=

µµ

CCV

VCVCU

 

 
*64 ••  
Picture the Problem Let the numeral 1 refer to the 20-pF capacitor and the numeral 2 to 
the 50-pF capacitor. We can use conservation of charge and the fact that the connected 
capacitors will have the same potential difference across them to find the charge on each 
capacitor. We can decide whether electrostatic potential energy is gained or lost when the 
two capacitors are connected by calculating the change ∆U in the electrostatic energy 
during this process. 
 
(a) Using the fact that no charge is 
lost in connecting the capacitors, 
relate the charge Q initially on the 20-
pF capacitor to the charges on the two 
capacitors when they have been 
connected: 
 

21 QQQ +=                         (1) 

Because the capacitors are in parallel, 
the potential difference across them is 
the same: 
 

21 VV =  ⇒ 
2

2

1

1

C
Q

C
Q

=  

 

Solve for Q1 to obtain: 
 2

2

1
1 Q

C
CQ =  

 
Substitute in equation (1) and solve 
for Q2 to obtain: 
 

21
2 1 CC

QQ
+

=                      (2) 

Use the definition of capacitance to 
find the charge Q initially on the 20-
pF capacitor: 
 

( )( ) nC60kV3pF201 === VCQ  
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Substitute in equation (2) and 
evaluate Q2: 
 

nC9.42
pF50pF201

nC60
2 =

+
=Q  

Substitute in equation (1) to obtain: 

nC17.1nC42.960nC
21

=−=

−= QQQ
 

 
(b) Express the change in the 
electrostatic potential energy of the 
system when the two capacitors are 
connected: 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

−=

−=∆

1eq

2

1

2

eq

2
if

11
2

22

CC
Q

C
Q

C
Q

UUU

 

 
Substitute numerical values and 
evaluate ∆U: 

( )

J3.64
pF20

1
pF70

1
2
nC60 2

µ−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=∆U

 

 

connected.
 are capacitors  twothelost when  isenergy  ticelectrosta 0,   Because <∆U

 

 
65 •••  
Picture the Problem Let upper case Qs refer to the charges before S3 is closed and lower 
case qs refer to the charges after this switch is closed. We can use conservation of charge 
to relate the charges on the capacitors before S3 is closed to their charges when this 
switch is closed. We also know that the sum of the potential differences around the circuit 
when S3 is closed must be zero and can use this to obtain a fourth equation relating the 
charges on the capacitors after the switch is closed to their capacitances. Solving these 
equations simultaneously will yield the charges q1, q2, and q3. Knowing these charges, we 
can use the definition of capacitance to find the potential difference across each of the 
capacitors. 
 
(a) With S1 and S2 closed, but S3 
open, the charges on and the 
potential differences across the 
capacitors do not change and: 
 

V200321 === VVV  

(b) When S3 is closed, the charges 
can redistribute; express the 
conditions on the charges that must 
be satisfied as a result of this 

1212 QQqq −=− , 

2323 QQqq −=− , 

and 
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redistribution: 
 

3131 QQqq −=− . 

Express the condition on the 
potential differences that must be 
satisfied when S3 is closed: 
 

0321 =++ VVV  

where the subscripts refer to the three 
capacitors. 

Use the definition of capacitance to 
eliminate the potential differences: 
 

0
3

3

2

2

1

1 =++
C
q

C
q

C
q

                    (1) 

Use the definition of capacitance to 
find the initial charge on each 
capacitor: 
 

( )( ) C400V200F211 µµ === VCQ , 
( )( ) C800V200F422 µµ === VCQ , 

and 
( )( ) C1200V200F633 µµ === VCQ  

 
Let Q = Q1. Then: Q2 = 2Q and Q3 = 3Q 

 
Express q2 and q3 in terms of q1 and 
Q: 

12 qQq +=                                 (2) 

and 
Qqq 213 +=                               (3) 

 
Substitute in equation (1) to obtain: 02

3

1

2

1

1

1 =
+

+
+

+
C

Qq
C

qQ
C
q

 

or 

0
F6
2

F4F2
111 =
+

+
+

+
µµµ

QqqQq
 

 
Solve for and evaluate q1 to obtain: ( ) C254C40011

7
11
7

1 µµ −=−=−= Qq  

 
Substitute in equation (2) to obtain: C146C 254C4002 µµµ =−=q  

 
Substitute in equation (3) to obtain: ( ) C546C4002C2543 µµµ =+−=q  

 
(c) Use the definition of capacitance to 
find the potential difference across 
each capacitor with S3 closed: 

V127
F2

C254

1

1
1 −=

−
==

µ
µ

C
qV , 

V5.36
F4
C146

2

2
2 ===

µ
µ

C
qV ,  

and 

V0.91
F6
C546

3

3
3 ===

µ
µ

C
qV  
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*66 ••  
Picture the Problem We can use the expression for the energy stored in a capacitor to 
express the ratio of the energy stored in the system after the discharge of the first 
capacitor to the energy stored in the system prior to the discharge. 
 
Express the energy U initially 
stored in the capacitor whose 
capacitance is C: 
 

C
QU
2

2

=  

The energy U′ stored in the two 
capacitors after the first capacitor 
has discharged is: 
 C

Q
C

Q

C

Q

U'
42

2
2
2 2

22

=
⎟
⎠
⎞

⎜
⎝
⎛

+
⎟
⎠
⎞

⎜
⎝
⎛

=  

 
Express the ratio of U′ to U: 
 

2
1

2

4
2

2

==

C
Q
C

Q

U
U'

 ⇒ UU 2
1'=  

 
Dielectrics 
 
67 •  
Picture the Problem The capacitance of a parallel-plate capacitor filled with a dielectric 

of constant κ is given by 
d

AC 0∈κ
= . 

 
Relate the capacitance of the 
parallel-plate capacitor to the area of 
its plates, their separation, and the 
dielectric constant of the material 
between the plates: 
 

d
AC 0∈κ

=  

Substitute numerical values and 
evaluate C: 

( )( )

nF71.2

mm0.3
cm400m/NC108.852.3 22212

=

⋅×
=

−

C

 
68 ••  
Picture the Problem The capacitance of a cylindrical capacitor is given by 

( )120 ln2 rrLC ∈πκ= , where L is its length and r1 and r2 the radii of the inner and 

outer conductors. We can use this expression, in conjunction with the definition of 
capacitance, to express the potential difference between the wire and the cylindrical shell 
in the Geiger tube. Because the electric field E in the tube is related to the linear charge 
density λ on the wire according to ,2 rkE κλ=  we can use this expression to find 2kλ/κ 

for E = Emax. In part (b) we’ll use this relationship to find the charge per unit length λ on 
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the wire. 
 
(a) Use the definition of capacitance 
and the expression for the 
capacitance of a cylindrical capacitor 
to express the potential difference 
between the wire and the cylindrical 
shell in the tube: 
 

( )

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=

==∆

r
Rk

r
R
rR

L
Q

C
QV

ln2ln
4

2
ln

2

0

0

κ
λ

κ∈π
λ

∈πκ
 

where λ is the linear charge density, κ is 
the dielectric constant of the gas in the 
Geiger tube, r is the radius of the wire, and 
R the radius of the coaxial cylindrical shell 
of length L. 
 

Express the electric field at a 
distance r greater than its radius from 
the center of the wire: 
 

r
kE
κ
λ2

=  

Solve for 2kλ/κ : 
 

Erk
=

κ
λ2

                               (1) 

 
Noting that E is a maximum at  
r = 0.2 mm, evaluate 2kλ/κ : 
 

( )( )

V400

mm0.2V/m1022 6
max

=

×== rEk
κ
λ

 

 
Substitute and evaluate ∆Vmax: 
 ( ) kV73.1

mm0.2
cm1.5lnV400max =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=∆V

 
 

(b) Solve equation (1) for λ: 
k

rE
2
maxκλ =  

 
Substitute numerical values and 
evaluate λ: 

( )( )
( )

nC/m0.40

/CmN108.992
mm2.0V/m1028.1

229

6

=

⋅×
×

=λ
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69 ••  
Picture the Problem The diagram shows a 
partial cross-sectional view of the inner and 
outer spherical shells. By symmetry, the 
electric field is radial. We can apply 
Gauss’s law to spherical surfaces of radii r 
< R1, R1 < r < R2, and r > R2 to find the 
electric field and, hence, the energy density 
in these regions.  
 
(a) Apply Gauss’s law to a spherical 
surface of radius r < R1 to obtain: 
 

( ) 04
0

inside2 ==
∈κ

π QrEr  

and 
0

1
=<RrE  

 
Because E = 0 for r < R1: 0

1
=<Rru  

 
Apply Gauss’s law to a spherical 
surface of radius R1 < r < R2 to 
obtain: 
 

( )
00

inside24
∈κ∈κ

π QQrEr ==  

 

Solve for Er to obtain: 
22

04 r
kQ

r
QEr κ∈πκ

==  

 
Express the energy density in the 
region R1 < r < R2: 

4

2
0

2

2

202
12

02
1

2 r
Qk

r
kQEu r

κ
∈

κ
∈κ∈κ

=

⎟
⎠
⎞

⎜
⎝
⎛==

 

 
Apply Gauss’s law to a cylindrical 
surface of radius r > R2 to obtain: 
 

( ) 04
0

inside2 ==
∈κ

π QrEr  

and 
0

2
=>RrE  

 
Because E = 0 for r > R2: 0

2
=>Rru  
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(b) Express the energy in the 
electrostatic field in a spherical shell 
of radius r, thickness dr, and volume 
4πr2dr between the conductors: 
 

( )

dr
r

kQ

dr
r

Qkr

drrurdU

2

2

42

2
0

2
2

2

2

2
4

4

κ

κ
∈κπ

π

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=

 

 
(c) Integrate dU from r = R1 to R2 to 
obtain: 
 

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

−
=

== ∫

210

122

21

12
2

2

2

42
1

2

2

2

1

RR
RRQ

RR
RRkQ

r
drkQU

R

R

πκε

κ

κ

 

 
 Note that the quantity in parentheses is 1/C, 

so we have .2
2
1 CQU =  

   
70 ••  
Picture the Problem We can use the relationship between the electric field between the 
plates of a capacitor, their separation, and the potential difference between them to find 
the minimum plate separation. We can use the expression for the capacitance of a 
dielectric-filled parallel-plate capacitor to determine the necessary area of the plates. 
 
(a) Relate the electric field of the 
capacitor to the potential difference 
across its plates: 

d
VE =  

where d is the plate separation. 
Solve for d: 

E
Vd =  

 
Noting that dmin corresponds to Emax, 
evaluate dmin: 

m0.50
V/m104
V2000

7
max

min µ=
×

==
E
Vd  

 
(b) Relate the capacitance of a 
parallel-plate capacitor to the area of 
its plates: 
 

d
AC 0∈κ

=  

 

Solve for A: 

0∈κ
CdA =  
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Substitute numerical values and 
evaluate A: 

( )( )
( )

2

22

2212-

cm235

m1035.2
m/NC108.8524

m50F1.0

=

×=

⋅×
=

−

µµA

 

 
71 ••  
Picture the Problem We can model this system as two capacitors in series, C1 of 
thickness d/4 and C2 of thickness 3d/4 and use the equation for the equivalent capacitance 
of two capacitors connected in series. 
 
Express the equivalent capacitance 
of the two capacitors connected in 
series: 
 

21eq

111
CCC

+=  

or 

21

21
eq CC

CCC
+

=  

 
Relate the capacitance of C1 to its 
dielectric constant and thickness: 
 

d
A

d
AC 01

4
1

01
1

4 ∈κ∈κ
==  

Relate the capacitance of C2 to its 
dielectric constant and thickness: 
 

d
A

d
AC

3
4 02

4
3

02
2

∈κ∈κ
==  

Substitute and simplify to obtain: 
 

 

0
21

210

21

21

0
21

21

0
21

21

0201

0201

eq

3
4

3
4

3

4

33
3

3
4

3
44

3
44

C
d

A

AdA

dd

dd

d
A

d
A

d
A

d
A

C

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=⎟
⎠
⎞

⎜
⎝
⎛

+
=

+
=

+

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛

=
+

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛

=

κκ
κκ∈

κκ
κκ

∈
κκ

κκ

∈κκ

κκ

∈κ∈κ

∈κ∈κ

 

 
*72 ••  
Picture the Problem Let the charge on the capacitor with the air gap be Q1 and the 
charge on the capacitor with the dielectric gap be Q2.  If the capacitances of the capacitors 
were initially C, then the capacitance of the capacitor with the dielectric inserted is C' = 
κC.  We can use the conservation of charge and the equivalence of the potential 
difference across the capacitors to obtain two equations that we can solve simultaneously 
for Q1 and Q2. 
 
Apply conservation of charge during QQQ 221 =+                         (1) 
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the insertion of the dielectric to 
obtain: 
 
Because the capacitors have the 
same potential difference across 
them: 
 

C
Q

C
Q

κ
21 =                                (2) 

 

Solve equations (1) and (2) simultaneously 
to obtain: 
 

κ+
=

1
2

1
QQ  and 

κ
κ

+
=

1
2

2
QQ  

 
73 ••  
Picture the Problem We can model this system as two capacitors in series, C1 of 
thickness t and C2 of thickness d − t and use the equation for the equivalent capacitance 
of two capacitors connected in series. 
 
Express the equivalent capacitance of 
the two capacitors connected in series: 
 

21eq

111
CCC

+=  

or 

21

21
eq CC

CCC
+

=  

 
Relate the capacitance of C1 to its 
dielectric constant and thickness: 
 

t
AC 0

1
∈κ

=  

Relate the capacitance of C2 to its 
dielectric constant and thickness: 
 

td
AC
−

= 0
2

∈
 

Substitute and simplify to obtain: 
 

 

( ) ( ) 00

00
00

00

eq 1

1

1

1

C
ttd

dA
ttd

A

tdt

tdtA

tdt

tdt

td
A

t
A

td
A

t
A

C

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

=
+−

=

−
+

⎟
⎠
⎞

⎜
⎝
⎛

−
⎟
⎠
⎞

⎜
⎝
⎛

=

−
+

⎟
⎠
⎞

⎜
⎝
⎛

−
⎟
⎠
⎞

⎜
⎝
⎛

=

−
+

⎟
⎠
⎞

⎜
⎝
⎛

−
⎟
⎠
⎞

⎜
⎝
⎛

=

κ
κ∈

κ
κ

∈κ

κ

∈κ

κ

∈∈κ

∈∈κ

 

 
74 ••  
Picture the Problem Because d << r, we can model the membrane as a parallel-plate 
capacitor. We can use the definition of capacitance to find the charge on each side of the 
membrane in part (b) and the relationship between the potential difference across the 
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membrane, its thickness, and the electric field in it to find the electric field called for in 
part (c). 
 
(a) Express the capacitance of a 
parallel-plate capacitor: 
 

d
AC 0∈κ

=  

Substitute for the area of the plates: 
 kd

rL
d

rLC
2

2 0 κ∈πκ
==  

 
Substitute numerical values and 
evaluate C: 

( )( )
( )( )

nF7.16

m10/CmN108.992
m0.1m103

8229

5

=

⋅×
= −

−

C
 

 
(b) Use the definition of capacitance 
to find the charge on each side of the 
membrane: 
 

( )( ) nC1.17mV70nF16.7 === CVQ

 

(c) Express the electric field through 
the membrane as a function of its 
thickness d and the potential 
difference V across it: 
 

d
VE =  

Substitute numerical values and 
evaluate E: 

MV/m7.00
m10

mV70
8 == −E  

 
*75 ••  
Picture the Problem The bound charge density is related to the dielectric constant and 

the free charge density according to fb
11 σ
κ

σ ⎟
⎠
⎞

⎜
⎝
⎛ −= . 

 
Solve the equation relating σb, σf, 
and κ   for κ to obtain: 
 

fb1
1
σσ

κ
−

=  

(a) Evaluate this expression for  
σb/σf = 0.8: 
 

00.5
8.01

1
=

−
=κ  

(b) Evaluate this expression for  
σb/σf = 0.2: 
 

25.1
2.01

1
=

−
=κ  

(c) Evaluate this expression for  
σb/σf = 0.98: 

0.50
98.01

1
=

−
=κ  
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76 ••  
Picture the Problem We can use the definition of the dielectric constant to find its value. 
In part (b) we can use the expression for the electric field in the space between the 
charged capacitor plates to find the area of the plates and in part (c) we can relate the 
surface charge densities to the induced charges on the plates. 
 
(a) Using the definition of the 
dielectric constant, relate the 
electric field without a dielectric E0 
to the field with a dielectric E: 
 

κ
0EE =  

Solve for and evaluate κ : 
 

08.2
V/m101.2
V/m102.5

5

5
0 =

×
×

==
E
Eκ  

 
(b) Relate the electric field in the 
region between the plates to the 
surface charge density of the plates: 
 

00
0 ∈∈

σ AQE ==  

Solve for A: 

00 ∈E
QA =  

 
Substitute numerical values and 
evaluate A: ( )( )

2

23

22125

cm45.2

m1052.4
m/NC108.85V/m102.5

nC10

=

×=

⋅××
=

−

−A

 
(c) Relate the surface charge 
densities to the induced charges on 
the plates: 

fb
11 σ
κ

σ ⎟
⎠
⎞

⎜
⎝
⎛ −=  

or 
 

κσ
σ 11

f

b

f

b −==
Q
Q

 

 
Solve for Qb: 

fb
11 QQ ⎟
⎠
⎞

⎜
⎝
⎛ −=

κ
 

Substitute numerical values and 
evaluate Qb: 

( ) nC19.5nC10
08.2
11b =⎟

⎠
⎞

⎜
⎝
⎛ −=Q  
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*77 ••  
Picture the Problem We can model this parallel-plate capacitor as a combination of two 
capacitors C1 and C2 in series with capacitor C3 in parallel. 
 
Express the capacitance of two 
series-connected capacitors in 
parallel with a third: 
 

s3 CCC +=                           (1) 

where 

21

21
s CC

CCC
+

=                          (2) 

 
Express each of the capacitances C1, 
C2, and C3 in terms of the dielectric 
constants, plate areas, and plate 
separations: 
 

( )
d

A
d

AC 01

2
1

2
1

01
1

∈κ∈κ
== , 

( )
d

A
d

AC 02

2
1

2
1

02
2

∈κ∈κ
== , 

and 
( )

d
A

d
AC

2
032

1
03

3
∈κ∈κ

==  

 
Substitute in equation (2) to obtain: 

⎟
⎠
⎞

⎜
⎝
⎛

+
=

+

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛

=

d
A

d
A

d
A

d
A

d
A

C

0

21

21

0201

0201

s

∈
κκ
κκ

∈κ∈κ

∈κ∈κ

 

 
Substitute in equation (1) to obtain: 
 

⎟
⎠
⎞

⎜
⎝
⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+=

⎟
⎠
⎞

⎜
⎝
⎛

+
+=

d
A

d
A

d
AC

2
2

2

0

21

21
3

0

21

2103

∈
κκ
κκκ

∈
κκ
κκ∈κ

 

 
78 ••  
Picture the Problem The electric field E between the plates of a parallel-plate capacitor 
is related to the potential difference V between the plates and their separation d according 
to V = Ed and the electrostatic energy U depends on the electric field according to 

AdEU 2
002

1 ∈= . We can use these relationships to find E, V, and U with and without 

the dielectric in place. 
 
(a) Relate the electric field E0 to the 
potential difference V between the 
plates and the plate separation d: 
 

kV/m25.0
mm4

V100
0 ===

d
VE  
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Use the definition of energy density 
to relate the electrostatic energy U0 
to the volume of the space between 
the plates: 
 

AduU 00 =  

Express the energy density in the 
electric field: 
 

2
002

1
0 Eu ∈=  

Substitute to obtain: 
 

AdEU 2
002

1
0 ∈=  

Substitute numerical values and 
evaluate U0: 

( )( )
( )( )

J664.0

mm4cm600

kV/m25m/NC1085.8
2

22212
2
1

0

µ=

×

⋅×= −U

 
(b) With the dielectric in place the 
electric field becomes: 

kV/m6.25
4

kV/m250 ===
κ
EE  

(c) Relate the potential difference V 
to the electric field E and the 
separation of the plates: 
 

( )( ) V25.0mm4kV/m6.25 === EdV

 

(d) Relate the new electrostatic 
energy U to the initial electrostatic 
energy U0 and the dielectric 
constant κ : 

J166.0
4

J664.00 µµ
κ

===
UU  

 
79 •••  
Picture the Problem We can use the definition of capacitance and the relationship 
between the electric field in the capacitor and the potential difference across its plates to 
express C. In part (b) we can use ( ) fb 11 σκσ −= and κ  = 1 + (3/y0)y to express the 

ratio σb/σf and evaluate it at y = 0 and y = y0. The application of Gauss’s law in part (c) 
will yield an expression for ρ (y) within the dielectric that we can integrate in part (d) to 
find the total induced bound charge. 
 
(a) Using its definition, express the 
capacitance of the parallel-plate 
capacitor: 
 

V
A

V
QC σ
==                              (1) 

Express the potential difference V 
between the plates in terms of the 
electric field E between the plates: 
 

EdydV =  
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Express the electric field in the 
region between the plates: 
 

( ) ( )yy
EE

κ∈
σ

κ 0

0 ==  

Substitute to obtain: 
( ) dy

y
y

dy
y

dV

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

==

0
0

0 31∈

σ
κ∈
σ

 

 
Integrate from y = 0 to y = y0: 

( )

( )

( )4ln
3

31ln
3

31

0

0

00
0

0

0 00

0

0

∈
σ
∈
σ
∈
σ

y

yyy
yy

dyV

y

y

=

+=

+
= ∫

 

 
Substitute in equation (1) and 
simplify to obtain: ( ) ( )4ln

3

4ln
3

0

0

0

0 y
A

y
AC ∈

∈
σ

σ
==  

 
(b) Relate σb to σf and κ : 

fb
11 σ
κ

σ ⎟
⎠
⎞

⎜
⎝
⎛ −=  

and 

κσ
σ 11

f

b −=  

 
Substitute for κ  to obtain: 

( )yy0f

b

31
11

+
−=

σ
σ

 

 
Evaluate σb/σf at y = 0: 

( )( ) 0
031

11
00f

b =
+

−=
=

yyσ
σ

 

 
Evaluate σb/σf at y = y0: 

( ) 750.0
31

11
00f

b

0

=
+

−=
=

yy
yy

σ
σ

 

 
(c) Consider a Gaussian surface of 
area A and width dy and recall that E 
into the surface is taken to be 
negative. Apply Gauss’s law to obtain: 

( ) ( )[ ]

( )
0

0

inside

∈
ρ

∈
yAdy

QAdyyEyE

=

=+−
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Divide both sides of the equation by 
dy: 

( ) ( )[ ] ( )
0∈

ρ y
dy

dyyEyE
=

+−
 

or 
( )

0∈
ρ y

dy
dE

=−  

 
Solve for ρ (y) to obtain: 
 

( )

( )

( )

( )[ ]2
00

0

0
0

0

31
3

31
1

yyy

yydy
d

ydy
d

dy
dEy

+
=

⎥
⎦

⎤
⎢
⎣

⎡
+

−=

⎥
⎦

⎤
⎢
⎣

⎡
−=

−=

σ

σ

κ∈
σ∈

∈ρ

 

 
(d) Integrate ρ(y) from y = 0 to  
y = y0 to obtain: ( )[ ]

density. charge surface induced the
out cancelsjust  and ,dielectric the

in areaunit per  charge  the,

31
3

4
3

0
2

00

0

σ

σρ

−=

+
= ∫

y

yyy
dy

 

 
General Problems 
 
80 ••  
Picture the Problem We can use the expression 2

eq2
1

0 VCU = to express the total energy 

stored in the combination of four capacitors in terms of their equivalent capacitance Ceq. 
 
The energy stored in one capacitor 
when it is connected to the 100-V 
battery is: 
 

2
2
1

0 CVU =  

When the four capacitors are 
connected to the battery in some 
combination,  the total energy stored 
in them is: 
 

2
eq2

1 VCU =  

Equate U and U0 and solve for Ceq  
to obtain: 
 

CC =eq  
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The equivalent capacitance C′ of 
two capacitors of capacitance C 
connected in series is their product 
divided by their sum: 
 

C
CC

CC' 2
1

2

=
+

=  

If we connect two of the capacitors 
in series in parallel with the other 
two capacitors connected in series, 
their equivalent capacitance will be: 
 

CCCC'C'C =+=+= 2
1

2
1

eq  

   .capacitorsfour  allin  stored
energy  in totalresult   willcapacitors other two  theofn combinatio

series a with parallelin  capacitors  theof  twoofn combinatio series a Thus,

0U  

 
*81 •  
Picture the Problem We can use the equations for the equivalent capacitance of three 
capacitors connected in parallel and in series to find these equivalent capacitances.  
 
(a) Express the equivalent 
capacitance of three capacitors 
connected in parallel: 
 

321eq CCCC ++=  

Substitute numerical values and 
evaluate Ceq: F0.14

F0.8F0.4F0.2eq

µ

µµµ

=

++=C
 

 
(b) Express the equivalent 
capacitance of the three capacitors 
connected in series: 
 

313221

321
eq CCCCCC

CCCC
++

=  

Substitute numerical values and evaluate Ceq: 
 

( )( )( )
( )( ) ( )( ) ( )( ) F14.1

F8F2F8F4F4F2
F8F4F2

eq µ
µµµµµµ

µµµ
=

++
=C  

 
82 •  
Picture the Problem We can first use the equation for the equivalent capacitance of two 
capacitors connected in parallel and then the equation for two capacitors connected in 
series to find the equivalent capacitance. 
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Find the equivalent capacitance of a 
1.0-µF capacitor connected in 
parallel with a 2.0-µF capacitor: 
 

F0.3
F0.2F0.1

21eq,1

µ
µµ

=
+=

+= CCC
 

Find the equivalent capacitance of a 
3.0-µF capacitor connected in series 
with a 6.0-µF capacitor: 

( )( )

F2.00

F6.0F3.0
F6.0F3.0

6eq,1

6eq,1
eq,2

µ

µµ
µµ

=

+
=

+
=

CC
CC

C
 

 
83 •  
Picture the Problem The charge Q and the charge density σ are independent of the 
separation of the plates and do not change during the process described in the problem 
statement. Because the electric field E depends on σ, it too is constant. We can use 

2
2
1 CVU = and the relationship between V and E, together with the expression for the 

capacitance of a parallel-plate capacitor, to show that U ∝ d. 
 
Express the energy stored in the 
capacitor in terms of its capacitance C 
and the potential difference across its 
plates: 
 

2
2
1 CVU =  

Express V in terms of E: EdV =  
where d is the separation of the plates. 
 

Express the capacitance of a parallel-
plate capacitor: 
 

d
AC 0∈κ

=  

Substitute to obtain: 
 

( ) ( )dAEEd
d

AU 2
02

120
2
1 ∈κ∈κ

==  

 
Because U ∝ d, to double U one must 
double d. Hence: 

( ) mm1.00mm0.522f === dd  

 
84 ••  
Picture the Problem We can use the equations for the equivalent capacitance of 
capacitors connected in parallel and in series to find the single capacitor that will store 
the same amount of charge as each of the networks shown above. 
 
(a) Find the capacitance of the two 
capacitors in parallel: 
 

000eq,1 2CCCC =+=  
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Find the capacitance equivalent to 
2C0 in series with C0: 
 

( )
03

2

00

00

0eq,1

0eq,1
eq,2 2

2 C
CC
CC

CC
CC

C =
+

=
+

=  

 
(b) Find the capacitance of two 
capacitors of capacitance C0 in 
parallel: 
 

0eq,1 2CC =  

Find the capacitance equivalent to 
2C0 in series with 2C0: 
 

( )( )
0

00

00

0eq,1

0eq,1
eq,2 22

22 C
CC
CC

CC
CC

C =
+

=
+

=  

 
(c) Find the equivalent capacitance 
of three equal capacitors connected 
in parallel: 0

000eq

3C

CCCC

=

++=
 

 
*85 ••  
Picture the Problem Note that with V applied between a and b, C1 and C3 are in series, 
and so are C2 and C4. Because in a series combination the potential differences across the 
two capacitors are inversely proportional to the capacitances, we can establish 
proportions involving the capacitances and potential differences for the left- and right-
hand side of the network and then use the condition that Vc = Vd to eliminate the potential 
differences and establish the relationship between the capacitances. 
 
Letting Q represent the charge on 
capacitors 1 and 2, relate the 
potential differences across the 
capacitors to their common charge 
and capacitances: 
 

1
1 C

QV =  

and 

3
3 C

QV =  

 
Divide the first of these equations by 
the second to obtain: 1

3

3

1

C
C

V
V

=                           (1) 

 
Proceed similarly to obtain: 
 2

4

4

2

C
C

V
V

=                          (2) 

 
Divide equation (1) by equation (2) 
to obtain: 
 

41

23

23

41

CC
CC

VV
VV

=                   (3) 

If Vc = Vd then we must have: 21 VV = and 43 VV =  

 
Substitute in equation (3) and 

4132 CCCC =  



Chapter 24    
 

 

304 

rearrange to obtain: 
 
86 ••  
Picture the Problem Because the spheres are identical, each will have half the charge of 
the initially charged sphere when they are connected. We can find the fraction of the 
initial energy that is dissipated by finding the energy stored initially and the energy stored 
when the two spheres are connected. 
 
Express the fraction of the initial 
energy that is dissipated when the 
two spheres are connected: 
 

i

f

i

fi 1
U
U

U
UUf −=

−
=                (1) 

Express the initial energy of the 
sphere whose charge is Q: 
 

C
QU

2

i 2
1

=  

Relate the capacitance of a an 
isolated spherical conductor to its 
radius: 
 

RC 04 ∈π=  

Substitute to obtain: 
 R

kQ
R

QU
2

0

2

i 2
1

42
1

==
∈π

 

 
Express the energy of the connected 
spheres: 
 

( ) ( )
R

kQ
R

Qk
R

QkU
222

f 4
12

2
12

2
1

=+=  

 
Substitute in equation (1) and 
simplify:  

2
1

2
11

2
1
4
1

1 2

2

=−=−=

R
kQ

R
kQ

f  

 
87 ••  
Picture the Problem We can use the expression for the capacitance of a parallel-plate 
capacitor as a function of A and d to determine the effect on the capacitance of doubling 
the plate separation. We can use EdV =  to determine the effect on the potential 
difference across the capacitor of doubling the plate separation. Finally, we can use 

22CVU = to determine the effect of doubling the plate separation on the energy stored 

in the capacitor. 
 
(a) Express the capacitance of a 
capacitor whose plates are separated 
by a distance 2d: 

d
AC

2
0

new
∈

=  
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(b) Express the potential difference 
across a parallel-plate capacitor 
whose plates are separated by a 
distance d: 
 

EdV =  
where the electric field E depends solely on 
the charge on the capacitor plates. 
 

Express the new potential difference 
across the plates resulting from the 
doubling of their separation: 
 

( ) ( ) VEddEV 222new ===  

(c) Relate the energy stored in a 
parallel-plate capacitor to the 
separation of the plates: 
 

202

2
1

2
1 V

d
ACVU ∈

==  

When the plate separation is 
doubled we have: 
 

( )
d
AVV

d
AU

2
020

new 2
22

1 ∈∈
==  

(d) Relate the work required to 
change the plate separation from d 
to 2d to the change in the 
electrostatic potential energy of the 
system: 

d
AV

d
AV

d
AV

UUUW

2

2
2

0

2
0

2
0

inew

∈

∈∈

=

−=

−=∆=

 

  
88 ••   
Picture the Problem We can use the equation for the equivalent capacitance of two 
capacitors in series to relate C0 to C′ and the capacitance of the dielectric-filled parallel-
plate capacitor and then solve the resulting equation for C′. 
 
Express the equivalent capacitance 
of the system in terms of C′ and C, 
where C is the dielectric-filled 
capacitor: 
 

CC
C'CC
+

=
'0  

Solve for C′ to obtain: 
 0

0

CC
CCC'
−

=  

 
Express the capacitance of the 
dielectric-filled capacitor: 
 

0
0 C

d
AC κ∈κ
==  

Substitute to obtain: 
 

( )
0

00

00

1
C

CC
CCC'

−
=

−
=

κ
κ

κ
κ
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89 ••  
Picture the Problem Modeling the Leyden jar as a parallel-plate capacitor, we can use 
the equation relating the capacitance of a parallel-plate capacitor to the area A and 
separation d of its plates to find the jar’s capacitance. To find the maximum charge the jar 
can carry without undergoing dielectric breakdown we can use the definition of 
capacitance to express Qmax in terms of Vmax … and then relate Vmax to Emax using 

dEV maxmax = , where d is the thickness of the glass wall of the jar. 

 
(a) Treating it as a parallel-plate 
capacitor, express the capacitance of 
the Leyden jar 

( )

kd
Rh

d
Rh

d
Rh

d
AC

22
4

2

0

00

κκ∈π

π∈κ∈κ

==

==
 

where h is the height of the jar and R is its 
inside radius. 
 

Substitute numerical values and 
evaluate C: 
 

( )( )
( )( )

nF22.2

m102/CmN108.992
m0.4m0.045

3229

=

×⋅×
= −C

 

 
(b) Using the definition of 
capacitance, relate the maximum 
charge of the capacitor to the 
breakdown voltage of the dielectric: 
 

maxmax CVQ =  

Express the breakdown voltage in 
terms of the dielectric strength and 
thickness of  the dielectric: 
 

dEV maxmax =  

Substitute to obtain: 
 

dCEQ maxmax =  

Substitute numerical values and 
evaluate Qmax: 

( )( )( )
C6.66

m102MV/m15nF2.22 3
max

µ=

×= −Q
 

 
*90 ••  
Picture the Problem The maximum voltage is related to the dielectric strength of the 
medium according to dEV maxmax = and we can use the expression for the capacitance of 

a parallel-plate capacitor to determine the required area of the plates. 
 
(a) Relate the maximum voltage that 
can be applied across this capacitor 

dEV maxmax =  
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to the dielectric strength of silicon 
dioxide: 
 
Substitute numerical values and 
evaluate Vmax: 

( )( )
V40.0

m105V/m108 66
max

=

××= −V
 

 
(b) Relate the capacitance of a 
parallel-plate capacitor to area A of 
its plates: 
 

d
AC 0∈κ

=  

Solve for A to obtain: 
 0∈κ

CdA =  

 
Substitute numerical values and 
evaluate A: 
 

( )( )
( )

2

26

2212

6

mm1.49

m1049.1
m/NC108.853.8

m105pF10

=

×=

⋅×
×

=

−

−

−

A

 

 
(c) Express the number of capacitors n 
in terms of the area of a square 1 cm 
by 1cm and the area required for each 
capacitor: 

( ) 67
mm1.49
mm100cm1

2

22

≈==
A

n  

 
91 ••  
Picture the Problem When the battery is removed, after having initially charged both 
capacitors, and the separation of one of the capacitors is doubled, the charge is 
redistributed subject to the condition that the total charge remains constant; i.e.,  
Q = Q1 + Q2 where Q is the initial charge on both capacitors and Q2 is the charge on the 
capacitor whose plate separation has been doubled. We can use the conservation of 
charge during the plate separation process and the fact that, because the capacitors are in 
parallel, they share a common potential difference. 
 
Find the equivalent capacitance of 
the two 2-µF parallel-plate 
capacitors connected in parallel: 
 

F4F2F2eq µµµ =+=C  

Use the definition of capacitance to 
find the charge on the equivalent 
capacitor: 
 

( )( ) C400V100F4eq µµ === VCQ  
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Relate this total charge to charges 
distributed on capacitors 1 and 2 
when the battery is removed and the 
separation of the plates of capacitor 
2 is doubled: 
 

21 QQQ +=                           (1) 

Because the capacitors are in parallel: 
 

21 VV =  

and 

2

2

22
1

2

2

2

1

1 2
' C

Q
C

Q
C
Q

C
Q

===  

 
Solve for Q1 to obtain: 

2
2

1
1 2 Q

C
CQ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=                       (2) 

 
Substitute equation (2) in equation 
(1) and solve for Q2 to obtain: 
 

( ) 12 21
2 +
=

CC
QQ  

Substitute numerical values and 
evaluate Q2: 
 

( ) C133
1F2F22

C400
2 µ

µµ
µ

=
+

=Q  

Substitute in equation (1) or 
equation (2) and evaluate Q1: 

C2671 µ=Q  

 
92 ••  
Picture the Problem We can relate the electric field in the dielectric to the electric field 
between the capacitor’s plates in the absence of a dielectric using  
E = E0/κ. In part (b) we can express the potential difference between the plates as the sum 
of the potential differences across the dielectrics and then express the potential 
differences in terms of the electric fields in the dielectrics. In part (c) we can use our 
result from (b) and the definition of capacitance to express the capacitance of the 
dielectric-filled capacitor. In part (d) we can confirm the result of part (c) by using the 
addition formula for capacitors in series. 
 
(a) Express the electric field E in a 
dielectric of constant κ in terms of 
the electric field E0 in the absence 
of the dielectric: 
 

κ
0EE =  

Express the electric field E0 in the 
absence of the dielectrics: 
 

A
QE
00

0 ∈∈
σ

==  
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Substitute to obtain: 
 A

QE
0∈κ

=  

 
Use this relationship to express the 
electric fields in dielectrics whose 
constants are κ1 and κ2: 
 

A
QE

01
1 ∈κ
= and 

A
QE

02
2 ∈κ
=  

 

(b) Express the potential difference 
between the plates as the sum of the 
potential differences across the 
dielectrics: 
 

21 VVV +=  

Relate the potential differences to 
the electric fields and the 
thicknesses of the dielectrics: 
 

A
QddEV

01
11 22 ∈κ

==  

and 

A
QddEV

02
22 22 ∈κ

==  

 
Substitute and simplify to obtain: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

+=

210

0201

11
2

22

κκ∈

∈κ∈κ

A
Qd

A
Qd

A
QdV

 

 
(c) Use the definition of capacitance 
to obtain: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

==

21

21
0

21

210

21

21

0

210

2

22

11
2

κκ
κκ

κκ
κκ∈

κκ
κκ

∈

κκ∈

C

d
A

d

A

A
Qd

Q
V
QC

 

where dAC 00 ∈= . 

 
(d) Express the equivalent 
capacitance C of capacitors C1 and 
C2 in series: 
 

21

21

CC
CCC
+

=  
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Express C1:  
01

0101
1 22

2
C

d
A

d
AC κ∈κ∈κ

===  

 
Express C2:  

02
0202

2 22
2

C
d

A
d

AC κ∈κ∈κ
===  

 
Substitute to obtain: ( )( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
+

=
21

21
0

0201

0201 2
22
22

κκ
κκ

κκ
κκ C

CC
CCC , 

a result in agreement with part (c). 
 
93 ••  
Picture the Problem Recall that within a conductor E = 0. We can use the definition of 
capacitance to express C in terms of the charge on the capacitor Q and the potential 
difference across the plates V. We can then express V in terms of E and the thickness of 
the air gap between the plates. Finally, we can express the electric field between the 
plates in terms of the charge on them and their area. Substitution in our expression for C 
will give us C in terms of d – t. In part (b) we can use the expression for the equivalent 
capacitance of two capacitors connected in series to derive the same expression for C. 
 
(a) Use its definition to express the 
capacitance of this parallel-plate 
capacitor: 
 

V
QC =  

where Q is the charge on the capacitor. 

Relate the electric potential between 
the plates to the electric field 
between the plates: 
 

( )tdEV −=  

Express the electric field E between 
the plates but outside the metal slab: 
 

A
QE
00 ∈∈

σ
==  

Substitute and simplify to obtain: 
( ) ( ) td

A

td
A

Q
Q

tdE
QC

−
=

−
=

−
= 0

0

∈

∈

 

 
(b) Express the equivalent 
capacitance C of two capacitors C1 
and C2 connected in series: 
 

21

21

CC
CCC
+

=  

Express the capacitances C1 and C2 
of the plates separated by a and b, 
respectively: 

a
AC 0

1
∈

=  

and 



Electrostatic Energy and Capacitance 
 

 

311

b
AC 0

2
∈

=  

 
Substitute and simplify to obtain: 

ba
A

b
A

a
A

b
A

a
A

C
+

=
+

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛

= 0

00

00

∈
∈∈

∈∈

 

 
Solve the constraint that 
a + b + t = d for a + b to obtain: 
 

tdba −=+  

Substitute for a + b to obtain: 
td
AC
−

= 0∈
 

 
*94 ••  
Picture the Problem We can express the ratio of Ceq to C0 to show that the capacitance 
with the dielectrics in place is (κ1 + κ2)/2 times greater than that of the capacitor in the 
absence of the dielectrics. 
 

(a) 
parallel.in  /2, area ofeach  ,capacitors  two toequivalent is system
  theHence, plates.lower  andupper  entire  theacross same the

are potentials  the,conductors are platescapacitor   theBecause

A
 

 
(b) Relate the capacitance C0, in the 
absence of the dielectrics, to the 
plate area and separation: 
 

d
AC 0

0
∈

=  

Express the equivalent capacitance 
of capacitors C1 and C2, each with 
plate area A/2, connected in parallel: 
 

( ) ( )

( )21
01

2
1

012
1

01

21eq

2
κκ∈κ

∈κ∈κ

+=

+=

+=

d
A

d
A

d
A

CCC

 

 
Express the ratio of Ceq to C0 and 
simplify to obtain: 

( )
( )212

1

0

21
01

0

eq 2 κκ∈

κκ∈κ

+=
+

=

d
A

d
A

C
C

 

 
95 ••  
Picture the Problem We can use U = Q2/2C and the expression for the capacitance as a 
function of plate separation to express U as a function of x. Differentiation of this result 
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with respect to x will yield dU. Because the work done in increasing the plate separation 
a distance dx equals the change in the electrostatic potential energy of the capacitor, we 
can evaluate F from dU/dx. Finally, we can express F in terms of Q and E by relating E 
to x using E = Vx and using the definition of capacitance and the expression for the 
capacitance of a parallel-plate capacitor. 
 
(a) Relate the electrostatic energy U 
stored in the capacitor to its 
capacitance C: 
 

C
QU

2

2
1

=  

Express the capacitance as a 
function of the plate separation: 
 

x
AC 0∈

=  

Substitute for C to obtain: 
 x

A
QU

0

2

2∈
=  

 
(b) Use the result obtained in (a) to 
evaluate dU: 

dx
A

Q

dxx
A

Q
dx
ddx

dx
dUdU

0

2

0

2

2

2

∈

∈

=

⎥
⎦

⎤
⎢
⎣

⎡
==

 

 
(c) Relate the work needed to move 
one plate a distance dx to the change 
in the electrostatic potential energy 
of the system: 
 

FdxdUW ==  

Solve for and evaluate F: 

A
Qx

A
Q

dx
d

dx
dUF

0

2

0

2

22 ∈∈
=⎥

⎦

⎤
⎢
⎣

⎡
==  

 
(d) Express the electric field 
between the plates in terms of their 
separation and their potential 
difference: 
 

x
VE =  

Use the definition of capacitance to 
eliminate V: 
 

Cx
QE =  

Use the expression for the 
capacitance of a parallel-plate 
capacitor to eliminate C: 

A
Q

x
x

A
QE

00 ∈∈ ==  
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Substitute in our result from part (c) 
to obtain: 

( ) QE
A

AEQF 2
1

0

0

2
==

∈
∈

 

 
The field E is due to the sum of the fields from charges +Q and –Q on the opposite plates 
of the capacitor. Each plate produces a field ½ E and the force is the product of charge Q 
and the field ½ E. 
 
96 ••   
Picture the Problem We can model this capacitor as the equivalent of two capacitors 
connected in parallel. Let the numeral 1 denote the capacitor with the dielectric material 
whose constant is κ and the numeral 2 the air-filled capacitor. 
 
(a) Express the equivalent 
capacitance of the two capacitors in 
parallel: 
 

( ) 21 CCxC +=                             (1) 

Use the expression for the 
capacitance of a parallel-plate 
capacitor to express C1: 
 

d
bx

d
AC 010

1
∈κ∈κ

==  

Express the capacitance C0 of the 
capacitor with the dielectric 
removed, i.e., x = 0: 
 

d
abC 0

0
∈

=  

Divide C1 by C0 to obtain: 
 

a
x

d
ab

d
bx

C
C κ

∈

∈κ

==
0

0

0

1  

or 

01 C
a
xC κ

=  

 
Use the expression for the 
capacitance of a parallel-plate 
capacitor to express C2: 
 

( )
d

xab
d
AC −

== 020
2

∈∈
 

Divide C2 by C0 to obtain: 
 

( )

a
xa

d
ab

d
xab

C
C −

=

−

=
0

0

0

2

∈

∈

 

or 
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02 C
a

xaC −
=  

 
Substitute in equation (1) and simplify 
to obtain: 
 

( )

( )[ ]

( )[ ]xa
d

b

xa
a

C

C
a

xaC
a
xxC

1

1

0

0

00

−+=

−+=

−
+=

κ∈

κ

κ

 

 
(b) Evaluate C for x = 0: ( ) [ ] 0

000 C
d
aba

d
bC ===

∈∈
 

as expected. 
 

Evaluate C for x = a: ( ) ( )[ ]

expected. as 

1

0

0

d
ab

aa
d

baC

∈κ

κ∈

=

−+=
 

 
*97 •••  
Picture the Problem We can model this capacitor as the equivalent of two capacitors 
connected in parallel, one with an air gap and other filled with a dielectric of constantκ. 
Let the numeral 1 denote the capacitor with the dielectric material whose constant is κ 
and the numeral 2 the air-filled capacitor. 
 
(a) Using the hint, express the 
energy stored in the capacitor as a 
function of the equivalent 
capacitance Ceq: 
 

eq

2

2
1

C
QU =  

 

The capacitances of the two 
capacitors are:  d

axC 0
1

∈
=
κ

 and 
( )
d

xaaC −∈
= 0

2  

 
Because the capacitors are in 
parallel, Ceq is the sum of C1 and C2: 
 

( )

( )

( )[ ]ax
d

a

xax
d

a
d

xaa
d

axCCC

+−
∈

=

−+
∈

=

−∈
+

∈
=+=

10

0

00
21eq

κ

κ

κ
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Substitute for Ceq in the expression 
for U and simplify to obtain: 
 

( )[ ]axa
dQU

+−∈
=

12 0

2

κ
 

(b) The force exerted by the electric 
field is given by: 
 

( )[ ]

( )[ ]{ }
( )
( )[ ] 2

0

2

1

0

2

0

2

12
1

1
2

12
1

axa
dQ

ax
dx
d

a
dQ

axa
dQ

dx
d
dx
dUF

+−∈
−

=

+−
∈

−=

⎥
⎦

⎤
⎢
⎣

⎡
+−∈

−=

−=

−

κ
κ

κ

κ
 

 
(c) Rewrite our result in (b) to 
obtain: 

( )

( )[ ]

( )

( )
d

Va

C
d

aQ

ax
d

a
d

aQ
F

2
1

2

1

12

1

2
0

2
eq

02

2
2

0

02

∈−
=

⎟
⎠
⎞

⎜
⎝
⎛ ∈

−
=

+−⎟
⎠
⎞

⎜
⎝
⎛ ∈

⎟
⎠
⎞

⎜
⎝
⎛ ∈

−
=

κ

κ

κ

κ

 

Note that this expression is independent of 
x. 
 

(d)
plates.capacitor  ebetween th

space  theinto dielectric  thepull  tois force  theofeffect  The capacitor.
 theof edges  thearound fields fringing  thefrom originates force This

 

 
98 ••  
Picture the Problem Because capacitors connected in series have a common charge, we 
can find the charge on each capacitor by finding the charge on the equivalent capacitor. 
We can also find the total energy stored in the capacitors, with and without the dielectric 
inserted in one of them, by using 2

eq2
1 VCU = . In part (d) we can use our knowledge of 

the charge on each capacitor and the definition of capacitance to the potential differences 
across them. 
 
(a) Using the definition of 
capacitance, relate the charge on 
each capacitor to the equivalent 

VCQQQ eq21 ===  
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capacitance: 
 
Express the equivalent capacitance 
of two capacitors in series: 
 

21

21
eq CC

CCC
+

=  

Substitute numerical values and 
evaluate Ceq: 
 

( )( ) F2
F4F4
F4F4

eq µ
µµ
µµ

=
+

=C  

Substitute numerical values and 
evaluate Q: 
 

( )( ) C0.48V24F221 µµ === QQ  

(b) Express the energy U stored in 
the capacitors as a function of Ceq 
and V: 
 

( )( ) J576V24F2 2
2
1

2
eq2

1

µµ ==

= VCU
 

 

(c) Using the definition of 
capacitance, relate the charge on 
each capacitor to the new equivalent 
capacitance Ceq′: 
 

'VC'Q'QQ' eq21 ===              (1) 

Express the new equivalent 
capacitance Ceq′ when the dielectric 
of constant κ has been inserted 
between the plates of one of the 
capacitors: 
 

'C'C
''CC'C
21

21
eq +
=  

Letting the capacitor with the 
dielectric between its plates be 
denoted by the numeral 1, express 
C1′ and C2′: 
 

11 C'C κ=  

and 
22 C'C =  

 

Substitute to obtain: 

21

21
eq CC

CC'C
+

=
κ
κ

 

 
Substitute numerical values and 
evaluate Ceq′: 
 

( )( )
( ) F23.3

F4F42.4
F4F42.4

eq µ
µµ
µµ

=
+

='C  

Substitute in equation (1) to obtain: 
 

( )( ) C5.77V24F23.321 µµ === 'Q'Q  

 
(d) Express the potential difference 
across each capacitor in terms of its ( ) V4.61

F44.2
C5.77

1

1

1

1
1 ====

µ
µ

κC
'Q

'C
'Q'V  
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charge and capacitance: 
 

and 

V4.91
F4

C5.77
' 2

2

2

2
2 ====

µ
µ

C
'Q

C
'Q'V  

 
(e) Express the total stored energy in 
terms of the equivalent capacitance: ( )( ) J930V24F23.3 2

2
1

2
eq2

1

µµ ==

= 'VCU
 

 
99 ••  
Picture the Problem We can find the work required to pull the glass plate out of the 
capacitor by finding the change in the electrostatic energy of the system as a consequence 
of the removal of the dielectric plate. 
 
Express the change in the 
electrostatic energy of the system 
resulting from the removal of the 
glass plate: 
 

C
Q

C
Q

UUUW
2

0

2
if

2
1

2
1

−=

−=∆=
 

Express the capacitance C with the 
dielectric plate in place in terms of 
the dielectric constant κ and the air-
only capacitance C0: 
 

0CC κ=  

where 
d

AC 0
0

∈
= . 

Substitute and factor to obtain: 
⎟
⎠
⎞

⎜
⎝
⎛ −=−=

κκ
11

22
1

2
1

0

2

0

2

0

2

C
Q

C
Q

C
QW  

 
Use the definition of capacitance to 
relate the charge on the capacitor to 
the potential difference across its 
plates: 
 

VCCVQ 0κ==  

Substitute to obtain: 

⎟
⎠
⎞

⎜
⎝
⎛ −=

⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −=

κ
εκ

κ
κ

κ
κ

11
2

11
2

11
2

2
0

2

2
0

2

0

22
0

2

d
AV

VC
C

VCW
 

 
Substitute numerical values and evaluate W: 
 

( ) ( )( )( )
( ) J55.2

5
11

m100.52
V12m1m/NC108.855

2

2222122

µ=⎟
⎠
⎞

⎜
⎝
⎛ −

×
⋅×

= −

−

W  
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100 ••  
Picture the Problem The problem statement provides us with two conditions relating the 
potential between the plates of the capacitor and the charge on them. We can use the 
definition of capacitance to obtain simultaneous equations in Q and V and solve these 
equations to determine the capacitance of the capacitor and the initial and final voltages. 
 
Using the definition of capacitance, 
relate the initial potential between 
the plates of the capacitor to the 
charge carried by these plates: 
 

iC15 CV=µ  

Again using the definition of 
capacitance, express the relationship 
between the charge on the capacitor 
and the increased voltage: 
 

( )V6
C18

i

f

+=
=

VC
CVµ

 

Divide the second of these equations 
by the first to obtain: 
 

( )
i

i V6
C15
C18

CV
VC +

=
µ
µ

 

or 
( )V656 ii += VV  

 
Solve for V to obtain: 
 

V0.36V6

and

V0.30

if

i

=+=

=

VV

V

 

 
Substitute in either of the first two 
equations to obtain: 

F500.0 µ=C  

 
101 ••  
Picture the Problem Let l be the variable separation of the plates. We can use the 
definition of the work done in charging the capacitor to relate the force on the upper plate 
to the energy stored in the capacitor. Solving this expression for the force and substituting 
for the energy stored in a parallel-plate capacitor will yield an expression that we can use 
to decide whether the balance is stable. We can use this same expression and a condition 
for equilibrium to find the voltage required to balance the object whose mass is M. 
 
(a) Express the work done in 
charging the capacitor (the energy 
stored in it) in terms of the force 
between the plates: 
 

lFddEdW −==  
or 

ld
dEF −=  
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The energy stored in the capacitor is 
given by: 
 

202

2
1

2
1 VACVE ⎟

⎠
⎞

⎜
⎝
⎛∈==

l
 

Differentiate E with respect to l to 
obtain: 
 

2
2

020

22
1 VAVA

d
dF ⎟

⎠
⎞

⎜
⎝
⎛∈=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛∈−=

lll
 

 

unstable. is balance  theand system  theunbalance
  willseparation platein  decrease a decreases,  as increases  Because lF

 

 
(b)  Apply 0=∑F  to the object whose 

mass is M to obtain: 
 

0
2

2
2

0 =⎟
⎠
⎞

⎜
⎝
⎛∈− VAMg

l
 

Solve for V: 

A
MgV
0

2
∈

= l  

 
*102 •••  
Picture the Problem Recall that the dielectric strength of air is 3 MV/m. We can express 
the maximum energy to be stored in terms of the capacitance of the air-gap capacitor and 
the maximum potential difference between its plates. This maximum potential can, in 
turn, be expressed in terms of the maximum electric field (dielectric strength) possible in 
the air gap. We can solve the resulting equation for the volume of the space between the 
plates. In part (b) we can modify the equation we derive in part (a) to accommodate a 
dielectric with a constant other than 1. 
 
(a) Express the energy stored in the 
capacitor in terms of its capacitance 
and the potential difference across it: 
 

2
max2

1
max CVU =  

Express the capacitance of the air-
gap parallel-plate capacitor: 
 

d
AC 0∈

=  

Relate the maximum potential 
difference across the plates to the 
maximum electric field between 
them: 
 

dEV maxmax =  

Substitute to obtain: ( ) ( )
2

02
1

2
max02

12
max

0
2
1

max

E

EAddE
d

AU

υ∈

∈∈

=

=⎟
⎠
⎞

⎜
⎝
⎛=

 

where υ = Ad is the volume between the 
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plates. 
 

Solve for υ: 
 2

max0

max2
E

U
∈

υ =                                    (1) 

 
Substitute numerical values and 
evaluate υ: 
 

( )
( )( )

33

22212

m1051.2

MV/m3m/NC108.85
kJ1002

×=

⋅×
=

−
υ

 

 
(b) With the dielectric in place 
equation (1) becomes: 
 

2
max0

max2
E

U
∈κ

υ =                                   (2) 

Evaluate equation (2) with κ = 5 
and Emax = 3×108 V/m: 

( )
( )( )

32

282212

m1002.5

V/m103m/NC108.855
kJ1002

−

−

×=

×⋅×
=υ

 
103 •••  
Picture the Problem We can use the definition of capacitance to find the charge on each 
capacitor in part (a). In part (b) we can express the total energy stored as the sum of the 
energy stored on the two capacitors … using our result from (a) for the charge on each 
capacitor. When the dielectric is removed in part (c) each capacitor will carry half the 
charge carried by the capacitor system previously and we can proceed as in (b). Knowing 
the total charge stored by the capacitors, we can use the definition of capacitance to find 
the final voltage across the two capacitors in part (d). 
 
(a) Use the definition of capacitance 
to express the charge on each 
capacitor as a function of its 
capacitance: 
 

( ) 1!1 V200 CVCQ ==  

and 
( ) 1122 V200 CVCVCQ κκ ===  

 
(b) Express the total stored energy 
of the capacitors as the sum of 
stored energy in each capacitor: 
 ( )

( ) ( )
( )( ) 1

24

1
2

2
1

2
12

1

2
12

12
12

1

2
22

12
12

1
21

1V102

1V200

1

C

C

VC

VCVC

VCVCUUU

κ

κ

κ

κ

+×=

+=

+=

+=

+=+=
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(c) With the dielectric removed, 
each capacitor carries charge Q/2. 
Express  the final energy stored by 
the capacitors under this condition: 
  1

2
1

2

1

2

2

2
2

1

2
1

f

4

42
1

42
1

2
1

2
1

C
Q

C
Q

C
Q

C
Q

C
QU

=

+=+=
 

Using the definition of capacitance, 
express the total charge carried by 
the capacitors with the dielectric in 
place in C2: 
 

( )
( ) ( )κ

κκ
+=

+=+=
+=+=

1V200
1

1

111

2121

C
VCVCVC

VCVCQQQ
 

Substitute to obtain: 
 

( ) ( )[ ]

( ) ( )21
24

1

2
1

f

1V10

4
1V200

κ

κ

+=

+
=

C

C
CU

 

 
(d) Use the definition of capacitance 
to express the final voltage across the 
capacitors: 

( ) ( )

( )V1100

2
1V200

1

1

eq
f

κ

κ

+=

+
==

C
C

C
QV

 

 
104 •••  
Picture the Problem We can use the definition of capacitance and the expression for the 
capacitance of a cylindrical capacitor to find the potential difference between the 
cylinders. In part (b) we can apply the definition of surface charge density to find the 
density of the free charge σf  on the inner and outer cylindrical surfaces. We can use the 
fact that that Q and Qb are proportional to E and Eb to express Qb at a and b and then 
apply the definition of surface charge density to express σb(a) and σb(b). In part (d) we 
can use QVU 2

1= to find the total stored electrostatic energy and in (e) find the 

mechanical work required from the change in electrostatic energy of the system resulting 
from the removal of the dielectric cylindrical shell. 
 
(a) Using the definition of 
capacitance, relate the potential 
difference between the cylinders to 
their charge and capacitance: 
 

C
QV =                                   

Express the capacitance of a 
cylindrical capacitor as a function of 
its radii a and b and length L: 
 

( )ab
LC

ln
2 0 κ∈π

=  

Substitute to obtain: 
 

( ) ( )
L

abkQ
L

abQV
κκ∈π
ln2

2
ln

0

==  
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(b) Apply the definition of surface 
charge density to obtain: 
 

( )
aL

Qa
π

σ
2f =  

and 

( )
bL
Qb

π
σ

2f
−

=  

 
(c) Noting that Q and Qb are 
proportional to E and Eb, express Qb 
at a and b: 
 

( ) ( )
κ
κ 1

b
−−

=
QaQ  

and 

( ) ( )
κ
κ 1

b
−

=
QbQ  

 
Apply the definition of surface 
charge density to express σb(a) and 
σb(b): 
 

( ) ( )
( )

( )
κπ

κ
π
κ
κ

σ

aL
Q

aL

Q

A
aQa

2
1

2

1
b

b

−−
=

−−

==
 

and 

( ) ( )
( )

( )
κπ

κ
π
κ
κ

σ

bL
Q

bL

Q

A
bQb

2
1

2

1
b

b

−
=

−

==
 

 
(d) Express the total stored 
electrostatic energy in terms of the 
charge stored and the potential 
difference between the cylinders: 
 

( )

( )
L

abkQ

L
abkQQQVU

κ

κ

ln

ln2

2

2
1

2
1

=

⎥⎦
⎤

⎢⎣
⎡==

 

(e) Express the work required to 
remove the dielectric cylindrical 
shell in terms of the change in the 
electrostatic potential energy of the 
system: 
 

UU'UW −=∆=  
where U ′ = κU is the electrostatic potential 
energy of the system with the dielectric 
shell in place. 

Substitute for U and U′ to obtain: ( )
( ) ( )

L
abkQ

UUUW

κ
κ

κκ

ln1

1
2 −

=

−=−=
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105 •••  
Picture the Problem Let the numeral 1 denote the 35-µF capacitor and the numeral 2 the 
10-µF capacitor. We can use 2

eq2
1 VCU = to find the energy initially stored in the system 

and the definition of capacitance to find the charges on the two capacitors. When the 
dielectric is removed from the capacitor the two capacitors will share the total charge 
stored equally. Finally, we can find the final stored energy from the total charge stored 
and the equivalent capacitance of the two equal capacitors in parallel. 
 
(a) Express the stored energy of the 
system in terms of the equivalent 
capacitance and the charging 
potential: 
 

2
eq2

1 VCU =  

Express the equivalent capacitance: 21eq CCC +=  

 
Substitute to obtain: 
 

( ) 2
212

1 VCCU +=  

Substitute numerical values and 
evaluate U: 
 

( )( )
J225.0

V100F10F35 2
2
1

=

+= µµU
 

 
(b) Use the definition of capacitance 
to find the charges on the two 
capacitors: 
 

( )( ) mC50.3V100 F3511 === µVCQ

and 
( )( ) mC00.1V100 F1022 === µVCQ

 
(c) Because the capacitors are 
connected in parallel, when the 
dielectric is removed their charges 
will be equal; as will be their 
capacitances and: 
 

( )
mC25.2

mC1mC3.52
1

2
1

21

=

+=

== QQQ
 

(d) Express the final stored energy 
in terms of the total charge stored 
and the equivalent capacitance: 
 

eq

2
tot

f 2
1

Q
QU =  

Substitute numerical values and 
evaluate Uf: 

( )
( ) J506.0

F102
mC5.4

2
1 2

f ==
µ

U  
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*106 •••  
Picture the Problem We can express the two conditions on the voltage in terms of the 
charges Q1 and Q2 and the capacitances C1 and C2 and solve the equations simultaneously 
to find Q1 and Q2. We can then use the definition of capacitance to find the initial 
voltages V1 and V2. 
 
Express the condition for the series 
connection: 
 

V8021 =+VV  

or 

V80
2

2

1

1 =+
C
Q

C
Q

 

 
Substitute numerical values to 
obtain: 
 

V80
F2.1F4.0

21 =+
µµ

QQ
 

or 
C963 21 µ=+QQ                 (1) 

 
Use the definition of capacitance to 
express the condition for the parallel 
connection: 
 

V20
eq

21 =
+

C
QQ

 

Because the capacitors are now 
connected in parallel: 
 

F6.1F2.1F4.021eq µµµ =+=+= CCC  

Substitute to obtain: 
 

V20
F6.1

21 =
+
µ
QQ

 

or 
C3221 µ=+QQ                   (2) 

 
Solve equations (1) and (2) 
simultaneously to obtain: 
 

C321 µ=Q and 02 =Q  

Use the definition of capacitance to 
obtain: 

V0.80
F0.4
C32

1

1
1 ===

µ
µ

C
QV  

and 

0
F0.4

0

2

2
2 ===

µC
QV  

 
107 •••  
Picture the Problem Note that, with switch S closed, C1 and C2 are in parallel and we 
can use 2

eq2
1

closed VCU = and 21eq CCC += to obtain an equation we can solve for C2. 
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We can use the definition of capacitance to express Q2 in terms of V2 and C2 and 
2

222
12

112
1

open VCVCU += to obtain an equation from which we can determine V2.  

 
Express the energy stored in the 
capacitors after the switch is closed: 
 

2
eq2

1
closed VCU =  

Express the equivalent capacitance 
of C1 and C2 in parallel: 
 

21eq CCC +=  

Substitute to obtain: 
 

( ) 2
212

1
closed VCCU +=  

Solve for C2: 
12

closed
2

2 C
V

UC −=  

 
Substitute numerical values and 
evaluate C2: 
 

( )
( )

F100.0F2.0
V80

J9602
22 µµµ

=−=C  

Express the charge on C2 when the 
switch is open: 
 

222 VCQ =                               (1) 

Express the energy stored in the 
capacitors with the switch open: 
 

2
222

12
112

1
open VCVCU +=  

Solve for V2 to obtain: 

2

2
11open

2

2
C

VCU
V

−
=  

 
Substitute in equation (1) to obtain: 

( )2
11open2

2

2
11open

22

2

2

VCUC

C
VCU

CQ

−=

−
=

 

 
Substitute numerical values and evaluate Q2: 
 

( ) ( ) ( )( )[ ] C0.16V40F2.0J14402F1.0 2
2 µµµµ =−=Q  

 
108 •••  
Picture the Problem We can express the electric fields in the dielectric and in the free 
space in terms of the charge densities and then use the fact that the electric field has the 
same value inside the dielectric as in the free space between the plates to establish that  
σ1 = 2σ2. In part (c) we can model the system as two capacitors in parallel to show that 
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the equivalent capacitance is 3ε0A/2d and then use the definition of capacitance to show 
that the new potential difference is V3

2 . 

 

(a) 
plates. ebetween th everywhere

same  thebemust  / Therefore, surfaces). ialequipotent are plates
(the halvesboth for  same  theis plates ebetween th difference potential The

dVE =  

 
(b) Relate the electric field in each 
region to σ and κ : 
 

0∈κ
σ

=E  

Solve for σ : 
 

E0∈κσ =  

 
Express σ1 and σ2: 101011 2 EE ∈∈κσ ==  

and 
102022 EE ∈∈κσ ==  

 
Divide the 1st of these equations by 
the 2nd and simplify to obtain: 
 

21 2σσ =  

(c) Model the partially dielectric-
filled capacitor as two capacitors in 
parallel to obtain: 
 

21eq CCC +=  

where 
( )

d
A

d
AC

2
02

1
0

1
∈κ∈κ

==  

and 
( )

d
A

d
AC

2
02

1
0

2
∈∈

==  

 
Substitute and simplify to obtain: 
 

d
A

d
A

d
A

d
A

d
AC

2
3

22
2

22

0

0000
eq

∈

∈∈∈∈κ

=

+=+=
 

 
Use the definition of capacitance to 
relate Vf, Qf, and Cf: f

f
f C

QV =  

 
Because the capacitors are in 
parallel: d

AVVCQQ 0
iif

∈
===  
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Substitute to obtain: V
d

d
A
AV

dC
AVV 3

2

0

0

f

0
f

2
3

=
⎟
⎠
⎞

⎜
⎝
⎛

==
∈
∈∈

 

 
109 •••  
Picture the Problem Note that when the capacitors are connected in the manner 
described they are in parallel with each other. Let the numeral one refer to the capacitor 
with the air gap and the numeral 2 to the capacitor that receives the dielectric and let 
primes denote physical quantitities after the insertion of the dielectric. We can find the 
energy stored in the system from our knowledge of the charge on and capacitance of each 
capacitor. In part (b) we can find the final charges on the two capacitors by first finding 
the equivalent capacitance and the potential difference across the modified system of 
capacitors. We can use the final potential difference across the system and our knowledge 
of the stored charge to find the final stored energy of the system. 
 
(a) Express the stored energy in the 
system as the sum of the energy 
stored in the two capacitors: 
 

1

2
1

1

2
1

1

2
1

2
1

2
1

C
Q

C
Q

C
QU =+=  

Substitute numerical values and 
evaluate U: 

( ) mJ00.1
F10
C100 2

==
µ
µU  

 
(b) Relate the final charges Q1′ and 
Q2′ to the total charge stored by the 
capacitors: 
 

C20021 µ=+ 'Q'Q  

Express the common potential 
difference across the capacitors: 
 

eq

21

C
'Q'QV +

=  

Express the equivalent capacitance 
when the dielectric is inserted 
between the plates of capacitor 2:  
 

( )κκ +=+=+= 111121eq CCCCCC  

Substitute to obtain: 
 ( )κ+

+
=

11

21

C
'Q'QV  

 
Substitute numerical values and 
evaluate V: 
 

( )( ) V76.4
2.31F10

C200
=

+
=

µ
µV  

Use the definition of capacitance to 
find Q1′ and Q2′: 

( )( ) C6.47F10V76.411 µµ === 'VC'Q  

and 
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( )( )( ) C152F102.3V76.4
222

µµ

κ

==

== CV'VC'Q
 

 
(c) Express the final stored energy 
of the system in terms of the total 
charge stored and the final potential 
difference across the capacitors 
connected in parallel: 

( )( )
mJ476.0

V76.4C2002
1

2
1

f

=

== µQVU
 

 
*110 •••  
Picture the Problem Choose a coordinate system in which the positive x direction is the 
right and the origin is at the left edge of the capacitor. We can express an element of 
capacitance dC and then integrate this expression to find C for this capacitor. 
 
Express an element of capacitance 
dC of length b, width dx and 
separation  
d = y0 + (y0/a)x: 
 

( )dx
axy

bdx
d

bdC
+

==
10

00 ∈∈
 

These elements are all in parallel, so 
the total capacitance is obtained by 
integration: 

2ln
1

1
0

0

00

0
0

y
abdx

axy
bC

y ∈∈
=

+
= ∫  

 
111 •••   
Picture the Problem The diagram to the left shows the dielectric-filled parallel-plate 
capacitor before compression and the diagram to the right shows the capacitor when the 
plate separation has been reduced to x. We can use the definition of capacitance and the 
expression for the capacitance of a parallel-plate capacitor to derive an expression for the 
capacitance as a function of voltage across the capacitor. We can find the maximum 
voltage that can be applied from the dielectric strength of the dielectric and the separation 
of the plates. In part (c) we can find the fraction of the total energy that is electrostatic 
field energy and the fraction that is mechanical stress energy by expressing either of these 
as a fraction of their sum. 
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(a) Use its definition to express the 
capacitance as a function of the 
voltage across the capacitor: 
 

( )
V
QVC =                                   (1) 

The limiting value of the 
capacitance is: 
 

d
AC 0

0
∈κ

=  

Substitute numerical values and 
evaluate C0: 
 

( )

32

2212

0

m/NC133.0
mm2.0

m/NC1085.83

⋅=

⋅×
=

−

A

AC
 

 
Let x be the variable separation. 
Because κ is independent of x: 

( )
x

AxC 0∈κ
=  

and 

 ( ) ( ) V
x

AVxCxQ 0∈κ
==                

 
Substitute in equation (1) to obtain: 
 ( )

xd
A

x
A

V

V
x

A

VC

∆−
=

==

0

0

0

∈κ

∈κ
∈κ

         (2) 

 
The force of attraction between the 
plates is given in Problem 95c: 
 

( )
A

xQF
0

2

2 ∈κ
=  

Substitute to obtain: 

2

2
0

0

2
0

22 x
AV

A

V
x

A

F ∈κ
∈κ

∈κ

−=
⎟
⎠
⎞

⎜
⎝
⎛

=  

where the minus sign is used to indicate 
that the force acts to decrease the plate 
separation x. 
 

Apply Hooke’s law to relate the stress 
to the strain: 
 

xx
AFY

∆
=  

or 

YA
F

x
x
=

∆
 

 
Substitute for F to obtain: 

2

2
0

2Yx
V

x
x ∈κ

−=
∆
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and 

Yd
V

Yx
Vx

22

2
0

2
0 ∈κ∈κ

−=−=∆       (3) 

provided ∆x << d 
 

The voltage across the capacitor is: 
 

( )( )
kV00.8

mm2.0kV/mm40max

=
== dEV

 

 
Substitute numerical values in 
equation (3) and evaluate ∆x: 

( )( )
( )( )

mm108.50m1050.8
mm2.0N/m1052

kV8mN/C1085.83

47

26

22212

−−

−

×=×=

×
⋅×

−=∆x
 

 
Substitute in equation (2) to obtain: 
 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+≈⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
−

=
−

2

2
0

0

1

2

2
0

0

2

2
0

0
2

0

0

2
1

2
1

2
1

2
Yd

VC
Yd

VC

Yd
Vd

A

Yd
Vd

AVC ∈κ∈κ
∈κ

∈κ
∈κ
∈κ

 

provided ∆x << d. 
 
(b) Express the maximum voltage that can be applied in terms of the maximum 
electric field: 
 

( ) ( )( ) kV97.7mm108.5mm2.0kV/mm40 -4
maxmax =×−=∆−= xdEV  

 
(c) The fraction of the total energy 
of the capacitor that is mechanical 
stress energy is: 
 

EM

M

UU
Uf
+

=                                  (4) 

 

Express the maximum electric field 
energy: 
 

( ) 2
maxmax2

1
maxE, VVCU =  

 

Evaluate C(Vmax): 
 

( ) ( ) ( )( )[ ] 22211 m/F134.0m/FkV97.71064.61133.0kV97.7 µµ AAC =×+= −  

 
Substitute for C(Vmax) and evaluate 
UE,max:  

( )( )
2

22
2
1

maxE,

J/m25.4

kV96.7F/m134.0

=

= µAU
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The mechanical stress energy is given 
by: 

( )
d

YxU
2

M 2
1 ∆

=  

 
Substitute numerical values and 
evaluate UM: 

( ) ( )

mJ92.8
mm0.2

N/m105mm105.8
2
1 2624

M

=

××
=

−

U
 

 
Substitute numerical values in 
equation (4) and evaluate f: 

%209.0
J/m4.25mJ8.92

mJ8.92
2 =

+
=f  

and the fraction of the total energy that is 
electrostatic field energy is 

%8.99%209.011 =−=− f  

 
112 •••  
Picture the Problem Note that, due to symmetry, the electric field, wherever it exists, 
will be radial. We can integrate the electric flux over spherical Gaussian surfaces with 
radii r < R1, R1 < r < R2, and r > R2 to find the electric field everywhere in space. Once we 
know the electric field everywhere we can find the potential of the conducting sphere by 
using dV = −Edr and integrating E in the regions R1 < r < R2 and r > R2. Finally, knowing 
the electrostatic potential at the surface of the conducting sphere we can use 

( )12
1

tot RQVU =  to find the total electrostatic potential energy of the system. 

 
(a) Integrate the electric flux over a 
spherical Gaussian surface with 
radius r < R1 to obtain: 
 

( ) 04
0

inside2 ==
∈

π QrEr  

because Qinside the conducting surface is 
zero. 
 

Solve for Er(r < R1) to obtain: ( ) 01 =< RrEr  

 
Integrate the electric flux over a 
spherical Gaussian surface with 
radius R1 < r < R2 to obtain: 
 

( )
00

inside24
∈κ∈κ

π QQrEr ==  

Solve for Er(R1 < r < R2) to obtain: ( ) 22
0

21 4 r
kQ

r
QRrREr κκ∈π

==<<  

 
Integrate the electric flux over a 
spherical Gaussian surface with 
radius r > R2 to obtain: 

( )
00

inside24
∈∈

π QQrEr ==  
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Solve for Er(r > R2) to obtain: ( ) 22
0

2 4 r
kQ

r
QRrEr ==>
∈π

 

 
(b) Express the potential at the 
surface of the conducting sphere in 
terms of the electric fields  
Er(R1 < r < R2) and Er(r > R2): 

( )

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +−
=

−−=

−=

∫∫

∫

∞

∞

21

21

22

1

1

11 1

2

2

1

RR
RRkQ

dr
r

kQdr
r

kQ

EdrRV

R

R

R

R

κ
κ

κ
 

 
(c) Express the total electrostatic 
potential energy of the system in terms 
of V(R1) and Q: 

( )
( )

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +−
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +−
=

=

21

21
2

21

21
2
1

12
1

tot

1
2

1

RR
RRkQ

RR
RRkQQ

RQVU

κ
κ

κ
κ

 

 
 
 
 
 
 
 
 
 
 
 


