Chapter 26
The Magnetic Field

Conceptual Problems

*1 °

Determine the Concept Because the electrons are initially moving at 90° to the magnetic
field, they will be deflected in the direction of the magnetic force acting on them. Use the
right-hand rule based on the expression for the magnetic force acting on a moving charge
F = qv x B, remembering that, for a negative charge, the force is in the direction

opposite that indicated by the right-hand rule, to convince yourself that the particle will

follow the path whose terminal point on the screen is 2. | () is correct.

2 .
Determine the Concept One cannot define the direction of the force arbitrarily. By
experiment, F is perpendicular toB.

3 .
Determine the Concept False. An object experiences acceleration if either its speed
changes or the direction it is moving changes. The magnetic force, acting perpendicular to
the direction a charged particle is moving, changes the particle’s velocity by changing the
direction it is moving and hence accelerates the particle.

4 .
Determine the Concept Yes; it will be deflected upward. Because the beam passes
through undeflected when traveling from left to right, we know that the upward
electric force must be balanced by a downward magnetic force. Application of the
right-hand rule tells us that the magnetic field must be out of the page. When the
beam is reversed, the magnetic force (as well as the electric force) acting on it is
upward.

*5 °
Determine the Concept The alternating current running through the filament is changing
direction every 1/60 s, so in a magnetic field the filament experiences a force which
alternates in direction at that frequency.

6 .
Determine the Concept The magnitude of the torque on a current loop is given by
7 = uBsin 8, where Ois the angle between the magnetic field and a normal to the surface

of the loop. To maximizer, sind= 1 and &= 90°. Hence the normal to the plane of the
loop should be perpendicular toB.
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7 .
(@) True. This is an experimental fact and is the basis for the definition of the magnetic
force on a moving charged particle being expressed in terms of the cross product of
vandB:ie. F=gvxB.

() True. This is another experimental fact. The torque on a magnet is a restoring torque,
i.e., one that acts in such a direction as to align the magnet with magnetic field.

(c) True. We can use a right-hand rule to relate the direction of the magnetic field around
the loop to the direction of the current. Doing so indicates that one side of the loop acts
like a north pole and the other like a south pole.

(d) False. The period of a particle moving in a circular path in a magnetic field is given
by T = 2z./mr/qvB and, hence, is proportional to the square root of the radius of the

circle.

(e) True. The drift velocity is related to the Hall voltage according to v4 = Vu/Bw where w
is the width of the Hall-effect material.

*8 e :

Determine the Concept The direction in which a particle is deflected by a magnetic field
will be unchanged by any change in the definition of the direction of the magnetic field.
Since we have reversed the direction of the field, we must define the direction in which
particles are deflected by a "left-hand" rule instead of a "right-hand" rule.

9 .
Determine the Concept Choose a right-handed coordinate system in which east is the
positive x direction and north is the posmve y direction. Then the magnetic force acting
on the particle is given byF qu X B_] qu(t X j)— quk Hence, the magnetic

force is upward.

10 -

Determine the Concept Application of the right-hand rule tells us that this positively
charged particle would have to be moving in the northwest direction with the magnetic
field upward in order for the magnetic force to be toward the northeast. The situation

described cannot exist. | (e) is correct.

11 -

Picture the Problem We can use Newton’s 2" law for circular motion to express the
radius of curvature R of each particle in terms of its charge, momentum, and the magnetic
field. We can then divide the proton’s radius of curvature by that of the ‘Li nucleus to
decide which of these alternatives is correct.



Apply D" F,g = ma_to the lithium
nucleus to obtain:

Solve for 7

For the ‘Li nucleus this becomes:

For the proton we have:

Divide equation (2) by equation (1)
and simplify to obtain:

Because the momenta are equal:

*12
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qvB =m—
Rr="
qB
_ P
H 3¢B
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R =—"%
eB
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T _eB _3P
R, Pu  py
3eB
R :
R_P =3 and| («) is correct.

Li

Determine the Concept Application of the right-hand rule indicates that a positively
charged body would experience a downward force and, in the absence of other forces, be
deflected downward. Because the direction of the magnetic force on an electron is
opposite that of the force on a positively charged object, an electron will be deflected

upward. | (c)is correct.

13 oo

Determine the Concept From relativity; this is equivalent to the electron moving from
right to left at velocity v with the magnet stationary. When the electron is directly over
the magnet, the field points directly up, so there is a force directed out of the page on the

electron.

14 -

Similarities

Differences

Magnetic field lines are similar to electric
field lines in that their density is a measure
of the strength of the field; the lines point
in the direction of the field; also, magnetic
field lines do not cross.

They differ from electric field lines in

that magnetic field lines must close on
themselves (there are no isolated magnetic
poles), and the force on a charge depends
on the velocity of the charge and is
perpendicular to the magnetic field lines.
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15 -

Determine the Concept If only F and 7 are known, one can only conclude that the
magnetic field B isin the plane perpendicular toF . The specific direction of B is
undetermined.

Estimation and Approximation

*16 oo
Picture the Problem If the electron enters the magnetic field in the coil with speed v, it
will travel in a circular path under the influence of the magnetic force acting on. We can
apply Newton’s 2" law to the electron in this field to obtain an expression for the
magnetic field. We’ll assume that the deflection of the electron is small over the distance
it travels in the magnetic field, but that, once it is through the region of the magnetic
field, it travels at an angle &with respect to the direction it was originally traveling.

Appl F = ma_to the elect 2
-ppyz = ma, 1o the electron B m?
in the magnetic field to obtain: r
Solve for B: B my
er

The kinetic energy of the electron is: K =eV =im/’
Solve for v to obtain: 2V

V= 1/—

m
Sybstitute for v in the expression for g \/ZeV 1 \/sz
r. == [— = —
er\ m r e

Because #<< 1: .

d=rsind = r=—

siné
Substitut(_a for » in the expression for sing [2mv
B to obtain: B=——
d e
For maximum_deflection,_ sin 45° 2(9.11x10-31 kg)(lS kV)
6~ 45°. Substitute numerical values B= T
and evaluate B: 0.05m 1.60x107C
=|5.84mT

17 oo

Picture the Problem Let / be the height of the orbit above the surface of the earth, m the
mass of the micrometeorite, and v its speed. We can apply Newton’s 2™ law to the
orbiting micrometeorite with Fieq = gvB to derive an expression for the charge-to-mass
ratio of the micrometeorite.
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(a) Apply Y F =majtothe B =m V2

micrometeorite orbiting under the h+ R
influence of the magnetic force:

Solve for g/m to obtain: 4q _ v
m B(h + Rearth )
Substitute numerical values and evaluate g/m:
9 30km/s —[88.6Clkg
m  (5x107° T )(400km +6370km)
(b) Solve the result for g/m q = (88.6C/kg)m
obtained in (a) for ¢ to obtain:
Substitute numerical values and q=(88.6 C/kg)(3><10‘10 kg)
evaluate q: — 266 nC

Force Exerted by a Magnetic Field

18 -

Picture the Problem The magnetic force acting on a charge is given by F = qv x B.
We can express v and B, form their vector (a.k.a. "cross”) product, and multiply by the
scalar ¢ to find F.

Express the force acting on the proton: F = qv x B
Express v : v =(4.46 Mm/s)f
Express B : B= (1.75T)I;

Substitute numerical values and evaluate F :

F =(1.60x10™ c)[(4.46 Mm/s)i x(1.75T)1€]: —(1.25pN);

19 -
Picture the Problem The magnetic force acting on the charge is given byF =qv X B.

We can express v and B , form their vector (a.k.a. "cross”) product, and multiply by the
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scalar ¢ to find F.

Express the force acting on the F = qv x B
charge:

Substitute numerical values to F
obtain:

(-3.64nC)|(2.75x10° mis)i x B|

(a) Evaluate Ffor B =038 T}:

F = (~3.64nC)[(2.75x10° m/s)i x (0.38T)j] =[ - (3.80mN)&

(b) Evaluate F for B =0.75T i +0.75T j :
F =(~3.64nC)[(2.75x10° mis)i x {0.75T)7 + (0.75T)j|=[ - (7 51mN)k

(c) Evaluate Ffor B=065Ti:
F = (~3.64nC)|[2.75x20° mis)i x (0.65T)i | = [ 0]

(d) Evaluate Ffor B =0.75T i +0.75Tk :

F = (-3.64nC)|[2.75x10° mis)i x (0.75T)i + (0.75T)k | =[ (7.51mN);

20 -
Picture the Problem The magnetic force acting on the proton is given byﬁ =gV X B.

We can express v and B , form their vector (a.k.a. "cross”) product, and multiply by the
scalar ¢ to find F.

Express the force acting on the proton: F = qv x B

(a) Evaluate F for ¥ = 2.7 Mm/s i

F = (1.60x10° C)|(2.7x10° m/s)i x (1.48T)k | =| - (0.640pN);

(») Evaluate F for ¥ = 3.7 Mm/s }

F = (1.60x10 C)|(3.7x10° mis) j x (1.48T) |= [ (0.876 pN)7
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(c) Evaluate F for ¥ = 6.8 Mm/s k:
F = (1.60x107 C)|(6.810° mis )i x(1.48T) | = [ 0]
(d) Evaluate F for ¥ = 4.0Mm/si +3.0Mm/s j :

F = (160107 C)|{(4.0Mm/s)7 +(3.0Mms) j|x(1.48T )k |
= | (0.720pN)i —(0.947pN) j

21

Picture the Problem The magnitude of the magnetic force acting on a segment of wire is
given by F = I/Bsin @ where / is the length of the segment of wire, B is the magnetic
field, and @is the angle between the segment of wire and the direction of the magnetic
field.

Express the magnitude of the F =1/Bsin@
magnetic force acting on the
segment of wire:

Substitute numerical values and F =(2.6A)(2m)(0.37T)sin30°
evaluate F: =1 0.962N
*22 o

Picture the Problem We can use F = IL x B to find the force acting on the wire
segment.

Express the force acting on the wire F=ILxB

segment:

Substitute numerical values and F = (2.7A)[(3cm)f +(4 cm)}]x (1.37T)i
evaluate F : _ _(0 140N)l€

23 .

Picture the Problem The magnetic force acting on the electron is given by F = qv x B.
We can form the vector product of v and B and multiply by the charge of the electron to
find F and obtain its magnitude using F = /F” + F + F” . The direction angles are

given by 0, =tan"*(F, /F), 0, = tan’l(Fy/F), and 6, =tan"'(F./F).
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Express the force acting on the proton: F = qv x B

Express the magnitude of Fin terms F = /FXZ +Fy2 + FZ2 Q)

of its components:
Substitute numerical values and evaluate F :

(-1.60x107° C)[{2 Mm/s)7 - (3Mmis) j{x (0.87 +0.6 j - 0.4kT]
= (~0.192pN)k +(~0.128pN) j + (— 0.384 pN )k + (— 0.192 pN )i
—(0.192pN)i —(0.128pN) j — (0.576 pN) &k

F

Substitute in equation (1) to obtain:

F =+/(-0.192pN)’ + (- 0.128pN)’ + (- 0.576 pNf =[ 0.621pN

Express and evaluate the angle 4 F. 4 —0.192pN
= : : @ =cos”| = |=C0S"| ———
F makes with the x axis: ! 0.621pN
=|108°
Express and evaluate the angle 4 F, 4 —0.128pN
= . . 0 =cos”| — [=COS" | ———
F makes with the y axis: 7 0.621pN
=|102°
Express and evaluate the angle -
P . °ang 0. = cos | L= | = cos™ —0.576pN
F makes with the z axis: : 0.621pN
=|158°
24 oo

Picture the Problem We can use F = I/x B to find the force acting on the segments of
the wire as well as the magnetic force acting on the wire if it were a straight segment
from a to b.

Express the magnetic force acting F=F F

3cm +
on the wire:

4cm



Evaluate F, -

3cm*

Evaluate F, _:

4cm ”

Substitute to obtain:

If the wire were straight from a to b:

The magnetic force acting on the wire is:
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F,,, = (L8A)|3cm)i x (1.27T)k]
- (0.0648N)- )

A
.

=—(0.0648N);

—

F,

4cm

—(1.8A)|(4cm)jx (1.2T)k]
=(0.0864N)i

~

F =—(0.0648N)j +(0.0864 N)i

~

- [ (0.0864N)i - (0.0648N)j

A
.

7=(3cm)i +(4cm);

F =(1.8A)|(3cm)i + (4cm)j x (1.2T)k = —(0.0648N)j + (0.0864N)7

- [(0.0864N)7 - (0.0648N)j

in agreement with the result obtained above when we treated the two straight segments of

the wire separately.

25 oo

Picture the Problem Because the magnetic field is horizontal and perpendicular to the
wire, the force it exerts on the current-carrying wire will be vertical. Under equilibrium
conditions, this upward magnetic force will be equal to the downward gravitational force

acting on the wire.

APPlY D" F e = 00 the wire:

EXpress Finag:

Substitute to obtain:

Solve for I:

Substitute numerical values and evaluate I:

F_—w=0

mag

Foy = 1B

because 8= 90°.

I/B—mg =0
_mg
(B
2
_ (50g)(9.81m/5°) e

~ (25cm)(1.33T)
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*26 oo
Picture the Problem The diagram shows
the gaussmeter displaced from equilibrium
under the influence of the gravitational and
magnetic forces acting on it. We can apply
the condition for translational equilibrium
in the x direction to find the equilibrium
angular displacement of the wire from the
vertical. In part (b) we can solve the
equation derived in part (a) for B and
evaluate this expression for the given data
to find the horizontal magnetic field
sensitivity of this gaussmeter.

(a) Apply )" F, = 0to the wire to

obtain:

Substitute for F and solve for &to
obtain:

Substitute numerical values and
evaluate @

() Solve equation (1) for B to
obtain:

For a displacement from vertical of
0.5 mm:

Substitute numerical values and
evaluate B:

27 oo

mgsin@—Fcoséd =0

mgsing—I{Bcosd =0 (1)
and
f=tan™’ M—BJ
mg
. tan_l'(o.zA)(o.s m)(0.04T)
| (0.005kg)(9.81m/s?)
= [ 4.66°
g_mg tan@
10
tan 0 ~sing = 22" _ g 001
m
and
¢ =0.001rad
5 (0005 kg)(9.81m/s?)(0.001rad)
(20A)(0.5m)
=] 4.91,T




Picture the Problem With the current in
the direction indicated and the magnetic
field in the z direction, pointing out of the
plane of the page, the force is in the radial
direction and we can integrate the element
of force dF acting on an element of length
d¢ between =0 and = to find the force
acting on the semicircular portion of the
loop and use the expression for the force on
a current-carrying wire in a uniform
magnetic field to find the force on the
straight segment of the loop.

Express the net force acting on the
semicircular loop of wire:

Express the force acting on the
straight segment of the loop:

Express the force dF acting on the
element of the wire of length d¢:

Express the x and y components of
dF:

Because, by symmetry, the x
component of the force is zero, we
can integrate the y component to
find the force on the wire:

Substitute in equation (1) to obtain:
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dr
Ao Al S\Rda
R
i) -
F = F;emicircularloop + Fstraight segment (1)

F =1/ xB=-2RIB

straight segment —

dF =1d/B = IRBd6

dF =dFcos@
and
dFy =dFsin@

dF, = IRBSin0d0

and

F, = RIB[sin0d0 = 2RIB
0

F=2RIB—2RIB=@
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28 oo

Picture the Problem We can use the information given in the 1 and 2™ sentences to
obtain an expression containing the components of the magnetic field B . We can then
use the information in the 1% and 3™ sentences to obtain a second equation in these
components that we can solve simultaneously for the components of B.

Express the magnetic field B in
terms of its components:

Express F in terms of B :

Equate the components of this
expression for F with those given
in the second sentence of the
statement of the problem to obtain:

Noting that B, is undetermined,
solve for B, and B,

When the wire is rotated so that the
current flows in the positive x
direction:

Equate the components of this
expression for F with those given
in the third sentence of the problem
statement to obtain:

Solve for B, and B, to obtain:

Substitute in equation (1) to obtain:

B=Bi+B j+Bk (1)

F=I/xB
—(aA)0amk|x(8.i+ B j+B.K)
=(0.4A-m)k x (Bj+ B j+ Bz’;)
(0.4A-m)B,j-(0.4A-m)B,i

(0.4A-m)B, =0.2N

and
(0.4A-m)B, =0.2N

X

B =05Tand B, =0.5T

F=I/xB
=(4 A)[(o.lm)f]x (Bj +B,j+ Bf)
— (0.4A-m)ix(Bi+B,j+B.k)
= —(O.4A . m)BZ} + (0-4A ) m)ByI;

—(0.4A-m)B. =0
and
(0.4A-m)B, =0.2N

B =0
and, in agreement with our results above,
B, =0.5T

B=|(05T)i+(0.5T);




29 oo
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Picture the Problem We can use the information given in the 1 and 2™ sentences to
obtain an expression containing the components of the magnetic field B . We can then
use the information in the 1% and 3™ sentences to obtain a second equation in these
components that we can solve simultaneously for the components of B.

Express the magnetic field B in
terms of its components:

Express F in terms of B :

Equate the components of this
expression for F with those given
in the second sentence of the
statement of the problem to obtain:

Noting that B, is undetermined,
solve for B. and B,

When the wire is rotated so that the
current flows in the positive y
direction:

Equate the components of this
expression for F with those given
in the third sentence of the problem
statement to obtain:

Solve for B, and B, to obtain:

B=Bi+B j+Bk (1)

F=IixB
- @A) (0.am)i|x(8.i + B+ B.k)
—(02A-m)ix(Bi+B j+BE)
=—(0.2A-m)B_j+(0.2A-m)B k

~(0.2A-m)B. =3N
and
(0.2A-m)B, =2N

B =-15T
and

By =10T
F=I/xB

= (2 A)[(o.lm)}] X (Bxf +B,j+B.k )
— (0.2A-m)jx(B.i+ B j+B.k)
(0.2A-m)B.i - (0.2A-m)B &

(0.2A-m)B, = -3N

and
—(0.2A-m)B. = -2N

B, =-15T

and, in agreement with our results above,
B =10T
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~
.

Substitute in equation (1) to obtain: (10T)i +(10T)j—(15T )k

o1
Il

30 o00
Picture the Problem We can integrate the expression for the force dF acting on an
element of the wire of length dL from a to b to show that F = IL x B.

Express the force dF acting on the dF = IdLx B
element of the wire of length dL:

Integrate this expression to obtain: Loh L
F=[ldLxB

Because E and 7 are constant: — b N _ pr—
F=1 IdL xB=|ILxB

where L is the vector from a to b.

Motion of a Point Charge in a Magnetic Field

*31 -

Picture the Problem We can apply Newton’s 2" law to the orbiting proton to relate its
speed to its radius. We can then use T = 2zr/v to find its period. In Part (b) we can use the
relationship between 7 and v to determine v. In Part (c) we can use its definition to find
the kinetic energy of the proton.

(a) Relate the period 7 of the T 2mr )
motion of the proton to its orbital v
speed v:

Apply D" F,g, = ma, to the proton

qvB =m—
to obtain: r
Solve for v/ to obtain: v_4gB
rooom
Substitute to obtain: T 27m
qB
Substitut ical val d : 2
ubstitute numerical values an _ 27[(1 67x10 kg) _874ns

evaluate 7 (L.60x10™°C)(0.75T)



(b) From equation (1) we have:

v
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_ 2w _27(0.65m)

T

87.4ns

=| 4.67x10" m/s

(¢) Using its definition, express and evaluate the kinetic energy of the proton:

K =imv? =1(1.67x10"%" kg )(4.67x 10" m/sf =1.82x107 I x

11.4MeV

32 .

leV
1.60x107*°J

Picture the Problem We can apply Newton’s 2" law to the orbiting electron to obtain an
expression for the radius of its orbit as a function of its mass m, charge ¢, speed v, and the
magnetic field B. Using the definition of its kinetic energy will allow us to express r in

terms of m, ¢, B, and its Kinetic energy K. We can use
T =27rlv to find the period of the motion and calculate the frequency from the reciprocal

of the period of the motion.

(@) Apply Y Fyo = may to the
proton to obtain:

Solve for 7;

Express the kinetic energy of the
electron:

Solve for v to obtain:

Substitute in equation (1) to obtain:

Find the frequency from the
reciprocal of the period:

Substitute numerical values and evaluate 7;

2
qu:mv—
r
my
=— 1
/B )
K:%mv2
y= 2K )
m
p=10 2—K:i\/ZKm
gB\ m ¢B
fziz—l =| 9.10GHz
T 0.110ns
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-19
\/ 2(45 keV)(Q.llxlo‘sl kg xl'GX:L\?J]
e
r= =|2.20mm
(1.6x10%°C)(0.325T)
(b) Relate the period of the T 2mr
electron’s motion to the radius of its Y
orbit and its orbital speed:
Substitute equation (2) to obtain: 27 2m
[ =—=7.[—
2k VK
m
Substitute numerical values and evaluate T
-31
T = (2.20mm) 2(9'11X112 1;%2J =[0.110ns
A5keV x =220 Y
eV

33

Picture the Problem We can apply Newton’s 2" law to the orbiting electron to obtain an
expression for the radius of its orbit as a function of its mass m, charge ¢, speed v, and the
magnetic field B.

(a) Apply ZFradim = ma 1o the qvB = mv_z
proton to obtain: ¥
Solve for r: 0
qB
Substitute numerical values and i (9.11>< 107 kg)(lO7 m/s)
evaluate 7: ~ (1.60x10%°C)(4x107T)
=1142m
(b) For B=2x10° T: _ (9.11x10* kg)(L0” ms)

" 60107 C)(2x10°T)
_[2.84m
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34 e

Picture the Problem We can apply Newton’s 2™ law to an orbiting particle to obtain an
expression for the radius of its orbit R as a function of its mass m, charge ¢, speed v, and
the magnetic field B.

Apply D" F, 4 = ma, to an orbiting v = mﬁ
particle to obtain: r
Solve for 7: Lo
qB
Express the Kinetic energy of the K= %mv2
particle:
Solve for v to obtain: 2K
V= [—
m
Substitute in equation (1) to obtain:
a @) r= 2K i 2Km 1)
qB qB
Using equation (1), express the ratio 1 Km
RolRy: Ry _ 4B "4 |my
R, 1 J2Km,  de N
49,8
e ,Zmp \/—
= — = 2
e mp
Using equation (1), express the ratio 1 2Km,
R IRy Ra q B
— /2Km qd
p
35 (L]

Picture the Problem We can apply Newton’s 2" law to the orbiting particles to derive
an expression for their velocities as a function of their charge, their mass, the magnetic
field in which they are moving, and the radii of their orbits. We can then compare their
velocities by expressing their ratio. In parts (b) and (c) we can proceed similarly starting
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with the definitions of Kinetic energy and angular momentum.

(@) Apply Y Foyo = magtoan
orbiting particle to obtain:

Solve for v:

Express the velocities of the
particles:

Divide the second of these equations
by the first to obtain:

(b) Express the kinetic energy of an
orbiting particle:

Using this relationship, express the
ratio of K, to K:

(c) Express the angular momenta of
the particles:

Express the ratio of L, to L,:

36 oo

2

qvB = m—
r
B
Vv = aer
m
7
v, = D27 and v, = 9.8
m, m,
9,87
v, m, q,m, Zemp B l
Vp q,Br q,m, e(4mp) 2
m

m m
2 2.2
;an r
K 2 2,
a ma qa P
2p2_2 2
Kp iqu r qpm,
2
my,
2
(26) m,

L, =m,v,rand L, =my,r

i_ mavar _ (4mp)(%v )_
Lp B myv,r B myv, _

Picture the Problem We can use the definition of momentum to express p in terms of v
and apply Newton’s 2™ law to the orbiting particle to express v in terms of ¢, B, R, and m.
In part (b) we can express the particle’s kinetic energy in terms of its momentum and use
our result from part (a) to show that K =1 B*¢°R? /m.



(@) Express the momentum of the
particle:

Apply D" F, g = ma, to the
orbiting particle to obtain:

Solve for v:

Substitute in equation (1) to obtain:

(b) Express the kinetic energy of the
orbiting particle as a function of its
momentum:

Substitute our result from part (@) to
obtain:

*37 oo
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p=my 1)
2
qvB=m—
_9BR
m
p= m(ﬂj =| gBR
m
2
k-2
2m

(qBR)Z B qZBZRZ
2m 2m

Picture the Problem The particle’s velocity has a component v, parallel to B anda
component v, normal toB . v1 = v cosdand is constant, whereas v, = v siné, being
normal to B , will result in a magnetic force acting on the beam of particles and circular
motion perpendicular to B . We can use the relationship between distance, rate, and time
and Newton’s 2" law to express the distance the particle moves in the direction of the

field during one period of the motion.
Express the distance moved in the
direction of B by the particle

during one period:

Express the period of the circular
motion of the particles in the beam:

Apply D" F,g = ma, to a particle

in the beam to obtain:

Solve for v,:

x=vT D
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Substitute to obtain:

Because v; = v cosé, equation (1)
becomes:

38 e
Picture the Problem The trajectory of the
proton is shown to the right. We know that,
because the proton enters the field
perpendicularly to the field, its trajectory
while in the field will be circular. We can
use symmetry considerations to determine
¢. The application of Newton’s 2" law to
the proton while it is in the magnetic field
and of trigonometry will allow us to
conclude that » = d and to determine their
value.

From symmetry, it is evident that
the angle @in Figure 26-35 equals
the angle ¢:

Use trigonometry to obtain:

Apply D" F, g, = ma, to the proton

while it is in the magnetic field to
obtain:

Solve for 7;

Substitute numerical values and
evaluate r = d:

2w 2mm
qBr 4B
m

60.0°

sin(90°—9) =sin30° = 1 - d_/2
2 r
orr=d.
V2
qvB =m—
r
my
y = ——
qB
. [167x107 kg)a0” mvs)

(L.60x10%°C)(0.8T)

0.130m
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39 e
Picture the Problem The trajectory of the
proton is shown to the right. We know that,
because the proton enters the field
perpendicularly to the field, its trajectory
while in the field will be circular. We can /gﬁ/./ b
use symmetry considerations to determine NN
¢. The application of Newton’s 2" law to
the proton while it is in the magnetic field
and of trigonometry will allow us to
conclude that » = 4 and to determine their
value.

(@) From symmetry, it is evident ¢ =|24.0°
that the angle @in Figure 26-33
equals the angle ¢:

Use trigonometry to obtain: sin(90°— 9) — sin24° = d_/2
I"p
or
=~ 0AM _roaeom
2sin24°  2sin24°
Apply > F... =ma,to the proton 2
PPIY D Fraga = ma to the p g B=m >
while it is in the magnetic field to T
obtain:
Solve for and evaluate v,: _ q,7,B
p
Substitute numerical values and b (1.60><1O‘19 C)(O.492 m)(0.6T)
evaluate v, P 1.67x107% kg
=|2.83x10" m/s

(b) Express vq: L = 4B _ 9,1, B

d
m, 2m,
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Substitute numerical values and . (1.6O><10‘19 C)(O.492 m)(0.6T)

evaluate vg: ¢ 2(1.67x10% kg)
=|1.41x10" m/s

40 o

Picture the Problem We can apply Newton’s 2" law of motion to express the orbital
speed of the particle and then find the period of the dust particle from this orbital speed.

The period of the dust particle’s 7= 2mr
motion is given by: V
Appl F = ma, to the particle: 2

poly 2, F = ma P gvB = m-

r
Solve for v to obtain: - qBr
m

Substitute for v in the expression for 7o 2mrm _ 27m
T and simplify: qBr qB
Substitute numerical values and . 277(10 x10°gx107° kg/g)
evaluate T: (0.3nC)(10°T)

—2.004x10Msx Y
31.56 Ms

=| 6.64x10%y

The Velocity Selector

*41 .

Picture the Problem Suppose that, for positively charged particles, their motion is from
left to right through the velocity selector and the electric field is upward. Then the
magnetic force must be downward and the magnetic field out of the page. We can apply
the condition for translational equilibrium to relate v to £ and B. In (b) and (c¢) we can use
the definition of kinetic energy to find the energies of protons and electrons that pass
through the velocity selector undeflected.

(a) Apply ) F, =0to the particle Fiee = Frnag =0

to obtain: or
qE —qvB =0
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Solve for v to obtain: £
B

Substitute numerical values and e 0.46MV/m _ 164x10°m/s

evaluate v: 0.28T

(b) Express and evaluate the kinetic K, = %mpv2

energy of protons passing through . o7 6 2

the velocity selector undeflected: B 7(1'67 <10 )(1'64X1O m/s)
=2.26x10™"°] XL_H

1.60x107J

=|14.0keV

(¢) The kinetic energy of electrons K, = %mev2

passing through the velocity selector

= 1(9.11x10 % )(1.64x10° /s
undeflected is given by: 2( XU )( x )

leV

=1.23x10"* Ix——————
1.60x107J

=| 7.66eV

42 .

Picture the Problem Because the beam of protons is not deflected; we can conclude that
the electric force acting on them is balanced by the magnetic force. Hence, we can find
the magnetic force from the given data and use its definition to express the electric field.

F,

(a) Use the definition of electric = e
Eelec =

field to relate it to the electric force q
acting on the beam of protons:

Express the magnetic force acting on Fmag = qvf X B}' = qulg
the beam of protons:

Because the electric force must be equal in magnitude but opposite in direction:

F,,. =—qvBk =—(1.60x10™ C)(12.4km/s)(0.85T )k = —(1.69x 10" N )&
Substitute in the equation for the . - (1.69 x107" N)I;
electric field to obtain: dec T 1 6x107°C

=| —(10.5kV/m)k
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(b) | Because both Fmag and F,,_ are reversed, electrons are not deflected.

Thomson’s Measurement of ¢g/m for Electrons and the Mass
Spectrometer

*43 oo

Picture the Problem Figure 26-18 is reproduced below. We can express the total
deflection of the electron beam as the sum of the deflections while the beam is in the field
between the plates and its deflection while it is in the field-free space. We can, in turn,
use constant-acceleration equations to express each of these deflections. The resulting
equation is in terms of vy and E. We can find v, from the kinetic energy of the beam and
E from the potential difference across the plates and their separation. In part (b) we can
equate the electric and magnetic forces acting on an electron to express B in terms of £
and vy.

Screen

Deflection vy ™

plates
\

(a) Express the total deflection Ay of Ay = Ay, + Ay, (1)

the electrons: where
Ay, is the deflection of the beam while it is
in the electric field and Ay; is the deflection
of the beam while it travels along a
straight-line path outside the electric field.

Use a constant-acceleration equation Ay, =%a,(Ar) )

10 express Ayy! where At = x1/vp is the time an electron is in

the electric field between the plates.

Apply Newton’s 2™ law to an qE =ma,
electron between the plates to

obtain:

Solve for a, and substitute into -7
equation (2) to obtain: T om




Express the vertical deflection Ay, of
the electrons once they are out of the
electric field:

Use a constant-acceleration equation
to find the vertical speed of an
electron as it leaves the electric
field:

Substitute in equation (4) to obtain:

Substitute equations (3) and (5) in
equation (1) to obtain:

Use the definition of kinetic energy
to find the speed of the electrons:

Express the electric field between
the plates in terms of their potential
difference:

Substitute numerical values and
evaluate E:
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Ay, =—(%j(f—j )
0

Ay, =v,At, (4)

v, =V, +a,Al
m \ v,

o t{sf) g

m \ vy )\ v, mvy

2
qE \[ x qEx,x
Ay = %(—)[—l] L

m )\ v, mv;
or
Ex, [ x
Ay="—;[—1+xZJ (6)
mvy \ 2
K=imv}
and

VO:\/ZK :\/ 2(2.8keV)

m 9.11x10* kg
=3.14x10" m/s

gV
d
_V_ 2V 5 08kvim
d 1.2cm

Substitute numerical values in equation (6) and evaluate Ay:

(1.60x10™™ C)(2.08kV/m)(6cm)

Ay =

(9.11x10° kg )(3L.4 Mm/s)

(&;m +30cmj =| 7.34mm
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(b) Because the electrons are Frag = Feree = 0
deflected upward, the electric field or
must be downward and the magnetic gvB =qE

field upward. Apply D" F, =0to an

electron to obtain:

Solve for B: B E
v
Substitute numerical values and B 2.08 kV7/m _[66.2,T
evaluate B: 3.14x10" m/s
44 e

Picture the Problem The diagram below represents the paths of the two ions entering the
magnetic field at the left. The magnetic force acting on each causes them to travel in
circular paths of differing radii due to their different masses. We can apply Newton’s 2"
law to an ion in the magnetic field to obtain an expression for its radius and then express
their final separation in terms of these radii that, in turn, depend on the energy with which
the ions enter the field. We can connect their energy to the potential through which they
are accelerated using the work-kinetic energy theorem and relate their separation As to
the accelerating potential difference AV.

Express the separation As of the As = 2(ry; — 135) 1)
chlorine ions:

Apply Y F,y =ma, toanionin v = mv_z

the magnetic field of the mass r

spectrometer:

Solve for 7 to obtain: Y @)



Relate the speed of an ion as it
enters the magnetic field to the
potential difference through which it
has been accelerated:

Solve for v to obtain:

Substitute in equation (2) to obtain:

Use this equation to express the
radii of the paths of the two chlorine
isotopes to obtain:

Substitute in equation (1) to obtain:

Solve for AV

Substitute numerical values and
evaluate AV:

45 e
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gAV =imy?

yo |2487
m

m_[2qAV _ |2mAV
qB°

_qB m

2m35§V and . — 2m37?V
qB

As—2 2myAV [ 2m AV
B qB*
1 [2AV
:Z(E T(Jm37 _W/mss)j

B’ (2As)

AV = 2
2y s
(L.60x10™ C)1.2 TY(MCm jz
AV = 2

2l/a7u - J35uf

5.65x10**C-T?-m?
(V37 —35) (1.66 %107 kg)
=[122kv

Picture the Problem We can apply Newton’s 2" law to an ion in the magnetic field to
obtain an expression for » as a function of m, v, ¢, and B and use the work-kinetic energy
theorem to express the kinetic energy in terms of the potential difference through which
the ion has been accelerated. Eliminating v between these equations will allow us to

express r in terms of m, ¢, B, and AV.
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Apply D" F, g = ma,to an ion in

adial —
the magnetic field of the mass
spectrometer:

Solve for r to obtain:

Apply the work-kinetic energy
theorem to relate the speed of an ion
as it enters the magnetic field to the
potential difference through which it

has been accelerated:

Solve for v to obtain:

Substitute in equation (1) to obtain:

(a) Substitute numerical values and
evaluate equation (2) for **Mg :

(b) Express the difference in the
radii for Mg and *Mg:

Substitute numerical values and
evaluate equation (2) for *Mg :

Substitute to obtain:

*46 e

r=—— (1)

gAV =imy?

e [2gAV
m

m_[2qAV _ |2mAV
qB°

=B\ m )

_ |.2(3983x10kg)(2.5kV)
* \{.60x10"C)(557x10* Tf

=| 63.3cm

Ar =1y =1y

2@2}(3.983 %102 kg)(2.5kV)

I =

(L.60x10°C)(557x10“ T
=65.9cm

Ar =65.9cm-63.3cm=| 2.60cm

Picture the Problem We can apply Newton’s 2" law to an ion in the magnetic field of
the spectrometer to relate the diameter of its orbit to its charge, mass, velocity, and the
magnetic field. If we assume that the velocity is the same for the two ions, we can then
express the ratio of the two diameters as the ratio of the masses of the ions and solve for



the diameter of the orbit of "Li.

Apply D" F,g = mato an ion in

the field of the spectrometer:

Solve for r to obtain:

Express the diameter of the orbit:

Express the diameters of the orbits
for ®Li and "Li:

Assume that the velocities of the
two ions are the same and divide the
2" of these diameters by the first to

obtain:

Solve for and evaluate d;:

The Cyclotron

47 e

The Magnetic Field

481

2
qvB = m—
r
mvy
r=—
qB
J= 2my
qB
d - 2mgv and d, = 2m,v
9B 9B
2m,v
dq_ 98 _m
dy 2mgv m,
qB
d, =" g, - TY5em)=[175cm
mg 6u

Picture the Problem The time required for each of the ions to complete its semicircular
paths is half its period. We can apply Newton’s 2™ law to an ion in the magnetic field of
the spectrometer to obtain an expression for r as a function of the charge and mass of the

ion, its velocity, and the magnetic field.

Express the time for each ion to
complete its semicircular path:

Apply D" F, g = magto an ion in the

field of the spectrometer:

Solve for r to obtain:

r
At=1T =—
v
V2
qvB =m—
r
my
r=—
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Substitute to obtain:

Substitute numerical values and
evaluate Atsg and Afgo:

48 e

Ar =T
qB

587(1.66x107 kg)
(L.60x10™°C)(0.12T)

=|15.8us

Aty =

and
607(1.66 107" kg)
(L.60x10™C)(0.12T)

=[16.3s

Atgy =

Picture the Problem We can apply a condition for equilibrium to ions passing through
the velocity selector to obtain an expression relating E, B, and v that we can solve for v.
We can, in turn, express £ in terms of the potential difference V" between the plates of the
selector and their separation d. In (b) we can apply Newton’s 2™ law to an ion in the
bending field of the spectrometer to relate its diameter to its mass, charge, velocity, and

the magnetic field.

(a) Apply Y F, =0to the ions in

the crossed fields of the velocity
selector to obtain:

Solve for v to obtain:

Express the electric field between
the plates of the velocity selector in
terms of their separation and the
potential difference across them:
Substitute to obtain:

Substitute numerical values and
evaluate v:

(b) Express the difference in the
diameters of the orbits of singly

F;Iec _Fmag =0
or
qE—qvB =0
E
v [ —
B
=L
d
|14
y=—
dB
V= 160V =11.90x10°m/s
(2mm)(0.427T)
Ad = dzas - d235 1)
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ionized *®U and °U:

Apply " F,y = may to an ion in VB = mv_z
the spectrometer’s magnetic field: r
Solve for the radius of the ion’s 0
orbit: qB
Express the diameter of the orbit: d = 2my
qB
Express the diameters of the orbits do = 2myaqV dd.. = 2155V
for 22U and 2°U- 238 = ana dyss = 4B
Substitute in equation (1) to obtain: Ad = 2Mysgv  2myysv
qB qB
LN
C]B 238 235
Substitute numerical values and evaluate Ad:
-27
2(1.90%10° m/s)(238u — 235u) 166X10kg]
u
Ad = =T =|9.86mm
(L.60x10™C)(1.2T)
*49 e

Picture the Problem We can express the cyclotron frequency in terms of the maximum
orbital radius and speed of the protons/deuterons. By applying Newton’s 2" law, we can
relate the radius of the particle’s orbit to its speed and, hence, express the cyclotron
frequency as a function of the particle’s mass and charge and the cyclotron’s magnetic
field. In part (b) we can use the definition of kinetic energy and their maximum speed to
find the maximum energy of the emerging protons.

(a) Express the cyclotron frequency f= 11 _v
in terms of the proton’s orbital speed T 2m/v 2w
and radius:

Apply D" F, g = ma, to a proton in wB=m O

the magnetic field of the cyclotron: r
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Solve for r to obtain:

Substitute to obtain:

Substitute numerical values and
evaluate f:

() Express the maximum kinetic
energy of a proton:

Solve equation (1) for v to obtain:

Substitute to obtain:

Substitute numerical values and
evaluate K:

(¢) From equation (2) we see that
doubling m halves f:

From equation (3) we see that
doubling m halves K:

50 oo

my
Y
qB
By B
2zmmy  27m
-19
o 80x10°C)0aT)
27(1.67x10 7" kg)
Kmax :%mvrznax
vmax qBrmax
m
2 22
KZ% {qBrmaxj :%(q B }ﬂniax 3)
m m

1.60x10° Cf(1.4T)
£ =%[( 1>.<67><1027(k9 | J(ij)z

736102 Jx— 8V
1.60x10"J
- [46.0MeV
fdeuterons = % protons 10.7MHz
Kdeuterons = %Kprotons =| 23.0MeV

Picture the Problem We can express the cyclotron frequency in terms of the maximum
orbital radius and speed of the protons be accelerated in the cyclotron. By applying
Newton’s 2" law, we can relate the radius of the proton’s orbit to its speed and, hence,
express the cyclotron frequency as a function of the its mass and charge and the
cyclotron’s magnetic field. In part (b) we can use the definition of kinetic energy express
the minimum radius required to achieve the desired emergence energy. In part (¢) we can
find the number of revolutions required to achieve this emergence energy from the



energy acquired during each revolution.

(@) Express the cyclotron frequency
in terms of the proton’s orbital speed
and radius:

Apply D" F,q = ma, to aproton in

the magnetic field of the cyclotron:

Solve for r to obtain:

Substitute to obtain:

Substitute numerical values and
evaluate f:

(b) Using the definition of kinetic
energy, relate emergence energy of
the protons to their velocity:

Solve for v to obtain:

Substitute in equation (1) and
simplify to obtain:

Substitute numerical values and
evaluate ryin:

(c) Express the required number of
revolutions N in terms of the energy
gained per revolution:

Because the beam is accelerated
through a potential difference of 50
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1 1 v
LT 2 2w
V2
qvB =m—
r
my
= 1
r 4B 1)
_gBv _ ¢gB
27myv  27mm
P (1.60x10™° C)(L.8T)
27(1.67x10% kg)
=| 27.4MHz
K =1imv?
2K
y = —_
m

Lom /Z_K _ N2Km
- gB\ m - qB
_ J2(25MeV)(1.67x10 kg)
~ (1.60x10™C)@2.8T)

=|0.401m

_ 25MeV
E

rev

N

E,, =2qAV =100keV
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kV twice during each revolution:

Substitute and evaluate N: 25MeV

=————— =| 250rev
100keV/rev

51  ee
Picture the Problem We can express the cyclotron frequency in terms of the maximum
orbital radius and speed of a particle being accelerated in the cyclotron. By applying
Newton’s 2" law, we can relate the radius of the particle’s orbit to its speed and, hence,
express the cyclotron frequency as a function of its charge-to-mass ratio and the
cyclotron’s magnetic field. We can then use data for the relative charges and masses of
deuterons, alpha particles, and protons to establish the ratios of their cyclotron
frequencies.

Express the cyclotron frequency in f= 11 _v
terms of a particle’s orbital speed T 2mw/v 2w
and radius:

Apply D" F, g = ma, to a particle

qvB =m—
in the magnetic field of the r
cyclotron:
Solve for r to obtain: _mv
qB
Substitute to obtain: f= gBv. _ B q 1)
2mmv 2w m
Evaluate equation (1) for deuterons: 7 _B g _B e
“ 27 my 27 m,
Evaluate equation (1) for alpha 7 _Bg, _B 2 B e
particles: “ 27m, 27x2my 27 m,
and
fa=1a
Evaluate equation (1) for protons: 7= B g, B e P B e
p_Zﬂmp _27r%md - 27 my

:Zfd

and
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N
s
Il
:.\
Il
S

52 e
Picture the Problem We can apply Newton’s 2" law to the orbiting charged particle to
obtain an expression for its radius as a function of its particle’s kinetic energy. Because
the energy gain per revolution is constant, we can express this kinetic energy as the
product of the number of orbits completed and the energy gained per revolution and,
hence, show that the radius is proportional to the square root of the number of orbits
completed.

Apply D" F, g = ma_ to a particle

in the magnetic field of the r
cyclotron:

Solve for 7 to obtain: P4 (1)

Express the kinetic energy of the Keim?e e 2_[( )
particle in terms of its speed and S 2 A\ m

solve for v;

Noting that the energy gain per K = NE,, (3)
revolution is constant, express the

kinetic energy in terms of the

number of orbits N completed by the

particle and energy E, gained by

the particle each revolution:

Substitute equations (2) and (3) in
q () ( ) , m Z—KZL\/Zm—K

equation (1) to obtain: AR

= L 2mhE,, = Ve
q q

or | rc N¥?

Torques on Current Loops and Magnets

53
Picture the Problem We can use the definition of the magnetic moment of a coil to
evaluate « and the expression for the torque exerted on the coil 7 = g x B to find the

magnitude of z.
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(@) Using its definition, express the U1 =NIA= NIm?
magnetic moment of the coil:

Substitute numerical values and = (20)(3A)z(0.04m)
evaluate z« _[0302A-m?

(b) Express the magnitude of the T =uBsing

torque exerted on the coil:

Substitute numerical values and T= (0.302A - mz)(O.ST)sin 60°
evaluate 7: ~[0131IN-m

54 .

Picture the Problem The coil will experience the maximum torque when the plane of the
coil makes an angle of 90° with the direction of B. The magnitude of the maximum
torque isthen givenbyz_ . = uB.

max

Express the maximum torque acting Toax = MB
on the coil:
Use its definition to express the 1 = NIA = NIm?

magnetic moment of the coil:

Substitute to obtain: r. = NIw’B

Substitute numerical values and z.. =(400)(1.6mA)z(0.75cm ) (0.25T)
evaluate 7: _[283%x10°N-m

*55 .

Picture the Problem We can use 7 = % Bto find the torque on the coil in the two
orientations of the magnetic field.

Express the torque acting on the T=ux B
coil:
Express the magnetic moment of the H= +14k = +1I%k

coil:



(a) Evaluate 7 for B inthe z
direction:

(b) Evaluate 7 for B in the x
direction:

56 e
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T =+1%kxBi = iJLZB(é x E)
— +(25A)(0.06my (0.3T);
+(2.70x10° N-m)j

Picture the Problem We can use 7 = ﬁxfito find the torque on the equilateral triangle

in the two orientations of the magnetic field.

Express the torque acting on the
coil:

Express the magnetic moment of the
coil:

Relate the area of the equilateral
triangle to the length of its side:

Substitute to obtain:

(a) Evaluate 7 for B inthe z
direction:

(b) Evaluate 7 for B in the x
direction:

)
1l
=
X
o1

ji = +14k

A4 = % basexaltitude

:i(L) @ zﬁﬁ
2 2 4
2 ~
ﬁzi\/ngk
4
2 ~ ~
f:+\/§fIkXBk

2

4 V/3(0.08m)(25A)(0.3T) 5
4

+(2.08x10° N-m)j
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57 e
Picture the Problem The loop will start to lift off the table when the magnetic torque
equals the gravitational torque.

Express the magnetic torque acting Tonag = MB = I7R*B
on the loop:
Express the gravitational torque Ty = MGR

acting on the loop:

Because the loop is in equilibrium I7R*B = mgR

under the influence of the two

torques:

Solve for B to obtain: p_| M8
IR

58 e

Picture the Problem The diagram to the
right shows the coil as it would appear
from along the positive z axis. The right-
hand rule for determining the direction of
n has been used to establish n as shown.

We can use the geometry of this figure to /
determine @and to express the unit normal i

vector n. The magnetic moment of the ~

coil is given by s = NIAn and the torque 37 ~

exerted on the coil by 7 = s x B . Finally, /\n\"\ .

we can find the potential energy of the coil
in this field from U = —ji- B .

(@) Noting that #and the angle 9=|37°
whose measure is 37° have their
right and left sides mutually
perpendicular, we can conclude that:

(b) Use the components of ﬁAto n= "x’?"r ny} — c0s37° —sin37°]

express fin terms of i and Jj: 0.7997 —0.602 7
= 0. 1 —0.602)

(c) Express the magnetic moment of Ji = NIAn
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the coil:

Substitute numerical values and evaluate 4 :

ji = (50)(1.75A)(48cm?)(0.7997 - 0.602; ) = (0.336 A-m?)i - (0.253A - m?);

(d) Express the torque exerted on the T=ux B
coil:

Substitute for z and B to obtain:

7 ={0.336A-m?)i - (0.253A - m? ) j{x (L5T)j
:(0.504N-m)(i j)-(0.380N-m)(jx j)=[ (0.504N - m)&

(e) Express the potential energy of U=-u- B
the coil in terms of its magnetic
moment and the magnetic field:

Substitute for z and B and evaluate U

- —{0336A-m?)i - (0.253A - m?)j}- (L5 T)j
—(0.504N-m)( j)+(0.380N-m)(j- j)=[ 03803

59 oo
Picture the Problem We can use the right-hand rule for determining the direction of n

to establish the orientation of the coil for value of nand 7 = i x Bto find the torque
exerted on the coil in each orientation.

(a) The orientation of the coil is y
shown to the right:

=>

jixB = NIAnx B

= (50)(1.75A)(48cm? i x (27T)j
(0.840N-m)(i x j)
(0.840N-m)k

Evaluate 7 for B = 2.0 T} and T

n=1:
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() The orientation of the coil is

shown to the right: :}I

| — X
Evaluate 7 for B =2.0Tj and T =jixB=NIAnxB
= — (50)(1L.75A)(48cm?)j x (2T);

(¢) The orientation of the coil is ¥
shown to the right:

Evaluate 7 for B = 2.0 T} and T=uxB=
n=-j: (50 175A( gcm? )jx(27T);
~0.840N-m)(jx )

(d) The orientation of the coil is
shown to the right:

Evaluate 7 for B =2.0Tj and T=juxB

n=(i+])2:

=1 (0.594N-m)k

Magnetic Moments
*60 e
Picture the Problem Because the small magnet can be modeled as a magnetic dipole; we

can use the equation for the torque on a current loop to find its magnetic moment.

Express the magnitude of the torque T =uBsing



acting on the magnet:

Solve for g to obtain:

Substitute numerical values and
evaluate z«

61 oo
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_ T
H Bsing

. 010N-m _roeei
(0.04T)sin 60°

Picture the Problem We can use the definition of the magnetic moment to find the
magnetic moment of the given current loop and a right-hand rule to find its direction.

Using its definition, express the
magnetic moment of the current
loop:

Express the area bounded by the
loop:

Substitute to obtain:

Substitute numerical values and
evaluate z«

u=1I4

A= %(”Rozuter - ﬂRiiner ) = %(RZ - R'2

outer Inner )

U= % (Rozuter - Riiner)

u="EA05mp — 0.3y ]

= 0.377A-m?

Apply the right-hand rule for determining the direction of the unit normal vector (the

direction of ) to conclude that

J points into the page.

62 oo

Picture the Problem We can use the definition of the magnetic moment of a coil to find
the magnetic moment of a wire of length L that is wound into a circular coil of N loops.
We can find the area of the coil from its radius R and we can find R by dividing the

length of the wire by the number of turns.

Use its definition to express the
magnetic moment of the coil:

Express the circumference of each

loop:

1= NIA (1)

£=27ZR
N
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where R is the radius of a loop.

Solve for R to obtain: R= L
27N
Express the area of the coil: 2 2
P A=mR’ =1 L = L 5
27N 4AaN
Substitute in equation (1) and 2 JI2
simplify to obtain: p=NI prve Il gy

63 oo

Picture the Problem We can use the definition of current and the relationship between
the frequency of the motion and its period to show that / = gaw/277. We can use the
definition of angular momentum and the moment of inertia of a point particle to show
that the magnetic moment has the magnitude x = %qa)rz. Finally, we can express the

ratio of g to L and the fact that u and L are both parallel to @ to conclude that
i =(ql2m) L.

(a) Using its definition, relate the J ﬁ _49_ o
average current to the charge At T
passing a point on the circumference

of the circle in a given period of

time:
Relate the frequency of the motion f= K2
to the angular frequency of the 2r
particle:
Substitute to obtain: I qo

2r
From the definition of the magnetic =14 = qo (Wz): %qa)rz
moment we have: 2r
(b) Express the angular momentum L=]w
of the particle:
The angular momentum of the I =mr’

particle is:



Substitute to obtain:

Express the ratio of ¢ to L and
simplify to obtain:

Because u and L are both parallel

to w:

*64 (X1}
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ﬁ_iqaz)’” —i:>,u:qL
L mro 2m 2m
_ qg
=| =L
a 2m

Picture the Problem  We can express the magnetic moment of an element of charge dg
in a cylinder of length L, radius r, and thickness dr, relate this charge to the length,
radius, and thickness of the cylinder, express the current due to this rotating charge,
substitute for 4 and dI in our expression for x and then integrate to complete our
derivation for the magnetic moment of the rotating cylinder as a function of its angular

velocity.

Express the magnetic moment of an
element of charge dq in a cylinder
of length L, radius », and thickness
dr.

Relate the charge dg in the cylinder
to the length of the cylinder, its

radius, and thickness:

Express the current due to this
rotating charge:

Substitute to obtain:

Integrate » from R; to R, to obtain:

65 o00

du= Adl
where
A= m?

dq = 27 prdr

dl = ﬁdq = ﬁ(Zﬂ'Lpl’dl’) = Lwprdr
2 2

du = m*(Loprdr) = Lopm dr

Ry
U= La)pﬂjrsdi’ =| 4 Lopr(R; - R})
R;

Picture the Problem We can follow the step-by-step outline provided in the problem

statement to establish the given results.

(@) Express the magnetic moment of

the rotating element of charge:

The area enclosed by the rotating

du = Adl 1)
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element of charge:

ar = 94 _ Adx
At At

where At is the time required for one

revolution.
Express the time Az required for one Af = 1 _ 2z
revolution: f o
Substitute to obtain: dI = /21_60 dx

T

Substitute in equation (1) and

Aw
du =) ==dx |=| L lax®d
simplify to obtain: a (nx )( xj L

(b) Integrate du from x =0 to

l
U= %ﬂwszdx =| L e’
0

x=/:
(c) Express the angular momentum L=1w
of the rod: where L is the angular momentum of the
rod and 7 is the moment of inertia of the
rod with respect to the point about which it
is rotating.
Express the moment of inertia of the I=1ml’
rod with respect to an axis through where L is now the length of the rod.
its end:
Substitute to obtain: L=1mlw
Divide our expression for g by L to oo %Zwﬁ AL
obtain: L imlo 2m
or, because Q = AL,
0
==L
H 2m

Because @and L = I point in the i

o
same direction: 2M

!
Il
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66 e
Picture the Problem We can express the

magnetic moment of an element of current

dI due to a ring of radius », and thickness

dr with charge dgq. Integrating this

expression from » = 0 to » = R will give us

the magnetic moment of the disk. We can

integrate the charge on the ring between

these same limits to find the total charge on

the disk and divide by QO to establish the ‘
relationship between them. In part (b) we

can find the angular momentum of the disk

by first finding the moment of inertia of the

disk by integrating °dm between the same
limits used above.

(a) Express the magnetic moment of du= Adl
an element of the disk:

The area enclosed by the rotating A=m
element of charge is:

Express the element of current dr dJ = ﬂ _ odA — fod
At At
= 2(0‘0 Lj(Z;zrdr) = 90?2
2r R
Substitute and simplify to obtain: du = . o, . O\ T®W A gy
Integrate du from» =0to r = R to T | 4 - .
obtain: H="p J.’” dr =| 3 0,mwR (1)

Express the charge dg within a
distance r of the center of the disk:

dq = 2mrodr = 27| o, %jdr

2
= 7% 24,
R
Integrate dg fromr=0tor=Rto 270, ¢
obtain: 0= —O.[rzdr = §mo R° )

0
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Divide equation (1) by Q to obtain:

(b) Express the moment of inertia of
an element of mass dm of the disk:

Integrate d/ fromr=0to =R to
obtain:

Divide 7 by equation (2) and
simplify to obtain:

Express the angular momentum of
the disk:

Divide equation (3) by Z and
simplify to obtain:

Because u is in the same direction

as @

67 o00

Picture the Problem We can use the general result from Example 26-11 and Problem 63

U _togmeR' 3wk’
Q0 Zro,R? 10
and

1= 320wk’ @)

dl =r’dm =r*c, dA

= rz[gaj@ﬂrdr)

Zﬂm(r aoj
- \R ) rdr
Q

2nmo,

OR

rdr

_2727”00]{ 44 :MR"'

~ OR 50

271mo, 4
_ 50 " _3mp,

I
Q imo,R® 50
and

3m

I=""R?
5

L=Iw= %mRza)

and
0
==
# 2m
. 0O -
=| =1L
a 2m

to express u as a function of O, M, and L. We can then use the definitions of surface
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charge density and angular momentum to substitute for Q and L to obtain the magnetic
moment of the rotating sphere.

Express the magnetic moment of the 0
spherical shell in terms of its mass, 2M
charge, and angular momentum:

Use the definition of surface charge 0 = 04 = AnoR?
density to express the charge on the
spherical shell is:

Express the angular momentum of L=Io=2MR'w
the spherical shell:

Substitute to obtain: 2
[ AR N2 gy | = 4 7oR*w
2M 3

68  eee
Picture the Problem We can use the general result from Example 26-11 and Problem 63
to express u as a function of O, M, and L. We can then use the definitions of volume
charge density and angular momentum to substitute for O and L to obtain the magnetic
moment of the rotating sphere.

Express the magnetic moment of the 0
solid sphere in terms of its mass, 2M
charge, and angular momentum:

Use the definition of volume charge O=plV= %ﬂpR3
density to express the charge of the

sphere:

Express the angular momentum of L=I1w= %MRZa)

the solid sphere:

o EMRZa)J: A PR w

Substitute to obtain: [g‘fszs j(Z

*69 (1 1]

Picture the Problem We can use its definition to express the torque acting on the disk
and the definition of the precession frequency to find the precession frequency of the
disk.
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(@) The magnitude of the net torque
acting on the disk is:

From example 26-11:

Substitute for g in the expression for
7 to obtain:

(b) The precession frequency £2is
equal to the ratio of the torque
divided by the spin angular
momentum:

For a solid disk, the moment of
inertia is given by:

Substitute for  and / to obtain:

7= uBsin @
where u is the magnetic moment of the
disk.

L.
== JTor
=7

T = %ﬂor“a)Bsin 0

P
lo
Izimr
2
1 4 H 2
g amor a)ljSInHZ or Bsin9
Tmreo 2m

Remarks: It’s interesting that the precession frequency is independent of .

The Hall Effect

70 -

Picture the Problem We can use the Hall effect equation to find the drift velocity of the
electrons and the relationship between the current and the number density of charge
carriers to find n. In (¢) we can use a right-hand rule to decide whether a or b is at the

higher potential.

(@) Express the Hall voltage as a
function of the drift velocity of the
electrons in the strip:

Solve for vq:

Substitute numerical values and
evaluate vq:

(b) Express the current as a function
of the number density of charge
carriers:

Vi =vyBw
-
Bw
v _ AN 0.107 mm/s
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Solve for n: 1
Aqv,

Substitute numerical values and evaluate #»:

20A
(2cm)(0.1cm)(1.60x107° C)(0.107 mmis)

—[5.84x10%®m™®

() Apply aright-hand rule to I?and B to conclude that positive charge will accumulate

at a and negative charge at » and therefore| V, >V,

71 oo
Picture the Problem We can use I = ngv,A to find the drift velocity and V, = v,Bwto

find the Hall voltage.
(@) Express the current in the metal I =ngvyA
strip in terms of the drift velocity of

the electrons:

Solve for vy v

Substitute numerical values and evaluate vy:

10A

- —[3.69x10° m/
' " 18.47x10% cm™ )[L.60x10 C)(2cm) (0. 1cm) =

(b) Relate the Hall voltage to the Vi, =v,Bw
drift velocity and the magnetic field:

Substitute numerical values and Vy = (3.69 x107° m/s)(2 T)(2cm)
evaluate Vy: ~[148.v
*72 oo

Picture the Problem We can use V,, = vy,Bw to express B in terms of /4 and
I = ngv,Ato eliminate the drift velocity v4 and derive an expression for B in terms of V,

n, and ¢.

Relate the Hall voltage to the drift Vi =vyBw
velocity and the magnetic field:
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Solve for B to obtain: B n
VgWw
Express the current in the metal strip I =ngv,A
in terms of the drift velocity of the
electrons:
Solve for v4 to obtain: 1
Vy=——
ngA
Substitute and simplify to obtain: B Vi _ngAVy _ ngwtVy,
1 Iw Iw
—w
ngA
nqt
G

Substitute numerical values and simplify to obtain:

22 -3 -19
5 _ (847x107 cm”)1.60x10™ C)(0.Lem);, _ (6.78x10° sm? ),
20A

() Evaluate B for Vi = 2.00 4V B =(6.78x10°s/m?)(2.00 4V)
=[1.36T

(b) Evaluate B for Vi = 5.25 ziV: B =(6.78x10°s/m? )(5.25 4V/)
=[356T

(c) Evaluate B for 7, = 8.00 uV: B= (6.78><1O5 S/mz)(S.OO,uV)
=[5.42T

73 oo
Picture the Problem We can use V,;, = vyBw to find the Hall voltage developed across

the diameter of the artery.

Relate the Hall voltage to the flow Vi =v,Bw
speed of the blood vy, the diameter

of the artery w, and the magnetic

field B:
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Substitute numerical values and v, =(0.6m/s)(0.2T)(0.85cm)
evaluate Vy: ~[102mv
74 e

Picture the Problem Let the width of the slab be w and its thickness 7. We can use the
definition of the Hall electric field in the slab, the expression for the Hall voltage across
it, and the definition of current density to show that the Hall coefficient is also given by

1/(nq).

Express the Hall coefficient: R= E,

JXBZ
Using its definition, express the Hall E =/n
electric field in the slab: Tow

I J
Express the current density in the J =2 = ngy,
slab:
Substitute to obtain: Va
R= w VH

nqvyB, - ngvawhB.

Express the Hall voltage in terms of Vi =v,B.w
vy, B, and w:

Substitute and simplify to obtain: R— vwBw | 1

nqvawhB._ - nq

*75 oo
Picture the Problem We can determine the number of conduction electrons per atom
from the quotient of the number density of charge carriers and the number of charge
carriers per unit volume. Let the width of a slab of aluminum be w and its thickness ¢. We
can use the definition of the Hall electric field in the slab, the expression for the Hall
voltage across it, and the definition of current density to find » in terms of R and ¢

andn, = pN, /M , to express n,.

Express the number of electrons per Nzt 1)

atom N n,

where n is the number density of charge
carriers and 7, is the number of atoms per
unit volume.
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From the definition of the Hall
coefficient we have:

Express the Hall electric field in the
slab:

Express the current density in the
slab:

Substitute to obtain:

Express the Hall voltage in terms of
vq, B, and w:

Substitute and simplify to obtain:

Solve for and evaluate #n:

Express the number of atoms n, per
unit volume:

Substitute equations (2) and (3) in
equation (1) to obtain:

Substitute numerical values and evaluate N:

E,
R=—"
J)CBZ
|4
Ey:VH
J,=—=nqv,
Vi
R = w VH

nqvyB, - ngvywB,

Vi =v4B.w
vyB.w 1

R =
ngvgwB_  ngq

n:i (2)
Rq
NA
n,=p—— 3
Y: @)
M
qRPN 5

27 g/mol

N =

=| 3.46

General Problems

76 e

(-1.60x107° C)(- 0.3x10™ m*/C (2.7 x10° kg/m* )(6.02x 10 atoms/mol )

Picture the Problem We can use the expression for the magnetic force acting on a wire
(F =I/x B) to find the force per unit length on the wire.

Express the magnetic force on the

F=I/xB
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wire:
Substitute for 77and B to obtain: F = (6.5A)€f>< (1.35T)}
and
% =(6.5A)i x(1.35T);
Simplify to obtain: % — (8.78N/m)(i x j)=[ 8.78N/m)k

77 e

Picture the Problem We can express the period of the alpha particle’s motion in terms
of its orbital speed and use Newton’s 2™ law to express its orbital speed in terms of
known quantities. Knowing the particle’s period and the radius of its motion we can find
its speed and kinetic energy.

(@) Relate the period of the alpha 7= 2_727” (1)
particle’s motion to its orbital speed: v
Apply ZFradial = ma, to the alpha B =m v_2
particle to obtain: r
Solve for v to obtain: - qBr

m
Substitute and simplify to obtain: T 27 _ 27m

9Br  gB

m

Substitute numerical values and B 27[(6.65><10‘27 kg) (0131
evaluate T:  2(1.60x10*C)aT) o
(b) Solve equation (1) for v: e 2mr

T
Substitute numerical values and - 27r(0.5m) —[2.40x10" m/s
evaluate v: 0.131:s
(c) Express the kinetic energy of the K= %mv2

alpha particle:
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Substitute numerical values and K= %(6.65><10’27 kg)(2.41>< 10’ m/s)2
evaluate K:
~1.93x102] x—levflg
1.60x107J
=|12.0MeV
78 e
Picture the Problem The configuration of
the magnet and field are shown in the
figure. We’ll assume that a force + qu is
exerted on the north pole and a force
- quf is exerted on the south pole and i
show that this assumption leads to the
familiar expression for the torque acting on
a magnetic dipole.
i Bi Bq.L . -Bq. L .
Assuming that a force + ¢, B is r— q2m sing — ;]m sing

exerted on the north pole and a force _
- qmﬁ is exerted on the south pole, = Bq,Lsin®
express the net torque acting on the

bar magnet:

Substitute for g, to obtain: 7/ )
HbSHH dm ' r:B%Lsme:yBsmH

N
I

ﬁxé

*70 oo
Picture the Problem We can use F = qﬁxB to show that motion of the particle in the x
direction is not affected by the magnetic field. The application of Newton’s 2" law to
motion of the particle in yz plane will lead us to the result that » = mv,,/qB. By expressing
the period of the motion in terms of vy, we can show that the time for one complete orbit
around the helix is ¢ = 27zm/qB.

(a) Express the magnetic force F
acting on the particle:

1l
<
=
X
>



Substitute for ¥ and B and simplify
to obtain:

Apply D" F, g, = ma_to the motion

of the particle in the plane
perpendicular to i (i.e., the yz
plane):

Solve for 7;

(b) Relate the time for one orbit
around the helix to the particle’s
orbital speed:

Solve equation (1) for vy,

Substitute and simplify to obtain:

*80 oo

The Magnetic Field

F = q(v0x1:+ voy})x Bi
= qvoxB(f X ;)+ qvoyB(} X ;)
=0- quyBI; =—qv, yBl;

i.e., the motion in the direction of the
magnetic field (the x direction) is not
affected by the field.

2

Vo,
qvo, B =m—"= (1)

27 27m
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Picture the Problem We can use a constant-acceleration equation to relate the velocity
of the crossbar to its acceleration and Newton’s 2™ law to express the acceleration of the
crossbar in terms of the magnetic force acting on it. We can determine the direction of
motion of the crossbar using a right-hand rule or, equivalently, by applying F = I/ x B .
We can find the minimum field B necessary to start the bar moving by applying a

condition for static equilibrium to it.

(a) Using a constant-acceleration
equation, express the velocity of the
bar as a function of its acceleration
and the time it has been in motion:

v=v,+at

or, because vy =0,

v=at
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Use Newton’s 2™ law to express the a F

acceleration of the rail: m

where F'is the magnitude of the magnetic
force acting in the direction of the
crosshar’s motion.

Substitute to obtain:

v=—t1
m
Express the magnetic force acting on F=1ILB
the current-carrying crossbar:
Substitute to obtain: ILB ;
v=| —
m

(b)

Apply toconclude that the magnetic force is to the right and so the motion
of the crossbar will also be to the right.

(c) Apply D' F, =0to the crossbar: ILB, iy = fomax =0

Solve for B, to obtain:

81

or
ILBmin —Hmg = 0

B =| "8
min IL

Picture the Problem Note that with the
rails tilted, F still points horizontally to

the right (Z, and hence Vi , is out of the
page). Choose a coordinate system in
which down the incline is the positive x
direction. Then we can apply a condition
for translational equilibrium to find the
vertical magnetic field B is needed to
keep the bar from sliding down the rails. In

part (b) we can apply Newton’s 2" law to
find the acceleration of the crossbar when
B is twice its value found in (a).

(@) Apply > F, = 0to the crossbar mgsin@—I/Bcosd =0



to obtain:

Solve for B:

(b) Apply Y F, = ma tothe

crosshar to obtain:

Solve for a:

Substitute B’ = 2B and simplify to
obtain:

82 oo
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B="5tangand B=|-"Etanoa,
0 0

where u , is a unit vector in the vertical

direction.

I/B'cos@ —mgsin @ =ma

a= '8 cosé—gsiné
m
210" tan g
a :Lcosﬁ—gsinﬁ
m
=2gsind—gsind
=| gsind

Note that the direction of the acceleration
is up the slope.

Picture the Problem We’re being asked to show that, for small displacements from
equilibrium, the bar magnet executes simple harmonic motion. To show its motion is
SHM we need to show that the bar magnet experiences a linear restoring torque when
displaced from equilibrium. We can accomplish this by applying Newton’s 2™ law in
rotational form and using a small angle approximation to obtain the differential equation
for simple harmonic motion. Once we have the DE we can identify @ and express f.

Apply > 7 = Ia to the bar magnet:

For small displacements from
equilibrium, #<< 1 and:

d’o

dr?

where the minus sign indicates that the
torque acts in such a manner as to align the
magnet with the magnetic field and 7 is the
moment of inertia of the magnet.

—uBsing =1

sin@ =@
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Hence our differential equation of 2
| | 1Y o
motion becomes: dt
Thus for small displacements from d’e uB 2
s =—"—0=-00
equilibrium we see that the dt? I
differential equation describing the uB
: . where @ = ,|[—
motion of the bar magnet is the Ji
differential equation of simple
harmonic motion. Solve this
equation for ¢”Aldf to obtain:
Relate fto @ to obtain: ; ) 1 |uB
o | 2z\ 1

83 oo

Picture the Problem We can use F = qv x B to find the magnitude and direction of the
magnetic force experienced by an electron in the conducting wire. In (b) we can use a
condition for translational equilibrium to relate EtoF .In (¢) we can apply the
definition of electric field in terms of potential difference to evaluate the difference in
potential between the ends of the moving wire.

(@) Express the magnetic force on F = qv x B= qvfx Bk
an electron in the conductor: _ qu(fx ];): —qu}

Substitute numerical values and evaluate F :

F=—(-1.60x10"° C)(20m/s)(0.5T)j =| (L.60x 107 N);

(h) Sum the forces acting on an gE+F =0
electron under steady-state
conditions to obtain:

Solve for E : E:—E
q
Substitute our result in part (a) to - -18 )7 =
i part (a) 7 _L60x10™N)j _ R00vim);
obtain: ~1.60x10°C



(¢) The potential difference between
the ends of the wire is:

84 (1 1]
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AV = EAx
=(10.0V/m)(2m)=| 20.0V

Picture the Problem We can use T = 27,/1/MgD to find the period of small-

displacement oscillations with no current flowing in the frame. With a current flowing,
the frame will experience an additional restoring torque that will reduce its period. In part
(c) we can apply the condition for rotational equilibrium to find the magnitude of the

current that will put the frame in equilibrium.

(@) Express the period of a physical
pendulum:

Express the moment of inertia of the
frame:

Using the linear density of the
frame, calculate mnor, segment aNd 71y,

segment-

Substitute and evaluate I

Evaluate the distance D to the center
of mass from the A-A axis:

Substitute in equation (1) and
evaluate T:

’ 1

where D is the distance from the pivot to
the center of mass of the pendulum.

I = I + 21vert.segment
K2+ 2(im

where 2 =10 cm.

hor.segment

_ 2
= My, segment ver. segmenth )

mhor.segment = A’W
= (20g/cm)(6¢cm)=0.12kg

and

m = Ah

= (20g/cm)(10cm) = 0.2kg

ver.segment

I=(0.12kg)(0.1m)’
+2[1(0.2kg)(0.1mY ]
=2.53x107°kg-m?

2(0.05m)(0.2kg)+(0.1m)(0.12kg)
0.12kg+0.2kg+0.2kg
=6.15cm

2.53x10° kg - m?
T=2rx
(0.52kg)(9.81m/s? )(6.15¢cm)

=| 0.564s
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(b) Express the restoring torque with
B and 7 as shown:

Rewrite equation (1) with this
restoring torque:

Evaluate BI4:

Substitute numerical values and
evaluate 7°:

(c) Apply D 7 =0 to the frame

when it is in equilibrium to obtain:

Solve for I:

Substitute numerical values and
evaluate I:

*85 eoo

r = (MgD + BIA)®
where A4 is the area of the loop and
provided & << 1 rad.

r=on|— 1
MgD + BIA

BIA=(0.2T)(8A)(L0cm)(6cm)
=9.60x10°N-m

-3 2
Tzzﬂ\/ 2.53x10° kg -m

0.314N-m+9.60x10°N-m
=| 0.5565

MgDsin @ — BIAsind =0

| MgD
BA

_ (0.52kg)(9.81m/s?)(6.15cm)
~ (0.2T)(0cm)(6¢cm)

262A

Picture the Problem We can use a constant-acceleration equation to express the height
to which the wire rises in terms of its initial speed and the acceleration due to gravity. We
can then use the impulse-change in momentum equation to express the initial speed of the
wire in terms of the impulsive magnetic force acting on it. Finally, we can use the
definition of current to relate the charge delivered by the battery to the time during which

the impulsive force acts.

Using a constant-acceleration
equation, relate the height % to the
initial and final speeds and the
acceleration of the wire:

Solve for 4:

2.2
vi=vy+2a,h

or, because v=0and a, = g,
0=v.-2gh

h=-0 (1)



Use the impulse-momentum
equation to relate the change in

The Magnetic Field 513

Ap = FAt or p; — p;, = FAt
and, because p; = 0, mv, = FAt

momentum of the wire to the
impulsive force accelerating it:

Express the impulsive (magnetic) F=1IB
force acting on the wire:

Substitute to obtain: mv, = I{BAt
Solve for vy and substitute in I/BAt 2
equation (L): L\ m ) _(Bacy
2g 2m’g

Use the definition of current to AQ = IAt
relate the charge delivered by the
battery to the time during which it
delivers the current:
Substitute to obtain: b (g/};AQ)2

2m? g
Substitute numerical values and e [(0_25 m)(0.4T)(2 C)]2 _[51om
evaluate : - 2(0.02kg)(0.81m/s?) =
86 o000

Picture the Problem We’re being asked to show that, for small displacements from
equilibrium, the circular loop executes simple harmonic motion. To show its motion is
SHM we must show that the loop experiences a linear restoring torque when displaced
from equilibrium. We can accomplish this by applying Newton’s 2" law in rotational
form and using a small angle approximation to obtain the differential equation for simple
harmonic motion. Once we have the DE we can identify @ and express the period of the
motion 7.

Apply > "7 = Ia to the loop: I4BSinG = I d’6

inertia dt2

where the minus sign indicates that the
torque acts in such a manner as to align the
loop with the magnetic field and finertia IS
the moment of inertia of the loop.
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For small displacements from
equilibrium, 8 << 1 and:

Hence, our differential equation of
motion becomes:

Thus for small displacements from
equilibrium we see that the
differential equation describing the
motion of the current loop is the
differential equation of simple
harmonic motion. Solve this
equation for &”@ldf* to obtain:

Noting that the moment of inertia of
a hoop about its diameter is %mRZ,

substitute for Iineria and simplify to
obtain:

Relate the period 7 of the motion to
o and substitute to obtain:

87 (1 1]

sin@ =@
2
Iinertia d_ze =-I4B0O
dt
d*o IAB
— == 2]
dt 1

inertia

d’0 _ IzR’B 217B

== > 0=——""—60=- 20
dt 1imR m
27lB
where @ = ,|——
\' m
2T |, | m
0] 27iB

Picture the Problem We can express u in terms of its components and calculate U from

pand B usingU = —,Frl} . Knowing U we can calculate the components of F using F,

= —dU/dx and F, = —dUy/dy.

Express the net force acting on the
magnet in terms of its components:

Express g in terms of its
components:

Express the potential energy of the
bar magnetic in the nonuniform
magnetic field:

Because u is constant but

B depends on x and y:

F=Fi+Fj 1)

A= p i+, j+ ok

— i
=i+, + 10k )-(B.(x)i + B,(»)])
=—uxBx( )-1,B,(y)

st ()
dx Ox
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and
Foe _d_U: OB,
oody T oy
Substitute in equation (1) to obtain: - OB~ aBy A
F=\p—"it+p——=j
ox oy

*88 (1 1]
Picture the Problem We can apply Newton’s 2" law to the particle to derive an
expression for the radius of its orbit and then express its period in terms of its orbital

speed and radius.

(a) Because B is perpendicular to F=qvB
v , the magnitude of force on the
particle is given by:
Appl F = ma to the orbitin 2 2

PRy 2, F = ma )
particle to obtain: r r
Solve for . L y(V)my

qB
The period T of the particle’s 27
motion is related to the radius » of r= T
its orbit and its orbital speed v:
Substitute for » and simplify to 27y(v)m
obtain: T=|———
qB

(b) A spreadsheet program to calculate » and 7 as functions of In() follows.
The formulas used to calculate the quantities in the columns are given in the table.

Cell Content/Formula Algebraic Form

B1 9.11E-31 m

B2 1.60E-19 e

B3 10 B

B4 3.00E+08 c

A7 0.100 vic

A8 0.101 vle +0.001

B7 1/SQRT(1 — (A7)"2) y

Cc7 LN(B7) In(»)

D7 B7*$B$1*A7*$B$4/($B$2*$B$3) ymy
qB

E7 D7*10"8 10°%
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F7 | (2*PI)*A7*$B$1/($B$2*$B$3))*10"12 27ym 1012
—X
qB
A B C D E F

1 m= | 9.11E-31 | kg

2 e= | 1.60E-19 | C

3 =110 T

4 =| 3.00E+08 | m/s

5

6 v/c gamma | In(gamma) r r (microns) T (ps)

7 0.100 1.0050 0.005 1.72E-05 17.2 0.358

8 0.101 1.0051 0.005 1.73E-05 17.3 0.361

9 0.102 1.0052 0.005 1.75E-05 17.5 0.365
10 0.103 1.0053 0.005 1.77E-05 17.7 0.368
11 0.104 1.0055 0.005 1.79E-05 17.9 0.372
903 0.996 11.1915 2.415 1.90E-03 1904.0 3.563
904 0.997 12.9196 2.559 2.20E-03 2200.2 3.567
905 0.998 15.8193 2.761 2.70E-03 2696.7 3.570
906 0.999 22.3663 3.108 3.82E-03 3816.6 3.574

The following graph of  as a function of In(y) was plotted using the data in columns C
and E.

4000

3000 -

2000

r (microns)

1000 -

/

0.0 0.5 1.0 15 2.0 25 3.0 35

In(gamma)

The following graph of T"as a function of In(y) was plotted using the data in columns C
and F.
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