
453 

Chapter 26 
The Magnetic Field 
 
Conceptual Problems 
 
*1 •  
Determine the Concept Because the electrons are initially moving at 90° to the magnetic 
field, they will be deflected in the direction of the magnetic force acting on them. Use the 
right-hand rule based on the expression for the magnetic force acting on a moving charge 

BvF
rrr

×= q , remembering that, for a negative charge, the force is in the direction 

opposite that indicated by the right-hand rule, to convince yourself that the particle will 
follow the path whose terminal point on the screen is 2. correct. is )(b  

 
2 •  
Determine the Concept One cannot define the direction of the force arbitrarily. By 
experiment, F

r
 is perpendicular to B

r
. 

 
3 •  
Determine the Concept False. An object experiences acceleration if either its speed 
changes or the direction it is moving changes. The magnetic force, acting perpendicular to 
the direction a charged particle is moving, changes the particle’s velocity by changing the 
direction it is moving and hence accelerates the particle. 
 
4 •  
Determine the Concept Yes; it will be deflected upward. Because the beam passes  
through undeflected when traveling from left to right, we know that the upward  
electric force must be balanced by a downward magnetic force. Application of the 
right-hand rule tells us that the magnetic field must be out of the page. When the  
beam is reversed, the magnetic force (as well as the electric force) acting on it is  
upward. 
 
*5 •  
Determine the Concept The alternating current running through the filament is changing 
direction every 1/60 s, so in a magnetic field the filament experiences a force which 
alternates in direction at that frequency. 
 
6 •  
Determine the Concept The magnitude of the torque on a current loop is given by 

,sinθµτ B= where θ is the angle between the magnetic field and a normal to the surface 

of the loop. To maximizeτ , sinθ = 1 and θ = 90°. Hence the normal to the plane of the 
loop should be perpendicular to B

r
. 
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7 •  
(a) True. This is an experimental fact and is the basis for the definition of the magnetic 
force on a moving charged particle being expressed in terms of the cross product of 
vr and B

v
; i.e. BvF

rrv
×= q . 

 
(b) True. This is another experimental fact. The torque on a magnet is a restoring torque, 
i.e., one that acts in such a direction as to align the magnet with magnetic field. 
    
(c) True. We can use a right-hand rule to relate the direction of the magnetic field around 
the loop to the direction of the current. Doing so indicates that one side of the loop acts 
like a north pole and the other like a south pole.  
 
(d) False. The period of a particle moving in a circular path in a magnetic field is given 
by qvBmrT π2= and, hence, is proportional to the square root of the radius of the 

circle. 
   
(e) True. The drift velocity is related to the Hall voltage according to vd = VH/Bw where w 
is the width of the Hall-effect material. 
 
*8 • . 
Determine the Concept The direction in which a particle is deflected by a magnetic field 
will be unchanged by any change in the definition of the direction of the magnetic field.  
Since we have reversed the direction of the field, we must define the direction in which 
particles are deflected by a "left-hand" rule instead of a "right-hand" rule. 
 
9 •  
Determine the Concept Choose a right-handed coordinate system in which east is the 
positive x direction and north is the positive y direction. Then the magnetic force acting 
on the particle is given by ( ) kjijiF ˆˆˆˆˆ qvBqvBBqv =×=×=

r
. Hence, the magnetic 

force is upward. 
 

10 •  
Determine the Concept Application of the right-hand rule tells us that this positively 
charged particle would have to be moving in the northwest direction with the magnetic 
field upward in order for the magnetic force to be toward the northeast. The situation 
described cannot exist. correct. is )(e  

 
11 •  
Picture the Problem We can use Newton’s 2nd law for circular motion to express the 
radius of curvature R of each particle in terms of its charge, momentum, and the magnetic 
field. We can then divide the proton’s radius of curvature by that of the 7Li nucleus to 
decide which of these alternatives is correct. 
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Apply cradial maF =∑ to the lithium 

nucleus to obtain: 
 

R
vmqvB

2

=  

Solve for r: 
qB
mvR =  

 
For the 7Li nucleus this becomes: 

eB
pR

3
Li

Li =  

 
For the proton we have: 

eB
p

R p
p =  

 
Divide equation (2) by equation (1) 
and simplify to obtain: 

Li

p

Li

p

Li

p 3

3
p
p

eB
p
eB
p

R
R

==  

 
Because the momenta are equal: 
 

3
Li

p =
R
R

 and correct. is )(a  

 
*12 •  
Determine the Concept Application of the right-hand rule indicates that a positively 
charged body would experience a downward force and, in the absence of other forces, be 
deflected downward. Because the direction of the magnetic force on an electron is 
opposite that of the force on a positively charged object, an electron will be deflected 
upward.  correct. is )(c  

 
13 ••  
Determine the Concept From relativity; this is equivalent to the electron moving from 
right to left at velocity v with the magnet stationary.  When the electron is directly over 
the magnet, the field points directly up, so there is a force directed out of the page on the 
electron. 
 
14 •  

Similarities Differences 
Magnetic field lines are similar to electric 
field lines in that their density is a measure 
of the strength of the field; the lines point 
in the direction of the field; also, magnetic 
field lines do not cross. 

They differ from electric field lines in  
that magnetic field lines must close on 
themselves (there are no isolated magnetic 
poles), and the force on a charge depends 
on the velocity of the charge and is 
perpendicular to the magnetic field lines. 
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15 •  
Determine the Concept If only F

r
 and I are known, one can only conclude that the 

magnetic field B
r

 is in the plane perpendicular to F
r

. The specific direction of B
r

 is 
undetermined. 
 
Estimation and Approximation 
 
*16  ••  
Picture the Problem If the electron enters the magnetic field in the coil with speed v, it 
will travel in a circular path under the influence of the magnetic force acting on. We can 
apply Newton’s 2nd law to the electron in this field to obtain an expression for the 
magnetic field.  We’ll assume that the deflection of the electron is small over the distance 
it travels in the magnetic field, but that, once it is through the region of the magnetic 
field, it travels at an angle θ with respect to the direction it was originally traveling.   

 
Apply cmaF =∑ to the electron 
in the magnetic field to obtain: 
 

r
vmevB

2

=  

Solve for B: 
 er

mvB =  

 
The kinetic energy of the electron is: 
 

2
2
1 mveVK ==  

Solve for v to obtain: 
 

m
eVv 2

=  

 
Substitute for v in the expression for 
r: 
 e

mV
rm

eV
er
mB 212

==  

 
Because θ << 1: 
 θsinrd ≈  ⇒ 

θsin
dr ≈  

 
Substitute for r in the expression for 
B to obtain: 
 e

mV
d

B 2sinθ
=  

For maximum deflection,  
θ ≈ 45°. Substitute numerical values 
and evaluate B: 

( )( )

mT84.5

C1060.1
kV15kg1011.92

m05.0
45sin

19

31

=

×
×°

= −

−

B
 

 
17 ••  
Picture the Problem Let h be the height of the orbit above the surface of the earth, m the 
mass of the micrometeorite, and v its speed. We can apply Newton’s 2nd law to the 
orbiting micrometeorite with Fmag = qvB to derive an expression for the charge-to-mass 
ratio of the micrometeorite. 
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(a)  Apply cmaF =∑ to the 

micrometeorite orbiting under the 
influence of the magnetic force: 
 

earth

2

Rh
vmqvB

+
=  

 

Solve for q/m to obtain: 
 ( )earthRhB

v
m
q

+
=  

 
Substitute numerical values and evaluate q/m: 
 

( )( ) C/kg6.88
km6370km400T105

km/s30
5 =

+×
= −m

q
 

 
(b)  Solve the result for q/m 
obtained in (a) for q to obtain: 
 

( )mq C/kg6.88=  

Substitute numerical values and 
evaluate q: 
 

( )( )
nC6.26

kg103C/kg6.88 10

=

×= −q
 

 
Force Exerted by a Magnetic Field 
 
18 •  
Picture the Problem The magnetic force acting on a charge is given by BvF

rrr
×= q . 

We can express vr and B
r

, form their vector (a.k.a. ″cross″) product, and multiply by the 
scalar q to find F

r
. 

 
Express the force acting on the proton: 
 

BvF
rrr

×= q  

Express vr : 
 

( )iv ˆMm/s46.4=
r

 

Express B
r

: ( )kB ˆT75.1=
r

 

 
Substitute numerical values and evaluate F

r
: 

 

( ) ( ) ( )[ ] ( ) jkiF ˆpN25.1ˆT75.1ˆMm/s46.4C1060.1 19 −=××= −
r

 

 
19 •  
Picture the Problem The magnetic force acting on the charge is given by BvF

rrr
×= q . 

We can express vr and B
r

, form their vector (a.k.a. ″cross″) product, and multiply by the 
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scalar q to find F
r

. 
 
Express the force acting on the 
charge: 
 

BvF
rrr

×= q  

Substitute numerical values to 
obtain: 
 

( ) ( )[ ]BiF
rr

××−= ˆm/s1075.2nC64.3 6
 

 

(a) Evaluate F
r

for B
r

 = 0.38 T ĵ : 

 

( ) ( )[ ( ) ] ( )kjiF ˆmN80.3ˆT38.0ˆm/s1075.2nC64.3 6 −=××−=
r

 

 
(b) Evaluate F

r
for B

r
 = 0.75 T î  + 0.75 T ĵ : 

( ) ( )[ ( ) ( ){ }] ( )kjiiF ˆmN51.7ˆT75.0ˆT75.0ˆm/s1075.2nC64.3 6 −=+××−=
r

 

 
(c) Evaluate F

r
for B

r
 = 0.65 T î : 

 
( ) ( ) ( )[ ] 0ˆT65.0ˆm/s1075.2nC64.3 6 =××−= iiF

r
 

 
(d) Evaluate F

r
for B

r
 = 0.75 T î  + 0.75 T k̂ : 

 

( ) ( )[ ( ) ( ) ] ( ) jkiiF ˆmN51.7ˆT75.0ˆT75.0ˆm/s1075.2nC64.3 6 =+××−=
r

 

 
20 •  
Picture the Problem The magnetic force acting on the proton is given by BvF

rrr
×= q . 

We can express vr and B
r

, form their vector (a.k.a. ″cross″) product, and multiply by the 
scalar q to find F

r
. 

 
Express the force acting on the proton: 
 

BvF
rrr

×= q  

(a) Evaluate F
r

for vr = 2.7 Mm/s î : 
 

( ) ( ) ( )[ ] ( ) jkiF ˆpN640.0ˆT48.1ˆm/s107.2C1060.1 619 −=×××= −
r

 

 
(b) Evaluate F

r
for vr  = 3.7 Mm/s ĵ : 

 

( ) ( ) ( )[ ] ( )ikjF ˆpN876.0ˆT48.1ˆm/s107.3C1060.1 619 =×××= −
r

 



The Magnetic Field 
 

 

459

(c) Evaluate F
r

for vr  = 6.8 Mm/s k̂ : 
 

( ) ( ) ( )[ ] 0ˆT48.1ˆm/s108.6C1060.1 619 =×××= − kkF
r

 

 
(d) Evaluate F

r
for jiv ˆMm/s0.3ˆMm/s0.4 +=

r
: 

 
( ) ( ) ( ){ } ( )[ ]

( ) ( ) ji

kjiF
ˆpN947.0ˆpN710.0

ˆT48.1ˆMm/s0.3ˆMm/s0.4C1060.1 19

−=

×+×= −
r

 

 
21 •  
Picture the Problem The magnitude of the magnetic force acting on a segment of wire is 
given by θsinBIF l=  where l is the length of the segment of wire, B is the magnetic 
field, and θ is the angle between the segment of wire and the direction of the magnetic 
field.  
 
Express the magnitude of the 
magnetic force acting on the 
segment of wire: 
 

θsinBIF l=  

Substitute numerical values and 
evaluate F: 

( )( )( )
N962.0

30sinT37.0m2A6.2

=

°=F
 

 
*22 •  
Picture the Problem We can use BLF

rrr
×= I to find the force acting on the wire 

segment. 
 
Express the force acting on the wire 
segment: 
 

BLF
rrr

×= I  

Substitute numerical values and 
evaluate F

r
: 

( ) ( ) ( )[ ] ( )
( )k

ijiF
ˆN140.0

ˆT3.1ˆcm4ˆcm3A7.2

−=

×+=
r

 

 
23 •  
Picture the Problem The magnetic force acting on the electron is given by BvF

rrr
×= q . 

We can form the vector product of v
r

and B
r

and multiply by the charge of the electron to 

find F
r

and obtain its magnitude using 222
zyx FFFF ++= . The direction angles are 

given by ( )FFxx
1tan−=θ , ( )FFyy

1tan−=θ , and ( )FFzz
1tan−=θ . 



Chapter 26    
 

 

460 

Express the force acting on the proton: 
 

BvF
rrr

×= q  

Express the magnitude of F
r

in terms 
of its components: 
 

222
zyx FFFF ++=                          (1) 

Substitute numerical values and evaluate F
r

: 
 

( ) ( ){[ ( ) } ( ) ]
( ) ( ) ( ) ( )

( ) ( ) ( )kji

ikjk

kjijiF

ˆpN576.0ˆpN128.0ˆpN192.0

ˆpN192.0ˆpN384.0ˆpN128.0ˆpN192.0

Tˆ4.0ˆ6.0ˆ8.0ˆMm/s3ˆMm/s2C1060.1 19

−−−=

−+−+−+−=

−+×−×−= −
r

 

 
Substitute in equation (1) to obtain: 
 

( ) ( ) ( ) pN621.0pN576.0pN128.0pN192.0 222 =−+−+−=F  

 
Express and evaluate the angle 
F
r

makes with the x axis: 

°=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=⎟

⎠
⎞

⎜
⎝
⎛= −−

108

pN0.621
pN192.0coscos 11

F
Fx

xθ
 

 
Express and evaluate the angle 
F
r

makes with the y axis: 

°=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −−

102

pN0.621
pN128.0coscos 11

F
Fy

yθ
 

 
Express and evaluate the angle 
F
r

makes with the z axis: 

°=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=⎟

⎠
⎞

⎜
⎝
⎛= −−

158

pN0.621
pN576.0coscos 11

F
Fz

zθ
 

 
24 ••  
Picture the Problem We can use BF

r
l
rr

×= I to find the force acting on the segments of 
the wire as well as the magnetic force acting on the wire if it were a straight segment 
from a to b. 
 
Express the magnetic force acting 
on the wire: 
 

cm 4cm 3 FFF
rrr

+=  
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Evaluate cm 3F
r

: 

 

( ) ( ) ( )[ ]
( )( )

( ) j

j

kiF

ˆN0648.0

ˆN0648.0

ˆT2.1ˆcm3A8.1cm 3

−=

−=

×=
r

 

 
Evaluate cm 4F

r
: 

 

( ) ( ) ( )[ ]
( )i

kjF
ˆN0864.0

ˆT2.1ˆcm4A8.1cm 4

=

×=
r

 

 
Substitute to obtain: ( ) ( )

( ) ( ) ji

ijF
ˆN0648.0ˆN0864.0

ˆN0864.0ˆN0648.0

−=

+−=
r

 

 
If the wire were straight from a to b: 
 

( ) ( ) ji ˆcm4ˆcm3 +=l
r

 

 
The magnetic force acting on the wire is: 
 

( ) ( ) ( )[ ] ( ) ( ) ( )
( ) ( ) ji

ijkjiF
ˆN0648.0ˆN0864.0

ˆN0864.0ˆN0648.0ˆT2.1ˆcm4ˆcm3A8.1

−=

+−=×+=
r

 

in agreement with the result obtained above when we treated the two straight segments of 
the wire separately. 
 
25 ••  
Picture the Problem Because the magnetic field is horizontal and perpendicular to the 
wire, the force it exerts on the current-carrying wire will be vertical. Under equilibrium 
conditions, this upward magnetic force will be equal to the downward gravitational force 
acting on the wire. 
 
Apply 0vertical =∑F to the wire: 

 

0mag =− wF  

Express Fmag: BIF l=mag  

because θ = 90°. 
 

Substitute to obtain: 
 

0=− mgBIl  

Solve for I: 
B

mgI
l

=  

 
Substitute numerical values and evaluate I: ( )( )

( )( ) A48.1
T33.1cm25

m/s81.9g50 2

==I  
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*26 ••  
Picture the Problem The diagram shows 
the gaussmeter displaced from equilibrium 
under the influence of the gravitational and 
magnetic forces acting on it. We can apply 
the condition for translational equilibrium 
in the x direction to find the equilibrium 
angular displacement of the wire from the 
vertical. In part (b) we can solve the 
equation derived in part (a) for B and 
evaluate this expression for the given data 
to find the horizontal magnetic field 
sensitivity of this gaussmeter. 

 

 
 
(a) Apply 0=∑ xF to the wire to 

obtain: 
 

0cossin =− θθ Fmg  

Substitute for F and solve for θ to 
obtain: 
 

0cossin =− θθ BImg l              (1) 

and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

mg
BIl1tanθ  

 
Substitute numerical values and 
evaluate θ : 

( )( )( )
( )( )

°=

⎥
⎦

⎤
⎢
⎣

⎡
= −

66.4

m/s81.9kg005.0
T04.0m5.0A2.0tan 2

1θ
 

 
(b) Solve equation (1) for B to 
obtain: lI

mgB θtan
=  

 
For a displacement from vertical of 
0.5 mm: 
 

001.0
m0.5

mm5.0sintan ==≈ θθ  

and 
rad001.0=θ  

 
Substitute numerical values and 
evaluate B: 

( )( )( )
( )( )

T91.4

m5.0A20
rad001.0m/s81.9kg005.0 2

µ=

=B
 

 
27 ••  
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Picture the Problem With the current in 
the direction indicated and the magnetic 
field in the z direction, pointing out of the 
plane of the page, the force is in the radial 
direction and we can integrate the element 
of force dF acting on an element of length 
dℓ between θ = 0 and π  to find the force 
acting on the semicircular portion of the 
loop and use the expression for the force on 
a current-carrying wire in a uniform 
magnetic field to find the force on the 
straight segment of the loop. 

 
 

 

 
Express the net force acting on the 
semicircular loop of wire: 
 

segmentstraight loopar semicircul FFF +=      (1) 

Express the force acting on the 
straight segment of the loop: 
 

RIBI 2segmentstraight −=×= BF
r

l
rr

 

Express the force dF acting on the 
element of the wire of length dℓ: 
 

θIRBdBIddF == l  

Express the x and y components of 
dF: 

θcosdFdFx =  

and 
θsindFdFy =  

 
Because, by symmetry, the x 
component of the force is zero, we 
can integrate the y component to 
find the force on the wire: 

θθ dIRBdFy sin=  

and 

RIBdRIBFy 2sin
0

== ∫
π

θθ  

 
Substitute in equation (1) to obtain: 022 =−= RIBRIBF  
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28 ••  
Picture the Problem We can use the information given in the 1st and 2nd sentences to 
obtain an expression containing the components of the magnetic field B

r
. We can then 

use the information in the 1st and 3rd sentences to obtain a second equation in these 
components that we can solve simultaneously for the components of B

r
. 

 
Express the magnetic field B

r
in 

terms of its components: 
 

kjiB ˆˆˆ
zyx BBB ++=

r
           (1) 

Express F
r

in terms of B
r

: 
 ( ) ( ) ][ ( )

( ) ( )
( ) ( ) ij

kjik

kjik

BF

ˆmA4.0ˆmA4.0

ˆˆˆˆmA4.0

ˆˆˆˆm1.0A4

yy

zyx

zyx

BB

BBB

BBB

I

⋅−⋅=

++×⋅=

++×=

×=
r

l
rr

 

 
Equate the components of this 
expression for F

r
with those given 

in the second sentence of the 
statement of the problem to obtain: 
 

( ) N2.0mA4.0 =⋅ yB  

and 
( ) N2.0mA4.0 =⋅ xB  

Noting that Bz is undetermined, 
solve for Bx and By: 
 

T5.0=xB and T5.0=yB  

 

When the wire is rotated so that the 
current flows in the positive x 
direction: 
 

( ) ( ) ][ ( )
( ) ( )

( ) ( ) kj

kjii

kjii

BF

ˆmA4.0ˆmA4.0

ˆˆˆˆmA4.0

ˆˆˆˆm1.0A4

yz

zyx

zyx

BB

BBB

BBB

I

⋅+⋅−=

++×⋅=

++×=

×=
r

l
rr

 

 
Equate the components of this 
expression for F

r
with those given 

in the third sentence of the problem 
statement to obtain: 
 

( ) 0mA4.0 =⋅− zB  

and 
( ) N2.0mA4.0 =⋅ yB  

Solve for Bz and By to obtain: 
 

0=zB  

and, in agreement with our results above, 
T5.0=yB  

 
Substitute in equation (1) to obtain: ( ) ( ) jiB ˆT5.0ˆT5.0 +=

r
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29 ••  
Picture the Problem We can use the information given in the 1st and 2nd sentences to 
obtain an expression containing the components of the magnetic field B

r
. We can then 

use the information in the 1st and 3rd sentences to obtain a second equation in these 
components that we can solve simultaneously for the components of B

r
. 

 
Express the magnetic field B

r
in 

terms of its components: 
 

kjiB ˆˆˆ
zyx BBB ++=

r
           (1) 

Express F
r

in terms of B
r

: 
 ( ) ( ) ][ ( )

( ) ( )
( ) ( ) kj

kjii

kjii

BF

ˆmA2.0ˆmA2.0

ˆˆˆˆmA2.0

ˆˆˆˆm1.0A2

yz

zyx

zyx

BB

BBB

BBB

I

⋅+⋅−=

++×⋅=

++×=

×=
r

l
rr

 

 
Equate the components of this 
expression for F

r
with those given 

in the second sentence of the 
statement of the problem to obtain: 
 

( ) N3mA2.0 =⋅− zB  

and 
( ) N2mA2.0 =⋅ yB  

Noting that Bx is undetermined, 
solve for Bz and By: 

T15−=zB  

and 
T10=yB  

 
When the wire is rotated so that the 
current flows in the positive y 
direction: 
 

( ) ( ) ][ ( )
( ) ( )
( ) ( ) ki

kjij

kjij

BF

ˆmA2.0ˆmA2.0

ˆˆˆˆmA2.0

ˆˆˆˆm1.0A2

xz

zyx

zyx

BB

BBB

BBB

I

⋅−⋅=

++×⋅=

++×=

×=
r

l
rr

 

 
Equate the components of this 
expression for F

r
with those given 

in the third sentence of the problem 
statement to obtain: 
 

( ) N3mA2.0 −=⋅ xB  

and 
( ) N2mA2.0 −=⋅− zB  

Solve for Bx and Bz to obtain: 
 

T15−=xB  

and, in agreement with our results above, 
T10=zB  
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Substitute in equation (1) to obtain: ( ) ( ) ( )kjiB ˆT15ˆT10ˆT10 −+=
r

 

 
30 •••  
Picture the Problem We can integrate the expression for the force F

r
d acting on an 

element of the wire of length L
r

d from a to b to show that .BLF
rrr

×= I  
 
Express the force F

r
d  acting on the 

element of the wire of length :L
r

d  
 

BLF
rrr

×= Idd  

Integrate this expression to obtain: 
 ∫ ×=

b

a

Id BLF
rrr

 

Because B
r

and I are constant: 
BLBLF
rrrrr

×=×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∫ IdI

b

a

 

where L
r

is the vector from a to b. 
 
Motion of a Point Charge in a Magnetic Field 
 
*31 •  
Picture the Problem We can apply Newton’s 2nd law to the orbiting proton to relate its 
speed to its radius. We can then use T = 2πr/v to find its period. In Part (b) we can use the 
relationship between T and v to determine v. In Part (c) we can use its definition to find 
the kinetic energy of the proton. 
 
(a) Relate the period T of the 
motion of the proton to its orbital 
speed v: 
 

v
rT π2

=                                   (1) 

Apply cradial maF =∑ to the proton 

to obtain: 
 

r
vmqvB

2

=  

Solve for v/r  to obtain: 
m
qB

r
v

=  

 
Substitute to obtain: 
 qB

mT π2
=  

 
Substitute numerical values and 
evaluate T: 
 

( )
( )( ) ns4.87

T75.0C1060.1
kg1067.12

19

27

=
×

×
= −

−πT  
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(b) From equation (1) we have: 
 

( )

m/s1067.4

ns4.87
m65.022

7×=

==
ππ

T
rv

 

 
(c) Using its definition, express and evaluate the kinetic energy of the proton: 
 

( )( )

MeV11.4

J101.60
eV1J1082.1m/s1067.4kg1067.1 19

122727
2
12

2
1

=

×
××=××== −

−−mvK
 

 
32 •  
Picture the Problem We can apply Newton’s 2nd law to the orbiting electron to obtain an 
expression for the radius of its orbit as a function of its mass m, charge q, speed v, and the 
magnetic field B. Using the definition of its kinetic energy will allow us to express r in 
terms of m, q, B, and its kinetic energy K. We can use  
T = 2πr/v to find the period of the motion and calculate the frequency from the reciprocal 
of the period of the motion. 
 
(a) Apply cradial maF =∑ to the 

proton to obtain: 
 

r
vmqvB

2

=  

Solve for r: 
 qB

mvr =                                    (1) 

 
Express the kinetic energy of the 
electron: 
 

2
2
1 mvK =  

Solve for v to obtain: 

m
Kv 2

=                                 (2) 

 
Substitute in equation (1) to obtain: 
 Km

qBm
K

qB
mr 212

==  

 
Find the frequency from the 
reciprocal of the period: 

GHz10.9
ns110.0

11
===

T
f  

 
Substitute numerical values and evaluate r: 
 



Chapter 26    
 

 

468 

( )

( )( ) mm20.2
T325.0C10.61

eV
J101.6kg1011.9keV452

19

19
31

=
×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
××

= −

−
−

r  

 
(b) Relate the period of the 
electron’s motion to the radius of its 
orbit and its orbital speed: 
 

v
rT π2

=  

Substitute equation (2) to obtain: 
 K

mr

m
K
rT 2

2
2 ππ

==  

 
Substitute numerical values and evaluate T: 
 

( ) ( ) ns110.0

eV
J101.6keV45

kg1011.92mm20.2 19

31

=
×

×

×
= −

−

πT  

 
33 •  
Picture the Problem We can apply Newton’s 2nd law to the orbiting electron to obtain an 
expression for the radius of its orbit as a function of its mass m, charge q, speed v, and the 
magnetic field B. 
 
(a) Apply cradial maF =∑ to the 

proton to obtain: 
 

r
vmqvB

2

=  

Solve for r: 
 qB

mvr =                                     

 
Substitute numerical values and 
evaluate r: 
 

( )( )
( )( )

m142

T104C1060.1
m/s10kg1011.9

719

731

=

××
×

= −−

−

r

 
 

(b) For B = 2×10−5 T: ( )( )
( )( )

m84.2

T102C1060.1
m/s10kg1011.9

519

731

=

××
×

= −−

−

r
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34 ••  
Picture the Problem We can apply Newton’s 2nd law to an orbiting particle to obtain an 
expression for the radius of its orbit R as a function of its mass m, charge q, speed v, and 
the magnetic field B.  
 
Apply cradial maF =∑ to an orbiting 

particle to obtain: 
 

r
vmqvB

2

=  

Solve for r: 
 qB

mvr =                                     

 
Express the kinetic energy of the 
particle: 
 

2
2
1 mvK =  

Solve for v to obtain: 

m
Kv 2

=                                  

 
Substitute in equation (1) to obtain: 
 Km

qBm
K

qB
mr 212

==        (1) 

 
Using equation (1), express the ratio 
Rd/Rp: 
 

2
2

21

21

p

p

p

d

d

p

p
p

d
d

p

d

==

==

m
m

e
e

m
m

q
q

Km
Bq

Km
Bq

R
R

 

 
Using equation (1), express the ratio 
Rα /Rp: 
 

1
4

2

21

21

p

p

p

p

p
p

p

==

==

m
m

e
e

m
m

q
q

Km
Bq

Km
Bq

R
R α

α

α
αα

 

 
35 ••  
Picture the Problem We can apply Newton’s 2nd law to the orbiting particles to derive 
an expression for their velocities as a function of their charge, their mass, the magnetic 
field in which they are moving, and the radii of their orbits. We can then compare their 
velocities by expressing their ratio. In parts (b) and (c) we can proceed similarly starting 



Chapter 26    
 

 

470 

with the definitions of kinetic energy and angular momentum. 
 
(a) Apply cradial maF =∑ to an 

orbiting particle to obtain: 
 

r
vmqvB

2

=  

Solve for v: 
 m

qBr
v =                                     

 
Express the velocities of the 
particles: 
 

p

p
p m

Brq
v = and 

α

α
α m

Brqv =  

 
Divide the second of these equations 
by the first to obtain: 
 ( ) 2

1
4

2

p

p

p

p

p

pp

====
me

em
mq
mq

m
Brq

m
Brq

v
v

α

αα

α

α  

 
(b) Express the kinetic energy of an 
orbiting particle: m

rBq
m

qBrmmvK
222

2
1

2

2
12

2
1 =⎟

⎠
⎞

⎜
⎝
⎛==  

 
Using this relationship, express the 
ratio of Kα to Kp: 

( )
( ) 1
4

2

p
2

p
2

2
p

p
2

p

222
p

2
1

222

2
1

p

==

==

me
me

mq
mq

m
rBq

m
rBq

K
K

α

αα

α

α

 

 
(c) Express the angular momenta of 
the particles: 
 

rvmL ααα = and rvmL ppp =   

Express the ratio of Lα to Lp: ( )( )
2

4

pp

p2
1

p

ppp

===
vm

vm
rvm
rvm

L
L ααα  

  
36 ••  
Picture the Problem We can use the definition of momentum to express p in terms of v 
and apply Newton’s 2nd law to the orbiting particle to express v in terms of q, B, R, and m. 
In part (b) we can express the particle’s kinetic energy in terms of its momentum and use 
our result from part (a) to show that .222

2
1 mRqBK =  
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(a) Express the momentum of the 
particle: 
 

mvp =                               (1) 

Apply cradial maF =∑ to the 

orbiting particle to obtain: 
 

R
vmqvB

2

=  

Solve for v: 
 m

qBRv =                             

 
Substitute in equation (1) to obtain: qBR

m
qBRmp =⎟

⎠
⎞

⎜
⎝
⎛=  

 
(b) Express the kinetic energy of the 
orbiting particle as a function of its 
momentum: 
 

m
pK
2

2

=  

Substitute our result from part (a) to 
obtain: 

( )
m

RBq
m

qBRK
22

2222

==  

  
*37 ••  
Picture the Problem The particle’s velocity has a component v1 parallel to B

r
 and a 

component v2 normal to B
r

. v1 = v cosθ and is constant, whereas v2 = v sinθ , being 
normal to B

r
, will result in a magnetic force acting on the beam of particles and circular 

motion perpendicular to B
r

. We can use the relationship between distance, rate, and time 
and Newton’s 2nd law to express the distance the particle moves in the direction of the 
field during one period of the motion. 
 
Express the distance moved in the 
direction of  B

r
 by the particle 

during one period: 
 

Tvx 1=                              (1) 

Express the period of the circular 
motion of the particles in the beam: 
 

2

2
v

rT π
=  

Apply cradial maF =∑ to a particle 

in the beam to obtain: 
 

r
vmBqv

2
2

2 =  

Solve for v2: 
 m

qBrv =2                                     
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Substitute to obtain: 
 qB

m

m
qBr

rT ππ 22
==  

 
Because v1 = v cosθ, equation (1) 
becomes: ( ) θππθ cos22cos v

qB
m

qB
mvx ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

 
38 ••  
Picture the Problem The trajectory of the 
proton is shown to the right. We know that, 
because the proton enters the field 
perpendicularly to the field, its trajectory 
while in the field will be circular. We can 
use symmetry considerations to determine 
φ. The application of Newton’s 2nd law to 
the proton while it is in the magnetic field 
and of trigonometry will allow us to 
conclude that r = d and to determine their 
value.  
 
From symmetry, it is evident that 
the angle θ in Figure 26-35 equals 
the angle φ:  
 

°= 0.60φ  

Use trigonometry to obtain: 
 

( )
r

d 2
2
130sin90sin ==°=−° θ  

or r = d. 
 

Apply cradial maF =∑ to the proton 

while it is in the magnetic field to 
obtain: 
 

r
vmqvB

2

=  

Solve for r: 
 qB

mvr =                                     

 
Substitute numerical values and 
evaluate r = d: 

( )( )
( )( )

m130.0

T8.0C1060.1
m/s10kg1067.1

19

727

=

×
×

== −

−

rd
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39 ••  
Picture the Problem The trajectory of the 
proton is shown to the right. We know that, 
because the proton enters the field 
perpendicularly to the field, its trajectory 
while in the field will be circular. We can 
use symmetry considerations to determine 
φ. The application of Newton’s 2nd law to 
the proton while it is in the magnetic field 
and of trigonometry will allow us to 
conclude that r = d and to determine their 
value.  
 
(a) From symmetry, it is evident 
that the angle θ in Figure 26-33 
equals the angle φ:  
 

°= 0.24φ  

Use trigonometry to obtain: 
 

( )
p

224sin90sin
r

d
=°=−° θ  

or 

m492.0
24sin2
m4.0

24sin2p =
°

=
°

=
dr  

 
Apply cradial maF =∑ to the proton 

while it is in the magnetic field to 
obtain: 
 

p

2
p

ppp r
v

mBvq =  

Solve for and evaluate vp: 

p

pp
p m

Brq
v =                                  

 
Substitute numerical values and 
evaluate vp: 

( )( )( )

m/s1083.2

kg101.67
T6.0m492.0C1060.1

7

27

19

p

×=

×
×

= −

−

v
 

 
(b) Express vd: 
 p

pp

d

dd
d 2m

Brq
m

Brqv ==  
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Substitute numerical values and 
evaluate vd: 

( )( )( )
( )

m/s1041.1

kg101.672
T6.0m492.0C1060.1

7

27

19

d

×=

×
×

= −

−

v
 

 
40 ••  
Picture the Problem We can apply Newton’s 2nd law of motion to express the orbital 
speed of the particle and then find the period of the dust particle from this orbital speed. 
 
The period of the dust particle’s 
motion is given by: 
 

v
rT π2

=  

Apply cmaF =∑ to the particle: 

 r
vmqvB

2

=  

 
Solve for v to obtain: 
 m

qBrv =  

 
Substitute for v in the expression for 
T and simplify: 
 

qB
m

qBr
rmT ππ 22

==  

Substitute numerical values and 
evaluate T: 

( )
( )( )

y1064.6

Ms31.56
y1s10094.2

T10nC3.0
kg/g10g10102

3

11

9

36

×=

××=

××
= −

−−πT

 

 
The Velocity Selector 
 
*41 •  
Picture the Problem Suppose that, for positively charged particles, their motion is from 
left to right through the velocity selector and the electric field is upward. Then the 
magnetic force must be downward and the magnetic field out of the page. We can apply 
the condition for translational equilibrium to relate v to E and B. In (b) and (c) we can use 
the definition of kinetic energy to find the energies of protons and electrons that pass 
through the velocity selector undeflected. 
 
(a) Apply 0=∑ yF to the particle 

to obtain: 
 

0magelec =− FF  

or 
0=− qvBqE  
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Solve for v to obtain: 
 B

Ev =  

 
Substitute numerical values and 
evaluate v: 
 

m/s1064.1
T28.0

MV/m46.0 6×==v  

(b) Express and evaluate the kinetic 
energy of protons passing through 
the velocity selector undeflected: 
 

( )( )

keV14.0

J101.60
eV1J1026.2

m/s1064.11067.1

19
15

26
kg

27
2
1

2
p2

1
p

=

×
××=

××=

=

−
−

−

vmK

 

 
(c) The kinetic energy of electrons 
passing through the velocity selector 
undeflected is given by: 
 

( )( )

eV66.7

J101.60
eV1J1023.1

m/s1064.11011.9

19
18

26
kg

31
2
1

2
e2

1
e

=

×
××=

××=

=

−
−

−

vmK

 

 
42 •  
Picture the Problem Because the beam of protons is not deflected; we can conclude that 
the electric force acting on them is balanced by the magnetic force. Hence, we can find 
the magnetic force from the given data and use its definition to express the electric field. 
 
(a) Use the definition of electric 
field to relate it to the electric force 
acting on the beam of protons: 
 

q
elec

elec
FE
r

r
=

 

Express the magnetic force acting on 
the beam of protons: 
 

kjiF ˆˆˆ
mag qvBBqv =×=
r

 

Because the electric force must be equal in magnitude but opposite in direction: 
 

( )( )( ) ( )kkkF ˆN1069.1ˆT85.0km/s4.12C10.601ˆ 1519
elec

−− ×−=×−=−= qvB
r

 

 
Substitute in the equation for the 
electric field to obtain: 

( )

( )k

kE

ˆkV/m5.10

C10.61

ˆN1069.1
19

15

elec

−=

×
×−

= −

−r
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(b) deflected.not  are electrons reversed, are  and both  Because elecmag FF
rr

 

 
Thomson’s Measurement of q/m for Electrons and the Mass 
Spectrometer 
 
*43 ••  
Picture the Problem Figure 26-18 is reproduced below. We can express the total 
deflection of the electron beam as the sum of the deflections while the beam is in the field 
between the plates and its deflection while it is in the field-free space. We can, in turn, 
use constant-acceleration equations to express each of these deflections. The resulting 
equation is in terms of v0 and E. We can find v0 from the kinetic energy of the beam and 
E from the potential difference across the plates and their separation. In part (b) we can 
equate the electric and magnetic forces acting on an electron to express B in terms of E 
and v0. 

 
 
(a) Express the total deflection ∆y of 
the electrons: 
 

21 yyy ∆+∆=∆                              (1) 

where  
∆y1 is the deflection of the beam while it is 
in the electric field and ∆y2 is the deflection 
of the beam while it travels along a 
straight-line path outside the electric field. 
 

Use a constant-acceleration equation 
to express ∆y1: 
 

( )2
2
1

1 tay y ∆=∆                              (2) 

where ∆t = x1/v0 is the time an electron is in 
the electric field between the plates. 
 

Apply Newton’s 2nd law to an 
electron between the plates to 
obtain: 
 

ymaqE =  

Solve for ay and substitute into 
equation (2) to obtain: 
 

m
qEay =  

and  
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2

0

1
2
1

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=∆

v
x

m
qEy                      (3) 

 
Express the vertical deflection ∆y2 of 
the electrons once they are out of the 
electric field: 
 

22 tvy y∆=∆                                    (4) 

Use a constant-acceleration equation 
to find the vertical speed of an 
electron as it leaves the electric 
field: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

∆+=

0

1

10

0
v
x

m
qE

tavv yyy

 

 

Substitute in equation (4) to obtain: 
 2

0

21

0

2

0

1
2 mv

xqEx
v
x

v
x

m
qEy =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∆    (5) 

 
Substitute equations (3) and (5) in 
equation (1) to obtain: 2

0

21

2

0

1
2
1

mv
xqEx

v
x

m
qEy +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=∆     

or 

 ⎟
⎠
⎞

⎜
⎝
⎛ +=∆ 2

1
2
0

1

2
xx

mv
qExy                     (6) 

 
Use the definition of kinetic energy 
to find the speed of the electrons: 
 

2
02

1 mvK =  

and 
( )

m/s1014.3

kg109.11
keV8.222

7

310

×=

×
== −m

Kv
 

 
Express the electric field between 
the plates in terms of their potential 
difference: 
 

d
VE =  

Substitute numerical values and 
evaluate E: 

kV/m08.2
cm1.2
V25

===
d
VE  

 
Substitute numerical values in equation (6) and evaluate ∆y: 
 

( )( )( )
( )( )

mm34.7cm30
2
cm6

Mm/s4.31kg1011.9
cm6kV/m08.2C1060.1
231

19

=⎟
⎠
⎞

⎜
⎝
⎛ +

×
×

=∆
−

−

y  
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(b) Because the electrons are 
deflected upward, the electric field 
must be downward and the magnetic 
field upward. Apply 0=∑ yF to an 

electron to obtain: 
 

0elecmag =− FF  

or 
qEqvB =  

Solve for B: 
 v

EB =  

 
Substitute numerical values and 
evaluate B: 

T2.66
m/s1014.3

kV/m08.2
7 µ=

×
=B  

 
44 ••  
Picture the Problem The diagram below represents the paths of the two ions entering the 
magnetic field at the left. The magnetic force acting on each causes them to travel in 
circular paths of differing radii due to their different masses. We can apply Newton’s 2nd 
law to an ion in the magnetic field to obtain an expression for its radius and then express 
their final separation in terms of these radii that, in turn, depend on the energy with which 
the ions enter the field. We can connect their energy to the potential through which they 
are accelerated using the work-kinetic energy theorem and  relate their separation ∆s to 
the accelerating potential difference ∆V. 

 
 
Express the separation ∆s of the 
chlorine ions: 
 

( )35372 rrs −=∆                   (1) 

Apply cmaF =∑ radial to an ion in 

the magnetic field of the mass 
spectrometer: 
 

r
vmqvB

2

=  

Solve for r to obtain: 
qB
mvr =                                (2) 
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Relate the speed of an ion as it 
enters the magnetic field to the 
potential difference through which it 
has been accelerated: 
 

2
2
1 mvVq =∆  

Solve for v to obtain: 
 m

Vqv ∆
=

2
 

 
Substitute in equation (2) to obtain: 
 2

22
qB

Vm
m

Vq
qB
mr ∆

=
∆

=  

 
Use this equation to express the 
radii of the paths of the two chlorine 
isotopes to obtain: 
 

2
35

35
2

qB
Vmr ∆

= and 2
37

37
2

qB
Vmr ∆

=  

Substitute in equation (1) to obtain: 
 

( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∆
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∆
−

∆
=∆

3537

2
35

2
35

212

222

mm
q
V

B

qB
Vm

qB
Vms

 

 
Solve for ∆V: ( )

( )2

3537

22

2

2

mm

sqBV
−

∆
=∆  

 
Substitute numerical values and 
evaluate ∆V: 
 

( )( )

( )

( ) ( )
kV122

kg101.663537

mTC1065.5

u35u372
2
cm4.1T2.1C101.60

272

2224

2

2
219

=

×−

⋅⋅×
=

−

⎟
⎠
⎞

⎜
⎝
⎛×

=∆

−

−

−

V

 

 
45 ••  
Picture the Problem We can apply Newton’s 2nd law to an ion in the magnetic field to 
obtain an expression for r as a function of m, v, q, and B and use the work-kinetic energy 
theorem to express the kinetic energy in terms of the potential difference through which 
the ion has been accelerated. Eliminating v between these equations will allow us to 
express r in terms of m, q, B, and ∆V. 
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Apply cmaF =∑ radial to an ion in 

the magnetic field of the mass 
spectrometer: 
 

r
vmqvB

2

=  

Solve for r to obtain: 
qB
mvr =                                           (1) 

 
Apply the work-kinetic energy 
theorem to relate the speed of an ion 
as it enters the magnetic field to the 
potential difference through which it 
has been accelerated: 
 

2
2
1 mvVq =∆  

Solve for v to obtain: 
 m

Vqv ∆
=

2
 

 
Substitute in equation (1) to obtain: 
 2

22
qB

Vm
m

Vq
qB
mr ∆

=
∆

=         (2) 

 
(a) Substitute numerical values and 
evaluate equation (2) for 24Mg : 

( )( )
( )( )

cm3.63

T10557C101.60
kV5.2kg10983.32

2419

26

24

=

××

×
=

−−

−

r
 

 
(b) Express the difference in the 
radii for 24Mg and 26Mg: 
 

2426 rrr −=∆  

Substitute numerical values and 
evaluate equation (2) for 26Mg : ( )( )

( )( )
cm9.65

T10557C101.60

kV5.2kg10983.3
24
262

2419

26

26

=

××

×⎟
⎠
⎞

⎜
⎝
⎛

=
−−

−

r  

 
Substitute to obtain: cm60.2cm3.63cm9.65 =−=∆r  

 
*46 ••  
Picture the Problem We can apply Newton’s 2nd law to an ion in the magnetic field of 
the spectrometer to relate the diameter of its orbit to its charge, mass, velocity, and the 
magnetic field. If we assume that the velocity is the same for the two ions, we can then 
express the ratio of the two diameters as the ratio of the masses of the ions and solve for 
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the diameter of the orbit of 7Li. 
 
Apply cradial maF =∑ to an ion in 

the field of the spectrometer: 
 

r
vmqvB

2

=  

Solve for r to obtain: 
qB
mvr =  

 
Express the diameter of the orbit: 
 qB

mvd 2
=  

 
Express the diameters of the orbits 
for 6Li and 7Li: qB

vmd 6
6

2
= and 

qB
vmd 7

7
2

=  

 
Assume that the velocities of the 
two ions are the same and divide the 
2nd of these diameters by the first to 
obtain: 
 

6

7

6

7

6

7

2

2

m
m

qB
vm

qB
vm

d
d

==  

 
Solve for and evaluate d7: ( ) cm5.17cm15

u6
u7

6
6

7
7 === d

m
md  

 
The Cyclotron 
 
47 ••  
Picture the Problem The time required for each of the ions to complete its semicircular 
paths is half its period. We can apply Newton’s 2nd law to an ion in the magnetic field of 
the spectrometer to obtain an expression for r as a function of the charge and mass of the 
ion, its velocity, and the magnetic field. 
 
Express the time for each ion to 
complete its semicircular path: 
 

v
rTt π

==∆ 2
1  

Apply cradial maF =∑ to an ion in the 

field of the spectrometer: 
 

r
vmqvB

2

=  

Solve for r to obtain: 
qB
mvr =  
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Substitute to obtain: 
qB
mt π

=∆  

 
Substitute numerical values and 
evaluate ∆t58 and ∆t60: 

( )
( )( )

s8.15

T12.0C101.60
kg1066.158

19

27

58

µ

π

=

×
×

=∆ −

−

t
 

and 
( )

( )( )
s3.16

T12.0C101.60
kg1066.160

19

27

60

µ

π

=

×
×

=∆ −

−

t
 

 
48 ••  
Picture the Problem We can apply a condition for equilibrium to ions passing through 
the velocity selector to obtain an expression relating E, B, and v that we can solve for v. 
We can, in turn, express E in terms of the potential difference V between the plates of the 
selector and their separation d. In (b) we can apply Newton’s 2nd law to an ion in the 
bending field of the spectrometer to relate its diameter to its mass, charge, velocity, and 
the magnetic field. 
 
(a) Apply 0=∑ yF to the ions in 

the crossed fields of the velocity 
selector to obtain: 
 

0magelec =− FF  

or 
0=− qvBqE  

Solve for v to obtain: 
 B

Ev =  

 
Express the electric field between 
the plates of the velocity selector in 
terms of their separation and the 
potential difference across them: 
 

d
VE =  

Substitute to obtain: 
 dB

Vv =  

 
Substitute numerical values and 
evaluate v: ( )( ) m/s1090.1

T42.0mm2
V160 5×==v  

 
(b) Express the difference in the 
diameters of the orbits of singly 

235238 ddd −=∆                        (1) 
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ionized 238U and 235U: 
 
Apply cradial maF =∑ to an ion in 

the spectrometer’s magnetic field: 
 

r
vmqvB

2

=  

Solve for the radius of the ion’s 
orbit: 
 

qB
mvr =  

 
Express the diameter of the orbit: 
 qB

mvd 2
=  

 
Express the diameters of the orbits 
for 238U and 235U: qB

vmd 238
238

2
= and 

qB
vmd 235

235
2

=  

 
Substitute in equation (1) to obtain: 
 

( )235238

235238

2

22

mm
qB

v
qB

vm
qB

vmd

−=

−=∆
 

 
Substitute numerical values and evaluate ∆d: 
 

( )( )

( )( ) mm86.9
T2.1C101.60

u
kg1066.1u235u238m/s1090.12

19

27
5

=
×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
−×

=∆ −

−

d  

 
*49 ••  
Picture the Problem We can express the cyclotron frequency in terms of the maximum 
orbital radius and speed of the protons/deuterons. By applying Newton’s 2nd law, we can 
relate the radius of the particle’s orbit to its speed and, hence, express the cyclotron 
frequency as a function of the particle’s mass and charge and the cyclotron’s magnetic 
field. In part (b) we can use the definition of kinetic energy and their maximum speed to 
find the maximum energy of the emerging protons. 
 
(a) Express the cyclotron frequency 
in terms of the proton’s orbital speed 
and radius: 
 

r
v

vrT
f

ππ 22
11

===  

Apply cradial maF =∑ to a proton in 

the magnetic field of the cyclotron: 
 

r
vmqvB

2

=                                         (1) 
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Solve for r to obtain: 
qB
mvr =  

 
Substitute to obtain: 

m
qB

mv
qBvf

ππ 22
==                               (2) 

 
Substitute numerical values and 
evaluate f: 

( )( )
( ) MHz3.21

kg1067.12
T4.1C1060.1

27

19

=
×

×
= −

−

π
f

 
 

(b) Express the maximum kinetic 
energy of a proton: 
 

2
max2

1
max mvK =  

Solve equation (1) for vmax to obtain: 
 m

qBrv max
max =  

 
Substitute to obtain: 2

max

22

2
1

2
max

2
1 r

m
Bq

m
qBrmK ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎠
⎞

⎜
⎝
⎛=    (3) 

 
Substitute numerical values and 
evaluate K: 

( ) ( ) ( )

MeV46.0

J101.60
eV1J1036.7

m7.0
kg1067.1

T4.1C1060.1

19-
12

2
27

2219

2
1

=

×
××=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

×
×

=

−

−

−

K

 

 
(c) From equation (2) we see that 
doubling m halves f: 
 

MHz7.10protons2
1

deuterons == ff  

From equation (3) we see that 
doubling m halves K: 

MeV23.0protons2
1

deuterons == KK  

 
50 ••  
Picture the Problem We can express the cyclotron frequency in terms of the maximum 
orbital radius and speed of the protons be accelerated in the cyclotron. By applying 
Newton’s 2nd law, we can relate the radius of the proton’s orbit to its speed and, hence, 
express the cyclotron frequency as a function of the its mass and charge and the 
cyclotron’s magnetic field. In part (b) we can use the definition of kinetic energy express 
the minimum radius required to achieve the desired emergence energy. In part (c) we can 
find the number of revolutions required to achieve this emergence energy from the 
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energy acquired during each revolution. 
 
(a) Express the cyclotron frequency 
in terms of the proton’s orbital speed 
and radius: 
 

r
v

vrT
f

ππ 22
11

===  

Apply cradial maF =∑ to a proton in 

the magnetic field of the cyclotron: 
 

r
vmqvB

2

=                                       

Solve for r to obtain: 
qB
mvr =                                             (1) 

 
Substitute to obtain: 

m
qB

mv
qBvf

ππ 22
==                             

 
Substitute numerical values and 
evaluate f: 

( )( )
( )

MHz4.27

kg1067.12
T8.1C1060.1

27

19

=

×
×

= −

−

π
f

 

 
(b) Using the definition of kinetic 
energy, relate emergence energy of 
the protons to their velocity: 
 

2
2
1 mvK =  

Solve for v to obtain: 
 m

Kv 2
=  

 
Substitute in equation (1) and 
simplify to obtain: 
 

qB
Km

m
K

qB
mr 22

==  

Substitute numerical values and 
evaluate rmin: 

( )( )
( )( )

m401.0

T8.1C1060.1
kg1067.1MeV252

19

27

=

×
×

= −

−

r
 

 
(c) Express the required number of 
revolutions N in terms of the energy 
gained per revolution: 
 

rev

MeV25
E

N =  

Because the beam is accelerated 
through a potential difference of 50 

keV1002rev =∆= VqE  
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kV twice during each revolution: 
 
Substitute and evaluate N: rev250

keV/rev100
MeV25

==N  

 
51 ••  
Picture the Problem We can express the cyclotron frequency in terms of the maximum 
orbital radius and speed of a particle being accelerated in the cyclotron. By applying 
Newton’s 2nd law, we can relate the radius of the particle’s orbit to its speed and, hence, 
express the cyclotron frequency as a function of its charge-to-mass ratio and the 
cyclotron’s magnetic field. We can then use data for the relative charges and masses of 
deuterons, alpha particles, and protons to establish the ratios of their cyclotron 
frequencies. 
 
Express the cyclotron frequency in 
terms of a particle’s orbital speed 
and radius: 
 

r
v

vrT
f

ππ 22
11

===  

Apply cradial maF =∑ to a particle 

in the magnetic field of the 
cyclotron: 
 

r
vmqvB

2

=                                       

Solve for r to obtain: 
qB
mvr =                                              

 
Substitute to obtain: 

m
qB

mv
qBvf

ππ 22
==                   (1)               

 
Evaluate equation (1) for deuterons: 
 dd

d
d 22 m

eB
m
qBf

ππ
==  

 
Evaluate equation (1) for alpha 
particles: 
 

dd 22
2

22 m
eB

m
eB

m
qBf

πππ α

α
α ===  

and 

αff =d  

 
Evaluate equation (1) for protons: 
 

d

dd2
1

p

p
p

2

2
2

22

f

m
eB

m
eB

m
qBf

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
===

πππ  

and 
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αfff == dp2
1  

  
52 ••  
Picture the Problem We can apply Newton’s 2nd law to the orbiting charged particle to 
obtain an expression for its radius as a function of its particle’s kinetic energy. Because 
the energy gain per revolution is constant, we can express this kinetic energy as the 
product of the number of orbits completed and the energy gained per revolution and, 
hence, show that the radius is proportional to the square root of the number of orbits 
completed. 
 
Apply cradial maF =∑ to a particle 

in the magnetic field of the 
cyclotron: 
 

r
vmqvB

2

=                                       

Solve for r to obtain: 
qB
mvr =                                             (1) 

 
Express the kinetic energy of the 
particle in terms of its speed and 
solve for v: 
 

2
2
1 mvK = ⇒ 

m
Kv 2

=                   (2) 

 

Noting that the energy gain per 
revolution is constant, express the 
kinetic energy in terms of the 
number of orbits N completed by the 
particle and energy Erev gained by 
the particle each revolution: 
 

revNEK =                                          (3) 

Substitute equations (2) and (3) in 
equation (1) to obtain: 
 

21rev
rev

2
21

212

N
qB
mE

mNE
qb

mK
qBm

K
qB
mr

==

==
 

or 21Nr ∝  

 
Torques on Current Loops and Magnets 
 
53 •  
Picture the Problem We can use the definition of the magnetic moment of a coil to 
evaluate µ and the expression for the torque exerted on the coil Bµτ

rrr
×= to find the 

magnitude of τ. 
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(a) Using its definition, express the 
magnetic moment of the coil: 
 

2rNINIA πµ ==  

Substitute numerical values and 
evaluate µ: 
 

( )( ) ( )
2

2

mA302.0

m04.0A320

⋅=

= πµ
 

 
(b) Express the magnitude of the 
torque exerted on the coil: 
 

θµτ sinB=  

Substitute numerical values and 
evaluate τ : 

( )( )
mN131.0

60sinT5.0mA302.0 2

⋅=

°⋅=τ
 

 
54 •  
Picture the Problem The coil will experience the maximum torque when the plane of the 
coil makes an angle of 90° with the direction of B

r
. The magnitude of the maximum 

torque is then given by Bµτ =max . 

 
Express the maximum torque acting 
on the coil: 
 

Bµτ =max  

Use its definition to express the 
magnetic moment of the coil: 
 

2rNINIA πµ ==  

Substitute to obtain: BrNI 2
max πτ =  

 
Substitute numerical values and 
evaluate τ : 

( )( ) ( ) ( )
mN1083.2

T25.0cm75.0mA6.1400
5

2
max

⋅×=

=
−

πτ

 
*55 •  
Picture the Problem We can use Bµτ

rrr
×= to find the torque on the coil in the two 

orientations of the magnetic field. 
 
Express the torque acting on the 
coil: 
 

Bµτ
rrr

×=  

Express the magnetic moment of the 
coil: 
 

kkµ ˆˆ 2ILIA ±=±=
r
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(a) Evaluate τr for B
r

in the z 
direction: ( ) 0ˆˆ

ˆˆ
2

2

=×±=

×±=

kk

kkτ

BIL

BILr

 

 
(b) Evaluate τr for B

r
in the x 

direction: 
( )

( )( ) ( )
( )j

j

ikikτ

ˆmN1070.2

ˆT3.0m06.0A5.2

ˆˆˆˆ

3

2

22

⋅×±=

±=

×±=×±=

−

BILBILr

 

 
56 •  
Picture the Problem We can use Bµτ

rrr
×= to find the torque on the equilateral triangle 

in the two orientations of the magnetic field. 
 
Express the torque acting on the 
coil: 
 

Bµτ
rrr

×=  

Express the magnetic moment of the 
coil: 
 

kµ ˆIA±=
r

 

Relate the area of the equilateral 
triangle to the length of its side: 
 ( ) 2

2
1

4
3

2
3

2
1

altitudebase

LLL

A

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

×=

 

 
Substitute to obtain: 
 kµ ˆ

4
3 2IL

±=
r

 

 
(a) Evaluate τr for B

r
in the z 

direction: 

( ) 0ˆˆ
4

3

ˆˆ
4

3

2

2

=×±=

×±=

kk

kkτ

IBL

BILr

 

 
(b) Evaluate τr for B

r
in the x 

direction: 
( )

( ) ( )( )

( )j

j

ikikτ

ˆmN1008.2

ˆ
4

T3.0A5.2m08.03

ˆˆ
4

3ˆˆ
4

3

3

2

22

⋅×±=

±=

×±=×±=

−

IBLBILr
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57 ••  
Picture the Problem The loop will start to lift off the table when the magnetic torque 
equals the gravitational torque. 
 
Express the magnetic torque acting 
on the loop: 
 

BRIB 2
mag πµτ ==  

Express the gravitational torque 
acting on the loop: 
 

mgR=gravτ  

Because the loop is in equilibrium 
under the influence of the two 
torques: 
 

mgRBRI =2π  

Solve for B to obtain: 
 RI

mgB
π

=  

  
58 ••  
Picture the Problem The diagram to the 
right shows the coil as it would appear 
from along the positive z axis. The right-
hand rule for determining the direction of 
n̂  has been used to establish n̂  as shown. 
We can use the geometry of this figure to 
determine θ and to express the unit normal 
vector n̂ . The magnetic moment of the 
coil is given by nµ ˆNIA=

r
and the torque 

exerted on the coil by Bµτ
rrr

×= . Finally, 

we can find the potential energy of the coil 
in this field from Bµ

rr
⋅−=U . 

 
 

 

 
(a) Noting that θ and the angle 
whose measure is 37° have their 
right and left sides mutually 
perpendicular, we can conclude that: 
 

°= 37θ  

(b) Use the components of n̂ to 
express n̂ in terms of î and ĵ : 

ji

jijin

ˆ602.0ˆ799.0

ˆ37sinˆ37cosˆˆˆ

−=

°−°=+= yx nn
 

 
(c) Express the magnetic moment of nµ ˆNIA=

r
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the coil: 
 
Substitute numerical values and evaluate µr : 

 

( )( )( )( ) ( ) ( )jijiµ ˆmA253.0ˆmA336.0ˆ602.0ˆ799.0cm48A75.150 222 ⋅−⋅=−=
r

 

 
(d) Express the torque exerted on the 
coil: 
 

Bµτ
rrr

×=  

Substitute for µr and B
r

to obtain: 

 
( ) ( ){ } ( )
( )( ) ( )( ) ( )kjjji

jjiτ
ˆmN504.0ˆˆmN380.0ˆˆmN504.0

ˆT5.1ˆmA253.0ˆmA336.0 22

⋅=×⋅−×⋅=

×⋅−⋅=
r

 

 
(e) Express the potential energy of 
the coil in terms of its magnetic 
moment  and the magnetic field: 
 

Bµ
rr

⋅−=U  

Substitute for µr and B
r

and evaluate U: 

 
( ) ( ){ } ( )

( )( ) ( )( ) J380.0ˆˆmN380.0ˆˆmN504.0

ˆT5.1ˆmA253.0ˆmA336.0 22

=⋅⋅+⋅⋅−=

⋅⋅−⋅−=

jjji

jjiU
 

 
59 ••  
Picture the Problem We can use the right-hand rule for determining the direction of n̂  
to establish the orientation of the coil for value of n̂ and Bµτ

rrr
×= to find the torque 

exerted on the coil in each orientation. 
 
(a) The orientation of the coil is 
shown to the right: 

 
Evaluate τr  for B

r
 = 2.0 T ĵ  and  

n̂  = î : 
 

( )( )( ) ( )
( )( )

( )k

ji

ji

BnBµτ

ˆmN840.0

ˆˆmN840.0

ˆT2ˆcm48A75.150

ˆ
2

⋅=

×⋅=

×=

×=×=
rrrr NIA
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(b) The orientation of the coil is 
shown to the right: 

 
Evaluate τr  for B

r
 = 2.0 T ĵ  and  

n̂  = ĵ : 

 
( )( )( ) ( )
( )( )

0

ˆˆmN840.0

ˆT2ˆcm48A75.150

ˆ
2

=

×⋅=

×=

×=×=

jj

jj

BnBµτ
rrrr NIA

 

 
(c) The orientation of the coil is 
shown to the right: 

 
Evaluate τr  for B

r
 = 2.0 T ĵ  and  

n̂  = − ĵ : 

 
( )( )( ) ( )

( )( )
0

ˆˆmN840.0

ˆT2ˆcm48A75.150

ˆ
2

=

×⋅−=

×−=

×=×=

jj

jj

BnBµτ
rrrr NIA

 

 
(d) The orientation of the coil is 
shown to the right: 

 
Evaluate τr  for B

r
 = 2.0 T ĵ  and  

n̂  = ( î + ĵ )/ 2 : 

 
( )( )( )( ) ( )

( )( )
( )( )

( )k
jj

ji

jji

BnBµτ

ˆmN594.0

ˆˆmN594.0

ˆˆmN594.0

ˆT2ˆˆ
2

cm48A75.150

ˆ
2

⋅=

×⋅+

×⋅=

×+=

×=×=
rrrr NIA

 

 
Magnetic Moments 
 
*60 ••  
Picture the Problem Because the small magnet can be modeled as a magnetic dipole; we 
can use the equation for the torque on a current loop to find its magnetic moment. 
 
Express the magnitude of the torque θµτ sinB=  



The Magnetic Field 
 

 

493

acting on the magnet: 
 
Solve for µ to obtain: 
 θ

τµ
sinB

=  

 
Substitute numerical values and 
evaluate µ: ( )

2mA89.2
60sinT04.0

mN10.0
⋅=

°
⋅

=µ  

 
61 ••  
Picture the Problem We can use the definition of the magnetic moment to find the 
magnetic moment of the given current loop and a right-hand rule to find its direction. 
 
Using its definition, express the 
magnetic moment of the current 
loop: 
 

IA=µ  

Express the area bounded by the 
loop: 
 

( ) ( )2
inner

2
outer

2
inner

2
outer2

1

2
RRRRA −=−=

πππ

 
Substitute to obtain: 
 

( )2
inner

2
outer2

RRI
−=

πµ  

 
Substitute numerical values and 
evaluate µ: 

( ) ( ) ( )[ ]
2

22

mA377.0

m3.0m5.0
2

A5.1

⋅=

−=
πµ

 

 
Apply the right-hand rule for determining the direction of the unit normal vector (the 
direction of µ) to conclude that page.  theinto points µr  

 
62 ••  
Picture the Problem We can use the definition of the magnetic moment of a coil to find 
the magnetic moment of a wire of length L that is wound into a circular coil of N loops. 
We can find the area of the coil from its radius R and we can find R by dividing the 
length of the wire by the number of turns. 
 
Use its definition to express the 
magnetic moment of the coil: 
 

NIA=µ                                  (1) 

Express the circumference of each 
loop: 

R
N
L π2=  
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 where R is the radius of a loop. 
 

Solve for R to obtain: 
 N

LR
π2

=  

 
Express the area of the coil: 
 2

22
2

42 N
L

N
LRA

ππ
ππ =⎟

⎠
⎞

⎜
⎝
⎛==  

 
Substitute in equation (1) and 
simplify to obtain: N

IL
N

LNI
ππ

µ
44

2

2

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

  
63 ••  
Picture the Problem We can use the definition of current and the relationship between 
the frequency of the motion and its period to show that I = qω/2π . We can use the 
definition of angular momentum and the moment of inertia of a point particle to show 
that the magnetic moment has the magnitude .2

2
1 rqωµ =  Finally, we can express the 

ratio of µ to L and the fact that µr and L
r

are both parallel to ω
r

 to conclude that  

µr  = (q/2m) L
r

. 

 
(a) Using its definition, relate the 
average current to the charge 
passing a point on the circumference 
of the circle in a given period of 
time: 
 

qf
T
q

t
qI ==

∆
∆

=  

Relate the frequency of the motion 
to the angular frequency of the 
particle: 
 

π
ω
2

=f  

Substitute to obtain: 
 π

ω
2
qI =  

 
From the definition of the magnetic 
moment we have: 
 

( ) 2
2
12

2
rqrqIA ωπ

π
ωµ =⎟

⎠
⎞

⎜
⎝
⎛==  

(b) Express the angular momentum 
of the particle: 
 

ωIL =  

The angular momentum of the 
particle is: 

2mrI =  
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Substitute to obtain: 
 

( ) ωω 22 mrmrL ==  

Express the ratio of µ to L and 
simplify to obtain: 
 

m
q

mr
rq

L 22

2
2
1

==
ω

ωµ
⇒ L

m
q

2
=µ  

 
Because µr and L

r
are both parallel 

to ω
r

: 
Lµ
rr

m
q

2
=  

  
*64 •••  
Picture the Problem We can express the magnetic moment of an element of charge dq 
in a cylinder of length L, radius r, and thickness dr, relate this charge to the length, 
radius, and thickness of the cylinder, express the current due to this rotating charge, 
substitute for A and dI in our expression for µ and then integrate to complete our 
derivation for the magnetic moment of the rotating cylinder as a function of its angular 
velocity. 
 
Express the magnetic moment of an 
element of charge dq in a cylinder 
of length L, radius r, and thickness 
dr: 
 

AdId =µ  

where 
A = πr2. 

Relate the charge dq in the cylinder 
to the length of the cylinder, its 
radius, and thickness: 
  

rdrLdq ρπ2=  

 

Express the current due to this 
rotating charge: 
 

( ) rdrLrdrLdqdI ωρρπ
π

ω
π

ω
=== 2

22
 

Substitute to obtain: ( ) drrLrdrLrd 32 ωρπωρπµ ==  

 
Integrate r from Ri to R0 to obtain: ( )4

i
4
04

13
0

i

RRLdrrL
R

R

−== ∫ ωρπωρπµ  

 
65 •••  
Picture the Problem We can follow the step-by-step outline provided in the problem 
statement to establish the given results.  
 
(a) Express the magnetic moment of 
the rotating element of charge: 
 

AdId =µ                     (1) 

The area enclosed by the rotating 2xA π=  
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element of charge: 
 
 

t
dx

t
dqdI

∆
=

∆
=

λ
 

where ∆t is the time required for one 
revolution.  
 

Express the time ∆t required for one 
revolution: 
 

ω
π21

==∆
f

t  

Substitute to obtain: 
 

dxdI
π

λω
2

=  

 
Substitute in equation (1) and 
simplify to obtain: 
 

( ) dxxdxxd 2
2
12

2
λω

π
λωπµ =⎟

⎠
⎞

⎜
⎝
⎛=  

(b) Integrate dµ from x = 0 to  
x = l : 
 

3
6
1

0

2
2
1 l

l

λωλωµ == ∫ dxx  

 
(c) Express the angular momentum 
of the rod: 
 

ωIL =  
where L is the angular momentum of the 
rod and I is the moment of inertia of the 
rod with respect to the point about which it 
is rotating. 
 

Express the moment of inertia of the 
rod with respect to an axis through 
its end: 
 

2
3
1 mLI =  

where L is now the length of the rod. 

Substitute to obtain: 
 

ω2
3
1 mLL =  

Divide our expression for µ by L to 
obtain: m

L
mL

L
L 22

3
1

3
6
1 λ

ω
λωµ

==  

or, because Q = λL, 

L
m

Q
2

=µ  

 
Because ωr and ωL rr

I= point in the 
same direction: 

Lµ
rr

M
Q

2
=  
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66 •••  
Picture the Problem We can express the 
magnetic moment of an element of current 
dI due to a ring of radius r, and thickness 
dr with charge dq. Integrating this 
expression from r = 0 to r = R will give us 
the magnetic moment of the disk. We can 
integrate the charge on the ring between 
these same limits to find the total charge on 
the disk and divide µ by Q to establish the 
relationship between them. In part (b) we 
can find the angular momentum of the disk 
by first finding the moment of inertia of the 
disk by integrating r2dm between the same 
limits used above. 

 
 

 

 
(a) Express the magnetic moment of 
an  element of the disk: 
  

AdId =µ  

The area enclosed by the rotating 
element of charge is: 
 

2xA π=  

Express the element of current dI: 

( ) drr
R

rdr
R
r

dAf
t

dA
t

dqdI

20
0 2

2
ωσπσ

π
ω

σσ

=⎟
⎠
⎞

⎜
⎝
⎛=

=
∆

=
∆

=
 

 
Substitute and simplify to obtain: 
 

drr
R

drr
R

rd 40202 πωσωσπµ ==  

 
Integrate dµ from r = 0 to r = R to 
obtain: 
 

4
05

1

0

40 Rdrr
R

R

πωσπωσµ == ∫       (1) 

Express the charge dq within a 
distance r of the center of the disk: 
 

drr
R

dr
R
rrdrrdq

20

0

2

22

πσ

σπσπ

=

⎟
⎠
⎞

⎜
⎝
⎛==

 

 
Integrate dq from r = 0 to r = R to 
obtain: 
 

2
03

2

0

202 Rdrr
R

Q
R

πσπσ
== ∫             (2) 
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Divide equation (1) by Q to obtain: 
10

3 2

2
03

2

4
05

1 R
R
R

Q
ω

πσ
πωσµ

==  

and 
2

10
3 RQωµ =                                (3) 

 
(b) Express the moment of inertia of 
an element of mass dm of the disk: 
 ( )

drr
QR
m

drr
Q
R
rm

rdr
Q
mr

dArdmrdI

40

3
0

2

m
22

2

2

2

σπ

σπ

πσ

σ

=

⎟
⎠
⎞

⎜
⎝
⎛

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

==

 

 
Integrate dI from r = 0 to r = R to 
obtain: 
 

40

0

40

5
22 R

Q
mdrr

QR
mI

R σπσπ
== ∫  

Divide I by equation (2) and 
simplify to obtain: 
 

2
2

03
2

40

5
35

2

R
Q
m

R

R
Q

m

Q
I

==
πσ

σπ

 

and 
2

5
3 RmI =  

 
Express the angular momentum of 
the disk: 
 

ωω 2
5
3 mRIL ==  

Divide equation (3) by L and 
simplify to obtain: m

Q
mR

RQ
L 22

5
3

2
10
3

==
ω

ωµ
 

and 

L
m

Q
2

=µ  

 
Because µr is in the same direction 
as ωr : 

Lµ
rr

m
Q
2

=  

 
67 •••  
Picture the Problem We can use the general result from Example 26-11 and Problem 63 
to express µ as a function of Q, M, and L. We can then use the definitions of surface 
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charge density and angular momentum to substitute for Q and L to obtain the magnetic 
moment of the rotating sphere. 
 
Express the magnetic moment of the 
spherical shell in terms of its mass, 
charge, and angular momentum: 
  

L
M
Q

2
=µ  

Use the definition of surface charge 
density to express the charge on the 
spherical shell is: 
 

24 RAQ πσσ ==  

 

Express the angular momentum of 
the spherical shell: 
 

ωω 2
3
2 MRIL ==  

 

Substitute to obtain: 
 ωπσωπσµ 4

3
42

2

3
2

2
4 RMR

M
R

=⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=     

 
68 •••  
Picture the Problem We can use the general result from Example 26-11 and Problem 63 
to express µ as a function of Q, M, and L. We can then use the definitions of volume 
charge density and angular momentum to substitute for Q and L to obtain the magnetic 
moment of the rotating sphere. 
 
Express the magnetic moment of the 
solid sphere in terms of its mass, 
charge, and angular momentum: 
  

L
M
Q

2
=µ  

Use the definition of volume charge 
density to express the charge of the 
sphere: 
 

3
3
4 RVQ πρρ ==  

 

Express the angular momentum of 
the solid sphere: 
 

ωω 2
5
2 MRIL ==  

 

Substitute to obtain: 
 ωπρωπρµ 5

15
42

3
3
4

5
2

2
RMR

M
R

=⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=     

 
*69 •••  
Picture the Problem We can use its definition to express the torque acting on the disk 
and the definition of the precession frequency to find the precession frequency of the 
disk. 
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(a) The magnitude of the net torque 
acting on the disk is: 
 

τ = µBsinθ  
where µ is the magnetic moment of the 
disk. 
 

From example 26-11: 
µ =

1
4

πσr 4ω  

 
Substitute for µ in the expression for 
τ  to obtain: θωπστ sin

4
1 4 Br=  

 
(b) The precession frequency Ω is 
equal to the ratio of the torque 
divided by the spin angular 
momentum: 
   

ω
τ
I

Ω =  

For a solid disk, the moment of 
inertia is given by: 
 

2

2
1 mrI =  

Substitute for τ  and I to obtain: 
θπσ

ω
θωπσ sin

2
sin 2

2
2
1

4
4
1

m
Br

mr
BrΩ ==  

 
Remarks: It’s interesting that the precession frequency is independent of ω. 
 
The Hall Effect 
 
70 •  
Picture the Problem We can use the Hall effect equation to find the drift velocity of the 
electrons and the relationship between the current and the number density of charge 
carriers to find n. In (c) we can use a right-hand rule to decide whether a or b is at the 
higher potential. 
 
(a) Express the Hall voltage as a 
function of the drift velocity of the 
electrons in the strip: 
 

BwvV dH =  

Solve for vd: 
Bw
Vv H

d =  

 
Substitute numerical values and 
evaluate vd: ( )( ) mm/s107.0

cm2T2
V27.4

d ==
µv  

 
(b) Express the current as a function 
of the number density of charge 
carriers: 

dnAqvI =  
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Solve for n: 
 dAqv

In =  

 
Substitute numerical values and evaluate n: 
 

( )( )( )( )
328

19 m1084.5
mm/s107.0C10.601cm1.0cm2

A20 −
− ×=

×
=n  

 
(c) Apply a right-hand rule to l

r
I and B

r
to conclude that positive charge will accumulate 

at a and negative charge at b and therefore ba VV > . 

 
71 ••  
Picture the Problem We can use AnqvI d= to find the drift velocity and BwvV dH = to 

find the Hall voltage. 
 
(a) Express the current in the metal 
strip in terms of the drift velocity of 
the electrons: 
 

AnqvI d=  

 
 

Solve for vd: 
nqA

Iv =d  

 
Substitute numerical values and evaluate vd: 
 

( )( )( )( ) m/s1069.3
cm1.0cm2C1060.1cm108.47

A10 5
19322d

−
−− ×=

××
=v  

 
(b) Relate the Hall voltage to the 
drift velocity and the magnetic field: 
 

BwvV dH =  

Substitute numerical values and 
evaluate VH: 

( )( )( )
V48.1

cm2T2m/s1069.3 5
H

µ=

×= −V
 

 
*72 ••  
Picture the Problem We can use BwvV dH = to express B in terms of VH and 

AnqvI d= to eliminate the drift velocity vd and derive an expression for B in terms of VH, 

n, and t. 
 
Relate the Hall voltage to the drift 
velocity and the magnetic field: 

BwvV dH =  
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Solve for B to obtain: 
 wv

VB
d

H=  

 
Express the current in the metal strip 
in terms of the drift velocity of the 
electrons: 
 

AnqvI d=  

 
 

Solve for vd to obtain: 
nqA

Iv =d  

 
Substitute and simplify to obtain: 

H

HHH

V
I

nqt

Iw
nqwtV

Iw
nqAV

w
nqA

I
VB

=

===

 

 
Substitute numerical values and simplify to obtain: 
 

( )( )( ) ( ) H
25H

19322

s/m1078.6
A20

cm1.0C1060.1cm1047.8 VVB ×=
××

=
−−

 

 
(a) Evaluate B for VH = 2.00 µV: 
 

( )( )
T36.1

V00.2s/m1078.6 25

=

×= µB
 

 
(b) Evaluate B for VH = 5.25 µV: 
 

( )( )
T56.3

V25.5s/m1078.6 25

=

×= µB
 

 
(c) Evaluate B for VH = 8.00 µV: 
 

( )( )
T42.5

V00.8s/m1078.6 25

=

×= µB
 

 
73 ••  
Picture the Problem We can use BwvV dH = to find the Hall voltage developed across 

the diameter of the artery. 
 
Relate the Hall voltage to the flow 
speed of the blood vd, the diameter 
of the artery w, and the magnetic 
field B: 
 

BwvV dH =  
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Substitute numerical values and 
evaluate VH: 

( )( )( )
mV02.1

cm85.0T2.0m/s6.0H

=

=V
 

 
74 ••  
Picture the Problem Let the width of the slab be w and its thickness t. We can use the 
definition of the Hall electric field in the slab, the expression for the Hall voltage across 
it, and the definition of current density to show that the Hall coefficient is also given by 
1/(nq). 
 
Express the Hall coefficient: 
 zx

y

BJ
E

R =  

Using its definition, express the Hall 
electric field in the slab: 
 

w
VEy

H=  

Express the current density in the 
slab: dnqv

wt
IJ x ==  

 
Substitute to obtain: 

zz wBnqv
V

Bnqv
w

V

R
d

H

d

H

==  

 
Express the Hall voltage in terms of 
vd, B, and w: 

wBvV zdH =  

 
 

Substitute and simplify to obtain: 
nqwBnqv

wBvR
z

z 1

d

d ==  

   
*75 ••  
Picture the Problem We can determine the number of conduction electrons per atom 
from the quotient of the number density of charge carriers and the number of charge 
carriers per unit volume. Let the width of a slab of aluminum be w and its thickness t. We 
can use the definition of the Hall electric field in the slab, the expression for the Hall 
voltage across it, and the definition of current density to find n in terms of R and q 
and MNn Aa ρ= , to express na. 

 
Express the number of electrons per 
atom N: 
 

an
nN =                                (1)                     

where n is the number density of charge 
carriers and na is the number of atoms per 
unit volume. 
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From the definition of the Hall 
coefficient we have: 
 

zx

y

BJ
E

R =  

 
Express the Hall electric field in the 
slab: 
 

w
VEy

H=  

Express the current density in the 
slab: dnqv

wt
IJ x ==  

 
Substitute to obtain: 

zz wBnqv
V

Bnqv
w

V

R
d

H

d

H

==  

 
Express the Hall voltage in terms of 
vd, B, and w: 

wBvV zdH =  

 
 

Substitute and simplify to obtain: 
nqwBnqv

wBvR
z

z 1

d

d ==                   

 
Solve for and evaluate n: 

Rq
n 1

=                                   (2) 

 
Express the number of atoms na per 
unit volume: 
 

M
Nn A

a ρ=                              (3) 

Substitute equations (2) and (3) in 
equation (1) to obtain: 
 

ANqR
MN
ρ

=  

Substitute numerical values and evaluate N: 
 

( )( )( )( )
46.3

atoms/mol106.02kg/m107.2/Cm100.3C101.60
g/mol27

233331019

=

×××−×−
= −−N

 

 
General Problems 
 
76 •  
Picture the Problem We can use the expression for the magnetic force acting on a wire 
( BF

r
l
rr

×= I ) to find the force per unit length on the wire. 
 
Express the magnetic force on the BF

r
l
rr

×= I  
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wire: 
 

 

Substitute for l
r

I and B
r

to obtain: 
 

( ) ( ) jiF ˆT35.1ˆA5.6 ×= l
r

 

and 

( ) ( ) jiF ˆT35.1ˆA5.6 ×=
l

r

 

 
Simplify to obtain: ( )( ) ( )kjiF ˆN/m78.8ˆˆN/m78.8 =×=

l

r

 

 
77 •  
Picture the Problem We can express the period of the alpha particle’s motion in terms 
of its orbital speed and use Newton’s 2nd law to express its orbital speed in terms of 
known quantities. Knowing the particle’s period and the radius of its motion we can find 
its speed and kinetic energy. 
 
(a) Relate the period of the alpha 
particle’s motion to its orbital speed: 
 

v
rT π2

=                                    (1) 

Apply cradial maF =∑ to the alpha 

particle to obtain: 
 

r
vmqvB

2

=  

 

Solve for v to obtain: 
 m

qBrv =  

 
Substitute and simplify to obtain: 

qB
m

m
qBr

rT ππ 22
==  

 
Substitute numerical values and 
evaluate T: 
 

( )
( )( ) s131.0

T1C1060.12
kg1065.62

19

27

µπ
=

×
×

= −

−

T

(b) Solve equation (1) for v: 
T

rv π2
=  

 
Substitute numerical values and 
evaluate v: 
 

( ) m/s1040.2
s131.0

m5.02 7×==
µ

πv  

(c) Express the kinetic energy of the 
alpha particle: 
 

2
2
1 mvK =  
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Substitute numerical values and 
evaluate K: 
 

( )( )

MeV0.12

J101.60
eV1J1093.1

m/s1041.2kg1065.6

19
12

2727
2
1

=

×
××=

××=

−
−

−K

 

 
78 ••  
Picture the Problem The configuration of 
the magnet and field are shown in the 
figure. We’ll assume that a force B

r
mq+ is 

exerted on the north pole and a force 
B
r

mq−  is exerted on the south pole and 

show that this assumption leads to the 
familiar expression for the torque acting on 
a magnetic dipole.  

 
Assuming that a force B

r
mq+ is 

exerted on the north pole and a force 
B
r

mq−  is exerted on the south pole, 

express the net torque acting on the 
bar magnet: 
 

θ

θθτ

sin

sin
2

sin
2
m

mm

LBq

LBqLBq

=

−
−=

 

 

Substitute for qm to obtain: 
θµθτ sinsin BL

L
B ==

µr
 

or 

Bµτ
rrr

×=  

 
*79 ••  
Picture the Problem We can use BvF

rrr
×= q to show that motion of the particle in the x 

direction is not affected by the magnetic field. The application of Newton’s 2nd law to 
motion of the particle in yz plane will lead us to the result that r = mv0y /qB. By expressing 
the period of the motion in terms of v0y we can show that the time for one complete orbit 
around the helix is t = 2πm/qB. 
 
(a) Express the magnetic force 
acting on the particle: 
 

BvF
rrr

×= q  
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Substitute for vr and B
r

and simplify 
to obtain: 
 

( )
( ) ( )

kk

ijii

ijiF

ˆˆ0

ˆˆˆˆ

ˆˆˆ

00

00

00

BqvBqv

BqvBqv

Bvvq

yy

yx

yx

−=−=

×+×=

×+=
r

 

i.e., the motion in the direction of the 
magnetic field (the x direction) is not 
affected by the field. 
 

Apply cradial maF =∑ to the motion 

of the particle in the plane 
perpendicular to î (i.e., the yz 
plane): 
 

r
v

mBqv y
y

2
0

0 =                         (1) 

Solve for r: 

qB
mv

r y0=  

 
(b) Relate the time for one orbit 
around the helix to the particle’s 
orbital speed: 
 

yv
rt

0

2π
=                                     

Solve equation (1) for v0y: 
 m

qBrv y =0  

 
Substitute and simplify to obtain: 
 qB

m

m
qBr

rt ππ 22
==  

  
*80 ••  
Picture the Problem We can use a constant-acceleration equation to relate the velocity 
of the crossbar to its acceleration and Newton’s 2nd law to express the acceleration of the 
crossbar in terms of the magnetic force acting on it. We can determine the direction of 
motion of the crossbar using a right-hand rule or, equivalently, by applying BF

r
l
rr

×= I . 
We can find the minimum field B necessary to start the bar moving by applying a 
condition for static equilibrium to it. 
 
(a) Using a constant-acceleration 
equation, express the velocity of the 
bar as a function of its acceleration 
and the time it has been in motion: 
 

atvv += 0  

or, because v0 = 0, 
atv =  
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Use Newton’s 2nd law to express the 
acceleration of the rail: 
 

m
Fa =  

where F is the magnitude of the magnetic 
force acting in the direction of the 
crossbar’s motion. 
 

Substitute to obtain: 
 

t
m
Fv =  

 
Express the magnetic force acting on 
the current-carrying crossbar: 
 

ILBF =  
 

Substitute to obtain: 
 

t
m

ILBv =  

 

(b) 
right.  the tobe also illcrossbar w  theof

motion   theso andright   the tois force magnetic  that theconclude Apply  to
 

 
(c) Apply 0=∑ xF to the crossbar: 

 

0maxs,min =− fILB  

or 
0smin =− mgILB µ  

 
Solve for Bmin to obtain: 

IL
mgB s

min
µ

=  

 
81 ••  
Picture the Problem Note that with the 
rails tilted, F

r
 still points horizontally to 

the right (I, and hence l
r

, is out of the 
page). Choose a coordinate system in 
which down the incline is the positive x 
direction. Then we can apply a condition 
for translational equilibrium to find the 
vertical magnetic field B

r
 is needed to 

keep the bar from sliding down the rails. In 
part (b) we can apply Newton’s 2nd law to 
find the acceleration of the crossbar when 
B is twice its value found in (a). 

 
 

 

 
(a) Apply 0=∑ xF to the crossbar 0cossin =− θθ BImg l  
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to obtain: 
 
Solve for B:  

θtan
lI

mgB = and vˆtan uB θ
l

r

I
mg

−=   

where vû  is a unit vector in the vertical 

direction. 
 

(b) Apply maFx =∑  to the 

crossbar to obtain: 
 

mamgBI =− θθ sincos'l  

Solve for a: 
 

θθ sincos g
m
B'Ia −=
l

 

 
Substitute B′ = 2B and simplify to 
obtain: 
 

θ

θθ

θθ
θ

sin

sinsin2

sincos
tan2

g

gg

g
m

I
mgI

a

=

−=

−= l
l

 

Note that the direction of the acceleration 
is up the slope. 

 
82 ••  
Picture the Problem We’re being asked to show that, for small displacements from 
equilibrium, the bar magnet executes simple harmonic motion. To show its motion is 
SHM we need to show that the bar magnet experiences a linear restoring torque when 
displaced from equilibrium. We can accomplish this by applying Newton’s 2nd law in 
rotational form and using a small angle approximation to obtain the differential equation 
for simple harmonic motion. Once we have the DE we can identify ω and express f. 
 
Apply ατ I=∑ to the bar magnet: 

 
2

2

sin
dt
dIB θθµ =−  

where the minus sign indicates that the 
torque acts in such a manner as to align the 
magnet with the magnetic field and I is the 
moment of inertia of the magnet. 
 

For small displacements from 
equilibrium, θ << 1 and: 

θθ ≈sin  
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Hence our differential equation of 
motion becomes: 
 

θµθ B
dt
dI −=2

2

 

 
Thus for small displacements from 
equilibrium we see that the 
differential equation describing the 
motion of the bar magnet is the 
differential equation of simple 
harmonic motion. Solve this 
equation for d2θ/dt2 to obtain: 
 

θωθµθ 2
2

2

−=−=
I
B

dt
d

 

where 
I
Bµω =  

Relate f to ω to obtain: 
 I

Bf µ
ππ

ω
2
1

2
==  

   
83 ••  
Picture the Problem We can use BvF

rrr
×= q to find the magnitude and direction of the 

magnetic force experienced by an electron in the conducting wire. In (b) we can use a 
condition for translational equilibrium to relate E

r
to F
r

. In (c) we can apply the 
definition of electric field in terms of potential difference to evaluate the difference in 
potential between the ends of the moving wire. 
 
(a) Express the magnetic force on 
an electron in the conductor: 
 

( ) jki

kiBvF
ˆˆˆ

ˆˆ

qvBqvB

Bqvq

−=×=

×=×=
rrr

 

Substitute numerical values and evaluate F
r

: 
 

( )( )( ) ( )jjF ˆN1060.1ˆT5.0m/s20C1060.1 1819 −− ×=×−−=
r

 

 
(b) Sum the forces acting on an 
electron under steady-state 
conditions to obtain: 
  

0=+ FE
rr

q  

Solve for E
r

: 
q
FE
r

r
−=  

 
Substitute our result in part (a) to 
obtain: 
 

( ) ( ) jjE ˆV/m0.10
C1060.1

ˆN1060.1
19

18

=
×−

×
−= −

−r
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(c) The potential difference between 
the ends of the wire is: ( )( ) V0.20m2V/m0.10 ==

∆=∆ xEV
 

 
84 •••  
Picture the Problem We can use MgDIT π2= to find the period of small-

displacement oscillations with no current flowing in the frame. With a current flowing, 
the frame will experience an additional restoring torque that will reduce its period. In part 
(c) we can apply the condition for rotational equilibrium to find the magnitude of the 
current that will put the frame in equilibrium.  
 
(a) Express the period of a physical 
pendulum: 
 

MgD
IT π2=                            (1) 

where D is the distance from the pivot to 
the center of mass of the pendulum. 
 

Express the moment of inertia of the 
frame: 
 

( )2
segment ver.3

12
segment hor.

segment vert.segment hor.

2

2

hmhm

III

+=

+=
 

where h = 10 cm. 
 

Using the linear density of the 
frame, calculate mhor. segment and mver. 

segment: 
 

( )( ) kg12.0cm6g/cm20
segment hor.

==

= wm λ
 

and 

( )( ) kg2.0cm10g/cm20
segment ver.

==

= hm λ
 

 
Substitute and evaluate I: ( )( )

( )( )[ ]
23

2
3
1

2

mkg1053.2

m1.0kg2.02

m1.0kg12.0

⋅×=

+

=

−

I

 

 
Evaluate the distance D to the center 
of mass from the A-A axis: 
 

( )( ) ( )( )

cm15.6
kg0.2kg0.2kg0.12

kg12.0m1.0kg2.0m05.02

=
++

+
=D

 
Substitute in equation (1) and 
evaluate T: 
 

( )( )( )
s564.0

cm15.6m/s81.9kg52.0
mkg1053.22 2

23

=

⋅×
=

−

πT
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(b) Express the restoring torque with 
B
r

and I as shown: 
( )θτ BIAMgD +=  

where A is the area of the loop and 
provided θ  << 1 rad. 
 

Rewrite equation (1) with this 
restoring torque: BIAMgD

IT'
+

= π2  

 
Evaluate BIA: ( )( )( )( )

mN1060.9
cm6cm10A8T2.0

3 ⋅×=

=
−

BIA
 

Substitute numerical values and 
evaluate T′: 

s556.0

mN1060.9mN314.0
mkg1053.22 3

23

=

⋅×+⋅
⋅×

= −

−

πT
 

 
(c) Apply 0=∑τ  to the frame 

when it is in equilibrium to obtain: 
 

0sinsin =− θθ BIAMgD  

Solve for I: 
BA

MgDI =  

 
Substitute numerical values and 
evaluate I: 

( )( )( )
( )( )( )
A262

cm6cm10T2.0
cm15.6m/s81.9kg52.0 2

=

=I
 

 
*85 •••  
Picture the Problem We can use a constant-acceleration equation to express the height 
to which the wire rises in terms of its initial speed and the acceleration due to gravity. We 
can then use the impulse-change in momentum equation to express the initial speed of the 
wire in terms of the impulsive magnetic force acting on it. Finally, we can use the 
definition of current to relate the charge delivered by the battery to the time during which 
the impulsive force acts. 
 
Using a constant-acceleration 
equation, relate the height h to the 
initial and final speeds and the 
acceleration of the wire: 
 

havv y22
0

2 +=  

or, because v = 0 and ay = g, 
ghv 20 2

0 −=  

Solve for h: 
g

vh
2

2
0=                                       (1) 
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Use the impulse-momentum 
equation to relate the change in 
momentum of the wire to the 
impulsive force accelerating it: 
 

tFp ∆=∆  or tFpp ∆=− if  
and, because pi = 0, tFmv ∆=0  

 

Express the impulsive (magnetic) 
force acting on the wire: 
 

BIF l=  

Substitute to obtain: tBImv ∆= l0  

 
Solve for v0 and substitute in 
equation (1): 
 

( )
gm
tBI

g
m

tBI

h 2

2

2

22
∆

=
⎟
⎠
⎞

⎜
⎝
⎛ ∆

=
l

l

 

 
Use the definition of current to 
relate the charge delivered by the 
battery to the time during which it 
delivers the current: 
 

tIQ ∆=∆  

Substitute to obtain: 
 

( )
gm

QBh 2

2

2
∆

=
l

 

 
Substitute numerical values and 
evaluate h: 

( )( )( )[ ]
( ) ( ) m10.5

m/s81.9kg02.02
C2T4.0m25.0

22

2

==h  

 
86 •••  
Picture the Problem We’re being asked to show that, for small displacements from 
equilibrium, the circular loop executes simple harmonic motion. To show its motion is 
SHM we must show that the loop experiences a linear restoring torque when displaced 
from equilibrium. We can accomplish this by applying Newton’s 2nd law in rotational 
form and using a small angle approximation to obtain the differential equation for simple 
harmonic motion. Once we have the DE we can identify ω and express the period of the 
motion T. 
 
Apply ατ I=∑ to the loop: 

 
2

2

inertiasin
dt
dIIAB θθ =−  

where the minus sign indicates that the 
torque acts in such a manner as to align the 
loop with the magnetic field and Iinertia is 
the moment of inertia of the loop. 
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For small displacements from 
equilibrium, θ  << 1 and: 

θθ ≈sin  
 
 

Hence, our differential equation  of 
motion becomes: 
 

θθ IAB
dt
dI −=2

2

inertia  

 
Thus for small displacements from 
equilibrium we see that the 
differential equation describing the 
motion of the current loop is the 
differential equation of simple 
harmonic motion. Solve this 
equation for d2θ/dt2 to obtain: 
 

θθ

inertia
2

2

I
IAB

dt
d

−=  

. 
 

Noting that the moment of inertia of 
a hoop about its diameter is 2

2
1 mR , 

substitute for Iinertia and simplify to 
obtain: 

θωθπθπθ 2
2

2
1

2

2

2 2
−=−=−=

m
BI

mR
BRI

dt
d

 

where 
m
IBπω 2

=  

 
Relate the period T of the motion to 
ω and substitute to obtain: 
 

IB
mT
π

π
ω
π

2
22

==  

   
87 •••  
Picture the Problem We can express µr in terms of its components and calculate U from 

µr and B
r

using Bµ
rr

⋅−=U . Knowing U we can calculate the components of F
r

 using Fx 

= −dU/dx and Fy = −dU/dy. 
 
Express the net force acting on the 
magnet in terms of its components: 
 

jiF ˆˆ
yx FF +=

r
                        (1) 

Express µr in terms of its 

components: 
 

kjiµ ˆˆˆ
zyx µµµ ++=

r  

Express the potential energy of the 
bar magnetic in the nonuniform 
magnetic field: 
 

( ) ( ) ( )( )
( ) ( )yBxB

yBxB

U

yyxx

yxzyx

µµ

µµµ

−−=

+⋅++−=

⋅−=

jikji

Bµ
ˆˆˆˆˆ

rr

 

 
Because µr is constant but 

B
r

depends on x and y: 
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=−=
x

B
dx
dUF x

xx µ  
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 and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=−=

y
B

dy
dUF y

yy µ  

 
Substitute in equation (1) to obtain: 

jiF ˆˆ
y

B
x

B y
y

x
x ∂

∂
+

∂
∂

= µµ
r

 

  
*88 •••  
Picture the Problem We can apply Newton’s 2nd law to the particle to derive an 
expression for the radius of its orbit and then express its period in terms of its orbital 
speed and radius. 
 
(a) Because B

r
is perpendicular to 

vr , the magnitude of force on the 
particle is given by: 
 

qvBF =  

Apply maF =∑ to the orbiting 
particle to obtain: 
 

( ) ( )
r
vmv

r
vvmqvB

22

γ==  

 
Solve for r: 
 

( )
qB

mvvr γ
=  

 
The period T of the particle’s 
motion is related to the radius r of 
its orbit and its orbital speed v: 
 

v
rT π2

=  

Substitute for r and simplify to 
obtain: 

( )
qB

mvT πγ2
=  

 
(b)  A spreadsheet program to calculate r and T as functions of ln(γ) follows. 
The formulas used to calculate the quantities in the columns are given in the table. 
 

Cell Content/Formula Algebraic Form 
B1 9.11E−31 m 
B2 1.60E−19 e 
B3 10 B 
B4 3.00E+08 c 
A7 0.100 v/c 
A8 0.101 v/c + 0.001 
B7 1/SQRT(1 − (A7)^2) γ 
C7 LN(B7) ln(γ) 
D7 B7*$B$1*A7*$B$4/($B$2*$B$3) 

qB
mvγ

 

E7 D7*10^8 106r 
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F7 (2*PI()*A7*$B$1/($B$2*$B$3))*10^12 12102
×

qB
mπγ

 
 
 

 A B C D E F 
1 m= 9.11E−31 kg    
2 e= 1.60E−19 C    
3 B= 10 T    
4 c= 3.00E+08 m/s    
5       
6 v/c gamma ln(gamma) r r (microns) T (ps) 
7 0.100 1.0050 0.005 1.72E-05 17.2 0.358 
8 0.101 1.0051 0.005 1.73E-05 17.3 0.361 
9 0.102 1.0052 0.005 1.75E-05 17.5 0.365 

10 0.103 1.0053 0.005 1.77E-05 17.7 0.368 
11 0.104 1.0055 0.005 1.79E-05 17.9 0.372 

       
903 0.996 11.1915 2.415 1.90E-03 1904.0 3.563 
904 0.997 12.9196 2.559 2.20E-03 2200.2 3.567 
905 0.998 15.8193 2.761 2.70E-03 2696.7 3.570 
906 0.999 22.3663 3.108 3.82E-03 3816.6 3.574 

 
 

The following graph of r as a function of ln(γ) was plotted using the data in columns C 
and E. 
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The following graph of T as a function of ln(γ) was plotted using the data in columns C 
and F. 
 



The Magnetic Field 
 

 

517

0

1

2

3

4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

ln(gamma)

T
 (p

s)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 26    
 

 

518 

 
 
 
 


