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Chapter 27 
Sources of the Magnetic Field 
 
Conceptual Problems 
 
*1 •   
Picture the Problem The electric forces are described by Coulomb’s law and the laws of 
attraction and repulsion of charges and are independent of the fact the charges are 
moving. The magnetic interaction is, on the other hand, dependent on the motion of the 
charges. Each moving charge constitutes a current that creates a magnet field at the 
location of the other charge. 
 
(a) The electric forces are repulsive; the magnetic forces are attractive (the two charges 
moving in the same  direction act like two currents in the same direction). 
 
(b) The electric forces are again repulsive; the magnetic forces are also repulsive. 
 

 
2 •  
No. The magnitude of the field depends on the location within the loop. 

 
3 •  
Picture the Problem The field lines for the electric dipole are shown in the sketch to the 
left and the field lines for the magnetic dipole are shown in the sketch to the right. Note 
that, while the far fields (the fields far from the dipoles) are the same, the near fields (the 
fields between the two charges and inside the current loop/magnetic dipole) are not, and 
that, in the region between the two charges, the electric field is in the opposite direction 
to that of the magnetic field at the center of the magnetic dipole. It is especially important 
to note that while the electric field lines begin and terminate on electric charges, the 
magnetic field lines are continuous, i.e., they form closed loops. 

  
 
4 •  
Determine the Concept Applying the right-hand rule to the wire to the left we see that 
the magnetic field due to its current is out of the page at the midpoint. Applying the right-
hand rule to the wire to the right we see that the magnetic field due to its current is out of 
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the page at the midpoint. Hence, the sum of the magnetic fields is out of the page as well. 
correct. is )(c  

 
5 •  
Determine the Concept While we could express the force wire 1 exerts on wire 2 and 
compare it to the force wire 2 exerts on wire 1 to show that they are the same, it is 
simpler to recognize that these are action and reaction forces. correct. is )(a  

 
*6 •  
Determine the Concept Applying the right-hand rule to the wire to the left we see that 
the magnetic field due to the current points to west at all points north of the wire. 

correct. is )(c  

 
7 •  
Determine the Concept At points to the west of the vertical wire, the magnetic field due 
to its current exerts a downward force on the horizontal wire and at points to the east it 
exerts an upward force on the horizontal wire. Hence, the net magnetic force is zero and 

correct. is )(e  

 
8 •  
Picture the Problem The field-line sketch follows. An assumed direction for the current 
in the coils is shown in the diagram. Note that the field is stronger in the region between 
the coaxial coils and that the field lines have neither beginning nor ending points as do 
electric-field lines. Because there are an uncountable infinity of lines, only a 
representative few have been shown. 

 
 
*9 •  
Picture the Problem The field-line sketch is shown below. An assumed direction for the 
current in the coils is shown in the diagram. Note that the field lines never begin or end 
and that they do not touch or cross each other. Because there are an uncountable infinity 
of lines, only a representative few have been shown. 
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10 •  
Determine the Concept Because all of these statements regarding Ampère’s law are true, 

correct. is )(e  

 
11 •  
(a) True   
 
(b) True 
 
*12 •  
Determine the Concept The magnetic susceptibility χm is defined by the 

equation
0

app
m µ

χ
B

M
r

r
= , where M

r
is the magnetization vector and appB

r
is the applied 

magnetic field. For paramagnetic materials, χm is a small positive number that depends 
on temperature, whereas for diamagnetic materials, it is a small negative constant 
independent of temperature. correct. is )(a  

 
13 •  
(a) False. The magnetic field due to a current element is perpendicular to the current 
element. 
 
(b) True   
 
(c) False. The magnetic field due to a long wire varies inversely with the distance from 
the wire. 
   
(d) False. Ampère’s law is easier to apply if there is a high degree of symmetry, but is 
valid in all situations.  
 
(e) True 
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14 •  
Determine the Concept Yes. The classical relation between magnetic moment and 

angular momentum is Lµ
rr

m
q

2
= . Thus, if its charge density is zero, a particle with 

angular momentum will not have a magnetic moment. 
 
15 •  
Determine the Concept No. The classical relation between magnetic moment and 

angular momentum is Lµ
rr

m
q

2
= . Thus, if the angular momentum of the particle is zero, 

its magnetic moment will also be zero. 
 
16 •  
Determine the Concept Yes, there is angular momentum associated with the magnetic 
moment. The magnitude of L

r
is extremely small, but very sensitive experiments have 

demonstrated its presence (Einstein-de Haas effect). 
 
17 •  
Determine the Concept From Ampère’s law, the current enclosed by a closed path 
within the tube is zero, and from the cylindrical symmetry it follows that  
B = 0 everywhere within the tube.  
 
*18 •  
Determine the Concept The force per unit length experienced by each segment of the 
wire, due to the currents in the other segments of the wire, will be equal. These equal 
forces will result in the wire tending to form a circle. 
 
19 •  
Determine the Concept H2, CO2, and N2 are diamagnetic (χm < 0); O2 is paramagnetic 
(χm > 0). 
 
Estimation and Approximation  
 
20 ••  
Picture the Problem We can use the definition of the magnetization of the earth’s core 
to find its volume and radius. 
 
(a) Express the magnetization of the 
earth’s core in terms of the magnetic 
moment of the earth and the volume 
of the core: 
 

V
M µ

=  
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Solve for and evaluate V: 

313

9

222

m1000.6

A/m105.1
mA109

×=

×
⋅×

==
M

V µ

 

 
(b)Assuming a spherical core 
centered with the earth: 
 

3
3
4 rV π=  

Solve for r: 
3

4
3
π
Vr =  

 
Substitute numerical values and 
evaluate r: 

( ) m1043.2
4

m1063 43
313

×=
×

=
π

r  

 
*21 ••  
Picture the Problem We can model the lightning bolt as a current in a long wire and use 
the expression for the magnetic field due to such a current to estimate the transient 
magnetic field 100 m from the lightning bolt. 
 
The magnetic field due to the 
current in a long, straight wire is: r

IB 2
4

0

π
µ

=  

where r is the distance from the wire. 
 

Assuming that the height of the 
cloud is 1 km, the charge transfer 
will take place in roughly 10−3 s and 
the current associated with this 
discharge is: 
 

A103
s10

C30 4
3 ×==

∆
∆

= −t
QI  

Substitute numerical values and 
evaluate B: 
 

( )

T0.60

m100
A1032

4
N/A104 427

µ

π
π

=

××
=

−

B
 

 
*22 ••  
Picture the Problem A rotating disk with 
total charge Q and surface charge density σ 
is shown in the diagram. We can find Q by 
deriving an expression for the magnetic 
field B at the center of the disk due to its 
rotation. We’ll use Ampere’s law to 
express the field dB at the center of the 
disk due to the element of current dI and 
then integrate over r to find B.  
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Applying Ampere’s law to  a 
circular current loop of radius r we 
obtain: 
 

r
IB

2
0µ=  

 

The B field at the center of an 
annular ring on a rotating disk of 
radius r and thickness dr is: 
 

dI
r

dB
2

0µ=                            (1) 

  

If σ represents the surface charge 
density, then the current in the 
annular ring is given by: 
 

( ) dr,
T

rdI πσ 2
=  where 2R

Q
π

σ =  

 

Because 
ω
π2

=T : 

 

rdrdI σω=  

Substitute for dI in equation (1) to 
obtain: 
 

drrdr
r

dB
22

00 σωµσωµ
==  

Integrate from r = 0 to R to obtain: 
 22

0

0

0 RdrB
R σωµσωµ

== ∫  

Substitution for σ yields: 
 

R
Q

R
R
Q

B
π
ωµ

ω
π

µ

22
0

20

=
⎟
⎠
⎞

⎜
⎝
⎛

=  

 
Solve for Q to obtain: 
 ωµ

π

0

2 RBQ =  

 
Substitute numerical values and evaluate Q: 
 

( )( )
( )( ) C1000.5

rad/s10N/A104
T1.0m102 14

227

7

×=
×

= −−π
πQ  

 
The electric field above the sunspot 
is given by: 
 

2
00 22 R

QE
∈

=
∈

=
π

σ
 

Substitute numerical values and 
evaluate E: ( )( )

GN/C0.90

m10mN/C1085.82
C1000.5

272212

14

=

⋅×

×
=

−π
E
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The Magnetic Field of Moving Point Charges 
 
23 •  
Picture the Problem We can substitute for v

r
 and q in the equation describing the 

magnetic field of the moving charged particle ( 2
0 ˆ

4 r
q rvB ×

=
rr

π
µ

), evaluate r and r̂  for 

each of the given points of interest, and substitute to find B
r

. 
 

Express the magnetic field of the 
moving charged particle: 
 ( )( ) ( )

( ) 2
2

2
27

2
0

ˆˆ
mpT0.36

ˆˆm/s30C12N/A10

ˆ
4

r

r

r
q

ri

ri

rvB

×
⋅=

×
=

×
=

− µ

π
µ rr

 

 
(a) Find r and r̂ for the particle at  
(0, 2 m) and the point of interest at 
the origin: 
 

( ) jr ˆm2−=
r

, m2=r , and jr ˆˆ −=  

 

Substitute and evaluate ( )0,0B
r

: 

 
( ) ( ) ( )

( )
( )k

jiB

ˆpT00.9

m2

ˆˆ
mpT0.360,0 2

2

−=

−×
⋅=

r

 

 
(b) Find r and r̂ for the particle at  
(0, 2 m) and the point of interest at 
(0, 1 m): 
 

( ) jr ˆm1−=
r

, m1=r , and jr ˆˆ −=  

 

Substitute and evaluate ( )m1,0B
r

: 

 
( ) ( ) ( )

( )
( )k

jiB

ˆpT0.36

m1

ˆˆ
mpT0.36m1,0 2

2

−=

−×
⋅=

r

 

 
(c) Find r and r̂ for the particle at  
(0, 2 m) and the point of interest at 
(0, 3 m): 
 

( ) jr ˆm1=
r

, m1=r , and jr ˆˆ =  

 

Substitute and evaluate ( )m3,0B
r

: 

 
( ) ( )

( )
( )k

jiB

ˆpT0.36

m1

ˆˆ
mpT0.36m3,0 2

2

=

×
⋅=

r
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(d) Find r and r̂ for the particle at  
(0, 2 m) and the point of interest at 
(0, 4 m): 
 

( ) jr ˆm2=
r

, m2=r , and jr ˆˆ =  

 

Substitute and evaluate ( )m4,0B
r

: 

 
( ) ( )

( )
( )k

jiB

ˆpT00.9

m2

ˆˆ
mpT0.36m4,0 2

2

=

×
⋅=

r

 

 
24 •  
Picture the Problem We can substitute for v

r
 and q in the equation describing the 

magnetic field of the moving charged particle ( 2
0 ˆ

4 r
q rvB ×

=
rr

π
µ

), evaluate r and r̂  for 

each of the given points of interest, and substitute to find B
r

. 
 

The magnetic field of the moving 
charged particle is given by: 
 ( )( ) ( )

( ) 2
2

2
27

2
0

ˆˆ
mpT0.36

ˆˆm/s30C12N/A10

ˆ
4

r

r

r
q

ri

ri

rvB

×
⋅=

×
=

×
=

− µ

π
µ rr

 

 
(a) Find r and r̂ for the particle at  
(0, 2 m) and the point of interest at 
(1 m, 3 m): 
 

( ) ( ) jir ˆm1ˆm1 +=
r

, m2=r , and  

jir ˆ
2

1ˆ
2

1ˆ +=  

 
Substitute for r̂  and evaluate 
( )m3,m1B
r

: 

 

( ) ( )

( )
( )

( )
( )k

k

jii

B

ˆpT7.12

m2

ˆ

2
mpT0.36

m2

ˆ
2

1ˆ
2

1ˆ

mpT0.36m3,m1

2

2

2

2

=

⋅
=

⎟
⎠
⎞

⎜
⎝
⎛ +×

×

⋅=
r

 

 
(b) Find r and r̂ for the particle at  
(0, 2 m) and the point of interest at 
(2 m, 2 m): 
 

( )ir ˆm2=
r

, m2=r , and ir ˆˆ =  
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Substitute for r̂  and evaluate 
( )m2,m2B
r

: 

 

( ) ( )
( )

0

m2

ˆˆ
mpT0.36m2,m2 2

2

=

×
⋅=

iiB
r

 

 
(c) Find r and r̂ for the particle at  
(0, 2 m) and the point of interest at 
(2 m, 3 m): 
 

( ) ( ) jir ˆm1ˆm2 +=
r

, m5=r , and  

jir ˆ
5

1ˆ
5

2ˆ +=  

Substitute for r̂  and evaluate ( )m3,m2B
r

: 

 

( ) ( ) ( ) ( )k
jii

B ˆpT22.3
m5

ˆ
5

1ˆ
5

2ˆ

mpT0.36m3,m2 2
2 =

⎟
⎠

⎞
⎜
⎝

⎛ +×
⋅=

r
 

 
25 •  
Picture the Problem We can substitute for vr  and q in the equation describing the 

magnetic field of the moving proton ( 2
0 ˆ

4 r
q rvB ×

=
rr

π
µ

), evaluate r and r̂  for each of the 

given points of interest, and substitute to find .B
r

 
 

The magnetic field of the moving proton is given by: 
 

( )( ) ( ) ( )[ ]

( ) ( )
2

222

2

44
1927

2
0

ˆˆ2ˆ
mT1060.1

ˆˆm/s102ˆm/s10C10.601N/A10
ˆ

4

r

rr
q

rji

rjirvB

×+
⋅×=

××+
×=

×
=

−

−−
rr

π
µ

 

 
(a) Find r and r̂ for the proton at  
(3 m, 4 m) and the point of interest 
at (2 m, 2 m): 
 

( ) ( ) jir ˆm2ˆm1 −−=
r

, m5=r , and  

jir ˆ
5

2ˆ
5

1ˆ −−=  

 
Substitute for r̂  and evaluate ( )m3,m1B

r
: 

 

( ) ( )
( )

( )
( ) 0

m5

ˆ2ˆ2
5

mT1060.1

ˆ
5

2ˆ
5

1ˆ2ˆ

mT1060.1mm,31

2

222

2
222

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +−⋅×
=

⎟
⎠

⎞
⎜
⎝

⎛ −−×+
⋅×=

−

−

kk

jiji
B

r
r
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(b) Find r and r̂ for the proton at  
(3 m, 2 m) and the point of interest 
at (6 m, 4 m): 
 

( )ir ˆm3=
r

, m3=r , and ir ˆˆ =  

 

Substitute for r̂  and evaluate ( )m4,m6B
r

: 

 

( ) ( ) ( )
( )

( )

( )k

kijiB

ˆT1056.3

m9

ˆ2mT1060.1
m3

ˆˆ2ˆ
mT1060.1mm,46

23

2
222

2
222

−

−−

×−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⋅×=

×+
⋅×=

r

 

 
(c) Find r and r̂ for the proton at  
(3 m, 4 m) and the point of interest 
at the (3 m, 6 m): 
 

( ) jr ˆm2=
r

, m2=r , and jr ˆˆ =  

Substitute for r̂  and evaluate ( )m6,m3B
r

: 

 

( ) ( ) ( )
( )

( )

( )k

kjjiB

ˆT1000.4

m4

ˆ
mT1060.1

m2

ˆˆ2ˆ
mT1060.1mm,63

23

2
222

2
222

−

−−

×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅×=

×+
⋅×=

r

 

 
26 •  
Picture the Problem The centripetal force acting on the orbiting electron is the Coulomb 
force between the electron and the proton. We can apply Newton’s 2nd law to the electron 
to find its orbital speed and then use the expression for the magnetic field of a moving 
charge to find B. 

 
Express the magnetic field due to 
the motion of the electron: 
 

2
0

4 r
evB

π
µ

=
 

Apply ∑ = cradial maF to the 

electron: 
 

r
vm

r
ke 2

2

2

=  

 

Solve for v to obtain: 
 mr

kev
2

=  

 
Substitute and simplify to obtain: 
 mr

k
r
e

mr
ke

r
eB 2

2
0

2

2
0

44 π
µ

π
µ

==  
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Substitute numerical values and evaluate B: 
 

( )( )
( ) ( )( ) T5.12

m1029.5kg1011.9
C/mN1099.8

m1029.5
C106.1N/A10

1131

229

211

21927

=
××

⋅×

×

×
= −−−

−−

B  

 
*27 ••  
Picture the Problem We can find the ratio of the magnitudes of the magnetic and 
electrostatic forces by using the expression for the magnetic field of a moving charge and 
Coulomb’s law. Note that v and r

r
, where r

r
is the vector from one charge to the other, 

are at right angles. The field B
r

due to the charge at the origin at the location (0, b, 0) is 
perpendicular to v and r

r
. 

 
Express the magnitude of the 
magnetic force on the moving 
charge at (0, b, 0): 
 

2

22
0

4 b
vqqvBFB π

µ
==  

and, applying the right hand rule, we find 
that the direction of the force is toward the 
charge at the origin; i.e., the magnetic force 
between the two moving charges is 
attractive. 
 

Express the magnitude of the 
repulsive electrostatic interaction 
between the two charges: 
 

2

2

04
1

b
qFE πε

=  

Express the ratio of FB to FE and 
simplify to obtain: 
 2

2
2

00

2

2

0

2

22
0

4
1

4
c
vv

b
q

b
vq

F
F

E

B === µε

πε

π
µ

 

where c is the speed of light in a vacuum. 
 
The Magnetic Field of Currents: The Biot-Savart Law 
 
28 •  
Picture the Problem We can substitute for vr  and q in the Biot-Savart relationship 

( 2
0 ˆ

4 r
Idd rB ×

=
l
r

r

π
µ

), evaluate r and r̂  for each of the points of interest, and substitute to 

find B
r

d . 
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Express the Biot-Savart law for the 
given current element: 
 ( )( )( )

( ) 2
2

2
27

2
0

ˆˆ
mnT400.0

ˆˆmm2A2N/A10

ˆ
4

r

r

r
Idd

rk

rk

rB

×
⋅=

×
=

×
=

−

l
r

r

π
µ

 

 
(a) Find r and r̂ for the point whose 
coordinates are  
(3 m, 0, 0): 
 

( )ir ˆm3=
r

, m3=r , and ir ˆˆ =  

Evaluate B
r

d at (3 m, 0, 0): ( ) ( )
( )

( ) j

ikB

ˆpT4.44

m3

ˆˆ
mnT400.0m,0,03 2

2

=

×
⋅=

r
d

 

 
(b) Find r and r̂ for the point whose 
coordinates are  
(−6 m, 0, 0): 
 

( )ir ˆm6−=
r

, m6=r , and ir ˆˆ −=  

Evaluate B
r

d at (−6 m, 0, 0): ( ) ( ) ( )
( )

( ) j

ikB

ˆpT1.11

m6

ˆˆ
mnT400.0m,0,06 2

2

−=

−×
⋅=−

r
d

 

 
(c) Find r and r̂ for the point whose 
coordinates are  
(0, 0, 3 m): 
 

( )kr ˆm3=
r

, m3=r , and kr ˆˆ =  

Evaluate B
r

d at (0, 0, 3 m): ( ) ( )
( )

0

m3

ˆˆ
mnT400.0m3,0,0 2

2

=

×
⋅=

kkB
r

d
 

 
(d) Find r and r̂ for the point whose 
coordinates are  
(0, 3 m, 0): 
 

( ) jr ˆm3=
r

, m3=r , and jr ˆˆ =  
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Evaluate B
r

d at (0, 3 m, 0): ( ) ( )
( )

( )i

jkB

ˆpT4.44

m3

ˆˆ
mnT400.0m,03,0 2

2

−=

×
⋅=

r
d

 

 
29 •  
Picture the Problem We can substitute for v

r
 and q in the Biot-Savart relationship 

( 2
0 ˆ

4 r
Idd rB ×

=
l
r

r

π
µ

), evaluate r and r̂  for (0, 3 m, 4 m), and substitute to find .B
r

d  

 
Express the Biot-Savart law for the 
given current element: 
 ( )( )( )

( ) 2
2

2
27

2
0

ˆˆ
mnT400.0

ˆˆmm2A2N/A10

ˆ
4

r

r

r
Idd

rk

rk

rB

×
⋅=

×
=

×
=

−

l
r

r

π
µ

 

 
Find r and r̂ for the point whose 
coordinates are (0, 3 m, 4 m): 
 

( ) ( )kjr ˆm4ˆm3 +=
r

,  
m5=r ,  

and  

kjr ˆ
5
4ˆ

5
3ˆ +=  

 
Evaluate B

r
d at (3 m, 0, 0): 

 

( ) ( )
( )

( )i
kjk

B ˆpT60.9
m5

ˆ
5
4ˆ

5
3ˆ

mnT400.0m,0,03 2
2 −=

⎟
⎠
⎞

⎜
⎝
⎛ +×

⋅=
r

d  

 
*30 •  
Picture the Problem We can substitute for v

r
 and q in the Biot-Savart relationship 

( 2
0 ˆ

4 r
Idd rB ×

=
l
r

r

π
µ

), evaluate r and r̂  for the given points, and substitute to find B
r

d . 

 
Express the Biot-Savart law for the 
given current element: 
 ( )( )( )

( ) 2
2

2
27

2
0

ˆˆ
mnT400.0

ˆˆmm2A2N/A10

ˆ
4

r

r

r
Idd

rk

rk

rB

×
⋅=

×
=

×
=

−

l
r

r

π
µ
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(a) Find r and r̂ for the point whose 
coordinates are  
(2 m, 4 m, 0): 
 

( ) ( ) jir ˆm4ˆm2 +=
r

,  

m52=r ,  

and  

jijir ˆ
5

2ˆ
5

1ˆ
52

4ˆ
52

2ˆ +=+=  

 
Evaluate B

r
d at (2 m, 4 m, 0): 

 

( ) ( ) ( ) ( ) ( ) ji
jik

B ˆpT94.8ˆpT9.17
m52

ˆ
5

2ˆ
5

1ˆ

mnT400.0m,0m,42 2
2 +−=

⎟
⎠

⎞
⎜
⎝

⎛ +×
⋅=

r
d  

 
The diagram is shown to the right: 

 
(b) Find r and r̂ for the point whose 
coordinates are  
(2 m, 0, 4 m): 
 

( ) ( )kir ˆm4ˆm2 +=
r

,  

m52=r ,  

and  

kikir ˆ
5

2ˆ
5

1ˆ
52

4ˆ
52

2ˆ +=+=  

 
Evaluate B

r
d at (2 m, 0, 4 m): 

 

( ) ( ) ( ) ( ) j
kik

B ˆpT94.8
m52

ˆ
5

2ˆ
5

1ˆ

mnT400.0mm,0,42 2
2 =

⎟
⎠

⎞
⎜
⎝

⎛ +×
⋅=

r
d  

 
The diagram is shown to the right: 

 
 

B
r

Due to a Current Loop 
 
31 •  

Picture the Problem We can use ( ) 2322

2
0 2

4 Rx
IRBx

+
=

π
π
µ

 to find B on the axis of the 
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current loop. 
 

Express B on the axis of a current 
loop: 
 

( ) 2322

2
0 2

4 Rx
IRBx

+
=

π
π
µ

 

Substitute numerical values to 
obtain: 
 

( ) ( ) ( )
( )( )

( )( ) 2322

39

2322

2
27

m03.0

mT1047.1
m03.0

A6.2m03.02N/A10

+

⋅×
=

+
=

−

−

x

x
Bx

π

 

 
(a) Evaluate B at the center of the 
loop: 
 

( )
( )( ) T5.54

m03.00

mT1047.10 232

39

µ=
+

⋅×
=

−

B  

 
(b) Evaluate B at x = 1 cm: 
 

( )
( ) ( )( )

T5.46

m03.0m01.0

mT1047.1m01.0 2322

39

µ=

+

⋅×
=

−

B
 

 
(c) Evaluate B at x = 2 cm: 
 

( )
( ) ( )( )

T4.31

m03.0m02.0

mT1047.1m02.0 2322

39

µ=

+

⋅×
=

−

B
 

 
(d) Evaluate B at x = 35 cm: 
 

( )
( ) ( )( )

nT9.33

m03.0m35.0

mT1047.1m35.0 2322

39

=

+

⋅×
=

−

B
 

 
*32 •  

Picture the Problem We can solve ( ) 2322

2
0 2

4 Rx
IRBx

+
=

π
π
µ

 for I with x  = 0 and substitute 

the earth’s magnetic field at the equator to find the current in the loop that would produce 
a magnetic field equal to that of the earth. 

 
Express B on the axis of the current 
loop: 
 

( ) 2322

2
0 2

4 Rx
IRBx

+
=

π
π
µ

 

Solve for I with x = 0: 
xBRI

πµ
π

2
4

0

=  
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Substitute numerical values and evaluate I: 
 

( )
( )
( )

( ) A1.11
G10

T1G7.0
m1.02

m1.0
N/A10
1

42

3

27 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= − π

I  

 
The orientation of the loop and 
current is shown in the sketch: 

 
 
33 ••  

Picture the Problem We can solve ( ) 2322

2
0 2

4 Rx
IRBx

+
=

π
π
µ

for B0, express  

the ratio of Bx to B0, and solve the resulting equation for x. 
 

Express B on the axis of the current 
loop: 
 

( ) 2322

2
0 2

4 Rx
IRBx

+
=

π
π
µ

 

Evaluate Bx for x = 0: 
R

IB π
π
µ 2
4

0
0 =  

 
Express the ratio of Bx to B0: 

( )
( ) 2322

3

0

2322

2
0

0 2
4

2
4

Rx
R

R
I

Rx
IR

B
Bx

+
=+=

π
π
µ

π
π
µ

 

 
Solve for x to obtain: 
 1

32

0 −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

xB
BRx                      (1) 

 
(a) Evaluate equation (1) for  
Bx = 0. 1B0: cm1.191

1.0
cm10

32

0

0 =−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

B
Bx  

 
(b) Evaluate equation (1) for  
Bx = 0. 01B0: cm3.451

01.0
cm10

32

0

0 =−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

B
B

x  
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(a) Evaluate equation (1) for  
Bx = 0. 001B0: cm5.991

001.0
cm10

32

0

0 =−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

B
Bx

 
34 ••  

Picture the Problem We can solve ( ) 2322

2
0 2

4 Rx
IRBx

+
=

π
π
µ

 for I with x  = 0 and substitute 

the earth’s magnetic field at the equator to find the current in the loop that would produce 
a magnetic field equal to that of the earth. 
 
Express B on the axis of the current 
loop: 
 

( ) 2322

2
0 2

4 Rx
IRBx

+
=

π
π
µ

 

Solve for I with x = 0 and  
Bx = BE: E

0 2
4 BRI

πµ
π

=  

 
Substitute numerical values and evaluate I: 
 

( ) ( ) A47.9
G10

T1G7.0
2

m085.0
N/A10
1

427 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= − π

I  

 
The normal to the plane of the loop 
must be in the direction of the 
earth’s field, and the current must be 
counterclockwise as seen from 
above. Here EB

r
denotes the earth’s 

field and IB
r

the field due to the 

current in the coil.  
 
35 ••  
Picture the Problem We can use the expression for the magnetic field on the axis of a 
current loop and the expression for the electric field on the axis of ring of charge Q to plot 
graphs of Bx/B0 and E(x)/(kQ/R2) as functions of x/R. 

 
(a) Express Bx on the axis of a 
current loop: ( ) 2322

2
0 2

4 Rx
IRBx

+
=

π
π
µ

 

 
Express B0 at the center of the loop:  

( ) R
I

R
IRB

2
2

4
0

232

2
0

0
µπ

π
µ

==  
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Express the ratio of Bx to B0 and 
simplify to obtain: 23

2

2
0 1

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

R
xB

Bx  

 
The graph of Bx/B0 as a function of x/R shown below was plotted using a spreadsheet 
program: 
 

0.0

0.2

0.4

0.6

0.8

1.0

-5 -4 -3 -2 -1 0 1 2 3 4 5

x /R

B x
/B

0

 
 

Express Ex on the axis due to a ring 
of radius R carrying a total charge 
Q: 
 

( ) ( ) 23

2

222322

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
+

=

R
x
R
x

R
kQ

xR
kQxxE  

 
Divide both sides of this equation by 
kQ/R2 to obtain: 
 

( )
23

2

2

2 1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

R
x
R
x

R
kQ

xE
 

 
The graph of Ex as a function of x/R shown below was plotted using a spreadsheet 
program. Here E(x) is normalized, i.e., we’ve set kQ/R2 = 100. 
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-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-5 -4 -3 -2 -1 0 1 2 3 4 5

x /R

E x

 
 

(b) Express the magnetic field on the 
x axis due to the loop centered at  
x = 0: 

( ) ( )
23

2

2

0

2322

2
0

1

12

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

+
=

R
xR

I
Rx

IRxB

µ

µ

 

where N is the number of turns. 
 

Because :
2

0
0 R

I
B

µ
=  

 

( ) 23

2

2

0
1

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

R
x

BxB  

or 

( )
232

0

1 1
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+=

R
x

B
xB

              

 
Express the magnetic field on the x 
axis due to the loop centered at  
x = R: 

( )
( )[ ] 2322

2
0

2
2 RxR

IRxB
+−

=
µ
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Simplify this expression to obtain: 
 

( )
( )[ ]

232

0

232

0

2322

2
0

2

11

112

2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ −

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ −

=

+−
=

R
x

B

R
xR

I
RxR

IRxB

µ

µ

 

or 

( )
232

0

2 11
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ −=

R
x

B
xB

       

 
The graphs of B1/B0, B2/B0, and B1/B0 + B2/B0 as functions of x/R with the second 
loop displaced by d = R from the center of the first loop along the x axis shown 
below were plotted using a spreadsheet program. 
 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

-3 -2 -1 0 1 2 3

x /R

B1/B0
B2/B0
B1/B0 + B2/B0

 
 

Note that, midway between the two loops, dB(x)/dx = 0. Also,  when d = R, B(x) is nearly 
flat at the midpoint which shows that in the region midway between the two coils B(x) is 
nearly constant. 
 
36 ••  
Picture the Problem Let the origin be midway between the coils so that one of them is 
centered at x = −r/2 and the other is centered at x = r/2.  Let the numeral 1 denote the coil 
centered at x = −r/2 and the numeral 2 the coil centered at x = r/2. We can express the 
magnetic field in the region between the coils as the sum of the magnetic fields B1 and B2 
due to the two coils. 
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Express the magnetic field on the x 
axis due to the coil centered at  
x = −r/2: 

( ) 23

2
2

2
0

1

2
2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ +

=

rxr

INrxB µ
 

where N is the number of turns. 
 

Express the magnetic field on the x 
axis due to the coil centered at 
x = r/2: 

( ) 23

2
2

2
0

2

2
2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ −

=

rxr

INrxB µ
 

 
Add these equations to express the total magnetic field along the x axis: 
 

( ) ( ) ( )

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ −+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ +=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ −

+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ +

=+=

−− 23

2
223

2
22

0

23

2
2

2
0

23

2
2

2
0

21

222

2
2

2
2

rxrrxrINr

rxr

INr

rxr

INrxBxBxBx

µ

µµ

 

 
The spreadsheet solution is shown below. The formulas used to calculate the quantities in 
the columns are as follows: 
 

Cell Formula/Content Algebraic Form 
B1 1.13×10−7 µ0 
B2 0.30 r 
B3 250 N 
B3 15 I 
B5 0.5*$B$1*$B$3*($B$2^2)*$B$4 

2
Coeff

2
0 INrµ

=  

A8 −0.30 −r 
B8 $B$5*(($B$2/2+A8)^2+$B$2^2)^(−3/2) 23

2
22

0

22

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ + rxrINrµ

 

C8 $B$5* (($B$2/2−A8)^2+$B$2^2)^(−3/2) 23

2
22

0

22

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ − rxrINrµ

 

D8 10^4(B8+C8) ( )21
410 BBBx +=   

 
 A B C D 

1 mu_0= 1.26E-06 N/A^2  
2 r= 0.3 m  
3 N= 250 turns  



Chapter 27    
 

 

540 

4 I= 15 A  
5 Coeff= 2.13E−04   
6     
7 x B_1 B_2 B(x)
8 −0.30 5.63E−03 1.34E−03 70 
9 −0.29 5.86E−03 1.41E−03 73 
10 −0.28 6.08E−03 1.48E−03 76 
11 −0.27 6.30E−03 1.55E−03 78 
12 −0.26 6.52E−03 1.62E−03 81 
13 −0.25 6.72E−03 1.70E−03 84 
14 −0.24 6.92E−03 1.78E−03 87 
15 −0.23 7.10E−03 1.87E−03 90 
     

61 0.23 1.87E−03 7.10E−03 90 
62 0.24 1.78E−03 6.92E−03 87 
63 0.25 1.70E−03 6.72E−03 84 
64 0.26 1.62E−03 6.52E−03 81 
65 0.27 1.55E−03 6.30E−03 78 
66 0.28 1.48E−03 6.08E−03 76 
67 0.29 1.41E−03 5.86E−03 73 
68 0.30 1.34E−03 5.63E−03 70  

 
The following graph of Bx as a function of x was plotted using the data in the above table. 

0

20

40

60

80

100

120

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

x  (m)

B x
 (G

)

 
 

The maximum value of Bx is 113 G. Twenty percent of this maximum value is  
23 G. Referring to the table of values we see that the field is within 20 percent of 113 G 
in the interval m.0.23m23.0 <<− x  

 
37 •••  
Picture the Problem Let the numeral 1 denote the coil centered at the origin and the 
numeral 2 the coil centered at x = R. We can express the magnetic field in the region 
between the coils as the sum of the magnetic fields due to the two coils and then evaluate 
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the derivatives at x = R/2. 
 

Express the magnetic field on the x 
axis due to the coil centered at x = 0: 

( ) ( ) 2322

2
0

1
2 Rx

INRxB
+

=
µ

 

where N is the number of turns. 
 

Express the magnetic field on the x 
axis due to the coil centered at  
x = R: 

( )
( )[ ] 2322

2
0

2
2 RRx

INRxB
+−

=
µ

 

 
Add these equations to express the total magnetic field along the x axis: 
 

( ) ( ) ( ) ( ) ( )[ ]

( ) ( )[ ] ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+−
+

+
=

+−
+

+
=+=

23222322

2
0

2322

2
0

2322

2
0

21

11
2

22

RRxRx
INR

RRx

INR
Rx

INRxBxBxBx

µ

µµ

 

 
Evaluate x1 and x2 at x = R/2: ( ) ( ) 212

4
522

4
1

2
1

1 RRRRx =+=  

and 

( ) ( ) ( ) 212
4
522

2
1

2
1

2 RRRRRx =+−=  

 
Differentiate Bx with respect to x to 
obtain: 

⎟⎟
⎠

⎞−
+⎜⎜

⎝

⎛
=

⎟⎟
⎠

⎞
+⎜⎜

⎝

⎛
=

5
2

5
1

2
0

3
2

3
1

2
0

2

11
2

x
Rx

x
xINR

xxdx
dINR

dx
dBx

µ

µ

 

 
Evaluate dBx/dx at x = R/2 to obtain: 
 

( ) ( ) 0
2 252

4
5

2
1

252
4
5

2
12

0

2
1

=⎟
⎟
⎠

⎞−
+⎜

⎜
⎝

⎛
=

= R
R

R
RINR

dx
dB

Rx

x µ
 

 
Differentiate dBx/dx with respect to x to obtain: 
 

( )
⎟⎟
⎠

⎞−
−−⎜⎜

⎝

⎛
+=⎟⎟

⎠

⎞−
+⎜⎜

⎝

⎛
= 7

2

2

7
1

2

5
2

5
1

2
0

5
2

5
1

2
0

2

2 5511
22 x

Rx
x
x

xx
INR

x
Rx

x
x

dx
dINR

dx
Bd x µµ

 

 
Evaluate d2Bx/dx2 at x = R/2 to obtain: 
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( ) ( ) ( ) ( ) 011
2 272

4
5

2
4
5

272
4
5

2
4
5

252
4
5252

4
5

2
0

2

2

2
1

=⎟
⎟
⎠

⎞
−−+⎜

⎜
⎝

⎛
=

= R
R

R
R

RR
INR

dx
Bd

Rx

x µ
 

 
Differentiate d2Bx/dx2 with respect to x to obtain: 
 

( )

( ) ( )
⎟⎟
⎠

⎞−
−

−
−−⎜⎜

⎝

⎛
=

⎟⎟
⎠

⎞−
−−⎜⎜

⎝

⎛
+=

9
2

3

7
2

7
1

9
1

32
0

7
2

2

7
1

2

5
2

5
1

2
0

3

3

35151535
2

5511
2

x
Rx

x
Rx

x
x

x
xINR

x
Rx

x
x

xxdx
dINR

dx
Bd x

µ

µ

 

 
Evaluate d3Bx/dx3 at x = R/2 to obtain: 
 

( ) ( ) ( ) ( ) 0
2 292

4
5

3
8
35

272
4
5

2
15

272
4
5

2
15

292
4
5

3
8
352

0
3

3

2
1

=⎟
⎟
⎠

⎞−
−

−
−−⎜

⎜
⎝

⎛
=

= R
R

R
R

R
R

R
RINR

dx
Bd

Rx

x µ
 

 
*38 •••  
Picture the Problem Let the origin be midway between the coils so that one of them is 
centered at 2/3rx −=  and the other is centered at 2/3rx = .  Let the numeral 1 
denote the coil centered at 2/3rx −= and the numeral 2 the coil centered at 

2/3rx = . We can express the magnetic field in the region between the coils as the 
difference of the magnetic fields B1 and B2 due to the two coils. 
 
Express the magnetic field on the x 
axis due to the coil centered at 

2/3rx −= : 

( ) 23

2

2

2
0

1

2
32

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=

rxr

INrxB µ
 

where N is the number of turns. 
 

Express the magnetic field on the x 
axis due to the coil centered at 

2/3rx = : 

( ) 23

2

2

2
0

2

2
32

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=

rxr

INrxB µ
 

 
Subtract these equations to express the total magnetic field along the x axis: 
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( ) ( ) ( )

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=−=

−− 23

2

223

2

22
0

23

2

2

2
0

23

2

2

2
0

21

2
3

2
3

2

2
32

2
32

rxrrxrINr

rxr

INr

rxr

INrxBxBxBx

µ

µµ

 

 
The spreadsheet solution is shown below. The formulas used to calculate the quantities in 
the columns are as follows: 
 

Cell Formula/Content Algebraic Form 
B1 1.26×10−6 µ0 
B2 0.30 r 
B3 250 N 
B3 15 I 
B5 0.5*$B$1*$B$3*($B$2^2)*$B$4 

2
Coeff

2
0 INrµ

=  

A8 −0.30 −r 
B8 $B$5*(($B$2*SQRT(3)/2+A8)^2 

+$B$2^2)^(−3/2) 
23

2

22
0

2
3

2

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ rxrINrµ

 

C8 $B$5* (($B$2*SQRT(3)/2−A8)^2 
+$B$2^2)^(−3/2) 

23

2

22
0

2
3

2

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− rxrINrµ

 

D8 10^4*(B8−C8) 21 BBBx −=   
 

 A B C D 
1 mu_0= 1.26E−06 N/A^2  
2 r= 0.3 m  
3 N= 250 turns  
4 I= 15 A  
5 Coeff= 2.13E−04   
6     
7 x B_1 B_2 B(x) 
8 −0.30 5.63E−03 1.34E−03 68.4 
9 −0.29 5.86E−03 1.41E−03 68.9 
10 −0.28 6.08E−03 1.48E−03 69.2 
11 −0.27 6.30E−03 1.55E−03 69.2 
12 −0.26 6.52E−03 1.62E−03 68.9 
13 −0.25 6.72E−03 1.70E−03 68.4 
14 −0.24 6.92E−03 1.78E−03 67.5 
15 −0.23 7.10E−03 1.87E−03 66.4 
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61 0.23 1.87E−03 7.10E−03 −66.4
62 0.24 1.78E−03 6.92E−03 −67.5
63 0.25 1.70E−03 6.72E−03 −68.4
64 0.26 1.62E−03 6.52E−03 −68.9
65 0.27 1.55E−03 6.30E−03 −69.2
66 0.28 1.48E−03 6.08E−03 −69.2
67 0.29 1.41E−03 5.86E−03 −68.9
68 0.30 1.34E−03 5.63E−03 −68.4 

 
The following graph of Bx as a function of x was plotted using the data in the above table. 
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39 ••  
Picture the Problem The diagram shows 
the two coils of radii r1 and r2 with the 
currents flowing in the directions given. 
We can use the expression for B on the axis 
of a current loop to express the difference 
of the fields due to the two loops at a 
distance x from their common center. We’ll 
denote each field by the subscript 
identifying the radius of the current loop.  
 
The magnitude of the field on the x 
axis due to the current in the inner 
loop is: 
  

( ) ( ) 232
1

2

2
10

232
1

2

2
10

1
2

2
4 rx

Ir
rx

IrB
+

=
+

=
µπ

π
µ

 

 
The magnitude of the field on the x 
axis due to the current in the outer 
loop is: 
  

( ) ( ) 232
2

2

2
20

232
2

2

2
20

2
2

2
4 rx

Ir
rx

IrB
+

=
+

=
µπ

π
µ

 

 
The resultant field at x is the difference between B1 and B2: 
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( ) ( ) ( ) ( ) ( ) 232
2

2

2
20

232
1

2

2
10

21
22 rx

Ir
rx
IrxBxBxBx

+
−

+
=−=

µµ
 

 
(a) The spreadsheet program to calculate Bx as a function of x, for r2 = 10.1 cm, is shown 
below. The formulas used to calculate the quantities in the columns are as follows: 
 

Cell Formula/Content Algebraic Form 
B1 1.26×10−6 µ0 
B2 0.1 r1 
B3 1 I 
B4 0.101 r2 
A7 0 x 
B7 0.5*$B$1*$B$2^2*$B$3/(A7^2+$B$2^2)^(3/2)

( ) 232
1

2

2
10

2 rx
Ir

+

µ
 

C7 0.5*$B$1*$B$4^2*$B$3/(A7^2+$B$4^2)^(3/2)

( ) 232
2

2

2
20

2 rx
Ir

+

µ
 

D7 10^4*(B7−C7) ( ) ( ) ( )xBxBxBx 21 −=   
 
The spreadsheet for Bx when r = 10.1 cm follows. The other three tables are similar. 
 

 A B C D 
1 mu_0= 1.26E−06 N/A^2  
2 r_1= 0.1 m  
3 I= 1 A  
4 r_2= 0.101 m  
5 r_2= 0.11 m  
6 r_2= 0.15 m  
7 r_2= 0.2 m  
8     
9 x B_1 B_2 B_x 
10 0.00 6.30E−06 6.24E−06 6.24E−04 
11 0.01 6.21E−06 6.15E−06 5.97E−04 
12 0.02 5.94E−06 5.89E−06 5.21E−04 
13 0.03 5.54E−06 5.49E−06 4.14E−04 
14 0.04 5.04E−06 5.01E−06 2.95E−04 
15 0.05 4.51E−06 4.49E−06 1.81E−04 
     

56 0.46 6.04E−08 6.15E−08 −1.13E−05
57 0.47 5.68E−08 5.78E−08 −1.07E−05
58 0.48 5.34E−08 5.45E−08 −1.01E−05
59 0.49 5.04E−08 5.13E−08 −9.51E−06
60 0.50 4.75E−08 4.84E−08 −8.99E−06 

 
The following graph shows B(x) for r = 10.1 cm, 11 cm, 15 cm, and 20 cm. 
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40 •••  
Picture the Problem We can approximate B(x) by using the result from Problem 39 for 

the field due to a single coil of radius r and evaluating ( ) r
r
BxB ∆
∂
∂

≈ at 

r = r1. 
 
The magnetic field at a distance x on 
the axis of a coil of radius r is given 
by: 
 

( ) ( ) 2322

2
0 2

4 rx
rIxB

+
=

π
π

µ
 

 
Express B(x) in terms of the rate of 
change of B with respect to r: 
 

( ) r
r
BxB ∆
∂
∂

≈                  (1) 

Evaluate the partial derivative of B with respect to r: 
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( ) ( )
( ) ( ) ( )[ ]

( )

( ) ( ) ( ) ( )

( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

−+
+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

+−+
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

+−+
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

⎥⎦
⎤

⎢⎣
⎡ +−+

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

+
∂
∂

−
∂
∂

+
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+∂
∂

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+∂
∂

2522

32
0

322

222
2/122

0

322

2/12222/322

0

322

2/12222/322

0

32
1

2

2/12222/322

0

32
1

2

2/322222/322

0

2/322

2
0

2/322

2
0

2
2

2
32

2
32

2
3

2
2
324

4

22

4

2
4

2
4

rx
rrxI

rx
rrxrxIr

rx
rxrrxIr

rx

rxrrx
Ir

rx

rrxrrrx
I

rx

rx
r

rr
r

rxI

rx
r

r
I

rx
rI

r

µ

µ

µ

µ

ππ

π
µ

ππ

π
µ

π
π

µπ
π

µ

 

 
Evaluate xB ∂∂ at r = r1 to obtain: 
 ( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

−
=

∂
∂

=
252

1
2

3
11

2
0 2
2

1 rx
rrxI

r
B

rr

µ
 

 
Substitute in equation (1) to obtain: 

( ) ( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

−
⎟
⎠
⎞

⎜
⎝
⎛ ∆

≈ 252
1

2

3
11

2
0 2
2 rx

rrxrIxB µ
 

 
Remarks: This solution shows that the field due to two coils separated by ∆r can be 
approximated by the given expression. 
 
41 ••• 

Picture the Problem We can factor x from the denominator of the equation from 

Problem 40 to show that ⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛ ∆

≈ 3
10 2

2
)(

x
rrIxB µ

. 

From Problem 40: 
( ) ( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

−
⎟
⎠
⎞

⎜
⎝
⎛ ∆

≈ 252
1

2

3
11

2
0 2
2 rx

rrxrIxB µ
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Factor x2 from the denominator of 
the expression to obtain: 
 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
⎟
⎠
⎞

⎜
⎝
⎛ ∆

≈ 25

2

2
15

3
1

2
10

1

2
2

)(

x
rx

rxrrIxB µ
 

 
For x >> r1: 

5

2/5

2

2
5 11 x

x
r

x ≈⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+  

 
Substitute and simplify to obtain: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛ ∆

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛ ∆

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟
⎠
⎞

⎜
⎝
⎛ ∆

≈

5

3
1

3
10

5

3
1

5

2
10

5

3
1

2
10

2
2

2
2

2
2

)(

x
r

x
rrI

x
r

x
xrrI

x
rxrrIxB

µ

µ

µ

 

 
For x >> r: 
 ⎟

⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛ ∆

≈ 3
10 2

2
)(

x
rrIxB µ

 

 
The spreadsheet-generated graph that follows provides a comparison of the exact and 
approximate fields. Note that the two solutions agree for large values of x. 
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Straight-Line Current Segments 
 
42 •  
Picture the Problem The magnetic field due to the current in a long straight wire is given 

by 
R
IB 2

4
0

π
µ

= where I is the current in the wire and R is the distance from the wire. 

 
Express the magnetic field due to a 
long straight wire: 
 

R
IB 2

4
0

π
µ

=  

Substitute numerical values to 
obtain: 

( ) ( )

R

R
B

mT1000.2

A102m/AT10

6

7

⋅×
=

⋅=

−

−

 

 
(a) Evaluate B at R = 10 cm: ( ) T0.20

m1.0
mT1000.2cm10

6

µ=
⋅×

=
−

B

(b) Evaluate B at R = 50 cm: ( ) T00.4
m5.0

mT1000.2cm50
6

µ=
⋅×

=
−

B

(c) Evaluate B at R = 2 m: ( ) T00.1
m2

mT1000.2m2
6

µ=
⋅×

=
−

B  

Problems 43 to 48 refer to Figure 27-45, which shows two long straight wires in the xy 
plane and parallel to the x axis. One wire is at y = −6 cm and the other is at y = +6 cm. 
The current in each wire is 20 A. 

 
Figure 27-45 Problems 43-48 

 
*43 •  
Picture the Problem Let + denote the wire (and current) at y = +6 cm and − the wire (and 

current) at y = −6 cm. We can use 
R
IB 2

4
0

π
µ

= to find the magnetic field due to each of 

the current carrying wires and superimpose the magnetic fields due to the currents in the 
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wires to find B at the given points on the y axis. We can apply the right-hand rule to find 
the direction of each of the fields and, hence, of B

r
. 

 
(a) Express the resultant magnetic 
field at y = −3 cm: 
 

( ) ( ) ( )cm3cm3cm3 −+−=− −+ BBB
rrr

 

Find the magnitudes of the magnetic 
fields at y = −3 cm due to each wire: 
 

( ) ( ) ( )

T4.44
m09.0
A202m/AT10cm3 7

µ=

⋅=− −
+B

 

and 

( ) ( ) ( )

T133
m03.0
A202m/AT10cm3 7

µ=

⋅=− −
−B

 

 
Apply the right-hand rule to find the 
directions of +B

r
and −B

r
: 

 

( ) ( )kB ˆT4.44cm3 µ=−+

r
 

and 
( ) ( )kB ˆT133cm3 µ−=−−

r
 

 
Substitute to obtain: 
 

( ) ( ) ( )
( )k

kkB
ˆT6.88

ˆT133ˆT4.44cm3

µ

µµ

−=

−=−
r

 

 
(b) Express the resultant magnetic 
field at y = 0: 
 

( ) ( ) ( )000 −+ += BBB
rrr

 

Because ( ) ( )00 −+ −= BB
rr

: ( ) 00 =B
r

 

 
(c) Proceed as in (a) to obtain: 
 

( ) ( )kB ˆT133cm3 µ=+

r
, 

( ) ( )kB ˆT4.44cm3 µ−=−

r
, 

and 
( ) ( ) ( )

( )k
kkB

ˆT6.88

ˆT4.44ˆT133cm3

µ

µµ

−=

−=
r

 

 
(d) Proceed as in (a) with y = 9 cm 
to obtain: 

( ) ( )kB ˆT133cm9 µ−=+

r
, 

( ) ( )kB ˆT7.26cm9 µ−=−

r
, 

and 
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( ) ( ) ( )
( )k

kkB
ˆT160

ˆT7.26ˆT133cm9

µ

µµ

−=

−−=
r

 

 
44 ••  
Picture the Problem The diagram shows the two wires with the currents flowing in the 
negative x direction. We can use the expression for B due to a long, straight wire to 
express the difference of the fields due to the two currents. We’ll denote each field by the 
subscript identifying the position of each wire. 

 
 
 
The field due to the current in the 
wire located at y = 6 cm is: 
 

y
IB
−

=
m06.0

2
4

0
6 π

µ
 

The field due to the current in the 
wire located at y = −6 cm is: 
 

y
IB
+

=− m06.0
2

4
0

6 π
µ

 

The resultant field Bz is the difference between B6 and B−6: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
−

=
−

−
−

=−= − yy
I

y
I

y
IBBBz m06.0

1
m06.0
1

4m06.04m06.04
000

66 π
µ

π
µ

π
µ

 

 
The following graph of Bz as a function of y was plotted using a spreadsheet program: 
 



Chapter 27    
 

 

552 

-4

-2

0

2

4

-0.10 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 0.10

y  (m)

B z
 (G

)

 
 
45 •  
Picture the Problem Let + denote the wire (and current) at y = +6 cm and − the wire (and 

current) at y = −6 cm. We can use 
R
IB 2

4
0

π
µ

= to find the magnetic field due to each of 

the current carrying wires and superimpose the magnetic fields due to the currents in the 
wires to find B at the given points on the y axis. We can apply the right-hand rule to find 
the direction of each of the fields and, hence, of .B

r
 

 
(a) Express the resultant magnetic 
field at y = −3 cm: 
 

( ) ( ) ( )cm3cm3cm3 −+−=− −+ BBB
rrr

 

Find the magnitudes of the magnetic 
fields at y = −3 cm due to each wire: 
 

( ) ( ) ( )

T4.44
m09.0
A202m/AT10cm3 7

µ=

⋅=− −
+B

 

and 

( ) ( ) ( )

T133
m03.0
A202m/AT10cm3 7

µ=

⋅=− −
−B

 

 
Apply the right-hand rule to find the 
directions of +B

r
and −B

r
: 

 

( ) ( )kB ˆT4.44cm3 µ−=−+

r
 

and 
( ) ( )kB ˆT133cm3 µ−=−−

r
 

 
Substitute to obtain: 
 

( ) ( ) ( )
( )k

kkB
ˆT177

ˆT133ˆT4.44cm3

µ

µµ

−=

−−=−
r
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(b) Express the resultant magnetic 
field at y = 0: 
 

( ) ( ) ( )000 −+ += BBB
rrr

 

Find the magnitudes of the magnetic 
fields at y = 0 cm due to each wire: 
 

( ) ( ) ( )

T7.66
m06.0
A202m/AT100 7

µ=

⋅= −
+B

 

and 

( ) ( ) ( )

T7.66
m06.0
A202m/AT100 7

µ=

⋅= −
−B

 

 
Apply the right-hand rule to find the 
directions of +B

r
and −B

r
: 

 

( ) ( )kB ˆT7.660 µ−=+

r
 

and 
( ) ( )kB ˆT7.660 µ−=−

r
 

 
Substitute to obtain: 
 

( ) ( ) ( )
( )k

kkB
ˆT133

ˆT7.66ˆT7.660

µ

µµ

−=

−−=
r

 

 
(c) Proceed as in (a) with  
y = +3 cm to obtain: 
 

( ) ( )kB ˆT133cm3 µ−=+

r
, 

( ) ( )kB ˆT4.44cm3 µ−=−

r
, 

and 
( ) ( ) ( )

( )k
kkB

ˆT177

ˆT4.44ˆT133cm3

µ

µµ

−=

−−=
r

 

 
(d) Proceed as in (a) with  
y = +9 cm to obtain: 

( ) ( )kB ˆT133cm9 µ=+

r
, 

( ) ( )kB ˆT7.26cm9 µ−=−

r
, 

and 
( ) ( ) ( )

( )k
kkB

ˆT106

ˆT7.26ˆT133cm9

µ

µµ

=

−=
r

 

 
46 ••  
Picture the Problem The diagram shows the two wires with the currents flowing in the 
negative x direction. We can use the expression for B due to a long, straight wire to 
express the difference of the fields due to the two currents. We’ll denote each field by the 
subscript identifying the position of each wire. 
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The field due to the current in the 
wire located at y = 6 cm is: 
 

y
IB
−

=
m06.0

2
4

0
6 π

µ
 

The field due to the current in the 
wire located at y = −6 cm is: 
 

y
IB
+

=− m06.0
2

4
0

6 π
µ

 

The resultant field Bz is the sum of B6 and B−6: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
−

=
−

+
−

=−= − yy
I

y
I

y
IBBBz m06.0

1
m06.0
1

4m06.04m06.04
000

66 π
µ

π
µ

π
µ

 

 
The following graph of Bz as a function of y was plotted using a spreadsheet program: 
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47 •  
Picture the Problem Let + denote the wire (and current) at y = +6 cm and − the wire 

(and current) at y = −6 cm. We can use 
R
IB 2

4
0

π
µ

= to find the magnetic field due to each 

of the current carrying wires and superimpose the magnetic fields due to the currents in 
the wires to find B at the given points on the z axis. 
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(a) Apply the right-hand rule to 
show that, for the currents parallel 
and in the negative x direction, the 
directions of the fields are as shown 
to the right:  

 
 

Express the magnitudes of the 
magnetic fields at z = +8 cm due to 
the current-carrying wires at  
y = −6 cm and y = +6 cm: 

( )
( )

( ) ( )
T0.40

m08.0m06.0

A202
m/AT10

22

7

µ=

+
×

⋅== −
+− zz BB

 

 
Noting that the z components add to 
zero, express the resultant magnetic 
field at z = +8 cm: 
 

( ) ( )
( )( )
( ) j

j

jB

ˆT0.64

ˆ8.0T0.402

ˆsinT0.402cm8

µ

µ

θµ

=

=

==z
r

 

 
(b) Apply the right-hand rule to 
show that, for the currents 
antiparallel with the current in the 
wire at y = −6 cm in the negative x 
direction, the directions of the fields 
are as shown to the right: 
  
Noting that the y components add to 
zero, express the resultant magnetic 
field at z = +8 cm: 
 

( ) ( )
( )( )
( )k

k

kB

ˆT0.48

ˆ6.0T0.402

ˆcosT0.402cm8

µ

µ

θµ

−=

−=

−==z
r

 

 
48 •  
Picture the Problem Let + denote the wire (and current) at y = +6 cm and − the wire (and 
current) at y = −6 cm. The forces per unit length the wires exert on each other are action 
and reaction forces and hence are equal in magnitude. We can use BIF l= to express the 

force on either wire and
R
IB 2

4
0

π
µ

= to express the magnetic field at the location of either 

wire due to the current in the other. 
 

Express the force exerted on either 
wire: 

BIF l=  



Chapter 27    
 

 

556 

 
Express the magnetic field at either 
location due to the current in the 
wire at the other location: 
 

R
IB 2

4
0

π
µ

=  

Substitute to obtain: 
R
I

R
I

R
IIF

2
0

2
00

24
22

4 π
µ

π
µ

π
µ ll

l ==⎟
⎠
⎞

⎜
⎝
⎛=  

 
Divide both sides of the equation by 
l to obtain: 
 

R
IF 2

0

4
2
π
µ

=
l

 

Substitute numerical values and 
evaluate F/ l : 

( )( )

N/m667

m12.0
A20m/AT102 27

µ=

⋅
=

−

l

F
 

 
49 •  

Picture the Problem We can use 
R
IF 2

0

4
2
π
µ

=
l

to relate the force per unit length each 

current-carrying wire exerts on the other to their common current. 
 
(a) el.antiparall are they repel, currents  theBecause  

 
(b)Express the force per unit length 
experienced by each wire: 
 

R
IF 2

0

4
2
π
µ

=
l

 

Solve for I: 

l

FRI
02

4
µ
π

=  

 
Substitute numerical values and 
evaluate I: 

( )
( )( )

mA3.39

nN/m6.3
m/AT102

cm6.8
7

=

⋅
= −I

 

  
50 ••  
Picture the Problem Note that the current segments a-b and e-f do not contribute to the 
magnetic field at point P. The current in the segments b-c, c-d, and d-e result in a 
magnetic field at P that points into the plane of the paper. Note that the angles bPc and 
ePd are 45° and use the expression for B due to a straight wire segment to find the 
contributions to the field at P of segments bc, cd, and de. 
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Express the resultant magnetic field 
at P: 
 

decdbc BBBB ++=  

Express the magnetic field due to a 
straight line segment: 
 

( )21
0 sinsin

4
θθ

π
µ

+=
R
IB             (1) 

Use equation (1) to express Bbc and 
Bde: 

( )

°=

°+°=

45sin
4

0sin45sin
4

0

0

R
I
R
IBbc

π
µ
π
µ

 

 
Use equation (1) to express Bcd: ( )

°=

°+°=

45sin
4

2

45sin45sin
4

0

0

R
I

R
IBcd

π
µ
π
µ

 

 
Substitute to obtain: 

°=

°+

°+°=

45sin
4

4

45sin
4

45sin
4

245sin
4

0

0

00

R
I

R
I

R
I

R
I

B

π
µ
π
µ

π
µ

π
µ

 

 
Substitute numerical values and 
evaluate B: 

( )

T226

45sin
m01.0

A8m/AT104 7

µ=

°⋅= −B
 

 
51 ••  
Picture the Problem The forces acting on the wire are the upward magnetic force FB 
and the downward gravitational force mg, where m is the mass of the wire. We can use a 
condition for translational equilibrium and the expression for the force per unit length 
between parallel current-carrying wires to relate the required current to the mass of the 
wire, its length, and the separation of the two wires. 

 
Apply 0=∑ yF to the floating 0=− mgFB  
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wire to obtain: 
 
Express the repulsive force acting 
on the upper wire: 
 

R
IFB
l2

0

4
2

π
µ

=  

Substitute to obtain: 
 

0
4

2
2

0 =−mg
R

I l

π
µ

 

 
Solve for I: 

l02
4
µ
πmgRI =  

 
Substitute numerical values and evaluate I: 
 

( )( )( )
( )( ) A2.80

m16.0m/AT102
m105.1m/s81.9kg1014

7

323

=
⋅

××
= −

−−

I  

 
*52 ••  
Picture the Problem Note that the forces on the upper wire are away from and directed 
along the lines to the lower wire and that their horizontal components cancel. We can 

use 
R
IF 2

0

4
2

π
µ

=
l

to find the resultant force in the upward direction (the y direction) 

acting on the top wire. In part (b) we can use the right-hand rule to determine the 
directions of the magnetic fields at the upper wire due to the currents in the two lower 

wires and use 
R
IB 2

4
0

π
µ

= to find the magnitude of the resultant field due to these 

currents. 
 

(a) Express the force per unit length 
each of the lower wires exerts on the 
upper wire: 
 

R
IF 2

0

4
2

π
µ

=
l

 

Noting that the horizontal 
components add up to zero, express 
the net upward force per unit length 
on the upper wire: 
 

°=

°+

°=∑

30cos
4

4

30cos
4

2

30cos
4

2

2
0

2
0

2
0

R
I

R
I

R
IFy

π
µ

π
µ

π
µ

l
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Substitute numerical values and 

evaluate∑
l

yF
: 

( )( )

N/m1079.7

30cos
m1.0

A15m/AT104

4

2
7

−

−

×=

°⋅=∑
l

yF

 

 
(b) Noting, from the geometry of the 
wires, the magnetic field vectors 
both are at an angle of 30° with the 
horizontal and that their y 
components cancel, express the 
resultant magnetic field: 
  

iB ˆ30cos2
4

2 0 °=
R
I

π
µr

 

Substitute numerical values and 
evaluate B: 

( ) ( )

T0.52

30cos
m1.0
A152m/AT102 7

µ=

°⋅= −B
 

 
53 ••  
Picture the Problem Note that the forces on the upper wire are away from the lower left 
hand wire and toward the lower right hand wire and that, due to symmetry, their vertical 

components cancel. We can use 
R
IF 2

0

4
2

π
µ

=
l

to find the resultant force in the x 

direction (to the right) acting on the top wire. In part (b) we can use the right-hand rule 
to determine the directions of the magnetic fields at the upper wire due to the currents in 

the two lower wires and use 
R
IB 2

4
0

π
µ

= to find the magnitude of the resultant field due 

to these currents. 
 

(a) Express the force per unit length 
each of the lower wires exerts on the 
upper wire: 
 

R
IF 2

0

4
2

π
µ

=
l

 

Noting that the vertical components 
add up to zero, express the net force 
per unit length acting to the right on 
the upper wire: 
 

°=

°+

°=∑

60cos
4

4

60cos
4

2

60cos
4

2

2
0

2
0

2
0

R
I

R
I

R
IFx

π
µ

π
µ

π
µ

l
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Substitute numerical values and 

evaluate∑
l

xF
: 

( )( )

N/m1050.4

60cos
m1.0

A15m/AT104

4

2
7

−

−

×=

°⋅=∑
l

xF
 

 
(b) Noting, from the geometry of the 
wires, that the magnetic field vectors 
both are at an angle of 30° with the 
horizontal and that their x 
components cancel, express the 
resultant magnetic field: 
  

jB ˆ30sin2
4

2 0 °−=
R
I

π
µr

 

Substitute numerical values and 
evaluate B: 

( ) ( )

T0.30

30sin
m1.0
A152m/AT102 7

µ=

°⋅= −B
 

 
54 ••  
Picture the Problem Let the numeral 1 denote the current flowing in the positive x 
direction and the magnetic field resulting from it and the numeral 2 denote the current 
flowing in the positive y direction and the magnetic field resulting from it. We can 

express the magnetic field anywhere in the xy plane using 
R
IB 2

4
0

π
µ

= and the right-hand 

rule and then impose the condition that 0=B
r

to determine the set of points that satisfy 
this condition. 

 
Express the resultant magnetic field 
due to the two current-carrying 
wires: 
 

21 BBB
rrr

+=  

Express the magnetic field due to 
the current flowing in the positive x 
direction: 
 

kB ˆ2
4

10
1 y

I
π
µ

=
r

 

Express the magnetic field due to 
the current flowing in the positive y 
direction: 
 

kB ˆ2
4

20
2 x

I
π
µ

−=
r

 

Substitute to obtain: 
 

k

kkB

ˆ2
4

2
4

ˆ2
4

ˆ2
4

00

00

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−=

x
I

y
I

x
I

y
I

π
µ

π
µ

π
µ

π
µr

 



Sources of the Magnetic Field 
 

 

561

because I = I1 = I2. 
 

For 0=B
r

: 02
4

2
4

00 =−
x
I

y
I

π
µ

π
µ

⇒ x = y. 

axis.  the
 with45 of anglean  makes

 thatline a along 0   Hence,

x
°

=B
r

 

   
55 ••  
Picture the Problem Let the numeral 1 denote the current flowing along the positive z 
axis and the magnetic field resulting from it and the numeral 2 denote the current flowing 
in the wire located at x = 10 cm and the magnetic field resulting from it. We can express 

the magnetic field anywhere in the xy plane using 
R
IB 2

4
0

π
µ

= and the right-hand rule 

and then impose the condition that 0=B
r

to determine the current that satisfies this 
condition. 

 
(a) Express the resultant magnetic 
field due to the two current-carrying 
wires: 
 

21 BBB
rrr

+=  

Express the magnetic field at  
x = 2 cm due to the current flowing 
in the positive z direction: 
 

( ) jB ˆ
cm2

2
4

cm2 10
1

Ix
π
µ

==
r

 

Express the magnetic field at  
x = 2 cm due to the current flowing 
in the wire at x = 10 cm: 
 

( ) jB ˆ
cm8

2
4

cm2 20
2

Ix
π
µ

−==
r

 

Substitute to obtain: 
 

j

jjB

ˆ
cm8

2
4cm2

2
4

ˆ
cm8

2
4

ˆ
cm2

2
4

2010

2010

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−=

II

II

π
µ

π
µ

π
µ

π
µr

 

 
For 0=B

r
: 0

cm8
2

4cm2
2

4
2010 =−

II
π
µ

π
µ

 

or 

0
cm8cm2

21 =−
II
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Solve for and evaluate I2: ( ) A0.80A2044 12 === II  

 
(b) Express the magnetic field at  
x = 5 cm: 

( ) ( ) j

jjB

ˆ
cm54

2

ˆ
cm5

2
4

ˆ
cm5

2
4

21
0

2010

II

II

−=

−=

π
µ

π
µ

π
µr

 

 
Substitute numerical values and 
evaluate ( )cm5=xB

r
: 

( )( )

( ) j

jB

ˆmT240.0

ˆA80A20
cm5

m/AT102 7

−=

−
⋅

=
−r

 

 
56 ••  
Picture the Problem Choose a coordinate system with its origin at the lower left-hand 
corner of the square, the positive x axis to the right and the positive y axis upward. We 

can use 
R
IB 2

4
0

π
µ

=  and the right-hand rule to find the magnitude and direction of the 

magnetic field at the unoccupied corner due to each of the currents, and superimpose 
these fields to find the resultant field. 

 
(a) Express the resultant magnetic 
field at the unoccupied corner: 
 

321 BBBB
rrrr

++=                       (1) 

When all the currents are into the 
paper their magnetic fields at the 
unoccupied corner are as shown to 
the right: 
  

Express the magnetic field at the 
unoccupied corner due to the current 
I1: 
 

jB ˆ2
4

0
1 L

I
π
µ

−=
r

 

 

Express the magnetic field at the 
unoccupied corner due to the current 
I2: 

( )

( )ji

jiB

ˆˆ
2
2

4

ˆˆ45cos
2

2
4

0

0
2

−=

−°=

L
I

L
I

π
µ
π
µr

 

 
Express the magnetic field at the 
unoccupied corner due to the current 
I3: 
 

iB ˆ2
4

0
3 L

I
π
µ

=
r
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Substitute in equation (1) and simplify to obtain: 
 

( ) ( )

[ ]jiji

ijijijijB

ˆˆ
4
3ˆ

2
11ˆ

2
112

4

ˆˆˆ
2
1ˆ2

4
ˆ2

4
ˆˆ

2
2

4
ˆ2

4

00

0000

−=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−+⎟

⎠
⎞

⎜
⎝
⎛ +=

⎟
⎠
⎞

⎜
⎝
⎛ +−+−=+−+−=

L
I

L
I

L
I

L
I

L
I

L
I

π
µ

π
µ

π
µ

π
µ

π
µ

π
µr

 

 
(b) When I2 is out of the paper the 
magnetic fields at the unoccupied 
corner are as shown to the right: 
 

 
Express the magnetic field at the 
unoccupied corner due to the current 
I2: 

( )

( )ji

jiB

ˆˆ
2
2

4

ˆˆ45cos
2

2
4

0

0
2

+−=

+−°=

L
I

L
I

π
µ
π
µr

 

 
Substitute in equation (1) and simplify to obtain: 
 

( ) ( )

[ ]jijiji

ijijijijB

ˆˆ
4

ˆ
2
1ˆ

2
12

4
ˆ

2
11ˆ

2
112

4

ˆˆˆ
2
1ˆ2

4
ˆ2

4
ˆˆ

2
2

4
ˆ2

4

000

0000

−=⎥⎦
⎤

⎢⎣
⎡ −=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−+⎟

⎠
⎞

⎜
⎝
⎛ −=

⎟
⎠
⎞

⎜
⎝
⎛ ++−+−=++−+−=

L
I

L
I

L
I

L
I

L
I

L
I

L
I

π
µ

π
µ

π
µ

π
µ

π
µ

π
µ

π
µr

 

 
(c) When I1 and I2 are in and I3 is 
out of the paper the magnetic fields 
at the unoccupied corner are as 
shown to the right: 
  

From (a) or (b) we have: jB ˆ2
4

0
1 L

I
π
µ

−=
r

 

 
From (a) we have: 
 

( )

( )ji

jiB

ˆˆ
2
2

4

ˆˆ45cos
2

2
4

0

0
2

−=

−°=

L
I

L
I

π
µ
π
µr

 

 
Express the magnetic field at the 
unoccupied corner due to the current 
I3: 

iB ˆ2
4

0
3 L

I
π
µ

−=
r
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Substitute in equation (1) and simplify to obtain: 
 

( ) ( )

[ ]jiji

ijijijijB

ˆ3ˆ
4

ˆ
2
11ˆ

2
112

4

ˆˆˆ
2
1ˆ2

4
ˆ2

4
ˆˆ

2
2

4
ˆ2

4

00

0000

−−=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−+⎟

⎠
⎞

⎜
⎝
⎛ +−=

⎟
⎠
⎞

⎜
⎝
⎛ −−+−=−−+−=

L
I

L
I

L
I

L
I

L
I

L
I

π
µ

π
µ

π
µ

π
µ

π
µ

π
µr

 

 
 
*57 ••  
Picture the Problem Choose a coordinate system with its origin at the lower left-hand 
corner of the square, the positive x axis to the right and the positive y axis upward. Let 
the numeral 1 denote the wire and current in the upper left-hand corner of the square, the 
numeral 2 the wire and current in the lower left-hand corner (at the origin) of the square, 
and the numeral 3 the wire and current in the lower right-hand corner of the square. We 

can use 
R
IB 2

4
0

π
µ

=  and the right-hand rule to find the magnitude and direction of the 

magnetic field at, say, the upper right-hand corner due to each of the currents, 
superimpose these fields to find the resultant field, and then use BIF l= to find the 
force per unit length on the wire. 

 
(a) Express the resultant magnetic 
field at the upper right-hand corner: 
 

321 BBBB
rrrr

++=                       (1) 

When all the currents are into the 
paper their magnetic fields at the 
upper right-hand corner are as 
shown to the right: 
  

Express the magnetic field due to 
the current I1: 

jB ˆ2
4

0
1 a

I
π
µ

−=
r

 

 
Express the magnetic field due to 
the current I2: 

( )

( )ji

jiB

ˆˆ
2
2

4

ˆˆ45cos
2

2
4

0

0
2

−=

−°=

a
I

a
I

π
µ
π
µr

 

 
Express the magnetic field due to 
the current I3: 

iB ˆ2
4

0
3 a

I
π
µ

=
r

 

 
Substitute in equation (1) and simplify to obtain: 
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( ) ( )

[ ]jiji

ijijijijB

ˆˆ
4
3ˆ

2
11ˆ

2
112

4

ˆˆˆ
2
1ˆ2

4
ˆ2

4
ˆˆ

2
2

4
ˆ2

4

00

0000

−=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−+⎟

⎠
⎞

⎜
⎝
⎛ +=

⎟
⎠
⎞

⎜
⎝
⎛ +−+−=+−+−=

a
I

a
I

a
I

a
I

a
I

a
I

π
µ

π
µ

π
µ

π
µ

π
µ

π
µr

 

 
Using the expression for the 
magnetic force on a current-
carrying wire, express the force per 
unit length on the wire at the upper 
right-hand corner: 
 

BIF
=

l
                                     (2) 

Substitute to obtain: [ ]jiF ˆˆ
4

3 2
0 −=
a
I

π
µ

l

r

 

and 

a
I

a
I

a
IF

π
µ

π
µ

π
µ

4
23

4
3

4
3

2
0

22
0

22
0

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

l
 

 
(b) When the current in the upper 
right-hand corner of the square is 
out of the page, and the currents in 
the wires at adjacent corners are 
oppositely directed, the magnetic 
fields at the upper right-hand are as 
shown to the right: 
 

 
 

 

Express the magnetic field at the 
upper right-hand corner due to the 
current I2: 

( )

( )ji

jiB

ˆˆ
2
2

4

ˆˆ45cos
2

2
4

0

0
2

+−=

+−°=

a
I

a
I

π
µ
π
µr

 

 
Using 1B

r
and 3B

r
from (a), substitute in equation (1) and simplify to obtain: 

 

( ) ( )

[ ]jijiji

ijijijijB

ˆˆ
4

ˆ
2
1ˆ

2
12

4
ˆ

2
11ˆ

2
112

4

ˆˆˆ
2
1ˆ2

4
ˆ2

4
ˆˆ

2
2

4
ˆ2

4

000

0000

−=⎥⎦
⎤

⎢⎣
⎡ −=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−+⎟

⎠
⎞

⎜
⎝
⎛ −=

⎟
⎠
⎞

⎜
⎝
⎛ ++−+−=++−+−=

a
I

a
I

a
I

a
I

a
I

a
I

a
I

π
µ

π
µ

π
µ

π
µ

π
µ

π
µ

π
µr
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Substitute in equation (2) to obtain: [ ]jiF ˆˆ
4

2
0 −=

a
I
π

µ
l

r

 

and 

a
I

a
I

a
IF

π
µ

π
µ

π
µ

4
2

44
2

0

22
0

22
0

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

l
 

 
58 ••  
Picture the Problem The configuration is 
shown in the adjacent figure. Here the z 
axis points out of the plane of the paper, 
the x axis points to the right, the y axis 

points up. We can use 
R
IB 2

4
0

π
µ

=  and the 

right-hand rule to find the magnetic field 
due to the current in each wire and add 
these magnetic fields vectorially to find the 
resultant field.  

 
Express the resultant magnetic field 
on the z axis: 
 

54321 BBBBBB
rrrrrr

++++=  

 

1B
r

is given by: 

 

jB ˆ
1 B=
r

 

2B
r

is given by: 

 

( ) ( ) jiB ˆ45sinˆ45cos2 °+°= BB
r

 

3B
r

is given by: 

 

iB ˆ
3 B=
r

 

4B
r

is given by: 

 

( ) ( ) jiB ˆ45sinˆ45cos4 °−°= BB
r

 

5B
r

is given by: 

 

jB ˆ
5 B−=
r

 

Substitute for 1B
r

, 2B
r

, 3B
r

, 4B
r

, and 5B
r

and simplify to obtain: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) iiiii

jjiijijB
ˆ21ˆ45cos2ˆ45cosˆˆ45cos

ˆˆ45sinˆ45cosˆˆ45sinˆ45cosˆ

BBBBBB

BBBBBBB

+=°+=°++°=

−°−°++°+°+=
r
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Express B due to each current at  
z = 0: 
 

R
IB 2

4
0

π
µ

=  

Substitute to obtain: ( ) iB ˆ
2

21 0

R
I

π
µ

+=
r

 

 

B
r

Due to a Current in a Solenoid 
 
59 •  

Picture the Problem We can use ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
+

+
=

222202
1

Ra
a

Rb
bnIBx µ  to find B at 

any point on the axis of the solenoid. Note that the number of turns per unit length for 
this solenoid is 300 turns/0.3 m = 1000 turns/m. 

 
Express the magnetic field at any 
point on the axis of the solenoid: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
+

+
=

222202
1

Ra
a

Rb
bnIBx µ  

Substitute numerical values to obtain: 
 

( )( )( )
( ) ( )

( )
( ) ( ) ⎟

⎟

⎠

⎞

+
+⎜

⎜

⎝

⎛

+
=

⎟
⎟

⎠

⎞

+
+⎜

⎜

⎝

⎛

+
⋅×= −

2222

2222

7
2
1

m012.0m012.0
mT63.1

m012.0m012.0
A6.21000m/AT104

a

a

b

b

a

a

b

bBx π

 

 
(a) Evaluate Bx for a = b = 0.15 m: 

 

( )
( ) ( ) ( ) ( )

mT25.3
m012.0m15.0

m15.0

m012.0m15.0

m15.0mT63.1
2222

=⎟
⎟

⎠

⎞

+
+⎜

⎜

⎝

⎛

+
=xB  

 
(b) Evaluate Bx for a = 0.1 m and b = 0.2 m: 
 

( ) ( )
( ) ( ) ( ) ( )

mT25.3

m012.0m1.0

m1.0

m012.0m2.0

m2.0mT63.1m2.0
2222

=

⎟
⎟

⎠

⎞

+
+⎜

⎜

⎝

⎛

+
=xB

 

 
(c) Evaluate Bx (= Bend) for a = 0 and b = 0.3 m: 
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( )
( ) ( )

mT63.1
m012.0m3.0

m3.0mT63.1
22

=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
=xB  

Note that center2
1

end BB = . 

 
*60 •  
Picture the Problem We can use nIBx 0µ= to find the approximate magnetic field on 

the axis and inside the solenoid. 
 

Express Bx as a function of n and I: 
 

nIBx 0µ=  

Substitute numerical values and 
evaluate Bx: 
 

( ) ( )

mT698.0

A5.2
m7.2

600N/A104 27

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×= −πxB

 

 
61 •••  
Picture the Problem The solenoid, 
extending from 2l−=x to 2l=x , with 

the origin at its center, is shown in the 
diagram. To find the field at the point 
whose coordinate is x outside the solenoid 
we can determine the field at x due to an 
infinitesimal segment of the solenoid of 
width dx′ at x′, and then integrate from 

2l−=x  to 2l=x . The segment may 

be considered as a coil ndx′ carrying a 
current I. 

 
 
 

 
 

 
Express the field dB at the axial 
point whose coordinate is x: ( )[ ] dx'

Rxx

IRdBx 2322

2
0

'

2
4 +−

=
π

π
µ

 

 
Integrate dBx from 2l−=x  to 2l=x to obtain: 
 

( )[ ] ( ) ( ) ⎟
⎟

⎠

⎞

+−

−
−⎜

⎜

⎝

⎛

++

+
=

+−
= ∫

−
2222

0
2

2
2322

2
0

2

2

2

2
22 Rx

x

Rx

xnI

Rx'x

dx'nIRBx
l

l

l

l
l

l

µµ
 

 
Refer to the diagram to express 
cosθ1 and cosθ2: ( )[ ] 212

2
12

2
1

1cos
l

l

++

+
=

xR

xθ  

and 
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( )[ ] 212
2
12

2
1

2cos
l

l

−+

−
=

xR

xθ  

 
Substitute to obtain: ( )2102

1 coscos θθµ −= nIB  

 
62 •••  
Picture the Problem We can use Equation 27-35, together with the small angle 
approximation for the cosine and tangent functions, to show that θ1 and θ2 are as given 
and that B is given by Equation 27-37. 

 
(a) The angles θ1 and θ2 are shown 
in the diagram. Note that                     

( )2tan 1 l+= xRθ  and       
( )2tan 2 l−= xRθ . 

 
 

Apply the small angle 
approximation tanθ ≈ θ to obtain: 
 

l2
11 +

≈
x

Rθ  

and 

l2
12 −

≈
x

Rθ  

 
(b) Express the magnetic field 
outside the solenoid: 
 

( )2102
1 coscos θθµ −= nIB  

Apply the small angle 
approximation for the cosine 
function to obtain: 

2

2
12

1
1 1cos ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−=
lx

Rθ  

and 
2

2
12

1
2 1cos ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−=
lx

Rθ  

 
Substitute and simplify to obtain: 
 

( ) ( )⎢
⎢
⎣

⎡
⎥
⎦

⎤

+
−

−
=

⎥
⎥
⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+−
⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−= 2
2
12

2
1

2
04

1

2

2
12

1

2

2
12

1
02

1 1111
llll xx

nIR
x

R
x

RnIB µµ  

 
Let l2

1
1 −= xr be the distance to 

the near end of the solenoid, 
l2

1
1 += xr  the distance to the far 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 2

2

m
2

1

m0

4 r
q

r
qB

π
µ

 



Chapter 27    
 

 

570 

end, and lµπ == 2RnIqm , where 

µ = nIπR2 is the magnetic moment 
of the solenoid to obtain: 
 
 
Ampère’s Law 
 
*63 •  
Picture the Problem We can apply Ampère’s law to a circle centered on the axis of the 
cylinder and evaluate this expression for r < R and r > R to find B inside and outside the 
cylinder. 

 
Apply Ampère’s law to a circle 
centered on the axis of the cylinder: 
 

CC
Id 0µ=⋅∫ l

rr
B  

Note that, by symmetry, the field is the 
same everywhere on this circle. 
 

Evaluate this expression for  
r < R: 
 

( ) 000inside ==⋅∫ µ
C

dl
rr

B  

Solve for Binside to obtain: 0inside =B  

 
Evaluate this expression for  
r > R: 
 

( ) IRBd
C 0outside 2 µπ ==⋅∫ l

rr
B  

 

Solve for Boutside to obtain: 
R
IB

π
µ
2

0
outside =  

  
64 •  
Picture the Problem We can use Ampère’s law, CC

Id 0µ=⋅∫ l
rr

B , to find the line integral 

∫ ⋅
C

dl
rr

B for each of the three paths. 

 
(a) Evaluate ∫ ⋅

C
dl
rr

B for C1: 

 

( )A80
1

µ=⋅∫C dl
rr

B  

Evaluate ∫ ⋅
C

dl
rr

B for C2: ( ) 0A8A80
2

=−=⋅∫ µ
C

dl
rr

B  

 
Evaluate ∫ ⋅

C
dl
rr

B for C3: ( )A80
1

µ−=⋅∫C dl
rr

B  because the field 

is opposite the direction of integration. 
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(b) 
symmetry. lcylindrica havenot  doesion configuratcurrent  the

 therebecausepoint  general aat   find  toused becan  paths  theof None B
 

 
65 •  
Picture the Problem Let the current in the wire and outer shell be I. We can apply 
Ampère’s law to a circle, concentric with the inner wire, of radius r to find B at points 
between the wire and the shell far from the ends (r < R), and outside the cable (r > R). 

 
(a) Apply Ampère’s law for 
r < R: 

( ) IrBd RrC Rr 02 µπ ==⋅ <<∫ l
rr

B  

 
Solve for Br<R to obtain: 

r
IB Rr π

µ
2

0=<  

 
(b) Apply Ampère’s law for 
r > R: 

( )00µ=⋅∫ >C Rr dl
rr

B  

 
Solve for Br>R to obtain: 0=>RrB  

 
 
66 ••  
Picture the Problem. Let the radius of the wire be a. We can apply Ampère’s law to a 
circle, concentric with the center of the wire, of radius r to find B at various distances 
from the center of the wire. 

 
Express Ampère’s law: 
 

CC
Id 0µ=⋅∫ l

rr
B  

Using the fact that the current is 
uniformly distributed over the cross-
sectional area of the wire, relate the 
current enclosed by a circle of 
radius r to the total current I carried 
by the wire: 
 

22 a
I

r
IC

ππ
=  

or 

2

2

a
rIIC =  

Substitute and evaluate the integral 
to obtain: ( ) I

a
r

rBr 2

2
02

µ
π =  

 
Solve for Br<a: I

a
rB ar 2

0

2π
µ

=<                     (1) 

 
For r ≥ a: 
 

( ) IrBd arC ar 02 µπ ==⋅ ≥≥∫ l
rr

B  
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Solve for Br ≥ a: 
 r

IB ar π
µ
2

0=≥                         (2) 

 
(a) Use equation (1) to evaluate B(0.1 cm): 
 

( ) ( )( )
( )

( ) T1000.8A100
m005.02

m001.0N/A104cm1.0 4
2

27
−

−

×=
×

=
π

πB  

 
(b) Use either equation to evaluate B at the surface of the wire: 
 

( ) ( )( )
( )

( ) T1000.4A100
m005.02

m005.0N/A104cm005.0 3
2

27
−

−

×=
×

=
π

πB  

 
(c) Use equation (2) to evaluate 
B(0.7 cm): 
 

( ) ( )( )
( )

T1086.2

m007.02
A100N/A104m007.0

3

27

−

−

×=

×
=

π
πB

 

 
(d) A graph of B as a function of r follows: 
 

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

r  (arbitrary units)

B
 (a

rb
itr

ar
y 

un
its

)

 
 
*67 ••  
Determine the Concept The contour integral consists of four portions, two horizontal 
portions for which 0=⋅∫C dl

rr
B , and two vertical portions. The portion within the 

magnetic field gives a nonvanishing contribution, whereas the portion outside the field 
gives no contribution to the contour integral. Hence, the contour integral has a finite 
value. However, it encloses no current; thus, it appears that Ampère’s law is violated. 
What this demonstrates is that there must be a fringing field so that the contour integral 
does vanish. 
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68 ••  
Picture the Problem Let r1 = 1 mm, r2 = 2 mm, and r3 = 3 mm and apply Ampère’s law 
in each of the three regions to obtain expressions for B in each part of the coaxial cable 
and outside the coaxial cable.   
 
Apply Ampère’s law to a circular 
path of radius r < r1 to obtain: 
 

( ) Crr IrB 02
1

µπ =<  

Because the current is uniformly 
distributed over the cross section of 
the inner wire: 
 

2
1

2 r
I

r
IC

ππ
= ⇒ I

r
rIC 2
1

2

=  

Substitute for IC to obtain: ( ) I
r
rrB rr 2
1

2

02
1

µπ =<  

 
Solve for :

1rrB <  
2

1

0

4
2

1 r
rI

B rr π
µ

=<                          (1) 

 
Apply Ampère’s law to a circular 
path of radius r1 < r < r2 to obtain: 
 

( ) IrB rrr 02
21

µπ =<<  

Solve for :
21 rrrB <<  

r
IB rrr

1
4

2 0
21 π

µ
=<<                           (2) 

 
Apply Ampère’s law to a circular 
path of radius r2 < r < r3 to obtain: 
 

( ) ( )I'IIrB Crrr −==<< 002
32

µµπ  

where I′ is the current in the outer 
conductor at a distance less than r from the 
center of the inner conductor. 
 

Because the current is uniformly 
distributed over the cross section of 
the outer conductor: 
 

2
2

2
3

2
2

2 rr
I

rr
I'

ππππ −
=

−
 

Solve for I′: 
 

I
rr
rrI 2

2
2

3

2
2

2

'
−
−

=  

 
Substitute for I′ to obtain: 
 ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

−=<< I
rr
rrIrB rrr 2

2
2

3

2
2

2

02
32

µπ  

 
Solve for :

21 rrrB <<  
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−=<< 2
2

2
3

2
2

2
0 1

4
2

32 rr
rrIB rrr π

µ
        (3) 
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A spreadsheet program was used to plot the following graph of equations (1), (2), and (3). 
 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

r  (mm)

B
 (G

)

 
 

Apply Ampère’s law to a circular 
path of radius r > r3 to obtain: 
 

( )
( ) 0

2

0

03

=−=

=>

II

IrB Crr

µ

µπ
 

and  0
3
=>rrB  

 
69 ••  
Picture the Problem We can use Ampère’s law to calculate B because of the high degree 
of symmetry. The current through C depends on whether r is less than or the inner radius 
a, greater than the inner radius a but less than the outer radius b, or greater than the outer 
radius b.  
 
(a) Apply Ampère’s law to a 
circular path of radius r < a to 
obtain: 
 

( ) 0000 ===⋅∫ < µµ CC ar Idl
rr

B  

and 
0=<arB  

 
(b) Use the uniformity of the current 
over the cross-section of the 
conductor to express the current I′ 
enclosed by a circular path whose 
radius satisfies the condition a < r < 
b: 
 

( ) ( )2222 ab
I

ar
I'

−
=

− ππ
 

Solve for IC =  I′: 
22

22

ab
arII'IC −

−
==  
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Substitute in Ampère’s law to 
obtain: 
 

( )

22

22

00

2

ab
arII'

rBd braC bra

−
−

==

=⋅ <<<<∫
µµ

πl
rr

B
 

 
Solve for Ba<r<b: 

22

22
0

2 ab
ar

r
IB bra −

−
=<< π

µ
 

 
(c) Express IC for r > b: IIC =  

 
Substitute in Ampère’s law to 
obtain: 
 

( ) IrBd brC br 02 µπ ==⋅ >>∫ l
rr

B  

 

Solve for Br>b: 
r
IB br π

µ
2

0=>  

  
70 ••  
Picture the Problem The number of turns enclosed within the rectangular area is na. 
Denote the corners of the rectangle, starting in the lower left-hand corner and proceeding 
counterclockwise, as 1, 2, 3, and 4.  We can apply Ampère’s law to each side of this 
rectangle in order to evaluate ∫ ⋅

C
dl
rr

B . 

 
Express the integral around the 
closed path C as the sum of the 
integrals along the sides of the 
rectangle: 
 

∫
∫∫∫∫

→

→→→

⋅+

⋅+⋅+⋅=⋅

14

433221

l
rr

l
rr

l
rr

l
rr

l
rr

d

dddd
C

B

BBBB
 

 

Evaluate ∫→ ⋅
21

l
rr

dB : aBd =⋅∫ →21
l
rr

B  

 
For the paths 2 → 3 and 4 → 1, B

r
is 

either zero (outside the solenoid) or 
is perpendicular to l

r
d  and so: 

 

0
1432

=⋅=⋅ ∫∫ →→
l
rr

l
rr

dd BB  

For the path 3 → 4, B
r

=0 and: 0
43

=⋅∫ →
l
rr

dB  

 
Substitute in Ampère’s law to 
obtain: 
 

naII

aBaBd

C

C

00

000

µµ ==

=+++=⋅∫ l
rr

B
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Solve for B to obtain: 
 

nIB 0µ=  

 
71 ••  
Picture the Problem The magnetic field inside a tightly wound toroid is given by 

( )rNIB πµ 20= ,  where a < r < b and a and b are the inner and outer radii of the toroid. 

 
Express the magnetic field of a 
toroid: r

NIB
π

µ
2
0=  

 
(a) Substitute numerical values and evaluate B(1.1 cm): 
 

( ) ( )( )( )
( ) mT3.27

cm1.12
A5.11000N/A104cm1.1

27

=
×

=
−

π
πB  

 
(b) Substitute numerical values and evaluate B(1.5 cm): 
 

( ) ( )( )( )
( ) mT0.20

cm5.12
A5.11000N/A104cm5.1

27

=
×

=
−

π
πB  

 
*72 ••   
Picture the Problem In parts (a), (b), and (c) we can use a right-hand rule to determine 
the direction of the magnetic field at points above and below the infinite sheet of current. 
In part (d) we can evaluate ∫ ⋅

C
dl
rr

B around the specified path and equate it to µ0IC and 

solve for B. 
 

(a) 
( )

cancel. components vertical
 its since direction ̂ in the i.e.,right   the topoints field magnetic  theAt i−P

 

 

(b) 
direction. ˆ the

in is B applies; (a)in  usedargument  same  theinfinite, issheet   theBecause

i−
 

 

(c) 
cancel. components  verticalThe

direction. ̂ in the i.e., left,  the topoints field magnetic sheet the  theBelow i
 

 
(d) Express ∫ ⋅

C
dl
rr

B , in the 

counterclockwise direction, for the 
given path: 

∫∫∫
⊥

⋅+⋅=⋅
  parallel

22 l
rr

l
rr

l
rr

ddd
C

BBB  
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For the paths perpendicular to the 
sheet, B

r
and l

r
d are perpendicular 

to each other and: 
 

0
 

=⋅∫
⊥

l
rr

dB  

For the paths parallel to the sheet, 
B
r

and l
r

d are in the same direction 
and: 
 

Bwd
p

=⋅∫
 arallel

l
rr

B  

Substitute to obtain: 
 

( )wI

Bwdd

C

C

λµµ 00

 parallel

22

==

=⋅=⋅ ∫∫ l
rr

l
rr

BB
 

 
Solve for B: λµ02

1=B and iB ˆ
02

1
above λµ−=
r

 

 
Magnetization and Magnetic Susceptibility 
 
73 •  
Picture the Problem We can use nIBB 0app µ== to find B and Bapp at the center when 

there is no core in the solenoid and MBB 0app µ+= when there is an iron core with a 

magnetization M = 1.2×106 A/m. 
 
(a) Express the magnetic field, in 
the absence of a core, in the 
solenoid : 
 

nIBB 0app µ==  

Substitute numerical values and 
evaluate B and Bapp: 

( ) ( )

mT1.10

A4
m2.0

400N/A104 27
app

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×== −πBB

 

 
(b) With an iron core with a 
magnetization M = 1.2×106 A/m 
present: 

mT1.10app =B  

and 
 

( )( ) T52.1A/m102.1N/A104mT1.10 627
0app =××+=+= −πµ MBB  

 
74 •  
Picture the Problem We can use nIBB 0app µ== to find B and Bapp at the center when 

there is no core in the solenoid and MBB 0app µ+= when there is an aluminum core. We 
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can use
0

app
m µ

χ
B

M = to find the magnetization of the core with the aluminum present. 

 
Express the magnetic field, in the 
absence of a core, in the  
solenoid : 
 

nIBB 0app µ==  

Substitute numerical values and 
evaluate B and Bapp: 

( ) ( )

mT1.10

A4
m2.0

400N/A104 27
app

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×== −πBB

 

 
Express the magnetization in the 
core with the aluminum present: 

0

app
m µ

χ
B

M =  

 
Use Table 27-1 to find the value of 
χm for aluminum: 
 

5
Al m, 103.2 −×=χ  

Substitute numerical values and 
evaluate M: 

A/m185.0

N/A104
mT1.10

103.2 27
5

=

×
×=

−
−

π
M

 

 
75 •  
Picture the Problem We can use nIB 0app µ= to find Bapp at the center of the tungsten 

core in the solenoid. The magnetization is related to Bapp and χm according to 
nIBM m0appm χµχ ==  and we can use ( )mapp 1 χ+= BB to find B. 

 
Express the magnetic field, for a 
tungsten core, in the solenoid : 
 

nIB 0app µ=  

Substitute numerical values and 
evaluate Bapp: 

( ) ( )

mT053.10

A4
m2.0

400N/A104 27
app

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×= −πB

 

 
Express the magnetization in the 
core with the aluminum present: 

nI
B

M m
0

app
m χ
µ

χ ==  

 
Use Table 27-1 to find the value of 
χm for tungsten: 

5
 tungstenlm, 108.6 −×=χ  
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Substitute numerical values and 
evaluate M: ( ) ( )

A/m544.0

A4
m2.0

400108.6 5

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×= −M

 

 
Express B in terms of Bapp and χm: 
 

( )mapp 1 χ+= BB  

 
Substitute numerical values and 
evaluate B: 

( )( )
mT054.10

108.61mT053.10 5

=

×+= −B
 

 
76 •  
Picture the Problem We can use ( )mapp 1 χ+= BB to relate B and Bapp to the magnetic 

susceptibility of tungsten. Dividing both sides of this equation by Bapp and examining the 
value of χm, tungsten will allow us to decide whether the field inside the solenoid decreases 
or increases when the core is removed. 
 
Express the magnetic field inside 
the solenoid with the tungsten core 
present B in terms of Bapp and χm: 
 

( )mapp 1 χ+= BB  

where Bapp is the magnetic field in the 
absence of the tungsten core.  
 

Express the ratio of B to Bapp: 
 m

app

1 χ+=
B
B

                   (1) 

 
(a) Because χm, tungsten > 0: appBB >  

and 

removed. is core
 tungsten when thedecrease  willB

 

 
(b) From equation (1) the fractional 
change is: 

%108.6108.6 35
m

−− ×=×=χ  

  
77 •  
Picture the Problem We can use ( )mapp 1 χ+= BB to relate B and Bapp to the magnetic 

susceptibility of liquid sample. 
 
Express the magnetic field inside the 
solenoid with the liquid sample 
present B in terms of Bapp and χm, 

( )sample m,app 1 χ+= BB  

where Bapp is the magnetic field in the 
absence of the liquid sample.  
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sample: 
 

 

The fractional change in the 
magnetic field in the core is: 
 

sample m,
app

χ=
∆
B

B
                    

 
Substitute numerical values and 
evaluate  χm, sample: 

5

app
sample m,

1000.4

%004.0

−×−=

−=
∆

=
B

Bχ
 

 
78 •  
Picture the Problem We can use nIBB 0app µ== to find B and Bapp at the center when 

there is no core in the solenoid and ( )mapp 1 χ+= BB when there is an aluminum or silver 

core.  
 
(a) Express the magnetic field, in the 
absence of a core, in the solenoid: 
 

nIBB 0app µ==  

Substitute numerical values and evaluate B and Bapp: 
 

( ) ( ) mT8.62A10
m01.0

50N/A104 27
app =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×== −πBB  

 
(b) With an aluminum core: ( )mapp 1 χ+= BB  

 
Use Table 27-1 to find the value of χm 
for aluminum: 
 

5
Al m, 103.2 −×=χ  

and 
1103.211 5

Al m, ≈×+=+ −χ  

 
Substitute numerical values and evaluate B and Bapp: 
 

( ) ( ) mT8.62A10
m01.0

50N/A104 27
app =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×== −πBB  

 
(c) With a silver core: ( )mapp 1 χ+= BB  

 
Use Table 27-1 to find the value of χm 
for silver: 
 

5
Ag m, 106.2 −×−=χ  

and 
1106.211 5

Ag m, ≈×−=+ −χ  
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Substitute numerical values and evaluate B and Bapp: 
 

( ) ( ) mT8.62A10
m01.0

50N/A104 27
app =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×== −πBB  

 
*79 ••  
Picture the Problem We can use the data in the table and nIB 0app µ= to plot B versus 

Bapp. We can find Km using appmBKB = . 

 
We can find the applied field Bapp 
for a long solenoid using: 
 

nIB 0app µ=  

Km can be found from Bapp and B 
using: 
 

app
m B

BK =  

 
The following graph was plotted using a spreadsheet program. The abscissa values for the 
graph were obtained by multiplying nI by µ0. B initially rises rapidly, and then becomes 
nearly flat. This is characteristic of a ferromagnetic material. 
 

0.0

0.4

0.8

1.2

1.6

2.0

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

B app (T)

B
 (T

)

 
 

The graph of Km versus nI shown below was also plotted using a spreadsheet program. 
Note that Km becomes quite large for small values of nI but then diminishes. A more 
revealing graph would be to plot B/(nI), which would be quite large for small values of nI 
and then drop to nearly zero at nI = 10,000 A/m, corresponding to saturation of the 
magnetization. 
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80 ••  
Picture the Problem We can use the definition of the magnetization of a sample to find 
M and the relationship between the Bohr magneton and the magnetic moment of the 
sample to find the number of electrons aligned in the sample. In part (c) we can express 
the magnetic moment of the disk in terms of the amperian surface current and solve for 
the latter. 
 
(a) Express the magnetization of the 
sample in terms of its magnetic 
moment and volume: 
 

drV
M 2π

µµ
==  

Substitute numerical values and 
evaluate M: ( ) ( )

A/m1012.8

cm3.0cm4.1
mA105.1

3

2

22

×=

⋅×
=

−

π
M

 

 
(b) Relate the magnetic moment of 
the sample to the Bohr magneton: 
 

Bµµ N=  

Solve for and evaluate N: 
 

21

224

22

B

1062.1

mA109.27
mA105.1

×=

⋅×
⋅×

== −

−

µ
µN

 

 
(c) Express the magnetic moment of 
the disk in terms of the amperian 

AI=µ  
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surface current:  
 
Solve for I and substitute for µ to 
obtain: 

Mt
A

MAt
A

MV
A

I ====
µ

 

where t is the thickness of the disk. 
 

Substitute numerical values and 
evaluate I: 

( )( )
A4.24

cm3.0A/m1012.8 3

=

×=I
 

 
81 ••  
Picture the Problem We can imagine the 
cylinder with the hole cut out as the 
superposition of two uniform cylinders 
with radii r and R, respectively, and 
magnetization −M and M, respectively.  
We can use the expression for B on the axis 
of a current loop to express the difference 
of the fields due to the two cylinders at a 
distance x from their common center. We’ll 
denote each field by the subscript 
identifying the radius of the current loop.  
 
From Problem 39 we have: 
  ( ) ( ) 2322

2
0

2322

2
0

2
2

4 rx
Ir

rx
IrBr

+
=

+
=

µπ
π
µ

 

and 

( ) ( ) 2322

2
0

2322

2
0

2
2

4 Rx
IR

Rx
IRBR

+
=

+
=

µπ
π
µ

 

 
The resultant field at x is the difference between BR and Br: 
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−

+
=

+
−

+
=−=

2322

2

2322

2
0

2322

2
0

2322

2
0

2

22

rx
r

Rx
RI

rx
Ir

Rx
IRxBxBxB rRx

µ

µµ

 

 
The resultant magnetization of the disks is M = B/µ0: 
 

( ) ( ) ( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−

+
= 2322

2

2322

2

2 rx
r

Rx
RIxM  

 
The magnetization current is the product of M and the thickness of the disks: 
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The magnetization is related to the 
amperian current: 

ld
dI

M amperian= ⇒ ∫=
t

MdI
0

amperian l  

 
Substitute for M to obtain: 
 

( ) ( ) ( ) ( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−

+
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−

+
= ∫ 2322

2

2322

2

0
2322

2

2322

2

amperian 22 rx
r

Rx
RItd

rx
r

Rx
RII

t

l  

 
Atomic Magnetic Moments 
 
*82 ••  
Picture the Problem We can find the magnetic moment of a nickel atom µ from its 
relationship the saturation magnetization MS using µnM =S  where n is the number of 

molecules. n, in turn, can be found from Avogadro’s number, the density of nickel, and 

its molar mass using 
Μ

=
ρANn . 

 
Express the saturation magnetic field 
in terms of the number of molecules 
per unit volume and the magnetic 
moment of each molecule: 
 

µnM =S  

or 

n
MS=µ  

Express the number of molecules 
per unit volume in terms of 
Avogadro’s number NA, the 
molecular mass M, and the density 
ρ: 
 

Μ
=

ρANn  

Substitute and simplify to obtain: 
ρµ

µ
ρµ

µ
ρµ

A0

S0

A0

S0

A

S

N
MM

N
M

N
M

=

Μ

=

Μ

=  

 
Substitute numerical values and evaluate µ: 
 

( )( )
( )( )( )

224
32327

3

mA1044.5
g/cm7.8atoms/mol1002.6N/A104

kg/mol107.58T61.0
⋅×=

××
×

= −
−

−

π
µ  

 
Express the value of 1 Bohr 
magneton: 
 

224
B mA1027.9 ⋅×= −µ  
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Divide µ by µB to obtain: 
587.0

mA1027.9
mA1044.5

224

224

B

=
⋅×
⋅×

= −

−

µ
µ

 

or 

B587.0 µµ =  

 
83 ••  
Picture the Problem We can find the magnetic moment of a cobalt atom µ from its 
relationship to the saturation magnetization MS  using ,nM µ=S  where n is the number of 

molecules. n, in turn, can be found from Avogadro’s number, the density of cobalt, and 

its molar mass using 
Μ

=
ρANn . 

 
Express the saturation magnetic field 
in terms of the number of molecules 
per unit volume and the magnetic 
moment of each molecule: 
 

µnM =S  

or 

n
MS=µ  

Express the number of molecules 
per unit volume in terms of 
Avogadro’s number NA, the 
molecular mass M, and the density 
ρ: 
 

Μ
=

ρANn  

Substitute and simplify to obtain: 
ρµ

µ
ρµ

µ
ρµ

A0

S0

A0

S0

A

S

N
MM

N
M

N
M

=

Μ

=

Μ

=  

 
Substitute numerical values and evaluate µ: 
 

( )( )
( )( )( )

223
32327

3

mA1057.1
g/cm9.8atoms/mol1002.6N/A104

kg/mol109.58T79.1
⋅×=

××
×

= −
−

−

π
µ  

 
Express the value of 1 Bohr 
magneton: 
 

224
B mA1027.9 ⋅×= −µ  

Divide µ by µB to obtain: 
69.1

mA1027.9
mA1057.1

224

223

B

=
⋅×
⋅×

= −

−

µ
µ

 

or 

B69.1 µµ =  
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Paramagnetism 
 
84 •  
Picture the Problem We can show that χm = µµ0Ms/3kT by equating Curie’s law and the 

equation that defines χm (
0

app
m µ

χ
B

M = ) and solving for χm. 

 
Express Curie’s law: 

S
app

3
1 M

kT
B

M
µ

=  

where MS is the saturation value. 
 

Express the magnetization of the 
substance in terms of its magnetic 
susceptibility χm: 
 

0

app
m µ

χ
B

M =  

Equate these expressions to obtain: 
 S

app

0

app
m 3

1 M
kT
BB µ

µ
χ =  

or 

S
0

m

3
1 M

kT
µ

µ
χ

=  

 
Solve for χm to obtain: 

kT
M

3
S0

m
µµχ =  

  
85 ••  
Picture the Problem We can use the assumption that SfMM = and Curie’s law to solve 

these equations simultaneously for the fraction f of the molecules have their magnetic 
moments aligned with the external magnetic field. 
 
(a) Assume that some fraction f of 
the molecules have their magnetic 
moments aligned with the external 
magnetic field and that the rest of 
the molecules are randomly oriented 
and so do not contribute to the 
magnetic field: 
 

SfMM =  

From Curie’s law we have: 
S

app

3
1 M

kT
B

M
µ

=  
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Equate these expressions and solve 
for f to obtain: 
 

S
app

S 3
1 M

kT
B

fM
µ

=  

and 

kT
Bf

3
µ

=  

because B given in the problem statement 
is the external magnetic field Bapp. 
 

(b) Substitute numerical values and 
evaluate f: 

( )( )
( )( )

4

23

224

1046.7

K300J/K101.3813
T1mA1027.9

−

−

−

×=

×
⋅×

=f
 

  
*86 ••  
Picture the Problem In (a) we can express the saturation magnetic field in terms of the 
number of molecules per unit volume and the magnetic moment of each molecule and use 

Μ= ρANn to express the number of molecules per unit volume in terms of Avogadro’s 

number NA, the molecular mass M, and the density ρ. We can use 
kTM 3S0m µµχ = from Problem 84 to calculate χm. 

 
(a) Express the saturation magnetic field 
in terms of the number of molecules per 
unit volume and the magnetic moment 
of each molecule: 
 

BS µnM =  

 

Express the number of molecules per 
unit volume in terms of Avogadro’s 
number NA, the molecular mass M, and 
the density ρ: 
 

Μ
=

ρANn  

Substitute to obtain: 
B

A
S µρ

Μ
=

NM  

 
Substitute numerical values and evaluate MS: 
 

( )( )( )

A/m1058.5

g/mol27
mA1027.9kg/m107.2atoms/mol1002.6

5

2243323

S

×=

⋅×××
=

−

M
 

and 
( )( ) T701.0A/m1058.5N/A104 527

S0S =××== −πµ MB  
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(b) From Problem 84 we have: 

kT
M

3
S0

m
µµχ =  

 
Substitute numerical values and evaluate χm: 
 

( )( )( )
( )( )

4
23

522427

m 1023.5
K300J/K10381.13

A/m1058.5mA1027.9N/A104 −
−

−−

×=
×

×⋅××
=

πχ  

 
(c) ( ) effects. cdiamagnetiany  neglected  wein    gcalculatinIn m bχ  

 
87 ••  
Picture the Problem We can use Equation 27-17 to express Bapp and Equation 27-21 to 
express B in terms of Bapp and M. 
 
Express Bapp inside a tightly wound  
toroid: 
 

a
NIB
π

µ
2

0
app = for R − r < a < R + r 

The resultant field B in the ring is 
the sum of Bapp and µ0M: 

M
a

NIMBB 0
0

0app 2
µ

π
µµ +=+=  

 
88 ••  
Picture the Problem We can find the magnetization using 0appm µχ BM = and the 

magnetic field using ( )mapp 1 χ+= BB . 

 
(a) Using Equation 27-22, express 
the magnetization M in terms of χm 
and Bapp: 
 

0

app
m µ

χ
B

M =  

Express Bapp inside a tightly wound  
toroid: 
 

mean

0
app 2 r

NIB
π
µ

=  

Substitute to obtain: 
 

mean
m

0

mean

0

m 2
2

r
NIr

NI

M
π

χ
µ
π
µ

χ ==  

 
Substitute numerical values and 
evaluate M: 

( )( )( )
( )

A/m5.95

m2.02
A152000104 3

=

×
=

−

π
M
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(b) Express B in terms of Bapp and 
χm: 
 

( )mapp 1 χ+= BB  

Substitute for Bapp to obtain: ( )m
mean

0 1
2

χ
π
µ

+=
r
NIB  

 
Substitute numerical values and evaluate B: 
 

( )( )( )
( ) ( ) mT1.301041

m2.02
A152000N/A104 3

27

=×+
×

= −
−

π
πB  

 
(c) Express the fractional increase in 
B produced by the liquid oxygen: 
 ( )

11
1

1

1

m

m

m

appmappmapp

app

+
=

+
=

=
−+

=

−
=

∆

χ
χ

χ

χχ
B
B

B
BB

B
BB

B
B

 

Substitute numerical values and 
evaluate ∆B/B: 

%398.0

1098.3
1

104
1

1 3

3

=

×=
+

×

=
∆ −

−
B
B

 

 
89 ••  

Picture the Problem We can use ( )mapp 1 χ+= BB and nI
r
NIB 0
mean

0
app 2

µ
π
µ

== to find B 

within the substance and 
0

app
m µ

χ
B

M =  to find the magnitude of the magnetization. 

 
(a) Express the magnetic field B 
within the substance in terms of Bapp 
and χm: 
 

( )mapp 1 χ+= BB  

Express Bapp inside the toroid: 
 

nI
r
NIB 0
mean

0
app 2

µ
π
µ

==  

 
Substitute to obtain: 
 

( )m0 1 χµ += nIB  

Substitute numerical values and evaluate B: 
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( )( )( )( ) mT2.30109.21A4m1060N/A104 41227 =×+××= −−−πB  

 
(b) Express the magnetization M in 
terms of χm and Bapp: 
 

0

app
m µ

χ
B

M =  

Substitute for Bapp to obtain: nInIM m
0

0
m χ

µ
µχ ==  

 
Substitute numerical values and 
evaluate M: 

( )( )( )
A/m96.6

A4m6000109.2 14

=

×= −−M
 

 
(c) If there were no paramagnetic 
core present: 

mT2.30app == BB  

 
Ferromagnetism 
 
*90 •  
Picture the Problem We can use appmBKB =  to find B and ( ) 0appm 1 µBKM −=  to 

find M. 
 
Express B in terms of M and Km: appmBKB =  

 
Substitute numerical values and 
evaluate B: 

( )( )
T864.0

T1057.15500 4

=

×= −B
 

 
Relate M to Km and Bapp: 
 

( )
0

appm

0

app
m 1

µµ
BKB

KM ≈−=  

 
Substitute numerical values and 
evaluate M: 

( )( )

A/m1087.6

N/A104
T1057.15500

5

27

4

×=

×
×

= −

−

π
M

 

 
91 ••  
Picture the Problem We can relate the permeability µ of annealed iron to χm using 

( ) 0m1 µχµ += , find χm using Equation 27-22 (
0

app
m µ

χ
B

M =  ), and use its definition 

( mm 1 χ+=K ) to evaluate Km.  
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Express the permeability µ of 
annealed iron in terms of  its 
magnetic susceptibility χm: 
 

( ) 0m1 µχµ +=                        (1) 

Using Equation 27-22, express the 
magnetization M in terms of χm and 
Bapp: 
 

0

app
m µ

χ
B

M =  

Solve for and evaluate χm (see Table 
27-2 for the product of µ0 and M): 

75.10
T 0.201
T16.2

app

0
m ===

B
Mµχ  

 
Use its definition to express and 
evaluate the relative permeability 
Km: 
 

75.1175.1011 mm =+=+= χK  

Substitute numerical values in 
equation (1) and evaluate µ: 

( )( )
25

27

N/A1048.1

N/A10475.101
−

−

×=

×+= πµ
 

 
92 ••  
Picture the Problem We can use the relationship between the magnetic field on the axis 
of a solenoid and the current in the solenoid to find the minimum current is needed in the 
solenoid to demagnetize the magnet. 
 
Relate the magnetic field on the axis 
of a solenoid to the current in the 
solenoid: 
 

nIBx 0µ=  

Solve for I to obtain: 
 n

BI x

0µ
=  

 
Let Bapp = Bx to obtain: 
 n

B
I

0

app

µ
=  

 
Substitute numerical values and 
evaluate I: ( )

A0.11

m15.0
600N/A104

T1053.5

27

2

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

×
=

−

−

π
I
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93 ••  
Picture the Problem We can use the equation describing the magnetic field on the axis 
of a solenoid, as a function of the current in the solenoid, to find Bapp. We can then use 

MBB 0app µ+= to find M and appmBKB = to evaluate Km. 

 
(a) Relate the magnetic field on the 
axis of a solenoid to the current in 
the solenoid: 
 

nIBx 0µ=  

Substitute numerical values to 
obtain: 
 

( )( )( )
mT6.12

A2cm50N/A104 127
app

=

×= −−πB
 

 
(b) Relate M to B and Bapp: MBB 0app µ+=  

 
Solve for and evaluate M: 
 

A/m1036.1

N/A104
mT12.6T72.1

6

27
0

app

×=

×
−

=
−

= −πµ
BB

M
 

 
(c) Express B in terms of Km and 
Bapp: 
 

appmBKB =  

 

Solve for and evaluate Km: 137
mT12.6
T72.1

app
m ===

B
BK  

 
94 ••  
Picture the Problem We can use the equation describing the magnetic field on the axis 
of a solenoid, as a function of the current in the solenoid, to find Bapp. We can then use 

MBB 0app µ+= to find M and appmBKB = to evaluate Km. 

 
(a) Relate the magnetic field on the 
axis of the solenoid to the current in 
the solenoid: 
 

nIBx 0µ=  

Substitute numerical values and 
evaluate Bapp: 
 

( )( )( )
mT26.1

A2.0cm50N/A104 127
app

=

×= −−πB
 

 
(b) Relate M to B and Bapp: MBB 0app µ+=  
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Solve for M: 
 

0

app

µ
BB

M
−

=  

 
Substitute numerical values and 
evaluate M: 

A/m1026.1

N/A104
mT1.26T58.1

6

27

×=

×
−

= −π
M

 

 
(c) Express B in terms of Km and 
Bapp: 
 

appmBKB =  

 

Solve for and evaluate Km: 3

app
m 1025.1

mT1.26
T58.1

×===
B
BK  

 
95 ••  
Picture the Problem The magnetic field in the core of a hollow solenoid is related to the 
current in its coils according to nIBBx 0app µ== . The presence of the iron increases the 

magnetic field by a factor of Km. In part (b), requiring that the magnetic field be 
unchanged when the iron core is removed will allow us to find the current that will 
produce the same field within the solenoid. 
 
(a) Relate the magnetic field on the 
axis of the solenoid to the current in 
the solenoid: 
 

nIBBx 0app µ==  

Express B in terms of Bapp: appmBKB =  

 
Substitute to obtain: 
 

nIKB 0mµ=  

Substitute numerical values and evaluate B: 
 

( )( )( ) mT3.60mA20m2000N/A1041200 127 =×= −−πB  

 
(b) We require, that with the iron 
core removed, the magnetic field is 
unchanged: 
 

000m nInIKB µµ ==  

Solve for and evaluate I0: ( ) A0.24mA201200m0 === IKI  
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*96 ••  
Picture the Problem Because the wires carry equal currents in opposite directions, the 
magnetic field midway between them will be twice that due to either current alone and 
will be greater, by a factor of Km, than it would be in the absence of the insulator. We can 
use Ampère’s law to find the field, due to either current, at the midpoint of the plane of 
the wires and BF

r
l
rr
×= Idd to find the force per unit length on either wire. 

 
(a) Relate the magnetic field in the 
insulator to the magnetic field in its 
absence: 
 

appmBKB =  

Apply Ampère’s law to a closed 
circular path a distance r from a 
current-carrying wire to obtain: 
 

( ) IIrBd CC 00app 2 µµπ ===⋅∫ l
rr

B  

Solve for Bapp to obtain: 
 r

IB
π
µ
2

0
app =  

 
Because there are two current 
carrying wires, with their currents in 
opposite directions, the fields are 
additive and: 
 

r
IK

r
IKB

π
µ

π
µ 0m0

m 2
2 ==  

 

Substitute numerical values and 
evaluate B: 

( )( )
( )

mT0.96

m02.0
A40N/A104120 27

=

×
=

−

π
πB

 

 
(b) Express the force per unit length 
experienced by either wire due to the 
current in the other: 
 

BIF
=

l
 

Apply Ampère’s law to obtain: ( ) IIrBd CC 002 µµπ ===⋅∫ l
rr

B  

where r is the separation of the wires. 
 

Solve for B: 
r
IB
π
µ
2

0= and
r

IKB
π
µ

2
0m

app =  

 
Substitute to obtain: 
 r

IKF
π
µ

2

2
0m=

l
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Substitute numerical values and 

evaluate 
l

F
: 

( )( )
( )

N/m960.0

m04.02
A40N/A104120 227

=

×
=

−

π
π

l

F
 

 
97 ••  
Picture the Problem We can use MBB 0app µ+= and the expression for the magnetic 

field inside a tightly wound toroid to find the magnetization M. We can find Km from its 
definition, 0mµµ K= to find µ, and mm 1 χ+=K to find χm for the iron sample. 

 
(a) Relate the magnetization to B 
and Bapp: 
 

MBB 0app µ+=  

Solve for M: 
 

0

app

µ
BB

M
−

=  

 
Express the magnetic field inside a 
tightly wound toroid: 
 

r
NIB
π

µ
2
0

app =  

Substitute and simplify to obtain: 
 

r
NIBr

NIB
M

πµµ
π

µ

2
2

00

0

−=
−

=  

 
Substitute numerical values and 
evaluate M: 

( )
( )

A/m1042.1

m2.02
A102000

N/A104
T8.1

6

27

×=

−
×

= − ππ
M

 

 
(b) Use its definition to express Km: 

NI
rB

r
NI
B

B
BK

00app
m

2

2
µ
π

π
µ ===  

 
Substitute numerical values and 
evaluate Km: 

( )( )
( )( )( )

0.90

A102000N/A104
T8.1m2.02

27m

=

×
= −π

πK
 

 
Now that we know Km we can find µ 
using: 
 

( )
m/AT1013.1

N/A10490
4

27
0m

⋅×=

×==
−

−πµµ K
 

 
Relate χm to Km: mm 1 χ+=K  



Chapter 27    
 

 

596 

Solve for and evaluate χm: 0.891mm =−= Kχ  

 
98 ••  
Picture the Problem We can substitute the expression for applied magnetic field 

(
r

NIB
π

µ
2
0

app = ) in the defining equation for Km ( appmBKB = ) to obtain an expression 

for the magnetic field B in the toroid. 
 
Relate the magnetic field in the 
toroid to the relative permeability 
of its core: 
 

appmBKB =  

Express the applied magnetic field 
in the toroid in terms of the current 
in its winding: 
 

r
NIB
π

µ
2
0

app =  

Substitute to obtain: 
r
NIKB

π
µ

2
0m=  

 
Express the number of turns N of 
wire in terms of the number of 
turns per unit length n: 
 

rnN π2=  

Substitute to obtain: 
 

nIKB 0mµ=  

Substitute numerical values and 
evaluate B: 

( )( )( )
T754.0

A2.0cm60N/A104500 127

=

×= −−πB

 
99 ••  
Picture the Problem We can use Ampère’s law to obtain expressions for the magnetic 
field inside the wire, inside the ferromagnetic material, and in the region outside the 
insulating ferromagnetic material. 
 
(a) Apply Ampère’s law to a circle 
of radius r < 1 mm and concentric 
with the center of the wire: 
 

( ) CC
IrBd 02 µπ ==⋅∫ l

rr
B  

Assuming that the current is 
distributed uniformly over the cross-
sectional area of the wire (uniform 
current density), express IC in terms 

22 R
I

r
IC

ππ
=  

or 
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of the total current I: 
 

I
R
rIC 2

2

=  

 
Substitute to obtain: 
 

( ) 2

2
02
R
IrrB µπ =  

 
Solve for B: 
 

r
R
IB 2

0

2π
µ

=  

 
Substitute numerical values and 
evaluate B:  

( )( )
( )

( )r

rB

T/m00.8

mm12
A40N/A104

2

27

=

×
=

−

π
π

 

 
(b) Relate the magnetic field inside 
the ferromagnetic material to the 
magnetic field due to the current in 
the wire: 
 

appmBKB =  

Apply Ampère's law to a circle of 
radius 1 mm < r  < 4 mm and 
concentric with the center of the 
wire: 
 

( ) IIrBd CC 00app 2 µµπ ===⋅∫ l
rr

B  

Solve for Bapp: 
r
IB
π
µ
2

0
app =  

 
Substitute to obtain: 
 r

IKB
π
µ

2
0m=  

 
Substitute numerical values and 
evaluate B: 

( )( )

( )
r

r
B

1mT1020.3

2
A40N/A104400

3

27

⋅×=

×
=

−

−

π
π

 

 
(c) Apply Ampère’s law to a circle 
of radius r  > 4 mm and concentric 
with the center of the wire: 
 

( ) IIrBd CC 002 µµπ ===⋅∫ l
rr

B  

Solve for B: 
r
IB
π
µ
2

0=  
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Substitute numerical values and 
evaluate B: 

( )( )

( )
r

r
B

1mT1000.8

2
A40N/A104

6

27

⋅×=

×
=

−

−

π
π

 

 
(d) Note that the field in the ferromagnetic region is that which would be produced in a 
nonmagnetic region by a current of 400I = 1600 A. The ampèrian current on the inside of 
the surface of the ferromagnetic material must therefore be (1600 − 40) A = 1560 A in 
the direction of I. On the outside surface there must then be an ampèrian current of 1560 
A in the opposite direction. 
 
General Problems 
 
100 •  
Picture the Problem Because point P is on the line connecting the straight segments of 
the conductor, these segments do not contribute to the magnetic field at P. Hence, we can 
use the expression for the magnetic field at the center of a current loop to find BP. 
 
Express the magnetic field at the 
center of a current loop: 
 

R
IB

2
0µ=  

where R is the radius of the loop. 
 

Express the magnetic field at the 
center of half a current loop: 
 

R
I

R
IB

422
1 00 µµ

==  

Substitute numerical values and 
evaluate B: 

( )( )
( )

T1036.2

m2.04
A15N/A104

5

27

−

−

×=

×
=

πB
 

 
*101 •  
Picture the Problem Let out of the page be the positive x direction. Because point P is 
on the line connecting the straight segments of the conductor, these segments do not 
contribute to the magnetic field at P. Hence, the resultant magnetic field at P will be the 
sum of the magnetic fields due to the current in the two semicircles, and we can use the 
expression for the magnetic field at the center of a current loop to find PB

r
. 

 
Express the resultant magnetic 
field at P: 
 

21 BBB
rrr

+=P  
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Express the magnetic field at the 
center of a current loop: 
 

R
IB

2
0µ=  

where R is the radius of the loop. 
 

Express the magnetic field at the 
center of half a current loop: 
 

R
I

R
IB

422
1 00 µµ

==  

Express 1B
r

and 2B
r

: iB ˆ
4 1

0
1 R

Iµ
=

r
 

and 

iB ˆ
4 2

0
2 R

Iµ
−=

r
 

 
Substitute to obtain: 
 iiiB ˆ11

4
ˆ

4
ˆ

4 21

0

2

0

1

0
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−=

RR
I

R
I

R
I

P
µµµr

 
102 ••  

Picture the Problem We can express B as a function of N, I, and R using 
R
NIB

2
0µ= and 

eliminate R by relating l to R through RNπ2=l . 
 
Express the magnetic field at the 
center of a coil of N turns and radius 
R: 
 

R
NIB

2
0µ=  

Relate l to the number of turns N: 
 

RNπ2=l  
 

Solve for R to obtain: 
 N

R
π2
l

=  

 
Substitute to obtain: 
 ll

IN

N

NIB
2

00

2
2

πµ

π

µ
==  

  
103 ••  
Picture the Problem The magnetic field at P (which is out of the page) is the sum of the 
magnetic fields due to the three parts of the wire. Let the numerals 1, 2, and 3 denote the 
left-hand, center (short), and right-hand wires. We can then use the expression for B due 
to a straight wire segment to find each of these fields and their sum. 
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Express the resultant magnetic field 
at point P: 
 

321 BBBBP ++=  

Because B1 = B3: 
 

212 BBBP +=  

Express the magnetic field due to a 
straight wire segment: 
 

( )21
0 sinsin

4
θθ

π
µ

+=
R
IB  

For wires 1 and 3 (the long wires), 
θ1 = 90° and θ2 = 45°: 

( )

⎟
⎠
⎞

⎜
⎝
⎛ +=

°+°=

2
11

4

45sin90sin
4

0

0
1

a
I
a
IB

π
µ
π
µ

 

 
For wire 2, θ1 = θ2 = 45°: ( )

⎟
⎠
⎞

⎜
⎝
⎛=

°+°=

2
2

4

45sin45sin
4

0

0
2

a
I
a
IB

π
µ
π
µ

 

 
Substitute and simplify to obtain: 

( )21
22

21
2

2
1

2
11

2

2
2

42
11

4
2

00

0

00

+=⎟
⎠
⎞

⎜
⎝
⎛ +=

⎟
⎠

⎞
⎜
⎝

⎛ ++=

⎟
⎠
⎞

⎜
⎝
⎛+⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +=

a
I

a
I

a
I

a
I

a
IBP

π
µ

π
µ

π
µ

π
µ

π
µ

 

 
*104 ••  
Picture the Problem Depending on the direction of the wire, the  magnetic field due to 
its current (provided this field is a large enough fraction of the earth’s magnetic field)  
will either add to or subtract from the earth’s field and moving the compass over the 
ground in the vicinity of the wire will indicate the direction of the current. 
 
Apply Ampère’s law to a circle of 
radius r and concentric with the 
center of the wire: 
 

( ) IIrBd CC 00wire 2 µµπ ===⋅∫ l
rr

B  

Solve for B to obtain: 
r
IB
π
µ
2

0
wire =  
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Substitute numerical values and 
evaluate Bwire: 

( )( )
( )

G0500.0
m22

A50N/A104 27

wire

=

×
=

−

π
πB

 

 
Express the ratio of Bwire to Bearth: %7

G0.7
G05.0

earth

wire ≈=
B
B

 

Thus, the field of the current-carrying wire 
should be detectable with a good compass. 
 

If the cable runs east-west, its magnetic field is in the north-south direction and thus 
either adds to or subtracts from the earth’s field, depending on the current direction and 
location  of the compass. Moving the compass over the region one should be able to 
detect the change.  
 
If the cable runs north-south, its magnetic field is perpendicular to that of the earth, and 
moving the compass about one should observe a change in the direction of the compass 
needle. 
 
105 ••  
Picture the Problem Let I1 and I2 represent the currents of 20 A and 5 A, 1F

r
, 2F
r

, 3F
r

, 

and 4F
r

 the forces that act on the horizontal wire at the top of the loop, and the other 

wires following the current in a counterclockwise direction, and 1B
r

, 2B
r

, 3B
r

, and 4B
r

 

the magnetic fields at these wires due to I1. Let the positive x direction be to the right and 
the positive y direction be upward. Note that only the components into or out of the paper 
of 1B

r
, 2B
r

, 3B
r

, and 4B
r

contribute to the forces  1F
r

, 2F
r

, 3F
r

, and 4F
r

, respectively.  

 
(a) Express the forces 2F

r
and 4F

r
in 

terms of I2 and 2B
r

and 4B
r

: 

 

2222 BF
r

l
rr
×= I  

and 

4424 BF
r

l
rr
×= I  

 
Express 2B

r
and 4B

r
: kB ˆ2

4 1

10
2 R

I
π
µ

−=
r

 

and 

kB ˆ2
4 4

10
4 R

I
π
µ

−=
r
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Substitute to obtain: 

i

kjF

ˆ
2

ˆ2
4

ˆ

2

2120

1

10
222

R
II

R
II

π
µ

π
µ

l

l
r

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×−=

 

and 

i

kjF

ˆ
2

ˆ2
4

ˆ

4

2140

4

10
424

R
II

R
II

π
µ

π
µ

l

l
r

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×=

 

 
Substitute numerical values and evaluate 2F

r
and 4F

r
: 

 
( )( )( )( )

( ) ( )iiF ˆN1000.1ˆ
m02.02

A5A20m1.0N/A104 4
27

2
−

−

×=
×

=
π

πr
 

and 
( )( )( )( )

( ) ( )iiF ˆN10286.0ˆ
m07.02

A5A20m1.0N/A104 4
27

4
−

−

×−=
×

−=
π

πr
 

 
(b) Express the net force acting on 
the coil: 
 

4321net FFFFF
rrrrr

+++=                   (1) 

Because the lengths of segments 1 
and 3 are the same and the currents 
in these segments are in opposite 
directions: 
 

031 =+ FF
rr

 

and 

42net FFF
rrr

+=  

Substitute for 2F
r

and 4F
r

in equation (1) and simplify to obtain: 

 
( ) ( ) ( )

( )
( )i

i

jijF

ˆN10714.0

ˆN10286.0

ˆN10250.0ˆN1000.1ˆN10250.0

4

4

444
net

−

−

−−−

×=

×−+

×+×+×−=
r

 

 
106 ••  
Picture the Problem Let out of the page be the positive x direction and the numerals 40 
and 60 refer to the circular arcs whose radii are 40 cm and 60 cm. Because point P is on 
the line connecting the straight segments of the conductor, these segments do not 
contribute to the magnetic field at P. Hence the resultant magnetic field at P will be the 
sum of the magnetic fields due to the current in the two circular arcs and we can use the 
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expression for the magnetic field at the center of a current loop to find PB
r

. 

 
Express the resultant magnetic field 
at P: 
 

6040 BBB
rrr

+=P  

Express the magnetic field at the 
center of a current loop: 
 

R
IB

2
0µ=  

where R is the radius of the loop. 
 

Express the magnetic field at the 
center of one-sixth of a current loop: 
 

R
I

R
IB

1226
1 00 µµ

==  

Express 40B
r

and 60B
r

: iB ˆ
12 40

0
40 R

Iµ
−=

r
 

and 

iB ˆ
12 60

0
60 R

Iµ
=

r
 

 
Substitute to obtain: 
 

i

iiB

ˆ11
12

ˆ
12

ˆ
12

4060

0

60

0

40

0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

+−=

RR
I

R
I

R
I

P

µ

µµr

 

 
Substitute numerical values and evaluate PB

r
: 

 
( )( ) ( )iiB ˆT1098.6ˆ

m4.0
1

m6.0
1

12
A8N/A104 7

27
−

−

×−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

×
=

π
P

r
 

 
107 ••  
Picture the Problem Let the positive x direction be into the page and the numerals 20 
and 40 refer to the circular arcs whose radii are 20 cm and 40 cm. Because point P is on 
the line connecting the straight segments of the conductor, these segments do not 
contribute to the magnetic field at P and the resultant field at P is the sum of the fields 
due to the two semicircular current loops.  
 
Express the resultant magnetic field 
at P: 
 

4020 BBB
rrr

+=P  

Express the magnetic field at the 
center of a circular current loop: R

IB
2

0µ=  
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 where R is the radius of the loop. 
 

Express the magnetic field at the 
center of half a circular current loop: 
 

R
I

R
IB

422
1 00 µµ

==  

Express 20B
r

and 40B
r

: iB ˆ
4 20

0
20 R

Iµ
=

r
and iB ˆ

4 40

0
40 R

Iµ
=

r
 

 
Substitute to obtain: 
 

i

iiB

ˆ11
4

ˆ
4

ˆ
4

4020

0

40

0

20

0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

+=

RR
I

R
I

R
I

P

µ

µµr

 

 
Substitute numerical values and evaluate BP: 
 

( )( ) ( )iiB ˆT07.7ˆ
m4.0

1
m2.0

1
4

A3N/A104 27

µπ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

×
=

−

P

r
 

 
*108 ••  
Picture the Problem Chose the coordinate system shown to the right. Then the current is 
in the positive z direction. Assume that the electron is at (1 cm, 0, 0). We can use 

BvF
rrr

×= q to relate the magnetic force on the electron to vr and B
r

and jB ˆ2
4

0

r
I

π
µ

=
r

 to 

express the magnetic field at the location of the electron. We’ll need to express v
r

for 
each of the three situations described in the problem in order to evaluate BvF

rrr
×= q . 

 
 
Express the magnetic force acting 
on the electron: 
 

BvF
rrr

×= q                        
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Express the magnetic field due to 
the current in the wire as a function 
of distance from the wire: 
 

jB ˆ2
4

0

r
I

π
µ

=
r

 

Substitute to obtain: 
 

( )jvjvF ˆ
4

2ˆ2
4

00 ×=×=
rrr

r
Iq

r
Iq

π
µ

π
µ

   (1) 

 
(a) Express the velocity of the 
electron when it moves directly 
away from the wire: 
 

iv ˆv=
r

 
 

Substitute to obtain: ( ) kjiF ˆ
4

2ˆˆ
4

2 00

r
Ivqv

r
Iq

π
µ

π
µ

=×=
r

 

 
Substitute numerical values and evaluate F

r
: 

 
( )( )( )( )

( )
( )k

kF

ˆN1020.3

m01.04

ˆA20m/s105C106.1N/A1042

16

61927

−

−−

×−=

××−×
=

π
πr

 

 
(b) Express v

r
when the electron is 

traveling parallel to the wire in the 
direction of the current: 
 

kv ˆv=
r

 

Substitute in equation (1) to obtain: ( ) ijkF ˆ
4

2ˆˆ
4

2 00

r
Ivqv

r
Iq

π
µ

π
µ

−=×=
r

 

 
Substitute numerical values and evaluate F

r
: 

 
( )( )( )( )

( ) ( )iiF ˆN1020.3
m01.04

ˆA20m/s105C106.1N/A1042 16
61927

−
−−

×=
××−×

−=
π

πr
 

 
(c) Express vr when the electron is 
traveling perpendicular to the wire and 
tangent to a circle around the wire: 
 

jv ˆv=
r

 

Substitute in equation (1) to obtain: ( ) 0ˆˆ
4

2 0 =×= jjF v
r

Iq
π
µr
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109 ••  
Picture the Problem We can apply Ampère's law to derive expressions for the magnetic 
field as a function of the distance from the center of the wire. 
 
Apply Ampère's law to a closed 
circular path of radius r < r0 to 
obtain: 
 

( ) Crr IrB 02
0

µπ =<  

Because the current is uniformly 
distributed over the cross section of 
the wire: 
 

2
0

2 r
I

r
IC

ππ
= ⇒ I

r
rIC 2

0

2

=  

Substitute to obtain: 
 

( ) 2
0

2
02

0 r
IrrB rr

µπ =<  

 
Solve for :

0rrB <  r
r
I

r
rIB rr 2

0

0
2

0

0 2
420 π
µ

π
µ

==<             (1) 

 
Apply Ampère's law to a closed 
circular path of radius r > r0 to 
obtain: 
 

( ) IIrB Crr 002
0

µµπ ==>  

Solve for 
0rrB > : 

r
IB rr

2
4

0
0 π

µ
=>                           (2) 

 
The spreadsheet program to calculate B as a function of r in the interval  
0 ≤ r ≤ 10r0 is shown below. The formulas used to calculate the quantities in the columns 
are as follows: 
 

Cell Formula/Content Algebraic Form
B1 1.00E−07 

π
µ
4

0  

B2 5 I 
B3 1 I 
A6 2.55E−03 r (m) 
B6 0.00E+00 r (mm) 
C6 10^4*$B$1*2*$B$2*A6/$B$3^2

r
r
I
2

0

0 2
4π
µ

 

C17 10^4*$B$1*2*$B$2*A6/A17 

r
I2

4
0

π
µ

 
 
 

 A B C 
1 mu/4pi= 1.00E−07 N/A^2 
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2 I= 5 A 
3 r_0= 2.55E−03 m 
4    
5 r (m) r (mm) B (T) 
6 0.00E+00 0.00E+00 0.00E+00 
7 2.55E−04 2.55E−01 3.92E−01 
8 5.10E−04 5.10E−01 7.84E−01 
9 7.65E−04 7.65E−01 1.18E+00 

10 1.02E−03 1.02E+00 1.57E+00 
    

102 2.45E−02 2.45E+01 4.08E−01 
103 2.47E−02 2.47E+01 4.04E−01 
104 2.50E−02 2.50E+01 4.00E−01 
105 2.52E−02 2.52E+01 3.96E−01 
106 2.55E−02 2.55E+01 3.92E−01  

 
A graph of B as a function of r follows. 

0

1

2

3

4

0 4 8 12 16 20 24

r  (mm)

B
 (G

)

 
 
110 ••  
Picture the Problem We can use Bµτ

rrr
×= to find the torque exerted on the small coil 

(magnetic moment = µr ) by the magnetic field B
r

due to the current in the large coil. 

 
Relate the torque exerted by the 
large coil on the small coil to the 
magnetic moment µr  of the small 

coil and the magnetic field B
r

due to 
the current in the large coil: 
 

Bµτ
rrr

×=  

or, because the planes of the two coils are 
perpendicular, 

Bµτ =  

Express the magnetic moment of the 
small coil: 

NIA=µ  

where I is the current in the coil, N is the 
number of turns in the coil, and A is the 
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cross-sectional area of the coil. 
 

Express the magnetic field at the 
center of the large coil: R

I'N'B
2

0µ=  

where I′is the current in the large coil, N′ is 
the number of turns in the coil, and R is its 
radius. 
 

Substitute to obtain: 
 R

NN'II'A
2

0µτ =  

 
Substitute numerical values and evaluate τ : 
 

( )( )( )( ) ( ) ( )
( ) mN97.1

cm102
N/A104cm5.0A1A42050 272

⋅=
×

=
−

µππτ  

 
*111 ••  
Picture the Problem We can apply Newton’s 2nd law for rotational motion to obtain the 
differential equation of motion of the bar magnet. While this equation is not linear, we 
can use a small-angle approximation to render it linear and obtain an expression for the 
square of the angular frequency that we can solve for κ when there is an external field 
and for the period T in the absence of an external field.  
 
Apply ατ I=∑ to the bar magnet 

when B ≠ 0 to obtain the differential 
equation of motion for the magnet: 
 

2

2

sin
dt
dIB θθµκθ =−−  

where I is the moment of inertia of the 
magnet about an axis through its point of 
suspension. 
 

For small displacements from 
equilibrium (θ  << 1): 2

2

dt
dIB θθµκθ ≈−−  

 
Rewrite the differential equation as: ( ) 02

2

=++ θµκθ B
dt
dI  

or 

02

2

=⎟
⎠
⎞

⎜
⎝
⎛ +

+ θµκθ
I

B
dt
d

 

 
Because the coefficient of the linear 
term is the square of the angular 
frequency, we have: 

I
Bµκω +

=2                      (1) 
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Express the moment of inertia (see 
Table 9-1) of the bar magnet about 
an axis through its center: 
 

2
12
1 mLI =  

Substitute to obtain: 
 2

12
1

2

mL
Bµκω +

=  

 
Solve for κ to obtain: 
 

B
T
mL

B
T

mLBmL

µπ

µπµωκ

−=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−=

2

22

2

2
2

12
122

12
1

3

4

 

 
Substitute numerical values and evaluate κ : 
 

( )( )
( )

( )( ) m/radN246.0T2.0mA12.0
s5.03

m16.0kg8.0 2
2

22

⋅=⋅−=
πκ  

 
Substitute B = 0 and ω = 2π/T in 
equation (1) to obtain: IT

κπ
=2

24
 

 
Solve for T: 

κ
π

κ
π

κ
π

312
22

2 mLmLIT ===  

 
Substitute numerical values and 
evaluate T: ( ) ( )

s523.0

m/radN246.03
kg8.0m16.0

=

⋅
= πT

 

 
112 ••  
Picture the Problem We can apply Newton’s 2nd law for rotational motion to obtain the 
differential equation of motion of the bar magnet. While this equation is not linear, we 
can use a small-angle approximation to render it linear and obtain an expression for the 
square of the angular frequency that we can solve for the frequency f of the motion. 
 
Apply ατ I=∑ to the bar magnet 

to obtain the differential equation of 
motion for the magnet: 
 

2

2

sin
dt
dIB θθµ =−  

where I is the moment of inertia of the 
magnet about an axis through its point of 
suspension. 
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For small displacements from 
equilibrium (θ << 1): 2

2

dt
dIB θθµ ≈−  

 
Rewrite the differential equation as: 

02

2

=+ θµθ B
dt
dI  

or 

02

2

=+ θµθ
I
B

dt
d

 

 
Because the coefficient of the linear 
term is the square of the angular 
frequency, we have: 
 

I
Bµω =2     

 

Solve for ω  to obtain: 

I
Bµω =  

 
113 ••  
Picture the Problem We can use the potential energy of the displaced bar magnet to find 
the force acting on it to return it to its equilibrium position. While this restoring force is 
not, in general, linear, we can use a binomial expansion to show that for displacements 
that are small compared to the radius of the coil, the restoring force is linear and, hence, 
the motion of the bar magnet is simple harmonic motion.  We can then apply Newton’s 
2nd law to obtain the differential equation of motion of the bar magnet and use the 
coefficient of the linear term to express the period of the motion.  
 
Express the potential energy of the 
displaced bar magnet: 
 

BU µ−=  

 

Express the magnetic field on the 
axis of the current loop: ( ) 2322

2
0 2

4 Rx
INRB

+
=

π
π
µ

 

where I is the current in the loop and R is 
its radius. 
 

Substitute to obtain: 
 ( ) 2322

2
0 2

4 Rx
INRU

+
−=

πµ
π
µ
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Differentiate U with respect to x to 
find the restoring force acting on the 
bar magnet: 
 

( )[ ]

( ) x
Rx

INR

Rx
dx
dINR

dx
dUFx

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−=

+=

−=

−

2522

2
0

23222
02

1

1
2

3 µµ

µµ  

Factor R2 from the radical to obtain: 
 

x
R
x

R
NI

x

R
xR

INRFx

25

2

2

3
0

25

2

25

2
0

1
2

3

1

1
2

3

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=

µµ

µµ

 

 
Expand the radical factor to obtain: 
 2

225

2

2

2
511

R
x

R
x

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−

+ higher order 

terms 
 

For x << R: 
 11

25

2

2

≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−

R
x

 

 
Substitute in Fx to obtain: 
 

x
R

NIFx 3
0

2
3 µµ

−=     

 
                 

motion. harmonic simple be lmotion wil its hence,
and, force restoringlinear  a sexperiencemagnet bar   theshown that ve we'Thus,

 

 
Apply aF rr

m=∑  to the bar 

magnet to obtain: 
2

2

3
0

2
3

dt
xdmx

R
NI

=−
µµ

 

or 

0
2

3
3

0
2

2

=+ x
mR

NI
dt

xd µµ
 

 
Because the coefficient of the linear 
term is the square of the angular 
frequency we have: 
 

3
0

2

2
2

2
34

mR
NI

T
µµπω ==  
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Solve for T to obtain: 

NI
mRT
µµ

π
0

3

3
22=  

 
Substitute numerical values and evaluate T: 
 

( )( )
( )( )( )( ) s2.10

A5100mA04.0N/A1043
m1.0kg1.022 227

3

=
⋅×

= −π
πT  

 
114 ••  
Picture the Problem We can apply Newton’s 2nd law for rotational motion to obtain the 
differential equation of motion of the bar magnet. While this equation is not linear, we 
can use a small-angle approximation to render it linear and obtain an expression for the 
square of the angular frequency that we can solve for the frequency f of the motion. 
 
Apply ατ I=∑ to the bar magnet 

to obtain the differential equation of 
motion for the magnet: 
 

2

2

sin
dt
dIB θθµ =−  

where I is the moment of inertia of the 
magnet about an axis through its point of 
suspension. 
 

For small displacements from 
equilibrium (θ  << 1): 2

2

dt
dIB θθµ ≈−  

 
Rewrite the differential equation as: 

02

2

=+ θµθ B
dt
dI  

or 

02

2

=+ θµθ
I
B

dt
d

 

 
Because the coefficient of the linear 
term is the square of the angular 
frequency, we have: 
 

I
Bf µπω == 222 4     

where f is the frequency of oscillation.           

Solve for f  to obtain:  

I
Bf µ

π2
1

=  

or, because µ = 2.2NµB where N is the 
number of iron atoms in the bar magnet, 

I
BNf B2.2

2
1 µ
π

=  
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From Table 9-1 we have: 2
12
12

12
1 VLmLI ρ==  

 
Express the number of iron atoms in 
terms of Avogadro’s number and 
the atomic weight of iron M: 
 

MMA

Vm
N
N ρ

==  

and 

M
A VNN ρ

=  

 
Substitute for I and N and simplify 
to obtain:  
 

M
6.61

M
2.2

2
1

BA

2
12
1

BA

BN
L

VL
BVNf

µ
π

ρ
µρ

π

=

=
 

 
Substitute numerical values and evaluate f: 
 

( )
( )( )( )

Hz723.0

g/mol85.55
T105.0mA1027.9mol/1002.66.6

m0.08
1 422423

=

×⋅××
=

−−

π
f

 

 
115 ••  
Picture the Problem We can solve the equation for the frequency f of the compass 
needle given in Problem 112 for magnetic dipole moment of the needle. In Parts (b) and 
(c) we can use their definitions to find the magnetization M and the amperian current 
Iamperian. 
 
(a) In Problem 112 it is established that  
the frequency of the compass needle is: 
 

I
Bf µ

π2
1

=  

where I is the moment of inertia of the 
needle. 
 

Solve for µ to obtain: 
 B

If 224πµ =  

 
Express the moment of inertia of the 
needle: 
 

32
12
12

12
12

12
1 LrVLmLI ρπρ ===  

Substitute to obtain: 
 B

Lrf
3

3223 ρπµ =  
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Substitute numerical values and evaluate µ: 
 

( ) ( )( ) ( )
( )

22
4

3233321-3

mA1024.5
T106.03

m03.0m1085.0kg/m1096.7s4.1
⋅×=

×
××

= −
−

−πµ  

 
(b) Use its definition to express the 
magnetization M: 
 

V
M µ

=  

Substitute to obtain: 
B

Lf
BV

Lrf
V

M
33

2223223 ρπρπµ
===  

 
Substitute numerical values and evaluate M: 
 

( ) ( )( )
( ) A/m1070.7

T106.03
m03.0kg/m1096.7s4.1 5

4

23321-2

×=
×
×

= −

πM  

 
(c) Express and evaluate the amperian current on the surface of the needle: 
 

( )( ) A1031.2m03.0A/m1070.7 45
amperian ×=×== MLI  

 
*116 ••  
Picture the Problem We can use the definition of angular momentum and Equation 27-
27, together with the definition of the magnetization M of the iron bar, to derive an 
expression for the rotational angular velocity of the bar just after it has been 
demagnetized.  
 
Assuming its angular momentum to 
be conserved, use the definition of L 
to express the angular momentum of 
the iron bar just after it has been 
demagnetized: 
 

ωIL =  

Solve for the angular velocity ω: 
I
L

=ω  

 
Assuming that Equation 27-27 holds 
yields: 

l2
222 rM

e
mMV

e
m

q
mL ee πµ ===  

where r is the radius of the bar and l its 
length. 
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Modeling the bar as a cylinder, 
express its moment of inertia with 
respect to its axis: 
 

l42
12

2
12

2
1 rVrmrI ρπρ ===  

 

Substitute to obtain: 
 

24
2
1

2

4
2

re
Mm

r

rM
e
m

e

e

ρρπ

π
ω ==

l

l
 

 
Substitute numerical values (see Table 13-1 for the density of iron) and evaluate ω: 
 

( )( )
( )( )( )

rad/s1092.4
m01.0kg/m1096.7C106.1

A/m1072.1kg1011.94 5
23319

631
−

−

−

×=
××

××
=ω  

 
117 ••  
Picture the Problem The dipole moment of the bar is given by ,N B219.2 µµ = where N 

is the number of atoms in the bar. We can express N in terms of Avogadro’s number, the 
density of iron, the volume of the bar, and the atomic weight of iron. We can use the 
definition of torque to find the torque that must be supplied to hold the iron bar 
perpendicular to the given magnetic field. 
 
(a) Express the magnetic dipole 
moment of the magnetized iron bar: 
 

B219.2 µµ N=  

where N is the number of iron atoms in the 
bar. 
 

Express the number of iron atoms in 
terms of Avogadro’s number and the 
atomic weight of iron M: 
 

MMA

Vm
N
N ρ

==  

and 

M
A VNN ρ

=  

 
Substitute to obtain: 
 M

219.2
M

219.2 BABA µρµρµ ANVN l
==  

 
Substitute numerical values and evaluate µ: 
 

( )( )( )

( )( )
2

22424

3-

33-123

mA6.70

mA1027.9m102
kg/mol1055.85

m2.0kg/m1096.7mol1002.6219.2

⋅=

⋅×××

×
××

=

−−

µ
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(b) Express the torque required to 
hold the iron bar perpendicular to the 
magnetic field: 
 

BBB µµθµτ =°== 90sinsin  

Substitute numerical values and 
evaluate τ: 

( )( ) mN7.17T25.0mA6.70 2 ⋅=⋅=τ  

 
*118 ••  
Picture the Problem Note that Be and Bc are perpendicular to each other and that the 
resultant magnetic field is at an angle θ  with north. We can use trigonometry to relate Bc 
and Be and express Bc in terms of the geometry of the coil and the current flowing in it. 
 
Express Bc in terms of Be: θtanec BB =  

where θ is the angle of the resultant field 
from north. 
 

Express the field Bc due to the 
current in the coil: 
 

R
INB

2
0

c
µ

=  

where N is the number of turns. 
 

Substitute to obtain: θµ tan
2 e

0 B
R

IN
=  

 
Solve for I: 

θ
µ

tan2

0

e

N
RBI =  

 
119 ••  
Picture the Problem Let the positive x direction be out of the page. We can use the 
expressions for the magnetic fields due to an infinite straight line and a circular loop to 
express the net magnetic field at the center of the circular loop. We can set this net field 
to zero and solve for r. 
 
Express the net magnetic field at the 
center of circular loop: 
 

lineloop BBB
rrr

+=  

Letting R represent the radius of the 
loop, express loopB

r
: 

iB ˆ
2

0
loop R

Iµ
−=

r
 

 
Express the magnetic field due to the 
current in the infinite straight line: 
 

iB ˆ
2

0
line r

I
π
µ

=
r
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Substitute to obtain: 
 

iiiB ˆ
22

ˆ
2

ˆ
2

0000 ⎟
⎠
⎞

⎜
⎝
⎛ +−=+−=

r
I

R
I

r
I

R
I

π
µµ

π
µµr

 

 
If 0=B

r
, then: 0

22
00 =+−
r
I

R
I

π
µµ

 

or 

011
=+−

rR π
 

 
Solve for r: 

π
Rr =  

 
Substitute numerical values and 
evaluate r: 

cm18.3cm10
==

π
r  

 
120 ••  
Picture the Problem Note that only the current in the section of wire of length 2a 
contributes to the field at P. Hence, we can use the expression for B due to a straight wire 
segment to find the magnetic field at P. In Part (b) we can use our result from (a), 
together with the value for θ when the polygon has N sides, to obtain an expression for B 
at the center of a polygon of N sides. 
 
Express the magnetic field at P due 
to a straight wire segment: 
 

( )21
0 sinsin

4
θθ

π
µ

+=
R
IBP  

Because θ1 = θ2 = θ : ( ) θ
π
µθ

π
µ sin

2
sin2

4
00 ⎟

⎠
⎞

⎜
⎝
⎛==

R
I

R
IBP  

 
Refer to the figure to obtain: 
 22

sin
Ra

a
+

=θ  

 
Substitute to obtain: 
 22

0

2 RaR
aIBP
+

=
π

µ
 

 
(b) Express θ for an N-sided 
polygon: N

πθ =  

 
Because each side of the polygon 
contributes to B an amount equal to 
that obtained in (a): 
 

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

NR
INB π

π
µ sin

2
0  
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As N → ∞: 
NN
ππ

→⎟
⎠
⎞

⎜
⎝
⎛sin  

and 

R
I

NR
INB

22
00 µπ

π
µ

=⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛→ , the 

expression for the magnetic field at the 
center of a current-carrying circular loop. 

  
121 ••  
Picture the Problem We can use Ampère’s law to derive expressions for B(r) for r < R, r 
= R, and r > R that we can evaluate for the given distances from the center of the 
cylindrical conductor. 
 
Apply Ampère’s law to a closed 
circular path a distance r < R from 
the center of the cylindrical 
conductor to obtain: 
 

( )( ) ( )rIIrrBd CC 002 µµπ ===⋅∫ l
rr

B  

Solve for B(r) to obtain: 
 

( ) ( )
r
rIrB

π
µ

2
0=  

 
Substitute for I(r): 
 

( ) ( ) ( )
π

µ
π

µ
2

A/m50
2

A/m50 00 ==
r

rrB  

 
(a) and (b) Noting that B is 
independent of r, substitute 
numerical values and evaluate  
B(5 cm) and B(10 cm): 
 

( ) ( )
( )( )

T0.10
2

A/m50N/A104
cm10cm5

27

µ
π

π

=

×
=

=
−

BB

 

 
(c) Apply Ampère’s law to a closed 
circular path a distance r > R from 
the center of the cylindrical 
conductor to obtain: 
 

( )( ) ( )RIIrrBd CC 002 µµπ ===⋅∫ l
rr

B  

Solve for B(r): 
 

( ) ( )
r
RIrB

π
µ

2
0=  

 
Substitute numerical values and evaluate B(20 cm): 
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( ) ( )( )( )
( ) T00.5

m2.02
m1.0A/m50N/A104cm20

27

µ
π

π
=

×
=

−

B  

 
122 ••  
Picture the Problem The field B

r
due to the 10-A current is in the yz plane. The net 

force on the wires of the square along the y direction cancel and do not contribute to a net 
torque or force. We can use Flτ

rrr
×= , BF

r
l
rr
×= I , and the expression for the magnetic 

field due to an infinite straight wire to express the torque acting on each of the wires and 
hence, the net torque acting on the loop. 
 
(a) Express the torque on the loop: 
 

Flτ
rrr

×=  
where l

r
is the lever arm. 

 
Express the magnetic force on a 
current element: 
 

BF
r

l
rr
×= I  

Express the magnetic field at the 
wire at y = 10 cm: 

( )kjB ˆˆ
2

12
4

0
10 −−== R

I
y π

µr
 

where 

( ) ( ) m141.0m1.0m1.0 22 =+=R . 

 
Substitute numerical values and evaluate 10=yB

r
: 

 
( ) ( ) ( )( )kjkjB ˆˆT1000.1ˆˆ

m141.0
A102

24
N/A104 5

27

10 −−×=−−
×

= −
−

= π
π

y

r
 

 
Proceed similarly to obtain: ( )( )kjB ˆˆT1042.1 5

10 +−×= −
−=y

r
 

 
Evaluate 10=yF

r
: 

 
( )( ) ( )( )

( ) ( )[ ] ( )( )jkkji

kjiBF
ˆˆN1000.1ˆˆˆN1000.1

ˆˆT1000.1ˆm2.0A5
55

5
1010

+−×=−−××=

−−××=×=
−−

−
== yy I

r
l
rr

 

 
Evaluate 10−=yF

r
: 

 
( )( ) ( )( )
( ) ( )[ ] ( )( )jkkji

kjiF
ˆˆN1000.1ˆˆˆN1000.1

ˆˆT1000.1ˆm2.0A5
55

5
10

+×=+−××−=

+−××−=
−−

−
−=y

r
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Express and evaluate the net force acting on the loop: 
 

( )( ) ( )( )
( )j

jkjkFFF
ˆN1000.2

ˆˆN1000.1ˆˆN1000.1
5

55
1010

−

−−
−==

×=

+×++−×=+= yy

rrr

 

 
Express and evaluate the torque 
about the x axis acting on the loop: 
 

( )( )
mN1000.2

N1000.2m1.0
6

5

⋅×=

×
−

−=τ
 

 
(b) The net force acting on the loop 
is the sum of the forces acting on the 
four sides (see the next to last step in 
(a)): 

( )j
FFF

ˆN1000.2 5

1010

−

−==

×=

+= yy

rrr

 

 
123 ••  
Picture the Problem The force acting on the lower wire is given by B,IF l=lower wire  
where I is the current in the lower wire, l is the length of the wire on the balance, and B is 
the magnetic field at the location of the lower wire due to the current in the upper wire. 
We can apply Ampère’s law to find B at the location of the wire on the pan of the 
balance. 
 
The force experienced by the lower 
wire is given by:  
 

BIF l=lower wire  
 

Apply Ampère’s law to a closed 
circular path of radius r centered on 
the upper wire to obtain: 
 

( ) IIrB C 002 µµπ ==  

Solve for B to obtain: 
 r

IB
π
µ
2

0=  

 
Substitute for B in the expression 
for the force on the lower wire: 

r
I

r
IIF

π
µ

π
µ

22

2
00

lower wire
l

l =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

 
Solve for I to obtain: 
 

l0

lower wire2
µ

π rFI =  

 
Noting that the force on the lower 
wire is the increase in the reading of 
the balance, substitute numerical 
values and evaluate I: 

( )( )
( )( )

A24.2

cm10N/A104
kg105cm22

27

6

=

×
×

= −

−

π
πI

 

 
124 ••  
Picture the Problem We can use a proportion to relate minimum current detectible using 
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this balance to its sensitivity and to the current and change in balance reading from 
Problem 123. 
 
The minimum current Imin detectible 
is to the sensitivity of the balance as 
the current in Problem 123 is to the 
change in the balance reading in 
Problem 123: 
 

mg5.0
A24.2

mg1.0
min =

I
 

Solve for and evaluate Imin: 
 ( ) mA8.44

mg5.0
A24.2mg1.0min =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=I  

 

balance. electronic  theof
y sensitivithigh  by  thesomewhat  dcompensate is  thishowever, kind; this

 with docannot  one which balance,  wire theof arm)moment  (i.e.,length  the
 increasingby  sensitive very made becan  balancecurrent  standard""  The

 

 
*125 •••  
Picture the Problem The diagram shows 
the rotating disk and the circular strip of 
radius r and width dr with charge dq. We 
can use the definition of surface charge 
density to express dq in terms of r and dr 
and the definition of current to show that dI 
= ωσr dr. We can then use this current and 
expression for the magnetic field on the 
axis of a current loop to obtain the results 
called for in (b) and (c).  

 
 
(a) Express the total charge dq that 
passes a given point on the circular 
strip once each period: 
 

rdrdAdq πσσ 2==  

Using its definition, express the 
current in the element of width dr: 
 

rdrrdr
dt
dqdI ωσ

ω
π

πσ
=== 2

2
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(c) Express the magnetic field dBx at 
a distance x along the axis of the 
disk due to the current loop of 
radius r and width dr: 
 

( )

( ) dr
rx
r

rx
dIrdBx

2322

3
0

2322

2
0

2

2
4

+
=

+
=

ωσµ

π
π
µ

 

 
Integrate from r = 0 to r = R to 
obtain: ( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+

+
=

+
= ∫

x
xR
xR

dr
rx

rB
R

x

22
2

2

22

22
0

0
2322

3
0

ωσµ

ωσµ

 

 
(b) Evaluate Bx for x = 0: ( ) R

R
RBx σωµωσµ

02
1

2

2
0

2
0 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

  
126 •••  
Picture the Problem From the symmetry 
of the system it is evident that the fields 
due to each segment of length l are the 
same in magnitude. We can express the 
magnetic field at (x,0,0) due to one side 
(segment) of the square, find its component 
in the x direction, and then multiply by four 
to find the resultant field. 

 
 
Express B due to a straight wire 
segment: 
 

( )21
0 sinsin

4
θθ

π
µ

+=
R
IB  

where R is the perpendicular distance from 
the wire segment to the field point. 
 

Use θ1 = θ2 and 422 l+= xR to 

express B due to one side at (x,0,0): 
 

( ) ( )

( )12
2

0

12
2

0
1

sin

4
2

sin2

4
4

0,0,

θ
π
µ

θ
π
µ

l

l

+

=

+

=

x

I

x

IxB
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Referring to the diagram, express 
sinθ1: 

2

22sin
2

2
1

l

ll

+

==

x
d

θ  

 
Substitute to obtain: 

( )

24
4

2

2

4
2

0,0,

2
2

2
2

0

2
2

2
2

0
1

l

l

l

l

l

l

++

=

++

=

xx

I

xx

IxB

π

µ

π
µ

 

 
By symmetry, the sum of the y and z 
components of the fields due to the 
four segments must vanish, whereas 
the x components will add. The 
diagram to the right is a view of the 
xy plane showing the relationship 
between 1B

r
and the angle β it makes 

with the x axis. 
 

 
Express B1x: βcos11 BB x =  

 
Substitute and simplify to obtain: 

24
8

4

2

24
4

2
2

2
2

2
0

2
2

2
2

2
2

0
1

ll

l

l

l

l

l

l

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

+++

=

xx

I

xxx

IB x

π

µ

π

µ

 

 
The resultant magnetic field is the 
sum of the fields due to the 4 wire 
segments (sides of the square): 
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Factor x2 from the two factors in the 
denominator to obtain: 
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For x >> l: 
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where µ = Il2. 
 
 


