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Chapter 28 
Magnetic Induction 
 
Conceptual Problems 
 
*1 •  
Determine the Concept We know that the magnetic flux (in this case the magnetic field 
because the area of the conducting loop is constant and its orientation is fixed) must be 
changing so the only issues are whether the field is increasing or decreasing and in which 
direction. Because the direction of the magnetic field associated with the clockwise 
current is into the page, the changing field that is responsible for it must be either 
increasing out of the page (not included in the list of possible answers) or a decreasing 
field directed into the page. correct. is )(d  

 
2 •  
Determine the Concept Note that when R is constant, B in the loop to the right points 
out of the paper. 
 
(a) If R increases, I decreases and so does B. By Lenz’s law, the induced current is 
counterclockwise. 
 
(b) If R decreases, the induced current is clockwise. 
 
3 ••  
Determine the Concept If the counterclockwise current in loop A increases, so does the 
magnetic flux through B. To oppose this increase in flux, the induced current in loop B 
will by clockwise. If the counterclockwise current in loop A decreases, so does the 
magnetic flux through B. To oppose this decrease in flux, the induced current in loop B 
will be counterclockwise. We can use BF

r
l
rr

×= I to determine the direction of the forces 
on each loop and, hence, whether they will attract or repel each other. 
 
(a) If the current in B is clockwise the loops repel one another. 
 
(b) If the current in B is counterclockwise the loops attract one another. 
 
4 ••  
Determine the Concept We know that, as the magnet moves to the right, the flux 
through the loop first increases until the magnet is half way through the loop and then 
decreases. Because the flux first increases and then decreases, the current will change 
directions, having its maximum values when the flux is changing most rapidly. 
 
(a) and (b) The following graph shows the flux and the induced current as a function of 
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time as the bar magnet passes through the coil. When the center of the magnet passes 
through the plane of the coil dφm /dt = 0 and the current is zero.  
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5 ••  
Determine the Concept Because the magnet moves with simple harmonic motion, the 
flux and the induced current will vary sinusoidally. The current will be a maximum 
wherever the flux is changing most rapidly and will be zero wherever the flux is 
momentarily constant. 
 
(a), (b) The following graph shows the flux, φm , and the induced current (proportional to 
−dφm/dt) in the loop as a function of time.  
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*6 •  
Determine the Concept The magnetic energy stored in an inductor is given by 

2
2
1

m LIU = . Doubling I quadruples Um. correct. is )(c  

 
7 •  
Determine the Concept The protection is needed because if the current is suddenly 
interrupted, the resulting emf generated across the inductor due to the large flux change 
can blow out the inductor.  The diode allows the current to flow (in a loop) even when the 
switch is opened. 

 
8 •  
Determine the Concept The inductance of a coil depends on the product n2l, where n is 
the number of turns per unit length and l is the length of the coil.  If n increases by a 
factor of 3, l will decrease by the same factor, because the inductors are made from the 
same length of wire.  Hence, the inductance increases by a factor of ( ) ( ) 3313 2 = . 

 
9 •  
(a) False. The induced emf in a circuit is proportional to the rate of change of the 
magnetic flux through the circuit. 
 
(b) True. 
 
(c) True. 
 
(d) False. The inductance of a solenoid is determined by its length, cross-sectional area, 
number of turns per unit length, and the permeability of the matter in its core. 
 
(e) True. 
 
*10 •  
Determine the Concept In the configuration shown in (a), energy is dissipated by eddy 
currents from the emf induced by the pendulum movement.  In the configuration shown 
in (b), the slits inhibit the eddy currents and the braking effect is greatly reduced. 
 
11 •  
Determine the Concept The time varying magnetic field of the magnet sets up eddy 
currents in the metal tube. The eddy currents establish a magnetic field with a magnetic 
moment opposite to that of the moving magnet; thus the magnet is slowed down. If the 
tube is made of a nonconducting material, there are no eddy currents. 
 
12 ••  
Determine the Concept When the current is turned on, the increasing magnetic field in 
the coil induces a large emf in the ring.  As described by Lenz's law, the direction of the 



Chapter 28    
 

 

628 

current resulting from this induced emf is in such a direction that its magnetic field 
opposes the changing flux in the coil, i.e., the current induced in the ring will be in such a 
direction that the magnetic field in the coil will repel it.  The demonstration will not work 
if a slot is cut in the ring, because the emf will not be able to induce a current in the ring. 

 
Estimation and Approximation  
 
*13 ••  
Picture the Problem We can use Faraday’s law to relate the induced emf to the angular 
velocity with which the students turn the jump rope. 
 
(a) It seems unlikely that the 
students could turn the ″jump rope″ 
wire faster than 5 revolutions per 
second. This corresponds to a 
maximum angular velocity of:  
 

rad/s.31.4 
rev

rad2
s

rev5 =×=
πω  

(b) The magnetic flux φm through 
the rotating circular loop of wire 
varies sinusoidally with time 
according to: 
 

tBA ωφ sinm =  
and 

tBA
dt

d ωωφ cosm =  

Because the average value of the 
cosine function, over one 
revolution, is ½, the average rate at 
which the flux changes through the 
circular loop is: 
 

ωπωφ BrBA
dt

d 2
2
1

2
1

av

m ==  

From Faraday’s law, the magnitude 
of the induced emf in the loop is: 
 

ωπφε Br
dt

d 2
2
1m ==  

 

Substitute numerical values and evaluate ε: 
 

( ) mV94.1rad/s4.31
G10

T1G7.0
2
m5.1

4

2

2
1 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×⎟

⎠
⎞

⎜
⎝
⎛= πε  

 

(c) 
faster.  times500about  rope jump the

rotate  tohave  wouldstudents  theV, 1 of emfan  generate To No.
 

 

(d)  
emf. induced  theincrease  wouldaround

 timesseveral looped speed)angular  same at the rotated be could
 wirecomposite  that the(so relighter wi of strands multiple of use The

 

 
14 •  
Picture the Problem We can compare the energy density stored in the earth’s electric 
field to that of the earth's magnetic field by finding their ratio. 
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The energy density in an electric 
field E is given by: 
 

2
0e 2

1 Eu ∈=  

The energy density in a magnetic 
field B is given by: 
 

0

2

m 2µ
Bu =  

Express the ratio of um to ue to 
obtain: 
 2

00

2

2
0

0

2

e

m

2
1

2
E

B

E

B

u
u

∈
=

∈
=

µ
µ

 

 
Substitute numerical values and evaluate um/ ue: 
 

( )
( )( )( )

4
2221227

25

e

m 1025.2
V/m100mN/C1085.8N/A104

T105
×=

⋅××
×

==
−−

−

πu
u

 

or  
( ) e

4
m 1025.2 uu ×=  

 
15 ••  
Picture the Problem We can apply Faraday’s law to estimate the maximum emf induced 
by the lightning strike in the antenna. 
 
Use Faraday’s law to express the 
magnitude of the induced emf in antenna: 
 

[ ]BA
dt
d

dt
d

== mφε  

where A is the area of the antenna. 
Because the lightning strike has such 
a short duration: 
 t

BA
∆

≈ε  

The magnetic field induced in the 
loop is given by: r

I
r
IB

π
µ

π
µ

2
2

4
00 ==  

where r is the distance from the antenna to 
the lightning strike. 
 

Substitute for B to obtain: 

tr
IA
∆

=
π
µε

2
0  

 
Substitute numerical values and 

evaluate ε: ( ) ( )
( )( )

kV00.2

s1m3002

m1.0
s1
C30N/A104 227

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

=

−

µπ
µ

π
ε  
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Magnetic Flux 
 
16 •  
Picture the Problem Because the surface is a plane with area A and B

r
is constant in 

magnitude and direction over the surface and makes an angle θ with the unit normal 
vector, we can use θφ cosm BA= to find the magnetic flux through the coil. 

 
Substitute for B and A to obtain: 
 

( )

( ) θ

θφ

cosWb1000.5

cosm105
G10

T1G2000

4

22
4m

−

−

×=

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

 

 
(a) For θ  = 0°: 
 

( )

mWb500.0

Wb1000.5

0cosWb1000.5
4

4
m

=

×=

°×=
−

−φ

 

 
(b) For θ  = 30°: 
 

( )

mWb433.0

Wb1033.4

cos30Wb1000.5
4

4
m

=

×=

°×=
−

−φ

 

 
(c) For θ  = 60°: 
 

( )

mWb250.0

Wb1050.2

cos60Wb1000.5
4

4
m

=

×=

°×=
−

−φ

 

 
(d) For θ  = 90°: ( )

0

cos90Wb1000.5 4
m

=

°×= −φ
 

 
*17 •  
Picture the Problem Because the coil defines a plane with area A and B

r
is constant in 

magnitude and direction over the surface and makes an angle θ with the unit normal 
vector, we can use θφ cosm NBA= to find the magnetic flux through the coil. 

 
Substitute for N, B, and A to obtain: 
 

( )

( ) θ

θπθπφ

cosWb1037.1

cosm105
G10

T1G7.025cos

5

22
4

2
m

−

−

×=

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅== rNB
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(a) When the plane of the coil is 
horizontal, θ = 90°: 
 

( )
0

90cosWb1037.1 5
m

=

°×= −φ
 

 
(b) When the plane of the coil is 
vertical with its axis pointing north, 
θ = 0°: 
 

( )
Wb1037.1

0cosWb1037.1
5

5
m

−

−

×=

°×=φ
 

(c) When the plane of the coil is 
vertical with its axis pointing east, 
θ = 90°: 
 

( )
0

90cosWb1037.1 5
m

=

°×= −φ
 

(d) When the plane of the coil is 
vertical with its axis making an 
angle of 30° with north, θ = 30°: 

( )
Wb1019.1

30cosWb1037.1
5

5
m

−

−

×=

°×=φ
 

 
18 •  
Picture the Problem Because the square coil defines a plane with area A and B

r
is 

constant in magnitude and direction over the surface and makes an angle θ with the unit 
normal vector, we can use θφ cosm NBA= to find the magnetic flux through the coil. 

 
Substitute for N, B, and A to obtain: 
 ( )( )

( ) θ
θ

θφ

cosmWb0.42
cosm105T2.114

cos
22

m

=
×=

=
−

NBA

 

 
(a) For θ = 0°: ( )

mWb0.42

0cosmWb0.42m

=

°=φ
 

 
(b) For θ = 60°: ( )

mWb0.21

60cosmWb0.42m

=

°=φ
 

 
19 •  
Picture the Problem Noting that the flux through the base must also penetrate the 
spherical surface, we can apply its definition to express φm. 
 
Apply the definition of magnetic 
flux to obtain: 
 

BRAB 2
m πφ ==  
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20 ••  
Picture the Problem We can use θφ cosm NBA= to express the magnetic flux through 
the solenoid and nIB 0µ= to relate the magnetic field in the solenoid to the current in its 

coils. 
 
Express the magnetic flux through a 
coil with N turns: 
 

θφ cosm NBA=  

Express the magnetic field inside a 
long solenoid: 
 

nIB 0µ=  

where n is the number of turns per unit 
length. 
 

Substitute to obtain: θµφ cos0m nIAN=  

or, because n = N/L and θ = 0°, 

L
rIN

L
IAN 2

0
2

0
2

m
πµµφ ==  

 
Substitute numerical values and evaluate φm: 
 

( ) ( )( ) ( ) Wb1058.7
m25.0

m0.01πA3N/A104400 4
2272

m
−

−

×=
×

=
πφ  

 
21 ••  
Picture the Problem We can use θφ cosm NBA= to express the magnetic flux through 
the solenoid and nIB 0µ= to relate the magnetic field in the solenoid to the current in its 

coils. 
 

Express the magnetic flux through a 
coil with N turns: 
 

θφ cosm NBA=  

Express the magnetic field inside a 
long solenoid: 
 

nIB 0µ=  

where n is the number of turns per unit 
length. 
 

Substitute to obtain: θµφ cos0m nIAN=  

or, because n = N/L and θ = 0°, 

L
rIN

L
IAN 2

0
2

0
2

m
πµµφ ==  
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Substitute numerical values and evaluate φm: 
 

( ) ( )( ) ( ) Wb1074.6
m3.0

m0.02A2N/A104800 3
2272

m
−

−

×=
×

=
ππφ  

 
22 ••  

Picture the Problem We can apply the definitions of magnet flux and of the dot product 
to find the flux for the given unit vectors. 
 

Apply the definition of magnetic 
flux to the coil to obtain: 
 

∫ ⋅=
S

dAN nB ˆm

r
φ  

Because B
r

is constant:  ( )
( ) 2

m

ˆ

ˆˆ

rN

ANdAN
S

π

φ

nB

nBnB

⋅=

⋅=⋅= ∫
r

rr

 

 
Evaluate B

r
: 

 
( )iB ˆ4.0 T=

r
 

Substitute numerical values and 
simplify to obtain: 
 

( ) ( )[ ] ( )
( ) ni ˆˆmT0302.0

m04.0T4.015
2

2
m

⋅⋅=

= πφ
 

(a) Evaluate φm for in ˆˆ = : ( ) Wb0302.0ˆˆmT0302.0 2
m =⋅⋅= iiφ  

 
(b) Evaluate φm for jn ˆˆ = : 

 
( ) 0ˆˆmT0302.0 2

m =⋅⋅= jiφ  

 
(c) Evaluate φm for ( ) 2ˆˆˆ jin += : 

 
( ) ( )

Wb0213.0
2

mT0302.0
2

ˆˆˆmT0302.0

2

2
m

=
⋅

=

+
⋅⋅=

jiiφ
 

 
(d) Evaluate φm for kn ˆˆ = : 
 

( ) 0ˆˆmT0302.0 2
m =⋅⋅= kiφ  

 
(e) Evaluate φm for jin ˆ8.0ˆ6.0ˆ += : 

 

 

( ) ( ) ( )
( )

( ) Wb0181.0mT0302.06.0

ˆˆmT0302.08.0

ˆˆmT0302.06.0ˆ8.0ˆ6.0ˆmT0302.0

2

2

22
m

=⋅=

⋅⋅+

⋅⋅=+⋅⋅=

ji

iijiiφ
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23 ••   
Picture the Problem The magnetic field outside the solenoid is, to a good approximation, 
zero. Hence, the flux through the loop is the flux in the core of the solenoid. The magnetic 
field inside the solenoid is uniform. Hence, the flux through this small loop is given by the 
same expression with R3 replacing R1: 
 

(a) Express the flux through the 
large circular loop outside the 
solenoid: 
 

2
10m RnINNBA πµφ ==  

 

(b) Express the flux through the 
small loop inside the solenoid: 

2
30m RnINNBA πµφ ==  

 
*24 ••  
Picture the Problem We can use the hint to set up the element of area dA and express the 
flux dφm through it and then carry out the details of the integration to express φm. 
 
(a) Express the flux through the 
strip of area dA: 
 

BdAd =mφ  

where dA = bdx. 

Express B at a distance x  from a 
long, straight wire: 
 

x
I

x
IB

π
µ

π
µ

2
2

4
00 ==  

Substitute to obtain: 
x

dxIbbdx
x
Id

π
µ

π
µφ

22
00

m ==  

 
Integrate from x = d to x = d + a: 
 d

adIb
x

dxIb ad

d

+
== ∫

+

ln
22
00

m π
µ

π
µφ  

 
(b) Substitute numerical values and evaluate φm: 
 

( )( )( ) Wb105.01
cm2
cm7ln

2
m0.1A20N/A104 7

27

m
−

−

×=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛×
=

π
πφ  

 
25 •••  
Picture the Problem Consider an element of area dA = Ldr where r ≤ R. We can use its 
definition to express dφm through this area in terms of B and Ampere’s law to express B 
as a function of I. The fact that the current is uniformly distributed over the cross-
sectional area of the conductor allows us to set up a proportion from which we can obtain 
I as a function of r. With these substitutions in place we can integrate dφm to obtain φm/L. 
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Express the flux dφm through an area 
Ldr: 
 

BLdrBdAd ==mφ                      (1) 

Apply Ampere’s law to the current 
contained inside a cylindrical region 
of radius r < R: 
 

CC
IrBd 02 µπ ==⋅∫ l

rr
B  

and 

r
IB C

π
µ
2

0=  

 
Using the fact that the current I is 
uniformly distributed over the cross-
sectional area of the conductor, 
express its variation with distance r 
from the center of the conductor: 
 

2

2)(
R
r

I
rI

π
π

=  

or 

( ) 2

2

R
rIIrI C ==  

 
Substitute and simplify to obtain: 

r
R
I

R
r

r
IB 2

0
2

2
0

22 π
µ

π
µ

==  

 
Substitute in equation (1): rdr

R
LI

d 2
0

m 2π
µ

φ =  

 
Integrate dφm from r = 0 to r  = R to 
obtain: π

µ
π

µφ
42
0

0
2

0
m

LIrdr
R
LI R

== ∫  

 
Divide both sides of this equation by 
L to express the magnetic flux per 
unit length: 

π
µφ
4

0m I
L

=  

 
26 •••  
Picture the Problem We can use its definition to express the flux through the rectangular 
region and Ampere’s law to relate the magnetic field to the current in the wire and the 
position of the long straight wire. 
 
(a) Note that for 0 ≤ x ≤ b, B is 
symmetric about the wire, into the 
paper for the region below the wire 
and out of the paper for the region 
above the wire. Thus, for the area 
2(b − x)a: 
 

0netm, =φ  

To find the flux through the BdAd =mφ  



Chapter 28    
 

 

636 

remaining area of the rectangle, 
express the flux through a strip of 
area dA: 
 

where dA = adx. 

Using Ampere’s law, express B at a 
distance x  from a long, straight 
wire: 
 

x
I

x
IB

π
µ

π
µ

2
2

4
00 ==  

 

Substitute to obtain: 
x

dxIaadx
x
Id

π
µ

π
µφ

22
00

m ==  

 
For 0 ≤ x ≤ b, integrate from  
x′ = b − x to x′ = x : 
 

( )

⎟
⎠
⎞

⎜
⎝
⎛

−
=

=≤≤ ∫
−

xb
xIa

x'
dx'Iabx

x

xb

ln
2

2
0

0

0
m

π
µ

π
µφ

 

 
For x ≥  b, integrate from  
x′ = x to x′ = x + b: 
 

( )

⎟
⎠
⎞

⎜
⎝
⎛ +

=

=≥ ∫
+

x
bxIa

x'
dx'Iabx

bx

x

ln
2

2

0

0
m

π
µ

π
µφ

 

 
(b) From the expressions derived in 
(a) we see that ∞→mφ as: 

 

0→x  

The flux is a minimum (φm = 0) for: bx 2
1= as expected from symmetry. 

 
Induced EMF and Faraday’s Law 
 
*27 •  
Picture the Problem We can find the induced emf by applying Faraday’s law to the 
loop. The application of Ohm’s law will yield the induced current in the loop and we can 
find the rate of joule heating using RIP 2= . 
 
(a) Apply Faraday’s law to express 
the induced emf in the loop in terms 
of the rate of change of the 
magnetic field: 
 

( )
dt
dBR

dt
dBAAB

dt
d

dt
d 2m πφε ====  

Substitute numerical values and ( ) ( ) mV314.0mT/s40m0.05 2 == πε
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evaluate :ε  

 

 

(b) Using Ohm’s law, relate the 
induced current to the induced 
voltage and the resistance of the 
loop and evaluate I: 
 

mA0.785
Ω0.4
mV0.314

===
R

I ε
 

 

(c) Express the rate at which power 
is dissipated in a conductor in terms 
of the induced current and the 
resistance of the loop and evaluate 
P: 

( ) ( )
W0.247

Ω0.4mA0.785 22

µ

RIP

=

==
 

 
28 •  
Picture the Problem Given φm as a function of time, we can use Faraday’s law to 
express ε as a function of time. 
 
(a) Apply Faraday’s law to express 
the induced emf in the loop in terms 
of the rate of change of the 
magnetic field: 

( )[ ]
( )

( )V4.02.0

Wb/s1042

Wb104

1

12m

−−=

×−−=

×−−=−=

−

−

t

t

tt
dt
d

dt
dφε

 

 
(b) Evaluate φm at t = 0: 
 

( ) ( ) ( )[ ] 0Wb10040s0 12
m =×−= −φ  

 
Evaluate ε  at t = 0: ( ) ( )[ ]

V400.0

V4.002.0s0

=

−−=ε
 

 
Proceed as above to complete the 
table to the right: 

t φm ε  
(s) (Wb) (V) 
0 0 0 
2 −0.400 0 
4 0 −0.400 
6 1.20 −0.800  

 
29 •  
Picture the Problem We can find the time at which the flux is a minimum by looking for 
the lowest point on the graph of ε versus t and the emf at this time by determining the 
value of V at this time from the graph. We can interpret the graphs to find the times at 
which the flux is zero and the corresponding values of the emf. 
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(a) The flux, φm, and the induced emf,ε , are shown as functions of t in the following 
graph. The solid curve represents φm, the dashed curve represents .ε  
 

-1.0

-0.5

0.0

0.5

1.0

1.5

0 1 2 3 4 5 6

t  (s)

flux
emf

 
 

(b) 
instant. at this 0  that 

 and s 2  at  minimum a isflux   that thesee  wegraph,  the toReferring
=

=
V

t
 

 

(c) 
ly.respective

V, 0.4 and V 0.4    times,At these s. 4   and 0  at  zero isflux  The −=== εtt
 

 
30 •  
Picture the Problem We can use its definition to find the magnetic flux through the 
solenoid and Faraday’s law to find the emf induced in the solenoid when the external 
field is reduced to zero in 1.4 s. 
 
(a) Express the magnetic flux 
through the solenoid in terms of N, 
B, A, and θ : 
 

θπ

θφ

cos

cos
2

m

RNB

NBA

=

=
 

Substitute numerical values and 
evaluate φm: 

( )( ) ( )
mWb10.3

50cosm008.0T06.0400 2
m

=

°= πφ
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(b) Apply Faraday’s law to obtain: 

mV22.2

s1.4
mWb3.100m

=

−
−=−=

dt
dφε

 

 
*31 ••  
Picture the Problem We can use the definition of average current to express the total 
charge passing through the coil as a function of Iav. Because the induced current is 
proportional to the induced emf and the induced emf, in turn, is given by Faraday’s law, 
we can express ∆Q as a function of the number of turns of the coil, the magnetic field, the 
resistance of the coil, and the area of the coil. Knowing the reversal time, we can find the 
average current from its definition and the average emf in the coil from Ohm’s law.   
 
(a) Express the total charge that 
passes through the coil in terms of 
the induced current: 
 

tIQ ∆=∆ av  

Relate the induced current to the 
induced emf: 
 

R
II ε

== av  

 
Using Faraday’s law, express the 
induced emf in terms of φm: t∆

∆
−= mφε  

 
Substitute and simplify to obtain: 
 

R
dNB

R

dNB

R
NBA

R
t

R
tt

R
Q

2

4
2

2

2

2

2

m

m

π

π

φ
φ

ε

−=

⎟
⎠
⎞

⎜
⎝
⎛

−=−=

−=∆∆
∆

−
=∆=∆

 

where d is the diameter of the coil. 
 

Substitute numerical values and 
evaluate ∆Q: 

( )( ) ( )
( )

mC26.1

502
m02.0T1100 2

−=

Ω
−=∆

πQ
 

 
(b) Apply the definition of average 
current to obtain: 
 

mA12.6
s0.1

mC1.26
av ==

∆
∆

=
t
QI  
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(c) Using Ohm’s law, relate the 
average emf in the coil to the 
average current: 

( )( )
mV630

Ω50mA12.6avav

=

== RIε
 

 
32 ••  
Picture the Problem We can use the definition of average current to express the total 
charge passing through the coil as a function of Iav. Because the induced current is 
proportional to the induced emf and the induced emf, in turn, is given by Faraday’s law, 
we can express ∆Q as a function of the number of turns of the coil, the magnetic field, the 
resistance of the coil, and the area of the coil.  
 
Express the total charge that passes 
through the coil in terms of the 
induced current: 
 

tIQ ∆=∆ av  

Relate the induced current to the 
induced emf: 
 

R
II ε

== av  

 
Using Faraday’s law, express the 
induced emf in terms of φm: t∆

∆
−= mφε  

 
Substitute to obtain: 
 

R
NBA

R

t
R

tt
R

Q

22 m

m

−=−=

∆∆
∆

−
=∆=∆

φ

φ
ε

 

 
Substitute numerical values and evaluate ∆Q: 
 

( )( )( ) mC280.0
15

m10300T107.010002 244

=
Ω

××
−=∆

−−

Q  

 
33 ••  
Picture the Problem We can use Faraday’s law to express the earth’s magnetic field at 
this location in terms of the induced emf and Ohm’s law to relate the induced emf to the 
charge that passes through the current integrator.  
 
Using Faraday’s law, express the 
induced emf in terms of the change 
in the magnetic flux as the coil is 
rotated through 90°: 
 

t
rNB

t
NBA

t ∆
=

∆
=

∆
∆

−=
2

m πφε  
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Solve for B: 
 2rN

tB
π
ε∆

=  

 
Using Ohm’s law, relate the induced 
emf to the induced current: 
 

R
t
QIR

∆
∆

==ε  

where ∆Q is the charge that passes through 
the current integrator. 
 

Substitute to obtain: 
 

22 rN
QR

rN

tR
t
Q

B
ππ

∆
=

∆
∆
∆

=  

 
Substitute numerical values and 
evaluate B: 

( )( )
( ) ( )

T8.79
m05.0300
Ω20µC4.9

2 µ
π

==B  

 
 
34 ••   
Picture the Problem We can use Faraday’s law to express the induced emf in the coil in 
terms of the rate of change of the magnetic flux. We can use its definition to express the 
magnetic flux through the rectangular region and Ampere’s law to relate the magnetic 
field to the current in the wire and the position of the long straight wire. 
 
(a) Apply Faraday’s law to relate 
the induced emf to the changing 
magnetic flux: 
 

dt
d mφε −=                       (1) 

Note that for 0 ≤ x ≤ b, B is 
symmetric about the wire, into the 
paper for the region below the wire 
and out of the paper for the region 
above the wire. Thus, for the area 
2(b − x)a: 
 

0netm, =φ  

To find the flux through the 
remaining area of the rectangle, 
express the flux through a strip of 
area dA: 
 

BdAd =mφ  

where dA = adx. 

Using Ampere’s law, express B at a 
distance x  from a long, straight wire: x

t
x
IB

π
µ

π
µ 00 2
4

==  
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Substitute to obtain: 
x

dxtaadx
x
td

π
µ

π
µφ 00

m ==  

 
For 0 ≤ x ≤ b, integrate from  
x′ = b − x to x′ = x : 
 

( )

⎟
⎠
⎞

⎜
⎝
⎛

−
=

=≤≤ ∫
−

xb
xta

x'
dx'tabx

x

xb

ln

0

0

0
m

π
µ

π
µφ

 

 
Differentiate this expression with 
respect to time to obtain: 
 

⎟
⎠
⎞

⎜
⎝
⎛

−
=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

−
=

xb
xa

xb
xta

dt
d

dt
d

ln

ln

0

0m

π
µ

π
µφ

 

 
Substitute in equation (1) and 
evaluate ε for x = b/4: 

π
µ

π
µ

π
µε

a

a
bb

ba

0

00

10.1

3
1ln

4
4ln

=

⎟
⎠
⎞

⎜
⎝
⎛−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−=
 

 
(b) Using Ohm’s law, express and 
evaluate R: 

( )( )
( )

Ω=

×
=

==

−

µ

π
π

π
µε

60.6

A1.0
m5.1N/A10410.1

10.1

27

0

I
a

I
R
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35 ••   
Picture the Problem We can use Faraday’s law to express the induced emf in the coil in 
terms of the rate of change of the magnetic flux. We can use its definition to express the 
magnetic flux through the rectangular region and Ampere’s law to relate the magnetic 
field to the current in the wire and the position of the long straight wire. 
 
(a) Apply Faraday’s law to relate 
the induced emf to the changing 
magnetic flux: 

dt
d mφε −=                       (1) 
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Note that for 0 ≤ x ≤ b, B is 
symmetric about the wire, into the 
paper for the region below the wire 
and out of the paper for the region 
above the wire. Thus, for the area 
2(b − x)a: 
 

0netm, =φ  

To find the flux through the 
remaining area of the rectangle, 
express the flux through a strip of 
area dA: 
 

BdAd =mφ  

where dA = adx. 

Using Ampere’s law, express B at a 
distance x  from a long, straight 
wire: 
 

x
t

x
IB

π
µ

π
µ 00 2
4

==  

 

Substitute to obtain: 
x

dxtaadx
x
td

π
µ

π
µφ 00

m ==  

 
For 0 ≤ x ≤ b, integrate from  
x′ = b − x to x′ = x : 
 

( )

⎟
⎠
⎞

⎜
⎝
⎛

−
=

=≤≤ ∫
−

xb
xta

x'
dx'tabx

x

xb

ln

0

0

0
m

π
µ

π
µφ

 

 
Differentiate this expression with 
respect to time to obtain: 
 

⎟
⎠
⎞

⎜
⎝
⎛

−
=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

−
=

xb
xa

xb
xta

dt
d

dt
d

ln

ln

0

0m

π
µ

π
µφ

 

 
Substitute in equation (1) and 
evaluate ε for x = b/3: 

π
µ

π
µ

π
µε

a

a
bb

ba

0

00

693.0

2
1ln

3
3ln

=

⎟
⎠
⎞

⎜
⎝
⎛−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−=
 

 
(b) Using Ohm’s law, express and 
evaluate R: 

( )( )
( )

Ω=

×
=

==

−

µ

π
π
π

µε

16.4

A1.0
m5.1N/A104693.0

693.0

27

0

I
a

I
R
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ckwise.counterclo iscurrent  induced
 theThus, page.  theofout  be it will i.e, increase,  thisoppose will
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Motional EMF 
 
*36 •  
Picture the Problem We can apply the equation for the force on a charged particle 
moving in a magnetic field to find the magnetic force acting on an electron in the rod. We 
can use BvE

rrr
×= to find E and lEV = , where l  is the length of the rod, to find the 

potential difference between its ends. 
 
(a) Relate the magnetic force on an 
electron in the rod to the speed of 
the rod, the electronic charge, and 
the magnetic field in which the rod 
is moving: 
 

BvF
rrr

×= q  

and 
θsinqvBF =  

Substitute numerical values and 
evaluate F: 
 

( )( )( )
N106.40

sin90T0.05m/s8C101.6
20

19

−

−

×=

°×=F
 

 
(b) Express the electrostatic field 
E
r

in the rod in terms of the 
magnetic field B

r
: 

 

BvE
rrr

×=  
and 

θsinvBE =  

Substitute numerical values and 
evaluate B: 
 

( )( )
V/m0.400

sin90T0.05m/s8

=

°=E
 

(c) Relate the potential difference 
between the ends of the rod to its 
length l and the electric field E: 
 

lEV =  

Substitute numerical values and 
evaluate V: 

( )( ) V0.120m0.3V/m0.4 ==V  

 
37 •  
Picture the Problem We can use BvE

rrr
×= to relate the speed of the rod to the electric 

field in the rod and magnetic field in which it is moving and lEV = to relate the electric 
field in the rod to the potential difference between its ends. 
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Express the electrostatic field E
r

in 
the rod in terms of the magnetic 
field B

r
and solve for v: 

 

BvE
rrr

×=  
and 

θsinB
Ev =  

 
Relate the potential difference 
between the ends of the rod to its 
length l and the electric field E and 
solve for E: 
 

lEV = ⇒ 
l

VE =  

Substitute for E to obtain: 
θsinlB

Vv =  

 
Substitute numerical values and 
evaluate v: ( )( ) m/s400

m0.3T0.05
V6

==v  

 
38 •  
Picture the Problem Because the speed of the rod is constant, an external force must act 
on the rod to counter the magnetic force acting on the induced current. We can use the 
motional-emf equation lvB=ε to evaluate the induced emf, Ohm’s law to find the 
current in the circuit, Newton’s 2nd law to find the force needed to move the rod with 
constant velocity, and P = Fv to find the power input by the force.  
 
(a) Relate the induced emf in the 
circuit to the speed of the rod, the 
magnetic field, and the length of the 
rod: 
 

( )( )( )
V1.60

m0.2T0.8m/s10

=

== lvBε
 

(b) Using Ohm’s law, relate the 
current in the circuit to the induced 
emf and the resistance of the circuit: 
 

A0.800
Ω2
V1.6

===
R

I ε
 

Note that, because the rod is moving to the 
right, the flux in the region defined by the 
rod, the rails, and the resistor is increasing. 
Hence, in accord with Lenz’s law, the 
current must be counterclockwise if its 
magnetic field is to counter this increase in 
flux. 
 

(c) Because the rod is moving with 
constant velocity, the net force 
acting on it must be zero. Apply 

∑ =−= 0mFFFx  

and 
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Newton’s 2nd law to relate F to the 
magnetic force Fm: 
 

( )( )( ) N0.128m0.2A0.8T0.8
m

==

== lBIFF
 

 
(d) Express the power input by the 
force in terms of the force and the 
velocity of the rod: 
 

( )( ) W1.28m/s10N0.128 === FvP  

 

(e) The rate of Joule heat production 
is given by: 

( ) ( ) W1.28Ω2A0.8 22 === RIP  

 
39 ••  
Picture the Problem We’ll need to determine how long it takes for the loop to 
completely enter the region in which there is a magnetic field, how long it is in the region, 
and how long it takes to leave the region. Once we know these times, we can use its 
definition to express the magnetic flux as a function of time. We can use Faraday’s law to 
find the induced emf as a function of time. 
 
(a) Find the time required for the 
loop to enter the region where there 
is a uniform magnetic field: 
 

s4.17
cm/s2.4
cm10loopofside ===

v
t

l
 

 

Letting w represent the width of the 
loop, express and evaluate φm for 

s17.40 << t : 
( )( )( )
( )t

t
NBwvtNBA

mWb/s04.2
m/s0.024m0.05T1.7

m

=
=

==φ
 

 
Find the time during which the loop 
is fully in the region where there is a 
uniform magnetic field: 
 

s4.17
cm/s2.4
cm10loopofside ===

v
t

l
 

i.e., the loop will begin to exit the region 
when t = 8.33 s. 
 

Express φm for s33.8s17.4 << t : 

 ( )( )( )
mWb50.8

m0.05m1.0T1.7
m

=
=

== wNBNBA lφ
 

The left-end of the loop will exit the 
field when t = 12.5 s. Express φm for 

s5.12s33.8 << t : 

 

bmt +=mφ  

where m is the slope of the line and b is the 
φm-intercept. 

For t = 8.33 s and  
φm = 8.50 mWb: 
 

( ) bm += s33.8mWb50.8            (1) 
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For t = 12.5 s and φm = 0: ( ) bm += s5.120                            (2) 

 
Solve equations (1) and (2) 
simultaneously to obtain: 
 

( ) mWb5.25mWb/s04.2m +−= tφ  

The loop will be completely out of 
the magnetic field when t > 12.5 s 
and: 
 

0m =φ  

The following graph of ( )tmφ  was plotted using a spreadsheet program. 
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(b) Using Faraday’s law, relate the 
induced emf to the magnetic flux: 
 

dt
d mφε −=  

During the interval s17.40 << t : ( )[ ] mV04.2mWb/s04.2 −=−= t
dt
dε  

 
During the interval  

s33.8s17.4 << t : 

 

[ ] 0mWb50.8 =−=
dt
dε  

 
During the interval  

s5.12s33.8 << t : 

 

( )[ ]
mV04.2

mWb5.25mWb/s2.04-

=

+−= t
dt
dε

 

 
For t > 12.5 s: 0=ε  
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The following graph of ε(t) was plotted using a spreadsheet program. 
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40 ••  
Picture the Problem The rod is executing simple harmonic motion in the xy plane, i.e., 
in a plane perpendicular to the magnetic field. The emf induced in the rod is a 
consequence of its motion in this magnetic field and is given by lvB=ε . Because 

we’re given the position of the oscillator as a function of time, we can differentiate this 
expression to obtain v. 
 
Express the motional emf in terms 
of v, B, and l : 
 

dt
dxBvB ll ==ε  

 
Evaluate dx/dt: ( )[ ]

( )( )
( ) t

t

t
dt
d

dt
dx

π
ππ

π

120sinm/s54.7
120sins120cm2

120coscm2

1

−=
−=

=

−  

 
Substitute numerical values and evaluate ε : 

 
( )( )( ) ( ) tt ππε 120sinV36.1120sinm/s54.7m0.15T1.2 −=−=  

 
41 ••  
Picture the Problem Let m be the mass of the rod and F be the net force acting on it due 
to the current in it. We can obtain the equation of motion of the rod by applying 
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Newton’s 2nd law to relate its acceleration to B, I, and l . The net emf that drives I in this 
circuit is the emf of the battery minus the emf induced in the rod as a result of its motion. 
 
(a) Letting the direction of motion 
of the rod be the positive x 
direction, apply 

xx maF∑ = to 

the rod: 
 

dt
dvmBI =l                              (1)   

where 

R
vBI l−

=
ε

                            (2) 

 
Substitute to obtain: ( )vB

mR
B

dt
dv

l
l

−= ε  

 
(b) Express the condition on dv/dt 
when the rod has achieved its 
terminal speed:  
 

( ) 0t =− vB
mR
B

l
l ε  

Solve for vt to obtain: 
 lB

v
ε

=t  

 
(c) Substitute vt for v  in equation 
(2) to obtain: 0=

−
=

R
B

B
I l

l
εε

 

 
*42 ••  
Picture the Problem In Example 28-9 it is shown that the speed of the rod is given 
by ( )tmRBevv

22

0
l−= . We can use the definition of power and the expression for a motional 

emf to express the power dissipated in the resistance in terms of B, l , v, and R. We can 
then separate the variables and integrate over all time to show that the total energy 
dissipated is equal to the initial kinetic energy of the rod. 
 
Express the power dissipated in 
terms of ε and R: 
 

R
P

2ε
=  

Express ε as a function of B, l , and 
v: 
 

vBl=ε  
where 

( )tmRBevv
22

0
l−=  

 
Substitute to obtain: 
 

( )
R
vBP

2
l

=  
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The total energy dissipated as the 
rod comes to rest is obtained by 
integrating dE = P dt: 
 

( )

( )( )

( ) dte
R

vB

dt
R

evB

dt
R
vBE

tmRB

tmRB

∫

∫

∫

∞
−

∞ −

∞

=

=

=

0

2
2
0

22

0

2

0

0

2

22

22

l

l

l

l

l

 

 
Evaluate the integral (by changing 

variables to 
mR
Bu

222 l
−= ) to 

obtain: 

2
02

1
22

2
0

22

2
mv

B
mR

R
vBE =⎟

⎠
⎞

⎜
⎝
⎛=

l

l
 

 
43 ••  

Picture the Problem In Example 28-9 it is shown that the speed of the rod is given 
by ( )tmRBevv

22

0
l−= . We can write v as dx/dt, separate the variables and integrate to find 

the total distance traveled by the rod. 
 

Apply the result from Example 28-9 
to obtain: 
 

tev
dt
dx C

0
−=  

where 

mR
B 22

C l
=  

 
Separate variables and integrate x′ 
from 0 to x and t′ from 0 to ∞: ∫∫

∞
−=

0

C
0

0

dtevdx' t
x

 

 
Evaluate the integrals to obtain: 
 C

0vx =  

 
Substitute for C and simplify: 

22
0

lB
Rmvx =  
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44 ••  
Picture the Problem Let m be the mass of the rod. The net force acting on the rod is due 
to the current in it. We can obtain the equation of motion for the rod by applying 
Newton’s 2nd law to relate its acceleration to B, I, and l . The net emf that drives I in this 
circuit is the emf of the capacitor minus the emf induced in the rod as a result of its 
motion. 
 
(a) Letting the direction of motion 
of the rod be the positive x 
direction, apply 

xx maF∑ = to the 

rod: 
 

dt
dvmBI =l                              (1)   

where 

R

vB
C
Q

I
l−

=                            (2) 

 
Solve equation (1) for I: 
 dt

dv
B
mI
l

=  

or, because the capacitor is discharging, 

dt
dv

B
m

dt
dQ

l
=−  

                    
Simplify to obtain: 
 

dv
B
mdQ
l

−=  

 
Integrate Q′ from Q0 to Q and v′ 
from 0 to v: 
 

∫∫ −=
vQ

Q

dv'
B
mdQ

00

'
l

 

and 

v
B
mQQ
l

−= 0  

 
Substitute in equation (2) to obtain: 
 

R
vB

CR

v
B
mQ

R

vB
C

v
B
mQ

I

ll

ll

−
−

=

−
−

=

0

0
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Substitute in equation (1) to obtain 
the equation of motion of the rod: 

v
mR
B

RCmRC
QB

vB
C

v
B
mQ

mR
B

dt
dv

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−
−

=

22
0

0

1 ll

lll

 

 
(b) When the rod has achieved its 
terminal speed:  
 

0==
dt
dvmBIl  

and 

0
t

f

=
−

=
R

vB
C
Q

I
l

 

 
Solve for vt to obtain: 
 lCB

Qv f
t =  

 
*45 ••  

Picture the Problem The free-body 
diagram shows the forces acting on the rod 
as it slides down the inclined plane. The 
retarding force is the component of Fm 
acting up the incline, i.e., in the −x 
direction. We can express Fm using the 
expression for the force acting on a 
conductor moving in a magnetic field. 
Recognizing that only the horizontal 
component of the rod’s velocity vr produces 
an induced emf, we can apply the 
expression for a motional emf in 
conjunction with Ohm’s law to find the 
induced current in the rod. In part (b) we 
can apply Newton’s 2nd law to obtain an 
expression for dv/dt and set this expression 
equal to zero to obtain vt. 

 
 

 

 
(a) Express the retarding force 
acting on the rod: 
 

θcosmFF =                  (1) 

where 
BIF l=m                         

and I is the current induced in the rod as a 
consequence of its motion in the magnetic 
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field. 
 

Express the induced emf due to the 
motion of the rod in the magnetic 
field: 
  

θε cosvBl=  

Using Ohm’s law, relate the current 
I in the circuit to the induced emf: 
 

R
vB

R
I θε cosl

==  

 
Substitute in equation (1) to obtain: 

θ

θθ

2
22

cos

coscos

R
vB

B
R

vBF

l

l
l

=

⎟
⎠
⎞

⎜
⎝
⎛=

 

 
(b) Apply ∑ = xx maF to the rod: 

dt
dvm

R
vBmg =− θθ 2

22

cossin l
 

and 

θθ 2
22

cossin
mR

vBg
dt
dv l

−=  

 
When the rod reaches its terminal 
velocity vt, dv/dt = 0 and: 

θθ 2t
22

cossin0
mR

vBg l
−=  

 
Solve for vt to obtain: 

θ
θ
222t cos

sin
lB

mgRv =  

 
46 ••  
Picture the Problem The diagram shows 
the square loop being pulled from the 
magnetic field B

r
 by the constant force 

.F
r

The time required to pull the loop out of 
the magnetic field depends on the terminal 
speed of the loop. We can apply Newton’s 
2nd law and use the expressions for the 
magnetic force on a moving wire in a 
magnetic field to obtain the equation of 
motion for the loop and, from this 
equation, an expression for the terminal 
speed of the loop.    
 
Apply aF rr

m=∑ to the square 
loop to obtain: 
 

dt
dvmFF =− m                     (1) 
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The magnetic force is given by: 
 R

BBIF l
l

ε
==m  

where R is the resistance of the loop. 
 

Substitute for Fm in equation (1) to 
obtain: 
 dt

dvm
R

BF =−
lε

                (2) 

The induced emf  ε is related to the 
speed of the loop: 
 

lvB=ε  

Substitute for in equation (2) to 
obtain the equation of motion of the 
loop: 
 

dt
dvmv

R
BF =−

22l
 

When the loop reaches its terminal 
speed, dv/dt = 0 and: 
 

0t

22

=− v
R
BF l

⇒ F
B
Rv 22t

l
=  

This result tells us that doubling F doubles the terminal speed vt. Hence, doubling F will 
halve the time required to pull the loop from the magnetic field and correct. is)(c  

 
47 ••  
Picture the Problem The diagram shows 
the square loop being pulled from the 
magnetic field B

r
 by the constant force 

.F
r

The time required to pull the loop out of 
the magnetic field depends on the terminal 
speed of the loop. We can apply Newton’s 
2nd law and use the expressions for the 
magnetic force on a moving wire in a 
magnetic field to obtain the equation of 
motion for the loop and, from this 
equation, an expression for the terminal 
speed of the loop.    
 
Apply aF rr

m=∑ to the square 
loop to obtain: 
 

dt
dvmFF =− m                     (1) 

The magnetic force is given by: 
 R

BBIF l
l

ε
==m  

where R is the resistance of the loop. 
 

Substitute for Fm in equation (1) to 
obtain: 
 dt

dvm
R

BF =−
lε

                (2) 

The induced emf  ε is related to the 
speed of the loop: 
 

lvB=ε  
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Substitute for in equation (2) to 
obtain the equation of motion of the 
loop: 
 

dt
dvmv

R
BF =−

22l
 

When the loop reaches its terminal 
speed, dv/dt = 0 and: 
 

0t

22

=− v
R
BF l

⇒ F
B
Rv 22t

l
=  

This result tells us that halving R halves the terminal speed vt. Hence, halving R will 
double the time required to pull the loop from the magnetic field and correct. is)(b  

 
48 ••  
Picture the Problem The diagram shows 
the initial position of the sphere and its 
position at t = 3 s. We can find the velocity 
of the sphere and the magnetic field when t 
= 3 s and use BvE

rrr
×= to find E

r
. We can 

find the voltage across the sphere at this 
time from the electric field at its center and 
its diameter. 

 
 
(a) Relate the electric field at the 
center of the sphere to the magnetic 
field at that location: 
 

BvE
rrr

×=  

Express the magnetic field as a 
function of the distance y from the 
current-carrying wire: 
 

( ) iiB ˆ
2

ˆ2
4

00

y
I

y
I

π
µ

π
µ

−=−=
r

 

 

Using a constant-acceleration 
equation, find the position of the 
sphere at t = 3 s: 
 

( )2
2
1

,00 tatvyy y ∆+∆+=  

or, because y0 = h, v0,y = 0, and a = −g, 
( )

( )( )
m0.855

s3m/s9.81m54 22
2
1

2
2
1

=

−=

∆−= tghy

 

 
Substitute and evaluate B

r
: 

( )i

i

iB

ˆT1068.4

ˆ
m0.855

A20
2

N/A104

ˆ
2

6

27

0

−

−

×−=

×
−=

−=

π
π
π

µ
y
Ir
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Using a constant-acceleration 
equation, find the velocity of the 
sphere at t = 3 s: 
 

t∆+= avv rrr
0  

jav ˆ and 0 because or, 0 g−==
rr

 

( )( )
( ) j

jjv
ˆm/s4.29

ˆs3m/s9.81ˆ 2

−=

−=∆−= tgr

 

 
Substitute and evaluate E

r
: ( ) ( )

( )k

ijE
ˆmV/m138.0

ˆT1068.4ˆm/s4.29 6

−=

×−×−= −
r

 

 
(b) The potential difference across 
the sphere depends on the electric 
field at the center of the sphere and 
the diameter of the sphere: 
 

REV 2=  

Substitute numerical values and 
evaluate V: 

( )( ) V52.5mV/m0.138m0.022 µ==V

 
 
49 ••  
Picture the Problem The free-body 
diagram shows the forces acting on the rod 
as it slides down the inclined plane. The 
retarding force is the component of Fm 
acting up the incline; i.e., in the −x 
direction. We can express Fm using the 
expression for the force acting on a 
conductor moving in a magnetic field. We 
can apply the expression for a motional 
emf in conjunction with Ohm’s law to find 
the induced current in the rod. In part (b) 
we can apply Newton’s 2nd law to obtain an 
expression for dv/dt and set this expression 
equal to zero to obtain vt. 

 

 

 
(a) Noting that only the horizontal 
component of the rod’s velocity 
vr produces an induced emf, express 
ε  due to the motion of the rod in 
the magnetic field: 
  

θε cosvBl=  
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Substitute numerical values and 
evaluate ε : 
 

( )( ) ( )
( )v

v

mT6.15

cos30m15T1.2

⋅=

°=ε
 

 
(b) Apply Newton’s 2nd law to the 
rod: dt

dvmFmg =− θθ cossin m  

and 

θθ cossin m

m
Fg

dt
dv

−=           (1)    

where 
BIF l=m                         

and I is the current induced in the rod as a 
consequence of its motion in the magnetic 
field. 
 

Using Ohm’s law, relate the current 
I in the circuit to the induced emf: 
 

R
vB

R
I θε cosl

==  

and 

R
vBF θcos22

m
l

=  

 
Substitute in equation (1) to obtain 
the equation of motion of the rod: 
 

θθ 2
22

cossin
mR

vBg
dt
dv l

−=  

 
When the rod reaches its terminal 
velocity vt, dv/dt = 0: 
 

θθ 2t
22

cossin0
mR

vBg l
−=  

 
Solve for vt: 

θ
θ
222t cos

sin
lB

mgRv =  

 
Substitute numerical values and 
evaluate vt: 

( )( )( )
( ) ( )

cm/s61.1

30cosm15T1.2
sin30Ω2m/s9.81kg0.4

222

2

t

=

°
°

=v
 

 
50 •••  
Picture the Problem Let Ff be the friction force between the rails and cylinder, Fm the 
magnetic force on the cylinder, and Im the cylinder’s moment of inertia. Because the 
current through the rod is uniformly distributed, we can treat the current as though it were 
concentrated at the center of the rod. We can find the magnitude of B

r
by applying 

Newton’s 2nd law to the cylinder. The application of Ohm’s law to the circuit will allow 
us to express the net force acting on the cylinder in terms of its speed. Setting this net 
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force equal to zero will lead us to a value for the terminal velocity of the cylinder. We can 
use the definition of kinetic energy (both translational and rotational) to find the kinetic 
energy of the cylinder when it has reached its terminal velocity. 
 

(a) Apply ∑ = xx maF to the 

cylinder: 

xmaFF =− fm  

or 

dt
dmr

dt
dvmFBIa ω

==− f  

 
Apply ∑ = ατ I to the cylinder: 

dt
dIrF ω

mf =  

 
Solve for Ff and substitute to obtain: 

dt
dmr

dt
d

r
IBIa ωω

=− m  

 

Solve for 
dt
dr ω

: 

 
m

BIa

r
mrm

BIa

r
Im

BIa
dt
dr

3
2

2

2
2
1

2
m

=
+

=
+

=
ω

 

or 

m
BIa

dt
dv

3
2

=                              (1) 

 
Solve for B: 

Ia
dt
dvm

B
2

3
=  

 
Apply Ohm’s law to the circuit to 
find I: 

A2
Ω6

12V
===

R
I ε

 

 
Substitute numerical values and 
evaluate B: 

( )( )
( )( ) T750.0

m0.42A2
m/s0.1kg43 2

==B  

 
Apply BF

r
l
rr

×= I to determine the 
direction of B

r
: 

 

downward. is B
r

 

(b) Multiply both sides of equation 
(1) by m to express the net force 
acting on the cylinder: 
 

3
2

net
BIa

dt
dvmF ==  

 

Use Ohm’s law to express the 
current as a function of the emf of R

BavI −
=

ε
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the battery and the induced emf in 
the cylinder: 
  
Substitute to express the net force 
acting on the cylinder as a function 
of the velocity of the cylinder: 
 

v
R
aB

R
Ba

a
R
BavB

F

3
2

3
2

3

2

22

net

−=

⎟
⎠
⎞

⎜
⎝
⎛ −

=

ε

ε

 

 
(c) Set Fnet = 0 and solve for the 
terminal velocity of the cylinder: 
 

0
3

2
3

2
t

22

=− v
R
aB

R
Baε

 

and 

( )( ) m/s40.0
m0.4T0.75

V12
t ===

Ba
v ε

 

 
(d) Express the total kinetic energy 
of the cylinder when it has reached 
its terminal velocity: 
 

( )
2
t4

3

2

2
t2

2
1

2
12

t2
1

2
tm2

12
t2

1

mv
r
vmrmv

ImvK

=

+=

+= ω

 

 
Substitute numerical values and 
evaluate K: 

( )( ) kJ4.80m/s40kg4 2
4
3 ==K  

 
*51 •••   

Picture the Problem We can use the expression for a motional emf and Ampere’s law to 
express the net emf induced in the moving loop. We can also use express the magnetic 
flux through the loop and apply Faraday’s law to obtain the same result. 
 
(a) Express the motional emf 
induced in the segments parallel to 
the current-carrying wire:  
 

( )vbxB=ε  

Using Ampere’s law, express  
B(d + vt) and B(d + a + vt): 

( ) ( )vtd
I

vtdB
+

=+
π

µ
2

0  

and 

( ) ( )vtad
I

vtadB
++

=++
π

µ
2

0  

 
Substitute to express ε1 for the near 
wire and ε2 for the far wire: ( )vtd

Ivb
+

=
π
µε

2
0

1  
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 and 

( )vtad
Ivb

++
=

π
µε

2
0

1  

 
Noting that the emfs both point 
upward and hence oppose one 
another, express the net emf induced 
in the loop: 
 

( ) ( )

⎟
⎠
⎞

⎜
⎝
⎛

++
−

+
=

++
−

+
=

−=

vtadvtd
Ivb

vtad
Ivb

vtd
Ivb

11
2

22

0

00

21

π
µ

π
µ

π
µ

εεε
 

 

emf. induced  the the tocontribute
not  do segments  thesely,Consequent loop.r rectangula gh theflux throu the

 changenot  does  wirelong  thelar toperpendicu segments  theofmotion  The
 

(b) From Faraday’s law we have: 
dt

d mφε −=  

 
Express the magnetic flux in an area 
of length b and width vdt: 
 

( ) ( ) dxbxBdAxBd ==mφ  

where, from Ampere’s law, 

( )
x
IxB

π
µ
2

0=  

 
Substitute and integrate from 

vtadvtdx +++= to : ( )

⎥⎦
⎤

⎢⎣
⎡

+
++

=

== ∫∫
++

+

++

+

vtd
vtadIb

x
dxIbdxxB

vtad

vtd

vtad

vtd

ln
2

2

0

0
m

π
µ

π
µφ

 

 
Differentiate with respect to time and simplify to obtain: 
 

( ) ( )
( )

( ) ( )
( )( )

⎥⎦
⎤

⎢⎣
⎡

++
−

+
=

⎥⎦
⎤

⎢⎣
⎡

+
−

++
−=⎥

⎦

⎤
⎢
⎣

⎡
+++
++−+

−=

⎥
⎥
⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
++−+

⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

++
+

−=

⎥⎦
⎤

⎢⎣
⎡

+
++

−=⎥⎦
⎤

⎢⎣
⎡

+
++

−=

vtadvtd
Ibv

vtdvtad
Ibv

vtadvtd
vtadvtdIbv

vtd
vvtadvvtd

vtad
vtdIb

vtd
vtad

dt
dIb

vtd
vtadIb

dt
d

11
2

11
22

2

ln
2

ln
2

0

00

2
0

00

π
µ

π
µ

π
µ

π
µ

π
µ

π
µε
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52 •••  
Picture the Problem We can use BvF

rrr
×= q to express the magnetic force acting on the 

moving charged body. Expressing the emf induced in a segment of the rod of length dr 
and integrating this expression over the length of the rod will lead us to an expression for 
the induced emf. 
 

(a) Using the equation for the 
magnetic force on a moving charged 
body, express the force acting on the 
charged body a distance r from the 
pivot: 
  

BvF
rrr

×= q  

and 
θsinqvBF =  

Because vr ⊥ B
r

and v = rω: ωqBrF =  

 
(b) Use the motional emf equation to 
express the emf induced in a 
segment of the rod of length dr and 
at a distance r from the pivot: 
 

drBr
Brdvd

ω
ε

=
=

 

Integrate this expression from  
r = 0 to r = l to obtain: 
 

drrBd ' ∫∫ =
l

00

ω
ε

ε  

and 
2

2
1 lωε B=  

 
(c) Using Faraday’s law, relate the 
induced emf to the rate at which the 
flux changes: 
 

dt
d mφε =  

Express the area dA, for any value of 
θ, between r and r + dr: 
 

drrdA θ=  

Integrate from r = 0 to r = l to 
obtain: 
 

2
2
1

0

l
l

θθ == ∫ drrA  

 
Using its definition, express the 
magnetic flux through this area: 

θφ 2
2
1

m lBBA ==  

 
Differentiate φm with respect to time 
to obtain: 

[ ] ωθθε 2
2
12

2
12

2
1 lll B

dt
dBB

dt
d

===  
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Inductance 
 
53 •  
Picture the Problem We can use LI=mφ and the dependence of I on t to find the 

magnetic flux through the coil. We can apply Faraday’s law to find the induced emf in 
the coil. 
 
(a) Use the definition of self-
inductance to express φm: 
 

LI=mφ  

 

Express I as a function of time: 
 

( )tI A/s200A3 +=  

Substitute to obtain: 
 

( )[ ]tL A/s200A3m +=φ  

 
Substitute numerical values and 
express φm: 

( ) ( )[ ]
( )t

t

A/sH1600Wb24

A/s200A3H8m

⋅+=

+=φ
 

 
(b) Use Faraday’s law to relate ε, L, 
and dI/dt: 
 

dt
dIL−=ε  

Substitute numerical values and 
evaluate ε : 

( )( ) kV1.60A/s200H8 −=−=ε  

 
*54 •   
Picture the Problem We can apply LI=mφ to find φm and Faraday’s law to find the 

self-induced emf as functions of time. 
 
Use the definition of self-inductance 
to express φm: 
 

ftLILI πφ 2sin0m ==  

 

The graph of the flux φm as a function of time shown below was plotted using a 
spreadsheet program. The maximum value of the flux is LI0 and we have chosen 2πf = 1 
rad/s. 
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-1.0

-0.5

0.0

0.5

1.0

0 1 2 3 4 5 6

t (s)

flu
x

 
 

Apply Faraday’s law to relate ε , L, 
and dI/dt: 

[ ]

ftfLI

ftI
dt
dL

dt
dIL

ππ

πε

2cos2

2sin

0

0

−=

−=−=
 

 
The graph of the emf ε as a function of time shown below was plotted using a 
spreadsheet program. The maximum value of the induced emf is 2πfLI0 and we 
have chosen 2πf = 1 rad/s. 
 

-1.0

-0.5

0.0

0.5

1.0

0 1 2 3 4 5 6

t  (s)

em
f
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55 ••  
Picture the Problem We can use nIB 0µ= to find the magnetic field on the axis at the 

center of the solenoid and the definition of magnetic flux to evaluate φm. We can use the 
definition of magnetic flux in terms of L and I to find the self-inductance of the solenoid. 
Finally, we can use Faraday’s law to find the induced emf in the solenoid when the 
current changes at 150 A/s. 
 
(a) Apply the expression for B 
inside a long solenoid to express and 
evaluate B: 
  

( ) ( )

mT6.03

A3
m0.25

400N/A104 27

0

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

=

−π

µ nIB

 

 
(b) Apply the definition of magnetic 
flux to obtain: 
 

( )( ) ( )
Wb107.58

m01.0mT6.03400
4

2
m

−×=

=

=

π

φ NBA

 

 
(c) Relate the self-inductance of the 
solenoid to the magnetic flux 
through it and its current:  
 

mH253.0
A3

Wb107.58 4
m =

×
==

−

I
L φ

 

 

(d) Apply Faraday’s law to obtain: 
 

( )( )

mV38.0

A/s150mH0.253

−=

−=−=
dt
dILε

 

 
56 ••  
Picture the Problem We can find the mutual inductance of the two coaxial solenoids 

using 2
1120

1

m2
1,2 rnn

I
M πµφ

l== . 

 
Substitute numerical values and evaluate M2,1: 
 

( ) ( ) ( ) mH89.1m02.0m25.0
m0.25

1000
m0.25

300N/A104 227
1,2 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×= − ππM  

 
*57 ••  
Picture the Problem Note that the current in the two parts of the wire is in opposite 
directions. Consequently, the total flux in the coil is zero. We can find the resistance of 
the wire-wound resistor from the length of wire used and the resistance per unit length. 
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Because the total flux in the coil is 
zero: 

0=L  

 
Express the total resistance of the 
wire: 

( ) Ω=⎟
⎠
⎞

⎜
⎝
⎛ Ω

=⎟
⎠
⎞

⎜
⎝
⎛ Ω

= 162m9
m

18
m

18 LR  

 
58 •••  

Picture the Problem We can apply Kirchhoff’s loop rule to the galvanometer circuit to 
relate the potential difference across L2 to the potential difference across R2. Integration of 
this equation over time will yield an equation that relates the mutual inductance between 
the two coils to the steady-state current in circuit 1 and the charge that flows through the 
galvanometer. 
 

Apply Kirchhoff’s loop rule to the 
galvanometer circuit: 
  

022
2

2
1 =−+ IR

dt
dIL

dt
dIM  

or 
022221 =−+ dtIRdILMdI  

 
Integrate each term from t = 0 to 
t = ∞: 0

0
22

0
22

0
1 =−+ ∫∫∫

∞∞∞

dtIRdILdIM  

and 
02221 =−+ ∞∞ QRILMI  

 
Because I2∞ = 0: 021 =−∞ QRMI  

 
Solve for M: 

∞

=
1

2

I
QRM  

 
Substitute numerical values and 
evaluate M: 

( )( ) mH12.0
A5

C102Ω300 4

=
×

=
−

M  

 
59 •••  

Picture the Problem We can use Ampere’s law to express the magnetic field inside the 
rectangular toroid and the definition of magnetic flux to express φm through the toroid. We 
can then use the definition of self-inductance of a solenoid to express L. 
 

Using the definition of the self-
inductance of a solenoid, express L 
in terms of φm, N, and I: 
 

I
NL mφ

=                          (1) 
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Apply Ampere’s law to a closed path 
or radius a < r < b: 
 

C0C
2 IrBd µπ ==⋅∫ l

rr
B  

or, because IC = NI, 
NIrB 02 µπ =  

 
Solve for B to obtain: 

r
NIB
π

µ
2
0=  

 
Express the flux in a strip of height 
H and width dr: 
 

BHdrd =mφ  

Substitute for B and integrate dφm 
from r = a to r = b to obtain: 
 

⎟
⎠
⎞

⎜
⎝
⎛== ∫ a

bNIH
r

drNIH b

a

ln
22

00
m π

µ
π

µφ  

 
Substitute in equation (1) and 
simplify to obtain: ⎟

⎠
⎞

⎜
⎝
⎛=

a
bHNL ln

2

2
0

π
µ
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60 •  
Picture the Problem The current in an LR circuit, as a function of time, is given by 

( )τteII −−= 1f , where If = ε0/R and τ = L/R. The energy stored in the inductor under 
steady-state conditions is stored in its magnetic field and is given by 2

f2
1

m LIU = . 

 
(a) Express and evaluate If: A2.00

Ω12
V240

f ===
R

I ε
 

 
(b) Express and evaluate the energy 
stored in an inductor: 

( )( ) J4.00A2H2 2
2
12

f2
1

m === LIU  

 
*61 ••   
Picture the Problem We can examine the ratio of um to uE with E = cB and 

001 µε=c to show that the electric and magnetic energy densities are equal. 

 
Express the ratio of the energy 
density in the magnetic field to the 
energy density in the electric field: 
 

2
00

2

2
02

1
0

2

E

m 2
E

B
E

B

u
u

εµε
µ

==  

 
Substitute E = cB: 
 2

00
22

00

2

E

m 1
cBc

B
u
u

εµεµ
==  
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Substitute for c: 
 

1
00

00

E

m ==
εµ
εµ

u
u

 ⇒ Em uu =  

 
62 ••  
Picture the Problem We can use lAnL 2

0µ= to find the inductance of the solenoid and 
nIB 0µ= to find the magnetic field inside it. 

 
(a) Express the magnetic energy 
stored in the solenoid: 
 

2
2
1

m LIU =  

Relate the inductance of the 
solenoid to its dimensions and 
properties: 
 

lAnL 2
0µ=  

Substitute to obtain: 
 

22
02

1
m IAnU lµ=  

Substitute numerical values and 
evaluate Um: ( )

( )( )( )
mJ53.6

A4m0.3m104

m3.0
2000N/A104

224

2
27

2
1

m

=

××

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

−

−πU

 

 
(b) The magnetic energy per unit 
volume in the solenoid is: ( )( )

3

24
mm

J/m447

m0.3m104
mJ6.53

=

×
== −lA

U
V

U

 

 
(c) Express the magnetic field in the 
solenoid in terms of n and I: 
 ( )( )( )

mT5.33

m3.0
A42000N/A104 27

00

=

×
=

==

−π

µµ INnIB
l

 

 
(d) The magnetic energy density is: ( )

( )
3

27

2

0

2

m

J/m447

N/A1042
mT5.33

2

=

×
== −πµ

Bu
 

in agreement with our result in Part (b). 
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63 ••  
Picture the Problem Consider a 
cylindrical annulus of thickness dr at a 
radius r < a. We can use its definition to 
express the total magnetic energy 

mdU inside the cylindrical annulus and 

divide both sides of this expression by the 
length of the wire to express the magnetic 
energy per unit length mdU' . Integration of 

this expression will give us the magnetic 
energy per unit length within the wire.  
 
Express the magnetic energy within 
the cylindrical annulus: 
 

drrB

drrBVBdU

l

l

π
µ

π
µµ

0

2
0

2

annulus
0

2

m 2
22

=

==

 

 
Divide both sides of the equation by 
l to express the magnetic energy per 
unit length mdU' : 

 

rdrBdU'm π
µ0

2

=                  (1) 

Use Ampere’s law to express the 
magnetic field inside the wire at a 
distance r < a from its center: 
 

C02 IrB µπ =  

and 

r
IB

π
µ
2

C0=  

where IC is the current inside the cylinder 
of radius r. 
 

Because the current is uniformly 
distributed over the cross-sectional 
area of the wire: 
 

2

2
C

a
r

I
I

π
π

=  ⇒ I
a
rI 2

2

C =  

 

Substitute to obtain: 
 2

0

2 a
rIB

π
µ

=  

 
Substitute for B in equation (1) to 
obtain: 
 drr

a
Irdra

rI

dU m
3

4

2
0

0

2

2
0

4
2'

π
µπ

µ
π

µ

=
⎟
⎠
⎞

⎜
⎝
⎛

=  
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Integrate mdU' from r = 0 to r = a: 

π
µ

π
µ

π
µ

16444

2
0

4

4

2
0

0

3
4

2
0 Ia

a
Idrr

a
IU'

a

m =⋅== ∫
 

Remarks: Note that the magnetic energy per unit length is independent of the radius 
of the cylinder and depends only on the total current. 
 
*64 ••  
Picture the Problem The wire of length d and radius a is shown in the diagram, as is the 
inductor constructed with this wire and whose inductance L is to be found. We can use 
the equation for the self-inductance of a cylindrical inductor to derive an expression for 
L. 

 
 
The self-inductance of an inductor 
with length l, cross-sectional area A, 
and number of turns per unit length 
n  is: 
 

lAnL 2
0µ=                    (1)       

The number of turns N is given by: 
 a

N
2
l

=  

The number of turns per unit length 
n is: 
 a

Nn
2
1

==
l

 

Assuming that a << r, the length of 
the wire d is related to n and r: 
 

( ) l
l

a
rr

a
rNd πππ =⎟

⎠
⎞

⎜
⎝
⎛== 2

2
2  

 
Solve for l to obtain: 
 r

ad
π

=l  

 
Substitute for l, A, and n in equation 
(1) to obtain: 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

a
rd

r
adr

a
L

42
1

0
2

2

0 µ
π

πµ  

 
65 •  
Picture the Problem We can substitute numerical values in the expression derived in 
Problem 64 to find the self-inductance of the inductor. 
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From Problem 64 we have: 
 a

rRL
4
0µ

=  

 
Substitute numerical values and evaluate L: 
 

( )( )( )
( ) H157.0

mm5.04
cm10cm25.0N/A104 27

µπ
=

×
=

−

L  

 
66 ••  
Picture the Problem We can find the number of turns on the coil from the length of the 
superconducting wire and the cross-sectional radius of the coil. We can use 

( ) ( )mean0 2 rNIB πµ= to find the magnetic field at the mean radius. We can find the 

energy density in the magnetic field from ( )0
2

m 2µBu =  and the total energy stored in 
the toroid by multiplying mu by the volume of the toroid. 

 
(a) Express the number of turns in 
terms of the length of the wire L and 
length required per turn 2πr: 

 

( ) 7958
m02.02

m0010
2

===
ππr

LN  

 

(b) Use the equation for B inside a 
tightly wound toroid to find the 
magnetic field at the mean radius: 
 

( )( )( )
( )

T55.2

m25.02
A4007958N/A104

2
27

mean

0

=

×
=

=

−

π
π

π
µ

r
NIB

 

 
(c) Express and evaluate the energy 
density in the magnetic field: 
 

( )
( )

36

27

2

0

2

m

J/m1059.2

N/A1042
T55.2

2

×=

×
== −πµ

Bu
 

 
Relate the total energy stored in the 
toroid to the energy density in its 
magnetic field and the volume of 
the toroid: 
 

toroidmm VuU =  

Think of the toroid as a cylinder of 
radius r and height 2πrmean to 
obtain: 
 

( ) mean
22

mean
2

toroid 22 rrrrV πππ ==  

Substitute for Vtoroid  to obtain: mmean
22

m 2 urrU π=  
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Substitute numerical values and evaluate Um: 
 

( ) ( )( ) kJ11.5J/m1059.2m25.0m02.02 3622
m =×= πU  

 
RL Circuits 
 
67 •  
Picture the Problem We can find the current using ( )τteII −−= 1f  where If = ε0/R and 

τ = L/R and its rate of change by differentiating this expression with respect to time. 
 
Express the dependence of the 
current on If and τ: 
 

( )τteII −−= 1f  

Evaluate If and τ: A12.5
Ω8
V1000

f ===
R

I ε
 

and 

s0.5
Ω8
H4

===
R
Lτ  

 
Substitute to obtain: ( )( )

( )( )1s2

s5.0

1A5.12

1A5.12
−−

−

−=

−=
t

t

e

eI
 

 
Express dI/dt: 
 

( )( )( )
( ) 1

1

s2

1s2

A/s25

s2A5.12
−

−

−

−−

=

−−=

t

t

e

e
dt
dI

 

 
(a) When t = 0: ( )( ) 01A5.12 0 =−= eI  

and 

( ) A/s0.25A/s25 0 == e
dt
dI

 

 
(b) When t = 0.1 s: ( )( ) A27.21A5.12 2.0 =−= −eI  

and 

( ) A/s5.20A/s25 2.0 == −e
dt
dI

 

 
(c) When t = 0.5 s: ( )( ) A90.71A5.12 1 =−= −eI  

and 



Chapter 28    
 

 

672 

( ) A/s20.9A/s25 1 == −e
dt
dI

 

 
(d) When t = 1.0 s: ( )( ) A8.101A5.12 2 =−= −eI  

and 

( ) A/s38.3A/s25 2 == −e
dt
dI

 

 
 
68 •  
Picture the Problem We can find the current using ,0

τteII −=  where I0 is the current at 

time t = 0 and τ = L/R. 
 
Express the current as a function of 
time: 
 

( ) ττ tt eeII −− == A20  

 

Evaluate τ: s10
10
mH1 4−=

Ω
==

R
Lτ  

 
Substitute to obtain: 
 

( ) 14 s10A2
−−= teI  

(a) When t = 0.5 ms: ( ) ( ) ( )
mA13.5

A2A2 5ss105.010 134

=

== −×− −−

eeI
 

 
(b) When t = 10 ms: ( ) ( ) ( )

0A1044.7

A2A2
44

100ss101010 134

≈×=

==
−

−×− −−

eeI
 

 
*69 ••  
Picture the Problem We can find the current using ( ),1f

τteII −−=  where  

If = ε0/R,and τ = L/R, and its rate of change by differentiating this expression with respect 
to time. 
 
Express the dependence of the 
current on If and τ: 
 

( )τteII −−= 1f  

Evaluate If and τ: A4
Ω3
V210

f ===
R

I ε
 

and 
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s0.2
Ω3
H6.0

===
R
Lτ  

 
Substitute to obtain: ( )( ) ( )( )1s5s2.0 1A41A4

−−− −=−= tt eeI  

 
Express dI/dt: 
 

( )( )( )
( ) 1

1

s5

1s5

A/s20

s5A4
−

−

−

−−

=

−−=

t

t

e

e
dt
dI

 

 
(a) Find the current at t = 0.5 s: 
 

( ) ( ) ( )( )
A67.3
1A4s5.0

1ss5.05

=
−=

−−eI
 

 
The rate at which the battery 
supplies power at t = 0.5 s is: 

( ) ( )
( )( )

W44.0

V12A67.3
s5.0s5.0

=

=
= εIP

 

 
(b) The rate of joule heating is: ( ) ( )[ ]

( ) ( )
W4.40

3A67.3

s5.0s5.0
2

2
J

=

Ω=

= RIP

 

 
(c) Using the expression for the 
magnetic energy stored in an 
inductor, express the rate at which 
energy is being stored: 
 

[ ]
dt
dILILI

dt
d

dt
dU

== 2
2
1L  

 

Substitute for L, I, and dI/dt to 
obtain: 

[ ]
dt
dILILI

dt
d

dt
dU

== 2
2
1L  

 

Substitute numerical values and evaluate :L

dt
dU

 

 

( )( )( )( ) ( )( ) 1111 s5s5s5s5L 1W48A/s201A4H6.0
−−−− −−−− −=−= tttt eeee

dt
dU

 

 
Evaluate this expression for  
t = 0.5 s: 

( ) ( )( ) ( )

( )( )
W62.3

1W48

1W48

5.25.2

ss5.05ss5.05L 11

=

−=

−=

−−

−− −−

ee

ee
dt

dU
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Remarks: Note that, to a good approximation, dUL/dt = P − PJ. 
 
70 ••  
Picture the Problem We can find the current using ( )τteII −−= 1f , where If = ε0/R and 

τ = L/R, and its rate of change by differentiating this expression with respect to time. 
 
Express the dependence of the 
current on If and τ: 
 

( )τteII −−= 1f  

Evaluate If and τ: A4
Ω3
V210

f ===
R

I ε
 

and 

s0.2
Ω3
H6.0

===
R
Lτ  

 
Substitute to obtain: ( )( )

( )( )1s5

s2.0

1A4

1A4
−−

−

−=

−=
t

t

e

eI
 

 
Express dI/dt: 
 

( )( )( )
( ) 1

1

s5

1s5

A/s20

s5A4
−

−

−

−−

=

−−=

t

t

e

e
dt
dI

 

 
(a) Find the current at t = 1 s: 
 

( ) ( ) ( )( )
A97.3
1A4s1

1ss15

=
−=

−−eI  

 
The rate at which the battery 
supplies power at t = 1 s: 

( ) ( ) ( )( )
W47.7

V12A97.3s1s1

=

== εIP
 

 
Find the current at t = 100 s: 
 

( ) ( ) ( )( )
A00.4
1A4s100

1ss1005

=
−=

−−eI  

 
The rate at which the battery 
supplies power at t = 100 s: 

( ) ( ) ( )( )
W48.0

V12A4s100s100

=

== εIP
 

 
(b) The rate of joule heating at 
t = 1 s is: 

( ) ( )[ ]
( ) ( )

W3.47

3A97.3

s1s1
2

2
J

=

Ω=

= RIP
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The rate of joule heating at  
t = 100 s is: 
 

( ) ( ) ( ) W48.03A4s100 2
J =Ω=P  

Using the expression for the 
magnetic energy stored in an 
inductor, express the rate at which 
energy is being stored: 
 

[ ]
dt
dILILI

dt
d

dt
dU

== 2
2
1L  

 

Substitute for L, I and dI/dt to 
obtain: 

[ ]
( )( )( )

( )
( )( ) 11

1

1

s5s5

s5

s5

2
2
1L

1W48

A/s20

1A4H6.0

−−

−

−

−−

−

−

−=

×

−=

==

tt

t

t

ee

e

e
dt
dILILI

dt
d

dt
dU

 

 
Evaluate dUL/dt  for t = 1 s: ( ) ( )( ) ( )

( )( )
W321.0

1W48

1W48

55

ss15ss15L 11

=

−=

−=

−−

−− −−

ee

ee
dt

dU

 

 
Evaluate dUL/dt  for t = 100 s: ( ) ( )( ) ( )

( )( )
0

1W48

1W48

500500

ss1005ss1005L 11

=

−=

−=

−−

−− −−

ee

ee
dt

dU

 

 
Remarks: Note that, to a good approximation, dUL/dt = P − PJ. 
 
71 ••  
Picture the Problem If the current is initially zero in an LR circuit, its value at some 
later time t is given by ( )τteII −−= 1f , where If = ε0/R and τ = L/R is the time constant 

for the circuit. We can find the time constant of the circuit from the given information 
and then use the definition of the time constant to find the self-inductance. 
 
(a) Express the current in the circuit 
as a function of time: 

( )τteII −−= 1f  where 
R
L

=τ          (1) 

Express the current when t = 4 s:  ( )τs4
ff 15.0 −−= eII  

or 
τs415.0 −−= e  ⇒ τs45.0 −= e  
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Take logarithms of both sides of this 
equation to obtain: 
 

τ
s4ln 2

1 −=  

Solve for and evaluate τ: s77.5
ln2

s4
==τ  

 
(b) Solve equation (1) for and 
evaluate L: 

( )( ) H9.28s77.55 =Ω== τRL  

 
72 ••  
Picture the Problem If the current is initially zero in an LR circuit, its value at some 
later time t is given by ( )τteII −−= 1f , where If = ε0/R and τ = L/R is the time constant 

for the circuit. We can find the number of time constants that must elapse before the 
current reaches any given fraction of its final value by solving this equation for t/τ . 
 
Express the fraction of its final value 
to which the current has risen as a 
function of time: 
 

τte
I
I −−= 1
f

 

Solve for t/τ : 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

f

1ln
I
It

τ
 

 
(a) Evaluate t/τ for I/If = 0.9: 
 

( ) 30.29.01ln
%90

=−−=
τ
t

 

 
(b) Evaluate t/τ for I/If = 0.99: 
 

( ) 61.499.01ln
%99

=−−=
τ
t

 

 
(c) Evaluate t/τ for I/If = 0.999: ( ) 91.6999.01ln

%9.99

=−−=
τ
t

 

 
73 ••  
Picture the Problem If the current is initially zero in an LR circuit, its value at some 
later time t is given by ( )τteII −−= 1f , where If = ε0/R and τ  = L/R is the time constant 

for the circuit. We can find the rate of increase of the current by differentiating I with 
respect to time and the time for the current to reach any given fraction of its initial value 
by solving for t. 
 
(a) Express the current in the circuit 
as a function of time: 

( )τε te
R

I −−= 10  
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Express the initial rate of increase 
of the current by differentiating this 
expression with respect to time: 
 

( )

( )
t

L
R

t
L
R

t

t

e
L

e
R

e
R

e
dt
d

Rdt
dI

−

−−

−

=

=⎟
⎠
⎞

⎜
⎝
⎛−−=

−=

0

00

0

1

1

ε

εε

ε

ττ
τ

τ

 

 
Evaluate dI/dt at t = 0 to obtain: 
 

kA/s3.00
mH4

V1200

0

===
=

e
Ldt

dI
t

ε
 

 
(b) When I = 0.5If: τte−−= 15.0  ⇒ 5.0=− τte  

 
Evaluate dI/dt with 5.0=− τte  to 
obtain: 
 

kA/s1.50

mH4
V125.05.0 0

5.0

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

=− Ldt
dI

te

ε
τ  

 
(c) Calculate If from ε and R: 80.0mA

Ω150
V120

f ===
R

I ε
 

 
(d) When I = 0.99If: τte−−= 199.0 ⇒ 01.0=− τte  

 
Solve for and evaluate t: ( ) ( )

( ) ms123.001.0ln
Ω150

mH4

01.0ln01.0ln

=−=

−=−=
R
Lt τ

 

 
74 ••  
Picture the Problem If the current is initially zero in an LR circuit, its value at some 
later time t is given by ( )τteII −−= 1f , where If = ε0/R and τ = L/R is the time constant 

for the circuit. We can find the time for the current to reach any given value by solving 
this equation for t. 
 
Evaluate If and τ : 
 

A31.25
Ω8

V2500
f ===

R
I ε

 

and 

s6.25
Ω8
H50

===
R
Lτ  
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Solve ( )τteII −−= 1f  for t: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

A25.31
1lns25.6

1ln
f

I

I
It τ

 

 
(a) Evaluate t for I = 10 A: ( )

s41.2

A25.31
A101lns25.6

A10

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=t

 

 
(b) Evaluate t for I = 30 A: ( )

s1.20

A25.31
A301lns25.6

A30

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=t

 

 
*75 •••  
Picture the Problem The self-induced emf in the inductor is proportional to the rate at 
which the current through it is changing. Under steady-state conditions, dI/dt = 0 and so 
the self-induced emf in the inductor is zero. We can use Kirchhoff’s loop rule to obtain 
the current through and the voltage across the inductor as a function of time. 
 
(a) Because, under steady-state 
conditions, the self-induced emf in 
the inductor is zero and because the 
inductor has negligible resistance, 
we can apply Kirchhoff’s loop rule 
to the loop that includes the source, 
the 10-Ω resistor, and the inductor to 
find the current drawn from the 
battery and flowing through the 
inductor and the 10-Ω resistor: 
 

( ) 010V10 =Ω− I  

and 

A00.1
10

V10
=

Ω
=I  

By applying Kirchhoff’s junction 
rule at the junction between the 
resistors, we can conclude that: 
 

0inductorbatteryresistor -100 =−=Ω III  

(b)  When the switch is closed, the current cannot immediately go to zero in the circuit 
because of the inductor.  For a time, a current will circulate in the circuit loop between 
the inductor and the 100-Ω resistor.  Because the current flowing through this circuit is 
initially 1 A, the voltage drop across the 100-Ω resistor is initially 

V.100 Conservation of energy (Kirchhoff’s loop rule) requires that the voltage drop 
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across the inductor is also V.100    

 
(c) Apply Kirchhoff’s loop rule to 
the RL circuit to obtain: 

0=+ IR
dt
dIL  

 
The solution to this differential 
equation is: 
 

( ) τ
tt

L
R

eIeItI
−−

== 00  

where s02.0
100

H2
=

Ω
==

R
Lτ  

 
A spreadsheet program to generate the data for graphs of the current and the voltage 
across the inductor as functions of time is shown below. The formulas used to calculate 
the quantities in the columns are as follows: 
 

Cell Formula/Content Algebraic Form
B1 2 L 
B2 100 R 
B3 1 I0 
A6 0 t0 
B6 $B$3*EXP((−$B$2/$B$1)*A6) t

L
R

eI
−

0   
 

 A B C 
1 L= 2 H 
2 R= 100 ohms 
3 I_0= 1 A 
4    
5 t I(t) V(t) 
6 0.000 1.00E+00 100.00
7 0.005 7.79E−01 77.88 
8 0.010 6.07E−01 60.65 
9 0.015 4.72E−01 47.24 
10 0.020 3.68E−01 36.79 
11 0.025 2.87E−01 28.65 
12 0.030 2.23E−01 22.31 
    

32 0.130 1.50E−03 0.15 
33 0.135 1.17E−03 0.12 
34 0.140 9.12E−04 0.09 
35 0.145 7.10E−04 0.07 
36 0.150 5.53E−04 0.06  

 
The following graph of the current in the inductor as a function of time was plotted using 
the data in columns A and B of the spreadsheet program. 
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0.0
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)

 
The following graph of the voltage across the inductor as a function of time was plotted 
using the data in columns A and C of the spreadsheet program. 

0
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V
 (V
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76 ••  
Picture the Problem We can evaluate the derivative of Equation 28-26 with respect to 
time at t = 0 to find the slope of the linear function of current as a function of time. 
Because the I-intercept of this equation is I0, we can evaluate I(t) at t = τ to show that the 
current is zero after one time constant.  
 
Equation 28-26 describes the current 
in an LR circuit from which the 
source has been removed: 
 

τ
t

eII
−

= 0  
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Differentiate this expression with 
respect to t to obtain: 
 

τ

ττ

τ

τ
t

tt

eI

eIe
dt
dI

dt
dI

−

−−

−=

⎟
⎠
⎞

⎜
⎝
⎛−==

0

00
1

 

 
Evaluate dI/dt at t = 0: 
 τ

0

0

I
dt
dI

t

−=
=

 

 
Assuming that the current decreases 
steadily at this rate, express I as a 
linear function of t to obtain: 
 

( ) 0
0 ItItI +−=

τ
 

Evaluate this function when  
t = τ : 

( ) 00
0 =+−= III τ

τ
τ  

as was to have been shown. 
 
77 ••  
Picture the Problem The current in an initially energized but source-free RL circuit is 
given by τteII −= 0 . We can find τ from this equation and then use its definition to 

evaluate L. 
 
(a) Express the current in the RL 
circuit as a function of time: 
 

τteII −= 0  

Solve for and evaluate τ : ms1.88

A2.5
A1.5ln

ms45

ln
0

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

I
I

tτ  

 
(b) Using the definition of the 
inductive time constant, relate L to 
R: 
 

RL τ=  

Substitute numerical values and 
evaluate L: 

( )( ) mH2.354.0s0881.0 =Ω=L  

 
78 •  
Picture the Problem We can model this coil as a resistance-free inductor in series with 
an inductance-free resistor and express the potential difference across the coil as the sum 
of the potential differences across the inductor and the resistor. We can then use the 
given data to obtain two equations in the unknowns R and L and solve these equations 
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simultaneously for the resistance and self-inductance of the coil. 
 
Express the potential difference 
across the coil as the sum of the 
potential difference across a resistor 
and the potential difference across 
an inductor: 
 

dt
dILIR

VVV LR

+=

+=
 

When I = 5 A and  
dI/dt = 10 A/s: 
 

( ) ( )LR A/s10A5V140 +=  

 

When I = 5 A and  
dI/dt = −10 A/s: 
 

( ) ( )LR A/s10A5V60 −=  

 

Add these equations to obtain: 
 

( )RA10V200 =  

and  

Ω== 0.20
10
200

A
VR  

 
Substitute in either of the equations to 
obtain: 

H00.4=L  

 
79 ••  
Picture the Problem We can use the definition of inductance to express the rate at 
which the current changes through the inductors and the resistor and the result of 
Problem 88 to find the effective inductance in the circuit. We can find the final/steady-
state current by applying Ohm’s law. 
 
(a) Express the rate of change of the 
current through the resistor: 
 

effLdt
dIR ε

=  

Using the result given in Problem 
88, find Leff: mH4

1
mH8
11

eff

+=
L

 

and 
mH67.2eff =L  

 
Substitute numerical values and 
evaluate dIR/dt at t = 0: 

kA/s00.9
mH2.67
V24

0

==
=t

R

dt
dI
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Express the rate of change of the 
current through the 8-mH inductor: 
 

mH8

mH8

Ldt
dI ε

=                  (1) 

Express the rate of change of the 
current through the 4-mH inductor: 
 

mH4

mH4

Ldt
dI ε

=                  (2) 

Because IR = 0 when t = 0: V24mH4mH8eff
=== VVVL  

 
Substitute numerical values in 
equation (1) and evaluate 

dtdI mH8 : 

 

kA/s3.00
mH8

V24mH8 ==
dt

dI
 

 

Substitute numerical values in 
equation (2) and evaluate 

dtdI mH4 : 

 

kA/s6.00
mH4

V24mH4 ==
dt

dI
 

 

(b) After a long time has passed, the 
inductors will act as a short and the 
final current will be determined 
solely by the resistance in the 
circuit:  

A1.60
Ω15
V24

f ===
R

I ε
 

 
*80 ••  
Picture the Problem If the current is initially zero in an LR circuit, its value at some 
later time t is given by ( ),1f

τteII −−=  where If = ε0/R and τ = L/R is the time constant 

for the circuit. We can find the time at which the power dissipation in the resistor equals 
the rate at which magnetic energy is stored in the inductor by equating expressions for 
these rates and using the expression for I and its rate of change. 
 
Express the rate at which magnetic 
energy is stored in the inductor: 
 

[ ]
dt
dILILI

dt
d

dt
dUL == 2

2
1  

 
Express the rate at which power is 
dissipated in the resistor: 
 

RIP 2=  

Equate these expressions to obtain: 
dt
dILIRI =2  

 
Simplify to obtain: 

dt
dII τ=                          (1) 
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Express the current and its rate of 
change: 
 

( )τteII −−= 1f  

and 

( )
τ

ττ

τ

τ

t

tt

eI

eIe
dt
dI

dt
dI

−

−−

=

⎟
⎠
⎞

⎜
⎝
⎛−−=−=

f

ff
11

 

 
Substitute in equation (1) to obtain: 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛=− −− ττ

τ
τ tt eIeI f

f 1  

or 
ττ tt ee −− =−1 ⇒ τte−= 21  

 
Solve for t: 2

1lnτ−=t  

 
Using τ = 333 µs from Example 28-
11, evaluate t to obtain: 

( ) s231lns333 2
1 µt =−= µ  

 
81 •••  
Picture the Problem We can integrate I,dtdE 0ε= where ( )τteII −−= 1f , to find the 

energy supplied by the battery, RIdtdE 2
J =  to find the energy dissipated in the 

resistor, and ( ) ( )( )2
2
1 ττ ILU L = to express the energy that has been stored in the 

inductor when t = τ. 
 
(a) Express the rate at which energy 
is supplied by the battery: 
 

I
dt
dE

0ε=  

Express the current in the circuit as a 
function of time: 
 

( )τε te
R

I −−= 10  

Substitute to obtain: ( )τε te
Rdt

dE −−= 1
2
0  

 
Separate variables and integrate 
from t = 0 to t = τ to obtain: 
 

( )

( )[ ]

eR
L

eR

e
R

dte
R

E t

2

2
0

2
0

1
2
0

0

2
0 1

εε

ε

ε

τ

τττ

τ
τ

==

+−−=

−=

−

−∫
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Substitute numerical values and 
evaluate E: 

( ) ( )
( )

J53.3
3

H6.0V12
2

2

=
Ω

=
e

E  

 
(b) Express the rate at which energy 
is being dissipated in the resistor: 
 

( )

( )ττ

τ

ε

ε

tt

t

ee
R

Re
R

RI
dt

dE

2
2
0

2
02J

21

1

−−

−

+−=

⎥⎦
⎤

⎢⎣
⎡ −==

 

 
Separate variables and integrate 
from t = 0 to t = τ to obtain: 
 

( )

⎟
⎠
⎞

⎜
⎝
⎛ −−=

⎟
⎠
⎞

⎜
⎝
⎛ −−=

+−= ∫ −−

22

2
0

2

2
0

0

2
2
0

J

2
1

2
12

22
2

21

eeR
L

eeR

dtee
R

E tt

ε

ε

ε

τττ

τ
ττ

 

 
Substitute numerical values and 
evaluate EJ: 

( ) ( )
( )

J61.1

2
1

2
12

Ω3
H0.6V12

22

2

J

=

⎟
⎠
⎞

⎜
⎝
⎛ −−=

ee
E

 

 
(c) Express the energy stored in the 
inductor when t = τ : 
 

( ) ( )( )

( )

( )21
2

2
0

2
10

2
1

2
2
1

1
2

1

−

−

−=

⎟
⎠
⎞

⎜
⎝
⎛ −=

=

e
R

L

e
R

L

ILU L

ε

ε
ττ

 

 
Substitute numerical values and evaluate 
EL: ( ) ( )( )

( )
( )

J92.1

1
Ω32

V12H0.6 21
2

2

=

−= −eU L τ
 

 
Remarks: Note that, as we would expect from energy conservation, E = EJ + EL. 
 
General Problems 
 
82 •  
Picture the Problem We can apply the definition of magnetic flux to find the flux 
through the coil in its two orientations with respect to the magnetic field. 
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(a) Using its definition, express the 
magnetic flux through the coil: 
 

( )( ) ( )
mWb48.8

0cosm03.0T5.06

coscos
2

2
m

=

°=

==

π

θπθφ rNBNBA

 

 
(b) Proceed as in (a) with θ = 20°: 
 ( )( ) ( )

mWb97.7

20cosm03.0T5.06

coscos
2

2
m

=

°=

==

π

θπθφ rNBNBA

 

 
83 •  
Picture the Problem We can apply the definition of magnetic flux to find the flux 
through the coil in its two orientations with respect to the magnetic field and then use 
Faraday’s law to find the emfs induced in the coil. 
 
Using Faraday’s law, express the 
emf induced in the coil: ttt ∆

=
∆
−

−=
∆

∆
−= im,im,fm,m φφφφε  

because φm,f = 0 
 

(a) Using its definition, express the 
magnetic flux through the coil: 
 

θπθφ coscos 2
m rNBNBA ==  

 

Substitute to obtain: 
 t

rNB
∆

=
θπε cos2

 

 
Substitute numerical values and 
evaluate ε: 

( )( ) ( )

mV07.7

s2.1
0cosm03.0T5.06 2

=

°
=

πε
 

 
(b) Proceed as in (a) with  
θ = 20°: 
 

( )( ) ( )

mV64.6

s2.1
20cosm03.0T5.06 2

=

°
=

πε
 

 
84 •  
Picture the Problem We can apply Faraday’s and Ohm’s laws to obtain expressions for 
the induced emf that we can equate and solve for the rate at which the perpendicular 
magnetic field must change to induce a current of 4.0 A in the coil. 
 
Using Faraday’s law, relate the 
induced emf in the coil to the dt

dBNA
dt

d
== mφε  
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changing magnetic flux: 
 

 
 

Using Ohm’s law, relate the 
induced emf to the resistance of the 
coil and the current in it: 
 

IR=ε  

Equate these expressions and solve 
for dB/dt: 
 

IR
dt
dBNA =  

and 

2rN
IR

NA
IR

dt
dB

π
==  

 
Substitute numerical values and evaluate 
dB/dt: 

( )( )
( ) ( )

T/s199
m0.04100
Ω25A4

2 ==
πdt

dB
 

 
*85 ••  
Picture the Problem We can apply Faraday’s law and the definition of magnetic flux to 
derive an expression for the induced emf in the coil (potential difference between the slip 
rings). In part (b) we can solve this equation for ω under the given conditions.  
 
(a) Use Faraday’s law to express the 
induced emf: 
 

dt
d mφε −=  

Using the definition of magnetic 
flux, relate the magnetic flux 
through the loop to its angular 
velocity: 
 

( ) tNBAt ωφ cosm =  

Substitute to obtain: 
 

[ ]
( )

tNBab

tNBab

tNBA
dt
d

ωω

ωω

ωε

sin

sin

cos

=

−−=

−=

 

 
(b) Express the condition under 
which ε = εmax: 
 

1sin =tω  
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Solve for and evaluate ω under this 
condition: 

( )( )( )( )
rad/s275

m0.02m0.01T21000
V110

max

=

=

=
NBab
εω

 

 
86 ••  
Picture the Problem We can apply Faraday’s law and the definition of magnetic flux to 
derive an expression for the induced emf in the rotating coil gaussmeter.  
 
Use Faraday’s law to express the 
induced emf: 
 

dt
d mφε −=  

Using the definition of magnetic 
flux, relate the magnetic flux 
through the loop to its angular 
velocity: 
 

( ) tNBAt ωφ cosm =  

Substitute to obtain: 
 

[ ]
( )

ttNBA
tNBA

tNBA
dt
d

ωωω
ωω

ω

ε

ε

sinsin
sin

cos

max==
−−=

−=

 

where 
ωε NBA=max  

 
Substitute numerical values and evaluate εmax: 
 

( )( )( ) V475.0
s60

min1
rev

rad2
min
rev180m101.4T0.45400 24

max =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×××= − πε  

 

maximum.
 a is but  zero, is  instant, At this . field magnetic  the toparallel

is coil  theof plane moment the at the occurs emf induced maximum The

m εφB
r

 

 
87 ••  
Picture the Problem We can use the equality of the currents in the inductors connected 
in series and the additive nature of the total induced emf across the inductors to show that 
the inductances are additive. 
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Relate the total induced emf to the 
effective inductance Leff and the rate 
at which the current is changing in 
the inductors: 
 

dt
dILeff=ε  

Because the inductors L1 and L2 are 
in series: 
 

III == 21  

and 

dt
dI

dt
dI

dt
dI

== 21  

 
Express the total induced emf: 

( )
dt
dILL

dt
dIL

dt
dIL

21

2121

+=

+=+= εεε
 

 
Substitute in equation (1) and 
simplify to obtain: 

21eff LLL +=  

 
*88 ••  
Picture the Problem We can use the common potential difference across the parallel 
combination of inductors and the fact that the current into the parallel combination is the 
sum of the currents through each inductor to find an expression of the equivalent 
inductance. 
 
Define Leff by: 
 dtdI

L ε
=eff   

or 

  
eff

1
Ldt

dI ε=                 (1) 

 
Relate the common potential 
difference across the inductors to 
their inductances and the rate at 
which the current is changing in 
each: 
 

dt
dIL 1

11 =ε                    (2) 

and 

dt
dIL 2

22 =ε                   (3) 

 
Because the current divides at the 
parallel junction: 
 

21 III +=  

and 

dt
dI

dt
dI

dt
dI 21 +=  
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Solve equations (2) and (3) for dI1/dt 
and dI2/dt and substitute to obtain: 
 

2

2

1

1

LLdt
dI εε

+=  

Express the relationship between an 
emf ε applied across the parallel 
combination of inductors and the 
emfs ε1 and ε2 across the individual 
inductors: 
 

21 εεε ==  

Substitute to obtain: 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=+=

2121

11
LLLLdt

dI εεε
 

 
Substitute in equation (1) and solve 
for 1/ Leff: 21eff

111
LLL

+=  

 
*89 ••  
Picture the Problem 
 

(a) 
it. through passing ismagnet 

 when thesense""  tocoil  theallows This coil. gh theflux throu changing
 theof because emfan  inducesit  coil, he through tpassesmagnet   theAs

 

 

(b)
magnet.  theslow ldmagnet wou falling aby it in  induced currents

eddy  because material conductive of madecylinder  a usecannot  One
 

 

(c) 

coil.  theofcenter  at the ismagnet  heat which t
 time theis zero is emf induced heat which t  timeThe negative. then and

 zero becomes emf induced  theso ,decreasing  toincreasing from goes
flux   thecoil,  thepassing ismagnet   When thesignal.  voltageincreasing

 in the resulting increases,flux   theloop,  theapproachesmagnet   theAs

 

 
(d)  Each time represents a point when the distance has increased by 10 cm.  The 
following graph of distance versus time was plotted using a spreadsheet program. The 
regression curve, obtained using Excel’s ″Add Trendline″ feature, is shown as a dashed 
line. 
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y  = 4.9257t 2 + 1.3931t  + 0.0883

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.1 0.2 0.3 0.4

t  (s)

y  
(m

)

 
The coefficient of the second-degree term is .2

1 g  Consequently, 

( ) 22 m/s85.9m/s9257.42 ==g  

 
90 ••  
Picture the Problem The current equals the induced emf divided by the resistance. We 
can calculate the emf induced in the circuit as the coil moves by calculating the rate of 
change of the flux through the coil. The flux is proportional to the area of the coil in the 
magnetic field. We can find the direction of the current from Lenz’s law. 
 
(a) and (c) Express the magnitude of 
the induced current: 
 

R
I

ε
=                                   (1) 

Using Faraday’s law, express the 
magnitude of the induced emf: 
 

dt
d mφε =  

When the coil is moving to the right 
(or to the left), the flux does not 
change (until the coil leaves the 
region of magnetic field). Thus: 
 

0m ==
dt

dφε  

and 

0==
R

I
ε

 

 
(b) and (d) Letting x represent the 
length of the side of the rectangular 
coil that is in the magnetic field, 
express the magnetic flux through 
the coil: 

NBwx=mφ  
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Compute the rate of change of the 
flux when the coil is moving up or 
down: 
 

( )( )( )( )
V56.0

m/s2m0.25T1.480

m

=
=

=
dt
dxNBw

dt
dφ

 

 
Substitute in equation (1) to obtain: 
 

A2.33
Ω24
V56

==I  

 

(b) 
clockwise.

 is  flux. inward produce  toas sense in the be llcurrent wi induced
  theand increasesflux  outward  theupward, moving is coil When the

I  

 

(d) 
ckwise.counterclo

 is  flux. outward produce  toas sense in the be llcurrent wi induced
  theand decreasesflux  outward  thedownward, moving is coil When the

I  

 
*91 ••  
Picture the Problem We can apply Faraday’s law and the definition of magnetic flux to 
derive an expression for the induced emf in the coil. We can then apply Ohm’s law to 
find the induced current as a function of time. Note that only half of the loop is in the 
magnetic field. 
 
Apply Ohm’s law to relate the 
induced current to the induced emf: 
 

( ) ( )
R
ttI ε

=                  (1) 

Use Faraday’s law to express the 
induced emf: 
 

( ) ( )
dt

tdt mφε −=  

Using the definition of magnetic 
flux, relate the magnetic flux 
through the loop to its angular 
velocity: 
 

( ) tNBAt ωφ cosm =  

Substitute to obtain: 
 

( ) [ ]
( )

tNBA
tNBA

tNBA
dt
dt

ωω
ωω

ωε

sin
sin

cos

=
−−=

−=

 

 
Substitute in equation (1) to obtain: 
 

( ) t
R

NBAtI ωω sin=  
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Substitute numerical values and evaluate I(t): 
 

( ) ( )( )( )( )( ) ( )

( ) ( )t

ttI

rad/s2sinA350.0

rad/s2sin
24

rad/s2m0.15m0.25T4.180

=
Ω

=
 

 
92 ••  
Picture the Problem We can use the laws of Ohm and Faraday to express the charge dQ 
passing through the coil in time dt and integrate this expression to show that Q = N(φm1 − 
φm2)/R. 
 
Use Ohm’s law to express the 
induced current in terms of the 
induced emf: 
 

Rdt
dQ ε

=  ⇒ dt
R

dQ ε
=  

 

Apply Faraday’s law to obtain: 
 m

m φφ d
R
Ndt

dt
d

R
NdQ −=−=  

 
Integrate dQ from 0 to Q and  
dφm = φm1 to φm2 to obtain: ∫∫ −=

m2

m1

m
0

φ

φ

φd
R
N'dQ

Q

 

and 

( )m2m1 φφ −=
R
NQ  

 
93 ••  
Picture the Problem We can apply Faraday’s law to relate the induced electric field E to 
the rates at which the magnetic flux is changing at distances r < R and  
r  > R from the axis of the solenoid. 
 
(a) Apply Faraday’s law to relate 
the induced electric field to the 
magnetic flux in the solenoid within 
a cylindrical region of radius r < R: 
 

dt
dd m

C

φ
−=⋅∫ l

rr
E  

or 

( )
dt

drE m2 φπ −=                   (1) 

 
Express the field within the 
solenoid: 
 

nIB 0µ=  

Express the magnetic flux through 
an area for which r < R: 
 

nIrBA 0
2

m µπφ ==  



Chapter 28    
 

 

694 

Substitute in equation (1) to obtain: ( ) [ ]

dt
dInr

nIr
dt
drE

0
2

0
22

µπ

µππ

−=

−=
 

 
Because tII ωsin0= : [ ]

tnIr

tI
dt
dnrE

ωωµ

ωµ

cos

sin

002
1

002
1

−=

−=
 

 
(b) Proceed as in (a) with r > R to 
obtain: 
 

( ) [ ]

tnIR
dt
dInR

nIR
dt
drE

ωωµπ

µπ

µππ

cos

2

00
2

0
2

0
2

−=

−=

−=

 

 
Solve for E to obtain: 

t
r

InRE ωωµ cos
2

0
2

0−=  

 
94 •••  
Picture the Problem The system exhibits cylindrical symmetry, so one can use 
Ampère’s law to determine B inside the inner cylinder, between the cylinders, and 
outside the outer cylinder. We can use 0

2
m 2µBu = and the expression for B from part 

(a) to express the magnetic energy density in the region between the cylinders. We can 
integrate this expression for um over the volume between the cylinders to find the total 
magnetic energy in a volume of length l . Finally, we can use our result in part (c) and 

2
2
1

m LIU = to find the self-inductance of the cylinders per unit length. 

 
(a) For r  < r1 and for r  > r2 the net 
enclosed current is zero; 
consequently, in these regions: 
 

0=B  

 

For r1 < r < r2: 
C02 IrB µπ = ⇒ 

r
IB

π
µ
2

0=  

 
(b) Express the magnetic energy 
density in the region between the 
cylinders: 
 

0

2

m 2µ
Bu =  
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Substitute for B and simplify to 
obtain: 
 22

2
0

0

2
0

m 82
2

r
Ir

I

u
π
µ

µ
π

µ

=
⎟
⎠
⎞

⎜
⎝
⎛

=  

 
(c) Express the magnetic energy 
dUm in the cylindrical element of 
volume dV: 
 

( )

r
drI

rdr
r
IdVudU

⋅=

==

π
µ

π
π
µ

4

2
8

2
0

22

2
0

mm

l

l

 

 
Integrate this expression from  
r = r1 to r = r2 to obtain:  

1

220
2

0
m ln

44

2

1
r
r

I
r
drI

U
r

r

l
l

π
µ

π
µ

== ∫  

 
(d) Express the energy in the 
magnetic field in terms of L and I: 
 

2
2
1

m LIU =  

Solve for L: 
 2

m2
I
UL =  

 
From our result in (c): 

1

20
2
m ln

4 r
r

I
U

l
π

µ
=  

 
Substitute to obtain: 

1

20

1

20 ln
2

ln
4

2
r
r

r
rL ll

π
µ

π
µ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

 
Express the ratio L/ l : 

1

20 ln
2 r

rL
π

µ
=

l
 

 
95 •••  
Picture the Problem We can use its definition to express the magnetic flux through a 
rectangular element of area dA and then integrate from r = r1 to r = r2 to express the total 
flux through the region. Substituting in L = φm/I will yield the same result found in Part 
(d) of Problem 94. 
 
Use the definition of self-inductance 
to relate the magnetic flux through 
the region of interest to the current I: 
 

I
L mφ

=                     (1) 

Consider a strip of unit length l and 
width dr at a distance r from the 

BdrdrBBdAd === lmφ  
because l = 1. 
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axis. The flux through this area is 
given by: 
 
Apply Ampere’s law to express the 
magnetic field at a distance r from 
the axis: 
 

IrB 02 µπ =  ⇒ 
r
IB

π
µ
2

0=  

 

Substitute to obtain: 
 r

drId
π

µφ
2

0
m =  

 
Integrate from r = r1 to r = r2 to 
obtain: 
 

∫=
2

1
2

0
m

r

r r
drI

π
µφ  

and 

1

20
m ln

2 r
rI

π
µφ =  

 
Substitute in equation (1) to obtain: 

1

20 ln
2 r

rL
π

µ
=  

 
*96 •••  
Picture the Problem We can use I = ε/R and ε = Bv l  to find the current induced in the 
loop and Lenz’s law to determine its direction. We can apply the equation for the force 
on a current-carrying wire to find the net magnetic force acting on the loop and then sum 
the forces to find the net force on the loop. Separating the variables in the differential 
equation and integrating will lead us to an expression for v(t) and a second integration to 
an expression for y(t). We can solve the latter equation for y = 1.40 m to find the time it 
takes the loop to exit the magnetic field and our expression for v(t) to find its exit speed. 
Finally, we can use a constant-acceleration equation to find its exit speed in the absence 
of the magnetic field. 
 
(a) Relate the magnitude of the 
induced current to the induced emf 
and the resistance of the loop: 
  

R
I ε

=  

Relate the induced emf to the 
motion of the loop: 
 

lBv=ε  

Substitute for ε to obtain: v
R
BI l

=  
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clockwise. i.e., decrease,  thisopposes field magnetic itssuch that  iscurrent 
 induced  theofdirection  The decreases. page  theintoflux   thefalls, loop  theAs

 

 
(b) Express the velocity-dependent 
force that acts on the loop in terms 
of the current in the loop: 
 

lBIFv =  

Substitute for I to obtain: 
 v

R
Bv

R
BBFv

22l
l

l
=⎟

⎠
⎞

⎜
⎝
⎛=  

 

upward. is force magneticnet   that theconclude  tofield magnetic
 in the is that loop  theofportion  horizontal  the toApply BF

r
l
rr

×= Idd
 

 
Note that the magnetic force on the left side of the loop is to the left and the magnetic 
force on the right side of the loop is to the right. 
 
(c) The net force acting on the loop 
is the difference between the 
downward gravitational force and 
the upward magnetic force: 
 

v
R

Bmg

FmgF v

22

net

l
−=

−=

 

 

(d) Apply Newton’s 2nd law of 
motion to the loop to obtain its 
equation of motion: 
 

dt
dvmv

R
Bmg =−

22l
 

or 

v
mR

Bg
dt
dv 22l

−=  

 
Factor g to obtain an alternate form 
of the equation of motion: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

t

22

11
v
vgv

mgR
Bg

dt
dv l

 

where 22t
lB

mgRv =  

 
(e) Separate the variables to obtain: dt

v
mR

Bg

dv
=

−
22l

 

or 

dt
bva

dv
=

−
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where ga = and 
mR

Bb
22l

=  

 
Integrate v ′ from 0 to v and t ′ from 
0 to t: 
 

∫∫ =
tv

dt'
bva

dv'

00 '-
 ⇒ t

a
bva

b
=⎟

⎠
⎞

⎜
⎝
⎛ −

− ln1
 

 
Transform from logarithmic to 
exponential form and solve for v to 
obtain: 
 

( ) ( )bte
b
atv −−= 1  

Noting that 
b
av =t , we have: 

 

( ) ( )τtevtv −−= 1t  

where 
g
v

a
v tt ==τ . 

 
(f) Write v as dy/dt and separate 
variables to obtain: 
 

( )dtevdy t τ−−= 1t  

Integrate y′ from 0 to y and t′ from 0 to t: 
 

( )∫∫ −−=
t

t'
y

dt'evdy'
0

t
0

1 τ  

and 
( ) [ ( )]ττ tetvty −−−= 1t  

 
(g) A spreadsheet program to generate the data for graphs of position y as a function of 
time t is shown below. The formulas used to calculate the quantities in the columns are as 
follows: 
 

Cell Formula/Content Algebraic Form
B1 0.05 m 
B2 0.2 R 
B3 0.4 B 
B4 0.3 L 
B5 $B$1*$B$7*$B$2/($B$3^2*$B$4^2) 

tv  
B6 $B$5/$B$7 τ 
B7 9.81 g 

A10 0.00 t 
B10 $B$5*(A10−$B$6*(1−EXP(−A10/$B$6))) y 
C10 0.5*$B$7*A10^2 2

2
1 gt   

 
 



Magnetic Induction 
 

 

699

 A B C 
1 m= 0.05 kg 
2 R= 0.2 ohms 
3 B= 0.4 T 
4 L= 0.3 m 
5 vt= 6.813 m/s 
6 tau= 0.694 s 
7 g= 9.81 m/s^2 
8    
9 t y  y (no B) 

10 0.00 0.000 0.000 
11 0.05 0.012 0.012 
12 0.10 0.047 0.049 
13 0.15 0.103 0.110 
14 0.20 0.179 0.196 
15 0.25 0.273 0.307 
16 0.30 0.384 0.441 
17 0.35 0.511 0.601 
18 0.40 0.654 0.785 
19 0.45 0.809 0.993 
20 0.50 0.978 1.226 
21 0.55 1.159 1.484 
22 0.60 1.351 1.766 
23 0.65 1.553 2.072 
24 0.70 1.764 2.403 
25 0.75 1.985 2.759 
26 0.80 2.214 3.139 
27 0.85 2.451 3.544 
28 0.90 2.695 3.973 
29 0.95 2.946 4.427 
30 1.00 3.202 4.905  

 
Examining the table, we see that y = 1.4 m when t ≈ s.60.0  

 
The following graph shows y as a function of t for B ≠ 0 (solid curve) and B = 0 (dashed 
curve). 
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Picture the Problem We can use the expression for the period of this spring-and-mass 
oscillator to find the spring constant κ. We can express the induced current in the loop by 
relating it to the induced emf and relating the induced emf to the velocity of the loop. 
Knowing that the loop is executing SHM, we can express its velocity as a sinusoidal 
function of time. We can use the expression for the magnetic force on a current-carrying 
wire in a magnetic field to express the damping force acting on the loop.  
 
(a) Express the period of the mass-
spring system: 
 

κ
π mT 2=  

Solve for κ  to obtain: 
2

24
T

mπκ =  

 
Substitute numerical values and 
evaluate κ : 

( )
( )

N/m8.30
s8.0

kg5.04
2

2

==
πκ  

 
(b) Express the current in the loop in 
terms of its resistance and the 
induced emf: 
 

R
I ε

=  

Relate the induced emf in the wire to 
the motion of the wire: 
 

lBv=ε  
or, because l = w (where w is the width of 
the loop), 

Bvw=ε  
 

Express the position of the mass-
spring system as a function of time: 

tyy ωsin0=  
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Differentiate this expression with 
respect to time to express the 
velocity of the system: 
 

ty
dt
dyv ωω cos0==  

Substitute in our expression for I to 
obtain: 
 

t
R

wByI ωω cos0=  

(c) Express the damping force Fd 
acting on the loop: 
 

BIwF =d  

Substitute for I and simplify to 
obtain: 
 

ty
R
wB

t
R

wByBwF

ωω

ωω

cos

cos

0

22

0
d

−=

−=
 

 
Because v = y0ωcosωt: 

vv
R
wBF β−=−=

22

d  

where 
R
wB 22

=β . 

 
(d) Choosing the static equilibrium 
position of the coil as the origin, 
apply aF rr

m=∑ to the coil when 

it is displaced slightly from this 
equilibrium position to obtain: 
 

2

2

rd dt
ydmFF =−−  

where Fr is the restoring force exerted by 
the plastic spring. 
 

Substituting for Fr and  Fd yields the 
differential equation describing the 
motion of the coil: 
 

2

2

dt
ydmy

dt
dy

=−− κβ  

or 

02

2

=++ y
mdt

dy
mdt

yd κβ
 

Note: compare this equation to Equation 
14-35 on page 446 of Volume 1 of your 
textbook. 
 

For weak damping, the solution to 
this differential equation is: 
 

( ) ( ) ( )tmetyty 2
0 cos βω −=  

Note: see Equation 14-36 on page 447 of 
your textbook. 
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Differentiate y(t) with respect to 
time to obtain the velocity of the 
coil: 
 

( )
t

met
m
ytytv

⎟
⎠
⎞

⎜
⎝
⎛−

⎟
⎠
⎞

⎜
⎝
⎛ +−= 20

0 cos
2

sin
β

ωβωω  

A spreadsheet program to generate the data for graphs of position y and velocity v as 
functions of time t is shown below. The formulas used to calculate the quantities in the 
columns are as follows: 
 

Cell Formula/Content Algebraic Form
B1 0.05 y0 
B2 0.8 T 
B3 0.4 B 
B4 0.2 R 
B5 0.3 w 
B6 0.05 m 
B7 2*PI()/$B$2 ω 
B8 $B$3^2*$B$5^2/$B$4 β 

A11 0.00 t 
B11 $B$1*COS($B$7*A11)* 

EXP((-$B$8/(2*$B$6))*A11) 
y(t) 

C11 −($B$1*$B$7*SIN($B$7*A11) 
+($B$8*$B$1/(2*$B$6))*COS($B$7*A11)) 

*EXP((−$B$8)/(2*$B$6))*A11) 

v(t) 

 
 

1 A B C 
2 y_0= 0.05 m 
3 T= 0.8 s 
4 B= 0.4 T 
5 R= 0.2 ohms 
6 w= 0.3 m 
7 m= 0.05 kg 
8 omega= 7.85 s^-1 
9 beta= 0.072 kg/s 

10    
11 t y v 
12 0.00 0.050 −0.036 
13 0.01 0.049 −0.066 
14 0.02 0.049 −0.096 
15 0.03 0.048 −0.124 
16 0.04 0.046 −0.151 
17 0.05 0.045 −0.177 

    
235 2.24 0.003 0.072 
236 2.25 0.004 0.069 
237 2.26 0.004 0.066 
238 2.27 0.005 0.062 
239 2.28 0.006 0.057  
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The graph of y(t) follows: 
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The graph of v(t) follows: 
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Picture the Problem If the coil is twisted through an angle θ, a restoring torque equal to 
κθ  acts on it return it its equilibrium position.  However, if it rotates back with angular 
speed dt,dθω =  there will be an emf induced in the coil. The direction of the current 

resulting from this induced emf will be such that its magnetic field will oppose the 
change in flux resulting from the rotation of the coil. The net effect is that the motion of 
the coil is damped. We can apply Newton’s 2nd law to relate the net restoring torque to 
the moment of inertia of the coil and its angular acceleration and use the laws of Faraday 
and Ohm to find the emf and current induced in the coil. 
 
Apply ατ I=∑ to the rotating 

coil to obtain: 
2

2

retardingrestoring dt
dI θττ =−  
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The magnitude of the retarding 
(damping) torque is given by: 
 

θτ cosretarding NiBA=  

where i is the current induced in the coil 
whose cross-sectional area is A. 
 

Substitute for τrestoring and τretarding to 
obtain: 
 

2

2

cos
dt
dINiBA θθκθ =−−         (1) 

 
Apply Faraday’s law to express the 
emf induced in the coil: 

( ) ( )
dt
dNBANBA

dt
d θθθε cossin −=−=  

 
From Ohm’s law, the magnitude of 
the induced current i in the coil is: 
 

dt
d

R
NBA

R
i θθε cos

==  

Substitute for the induced current i 
in equation (1) to obtain: 
 

2

22222 cos
dt
dI

dt
d

R
ABN θθθκθ =−−  

For small displacements from 
equilibrium, cosθ ≈ 1 and: 
 

2

2222

dt
dI

dt
d

R
ABN θθκθ ≈−−  

 
Rearrange terms to obtain the 
differential equation of motion of 
the coil: 
 

0
222

2

2

≈++ θκθθ
Idt

d
RI

ABN
dt
d

 

Let 
RI

ABN 222

=β and 
I
κω = to 

obtain: 
 

02
2

2

≈++ θωθβθ
dt
d

dt
d

 

The solution to this second-order, 
homogeneous, linear differential 
equation with constant coefficients 
is: 

( ) ( ) tet t ωθθ β cos2
0

−=  

 
 
 


