Chapter 28
Magnetic Induction

Conceptual Problems

*1 °

Determine the Concept We know that the magnetic flux (in this case the magnetic field
because the area of the conducting loop is constant and its orientation is fixed) must be
changing so the only issues are whether the field is increasing or decreasing and in which
direction. Because the direction of the magnetic field associated with the clockwise
current is into the page, the changing field that is responsible for it must be either
increasing out of the page (not included in the list of possible answers) or a decreasing

field directed into the page. | (d) is correct.

2 .
Determine the Concept Note that when R is constant, B in the loop to the right points
out of the paper.

(a) If R increases, [ decreases and so does B. By Lenz’s law, the induced current is

counterclockwise.
(b) If R decreases, the induced current is clockwise.

3 o
Determine the Concept If the counterclockwise current in loop A increases, so does the
magnetic flux through B. To oppose this increase in flux, the induced current in loop B
will by clockwise. If the counterclockwise current in loop A decreases, so does the
magnetic flux through B. To oppose this decrease in flux, the induced current in loop B
will be counterclockwise. We can use F = I/ x B to determine the direction of the forces
on each loop and, hence, whether they will attract or repel each other.

(a) If the current in B is clockwise the loops repel one another.

(b) If the current in B is counterclockwise the loops attract one another.

4 o0

Determine the Concept We know that, as the magnet moves to the right, the flux
through the loop first increases until the magnet is half way through the loop and then
decreases. Because the flux first increases and then decreases, the current will change

directions, having its maximum values when the flux is changing most rapidly.

(a) and (b) The following graph shows the flux and the induced current as a function of
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time as the bar magnet passes through the coil. When the center of the magnet passes
through the plane of the coil d¢,,/dt = 0 and the current is zero.
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5 L1l

Determine the Concept Because the magnet moves with simple harmonic motion, the
flux and the induced current will vary sinusoidally. The current will be a maximum
wherever the flux is changing most rapidly and will be zero wherever the flux is

momentarily constant.

(a), (b) The following graph shows the flux, ¢, and the induced current (proportional to
—d ¢./df) in the loop as a function of time.
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*6 °
Determine the Concept The magnetic energy stored in an inductor is given by

U, =1LI’. Doubling I quadruples U,. | (c)is correct.

7 .

Determine the Concept The protection is needed because if the current is suddenly
interrupted, the resulting emf generated across the inductor due to the large flux change
can blow out the inductor. The diode allows the current to flow (in a loop) even when the
switch is opened.

8 .

Determine the Concept The inductance of a coil depends on the product n*¢, where n is
the number of turns per unit length and / is the length of the coil. If n increases by a
factor of 3, ¢ will decrease by the same factor, because the inductors are made from the

same length of wire. Hence, the inductance increases by a factor of (3 )2 (1/ 3) = .

9 .
(a) False. The induced emf in a circuit is proportional to the rate of change of the
magnetic flux through the circuit.

(b) True.
(c) True.

(d) False. The inductance of a solenoid is determined by its length, cross-sectional area,
number of turns per unit length, and the permeability of the matter in its core.

(e) True.

*10 -

Determine the Concept In the configuration shown in (a), energy is dissipated by eddy
currents from the emf induced by the pendulum movement. In the configuration shown
in (b), the slits inhibit the eddy currents and the braking effect is greatly reduced.

1 -

Determine the Concept The time varying magnetic field of the magnet sets up eddy
currents in the metal tube. The eddy currents establish a magnetic field with a magnetic
moment opposite to that of the moving magnet; thus the magnet is slowed down. If the
tube is made of a nonconducting material, there are no eddy currents.

12 e
Determine the Concept When the current is turned on, the increasing magnetic field in
the coil induces a large emf in the ring. As described by Lenz's law, the direction of the



628 Chapter 28

current resulting from this induced emf is in such a direction that its magnetic field
opposes the changing flux in the coil, i.e., the current induced in the ring will be in such a
direction that the magnetic field in the coil will repel it. The demonstration will not work
if a slot is cut in the ring, because the emf will not be able to induce a current in the ring.

Estimation and Approximation

*13 e

Picture the Problem We can use Faraday’s law to relate the induced emf to the angular
velocity with which the students turn the jump rope.

(a) It seems unlikely that the
students could turn the "jump rope”
wire faster than 5 revolutions per
second. This corresponds to a
maximum angular velocity of:

(b) The magnetic flux ¢, through
the rotating circular loop of wire
varies sinusoidally with time
according to:

Because the average value of the
cosine function, over one
revolution, is %2, the average rate at
which the flux changes through the
circular loop is:

From Faraday’s law, the magnitude
of the induced emf in the loop is:

Substitute numerical values and evaluate &:

1.5m :
E=4n|——|]0.7Gx
2 10" G

IT

4

rev_2zrad

w=5—x =| 31.4rad/s.
S rev

@ = BAsin ot
and
% = BAwcos wt

dt
LN =1BAw=17nr'Bow

dt |,

:—d¢m 2%71'1"23(0
dt

J(31.4rad/s)= 1.94mV

(c)

No. To generate an emf of 1V, the students would have to rotate

the jump rope about 500 times faster.

(d) | could be rotated at the same angular speed) looped several times

The use of multiple strands of lighter wire (so that the composite wire

around would increase the induced emf.

14 .

Picture the Problem We can compare the energy density stored in the earth’s electric
field to that of the earth's magnetic field by finding their ratio.



Magnetic Induction 629

The energy density in an electric 1 2
. . U, =- E

field E is given by: 2

The energy density in a magnetic B’
u =

field B is given by: T 2u,

Express the ratio of uy, to u, to B’

obtain: u, 2u, B’
= =
u, L <, g2 Ho S0 E

Substitute numerical values and evaluate u,,/ u.:

u, (5x10°T) B .
u,  (47x107 N/A?)(8.85x107"2 C*/N-m?)(100 V/m)’ 22510

u,, = | (2.25x10* Ju,

15 e
Picture the Problem We can apply Faraday’s law to estimate the maximum emf induced
by the lightning strike in the antenna.

Use Faraday’s law to express the dg, d
magnitude of the induced emf in antenna: T4t = E[ ]
where A is the area of the antenna.
Because the lightning strike has such BA
a short duration: &~ A
The magnetic field induced in the B o 2] ol

loop is given by: Az r 2rxr

where r is the distance from the antenna to
the lightning strike.
Substitute for B to obtain: HolA
27w rAt

Substitute numerical values and

evaluate &:

(47 x107 N/A? )(310#3} (0.1m?)
272(300m)(1 s)

=| 2.00kV

E =
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Magnetic Flux

16 -
Picture the Problem Because the surface is a plane with area 4 and B is constant in

magnitude and direction over the surface and makes an angle & with the unit normal
vector, we can use ¢ = BAcos@ to find the magnetic flux through the coil.

Substitute for B and 4 to obtain: 1T

04

4, = (2000 G- ](5 %10 m)’ cosd

= (5.00x10™* Wb)cos #

(a) For 6 = 0°: 4, =(5.00x10™* Wb)cos 0°
=5.00x10"* Wb
~[0.500mWb

(5.00x10™* Wb)cos30°
—433x10™ Wh
=[0.433mWb

(b) For 8 = 30°: P

(¢) For 6 = 60°: 4, =(5.00x10 Wb)cos60°
=2.50x10"* Wb
=| 0.250mWb

(d) For 6 = 90°: 8, = (5.00x10™* Wb)cos90°

[]

*17 .
Picture the Problem Because the coil defines a plane with area 4 and B is constant in

magnitude and direction over the surface and makes an angle  with the unit normal
vector, we can use @ = NBAcos@ to find the magnetic flux through the coil.

Substitute for N, B, and A4 to obtain:

IT

10*

¢ =NBrr’cosf = 25[0.7 G- jﬂ'(s x107 m)2 cos®

= (1 37x107 Wb)cos 6
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(a) When the plane of the coil is P, = (l 37x107 Wb)cos 90°
horizontal, &= 90°: _ @

(b) When the plane of the coil is @, = (1 37x107 Wb)cos 0°
vertical with its axis pointing north, _[137x10° Wb

0=0°:

(c) When the plane of the coil is P, = (l 37x107° Wb)cos 90°
vertical with its axis pointing east, _

o0 o]

(d) When the plane of the coil is P, = (1 37x107° Wb)cos 30°

vertical with its axis making an
angle of 30° with north, 8= 30°:

={1.19x10° Wb

18 -
Picture the Problem Because the square coil defines a plane with area 4 and Bis

constant in magnitude and direction over the surface and makes an angle 6 with the unit
normal vector, we can use @, = NBAcos@ to find the magnetic flux through the coil.

Substitute for N, B, and 4 to obtain: @, = NBAcos O
~14(1.2T)(5%10 m)’ cos®
=(42.0mWb)cos @

(a) For 8= 0°: @, = (42.0me)cos 0°
=| 42.0mWb

(b) For 6= 60°: ¢, = (42.0mWb)cos 60°
=| 21.0mWb

19 -

Picture the Problem Noting that the flux through the base must also penetrate the
spherical surface, we can apply its definition to express ¢,

Apply the definition of magnetic ¢.=AB=| mR’B
flux to obtain:
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20 oo
Picture the Problem We can use ¢, = NBAcos @ to express the magnetic flux through

the solenoid and B = g,nl to relate the magnetic field in the solenoid to the current in its

coils.

Express the magnetic flux through a @, = NBAcos@
coil with N turns:

Express the magnetic field inside a B = u,nl

long solenoid: where 7 is the number of turns per unit
length.

Substitute to obtain: @, = Nu,nlAcos

or, because n = N/L and 6= 0°,
4 = N’u 4 _ N’ plrr’
" L L

Substitute numerical values and evaluate @y

(4002 (47 x 107 N/A?)(3 A)n(0.01m)’
0.25m

=|7.58x10™* Wb

@, =

21 L 1]
Picture the Problem We can use ¢, = NBAcos @ to express the magnetic flux through

the solenoid and B = p,nl to relate the magnetic field in the solenoid to the current in its

coils.

Express the magnetic flux through a @ = NBAcos®
coil with N turns:

Express the magnetic field inside a B = uynl

long solenoid: where 7 is the number of turns per unit
length.

Substitute to obtain: @ = Nu,nlAcos6

or, because n = N/L and 6= 0°,
4 = N°udd _ N’ plrr’
" L L
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Substitute numerical values and evaluate @y

;i (800) (47 x107 1(;1/3A2)(2A)zz(o.ozrn)2 6740105 WE
Jm

22 e
Picture the Problem We can apply the definitions of magnet flux and of the dot product
to find the flux for the given unit vectors.

Apply the definition of magnetic 4 = NJ- B-AdA

flux to the coil to obtain: s

Because B is constant: $, = NB-A[d4=N(B-A)4
N

Evaluate B : B=(047)i

Substitute numerical values and ¢, = (15)(0.4T)](0.04m)’

simplify to obtain: _ (0 0302T-m?> )f A

(0.0302T-m?)i-i =[0.0302 Wb

i : P

(@) Evaluate ¢, for N

(b) Evaluate ¢, for A = | : P, = (0.0302T : mz)iA' jZE

A ~

(c) Evaluate ¢, for N :(I + j)/\/i: 4 =(O.O3O2T-m2)f- 1+ ]
V2
2
_0.0302T-m” _ roos 3 wh
V2
(d) Evaluate ¢, for A=K: P :(0.0302T-m2)f-|2:|zl

(e) Evaluate ¢, for N = 0.6iA+O.Sj :

4, =(0.0302T-m?)i -(0.6F +0.8])=0.6(0.0302T - m?)i i

+0.80.0302T -m?)i - ]
=0.6(0.0302T-m*)=[ 0.0181 Wb
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23 e

Picture the Problem The magnetic field outside the solenoid is, to a good approximation,
zero. Hence, the flux through the loop is the flux in the core of the solenoid. The magnetic
field inside the solenoid is uniform. Hence, the flux through this small loop is given by the
same expression with R; replacing R;:

(a) Express the flux through the ¢ = NBA =| p,nINzR}
large circular loop outside the

solenoid:

(b) Express the flux through the ¢. = NBA=| pnINzR:

small loop inside the solenoid:

*24 e
Picture the Problem We can use the hint to set up the element of area d4 and express the
flux d¢, through it and then carry out the details of the integration to express ¢y,.

(@) Express the flux through the d¢. = BdA
strip of area dA: where dA = bdx.
Express B at a distance x from a B= ﬂz_l _ ﬁi
long, straight wire: 47 x 2r x
: . 1 Ib d
Substitute to obtain: dg = Hy L bdx = HlD ax
2w x 2r x
Integrate fromx =d tox =d + a: yIN L O dx U db . d+a
gttt dx [l
2r 5 X 2z d

(b) Substitute numerical values and evaluate @,

6 = =[5.01x107 Wb

27

(47 x107 N/A?)(20 A)©.1m), (7em
! 2cm
25  eee
Picture the Problem Consider an element of area d4 = Ldr where r < R. We can use its
definition to express d¢@y, through this area in terms of B and Ampere’s law to express B
as a function of /. The fact that the current is uniformly distributed over the cross-
sectional area of the conductor allows us to set up a proportion from which we can obtain
I as a function of ». With these substitutions in place we can integrate d¢,, to obtain ¢,/L.
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Express the flux d¢,, through an area d¢,, = BdA = BLdr (1)
Ldr:
Apply Ampere’s law to the current §CB .dl=2mB= Mol -
contained inside a cylindrical region d

an
of radius » < R: I

B = IL;O C

r
Using the fact that the current / is I(r)y m’
uniformly distributed over the cross- I R?
sectional area of the conductor, or
express its variation with distance r 72
. I(r)=1.=1—
from the center of the conductor: ¢ R2
Substitute and simplify to obtain: B ud v ol
= _—= v
2m R® 2R’

Substitute in equation (1): MLl

de, = - rdr

27R

Integrate d¢,, fromr=0tor =R to L1 R J L1
obtain: O = 2 7R> .!r "= 47
Divide both sides of this equation by B | Mol
L to express the magnetic flux per L | 4r
unit length:
26 (1 1]

Picture the Problem We can use its definition to express the flux through the rectangular
region and Ampere’s law to relate the magnetic field to the current in the wire and the
position of the long straight wire.

(a) Note that for 0 <x <b, B is Prnee =0
symmetric about the wire, into the

paper for the region below the wire

and out of the paper for the region

above the wire. Thus, for the area

2(b —x)a:

To find the flux through the dg. = BdA
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remaining area of the rectangle, where dA = adx.
express the flux through a strip of
area dA:
Using Ampere’s law, express B at a B= Ho g _ M 1
distance x from a long, straight 4r x 2rwx
wire:

i in: 1 la dx
Substitute to obtain: dg = Hy L adx = Hyla ax

2 x 2r x
For 0 < x < b, integrate from Ia T dx'
xX'=b-xtox' =x: 27 2 X
_| Mola Il ¥
2 b—x
For x > b, integrate from Ta “2 dx’
! ! g ¢1’1’l('XZb):MJ.i
xX'=xtox'=x+b: 2 X'
_| #ola [x+b
2z X

(b) From the expressions derived in =0
(a) we see that |¢m| —> o0as:
The flux is a minimum (¢, = 0) for: x =+ b |as expected from symmetry.

Induced EMF and Faraday’s Law

*27

Picture the Problem We can find the induced emf by applying Faraday’s law to the
loop. The application of Ohm’s law will yield the induced current in the loop and we can
find the rate of joule heating using P = I°R .

(a) Apply Faraday’s law to express |g| _ e, _ i(AB): Ad_B _ ”de_B
the induced emf in the loop in terms dt dt dt dt
of the rate of change of the

magnetic field:

Substitute numerical values and |g| = 77(0,05 m)2 (40 mT/ s) =10.314mV
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evaluate |8 | :

(b) Using Ohm’s law, relate the

&

I =— 0.785mA
induced current to the induced R 0.4Q
voltage and the resistance of the
loop and evaluate /:
(c) Express the rate at which power P=I’R= (0,785 rnA)2 (0,4 Q)
is d1ss1.pated in a conductor in terms ~[0.247 uW
of the induced current and the

resistance of the loop and evaluate
P:

28 e
Picture the Problem Given ¢, as a function of time, we can use Faraday’s law to
express & as a function of time.

(a) {prly Farada.y s law to e.:xpress E—— dg, _ _i [(t2 _ 4t)>< 107 Wb]
the induced emf in the loop in terms dt dt
of the rate of change of the = —(Zt - 4)>< 107 Wb/s
magnetic field: - (0 27-0 4)V
(b) Evaluate ¢, at £ =0: 4 (0s)= [(())2 - 4(0)]>< 10" Wb = @
Evaluate & att=0: 8(0 s) = —[0.2(0) - 0.4]\/
=] 0.400V

Proceed as above to complete the t Om &
table to the right: (s) | (Wb) V)

0 0 0

2 | -0.400 0

4 0 —0.400

6 1.20 | —0.800

29

Picture the Problem We can find the time at which the flux is a minimum by looking for
the lowest point on the graph of & versus ¢ and the emf at this time by determining the
value of J at this time from the graph. We can interpret the graphs to find the times at
which the flux is zero and the corresponding values of the emf.
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(a) The flux, ¢, and the induced emf, &, are shown as functions of 7 in the following
graph. The solid curve represents ¢y, the dashed curve represents &£.

15
10 flux /
= = =emf /
0.5
h... /
..
..
0.0 S
-~
~
\ .~..
.05 S
irS
-
-~
-1.0 T T
0 1 2 3 4 5 6
t(s)

Referring to the graph, we see that the flux is a minimum at # =2 s and

(®) ..
that /' = 0 at this instant.
© The flux is zeroat t =0 and ¢t =4 s. At these times, £ =04V and - 04V,
C
respectively.
30 -

Picture the Problem We can use its definition to find the magnetic flux through the
solenoid and Faraday’s law to find the emf induced in the solenoid when the external

field is reduced to zero in 1.4 s.

(a) Express the magnetic flux
through the solenoid in terms of N,
B, A, and G:

Substitute numerical values and

evaluate @:

@, = NBAcos 0
= NBzR’ cos 6
#,, = (400)(0.06 T)(0.008 m)” cos 50°

3.10mWb
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8__d¢m __O—3.10me
dt 1.4s

=2.22mV

(b) Apply Faraday’s law to obtain:

*3] oo

Picture the Problem We can use the definition of average current to express the total
charge passing through the coil as a function of /,,. Because the induced current is
proportional to the induced emf and the induced emf, in turn, is given by Faraday’s law,
we can express AQ as a function of the number of turns of the coil, the magnetic field, the
resistance of the coil, and the area of the coil. Knowing the reversal time, we can find the
average current from its definition and the average emf in the coil from Ohm’s law.

(@) Express the total charge that AQ =1, At
passes through the coil in terms of
the induced current:

Relate the induced current to the [=] = &

induced emf: “ R

Using Faraday’s law, express the e—— Ad,

induced emf in terms of @ At

Substitute and simplify to obtain: _ A,

AQ=£At=AAt=—%
R R R

2NB ﬂdzj
_ 2NBA 4
-~ R R
_ NBmd’
T 2R

where d is the diameter of the coil.

Substitute numerical values and AO = (1 OO) (1 T)ﬂ(0.0Z m)2
evaluate AQ: 0= 2(50 Q)

=|-1.26 mC
(b) Apply the definition of average I, = g _ 1.26 mC —[12.6mA
current to obtain: At 0.1s
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(¢) Using Ohm’s law, relate the E,=1,R= (12.6 mA)(SO Q)
average emf in the coil to the [ 630mV

average current:

32 e

Picture the Problem We can use the definition of average current to express the total
charge passing through the coil as a function of /,,. Because the induced current is
proportional to the induced emf and the induced emf, in turn, is given by Faraday’s law,
we can express AQ as a function of the number of turns of the coil, the magnetic field, the
resistance of the coil, and the area of the coil.

Express the total charge that passes AQ =1, At
through the coil in terms of the
induced current:

Relate the induced current to the J=] = &
induced emf: “ R
Using Faraday’s law, express the e—— Ad,
induced emf in terms of @ At
Substitute to obtain: _Ag,
&
AO =S At=—0LL A
R R
24, _ 2NB4
R R

Substitute numerical values and evaluate AQ:

~2(1000)(0.7x10* T)(300x10* m?)
150

AQ =

%: 0.280mC

33 e

Picture the Problem We can use Faraday’s law to express the earth’s magnetic field at
this location in terms of the induced emf and Ohm’s law to relate the induced emf to the
charge that passes through the current integrator.

Using Faraday’s law, express the o= A¢m| _ NBA NBr r
induced emf in terms of the change | Ar | At At

in the magnetic flux as the coil is
rotated through 90°:



Solve for B:

Using Ohm’s law, relate the induced
emf to the induced current:

Substitute to obtain:

Substitute numerical values and
evaluate B:

34 e
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B 8At2
Nrxr
E:]RzgR
At

where AQ is the charge that passes through
the current integrator.

AQ

B:A—tRAt _ AQR
Nzr* Nrzr’

B (9.4uC)(20£2)2 _[798T
(300)7 (0.05m)

Picture the Problem We can use Faraday’s law to express the induced emf in the coil in
terms of the rate of change of the magnetic flux. We can use its definition to express the

magnetic flux through the rectangular region and Ampere’s law to relate the magnetic

field to the current in the wire and the position of the long straight wire.

(a) Apply Faraday’s law to relate
the induced emf to the changing
magnetic flux:

Note that for 0 <x < b, B is
symmetric about the wire, into the
paper for the region below the wire
and out of the paper for the region
above the wire. Thus, for the area
2(b —x)a:

To find the flux through the
remaining area of the rectangle,
express the flux through a strip of
area dA:

Using Ampere’s law, express B at a

distance x from a long, straight wire:

¢,
£=-"tm 1
0 (1
¢m,net = O
d¢._ = BdA

where dA = adx.

gt 2l _ Kl
dr x 7w x
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Substitute to obtain: ¢ = My T adx = Hota dx
T X X
For 0 < x < b, integrate from Upta ¢ dx’
<x<b)="—
X'=b-xtox'=x: ¢m(0_x_b) T bJ-x x!
_ Myl ln( X j
T b—x
Differentiate this expression with dg, d| pyta Il —*
respect to time to obtain: g arl 7 \p—x
= Mln a
T b—x
Substitute in equation (1) and Uy b/4 Hoa, (1
. E=- In =— In| —

evaluate & forx = b/4: T b—b/4 T 3

| 1.10£2

Y/

(b) Using Ohm’s law, express and R & _ 1.10ya
evaluate R: 1 7l

11047 x107 N/A?)(1.5m)

7(0.1A)
=1 6.60 22

Because the magnetic flux due to / is increasing into the page, the
induced current will be in such a direction that its magnetic field
will oppose this increase; i.e, it will be out of the page. Thus the

induced current is counterclockwise.

35 e

Picture the Problem We can use Faraday’s law to express the induced emf in the coil in
terms of the rate of change of the magnetic flux. We can use its definition to express the
magnetic flux through the rectangular region and Ampere’s law to relate the magnetic
field to the current in the wire and the position of the long straight wire.

(a) Apply Faraday’s law to relate &—_ g, (1)
the induced emf to the changing dt

magnetic flux:



Note that for 0 <x < b, B is
symmetric about the wire, into the
paper for the region below the wire
and out of the paper for the region

above the wire. Thus, for the area
2(b —x)a:

To find the flux through the
remaining area of the rectangle,
express the flux through a strip of
area dA:

Using Ampere’s law, express B at a
distance x from a long, straight
wire:

Substitute to obtain:

For 0 <x < b, integrate from
X'=b-xtox'=x:

Differentiate this expression with
respect to time to obtain:

Substitute in equation (1) and
evaluate & for x = b/3:

(b) Using Ohm’s law, express and
evaluate R:

Magnetic Induction 643

¢m,net = O

dg¢., = BdA
where dA = adx.

B2t
dr x 7w x
dy Myt dx:,uotadx
T X T X
¢m(0<x<b):ﬂ0ﬂl J‘ dx'
r g0 x
_,uotaln( X j
T b—x
d¢m:i ﬂotaln[ X j
dt dat| =« b—x
(s
T b—x

Ez—ﬂoaln[ b3 J:—’uoaln(

7 b—-b/3 7T
—| 0.693 4%
T

R- & _ 0.693 uya
I A
_0.693(47x107 N/A?)(1.5m)

)

- 7(0.1A)

=[4.16 .
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Because the magnetic flux due to / is increasing into the page, the
induced current will be in such a direction that its magnetic field

will oppose this increase, i.e, it will be out of the page. Thus, the

induced current is counterclockwise.

Motional EMF

*36

Picture the Problem We can apply the equation for the force on a charged particle
moving in a magnetic field to find the magnetic force acting on an electron in the rod. We
canuse E =V xB to find Eand V = E/ , where £ is the length of the rod, to find the

potential difference between its ends.

(a) Relate the magnetic force on an F = gV x B
electron in the rod to the speed of and
the rod, the electronic charge, and F =qvBsin@
the magnetic field in which the rod
is moving;:
Substitute numerical values and F= (1 6x107" C)(S m/s)(0.05 T )sin90°
evaluate F: —[640x10° N
(b) Express the electrostatic field E=VxB
E in the rod in terms of the and
magnetic field B: E =vBsin@
Substitute numerical values and E= (8 m/ S)(O-05 T)sin90°
evaluate B: =1 0.400V/m
(c) Relate the potential difference V =E/l
between the ends of the rod to its
length ¢ and the electric field E:
Substitute numerical values and V= (()‘4 V/m)(O. 3 m) =1 0.120V
evaluate V-
37 e

Picture the Problem We can use E =V x B to relate the speed of the rod to the electric
field in the rod and magnetic field in which it is moving and V' = E/ to relate the electric
field in the rod to the potential difference between its ends.



Express the electrostatic field E in
the rod in terms of the magnetic
field B and solve for v:

Relate the potential difference
between the ends of the rod to its
length ¢ and the electric field £ and
solve for £:

Substitute for E to obtain:

Substitute numerical values and
evaluate v:

38
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E=VxB
and
_E
Bsin @
V=El=FE=—
V
V=—
Blsin@
V= 6V = 4001’11/5
(0.05T)(0.3m)

Picture the Problem Because the speed of the rod is constant, an external force must act

on the rod to counter the magnetic force acting on the induced current. We can use the
motional-emf equation & = vB/ to evaluate the induced emf, Ohm’s law to find the

current in the circuit, Newton’s 2" law to find the force needed to move the rod with

constant velocity, and P = Fv to find the power input by the force.

(a) Relate the induced emf in the
circuit to the speed of the rod, the
magnetic field, and the length of the
rod:

(b) Using Ohm’s law, relate the
current in the circuit to the induced

emf and the resistance of the circuit:

(c) Because the rod is moving with
constant velocity, the net force
acting on it must be zero. Apply

& =vBl =(10m/s)(0.8T)(0.2m)

~[1.60v
;8 L6V oA
R 20

Note that, because the rod is moving to the
right, the flux in the region defined by the
rod, the rails, and the resistor is increasing.
Hence, in accord with Lenz’s law, the
current must be counterclockwise if its
magnetic field is to counter this increase in
flux.

Y F,=F-F,=0

and
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F=F,=BIl
=(0.8T)0.8A)0.2m)=| 0.128N

Newton’s 2™ law to relate F to the

magnetic force Fiy:

(d) Express the power input by the P=Fyv= (0_ 128 N)(lO rn/s) =1.28W

force in terms of the force and the
velocity of the rod:

(e) The rate of Joule heat production

P=I'R=(0.8A)(2Q)=|1.28W

is given by:

30 e

Picture the Problem We’ll need to determine how long it takes for the loop to
completely enter the region in which there is a magnetic field, how long it is in the region,
and how long it takes to leave the region. Once we know these times, we can use its
definition to express the magnetic flux as a function of time. We can use Faraday’s law to
find the induced emf as a function of time.

(a) Find the time required for the
loop to enter the region where there
is a uniform magnetic field:

Letting w represent the width of the

loop, express and evaluate ¢, for
0<tr<4.17s:

Find the time during which the loop
is fully in the region where there is a

uniform magnetic field:

Express ¢, for 4.17s <t <8.33s:

The left-end of the loop will exit the

field when ¢ = 12.5 s. Express ¢, for
8.33s<t<12.5s:

For t=8.33 s and
&n = 8.50 mWhb:

0
t= side of loop — locm :4.17S
v 2.4cm/s

@, = NBA = NBwvt
=(1.7T)(0.05m)(0.024 m/s)¢
=(2.04mWb/s)t

/.
f= side of loop — IOCm :4,175
v 2.4cm/s

i.e., the loop will begin to exit the region
when 1 =8.33s.

¢, = NBA= NBlw
=(1.7T)(0.1m)(0.05m)
=8.50mWb

¢, =mt+b

where m is the slope of the line and b is the
@m-intercept.

8.50mWb = m(8.33s)+b (1)
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Fort=12.5sand ¢, =0: 0= m(12.5 s)+b ()

Solve equations (1) and (2) P, = —(2.04 me/S)t +25.5mWb
simultaneously to obtain:

The loop will be completely out of $.=0
the magnetic field when > 12.5 s

and:

The following graph of @_ (t) was plotted using a spreadsheet program.

N W b~ OO N 0O ©

Magnetic flux (mWb)

0 2 4 6 8 10 12 14
1(s)
(b) Using Faraday’s law, relate the e—_ de,,
induced emf to the magnetic flux: dt

During the interval 0 <t <4.17s:
uring the interval B=<f <2178 g:—di[(2.04me/s)t]=—2.o4mV
t

During the interval d

4.17s <1 <833s: & ==—[8.50mWb]=0

During the interval

d
8.33s <t <12.5s: ‘9=—5[(-2-04me/S)f+25-5me]

=2.04mV

For¢t>12.5s: E=0
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The following graph of &(¢) was plotted using a spreadsheet program.

2.5

2.0

15

1.0
0.5 1
0.0 -

emf (V)

.05
-1.0

-1.5

-2.0

-2.5

1(s)

40 e

Picture the Problem The rod is executing simple harmonic motion in the xy plane, i.e.,
in a plane perpendicular to the magnetic field. The emf induced in the rod is a
consequence of its motion in this magnetic field and is given by|€ | = vB/ . Because

we’re given the position of the oscillator as a function of time, we can differentiate this
expression to obtain v.

Express the motional emf in terms | g| —vBl = B/ ﬂ

of v, B,and /: dt

Evaluate dx/dt: Z [(2 cm)cos 1207 t]
t

(2 m)(120s™ )z sin 1207
= —(7.54m/s)sin 1207 ¢

Substitute numerical values and evaluate |€ | :

€] =—(1.2T)(0.15m)(7.54m/s)sin 1207 ¢ =| —(1.36 V)sin 1207 ¢

41 e
Picture the Problem Let m be the mass of the rod and F be the net force acting on it due
to the current in it. We can obtain the equation of motion of the rod by applying
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Newton’s 2™ law to relate its acceleration to B, 1, and ¢ . The net emf that drives / in this

circuit is the emf of the battery minus the emf induced in the rod as a result of its motion.

(a) Letting the direction of motion
of the rod be the positive x
direction, apply ZFX =ma _to

the rod:

Substitute to obtain:

(b) Express the condition on dv/dt
when the rod has achieved its
terminal speed:

Solve for v, to obtain:

(¢) Substitute v, for v in equation
(2) to obtain:

*42 oo

Bt =m® (1)
dt

where

&—Blv
[=2=2% 2
R @)

v_ B—g(g —Blv)
dt mR

&
E—-Bl—

_ Bl _
1=—e=[0]

Picture the Problem In Example 28-9 it is shown that the speed of the rod is given

by v = voe—(Bzfz/mR)t

. We can use the definition of power and the expression for a motional

emf to express the power dissipated in the resistance in terms of B, /, v, and R. We can

then separate the variables and integrate over all time to show that the total energy

dissipated is equal to the initial kinetic energy of the rod.

Express the power dissipated in
terms of gand R:

Express ¢ as a function of B, ¢, and

V.

Substitute to obtain:

p==
R

& = Blv
where

v= voe—(BZZZ/mR)t

BIv)
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The total energy dissipated as the < (va)2
. E=| d
rod comes to rest is obtained by :
integrating dE = P dt:

R 0

Evaluate the integral (by changing e B*0*v; [ mR I r—

. 2B¢ R \2B%*) B2
variables to u = — ) to

mR

obtain:
43 e
Picture the Problem In Example 28-9 it is shown that the speed of the rod is given
byv = voe_(Bz€2/ i) . We can write v as dx/dt, separate the variables and integrate to find

the total distance traveled by the rod.

Apply the result from Example 28-9 @ e
to obtain: e °
where
B/
~ mR

jidx’ = voTe_C’dt
0

0

Separate variables and integrate x’
from 0 to x and ¢ from 0 to oo:

Evaluate the integrals to obtain: y=2o
Substitute for C and simplify: mv,R
Tl
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Picture the Problem Let m be the mass of the rod. The net force acting on the rod is due
to the current in it. We can obtain the equation of motion for the rod by applying
Newton’s 2™ law to relate its acceleration to B, I, and ¢ . The net emf that drives / in this

circuit is the emf of the capacitor minus the emf induced in the rod as a result of its

motion.

(a) Letting the direction of motion
of the rod be the positive x
direction, apply ZFX =ma_to the

rod:

Solve equation (1) for I:

Simplify to obtain:

Integrate Q' from Q, to Q and V'
from 0 to v:

Substitute in equation (2) to obtain:

Bll =m— (D

where
= c ()

m dv
Bl dt
or, because the capacitor is discharging,
_dQ _mdv
di Bl dt
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Substitute in equation (1) to obtain
the equation of motion of the rod:

(b) When the rod has achieved its
terminal speed:

Solve for v, to obtain:

*A5 oo
Picture the Problem The free-body
diagram shows the forces acting on the rod
as it slides down the inclined plane. The
retarding force is the component of F,,
acting up the incline, i.e., in the —x
direction. We can express F}, using the
expression for the force acting on a
conductor moving in a magnetic field.
Recognizing that only the horizontal
component of the rod’s velocity V produces
an induced emf, we can apply the
expression for a motional emf in
conjunction with Ohm’s law to find the
induced current in the rod. In part (b) we
can apply Newton’s 2™ law to obtain an
expression for dv/dt and set this expression
equal to zero to obtain v;.

(a) Express the retarding force
acting on the rod:

0,y
) ———
ﬂ: B Bl — Bty
dt  mR
292
_ BlQ, B 1 +B ! y
mRC | RC mR
BIV :mﬂz 0
dt
and
%—Bﬂvt
1= =0
R
.- 2
CB/¢
JY
e -
S Fy
%
. [ 6\
B, /
m ﬂ \
sl
7 N
4 5
SN
Y mig ~
________ /o
F=F cosd €))
where
F =1IlB

and / is the current induced in the rod as a

consequence of its motion in the magnetic
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field.
Express the induced emf due to the & = Blvcost
motion of the rod in the magnetic
field:
Using Ohm’s law, relate the current I = & _ Blycos8
1 in the circuit to the induced emf: R R
Substitute in equation (1) to obtain: Fe Blvcos H] /B cosd
B*(?
= 2= Ycos’0
R
b) Appl F_=ma_ to the rod: . B*r? d
(b) Apply 2 F, * mgsin@—-——cos’ 0 = m~
dt
and
d . 2
—v=gs1n¢9— cos’
mR
When the rod reaches its terminal . B/ 2vt 2
) 0=gsinf———cos" 8
velocity w, dv/dt = 0 and: mR
Solve for v, to obtain: mgR sin
vy = ———
" | B**cos’ 6
46 e
Picture the Problem The diagram shows |
the square loop being pulled from the xR X |
magnetic field B by the constant force :
F.The time required to pull the loop out of x * R * |
the magnetic field depends on the terminal B | F
speed of the loop. We can apply Newton’s X |€ x X | P
2" Jaw and use the expressions for the |
magnetic force on a moving wire in a X X X |
magnetic field to obtain the equation of
motion for the loop and, from this le
equation, an expression for the terminal . x % |
speed of the loop. |
Apply ZF = ma to the square F_F :mﬂ 1)

loop to obtain: " dt
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The magnetic force is given by: B
g gIven by F-np=2'8
R
where R is the resistance of the loop.

Substitute for Fm in equation (1) to F EI'B dv 2

s —_m—
obtain: R dt
The induced emf ¢is related to the E =vB/l
speed of the loop:
Substitute for in equation (2) to /2RB? dv
obtain the equation of motion of the F- v=m—
1 . R dt
oop:
When the loop reaches its terminal (2 RB> R
speed, dv/dt = 0 and: F - R Vv =0=v = WF

This result tells us that doubling £ doubles the terminal speed v.. Hence, doubling F will

halve the time required to pull the loop from the magnetic field and | (c¢)is correct.

47 e
Picture the Problem The diagram shows |
the square loop being pulled from the x X x|
magnetic field B by the constant force :
F.The time required to pull the loop out of * N * |
the magnetic field depends on the terminal B | 7
speed of the loop. We can apply Newton’s x | € x X | —
2" Jaw and use the expressions for the |
magnetic force on a moving wire in a x " x|
magnetic field to obtain the equation of
motion for the loop and, from this e
equation, an expression for the terminal - X x|
speed of the loop. |
Apply z F = ma to the square F-F. = mﬂ )
loop to obtain: t
The magnetic force is given by: B

s BERDY F, =1p=28

where R is the resistance of the loop.

Substitute for F}, in equation (1) to E'B dv )
obtain: R dt
The induced emf ¢is related to the & =vBl

speed of the loop:
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Substitute for in equation (2) to 1?B? dv

obtain the equation of motion of the F- V=m—

loon: R dt

oop:

When the loop reaches its terminal (2R R
speed, dv/dt = 0 and: F - R v=0=>v, = WF

This result tells us that halving R halves the terminal speed v;. Hence, halving R will

double the time required to pull the loop from the magnetic field and | (b)is correct.

48 oo
Picture the Problem The diagram shows
the initial position of the sphere and its S

¥

-

£
Il

.

wn
=
=

position at z =3 s. We can find the velocity
of the sphere ajld the Irlagnetic ﬁild when ¢ ” I
=3 sanduse E =VxB to find E. We can IS
find the voltage across the sphere at this

time from the electric field at its center and %
its diameter. y

(a) Relate the electric field at the
center of the sphere to the magnetic
field at that location:

Express the magnetic field as a
function of the distance y from the 4y
current-carrying wire:

Using a constant-acceleration
equation, find the position of the
sphere at =3 s:

Substitute and evaluate L5> :

Y=y, +v, At +%a(At)2
or, because yy = h, vy, = 0, and a = g,
y=h-1g(at)
= 45m -1(9.81m/s?)(3s)?
=0.855m

_472><10‘7N/A2 20A :
27 0.855m

=(~4.68x10°T)i
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Using a constant-acceleration
equation, find the velocity of the
sphere at =3 s:

Substitute and evaluate E :

(b) The potential difference across
the sphere depends on the electric
field at the center of the sphere and
the diameter of the sphere:

Substitute numerical values and
evaluate V:

49 oo

Picture the Problem The free-body
diagram shows the forces acting on the rod
as it slides down the inclined plane. The
retarding force is the component of Fy,
acting up the incline; i.e., in the —x
direction. We can express F}, using the
expression for the force acting on a
conductor moving in a magnetic field. We
can apply the expression for a motional
emf in conjunction with Ohm’s law to find
the induced current in the rod. In part (b)
we can apply Newton’s 2™ law to obtain an
expression for dv/dt and set this expression
equal to zero to obtain vy

(a) Noting that only the horizontal
component of the rod’s velocity

V produces an induced emf, express
& due to the motion of the rod in
the magnetic field:

V =V, +3At

or,becauseV, =0anda =—-g j
V=—gAt j =—(9.81m/s?)(35)]

S

=(-29.4m/s)]

A

E =(-29.4m/s)j x (- 4.68x10° T)i

=| (-0.138mV/m)k

V =2RE

¥ =2(0.02m)(0.138mV/m) =

5.52 1V

& = Blvcosl




Substitute numerical values and
evaluate & :

(b) Apply Newton’s 2™ law to the
rod:

Using Ohm’s law, relate the current
1 in the circuit to the induced emf:

Substitute in equation (1) to obtain
the equation of motion of the rod:

When the rod reaches its terminal
velocity w, dv/dt = 0:

Solve for v

Substitute numerical values and
evaluate v

50 (1 1]
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£=(1.2T)(15m)v(cos30°)

= (15.6T-m)v

mgsiné’—chosﬁzmﬂ
dt

and
dv F
— =gsinf——2cos@ 1
i g - (D
where
F =1IlB

and [ is the current induced in the rod as a
consequence of its motion in the magnetic
field.

I & _ Blvcosd
R R
and
F = B*(*vcos®
R

dv 202

= osinf - cos’ @
i °

mR

292

Ozgsinﬁ—&coszﬁ
mR

b= mgRsin @

" B/’cos’ 0

(0.4kg)(9.81m/s”)(2Q)sin30°
(1.2T)(15m)’ cos*30°
1.61cm/s

V. =

Picture the Problem Let F; be the friction force between the rails and cylinder, Fy, the
magnetic force on the cylinder, and /,, the cylinder’s moment of inertia. Because the

current through the rod is uniformly distributed, we can treat the current as though it were

concentrated at the center of the rod. We can find the magnitude of B by applying

Newton’s 2™ law to the cylinder. The application of Ohm’s law to the circuit will allow

us to express the net force acting on the cylinder in terms of its speed. Setting this net
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force equal to zero will lead us to a value for the terminal velocity of the cylinder. We can
use the definition of kinetic energy (both translational and rotational) to find the kinetic

energy of the cylinder when it has reached its terminal velocity.

(a) Apply ZFX =ma_ to the F. —F. =ma,
cylinder: or
Bla—F, = m% =y 92
dt dt
Apply Z 7 = I« to the cylinder: Fr=1I. do
dt
Solve for F; and substitute to obtain: I do do
Bla——2—=mr—
r o dt dt
dw dw Bla Bla 2Bla
Solve for r —: r—= = — =
dt dt I, Lmr 3m
m+—r m+
r r2
or
dv 2Bla
- = (1
dt 3m
Solve for B: 3 dv
m [—
_ dt
21a
Apply Ohm’s law to the circuit to _&_12V _ ’ A
find I R 6Q
Substitute numerical values and B 3(4 kg)((). 1 rn/sz) o507
evaluate B:

Apply F = I/ x B to determine the

direction of B :

2(2A)(0.4m)

B is downward.

(b) Multiply both sides of equation Fo—m dv_2Bla
(1) by m to express the net force e dt 3
acting on the cylinder:

Use Ohm’s law to express the = & — Bav
current as a function of the emf of R



the battery and the induced emf in
the cylinder:

Substitute to express the net force
acting on the cylinder as a function
of the velocity of the cylinder:

(¢) Set Fet = 0 and solve for the
terminal velocity of the cylinder:

(d) Express the total kinetic energy
of the cylinder when it has reached
its terminal velocity:

Substitute numerical values and
evaluate K:

*51 (X1}
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23(8 —Bavja
_ R

Fnet - 3
_| 2Bag _2B°a’
3R 3R
2Ba& 2B’d’
- v, =0
3R 3R
and
Vtziz 12V = 4001’11/8
Ba (0.75T)(0.4m)

_ 1 2,1
K=smv; +51 o,
2
— 12 1L Z)V_t
=gmv, +5\zmr’)—
r
_3 2
=gmy,

K =3(4kg)(40m/s)’ =| 4.80kJ

Picture the Problem We can use the expression for a motional emf and Ampere’s law to

express the net emf induced in the moving loop. We can also use express the magnetic

flux through the loop and apply Faraday’s law to obtain the same result.

(a) Express the motional emf
induced in the segments parallel to
the current-carrying wire:

Using Ampere’s law, express
B(d + vt) and B(d + a + vi):

Substitute to express & for the near
wire and & for the far wire:

& = B(x)vb

Mol

B\d =—

@ev)=
and

Mol

B\d =
(@+a+v) 270(d + a +vt)
HoIvD

v 270(d +vt)
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and
Ivb
g = HolV
27(d +a+vt)
Noting that the emfs both point E=&E -6,
upward and hence oppose one _ pvb Mo Ivb
another, express the net emf induced 2 ald+vt) 27(d+a+vt)

in the loop:

_ ,uolvb( 11 j
27 \d+vt d+a+vt

The motion of the segments perpendicular to the long wire does not change

the flux through the rectangular loop. Consequently, these segments do not

contribute to the the induced emf.

(b) From Faraday’s law we have: &—— e,
dt
Express the magnetic flux in an area dg, =B (X)dA =B (x)b dx
of length b and width vdt: where, from Ampere’s law,
B(x)= ol
2x
Substitute and integrate from e Lo db ™ dx
x=d+vttod +a+vt: b= |Blx)dx= B .
d+vt T d+vt X
_ ,uOIbln d+a+vt
2r d+vt
Differentiate with respect to time and simplify to obtain:
P d uolbl d+a+vt|_ ulbd 1nd+oz+vt}
d+vt 27 dt d+vt
B ,uolb ( d +vt ) (d +vt—(d +a+vt)v
d+a+vt (al+vt)2
,uolbv (d +vt)- d+a+vt) B ,uolbv{ 1 1 }
d+vt d+a+vt) 2r d+a+vt d+vt

yolbv{ }
d+vt d+a+vt
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Picture the Problem We can use F = gV x B to express the magnetic force acting on the

moving charged body. Expressing the emf induced in a segment of the rod of length dr

and integrating this expression over the length of the rod will lead us to an expression for

the induced emf.

(a) Using the equation for the
magnetic force on a moving charged
body, express the force acting on the
charged body a distance » from the
pivot:

Because V L B and v = ra

(b) Use the motional emf equation to
express the emf induced in a
segment of the rod of length dr and
at a distance r from the pivot:

Integrate this expression from
r=0to r= {to obtain:

(c) Using Faraday’s law, relate the
induced emf to the rate at which the
flux changes:

Express the area d4, for any value of
0, between r and » + dr:

Integrate from r=0to »= / to

obtain:

Using its definition, express the
magnetic flux through this area:

Differentiate ¢, with respect to time
to obtain:

F=¢qvxB

and
F =qvBsinf

F=|qBro

d& = Brdv
= Brodr

jdé" = Ba)jirdr
0 0

and
& =|LBol’
6=
dt
dA =r&dr

?
A=0[rdr =Lor
0

¢, =BA=|LBl*0

d do
EE E[%BM]: LB S <[ 1 Blw
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Inductance

53 -
Picture the Problem We can use ¢ = LI and the dependence of / on ¢ to find the

magnetic flux through the coil. We can apply Faraday’s law to find the induced emf in
the coil.

(a) Use the definition of self- ¢, =LI
inductance to express @p:

Express [ as a function of time: I=3A+ (200 A/ s)t

Substitute to obtain: ¢, = L[3A +(200 A/s)t]
Substitute numerical values and P = (8 H)[3 A+ (200 A/ s)t]
CXPIESS fin: =[24 Wb+ (1600 H - A/s)t

(b) Use Faraday’s law to relate ¢, L, c=_1L ﬂ

and dl/dt: dt

Substitute numerical values and £ =—(8H)(200A/s)=| —1.60kV
evaluate ¢

*54 .

Picture the Problem We can apply @ = LI to find ¢, and Faraday’s law to find the

self-induced emf as functions of time.

Use the definition of self-inductance @ = LI =| LI, sin2xft
to express @n:

The graph of the flux ¢, as a function of time shown below was plotted using a
spreadsheet program. The maximum value of the flux is L/, and we have chosen 27f= 1
rad/s.
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t(s)

’ 1 .
Apply Faraday’s law to relate ¢, L, &= —Ld— _ —Li[lo sin 2@?]
and dI/dt: dt dt
=| —2afLI, cos 2ft

The graph of the emf ¢ as a function of time shown below was plotted using a
spreadsheet program. The maximum value of the induced emf is 2zfLl, and we

have chosen 27f'= 1 rad/s.

emf

1 (s)
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55 e
Picture the Problem We can use B = y,n/ to find the magnetic field on the axis at the

center of the solenoid and the definition of magnetic flux to evaluate ¢,. We can use the
definition of magnetic flux in terms of L and / to find the self-inductance of the solenoid.
Finally, we can use Faraday’s law to find the induced emf in the solenoid when the
current changes at 150 A/s.

(a) Apply the expression for B B = u,nl
inside a long solenoid to express and 400
-7 2

evaluate B: - (4” x107" N/A )[ Sm (3 A)

=|6.03mT
(b) Apply the definition of magnetic ¢, = NBA
flux to obtain: =(400)(6.03mT)z(0.01m)’

=| 7.58x107* Wb
(¢ Rel'ate the self-indu'ctance of the I P _ 7.58x107* Wb _[0253mH
solenoid to the magnetic flux I 3A
through it and its current:
(d) Apply Faraday’s law to obtain: &= _Lg _ _(0.253 mH)(lSO A/S)
t

=| -38.0mV
56 (1]
Picture the Problem We can find the mutual inductance of the two coaxial solenoids
using M, | = Pz _ toyn L.

1

Substitute numerical values and evaluate M ;:

M, =(4zx107 N/Az)(oz(;o ](01(2)(5)0 J(O.ZSm)ﬂ(O.OZm)Z ~[1.89mH
2z0m 2om

*57 e

Picture the Problem Note that the current in the two parts of the wire is in opposite
directions. Consequently, the total flux in the coil is zero. We can find the resistance of
the wire-wound resistor from the length of wire used and the resistance per unit length.
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Because the total flux in the coil is L= @
Zero:
i Q Q
E).cpress the total resistance of the R= (1 8_jL _ (1 8—)(9 m) 1620
wire: m m
58 (11}

Picture the Problem We can apply Kirchhoff’s loop rule to the galvanometer circuit to
relate the potential difference across L, to the potential difference across R,. Integration of
this equation over time will yield an equation that relates the mutual inductance between
the two coils to the steady-state current in circuit 1 and the charge that flows through the

galvanometer.

i dl dl
Apply Kirchhoff’s loop rule to the Sy, Ri=0
galvanometer circuit: dt

or

Mdl, + Lydl, — R,1,dt =0

Integrate each term from ¢ = 0 to

MTaU1 +Ljd]2 —Rlezdt =0
0 0 0

t=oo:

and

Mlloo + LZIZOO - RZQ = O
Because 5, = 0: Ml -R,0O=0
Solve for M: M= R,O

Iloo

Substitute numerical values and M= (300 Q)(2 x107* C) _Troem
evaluate M: 5A

59 (1 1]

Picture the Problem We can use Ampere’s law to express the magnetic field inside the
rectangular toroid and the definition of magnetic flux to express ¢, through the toroid. We
can then use the definition of self-inductance of a solenoid to express L.

Using the definition of the self- I = Ng, )
inductance of a solenoid, express L I
in terms of @, V, and I:
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Apply Ampere’s law to a closed path
or radius a <r <b:

Solve for B to obtain:

Express the flux in a strip of height
H and width dr:

Substitute for B and integrate d¢,
from r = a to » = b to obtain:

Substitute in equation (1) and
simplify to obtain:

Magnetic Energy

60

§CI§ -dl =B2mr = u,l,

or, because I = NI,
B2mr = u,NI

B — /’lONI
27

dg. = BHdr

¢m

27

_ uNIH i dr _ pNIH |
r 2

a

2
[=| HH Hln(éj
27 a

!
nl —
a

Picture the Problem The current in an LR circuit, as a function of time, is given by

I=1; (1 —e " ) , Where Iy = &/R and 7= L/R. The energy stored in the inductor under

steady-state conditions is stored in its magnetic field and is given by U, =+ LI fz .

(a) Express and evaluate /¢

(b) Express and evaluate the energy
stored in an inductor:

*Q1 ee

&, 24V _

. = =[2.00A
R 120

U, =%+LI; =12H)(2A) =

m

4.00J

Picture the Problem We can examine the ratio of u,, to ug with £ = ¢B and

c= 1/ + Eo M, to show that the electric and magnetic energy densities are equal.

Express the ratio of the energy
density in the magnetic field to the
energy density in the electric field:

Substitute £ = ¢B:

BZ
u, 24, B

m

1 2 2
ug 26 E°  pEE

u, B’ 1

- 2p2 2
Ug  HoEoC BT € C
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Substitute for c: Uy _ Ho&o

Ug &

=1 =|u, =u

62 oo
Picture the Problem We can use L = z4,n” A/ to find the inductance of the solenoid and

B = pynl to find the magnetic field inside it.

(a) Express the magnetic energy U,=1LI :

stored in the solenoid:

Relate the inductance of the L= pyn’ Al

solenoid to its dimensions and

properties:

Substitute to obtain: U, =+un’All’

Substitute numerical values and 2000 2

-7 2
evaluate U, Uy = %(472' x107" N/A )(O 3Im
x(4x107 m?)(0.3m)(4AY

=|53.6mlJ

(b) The magnetic energy per unit Un _Un _ 53.6mJ

volume in the solenoid is: Vo Al (4 x10™* m? )(0.3 m)
= 447J/m’

(o) ExPress the magnetic field in the B = gl = p, ﬂ J
solenoid in terms of » and I l

_ (47x107 N/A®)(2000)(4 A)
0.3m

=|33.5mT

(d) The magnetic energy density is: B? (33.5 rnT)2
u =

™" 2u, 2(zx107 N/A?)
=| 447J/m’

in agreement with our result in Part (b).
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63 e
Picture the Problem Consider a
cylindrical annulus of thickness dr at a

radius » < a. We can use its definition to

express the total magnetic energy

dU _ inside the cylindrical annulus and

divide both sides of this expression by the
length of the wire to express the magnetic
energy per unit lengthdU’ . Integration of

this expression will give us the magnetic

energy per unit length within the wire.

Express the magnetic energy within
the cylindrical annulus:

Divide both sides of the equation by
£ to express the magnetic energy per
unit length dU’, :

Use Ampere’s law to express the
magnetic field inside the wire at a
distance » < a from its center:

Because the current is uniformly
distributed over the cross-sectional
area of the wire:

Substitute to obtain:

Substitute for B in equation (1) to
obtain:

2 2
dUm = B_ annulus = B—27Z7/'€d}"
2, 2p,

2
=—mrldr
Hy
2
dUu', = B wrdr (1)
Hy
2mB = pyl
and
B — ILIOIC
27

where /¢ is the current inside the cylinder

of radius r.

I. m’ r’
—=— = 1. =—1
] mZ C a2
B Horl

2’

(ﬂo”ljz
2 2
du’, :2L7zm’r —’uo—14r3dr

Hy 4rma
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Integrate dU’ fromr=0tor=a: ﬂ0[2

a
Ama* 4 167

]l‘ /10[2 _ Hol”
0

Remarks: Note that the magnetic energy per unit length is independent of the radius
of the cylinder and depends only on the total current.

*64 oo
Picture the Problem The wire of length d and radius a is shown in the diagram, as is the
inductor constructed with this wire and whose inductance L is to be found. We can use

the equation for the self-inductance of a cylindrical inductor to derive an expression for
L.

The self-inductance of an inductor L=y, n> Al (1)

with length /, cross-sectional area 4,
and number of turns per unit length

n is:
The number of turns N is given by: N Y4
" 2a
The number of turns per unit length N 1
. n=—=—
n 1s: f 2a
Assuming that a << r, the length of Y Tr
the wire d is related to n and 7: d= N(27z'r): (Za 27y = 75
Solve for / to obtain: /= ad
Tr
Substitute for !, A, and n in equation 1) N ad rd
(1) to obtain: L=pu) — (72'1” ) — = M| —
2a Ty 4a

65
Picture the Problem We can substitute numerical values in the expression derived in
Problem 64 to find the self-inductance of the inductor.
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From Problem 64 we have: I MR
" 4a

Substitute numerical values and evaluate L:

(47 x107 N/A%)(0.25cm)(10cm)

L =
4(0.5mm)

=] 0.157 11

66 oo

Picture the Problem We can find the number of turns on the coil from the length of the
superconducting wire and the cross-sectional radius of the coil. We can use

B= (,uoNI )/ (2717" )to find the magnetic field at the mean radius. We can find the

mean

energy density in the magnetic field from u = B 2 / (2 ,uo) and the total energy stored in
the toroid by multiplying u,, by the volume of the toroid.

(a) Express the number of turns in N = L _ 1000 m —[7958

terms of the length of the wire L and 2mr 27[(0.02 m)

length required per turn 27

(b) Use the equation for B inside a B= o NI

tightly wound toroid to find the 27, can

magnetic field at the mean radius: (4 %107 N/A2 )(795 8)(400A)
- 27(0.25m)
=|255T

(c) Express and evaluate the energy _ B 2 B (2.55 T)2

density in the magnetic field: Hm = 24, - 2(47[ x107 N/Az)

= 2.59x10° J/m®
Relate the total energy stored in the U, =u, V4

toroid to the energy density in its
magnetic field and the volume of
the toroid:

w2, )= 277,

mean mean

Think of the toroid as a cylinder of 4
radius 7 and height 2 77 eqn to

oroid

obtain:

Substitute for Vioiq to obtain: U, = 27 u

mean” m
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Substitute numerical values and evaluate U,,,:

U, =27°(0.02m)*(0.25m)(2.59x10° J/m* )=[ 5.11kJ

RL Circuits

67 o
Picture the Problem We can find the current using / = /; (1 — e_’/r) where Ir= g/R and

7= L/R and its rate of change by differentiating this expression with respect to time.

Express the dependence of the =1 (1 —e T)
current on /rand 7

Evaluate /rand 7. I, _ & _ 100V _12SA
R 8
and
= £ = 4—H =0.5s
R 8Q
Substitute to obtain: 1= (12.5 A)(l — e—z/oAss)

—(12.5A) -

Express dl/dt: % _ (12'5 A)(— o2 )(_ P S—l)

= (25A/s5)e™

(a) When 7= 0: 1:(12.5A)(1—e°)=@

and

(s an)e’ <[ 25047

(b) When = 0.1 s: [=(1254)(1-¢")=[227A

and

% =(25A/5)e™* =| 20.5A/s

(c) Whent=0.5s: 1= (12.5 A)(l - e_l): 7.90 A

and
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9 _ (25 Ass)e =[9.20 Als
dt

(d) Whent=1.0s: ]:(12,5A)(1—e72)= 10.8A
and
%: (25A/5)e™ =| 3.38A/s

68 o
Picture the Problem We can find the current using 7 =1, Oe_’/ ‘., where I, is the current at

time t=0and = L/R.

Express the current as a function of I=Ie"" =2A)e"
time:
Evaluate 7. = L = —1 mH =10""s
R 10Q
Substitute to obtain: 1=(2 A)e_104t &
(a) When ¢ = 0.5 ms: I = (2 A)e—w"(o.sno*s)s*‘ = (2 A)e_5
=|13.5mA
(b) When ¢ = 10 ms: I = (2 A)e_lozt(loxmﬁs)sf1 = (2 A)e_loo

=744x10™" A ~[ 0|

*G9 oo
Picture the Problem We can find the current using / = /; (1 - ef’/rl where

Is= &/R,and 7= L/R, and its rate of change by differentiating this expression with respect
to time.

Express the dependence of the =1 (1 —e T)
current on /rand 7

Evaluate Irand =



Substitute to obtain:

Express di/dt:

(@) Find the current at = 0.5 s:

The rate at which the battery
supplies power at t = 0.5 s is:

(b) The rate of joule heating is:

(c¢) Using the expression for the
magnetic energy stored in an
inductor, express the rate at which
energy is being stored:

Substitute for L, I, and dI/dt to
obtain:

Substitute numerical values and evaluate

dU,
dt

Evaluate this expression for
t=05s:

= (0.6H)(4 A)(1 —e )(20 Als)e™™ =(48 W)(1 —e )e-S’S’

Magnetic Induction 673

r=2 DO 55
R 3Q

[=(aA)(1-e">)=(@A)1-e")

) ess)

dt
=(20A/s)e™"

1(0.55)=(4A)(1- 05" )
=3.67A

P(0.55)=1(0.55)&
=(3.67A)(12V)
=| 44.0W

P,(0.55)=[1(0.55)]’R
(3.67AY(3Q)

~[40.4wW
Wy _dLrpl-n4
dt  dt” dt
U _dlplopd
dt  dt” dt

1

dU,

(48 W)(] _ o S(05s)s )6*5(0.55)571

— (48 W)(1—e %)
3.62W
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Remarks: Note that, to a good approximation, dU, /dt =P — P,.

70 (1]
Picture the Problem We can find the current using / = /. (1 — ef’/f), where Iy = /R and

7= L/R, and its rate of change by differentiating this expression with respect to time.

Express the dependence of the =1 (1 —e” ’)
current on /rand

Evaluate [y and 7. I & _ 12V _

F— 4A
R 3Q
and
T= L = M =0.2s
R 3Q
Substitute to obtain: ] = (4 A)(l _ e—t/O»ZS)
=(4 A)(l - 5)
Express dl/dt: % _ (4A)(— s )(_ 5 s‘l)

=(20A/s)e™

(a) Find the current at £ =1 s: ](1 s) = (4 A)(l _ st )
=397A

The rate at which the battery P(l S) = 1(1 S)E = (3.97 A)(l2 V)

supplies power at £ =1 s: =1 477W

Find the current at =100 s: 1(100s)= (4 A)(l — g S100s)s” )
=4.00A

The rate at which the battery P (1 00 S) =1 (1 00 5)8 = (4 A)(12 V)

supplies power at £ = 100 s: =| 48.0W

(b) The rate of joule heating at P, (1 s) = [1 (1 s)]2 R

t=1sis:

(3.97A)(3Q)
473 W




The rate of joule heating at
t=100sis:

Using the expression for the
magnetic energy stored in an
inductor, express the rate at which

energy is being stored:

Substitute for L, I and dI/dt to
obtain:

Evaluate dU,/dt fort=1s:

Evaluate dUy/dt for t =100 s:

P(100s)=(4A) (3Q)=| 48.0 W

dU,
dt

dU,
dt

dU,
dt

dU,
dt

Magnetic Induction

:%[%LIZ]:LI%

=%[%L12]=L1%

= (0.6H)(4A)(1 —e )
x (20 A/s)e""
= (48 w)(1 —e )e-st*‘

= (48 w)(1 e O )e—s(lsw

(48 W)(l —e” )e_5
0.321W

= (48 W)(l _ o~ 5(100s)s™ )8—5(1005)5’1

— (48 W)(1—e )

[0

Remarks: Note that, to a good approximation, dU, /dt =P — P,.

71 oo

Picture the Problem If the current is initially zero in an LR circuit, its value at some

later time ¢ is given by [ = I, (1 —e"

675

), where I;= /R and = L/R is the time constant

for the circuit. We can find the time constant of the circuit from the given information

and then use the definition of the time constant to find the self-inductance.

(a) Express the current in the circuit
as a function of time:
Express the current when 1 =4 s:

1 :If(l—e_’/f) where 7 :% (1)

0.51,

or

0.5=

= L(1-e*")

l—e™/" = 05=¢*"
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Take logarithms of both sides of this Int=— 4s
equation to obtain: ? T
4
Solve for and evaluate = o= as _ 5775
In2
(b) Solve equation (1) for and L=Rr= (5 Q)(5,77 s) =[289H
evaluate L:
72 e
Picture the Problem If the current is initially zero in an LR circuit, its value at some

i/ ), where I;= /R and = L/R is the time constant

later time ¢ is given by [ = I; (1 —e
for the circuit. We can find the number of time constants that must elapse before the

current reaches any given fraction of its final value by solving this equation for #/7.

Express the fraction of its final value L e

to which the current has risen as a P

function of time:

Solve for #/7: t 1l 1 1
T f

(@) Evaluate #/7 for 1/I;=0.9: L. —ln(l —0 9) 230
Tloo%

(b) Evaluate #/7 for 1/1; = 0.99: o —ln(l ~0 99) (461
Tlogv

(¢) Evaluate #/ 7 for I/1;=0.999: 1] _ —ln(l _0 999) _[6.91
Tl99.9%

73 e

Picture the Problem If the current is initially zero in an LR circuit, its value at some
later time ¢ is given by / =/ (1 el ), where /s = &/R and 7 = L/R is the time constant
for the circuit. We can find the rate of increase of the current by differentiating / with

respect to time and the time for the current to reach any given fraction of its initial value
by solving for ¢.

(a) Express the current in the circuit I = &y (1 _ e—t/r)
as a function of time: R
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Express the initial rate of increase ﬂ _ &y i (1 _ e_t/r)
of the current by differentiating this dt R dt
. : . R
expression with respect to time: 3 ﬂ (_ e_t/r) B l _ ﬁ e—zt
R T) TR
R
S0t
L
= in: /4 12
Evaluate dI/dt at t = 0 to obtain: dl _& o = A 3 .00kA/s
dt|_, L 4mH
b) When I =0.5I: 05=1-¢"" = e’ =05
(
Evaluate dl/dt with e = 0.5 to dl _0 sﬂ 05 12V
obtain: dt|,rs L  (4mH
=|1.50kA/s
(¢) Calculate I;from ¢ and R: I = &y _ 12V _20.0mA
R 150Q
(d) When I = 0.99: 099=1-¢"" = e’ =0.01

Solve for and evaluate ¢:

t=—7In(0.01)= —%111(0.01)

= -ﬂln(o.m): 0.123ms
150Q

T4 oo
Picture the Problem If the current is initially zero in an LR circuit, its value at some

—t/t

later time ¢ is given by / =/ (1 —e ), where /s = &/R and 7= L/R is the time constant

for the circuit. We can find the time for the current to reach any given value by solving
this equation for ¢.

Evaluate /rand 7: &, 250V

~
-

|

I

=31.25A
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Solve [ = If(l—e_’/r) for #:

(a) Evaluate ¢ for /=10 A:

(b) Evaluate ¢ for /=30 A:

*75 (X1}

t=-7ln 1—i
If

- (625 s)ln[l —;J

31.25A

t|10A=—(6.255)1n[1— 10A ]

31.25A
=|2.41s
30A
t =—(6.25s)In| | -———
|3°A ( ) ( 31.25AJ
=|20.1s

Picture the Problem The self-induced emf in the inductor is proportional to the rate at
which the current through it is changing. Under steady-state conditions, d//dt = 0 and so

the self-induced emf in the inductor is zero. We can use Kirchhoff’s loop rule to obtain

the current through and the voltage across the inductor as a function of time.

(a) Because, under steady-state
conditions, the self-induced emf in
the inductor is zero and because the
inductor has negligible resistance,
we can apply Kirchhoff’s loop rule
to the loop that includes the source,
the 10-Q resistor, and the inductor to
find the current drawn from the
battery and flowing through the
inductor and the 10-Q resistor:

By applying Kirchhoff’s junction
rule at the junction between the
resistors, we can conclude that:

10V -(10Q)I =0
and
_10V _
10Q

1.00A

IIOO-Q resistor [battery - Iinductor = @

(b) When the switch is closed, the current cannot immediately go to zero in the circuit

because of the inductor. For a time, a current will circulate in the circuit loop between

the inductor and the 100-Q resistor. Because the current flowing through this circuit is

initially 1 A, the voltage drop across the 100-Q resistor is initially

100 V. |Conservation of energy (Kirchhoff’s loop rule) requires that the voltage drop



across the inductor is also

100V.

(c) Apply Kirchhoff’s loop rule to
the RL circuit to obtain:

The solution to this differential

equation is:

Magnetic Induction 679

L£+IR=O
dt

&, _t
I(t)=Ie " =1Ie-

where 7 =£—2—H:0.025

R 100Q

A spreadsheet program to generate the data for graphs of the current and the voltage

across the inductor as functions of time is shown below. The formulas used to calculate

the quantities in the columns are as follows:

Cell

Formula/Content

Algebraic Form

Bl

2

L

B2

100

R

B3

1

Il

Ab

0

B6

$B$3*EXP((-$B$2/$B$1)*A6)

C

H

100

ohms

A

1(t)

V()

0.000

1.00E+00

100.00

0.005

7.79E-01

77.88

0.010

6.07E-01

60.65

0.015

4.72E-01

47.24

0.020

3.68E-01

36.79

Z S| won v |wo|—

0.025

2.87E-01

28.65

—_
o

0.030

2.23E-01

22.31

32

0.130

1.50E-03

0.15

33

0.135

1.17E-03

0.12

34

0.140

9.12E-04

0.09

35

0.145

7.10E-04

0.07

36

0.150

5.53E-04

0.06

The following graph of the current in the inductor as a function of time was plotted using
the data in columns A and B of the spreadsheet program.
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I (A)

t(s)

The following graph of the voltage across the inductor as a function of time was plotted
using the data in columns A and C of the spreadsheet program.

100

80

60

V(v)

40

20

0.00 0.03 0.06 0.09 0.12 0.15

76 e
Picture the Problem We can evaluate the derivative of Equation 28-26 with respect to
time at ¢ = 0 to find the slope of the linear function of current as a function of time.
Because the I-intercept of this equation is /y, we can evaluate /(¢) at # = 7 to show that the
current is zero after one time constant.

t

Equation 28-26 describes the current -
I=1e"

in an LR circuit from which the
source has been removed:
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Differentiate this expression with dl / d - ] T
. _— — T = e T ——
respect to ¢ to obtain: dt dt 0 r
t
_ Lo
T
Evaluate dl/dt at t = 0: a1,
dt|,_, T
i 1
Assu@mg th&:lt the current decreases I(t) =t
steadily at this rate, express / as a T
linear function of ¢ to obtain:
. . ]
Evaluate this function when ](T) =247 =l0
1=r1: T

as was to have been shown.

77 e
Picture the Problem The current in an initially energized but source-free RL circuit is

—t/t

givenby / = [je”"" . We can find 7 from this equation and then use its definition to

evaluate L.

(a) Express the current in the RL I1=1 Oeft/ ’
circuit as a function of time:

Solve for and evaluate 7: t 45ms
= 88.1ms

(b) Using the definition of the L=1R
inductive time constant, relate L to
R:

Substitute numerical values and L =(0.08815)(0.4Q)=| 35.2mH
evaluate L:

78 e

Picture the Problem We can model this coil as a resistance-free inductor in series with
an inductance-free resistor and express the potential difference across the coil as the sum
of the potential differences across the inductor and the resistor. We can then use the
given data to obtain two equations in the unknowns R and L and solve these equations
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simultaneously for the resistance and self-inductance of the coil.

Express the potential difference
across the coil as the sum of the
potential difference across a resistor
and the potential difference across
an inductor:

When /=5 A and
dl/dt =10 A/s:

When /=5 A and
dl/dt=—-10 A/s:

Add these equations to obtain:

Substitute in either of the equations to
obtain:

79 [T}

V=V,+V,

:IR+L£
dt

140V = (5A)R+(10A/s)L

60V =(SA)R—-(10A/s)L

200V =(10A)R

and

R =M =120.0Q
104

L=|400H

Picture the Problem We can use the definition of inductance to express the rate at
which the current changes through the inductors and the resistor and the result of
Problem 88 to find the effective inductance in the circuit. We can find the final/steady-

state current by applying Ohm’s law.

(a) Express the rate of change of the
current through the resistor:

Using the result given in Problem
88, find Leff:

Substitute numerical values and
evaluate dIx/dt at t = 0:

ay _ &
dt Ly
1 1 1
= +
L, 8mH 4mH
and
L. =2.67mH
d1R| _ WV 9.00kA/s
dt|_, 2.67mH




Express the rate of change of the
current through the 8-mH inductor:

Express the rate of change of the
current through the 4-mH inductor:

Because /IR =0 when ¢t = 0:

Substitute numerical values in
equation (1) and evaluate

dlgmH/dt :

Substitute numerical values in
equation (2) and evaluate

dI4mH/dt:

(b) After a long time has passed, the
inductors will act as a short and the
final current will be determined
solely by the resistance in the
circuit:

*80 e

dl.

ﬂzz“_v: 3.00kA/s
dt SmH

dl

ﬂ_%_vz 6.00kA/s
dt 4mH

=52V _Me0a

R 15Q
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dISmH — & (1)
dt Ly

d]“_mﬁ __& )
dt L4mH

V., = V8mH =V = 24V

eff

Picture the Problem If the current is initially zero in an LR circuit, its value at some

later time ¢ is given by [ = I; (1 —e T) where It = &/R and 7= L/R is the time constant

for the circuit. We can find the time at which the power dissipation in the resistor equals

the rate at which magnetic energy is stored in the inductor by equating expressions for

these rates and using the expression for / and its rate of change.

Express the rate at which magnetic
energy is stored in the inductor:

Express the rate at which power is
dissipated in the resistor:

Equate these expressions to obtain:

Simplify to obtain:

dU, _d1plp®
dt dt dt
P=1IR
I’R :L]ﬂ
dt
I= rﬂ (1)
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Express the current and its rate of
change:

Substitute in equation (1) to obtain:

Solve for ¢:

Using 7= 333 us from Example 28-
11, evaluate ¢ to obtain:

81 o00

I=1,(1-¢")

and
dl d 1
“ “ l_e—t/r —_7 e—t/r(__j
' dt( ) ! T
:1_fe—t/r
T
If(l—e_’/’): r(]—fe_’/’j
T
or

l—e"=e"=1=2e7""

t=-rln$

t=—(3335)Int =| 231 ps

Picture the Problem We can integrate dE/dt = &1, where I = I, (1 - ef’/r), to find the

energy supplied by the battery, dE, / dt = I’R to find the energy dissipated in the

resistor, and U, (z’) = %L(l (Z‘ ))2 to express the energy that has been stored in the

inductor when ¢ = 7.

(a) Express the rate at which energy
is supplied by the battery:

Express the current in the circuit as a
function of time:

Substitute to obtain:

Separate variables and integrate
from ¢ =0 to £ = 7 to obtain:

E=%)2I(l—e_'/r)dt
:%f’z[r—(—re_l +r)]
_& T _&L

R e Re
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Substitute numerical values and ¥
P (12V)'(0.6H) _ 353
evaluate E: (3 Q)2 e
b) Express the rate at which ener dE :
() 'p L . . 'gy 2R = i(l_e—f/f) R
is being dissipated in the resistor: dt

Separate variables and int'egrate E, = 6‘_02 j« (1 el 4 g2 ) dr
from ¢ = 0 to ¢t = 7 to obtain: R d
_& (2 T T
Rle 2 2¢
_&L(2 1 1
R* e 2 2¢°
Substitute numerical values and £ (12V)2 (0.6 H) 2 1 1
evaluate E: ' (3 Q)z e 2 26
=|1.61J
(c) Express the energy stored in the U, (2') = %L([ (T))2
inductor when t= 7: 2
~41 L(-e))
LE,; .
= l1-e
2R2 )2

Substitute numerical values and evaluate 0.6H)(12VY) _

E. U, )=(2()#(1—91)2
: 3Q)

1.92]

Remarks: Note that, as we would expect from energy conservation, E = E; + E,.
General Problems
82

Picture the Problem We can apply the definition of magnetic flux to find the flux
through the coil in its two orientations with respect to the magnetic field.
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(a) Using its definition, express the
magnetic flux through the coil:

(b) Proceed as in (a) with 8= 20°:

83 -

¢ = NBAcos@ = NBmr’ cos 0
(6)(0.5T)z(0.03m)’ cos 0°
=| 8.48mWb

¢ = NBAcos@ = NBmw’ cos O
(6)(0.5T)7(0.03m)’ cos 20°
=| 7.97mWb

Picture the Problem We can apply the definition of magnetic flux to find the flux
through the coil in its two orientations with respect to the magnetic field and then use

Faraday’s law to find the emfs induced in the coil.

Using Faraday’s law, express the
emf induced in the coil:

(a) Using its definition, express the

magnetic flux through the coil:

Substitute to obtain:

Substitute numerical values and
evaluate &

(b) Proceed as in (a) with
0=20°:

84 o

Picture the Problem We can apply Faraday’s and Ohm’s laws to obtain expressions for

A¢m - _ ¢m,f B ¢m,i _ ¢m,i

At At At
because ¢y r=0

E=-

¢ = NBAcos® = NBmr’ cosf

2
g = NBm_cosd
At
& - (0)(05T)7(0.03m)" cos0°
- 1.2s
=[7.07mV
&= (6)(0-5 T)ﬂ(0.03 m)2 cos 20°

1.2s

=| 6.64mV

the induced emf that we can equate and solve for the rate at which the perpendicular

magnetic field must change to induce a current of 4.0 A in the coil.

Using Faraday’s law, relate the
induced emf in the coil to the

dd, _ 4B

€]= dt dr
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changing magnetic flux:

Using Ohm’s law, relate the |€ | = IR
induced emf to the resistance of the
coil and the current in it:

Equate these expressions and solve NA d_B — IR
for dB/dt: dt

and

a5 _ IR __IR

dt NA Nm’

Substitute numerical values and evaluate daB _ (4A)(250) _1199T/s
dB/dt: dt  (100)7(0.04m)’
*85 L1l

Picture the Problem We can apply Faraday’s law and the definition of magnetic flux to
derive an expression for the induced emf in the coil (potential difference between the slip
rings). In part (b) we can solve this equation for @ under the given conditions.

(a) Use Faraday’s law to express the &= dg,
induced emf: dt
Using the definition of magnetic P (t ) = NBAcoswt
flux, relate the magnetic flux
through the loop to its angular
velocity:
. . . d
Substitute to obtain: e=_9 [NBA oS a)t]
dt
= —NBabao(-sin o)
=| NBabwsin wt
(b) Express the condition under sinwt =1

which &€= g
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Solve for and evaluate @ under this o= & ax
condition: NBab
_ 110V
(1000)(2T)(0.01m)(0.02m)
=| 275rad/s
86 oo

Picture the Problem We can apply Faraday’s law and the definition of magnetic flux to
derive an expression for the induced emf in the rotating coil gaussmeter.

Use Faraday’s law to express the £—— de,,
induced emf: dt
Using the definition of magnetic P (t ) = NBAcos wt

flux, relate the magnetic flux
through the loop to its angular
velocity:

Substitute to obtain: d [NBA cos ot |

E=——
dt
= —NBAw(-sinot)
= NBAwsmot =&, sinwt
where
E..x = NBAw

max

Substitute numerical values and evaluate &y:

ev 2xrad 1min
X X

&, =(400)(0.45T)(1.4x10™ mz)(l 80—

- =1 0475V
min rev 60s

The maximum induced emf occurs at the moment the plane of the coil is

parallel to the magnetic field B. At this instant, ¢, 1szero,but Eisa

maximum.

87 e

Picture the Problem We can use the equality of the currents in the inductors connected
in series and the additive nature of the total induced emf across the inductors to show that
the inductances are additive.



Relate the total induced emf to the
effective inductance L. and the rate
at which the current is changing in
the inductors:

Because the inductors L; and L, are
in series:

Express the total induced emf:

Substitute in equation (1) and
simplify to obtain:

*88 oo
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dl
E=L . —
effdt
I,=1,=1
and
dl, _dl, _dl
dt dt dt
€=81+82=L1£+L2£
dt dt
dl
=(L,+L,)—
(1 1)
Leff_ L1+L2

Picture the Problem We can use the common potential difference across the parallel

combination of inductors and the fact that the current into the parallel combination is the

sum of the currents through each inductor to find an expression of the equivalent

inductance.

Define L by:

Relate the common potential
difference across the inductors to
their inductances and the rate at
which the current is changing in
each:

Because the current divides at the
parallel junction:

&

o dl/dt
or
a_1
dt L.

dl
g =L— 2
1=h (2)
and

dl
E =L —= 3
2=t (3)
I=1+1,
and
dr_di, di,

dt dt dt
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Solve equations (2) and (3) for dI,/dt dal _& N &
and dD,/dt and substitute to obtain: daa L L,
Express the relationship between an E=¢& =6,

emf ¢ applied across the parallel
combination of inductors and the
emfs g and & across the individual

inductors:

Substitute to obtain: da & & £ 1 1
R E —_
d L L, L L,

Substitute in equation (1) and solve | N

for 1/ Leg: L, |L L,

*80 oo

Picture the Problem

As the magnet passes through the coil, it induces an emf because of the
(a) | changing flux through the coil. This allows the coil to " sense" when the

magnet is passing through it.

One cannot use a cylinder made of conductive material because eddy

(b)

currents induced in it by a falling magnet would slow the magnet.

As the magnet approaches the loop, the flux increases, resulting in the
increasing voltage signal. When the magnet is passing the coil, the flux
(¢) | goes from increasing to decreasing, so the induced emf becomes zero

and then negative. The time at which the induced emf is zero is the time

at which the magnet is at the center of the coil.

(d) Each time represents a point when the distance has increased by 10 cm. The
following graph of distance versus time was plotted using a spreadsheet program. The
regression curve, obtained using Excel’s "Add Trendline” feature, is shown as a dashed
line.
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14 *

12 &

V= 4.92571%+ 139317 +0.0883 R
10 .

0.8 -

y (m)
*

06 | o’

0.4 >’

.
0.2 o
o

0.0 T T
0 0.1 0.2 0.3 0.4

t (s)

The coefficient of the second-degree term is 4 g. Consequently,

g =2(4.9257m/s*)=[ 9.85m/s’

90 e

Picture the Problem The current equals the induced emf divided by the resistance. We
can calculate the emf induced in the circuit as the coil moves by calculating the rate of
change of the flux through the coil. The flux is proportional to the area of the coil in the
magnetic field. We can find the direction of the current from Lenz’s law.

(a) and (c) Express the magnitude of I |5' | )
the induced current: "R
Using Faraday’s law, express the | g| _ dg,,
magnitude of the induced emf: dt
When the coil is moving to the right | g| _ dg, ~0
(or to the left), the flux does not dt
change (until the coil leaves the and
region of magnetic field). Thus: I |<9 | B @
R
(b) and (d) Letting x represent the @, = NBwx

length of the side of the rectangular
coil that is in the magnetic field,
express the magnetic flux through
the coil:
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Compute the rate of change of the de, — NBw @
flux when the coil is moving up or dt dt
down: =(80)(1.4T)(0.25m)(2m/s)
=56.0V
Substitute in equation (1) to obtain: I= 56V _[233A
240 =

When the coil is moving upward, the outward flux increases and the

(b) | induced current will be in the sense as to produce inward flux. / is

clockwise.

When the coil is moving downward, the outward flux decreases and the
(d) | induced current will be in the sense as to produce outward flux. / is

counterclockwise.

*Q1 oo

Picture the Problem We can apply Faraday’s law and the definition of magnetic flux to
derive an expression for the induced emf in the coil. We can then apply Ohm’s law to
find the induced current as a function of time. Note that only half of the loop is in the
magnetic field.

Apply Ohm’s law to relate the 1(r) = &lr) (1
induced current to the induced emf: R

Use Faraday’s law to express the g( t) __ dg,, (t)

induced emf: dt

Using the definition of magnetic P (t ) = NBAcos wt

flux, relate the magnetic flux
through the loop to its angular

velocity:

Substitute to obtain: E(t) = _%[ NBA cos a)t]
=—-NBA a)(— sin a)t)
= NBAwsin ot

sin ot

Substitute in equation (1) to obtain: I( t) NBAw
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Substitute numerical values and evaluate /(¢):

1(0)= (80)(1.4T)(0.25 ;Zzgo.ls m)(2 rad/s)sin(z radis):

(0.350 A)sin(2rad/s)z

92 e
Picture the Problem We can use the laws of Ohm and Faraday to express the charge dQ
passing through the coil in time df and integrate this expression to show that Q = N(¢n; —

Pm2)/R.

’ d
Use Ohm’s law to express the dagQ _ & — dO = Edt
induced current in terms of the dt R
induced emf:

Apply Faraday’s law to obtain: 40 = N e, dt = —Ed(ﬁ
R dt R
Integrate dQ from 0 to O and g N %
i " Jdo =~ [ds,

d¢n = P t0 @y to obtain: . R ;

and

N
Q - R ( ml ¢m2)

93 e

Picture the Problem We can apply Faraday’s law to relate the induced electric field E to
the rates at which the magnetic flux is changing at distances » < R and

r > R from the axis of the solenoid.

(a) Apply Faraday’s law to relate J‘ E.di—— g,

the induced electric field to the € dt

magnetic flux in the solenoid within or

a cylindrical region of radius » < R: E(27zr) _ dg,, )
dt

Express the field within the B = pynl

solenoid:

Express the magnetic flux through ¢, =BA= Tr ponl

an area for which » < R:
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E(27Z7’) = —%[ﬂ' rz,uon]]

Substitute in equation (1) to obtain:

2
=—7r" fn—

dt

Because [ = [ sin wt : E = —%Vﬂon%[lo sin a)t]

— 1
=| =3 ru,nl wcos wt

(b) Proceed as in (a) with » > R to E(27zr) _ —i[ﬂ'RZ/JOI’l[]
obtain: t
dil
=7 R yyyn—
Hy dt
= -1 R* uynl,cos ot
Solve for E to obtain: ): &4
E= —%‘)Q)cos wt
r
94 (1 1]

Picture the Problem The system exhibits cylindrical symmetry, so one can use
Ampére’s law to determine B inside the inner cylinder, between the cylinders, and
outside the outer cylinder. We can use u,_, = B’ / 214, and the expression for B from part

(a) to express the magnetic energy density in the region between the cylinders. We can
integrate this expression for u,, over the volume between the cylinders to find the total
magnetic energy in a volume of length ¢ . Finally, we can use our result in part (c) and
U,=+LI * to find the self-inductance of the cylinders per unit length.

(a) For r <ry and for > r, the net B = @
enclosed current is zero;
consequently, in these regions:

Forr <r<r: yn

27

(b) Express the magnetic energy B’

density in the region between the
cylinders:



Substitute for B and simplify to
obtain:

(c) Express the magnetic energy
dUyin the cylindrical element of
volume dV:

Integrate this expression from

r =ry to r = ryto obtain:

(d) Express the energy in the
magnetic field in terms of L and [

Solve for L:

From our result in (¢):

Substitute to obtain:

Express the ratio L/ / :

95 00
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2
Mol
_\2m) _ Hol?

2, 8z’r’

2
U, =u,dv =L (c2mdr)

&n’r
_ Ml dr
4z r
= A K P
4z ;v 4r 7

U, =+LI"
2U

S

Un _ Ho gy

1 dr 1,

L=2 Hoypinz|=Foyna
47z. 1) 2@ n

L_| oy
l 2r

Picture the Problem We can use its definition to express the magnetic flux through a

rectangular element of area d4 and then integrate from » =, to » = r, to express the total

flux through the region. Substituting in L = ¢@,/I will yield the same result found in Part

(d) of Problem 94.

Use the definition of self-inductance
to relate the magnetic flux through

the region of interest to the current /:

Consider a strip of unit length ¢ and
width dr at a distance » from the

_fn
L== (1)

d¢ = BdA = Bldr = Bdr

because /=1.
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axis. The flux through this area is

given by:
Apply Ampere’s law to express the 2B =l = B= Mol
magnetic field at a distance » from ‘ 2mr
the axis:
Substitute to obtain: g - Ml dr
" 2ror
Integrate from »=r to r =r, to ol 2 dr
obtain: O = 21 J‘ .
and
g, =t
" 27
Substitute in equation (1) to obtain: I Mo In 7,
2r n

*0F oo

Picture the Problem We can use / = &R and ¢= Bv { to find the current induced in the
loop and Lenz’s law to determine its direction. We can apply the equation for the force
on a current-carrying wire to find the net magnetic force acting on the loop and then sum
the forces to find the net force on the loop. Separating the variables in the differential
equation and integrating will lead us to an expression for v(¢) and a second integration to
an expression for y(¢). We can solve the latter equation for y = 1.40 m to find the time it
takes the loop to exit the magnetic field and our expression for v(¢) to find its exit speed.
Finally, we can use a constant-acceleration equation to find its exit speed in the absence
of the magnetic field.

(a) Relate the magnitude of the I = &

induced current to the induced emf R

and the resistance of the loop:

Relate the induced emf to the & =Bv/

motion of the loop:

Substitute for & to obtain: I B/ y
R
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As the loop falls, the flux into the page decreases. The direction of the induced

current is such that its magnetic field opposes this decrease, i.e., clockwise.

(b) Express the velocity-dependent F,=BIl
force that acts on the loop in terms
of the current in the loop:

vl = v

Substitute for / to obtain: 292
P LAV

Apply dF = Id7 x B to the horizontal portion of the loop that is in the

magnetic field to conclude that the net magnetic force is upward.

Note that the magnetic force on the left side of the loop is to the left and the magnetic
force on the right side of the loop is to the right.

(c) The net force acting on the loop F=mg—F,
is the difference between the B2/2
downward gravitational force and =|mg— v
the upward magnetic force:
(d) Apply Newton’s 2™ law of B*r? dv
) . mg — vV=m—
motion to the loop to obtain its R dt
equation of motion: or
dv g B*r?
dt mR
Factor g to obtain an alternate form dv B v
. . e 1—- VI|= 1—-—
of the equation of motion: dt mgR g v,
R
where v, = 22
(e) Separate the variables to obtain: dv —d
g
- v
& mR
or
d
L

a—bv
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B*(?
where a =gand b=
mR
Integrate v’ from 0 to v and ¢’ from ©dv' ¢ 1 -b
g I v =Idt’:>——lna Y=
0tor L a-b' a
Transform from logarithmic to v(t) _a (1 _ e—bt)
exponential form and solve for v to
obtain:
_ -/t
Noting that v, = % , we have: V(t )=| v (1 —e )
where 7 =—= &
a g
(f) Write v as dy/dt and separate dy=v, (l —el" )dt

variables to obtain:

Integrate y' from 0 to y and ¢ from O to ¢:

.y[dy’ = vtj.(l —e )dt'
0 0

and

we)=| v le-zlt-e)

() A spreadsheet program to generate the data for graphs of position y as a function of
time ¢ is shown below. The formulas used to calculate the quantities in the columns are as

follows:
Cell Formula/Content Algebraic Form
Bl 0.05 m
B2 0.2 R
B3 0.4 B
B4 0.3 L
BS $B$1*$B$7*$B$2/($B$32*$B$42) v,
B6 $BS$5/8§BS$7 T
B7 9.81 g
Al10 0.00 t
B10 | $B$5*(A10-$B$6*(1-EXP(—A10/$B$6))) y
C10 0.5*$B$7*A10"2 %gtz




A B C
1 m= | 0.05 kg
2 R=10.2 ohms
3 B=]04 T
4 L=1]03 m
5 vt= | 6.813 m/s
6 tau= | 0.694 S
7 g=19.81 m/s"2
8
9 t y y (no B)
10 0.00 0.000 0.000
11 0.05 0.012 0.012
12 0.10 0.047 0.049
13 0.15 0.103 0.110
14 0.20 0.179 0.196
15 0.25 0.273 0.307
16 0.30 0.384 0.441
17 0.35 0.511 0.601
18 0.40 0.654 0.785
19 0.45 0.809 0.993
20 0.50 0.978 1.226
21 0.55 1.159 1.484
22 0.60 1.351 1.766
23 0.65 1.553 2.072
24 0.70 1.764 2.403
25 0.75 1.985 2.759
26 0.80 2.214 3.139
27 0.85 2.451 3.544
28 0.90 2.695 3.973
29 0.95 2.946 4.427
30 1.00 3.202 4.905

Examining the table, we see that y = 1.4 m when ¢ =

0.60s.
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The following graph shows y as a function of ¢ for B # 0 (solid curve) and B = 0 (dashed

curve).
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4 B>0 7
= = =B=Q L4

-

0.0 0.2 0.4 0.6 0.8 1.0
1 (s)
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Picture the Problem We can use the expression for the period of this spring-and-mass
oscillator to find the spring constant k. We can express the induced current in the loop by
relating it to the induced emf and relating the induced emf to the velocity of the loop.
Knowing that the loop is executing SHM, we can express its velocity as a sinusoidal
function of time. We can use the expression for the magnetic force on a current-carrying
wire in a magnetic field to express the damping force acting on the loop.

(a) Express the period of the mass- P L
spring system: i P
Solve for x to obtain: 4r’m
K= P
Substitute numerical values and = 4’ (0.5 i{g) _1308N/m
evaluate x: (0.8 s)
(b) Express the current in the loop in = &
terms of its resistance and the R
induced emf:
Relate the induced emf in the wire to & =Bv/
the motion of the wire: or, because ¢ = w (where w is the width of
the loop),
& =Bvww
Express the position of the mass- Y = y,sinot

spring system as a function of time:



Differentiate this expression with
respect to time to express the
velocity of the system:

Substitute in our expression for / to
obtain:

(c) Express the damping force Fjy
acting on the loop:

Substitute for / and simplify to
obtain:

Because v = ypaxosart:

(d) Choosing the static equilibrium
position of the coil as the origin,
apply Z F = ma to the coil when

it is displaced slightly from this
equilibrium position to obtain:

Substituting for F, and F} yields the
differential equation describing the
motion of the coil:

For weak damping, the solution to
this differential equation is:
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v—ﬂ—y wCcos wt
dr 7°

I = Mcosa}t

F, = Blw

BZ 2
=— V@ COS @t
B*w*
F, =- z v=|—-pv
B*w?
where [ =
P R
dzy
—-F,—-F =m
¢ dr’

where F; is the restoring force exerted by
the plastic spring.

dzy
dt*

dy
— _— =m
B =W

or

d’ dy «

—g} + Ly +—y=0

dt© mdt m
Note: compare this equation to Equation
14-35 on page 446 of Volume 1 of your
textbook.

¥(e)= (v, cos wr)e 2"
Note: see Equation 14-36 on page 447 of
your textbook.
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Differentiate y(f) with respect to ) {£)
v(t) = | wy, sin ot + @cos ot |e [2’”]

time to obtain the velocity of the 'm

coil:

A spreadsheet program to generate the data for graphs of position y and velocity v as
functions of time ¢ is shown below. The formulas used to calculate the quantities in the
columns are as follows:

Cell Formula/Content Algebraic Form
B2 0.8 T
B3 0.4 B
B4 0.2 R
B5 0.3 w
B6 0.05 m
B7 2*PI()/$B$2 0]
B8 $B$312*$B$512/$B%4 S
All 0.00 t
Bl11 $BS1*COS(SBS7*A11)* w(?)
EXP((-$B$8/(2*$B$6))*Al1)
Cl1 —($B$1*$B$7*SIN($B$7*A11) w(t)
+($B$8*$BS$1/(2*$§B$6))*COS($BS7*A11))
*EXP((—$B$8)/(2*$B$6))*Al1)

1 A B
2 y 0= 0.05
3 T= 0.8
4 B= 0.4
5 R= 0.2
6 w= 0.3
7 m= 0.05
8 omega= 7.85
9 beta= 0.072
10
11 t y
12 0.00 0.050
13 0.01 0.049
14 0.02 0.049
15 0.03 0.048
16 0.04 0.046
17 0.05 0.045
235 2.24 0.003
236 2.25 0.004
237 2.26 0.004
238 2.27 0.005
239 2.28 0.006
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The graph of y(#) follows:

0.06

0.04 \
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The graph of v(¢) follows:
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Picture the Problem If the coil is twisted through an angle 6, a restoring torque equal to
K6 acts on it return it its equilibrium position. However, if it rotates back with angular
speed w = d@)/dt, there will be an emf induced in the coil. The direction of the current
resulting from this induced emf will be such that its magnetic field will oppose the
change in flux resulting from the rotation of the coil. The net effect is that the motion of
the coil is damped. We can apply Newton’s 2™ law to relate the net restoring torque to
the moment of inertia of the coil and its angular acceleration and use the laws of Faraday
and Ohm to find the emf and current induced in the coil.

Apply ZT = [ to the rotating ; , 7 d’o

. . restoring ¢ retarding 2
coil to obtain: dt
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The magnitude of the retarding T tarding = INiBAcos 0
(damping) torque is given by: where i is the current induced in the coil

whose cross-sectional area is 4.

Substitute for Zesoring AN Tretarding tO — x0— NiBAcosO = [ d’0

obtain: dr?

(1)

Apply Faraday’s law to express the = —%(NBA sin 9) _ —(NBA oS Q)ﬁ

emf induced in the coil: dt
From Ohm’s law, the magnitude of . & _ NBAcos0 df
the induced current i in the coil is: R R dt
Substitute for the induced current i <0 N*B*A*cos* 0 d@ 7 dé
in equation (1) to obtain: R dt  dt’
For small displacements from 0 N’B*4* dO <] d’o
equilibrium, cos@= 1 and: R dt df
Rearrange terms to obtain the d’e N N’B*A* do “Ko~o
differential equation of motion of dt’ RI dr 1 -
the coil:
N2B2 4 \F d’0 ,do

Let f=——and w=,|—to +f—+w0w0=~0

p RI I dt’ p dt
obtain:
The solution to this second-order, 0(;) - aoe‘(ﬁ/ 2\ cos at

homogeneous, linear differential
equation with constant coefficients
is:



