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Chapter 30 
Maxwell’s Equations and Electromagnetic Waves 
 
Conceptual Problems 
 
*1 •  
(a) False. Maxwell’s equations apply to both time-independent and time-dependent 
fields. 
 
(b) True 
 
(c) True 
 
(d) True 
 
(e) False. The magnitudes of the electric and magnetic field vectors are related according 
to E = cB. 
 
(f) True 
 
2 ••  
Determine the Concept Two changes would be required. Gauss’s law for magnetism 
would become m0S n qdAB µ=∫ and Faraday’s law would 

become
0

m
S nC ∈

IdAB
dt
dd −−=⋅ ∫∫ l

rr
E , where Im is the current associated with the motion 

of the magnetic poles. 
 
3 •  
Determine the Concept X rays have greater frequencies whereas light waves have 
longer wavelengths (see Table 30-1). 
 
*4 •  
Determine the Concept The frequencies of ultraviolet radiation are greater than those of 
infrared radiation (see Table 30-1). 
 
5 •  
Determine the Concept Consulting Table 30-1 we see that FM radio and televisions 
waves have wavelengths of the order of a few meters.  
 
6 •  
Determine the Concept The dipole antenna detects the electric field, the loop antenna 
detects the magnetic field of the wave. 
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7 •  
Determine the Concept The dipole antenna should be in the horizontal plane and normal 
to the line from the transmitter to the receiver. 
 
*8 •  
Determine the Concept A red plastic filter absorbs all the light incident on it except for 
the red light and a green plastic filter absorbs all the light incident on it except for the 
green light. If the red beam is incident on a red filter it will pass through, whereas, if it is 
incident on the green filter it will be absorbed. Because the green filter absorbs more 
energy than does the red filter, the laser beam will exert a greater force on the green filter. 
 
Estimation and Approximation 
 
9 ••  
Picture the Problem We’ll assume that the plastic bead has the same density as water.  
Applying a condition for translational equilibrium to the bead will allow us to relate the 
gravitational force acting on it to the force exerted by the laser beam. Because the force 
exerted by the laser beam is related to the radiation pressure and the radiation pressure to 
the intensity of the beam, we’ll be able to find the beam’s intensity. Knowing the beam’s 
intensity, we find the total power needed to lift the bead. 
 
Apply 0=∑ yF to the bead: 

 

0beamlaser by =−mgF               

Relate the force exerted by the laser 
beam to the radiation pressure 
exerted by the beam: 
 

r
2

rbeamlaser by 4
1 PdAPF π==  

Substitute to obtain: 
 

0
4
1

r
2 =−mgPdπ  

 
The radiation pressure Pr is the 
quotient of the intensity I and the 
speed of light c: 
 

c
IP =r                                        

Substitute for Pr to obtain: 
 

0
4
1 2

=− mg
c

Idπ
                     (1) 

 
Express the mass of the bead: 3

6
1 dVm πρρ ==  

 
Substitute for m in equation (1) to 
obtain: 
 

0
6
1

4
1 3

2

=− gd
c

Id πρπ
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Solve for I: 
 

dgcI ρ
3
2

=  

 
Substitute numerical values and evaluate I: 
 

( )( )( )( ) 272338 W/m1094.2m/s81.915kg/m10m/s103
3
2

×=×= mI µ  

 
The power needed is the product of 
the beam intensity and the cross-
sectional area of the bead:  

IdIAP 2
bead 4

1 π==  

 
 

Substitute numerical values and 
evaluate P: 

( ) ( )
mW20.5

W/m1094.2m15
4
1 272

=

×= µπP
 

 
10 •••  
Picture the Problem The net force acting on the spacecraft is the difference between the 
repulsive force due to radiation pressure and the attractive gravitational force. We can 
apply Newton’s 2nd law to the spacecraft and solve the resulting equation for the 
acceleration of the spacecraft. Because the acceleration turns out to be a function of r, 
we’ll need to integrate a to find v2. We’ll assume that the sail absorbs all of the radiation 
incident on it. 
 
Apply Newton’s 2nd law to the 
spacecraft (including sail) to obtain: 
 

maFF =− gr  

Solve for a: 
 m

FF
a gr −=  

 
Assuming that the sail absorbs all of 
the incident solar radiation: 
 

c
IAAPF == rr  

where A is the area of the sail. 
 

Because 2
s

4 r
PI
π

= : 

 
cr

APF 2
s

r 4π
=  
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Substitute for Fr and Fg to obtain: 

2

s
s

2
s

2
s

2
s

2
s

4

4
4

mr

mGM
c

AP
r

GM
mcr

AP
m

r
mGM

cr
AP

a

−
=

−=
−

=

π

π
π

 

 
Neglecting the gravitational term: 
 mcr

APa 2
s

4π
=  

 
(b) Because a is a function of r, the 
velocity must be found by 
integration. Note that: 
 

dr
dvv

dt
dr

dr
dv

dt
dva === ⇒ adrvdv =  

Substitute for a and integrate v′ from v0 to v and r′ from r0 to r: 
 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛ −
=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛ −
=−= ∫∫ rrm

mGM
c

AP

r'
dr'

m

mGM
c

AP

vvv'dv'
r

r

v

v

1144
0

s
s

2

s
s

2
0

2
2
1

00

ππ
 

 
Solve for v2 to obtain: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛ −
+=

rrm

mGM
c

AP

vv 1142
0

s
s

2
0

2 π
 

 
Ignore the gravitational term to obtain: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛+=

rrmc
APvv 11

2 0

s2
0

2

π
 

 

(c)

.spacecraft  theofon accelerati  theduring collapse it would
sail,  theintobuilt  are struts unless ly,Additional huge. be  tohave  wouldsail

  theand smallextremely  be  tohave  wouldsail  theofdensity  mass surface
 themass, reasonableany For  y.effectivel work likely tonot  is scheme This
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11 ••  
Picture the Problem We can use I = ErmsBrms/µ0 and Brms = Erms/c to express Erms in terms 
of I. We can then use Brms = Erms/c to find Brms. The average power output of the sun is 
given by IRP 2

av 4π= where R is the earth-sun distance. The intensity and the radiation 

pressure at the surface of the sun can be found from the definitions of these physical 
quantities. 
 
(a) Express the intensity I of the 
radiation as a function of its average 
power and the distance r from the 
station: 
 

0

2
rms

0

rmsrms

µµ c
EBEI ==  

Solve for Erms: IcE 0rms µ=  

 
Substitute numerical values and evaluate Erms: 
 

( )( )( ) V/m719kW/m37.1N/A104m/s103 2278
rms =××= −πE  

 
Use Brms = Erms/c to evaluate Brms: 
 T40.2

m/s103
V/m719
8rms µ=

×
=B  

 
(b) Express the average power 
output of the sun in terms of the 
solar constant: 
  

IRP 2
av 4π=  

where R is the earth-sun distance. 

Substitute numerical values and 
evaluate Pav: 
 

( ) ( )
W1087.3

kW/m37.1m105.14
26

2211
av

×=

×= πP
 

 
(c) Express the intensity at the 
surface of the sun in terms of the 
sun’s average power output and 
radius r: 
 

2
av

4 r
PI
π

=  

Substitute numerical values and 
evaluate I at the surface of the sun: 
 ( )

27

28

26

W/m1036.6

m1096.64
W1087.3

×=

×

×
=

π
I

 

 
Express the radiation pressure in 
terms of the intensity: 
 c

IP =r  

Substitute numerical values and 
evaluate Pr: Pa212.0

m/s103
W/m1036.6

8

27

r =
×
×

=P  
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*12 ••  
Picture the Problem We can find the radiation pressure force from the definition of 
pressure and the relationship between the radiation pressure and the intensity of the 
radiation from the sun. We can use Newton’s law of gravitation to find the gravitational 
force the sun exerts on the earth.   
 
The radiation pressure exerted on 
the earth is given by: 
  A

FP r
r =  ⇒ APF rr =  

where A is the cross-sectional area of the 
earth. 
 

Express the radiation pressure in 
terms of the intensity of the 
radiation I from the sun: 
 

c
IP =r  

Substituting for Pr and A yields: 
 c

RIF
2

r
π

=  

 
Substitute numerical values and 
evaluate Fr: 

( )( )

N1082.5

m/s103
km6370W/m1370

8

8

22

r

×=

×
=
πF

 

 
The gravitational force exerted on 
the earth by the sun is given by: 
 

2
earthsun

r
mGmF =  

where r is the radius of the earth’s orbit. 
 

Substitute numerical values and evaluate F: 
 

( )( )( )
( ) N1053.3

m105.1
kg1098.5kg1099.1kg/mN1067.6 22

211

24302211

×=
×

××⋅×
=

−

F  

 
Express the ratio of the force due 
radiation pressure Fr  to the 
gravitational force F: 
 

14
22

8
r 1065.1

N1053.3
N1082.5 −×=

×
×

=
F
F

 

.10ely approximat offactor  aby greater  is force nalgravitatio The 14  

 
*13 ••  
Picture the Problem We can find the radiation pressure force from the definition of 
pressure and the relationship between the radiation pressure and the intensity of the 
radiation from the sun. We can use Newton’s law of gravitation to find the gravitational 
force the sun exerts on Mars.   
 
The radiation pressure exerted on 
Mars is given by: 
  A

FP r
r =  ⇒ APF rr =  

where A is the cross-sectional area of Mars. 
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Express the radiation pressure on 
Mars in terms of the intensity of the 
radiation IMars from the sun: 
 

c
IP Mars

r =  

Substituting for Pr and A yields: 
 c

RIF
2
MarsMars

r
π

=  

 
Express the ratio of the solar 
constant at the earth Iearth to the solar 
constant IMars at Mars: 
 

2

Mars

earth

earth

Mars
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

r
r

I
I

⇒
2

Mars

earth
earthMars ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

r
rII  

Substitute for IMars to obtain: 
 

2

Mars

earth
2
Marsearth

r ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

r
r

c
RIF π

 

 
Substitute numerical values and evaluate Fr: 
 

( )( ) N1009.7
m1029.2
m1050.1

m/s103
km3395W/m1370 7

2

11

11

8

22

r ×=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×
×

×
=
πF  

 
The gravitational force exerted on 
Mars by the sun is given by: 
 

( )
2

earthsun
2

Marssun 11.0
r

mGm
r

mGmF ==  

where r is the radius of Mars’ orbit. 
 

Substitute numerical values and evaluate F: 
 

( )( )( )( )
( ) N1066.1

m1029.2
kg1098.511.0kg1099.1kg/mN1067.6 21

211

24302211

×=
×

××⋅×
=

−

F  

 
Express the ratio of the force due 
radiation pressure Fr  to the 
gravitational force F: 
 

14
21

7
r 1027.4

N1066.1
N1009.7 −×=

×
×

=
F
F

 

larger. is
 ratio  theearth,an smaller th is Mars Because ./ as goes

 forces  theof ratio  thely,Consequent e).nearly tru is that assumption
an density, same  thehave planets  two that the(assuming  as varies

 force nalgravitatio  the whereas, as  variespressureRadiation 
 different. is planets  theof radii on the dependence  the whereas),(

 forcesboth for  same  theisSun   thefrom distance on the pressure
radiation   theof dependence  that theis Marsfor higher  is ratio the

t reason tha The ratio.larger   thehas Mars Mars,for  1027.4
 andearth  for the 101.65 is forces  theseof ratio  theBecause

132

3

2

2

14

14

−

−

−

−

=

×

×

RRR

R
R

r
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*14 ••  
Picture the Problem We can use Newton’s 2nd law to express the acceleration of an 
atom in terms of the net force acting on the atom and the relationship between radiation 
pressure and the intensity of the beam to find the net force. Once we know the 
acceleration of an atom, we can use the definition of acceleration to find the stopping 
time for a rubidium atom at room temperature. 
 
(a) Apply maF =∑ to the atom to 
obtain: 
 

maF =  
where F is the force exerted by the laser 
beam. 

The radiation pressure Pr and 
intensity of the beam I are related 
according to:  
 

c
I

A
FP ==r  

Solve for F to obtain: 
 c

I
c
IAF

2λ
==  

 
Substitute for F in the expression of 
Newton’s 2nd law to obtain: ma

c
I

=
2λ

 

 
Solve for a: 

mc
Ia

2λ
=  

 
Substitute numerical values and evaluate a: 
 

( )( )

( )
25

8
23

22

m/s1044.1
m/s103

particles106.02
mol1

mol
g85

nm780W/m10
×=

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

×
=a  

 
(b) Using the definition of 
acceleration, express the stopping 
time ∆t of the atom: 
 

a
vvt initialfinal −=∆  

Because vfinal ≈ 0: 
 a

v
t initial−
≈∆  

 
Using the rms speed as the initial 
speed of an atom, relate vinitial to the 
temperature of the gas: 
 

m
kTvv 3

rmsinitial ==  

Substitute in the expression for the 
stopping time to obtain: 
 

m
kT

a
t 31

−=∆  
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Substitute numerical values and evaluate ∆t: 
 

( )( ) ms06.2

particles106.02
mol 1

mol
g85

K300J/K1038.13
m/s1044.1

1

23

23

25 =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

×

×
×−

−=∆
−

t  

 
Maxwell’s Displacement Current 
 
15 •  
Picture the Problem We can differentiate the expression for the electric field between 
the plates of a parallel-plate capacitor to find the rate of change of the electric field and 
the definitions of the conduction current and electric flux to compute Id. 
 
(a) Express the electric field 
between the plates of the parallel-
plate capacitor: 
 

A
QE
0∈

=  

 

Differentiate this expression with 
respect to time to obtain an 
expression for the rate of change of 
the electric field: 
 

A
I

dt
dQ

AA
Q

dt
d

dt
dE

000

1
∈∈∈

==⎥
⎦

⎤
⎢
⎣

⎡
=  

Substitute numerical values and evaluate dE/dt: 
 

( ) ( )
sV/m1040.3

m023.0mN/C1085.8
A5 14

22212
⋅×=

⋅×
=

− πdt
dE

 

 
(b) Express the displacement current 
Id: dt

dI e
0d

φ∈=  

 
Substitute for the electric flux to 
obtain: 
 

[ ]
dt
dEAEA

dt
dI 00d ∈∈ ==  

 
Substitute numerical values and evaluate Id: 
 

( ) ( ) ( ) A00.5sV/m1040.3m023.0mN/C1085.8 1422212
d =⋅×⋅×= − πI  
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16 •  
Picture the Problem We can express the displacement current in terms of the electric 
flux and differentiate the resulting expression to obtain Id in terms dE/dt. 
 
Express the displacement current Id: 

dt
dI e

0d
φ∈=  

 
Substitute for the electric flux to 
obtain: 
 

[ ]
dt
dEAEA

dt
dI 00d ∈∈ ==  

 
Because ( ) tE 2000sinN/C05.0= : 

 
( )[ ]

( ) ( ) tA

t
dt
dAI

2000cosN/C05.0s2000

2000sinN/C05.0

0
1-

0d

∈

∈

=

=
 

 
Id will have its maximum value 
when cos 2000t = 1. Hence: 
 

( ) ( )N/C05.0s2000 0
-1

maxd, AI ∈=  

Substitute numerical values and evaluate Id,max: 
 

( )( )( )( ) A1085.8N/C05.0m1mN/C1085.8s2000 10222121
d

−−− ×=⋅×=I  

 
17 ••  
Picture the Problem We can use Ampere’s law to a circular path of radius r between the 
plates and parallel to their surfaces to obtain an expression relating B to the current 
enclosed by the amperian loop. Assuming that the displacement current is uniformly 
distributed between the plates, we can relate the displacement current enclosed by the 
circular loop to the conduction current I. 
 
Apply Ampere’s law to a circular 
path of radius r between the plates 
and parallel to their surfaces to 
obtain: 
 

IIrBd 0enclosed0C
2 µµπ ===⋅∫ l

rr
B  

Assuming that the displacement 
current is uniformly distributed: 
 

2
d

2 R
I

r
I

ππ
= ⇒ d2

2

I
R
rI =  

where R is the radius of the circular plates. 
 

Substitute to obtain: 
d2

2
02 I
R

rrB µπ =  
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Solve for B: 
d2

0

2
I

R
rB

π
µ

=  

 
Substitute numerical values and 
evaluate B: 

( ) ( )( )
( )

( )r

rrB

T/m1089.1

m023.02
A5A/N104

3

2

27

−

−

×=

×
=

π
π

 

 
18 ••  
Picture the Problem We can use the definitions of the displacement current and electric 
flux, together with the expression for the capacitance of an air-core-parallel-plate 
capacitor to show that Id = C dV/dt. 
 
(a) Use its definition to express the 
displacement current Id: dt

dI e
0d

φ∈=  

 
Substitute for the electric flux to 
obtain: 
 

[ ]
dt
dEAEA

dt
dI 00d ∈∈ ==  

 
Because E = V/d: 

dt
dV

d
A

d
V

dt
dAI 0

0d
∈∈ =⎥⎦

⎤
⎢⎣
⎡=  

 
The capacitance of an air-core-
parallel-plate capacitor whose plates 
have area A and that are separated 
by a distance d is given by: 
 

d
AC 0∈

=  

Substitute to obtain: 
dt
dVCI =d  

 
(b) Substitute in the expression 
derived in (a) to obtain: 

( ) ( )[ ]

( )( )( )
( ) t

t

t
dt
dI

πµ

ππ

π

500sinA6.23

500sins500V3nF5

500cosV3nF5

1

d

−=

−=

=

−  

 
*19 ••  
Picture the Problem We can use the conservation of charge to find Id, the definitions of 
the displacement current and electric flux to find dE/dt, and Ampere’s law to evaluate 

l
rr

d⋅B around the given path. 
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(a) From conservation of charge we 
know that: 
 

A0.10d == II  

(b) Express the displacement current 
Id: 

[ ]
dt
dEAEA

dt
d

dt
dI 00

e
0d ∈∈φ∈ ===  

 
Substitute for dE/dt: 
 A

I
dt
dE

0

d

∈
=  

 
Substitute numerical values and 
evaluate dE/dt: 
 

( )( )

sm
V1026.2

m5.0mN/C1085.8
A10

12

22212

⋅
×=

⋅×
= −dt

dE

 

 
(c) Apply Ampere’s law to a 
circular path of radius r between the 
plates and parallel to their surfaces 
to obtain: 
 

enclosed0C
Id µ=⋅∫ l

rr
B  

Assuming that the displacement 
current is uniformly distributed: 
 

A
I

r
I d

2
enclosed =
π

⇒ d

2

enclosed I
A
rI π

=  

where R is the radius of the circular plates. 
 

Substitute for Ienclosed to obtain: 
d

2
0

C
I

A
rd πµ

=⋅∫ l
rr

B  

 
Substitute numerical values and evaluate ∫ ⋅

C
l
rr

dB : 

 
( ) ( ) ( ) mT1090.7

m5.0
A10m1.0A/N104 7

2

227

C
⋅×=

×
=⋅ −

−

∫
ππ

l
rr

dB  

 
20 •••  
Picture the Problem If τteQQ −= 0  is the charge on the capacitor plates, then the 

conduction current I = dQ/dt. We can use 
dt

dI e
0d

φ
=∈ to find the displacement current 

and 
dt

dQI b
b = to find the current due to the rate of change of the bound charges. The 

total current is the sum of I, Id, and Ib. 
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(a) The conduction current is given 
by: dt

dQI =   

 
The charge on the capacitor varies 
with time according to: 
  

τteQQ −= 0 , where RC=τ  

Substitute for Q to obtain: 
 

[ ] ττ

τ
tt eQeQ

dt
dI −− == 0

0  

 
This current is in the direction of the electric field, which is from the positive plate to the 
negative plate. By choosing the positive sign for this current we define this to be the 
positive direction. 
 
(b) The displacement current is 
given by: 
 

[ ]
dt
dEAEA

dt
d

dt
dI 00

e
0d =∈=∈=∈

φ
 

 
Relate the electric field E to the 
potential difference V between the 
plates and the separation of the 
plates d: 
 

d
VE =  

Substitute to obtain: 
dt
dV

d
A

d
V

dt
dAI 0

0d
∈

=⎥⎦
⎤

⎢⎣
⎡=∈  

or, because ,0

d
AC ∈

=
κ

 

dt
dVCI

κ
=d  

 
V varies with time according to: 
 

ττ tt e
C
QeVV −− == 0

0  

 
Substituting in the expression for Id 
yields: 
 

I

eQe
C
Q

dt
dCI tt

κ

κτκ
ττ

1

00
d

−=

−=⎥⎦
⎤

⎢⎣
⎡= −−

 

 
(c) As the voltage across the 
dielectric decreases the magnitude 
of the bound charges also decreases.  
The current Ib due to the flow of 
these bound charges though a 

dt
dQI b

b =  where Qb is the bound charge 

on the surface of the dielectric next to the 
plate with charge Q.   
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stationary surface is given by:   
 
It follows that Q and Qb are opposite 
in sign and are related by Equation 
24-27:  
 

QQ ⎟
⎠
⎞

⎜
⎝
⎛ −−=

κ
11b  

 

Substitute in the expression for Ib 
and carry out the differentiation to 
obtain: 

I

dt
dQQ

dt
dI

⎟
⎠
⎞

⎜
⎝
⎛ −−=

⎟
⎠
⎞

⎜
⎝
⎛ −−=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−=

κ

κκ

11

1111b

 

 
(d) Add the currents found in (a), 
(b), and (c) to obtain: 

0

111
bdtotal

=

⎟
⎠
⎞

⎜
⎝
⎛ −−−=

++=

III

IIII

κκ
 

 
Remarks:  In more sophisticated treatments of electrodynamics it is conventional to 
refer to the sum Id + Ib as the displacement current. 
 
21 •••  
Picture the Problem We can find the conduction current as a function of time using I = 
V(t)/R and substituting for V(t). We can use e0d φ=∈I  to obtain an expression for the 

displacement current Id as a function of time. Finally, equating the conduction and 
displacement currents will yield an expression for the time at which they are equal. 
 
(a) Express the conduction current 
in terms of the potential difference 
between the plates of the capacitor: 
 

( ) ( )
d
tAV

R
tVI

ρ
==  

Substitute for V(t) to obtain: 
 

( ) t
d

AI
ρ

V/s01.0
=  

 
(b) The displacement current is 
given by: 
 

( )

dt
dV

d
A

A
d
V

dt
dEA

dt
dI

0

00d

∈
=

⎟
⎠
⎞

⎜
⎝
⎛=∈=∈
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Substitute for V and simplify to 
obtain: 

( )[ ]

( )
d

A

t
dt
d

d
AI

0

0
d

V/s01.0

V/s01.0

∈
=

∈
=

 

 
(c) Set Id = I to obtain: 
 

( ) ( ) t
d

A
d

A
ρ

∈ V/s01.0V/s01.0 0 =  

 
Solve for t: ρ∈0=t  

 
22 ••  

Picture the Problem We can use 
dt

dI e
0d

φ
=∈ and the relationship between the voltage 

across the plates and the electric field between them to find the displacement current. The 

conduction current between the plates is given by 
d

AV
R
VI

ρ
== where A is the area of 

the plates and d is their separation. 
 
(a) The displacement current is 
given by: 
 

[ ]
dt
dEAEA

dt
d

dt
dI 00

e
0d =∈=∈=∈

φ
 

 
Relate the electric field E to the 
potential difference V between the 
plates and the separation of the 
plates d: 
 

d
VE =  

Substitute to obtain: 
dt
dV

d
A

d
V

dt
dAI 0

0d
∈

=⎥⎦
⎤

⎢⎣
⎡=∈  

 
V varies with time according to: 
 

tVV ωcos0=  

 
Substituting in the expression for Id 
yields: 
 

[ ]

t
d

Vr

tV
dt
d

d
AI

ω
ω
π

ω

sin

cos

0
2

0

0
0

d

∈
−=

∈
=

 

 
Substitute numerical values and evaluate Id: 
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( ) ( ) ( )
( )( ) ( )

( ) ( )t

tI

rad/s120sinA1018.1

rad/s120sin
mm1rad/s120

V40cm20mN/C1085.8

10

22212

d

π

π
π

π

−

−

×−=

⋅×
−=

 

 
(b) The conduction current between 
the plates is given by: 
 

t
d

AV
d

AV
R
VI ω

ρρ
cos0===  

Substitute numerical values and 
simplify to obtain: 
 

( ) ( )
( )( ) ( )

( ) ( )t

tI

rad/s120cosA503.0

rad/s120cos
m10m10

V40m2.0
34

2

π

ππ

=

⋅Ω
= −

 

 
*23 •••   
Picture the Problem We can follow the step-by-step instructions in the problem 
statement to show that Equation 30-4 gives the same result for B as that given in Part (a). 
 
(a) Express the magnetic field at P 
using the expression for B due to a 
straight wire segment: 
 

( )21
0 sinsin

4
θθ

π
µ

+=
R
IBP  

where  

2221 sinsin
aR

a
+

== θθ  

 
Substitute for sinθ1 and sinθ2 to 
obtain: 

22
0

22
0

1
2

2
4

aRR
Ia

aR
a

R
IBP

+
=

+
=

π
µ

π
µ

 

 
(b) Express the electric flux through 
the circular strip of radius r and 
width dr in the yz plane: 
 

( )rdrEdAEd xx πφ 2e ==  

The electric field due to the dipole 
is: ( ) 2322122

2cos2
ar

kQa
ar

kQEx
+

=
+

= θ  
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Substitute for Ex to obtain: 
( ) ( )

( ) ( )

( ) rdr
ar

Qa

rdr
ar

Qa

rdr
ar

kQadAEd x

2322
0

2322
0

2322e

2
4

2

22

+
=

+
=

+
==

∈

π
∈π

πφ

 

 
(c) Multiply both sides of the expression 
for φe by ∈0:  
 

( ) rdr
ar

Qad 2322e0
+

=φ∈  

Integrate r from 0 to R to obtain: 
 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+

−
=

+
= ∫ 2222

0
2322e0 111

aR
aQ

aaR
Qa

ar
rdrQa

R

φ∈  

 
(d) The displacement current is 
defined to be: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−==

22

22

22
e

0d

1

1

1

aR
aI

dt
dQ

aR
a

aR
aQ

dt
d

dt
dI φ∈

 

 
The total current is the sum of I and 
Id: 

22

22d 1

aR
aI

aR
aIIII

+
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−−=+

 

 
(e) Apply Equation 30-4 (the 
generalized form of Ampere’s law) 
to obtain: 
 

( )∫ +==⋅
C

IIRBd d02 µπl
rr

B  

Solve for B: ( )d
0

2
II

R
B +=

π
µ
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Substitute for I + Id from (d) to 
obtain: 

22
0

22
0

1
2

2

aRR
Ia

aR
aI

R
B

+
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
=

π
µ

π
µ

 

 
Maxwell’s Equations and the Electromagnetic Spectrum 
 
24 ••  
Picture the Problem The figure shows the 
end view of a pillbox surrounding a small 
area dA of the surface. The normal 
components of the magnetic field, 

 topn,B
v

and bottom n,B
v

 , are shown with 

different magnitudes. When performing the 
surface integral the normal to the surface is 
outward, as shown in the figure.  

 

 
 
Apply Gauss’s law for magnetism to the pillbox to obtain: 
 

0ˆˆˆˆ
surface topsurface lateralsurface bottom

S
=⋅+⋅+⋅=⋅ ∫∫∫∫ dAdAdAdA nBnBnBnB

rrrr
 

 
Because the horizontal component of B

r
is zero, 0ˆ

surface lateral

=⋅∫ dAnB
r

, and: 

 
0ˆˆˆ

surface topsurface bottom
S

=⋅+⋅=⋅ ∫∫∫ dAdAdA nBnBnB
rrr

                   (1) 

 
Because B

r
and n̂ are oppositely 

directed at the bottom surface: 
 

ABdA belown,
surface bottom

below ˆ −=⋅∫ nB
r

 

Because B
r

and n̂ are parallel at the 
top surface: 
 

ABdA aboven,
surface top

below ˆ =⋅∫ nB
r

 

Substitute in equation (1) to obtain: 
 

0above n,below n, =+− ABAB  

Solve for Bn,top: below n,above n, BB = ; i.e., the normal 

component of B
r

is continuous across the 
surface. 
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*25 •  
Picture the Problem We can use c = fλ to find the wavelengths corresponding to the 
given frequencies. 
 
Solve c = fλ for λ: 
 f

c
=λ  

 
(a) For f = 1000 kHz: 

m300
s101000

m/s103
13

8

=
×

×
= −λ  

 
(b) For f = 100 MHz: 

m00.3
s10100

m/s103
16

8

=
×

×
= −λ  

 
*26 •  
Picture the Problem We can use c = fλ to find the frequency corresponding to the given 
wavelength. 
 
Solve c = fλ for f: 
 λ

cf =  

 
Substitute numerical values and evaluate f: 

GHz10.0Hz10
m103

m/s103 10
2

8

==
×
×

= −f  

 
27 •  
Picture the Problem We can use c = fλ to find the frequency corresponding to the given 
wavelength. 
 
Solve c = fλ for f: 
 λ

cf =  

 
Substitute numerical values and evaluate f: 

Hz1000.3
m101.0

m/s103 18
9

8

×=
×
×

= −f  

 
Electric Dipole Radiation 
 
28 ••   
Picture the Problem We can use the intensity I1 at a distance r = 10 m and at an angle θ  
= 90° to find the proportionality constant in the expression for the intensity of radiation 
from an electric dipole and then use the resulting equation to find the intensity at the 
given distances and angles. 



Chapter 30 
 

 

834 

 
Express the intensity of radiation as 
a function of r and θ : 
 

( ) θθ 2
2 sin,

r
CrI =                 (1) 

where C is a constant of proportionality. 
 

Express I(90°,10 m): 
 

( )
( )

2

2
21

m100

90sin
m10

m10,90

C

CII

=

°==°

 

 
Solve for C: 
 

( ) 1
2m100 IC =  

 
Substitute in equation (1) to obtain: 
 

( ) ( ) θθ 2
2

1
2

sinm100,
r

IrI =        (2) 

 
(a) Evaluate equation (2) for r = 30 
m and θ  = 90°: 
 

( ) ( )
( )

19
1

2
2

1
2

90sin
m30
m100m30,90

I

II

=

°=°
 

 
(b) Evaluate equation (2) for r = 10 
m and θ  = 45°: 
 

( ) ( )
( )

12
1

2
2

1
2

45sin
m10
m100m10,45

I

II

=

°=°
 

 
(c) Evaluate equation (2) for  
r = 20 m and θ  = 30°: 
 

( ) ( )
( )

116
1

2
2

1
2

30sin
m20
m100m20,30

I

II

=

°=°
 

 
29 ••  
Picture the Problem We can use the intensity I1 at a distance r = 10 m and at an angle θ  
= 90° to find the proportionality constant in the expression for the intensity of radiation 
from an electric dipole and then use the resulting equation to find the angle for a given 
intensity and distance and the distance corresponding to a given intensity and angle. 
 
Express the intensity of radiation as 
a function of r and θ : 
 

( ) θθ 2
2 sin,

r
CrI =                 (1) 

where C is a constant of proportionality. 
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Express I(90°,10 m): 
 

( )
( )

2

2
21

m100

90sin
m10

m10,90

C

CII

=

°==°

 

 
Solve for C: 
 

( ) 1
2m100 IC =  

 
Substitute in equation (1) to obtain: 
 

( ) ( ) θθ 2
2

1
2

sinm100,
r

IrI =        (2) 

 
(a) For r = 5 m and I(θ,r) = I1: ( )

( )
θ2

2
1

2

1 sin
m5
m100 II =  

or 

4
12sin =θ  

 
Solve for θ to obtain: 
 

°== − 0.30sin 2
11θ  

(b) For θ  = 45° and I(θ,r) = I1: ( )
°= 45sinm100 2

2
1

2

1 r
II  

or 
( )2

2
12 m100=r  

 
Solve for r to obtain: ( ) m07.7m100 2

2
1 ==r  

 
30 ••  
Picture the Problem We can use the intensity I at a distance r = 4000 m and at an angle 
θ  = 90° to find the proportionality constant in the expression for the intensity of radiation 
from an electric dipole and then use the resulting equation to find the intensity at sea level 
and 1.5 km from the transmitter. 
 
Express the intensity of radiation as 
a function of r and θ : 
 

( ) θθ 2
2 sin,

r
CrI =                      (1) 

where C is a constant of proportionality. 
 

Use the given data to obtain: 
 ( )

( )2

2
2

212

km4

90sin
km4

W/m104

C

C

=

°=× −
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Solve for C: 
 

( ) ( )
W1040.6

W/m104km4
5

2122

−

−

×=

×=C
 

 
Substitute in equation (1) to obtain: 
 

( ) θθ 2
2

5

sinW1040.6,
r

rI
−×

=      (2)   

 
For a point at sea level and 1.5 km 
from the transmitter: 
 

°== − 1.53
km1.5

km2tan 1θ
 

Evaluate I(53.1°,1.5 km): 
 

( )
( )

22
2

5

pW/m2.181.53sin
km5.1

W1040.6km5.1,1.53 =°
×

=°
−

I  

 
31 •••  
Picture the Problem The intensity of radiation from an electric dipole is equal to 
I0(sin2θ)/r2, where θ is the angle between the electric dipole moment and the position 
vector .rr We can integrate the intensity to express the total power radiated by the antenna 
and use this result to evaluate I0. Knowing I0 we can find the intensity at a horizontal 
distance of 120 km directly in front of the station.  
 
Express the intensity of the signal as 
a function of r and θ : 

( ) 2

2

0
sin,

r
IrI θθ =  

 
At a horizontal distance of 120 km 
from the station and directly in front 
of it: 
 

( )
( )

( )2
0

2

2

0

km120

km120
90sin90,km120

I

II

=

°
=°

      (1) 

 
From the definition of intensity we 
have: 
 

IdAdP =  
and 

( )dArIP ∫∫= θ,tot  

where, in polar coordinates, 
φθθ ddrdA sin2=  

 
Substitute for dA to obtain: 
 ( ) φθθθ

π π

ddrrIP sin, 2
2

0 0
tot ∫ ∫=  
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Substitute for I(r,θ): 
φθθ

ππ

ddIP ∫ ∫=
2

0 0

3
0tot sin  

 
From integral tables we find that: ( )]

3
42sincossin 0

2
3
1

0

3 =+−=∫
π

π

θθθθd  

 
Substitute and integrate with respect 
to φ to obtain: [ ] 0

2
00

2

0
0tot 3

8
3
4

3
4 IIdIP πφφ π

π

=== ∫  

 
Solve for I0: 

tot0 8
3 PI
π

=  

 
Substitute for Ptot and evaluate I0: 
 

( ) kW7.59kW500
8
3

0 ==
π

I  

 
Substitute for I0 in equation (1) and 
evaluate I(120 km,90°): 

( )
( )

2

2

W/m15.4

km120
kW7.5990,km120

µ=

=°I
 

 
Express the number of photons 
incident on an area A in time ∆t: ( )

hf
I

NE
I

E
NI

tP
NI

tIP
N

tA
N

===

∆
=

∆
=

∆
 

 
Substitute numerical values and 
evaluate I/hf: ( )( )

scm
photons1022.5

sm
photons1021.5

MHz20.1sJ106.63
W/m15.4

2
17

2
21

34-

2

⋅
×=

⋅
×=

⋅×
=

µ
hf
I

 

 
*32 •••  
Picture the Problem The intensity of radiation from an electric dipole is given by 
I0(sin2θ)/r2, where θ is the angle between the electric dipole moment and the position 
vector .rr  We can integrate the intensity to express the total power radiated by the antenna 
and use this result to evaluate I0. Knowing I0 we can find the total power radiated by the 
station.  
 
From the definition of intensity we IdAdP =  
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have: 
 

and 
( )dArIP ∫∫= θ,tot  

where, in polar coordinates, 
φθθ ddrdA sin2=  

 
Substitute for dA to obtain: 
 ( ) φθθθ

π π

ddrrIP sin, 2
2

0 0
tot ∫ ∫=  

 
Express the intensity of the signal as 
a function of r and θ : 

( ) 2

2

0
sin,

r
IrI θθ =                     (1) 

 
Substitute for I(r,θ): 

φθθ
ππ

ddIP ∫ ∫=
2

0 0

3
0tot sin  

 
From integral tables we find that: ( )]

3
42sincossin 0

2
3
1

0

3 =+−=∫
π

π

θθθθd  

 
Substitute and integrate with respect 
to φ to obtain: [ ] 0

2
00

2

0
0tot 3

8
3
4

3
4 IIdIP πφφ π

π

=== ∫  

 
From equation (1) we have: 
 

( )
θ

θ
2

2

0 sin
, rrII =  

 
Substitute to obtain: 
 

( )
θ

θπ
2

2

tot sin
,

3
8 rrIP =  

or, because θ = 90°, 

( ) 2
tot 3

8 rrIP π
=  

 
Substitute numerical values and 
evaluate Ptot: 

( )( )

mW51.1

km30W/m102
3

8 2213
tot

=

×= −πP
 

 
33 •••  
Picture the Problem The intensity of radiation from the airport’s vertical dipole antenna 
is given by I0(sin2θ)/r2, where θ is the angle between the electric dipole moment and the 
position vector .rr  We can integrate the intensity to express the total power radiated by the 
antenna and use this result to evaluate I0. Knowing I0 we can find the intensity of the 
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signal at the plane’s elevation and distance from the airport.  
 
Express the intensity of the signal as 
a function of r and θ : 

( ) 2

2

0
sin,

r
IrI θθ =                 (1) 

 
From the definition of intensity we 
have: 
 

IdAdP =  
and 

( )dArIP ∫∫= θ,tot  

where, in polar coordinates, 
φθθ ddrdA sin2=  

 
Substitute for dA to obtain: 
 ( ) φθθθ

π π

ddrrIP sin, 2
2

0 0
tot ∫ ∫=  

 
Substitute for I(r,θ): 

φθθ
ππ

ddIP ∫ ∫=
2

0 0

3
0tot sin  

 
From integral tables we find that: ( )]

3
42sincossin 0

2
3
1

0

3 =+−=∫
π

π

θθθθd  

 
Substitute and integrate with respect 
to φ to obtain: [ ] 0

2
00

2

0
0tot 3

8
3
4

3
4 IIdIP πφφ π

π

=== ∫  

 
Solve for I0: 

tot0 8
3 PI
π

=  

 
Substitute for I0 in equation (1): ( ) 2

2
tot sin

8
3,

r
PrI θ
π

θ =  

 
At the elevation of the plane: 
 °=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= − 0.32

m4000
m2500tan 1θ  

and 

( ) ( ) m4717m4000m2500 22 =+=r  

 
Substitute numerical values  and 
evaluate I(4717 m,32°): 

( ) ( )
( )

2

2

2

W/m151.0

m4717
32sin

8
W100332,m4717

µ

π

=

°
=°I
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Energy and Momentum in an Electromagnetic Wave 
 
34 •  
Picture the Problem We can use Pr = I/c to find the radiation pressure. The intensity of 
the electromagnetic wave is related to the rms values of its electric and magnetic fields 
according to I = ErmsBrms/µ0, where  Brms = Erms/c. 
 
(a) Express the radiation pressure in 
terms of the intensity of the wave: 
 

c
IP =r  

 
Substitute numerical values and 
evaluate Pr: 

Pa333.0
m/s103

W/m100
8

2

r µ=
×

=P  

 
(b) Relate the intensity of the 
electromagnetic wave to Erms and 
Brms: 
 

0

rmsrms

µ
BEI =  

or, because Brms = Erms/c, 

c
EcEEI

0

2
rms

0

rmsrms

µµ
==  

 
Solve for Erms: cIE 0rms µ=  

 
Substitute numerical values and evaluate Erms: 
 

( )( )( ) V/m194W/m100m/s103N/A104 2827
rms =××= −πE  

 
(c) Express Brms in terms of Erms: 

c
EB rms

rms =  

 
Substitute numerical values and 
evaluate Brms: 

T647.0
m/s103

V/m194
8rms µ=

×
=B  

 
35 •  
Picture the Problem The rms values of the electric and magnetic fields are found from 
their amplitudes by dividing by the square root of two. The rms values of the electric and 
magnetic fields are related according to Brms = Erms/c. We can find the intensity of the 
radiation using I = ErmsBrms/µ0 and the radiation pressure using Pr = I/c. 
 
(a) Relate Erms to E0: V/m283

2
V/m400

2
0

rms ===
E

E  
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(b) Find Brms from Erms: 

T943.0

m/s103
V/m283
8

rms
rms

µ=

×
==

c
EB

 

 
(c) The intensity of an 
electromagnetic wave is given by: 
 

0

rmsrms

µ
BEI =  

Substitute numerical values and 
evaluate I: 

( )( ) 2
27 W/m212

N/A104
T943.0V/m283

=
×

= −π
µI  

 
(d) Express the radiation pressure in 
terms of the intensity of the wave: 
 

c
IP =r  

 
Substitute numerical values and 
evaluate Pr: 

Pa707.0
m/s103

W/m212
8

2

r µ=
×

=P  

 
 
36 •  
Picture the Problem Given Erms, we can find Brms using Brms = Erms/c. The average 
energy density of the wave is given by uav = ErmsBrms/µ0c and the intensity of the wave by 
I = uavc .  
 
(a) Express Brms in terms of Erms: 

c
EB rms

rms =  

 
Substitute numerical values and 
evaluate Brms: 

T33.1
m/s103

V/m400
8rms µ=

×
=B  

 
(b) The average energy density uav is 
given by: 
 

c
BEu
0

rmsrms
av µ
=  

Substitute numerical values and 
evaluate uav: 
 

( )( )
( )( )

3

827av

J/m41.1

m/s103N/A104
T33.1V/m400

µ

π
µ

=

××
= −u

 

 
(c) Express the intensity as the 
product of the average energy 
density and the speed of light in a 
vacuum: 
 

cuI av=  
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Substitute numerical values and 
evaluate I: 

( )( )
2

83

W/m423

m/s103J/m41.1

=

×= µI
 

 
37 •  
Picture the Problem We can simplify the units of cB to show that this product has the 
same units as E. 
 
Express the units of cB and simplify: 
 

m
V

mC
J

m
m

C
N

C
N

m
s
C

N
s
m

mA
N

s
mT

s
m

=
⋅

=×==
⋅

×=
⋅

×=×  

 
*38 •  
Picture the Problem Given Brms, we can find Erms using Erms = cBrms. The average energy 
density of the wave is given by uav = ErmsBrms/µ0c and the intensity of the wave by  
I = uavc.  
 
(a) Express Erms in terms of Brms: rmsrms cBE =  

 
Substitute numerical values and 
evaluate Erms: 

( )( )
V/m5.73

T245.0m/s103 8
rms

=

×= µE
 

 
(b) The average energy density uav is 
given by: 
 

c
BEu
0

rmsrms
av µ
=  

Substitute numerical values and 
evaluate uav: 
 

( )( )
( )( )

3

827av

nJ/m8.47

m/s103N/A104
T245.0V/m5.73

=

××
= −π

µu
 

 
(c) Express the intensity as the 
product of the average energy 
density and the speed of light in a 
vacuum: 
 

cuI av=  

Substitute numerical values and 
evaluate I: 

( )( )
2

83

W/m3.14

m/s103nJ/m8.47

=

×=I
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39 ••  
Picture the Problem We can find the force exerted on the card using the definition of 
pressure and the relationship between radiation pressure and the intensity of the 
electromagnetic wave. Note that, when the card reflects all the radiation incident on it, 
conservation of momentum requires that the force is doubled. 
 
(a) Using the definition of pressure, 
express the force exerted on the card 
by the radiation: 
 

APF r=  

Relate the radiation pressure to the 
intensity of the wave: 
 

c
IP =r  

Substitute to obtain: 
 c

IAF =  

 
Substitute numerical values and 
evaluate F: 
 

( )( )( )

nN0.40

m/s103
m3.0m2.0W/m200

8

2

=

×
=F

 

 
(b) If the card reflects all of the 
radiation incident on it, the force 
exerted on the card is doubled: 

nN0.80=F  

 
40 ••  
Picture the Problem Only the normal component of the radiation pressure exerts a force 
on the card. 
 
(a) Using the definition of pressure, 
express the force exerted on the card 
by the radiation: 
 

θcos2 r APF =  

where the factor of 2 is a consequence of 
the fact that the card reflects the radiation 
incident on it. 
 

Relate the radiation pressure to the 
intensity of the wave: 
 

c
IP =r  

Substitute to obtain: 
 c

IAF θcos2
=  
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Substitute numerical values and 
evaluate F: 
 

( )( )( )

nN3.69

m/s103
30cosm3.0m2.0W/m2002

8

2

=

×
°

=F

 
*41 ••  
Picture the Problem We can use I = Pav/4πr2 and I = ErmsBrms/µ0 to express Erms in terms 
of Pav and the distance r from the station. 
 
Express the intensity I of the 
radiation as a function of its average 
power and the distance r from the 
station: 
 

2
av

4 r
PI
π

=  

The intensity is also given by: 

0

2
max

0

2
rms

0

rmsrms

2 µµµ c
E

c
EBEI ===  

 
Equate these expressions to obtain: 

0

2
max

2
av

24 µπ c
E

r
P

=  

 
Solve for Emax: 

⎟
⎠
⎞

⎜
⎝
⎛=

r
PcE 1

2
av0

max π
µ

 

 
(a) Substitute numerical values and evaluate Emax for r  = 500 m: 
 

( ) ( )( )( ) V/m46.3
m500

1
2

kW50N/A104m/s103m500
278

max =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛××
=

−

π
πE  

 
Use Bmax = Emax/c to evaluate Bmax: 
 nT5.11

m/s103
V/m46.3
8max =

×
=B  

 
(b) Substitute numerical values and evaluate Emax for r  = 5 km: 
 

( ) ( )( )( ) V/m346.0
km5
1

2
kW50N/A104m/s103km5

278

max =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛××
=

−

π
πE  

 
Use Bmax = Emax/c to evaluate Bmax: 
 nT15.1

m/s103
V/m346.0

8max =
×

=B  

 
(c) Substitute numerical values and evaluate Emax for r  = 50 km: 
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( ) ( )( )( ) V/m0346.0
km50
1

2
kW50N/A104m/s103m500

278

max =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛××
=

−

π
πE  

 
Use Bmax = Emax/c to evaluate Bmax: 
 nT115.0

m/s103
V/m0346.0

8max =
×

=B  

 
 
42 ••  
Picture the Problem We can use I = Pav/A to express Erms in terms of I. We can then use 
Brms = Erms/c to find Brms. The average power output of the sun is given by I,RP 2

av 4π=  

where R is the earth-sun distance. The intensity and the radiation pressure at the surface 
of the sun can be found from the definitions of these physical quantities. 
 
(a) From the definition of intensity 
we have: 
 

2
avav 4

d
P

A
PI

π
==  

Substitute numerical values and 
evaluate I: 

( )
( )

2
23

kW/m91.1
m10

mW5.14
==

−π
I  

 
(b) Express the intensity I of the 
radiation as a function of its average 
power and the distance r from the 
station: 
 

0

2
rms

0

rmsrms

µµ c
EBEI ==  

Solve for Erms: IcE 0rms µ=  

 
Substitute numerical values and evaluate Erms: 
 

( )( )( ) V/m849kW/m91.1N/A104m/s103 2278
rms =××= −πE  

 
Use Brms = Erms/c to evaluate Brms: 
 T83.2

m/s103
V/m849
8rms µ=

×
=B  

 
(d) Express the radiation pressure in 
terms of the intensity: 
 c

IP =r  

Substitute numerical values and 
evaluate Pr: Pa37.6

m/s103
W/m1091.1

8

23

r µ=
×
×

=P  
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*43 ••  
Picture the Problem We can use I = ErmsBrms/µ0 and Brms = Erms/c to express Erms in terms 
of I. We can then use Brms = Erms/c to find Brms. 
 
Express the intensity I of the 
radiation as a function of its average 
power and the distance r from the 
station: 
 

0

2
rms

0

rmsrms

µµ c
EBEI ==  

Solve for Erms: IcE 0rms µ=  

 
Use the definition of intensity to 
relate the intensity of the 
electromagnetic wave to the power 
in the beam: 
 

A
VI

A
PI line trans.==  

Substitute for I to obtain: 

A
VIcE line trans.0

rms
µ

=  

 
Substitute numerical values and evaluate Erms:  
 

( )( )( )( ) kV/m2.75
m50

kV750A10N/A104m/s103
2

3278

rms =
××

=
−πE  

 
Use Brms = Erms/c to evaluate Brms: 
 mT251.0

m/s103
kV/m2.75

8rms =
×

=B  

 
44 ••  
Picture the Problem The spatial length L of the pulse is the product of its speed c and 
duration ∆t. We can find the energy density within the pulse using its definition  
(u = U/V). The electric amplitude of the pulse is related to the energy density in the beam 
according to 2

0 Eu ∈=  and we can find B from E using B = E/c. 

 
(a) The spatial length L of the pulse 
is the product of its speed c and 
duration ∆t: 
 

tcL ∆=  

Substitute numerical values and 
evaluate L: 
 

( )( ) m00.3ns10m/s103 8 =×=L  
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(b) The energy density within the 
pulse is the energy of the beam per 
unit volume: 
 

Lr
U

V
Uu 2π

==  

Substitute numerical values and 
evaluate u: 
 

( ) ( )
3

2 kJ/m531
m00.3mm2

J20
==

π
u  

(c) E is related to u according to: 
 

2
002

12
rms0 EEu ∈==∈  

Solve for E0 to obtain: 
 

0
0

2
∈

uE =  

 
Substitute numerical values and 
evaluate E0: 
 

( )

MV/m346

mN/C1085.8
kJ/m5312

2212

3

0

=

⋅×
= −E

 

 
Use B0 = E0/c to find B0: 
 T15.1

m/s103
MV/m346

80 =
×

=B  

 
*45 ••  
Picture the Problem We can determine the direction of propagation of the wave, its 
wavelength, and its frequency by examining the argument of the cosine function. We can 
find E from cE 0

2 µ=S
r

and B from B = E/c. Finally, we can use the definition of the 

Poynting vector and the given expression for S
r

to find E
r

and B
r

. 
 

(a) 
direction.  positive in the propagates  wavethe

,  form  theof isfunction  cosine  theofargument   theBecause
x

tkx ω−
 

 
(b) Examining the argument of the 
cosine function, we note that the 
wave number k of the wave is: 
 

1m102 −==
λ
πk  

Solve for and evaluate λ: 
 

m628.0
m10

2
1 == −

πλ  

 
Examining the argument of the 
cosine function, we note that the 
angular frequency ω of the wave is: 
 

19 s1032 −×== fπω  



Chapter 30 
 

 

848 

Solve for and evaluate f  to obtain: 
 

MHz477
2

s103 19

=
×

=
−

π
f  

 
(c) Express the magnitude of S

r
in 

terms of E: 
 

c
E

0

2

µ
=S

r
 

Solve for E: 
 

S
r

cE 0µ=  

Substitute numerical values and evaluate E: 
 

( )( )( ) V/m194W/m100N/A104m/s103 2278 =××= −πE  

 

Because ( ) ( ) ( )[ ] iS ˆ10310cosW/m100, 922 txtx ×−=
r

 and BES
rrr

×=
0

1
µ

: 

 

( ) ( ) ( )[ ] jE ˆ10310cosV/m194, 9 txtx ×−=
r

 

 
Use B = E/c to evaluate B: 
 

T647.0
m/s103

V/m194
8 µ=

×
=B  

 

Because BES
rrr

×=
0

1
µ

, the direction of B
r

must be such that the cross product of E
r

 

with B
r

is in the positive x direction: 
 

( ) ( ) ( )[ ] kB ˆ10310cosT647.0, 9 txtx ×−= µ
r

 

 
46 ••  
Picture the Problem We can use the definition of the electric field between the plates of 
the parallel-plate capacitor and the definition of the displacement current to show that the 
displacement current in the capacitor is equal to the conduction current in the capacitor 
leads. In (b) we can use the definition of the Poynting vector and the directions of the 
electric and magnetic fields to determine the direction of the Poynting vector between the 
capacitor plates. In (c), we’ll demonstrate that the flux of S

r
into the region between the 

plates is equal to the rate of change of the energy stored in the capacitor by evaluating 
these quantities separately and showing that they are equal. 
 
(a)  The electric field between the 
plates of the capacitor is given by: 
 

( )RCte
d
V

d
tVE /1)( −−==  

 
The displacement current is 
proportional to the rate at which the 

( )
dt
dEAAE

dt
d

dt
dtID 00

e
0)( =∈=∈=∈

φ
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flux is changing between the plates: 
 

 

Substitute for E and carry out the 
details of the differentiation to 
obtain: 

( )

( )[ ]

[ ]
RCt

RCt

RCt

RCt
D

e
dRC

AV

e
dt
d

d
AV

e
dt
d

d
AV

e
d
V

dt
dAtI

/0

/0

/0

/
0

1

1)(

−

−

−

−

∈
=

−
∈

=

−
∈

=

⎥⎦
⎤

⎢⎣
⎡ −=∈

 

 
Because the capacitance of an air-
filled-parallel-plate capacitor is 

given by 
d

AC 0∈= : 

 

( )tIe
RC
CVtI RCt

D == − /)(  

(b) Apply Ampere’s law to a closed 
circular path of radius r (the radius 
of the capacitor plates) to obtain: 
 

( ) DC IIrB 002 µµπ ==  

Substitute for ID from (a): ( ) ( )
RCte

RCd
VrrB /

2

002 −∈=
πµπ  

 
Solve for B to obtain: 
 ( )

RCte
RCd

rVB /
00 2

−∈= µ  

 

capacitor.  theofcenter   the towardinwardradially  points  plates,capacitor 

  theof middle he through tiscenter   whoseand concentric are that circles
o tangent tis  andcapacitor   theof plates  thelar toperpendicu is  Because

S

BE

r

rr

 

 
(c) The magnitude of the Poynting 
vector is: 
 

0µ
BEI ==S

r
 

Substitute for B and E and simplify 
to obtain: ( )RCtRCt ee

RCd
rVI //

2

2
0 1

2
−− −

∈
=  

 
The total power is: rdI

dt
dEP π2==  
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Substitute for I to obtain: ( )RCtRCt ee
dRC

rV
dt
dE //

22

0 1 −− −=∈
π

 

 
Because the capacitance of an air-
filled-parallel-plate capacitor is 

given by 
d

rC
2

0 π∈
= : 

 

( )RCtRCt ee
R

V
dt
dE //

2

1 −− −=       (1) 

The energy in the capacitor at any 
time is: 
 

( )[ ]2

2
1 tVCE =  

Differentiate E with respect to time 
to obtain: 

( )( ) ( ) ( )
dt

tdVtCVtVC
dt
d

dt
dE

=⎥⎦
⎤

⎢⎣
⎡= 2

2
1

 

 
Substitute for V(t) and complete the 
differentiation to obtain: 

( )RCtRCt ee
R

V
dt
dE //

2

1 −− −=        (2) 

 

capacitor. in the storedenergy   theof change of rate  the toequal isregion 
 thisinto  offlux   that theproves (2) and (1) equations of eequivalenc The S

r

 

 
47 ••  
Picture the Problem The diagram shows 
the displacement of the pendulum bob, 
through an angle θ, as a consequence of the 
complete absorption of the radiation 
incident on it. We can use conservation of 
energy (mechanical energy is conserved 
after the collision) to relate the maximum 
angle of deflection of the pendulum to the 
initial momentum of the pendulum bob. 
Because the displacement of the bob during 
the absorption of the pulse is negligible, we 
can use conservation of momentum 
(conserved during the collision) to equate 
the momentum of the electromagnetic 
pulse to the initial momentum of the bob. 

 

 

 
Apply conservation of energy to 
obtain: 
 

0ifif =−+− UUKK  
or, since Ui = Kf = 0 and mpK 22

ii = , 
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0
2 f

2
i =+− U
m

p
 

 
Uf is given by: 
 

( )θcos1f −== mgLmghU  

Substitute for Uf: 
 

( ) 0cos1
2

2
i =−+− θmgL
m

p
 

 
Solve for θ  to obtain: 
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= −

gLm
p

2

2
i1

2
1cosθ                 

 
Use conservation of momentum to 
relate the momentum of the 
electromagnetic pulse to the initial 
momentum pi of the pendulum bob: 
 

i waveem p
c

tP
c
Up =

∆
==  

where ∆t is the duration of the pulse. 

Substitute for pi: ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∆
−= −

gLcm
tP

22

22
1

2
1cosθ  

 
Substitute numerical values and evaluate θ : 
 

( ) ( )
( ) ( ) ( )( )

degrees1010.6
m04.0m/s81.9m/s103mg102

ns200MW10001cos 3

2282

22
1 −− ×=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

×
−=θ  

 
Remarks: The solution presented here is valid only if the displacement of the bob 
during the absorption of the pulse is negligible.  (Otherwise, the horizontal 
component of the momentum of the pulse-bob system is not conserved during the 
collision.)  We can show that the displacement during the pulse-bob collision is small 
by solving for the speed of the bob after absorbing the pulse.  Applying conservation 
of momentum (mv = P(∆t)/c) and solving for v gives v = 6.67×10−7 m/s.  This speed is 
so slow compared to c, we can conclude that the duration of the collision is 
extremely close to 200 ns (the time for the pulse to travel its own length).  Traveling 
at 6.67×10−7  m/s for 200 ns, the bob would travel 1.33×10−13 m—a distance 1000 
times smaller that the diameter of a hydrogen atom.  (Since 6.67×10−7 m/s is the 
maximum speed of the bob during the collision, the bob would actually travel less 
than 1.33×10−13 m during the collision.)   
 
48 ••  
Picture the Problem We can use the definitions of pressure and the relationship between 
radiation pressure and the intensity of the radiation to find the force due to radiation 
pressure on one of the mirrors. 
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(a) Because only about 0.01 percent 
of the energy inside the laser "leaks 
out", the average power of the 
radiation incident on one of the 
mirrors is: 
 

W1050.1
10

W15 5
4 ×== −P  

(b) Use the definition of radiation 
pressure to obtain: 
 

A
FP =r  

where F is the force due to radiation 
pressure and A is the area of the mirror on 
which the radiation is incident. 
 

The radiation pressure is also related 
to the intensity of the radiation: Ac

P
c
IP 22

r ==  

where P is the power of the laser and the 
factor of 2 is due to the fact that the mirror 
is essentially totally reflecting. 
 

Equate the two expression for the 
radiation pressure and solve for F: 
 

Ac
P

A
F 2
= ⇒ 

c
PF 2

=  

Substitute numerical values and 
evaluate F: 

( ) mN00.1
m/s103

W1050.12
8

5

=
×
×

=F  

 
49 ••  
Picture the Problem The card, pivoted at 
point P, is shown in the diagram. Note that 
the force exerted by the radiation acts 
along the dashed line. Let the length of the 
card be l, the width of the card be w, and 
the force acting on an area dA = w dx be 
dFradiation. We can find the total torque 
exerted on the card due to radiation 
pressure by integrating dτradiation over the 
length l of the card and then relate the 
intensity of the light to the angle θ  by 
applying the condition for rotational 
equilibrium to the card.  
 
Express the torque, due to F, acting 
at a distance x from P: 

radiationradiation xdFd =τ  
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Relate dFradiation to the intensity of 
the light: 
 

dA
c
IdF θcos2

radiation =  

where the factor of 2 arises from the total 
reflection of the radiation incident on the 
mirror. 
 

Substitute to obtain: 
 

xwdx
c
I

xdA
c
Id

θ

θτ

cos2

cos2
radiation

=

=
 

 
Integrate x from 0 to l: 
 

θθ

θτ

cos
2

cos2

cos2

2

0
radiation

c
IA

c
Iw

xdx
c
Iw

ll

l

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

= ∫
 

 
Apply 0=∑ Pτ to the card: 

 
( ) 0sincos 2

1 =− mg
c

IA θθ l
l

 

 
Solve for I to obtain: 
 

θtan
2A
mgcI =  

 
Substitute numerical values and evaluate I: 
 

( )( )( )
( )( )

2
82

MW/m42.31tan
m15.0m1.02

m/s103m/s81.9g2
=°

×
=I  

 
The Wave Equation for Electromagnetic Waves 
 
50 •  
Picture the Problem We can show that Equation 30-17a is satisfied by the wave 
function Ey by showing that the ratio of ∂2Ey/∂x2 to ∂2Ey/∂t2 is 1/c2 where c = ω/k. 
 
Differentiate 

( )tkxEEy ω−= sin0 with respect 

to x: 
 

[ ]
)cos(

)sin(

0

0

tkxkE

tkxE
xx

Ey

ω

ω

−=

−
∂
∂

=
∂
∂

 

 
Evaluate the second partial 
derivative of Ey with respect to x: 
 

[ ]

)sin(

)cos(

0
2

02

2

tkxEk

tkxkE
xx

Ey

ω

ω

−−=

−
∂
∂

=
∂
∂

       (1) 
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Differentiate ( )tkxEEy ω−= sin0  

with respect to t: 
 

[ ]
)cos(

)sin(

0

0

tkxE

tkxE
tt

Ey

ωω

ω

−−=

−
∂
∂

=
∂
∂

 

 
Evaluate the second partial 
derivative of Ey with respect to t: 
 

[ ]

)sin(

)cos(

0
2

02

2

tkxE

tkxE
tt

Ey

ωω

ωω

−−=

−−
∂
∂

=
∂

∂
    (2) 

 
Divide equation (1) by equation (2) 
to obtain: 
 

( )
( ) 2

2

0
2

0
2

2

2

2

2

sin
sin

ωωω
ω k

tkxE
tkxEk

t
E
x
E

y

y

=
−−
−−

=

∂
∂
∂
∂

 

or 

2

2

22

2

2

2

2

2 1
t
E

ct
Ek

x
E yyy

∂
∂

=
∂
∂

=
∂
∂

ω
 

provided c = ω/k. 
 
51 •  
Picture the Problem Substitute numerical values and evaluate c: 
 

( )( ) m/s1000.3
mN/C1085.8N/A104

1 8

221227
×=

⋅××
=

−−π
c  

 
*52 •••   
Picture the Problem We can use Figures 30-10 and 30-11and a derivation similar to that 
in the text to obtain the given results.  
 
In Figure 30-11, replace Bz by Ez. 
For ∆x small: 
 

( ) ( ) x
x

ExExE z
zz ∆

∂
∂

+= 12  

Evaluate the line integral of 
E
r

around the rectangular area ∆x∆z: 
 

zx
x

Ed z ∆∆
∂
∂

−≈⋅∫ l
rr

E                  (1) 

Express the magnetic flux through 
the same area: 
 

∫ ∆∆=
S n zxBdAB y  

Apply Faraday’s law to obtain: ( )

zx
t

B

zxB
t

dAB
t

d

y

y

∆∆
∂
∂

−=

∆∆
∂
∂

−=
∂
∂

−≈⋅ ∫∫ S nl
rr

E
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Substitute in equation (1) to obtain: 
zx

t
B

zx
x

E yz ∆∆
∂
∂

−=∆∆
∂
∂

−  

or 

t
B

x
E yz

∂
∂

=
∂
∂

 

 
In Figure 30-10, replace Ey by By 
and evaluate the line integral of 
B
r

around the rectangular area ∆x∆z: 

∫ ∫=⋅
S n00 dAEd ∈µl

rr
B  

provided there are no conduction currents. 
 

Evaluate these integrals to obtain: 
 t

E
x

B zy

∂
∂

=
∂

∂
00∈µ  

 
(b) Using the first result obtained in 
(a), find the second partial 
derivative of Ez with respect to x: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

t
B

xx
E

x
yz  

or 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=
∂
∂

x
B

tx
E yz

2

2

 

 
Use the second result obtained in (a) 
to obtain: 
 

2

2

00002

2

t
E

t
E

tx
E zzz

∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=
∂
∂ ∈µεµ  

or, because µ0∈0 = 1/c2, 

2

2

22

2 1
t
E

cx
E zz

∂
∂

=
∂
∂

. 

 
Using the second result obtained in 
(a), find the second partial 
derivative of By with respect to x: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

t
E

xx
B

x
zy

00∈µ  

or 

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

=
∂

∂

x
E

tx
B zy

002

2

∈µ  

 
Use the second result obtained in (a) 
to obtain: 
 

2

2

00002

2

t
B

t
B

tx
B yyy

∂

∂
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

=
∂

∂
∈µ∈µ  

or, because µ0∈0 = 1/c2, 

2

2

22

2 1
t
B

cx
B yy

∂
∂

=
∂
∂

. 
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53 •••  
Picture the Problem We can show that these functions satisfy the wave equations by 
differentiating them twice (using the chain rule) with respect to x and t and equating the 
expressions for the second partial of f with respect to u. 
 
Let u = x − vt.  Then:  

u
f

u
f

x
u

x
f

∂
∂

=
∂
∂

∂
∂

=
∂
∂

 

and 

u
fv

u
f

t
u

t
f

∂
∂

−=
∂
∂

∂
∂

=
∂
∂

 

 
Express the second derivatives of f 
with respect to x and t to obtain: 2

2

2

2

u
f

x
f

∂
∂

=
∂
∂

 

and 

2

2
2

2

2

u
fv

t
f

∂
∂

=
∂
∂

 

 
Thus, for any f(u): 

2

2

22

2 1
t
f

vx
f

∂
∂

=
∂
∂

 

 
Let u = x + vt.  Then: 

u
f

u
f

x
u

x
f

∂
∂

=
∂
∂

∂
∂

=
∂
∂

 

and 

u
fv

u
f

t
u

t
f

∂
∂

=
∂
∂

∂
∂

=
∂
∂

 

 
Express the second derivatives of f 
with respect to x and t to obtain: 2

2

2

2

u
f

x
f

∂
∂

=
∂
∂

 

and 

2

2
2

2

2

u
fv

t
f

∂
∂

=
∂
∂

 

 
Thus, for any f(u): 

2

2

22

2 1
t
f

vx
f

∂
∂

=
∂
∂
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General Problems 
 
54 •  
Picture the Problem We can substitute the appropriate units and simplify to show that 
the units of the Poynting vector are watts per square meter and that those of radiation 
pressure are newtons per square meter. 
 
(a) Express the units of S

r
and 

simplify: 
 

W
s
J

C
s
C
J

A
N

s
mC

N
mC

J

A
N

T
m
V

22

===

⋅
×

⋅

=
×

 

 
(b) Express the units of Pr and 
simply: 
 2

222

m
N

m
m

mN

s
m
ms
J

s
m
m
W

=

⋅

=⋅=  

 
55 ••  
Determine the Concept The current induced in a loop antenna is proportional to the 
time-varying magnetic field. For maximum signal, the antenna’s plane should make an 
angle θ  = 0° with the line from the antenna to the transmitter. For any other angle, the 
induced current is proportional to cos θ. The intensity of the signal is therefore 
proportional to cos θ. 
 
56 ••  
Picture the Problem We can use  c = fλ to find the wavelength. Examination of the 
argument of the cosine function will reveal the direction of propagation of the wave. We 
can find the magnitude, wave number, and angular frequency of the electric vector from 
the given information and the result of (a) and use these results to obtain E

r
(z, t). Finally, 

we can use its definition to find the Poynting vector. 
 
(a) Relate the wavelength of the 
wave to its frequency and the speed 
of light: 
 

f
c

=λ  

Substitute numerical values and 
evaluate λ: 

m00.3
MHz100

m/s103 8

=
×

=λ  
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direction.  in the propagates  wave that theconcludecan   we,on 
dependence spatial  theandfunction  cosine  theofargument   theofsign   theFrom

zz
 

 
(b) Express the amplitude of E

r
: ( )( )

V/m00.3
T10m/s103 88

=
×== −cBE

 

 
Find the angular frequency and 
wave number of the wave: 
 

( ) 18 s1028.6MHz10022 −×=== ππω f
 
and 

1m09.2
m00.3

22 −===
π

λ
πk  

 
Because S

r
is in the positive z direction, E

r
must be in the negative y direction in order to 

satisfy the Poynting vector expression: 
 

( ) ( ) ( ) ( )[ ] jE ˆs1028.6m09.2cosV/m00.3, 181 tztz −− ×−−=
r

 

 
(c) Use its definition to express the Poynting vector: 
 

( )( ) ( ) ( )[ ]( )ijBES ˆˆs1028.6m09.2cos
N/A104

T10V/m00.31 1812
27

8

0

××−
×

−
=×= −−

−

−

tz
πµ

rrr
 

or 

( ) ( ) ( )[ ]kS ˆs1028.6m09.2cosmW/m9.23 18122 tz −− ×−=
r

 

 
The intensity of the wave is the 
average magnitude of the Poynting 
vector. The average value of the 
square of the cosine function is 1/2: 

( )
2

2
2
1

mW/m0.12

mW/m9.23

=

== S
r

I
 

 
*57 ••  
Picture the Problem The maximum rms voltage induced in the loop is given by 

,20rms BAωε = where A is the area of the loop, B0 is the amplitude of the magnetic 

field, and ω is the angular frequency of the wave. We can use the definition of density 
and the expression for the intensity of an electromagnetic wave to derive an expression 
for B0.  
 
The maximum induced rms emf 
occurs when the plane of the loop is 
perpendicular to B

r
: 

22
0

2
0

rms
BRBA ωπωε ==              (1) 

where R is the radius of loop of wire. 
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From the definition of intensity we 
have: 
 

24 r
PI
π

=  

where r is the distance from the transmitter. 
 

The intensity is also given by: 

0

2
0

0

00

22 µµ
cBBEI ==  

 
Substitute to obtain: 

2
0

2
0

42 r
PcB
πµ

=  

 
Solve for B0: 

c
P

r
B

π
µ
2

1 0
0 =  

 
Substitute in equation (1) to obtain: 
 

( )

c
P

r
fR

c
P

r
fR

0
32

0
2

rms

2
2

22
2

µπ

π
µππε

=

=

 

 
Substitute numerical values and evaluate εrms: 
 

( ) ( )
( )

( )( ) mV25.7
m/s103

kW50N/A1042
m102
MHz100m3.0

8

273

5

2

rms =
×

×
=

−ππε  

 
58 ••  
Picture the Problem The voltage induced in the piece of wire is the product of the 
electric field and the length of the wire. The maximum rms voltage induced in the loop is 
given by ,0BAωε = where A is the area of the loop, B0 is the amplitude of the magnetic 

field, and ω is the angular frequency of the wave.  
 
(a) Because E is independent of x: lEV =  

where l is the length of the wire. 
 

Substitute numerical values and 
evaluate V: 

( )[ ]( )
( ) t

tV
6

64

10cosV0.50

m5.010cosN/C10

µ=

= −

 

 
(b) The voltage induced in a loop is 
given by: 
 

AB0ωε =  

where A is the area of the loop and B0 is the 
amplitude of the magnetic field. 
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Eliminate B0 in favor of  E0 and 
substitute for A to obtain: 
 

c
RE 2

0πωε =  

Substitute numerical values and 

evaluate ε: 
( )( ) ( )

nV9.41

m/s103
m2.0N/C10s10

8

2416

=

×
=

−− πε
 

 
59 ••  
Picture the Problem Some of the charge entering the capacitor passes through the 
resistive wire while the rest of it accumulates on the upper plate.  The total current is the 
rate at which the charge passes through the resistive wire plus the rate at which it 
accumulates on the upper plate.  The magnetic field between the capacitor plates is due to 
both the current in the resistive wire and the displacement current though a surface 
bounded by a circle a distance r from the resistive wire.  The phase difference between 
the supplied current and the applied voltage may be calculated using a phasor diagram. 
 

 
 
(a) The current drawn by the 
capacitor is the sum of the 
conduction current through the 
resistance wire and dQ/dt, where Q 
is the charge on the upper plate of 
the capacitor: 
 

dt
dQII += c                               (1) 

Express the conduction current Ic in 
terms of the potential difference 
between the plates and the 
resistance of the wire: 
 

t
R

V
R
VI ωsin0

c ==  

 

Express the displacement current 
between the capacitor plates.  Let C 
be the capacitance of the capacitor: 
 

CVQ =  

so 

tCV
dt
dVC

dt
dQ

ωω cos0==  
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Substitute in equation (1): 
 

tCVt
R

V
I ωωω cossin 0

0 +=       (2) 

 
Using Equation 24-10 for the 
capacitance of a parallel-plate 
capacitor with plate area A and plate 
separation d we have: 
 

d
a

d
AC

2
00 π∈∈

==  

 

Substituting for C equation 2 gives: 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= t

d
at

R
VI ωπ∈ωω cossin1 2

0
0  

 
(b) Apply the generalized form of 
Ampere’s law to a circular path of 
radius r centered within the plates of 
the capacitor, where  dI' is the 

displacement current through the 
flat surface S bounded by the path 
and Ic is the conduction current 
through the same surface: 
 

( )dc0C
I'Id +=⋅∫ µl

rr
B  

 
 
 

By symmetry the line integral is B 
times the circumference of the circle 
of radius r: 
 

( ) ( )dc02 I'IrB += µπ                (3) 

In the region between the capacitor 
plates there is a uniform electric 
field due to the surface charges +Q 
and –Q.  The associated 
displacement current through S is: 
 

( )

dt
dEr

dt
dEA'

A'E
dt
d

dt
dI'

2
00

0
e

0d

π∈∈

∈φ∈

==

==
 

provided ( )ar ≤  

 
To evaluate the displacement 
current we first must evaluate E 
everywhere on S.  Near the surface 
of a conductor 0∈σ=E (Equation 

22-25), where σ is the surface 
charge density: 
 

0∈σ=E , where ( )2aQAQ πσ ==  

so 

2
0 a

QE
π∈

=  
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Substituting for E in the equation for 
dI'  gives: 

( )

tV
d
r

tV
dt
d

d
r

dt
dQ

d
r

a
Q

dt
dr

dt
dErI'

ωω

ω

π∈
π∈π∈

cos

sin

02

2

02

2

2

2

2
0

2
0

2
0d

=

==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

 

 
Substituting for Ic and dI'  in 

equation (3) and solving for B gives: 
 

( ) ( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

+
=

t
a
rt

Rr
V

tV
a
rt

R
V

r

r
I'IrB

ωωω
π
µ

ωωω
π
µ

π
µ

cossin1
2

cossin
2

2

2

2
00

02

2
00

dc0

 
(c) Both the charge Q and the 
conduction current Ic are in phase 
with V.  However, dQ/dt, which is 
equal to the displacement current Id 
through S for r ≥ a, lags V by 90°.  
(Mathematically, cos ωt lags behind 
sin ωt by 90°.) The voltage V leads 
the current I = Ic + Id by phase angle 
δ.  The current relation is expressed 
in terms of the current amplitudes: 
 

dc III +=  

or 
( )

tI
tItI
ω

ωδω
cos

sinsin

maxd,

maxc,max

+

=+
 

 
 

The values of the conduction and 
displacement current amplitudes are 
obtained by comparison with the 
answer to part (a): 
 

R
V

I 0
maxc, =  

and 

d
VaI 0

2
0

maxd,
π∈ω

=  

 
A phasor diagram for adding the 
currents Ic and Id is shown to the 
right. The conduction current Ic is in 
phase with the voltage V across the 
resistor and Id lags behind it by 90°: 

Ic,max

Imax

Id,max

δ

r 
V 

r 
I 

r
I 

r 
I d

c
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From the phasor diagram we have:  

d
aR

RV
d

aV

I
I

2
0

0

2
0

0

maxc,

maxd,tan

π∈ω

π∈ω

δ

=

==
 

so 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

d
aR 2

01tan π∈ωδ  

 
Remarks:  The capacitor and the resistive wire are connected in parallel.  The 
potential difference across each of them is the applied voltage V0 sin ωt.  
 
60 ••  
Picture the Problem The total force on the surface is the sum of the force due to the 
reflected radiation and the force due to the absorbed radiation. From the conservation of 
momentum, the force due to the 10 kW that are reflected is twice the force due to the 10 
kW that are absorbed. 
 
Express the total force on the 
surface: 
 

aFFF += rtot  

Substitute for Fr and Fa to obtain: ( )
c
P

c
P

c
PF

2
32 2

1
2
1

tot =+=  

 
Substitute numerical values and 
evaluate Ftot: 

( )
( ) mN100.0

m/s1032
kW203

8tot =
×

=F  

 
*61 ••  
Picture the Problem We can use the definition of the Poynting vector and the 
relationship between B

r
and E

r
to find the instantaneous Poynting vectors for each of the 

resultant wave motions and the fact that the time average of the cross product term is zero 
for ω1 ≠ ω2, and ½ for the square of cosine function to find the time-averaged Poynting 
vectors. 
 
(a) Because 1E

r
and 2E

r
propagate in 

the x direction: 
 

iBE ˆ
0Sµ=×

rr
 ⇒ kB ˆB=

r
 

Express B in terms of E1 and E2: 
 

( )21
1 EE
c

B +=  

Substitute for E1 and E2 to obtain: 
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( ) ( )[ ]kB ˆcoscos1
220,2110,1 δωω +−+−= txkEtxkE

c
r

 

 
Express the instantaneous Poynting vector for the resultant wave motion: 
 

( ) ( )( )

( ) ( )( )

( ) ( )( ) ( )

( )[ ( )

( ) ( )] i

kj

k

jS

ˆcoscos

cos2cos1

ˆˆcoscos1

ˆcoscos1

ˆcoscos1

22
22

0,222

110,20,111
22

0,1
0

2
220,2110,1

0

220,2110,1

220,2110,1
0

δωδω

ωω
µ

δωω
µ

δωω

δωω
µ

+−++−×

−+−
=

×+−+−=

+−+−×

+−+−=

txkEtxk

txkEEtxkE
c

txkEtxkE
c

txkEtxkE
c

txkEtxkE
r

 

 
(b) The time average of the cross 
product term is zero for ω1 ≠ ω2, and 
the time average of the square of the 
cosine terms is ½: 
 

[ ] iS ˆ
2

1 2
0,2

2
0,1

0
av EE

c
+=

µ

r
 

(c) In this case kB ˆ
2 B−=

r
because the wave with k = k2 propagates in the î− direction. 

The magnetic field is then: 
 

( ) ( )[ ]kB ˆcoscos1
220,2110,1 δωω ++−−= txkEtxkE

c

r
 

 
Express the instantaneous Poynting vector for the resultant wave motion: 
 

( ) ( )( )

( ) ( )( )

( ) ( )[ ] i

k

jS

ˆcoscos1

ˆcoscos1

ˆcoscos1

22
22

0,211
22

0,1
0

220,2110,1

220,2110,1
0

δωω
µ

δωω

δωω
µ

++−−=

++−−×

+−+−=

txkEtxkE
c

txkEtxkE
c

txkEtxkE
r

 

 
(d) The time average of the square 
of the cosine terms is ½: 
 

[ ] iS ˆ
2

1 2
0,2

2
0,1

0
av EE

c
−=

µ

r
 

 
*62 ••  
Picture the Problem We can use the definitions of power and intensity to express the 
area of the surface as a function of P, I, and the efficiency ε. 
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Use the definition of power to relate 
the required surface area to the 
intensity of the solar radiation: 
 

εε IA
t
EP ==  

where ε is the efficiency of the system. 

Solve for A to obtain: 
εI
PA =  

 
Substitute numerical values and 
evaluate A: ( )

2
2 m111

kW/m75.03.0
kW25

==A  

 
63 ••  
Picture the Problem We can use the relationship between the average value of the 
Poynting vector (the intensity), E0, and B0 to find B0. The application of Faraday’s law 
will allow us to find the emf induced in the antenna. The emf induced in a 2-m wire 
oriented in the direction of the electric field can be found using  lE=ε  and the 
relationship between E and B. 
 
(a) The intensity of the signal is 
related the amplitude of the 
magnetic field in the wave: 
 

0

2
0

0

00
av 22 µµ

cBBEIS ===  

Solve for B0: 

c
IB 0

0
2µ

=  

 
Substitute numerical values and evaluate B0: 
 

( )( ) T1015.9
m/s103

W/m10N/A1042 15
8

21427

0
−

−−

×=
×

×
=

πB  

 
(b) Apply Faraday’s law to the 
antenna coil to obtain: 
 

( ) ( )

tABNK

tBNK
dt
dABA

dt
d

ωω

ωε
cos

sin

0m

0m

=

==
 

 
Substitute numerical values and evaluate ε : 

 
( ) ( ) ( ) ( )[ ] ( )[ ]

( ) ( )t
t

15

152

s108.80cosV01.1

kHz1402coskHz1402T1015.9m01.02002000
−

−

×=

×=

µ

πππε
 

 
(c) The voltage induced in the wire lE=ε  
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is the product of its length l and the 
amplitude of electric field E0: 
 
Relate E to B: 
 

tcBcBE ωsin0==  

Substitute for E to obtain: tBc ωε sin0l=  

 
Substitute numerical values and evaluate ε : 

 
( )( )( ) ( )[ ]
( ) ( )t

t
15

158

s108.80sinV49.5

kHz1402sinT1015.9m2m/s103
−

−

×=

××=

µ

πε
 

 
64 ••  
Picture the Problem We’ll choose the 
curve with sides ∆x and ∆z in the xy plane 
shown in the diagram and apply Equation 

30-6d to show that 
t

E
x

B yz

∂
∂

∈−=
∂
∂

00µ . 

 
 
Because ∆x is very small, we can 
approximate the difference in Bz at 
the points x1 and x2 by: 
  

( ) ( ) x
x

BBxBxB z
zz ∆

∂
∂

≈∆=− 12  

Then: 
zx

t
E

d y

C
∆∆

∂
∂

∈≈⋅∫ 00µl
rr

B  

 
The flux of the electric field through 
this curve is approximately: 
 

yxEdAE yS
∆∆=∫ n  

Apply Faraday’s law to obtain: 
 

zx
t

E
zx

x
B yz ∆∆

∂
∂

∈−=∆∆
∂
∂

00µ  

or 

t
E

x
B yz

∂
∂

∈−=
∂
∂

00µ  

 
*65 •••  
Picture the Problem We can use Ohm’s law to relate the electric field E in the conductor 
to I, ρ, and a and Ampere’s law to find the magnetic field B just outside the conductor. 
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Knowing E
r

and B
r

we can find S
r

and, using its normal component, show that the rate of 
energy flow into the conductor equals I2R, where R is the resistance.  
 
(a) Apply Ohm’s law to the 
cylindrical conductor to obtain: 

EL
a
LI

A
LIIRV ==== 2π

ρρ
 

 
Solve for E: 

2a
IE
π
ρ

=  

 
(b) Apply Ampere’s law to a 
circular path of radius a at the 
surface of the cylindrical conductor: 
 

( ) IIaBd
C 0enclosed02 µµπ ===⋅∫ l

rr
B  

 

Solve for B to obtain: 
 a

IB
π
µ
2

0=  

 
(c) The electric field at the surface 
of the conductor is in the direction 
of the current and the magnetic field 
at the surface is tangent to the 
surface. Use the results of (a) and 
(b) and the right-hand rule to 
evaluate S

r
: 

 

r

uu

BES

ˆ
2

ˆ
2

ˆ1

1

32

2

tangent
0

parallel2
0

0

a
I

a
I

a
I

π
ρ

π
µ

π
ρ

µ

µ

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

×=
rrr

 

where r̂ is a unit vector directed radially 
outward from the cylindrical conductor. 
 

(d) The flux through the surface of 
the conductor into the conductor is: 
 

( )aLSdAS π2n∫ =  

Substitute for Sn, the inward 
component of S

r
, and simplify to 

obtain: 

( ) 2

2

32

2

n 2
2 a

LIaL
a

IdAS
π
ρπ

π
ρ

==∫  

 

Since 2a
L

A
LR

π
ρρ

== : RIdAS 2
n∫ =  

  
66 •••  
Picture the Problem We can use Faraday’s law to express the induced electric field at a 
distance r < R from the solenoid axis in terms of the rate of change of magnetic flux and 

atnB 0µ= to express B in terms of the current in the windings of the solenoid. We can 

use the results of (a) to find the magnitude and direction of the Poynting vector S
r

 at the 
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cylindrical surface r = R just inside the solenoid windings. In part (c) we’ll use the 
definition of flux and the expression for the magnetic energy in a given region to show 
that the flux of S

r
into the solenoid equals the rate of increase of the magnetic energy 

inside the solenoid. 
 
(a) Apply Faraday’s law to a 
circular path of radius r < R: 
 

( )
dt

drEdE
C

m2 φπ −==⋅∫ l  

Solve for E to obtain: 
 dt

d
r

E m

2
1 φ
π

−=                      (1) 

 
Express the magnetic field inside a 
long solenoid: 
 

atnInB 00 µµ ==  

The magnetic flux through a circle 
of radius r is: 
 

2
0m ratnBA πµφ ==  

Substitute in equation (1) to obtain: [ ]
22

1 02
0

ranratn
dt
d

r
E µπµ

π
−=−=  

 
(b) Express the magnitude of S

r
at r 

= R: 
 

0µ
EBS =  

 
At the cylindrical surface just inside 
the windings: 
 

atnB 0µ=  

Substitute to obtain: ( )

2
2 2

0
2

0

0
0

Rtan
atnRan

S µ
µ

µµ

=
⎟
⎠
⎞

⎜
⎝
⎛

=  

 
Because the field E

r
is tangential 

and directed so as to give an induced 
current that opposes the increase in 
B
r

, BE
rr

×  is a vector that points 
toward the axis of the solenoid. 
Hence: 
 

rS ˆ
2

2
0

2 Rtan µ
−=

r
 

where r̂ is a unit vector that points radially 
outward. 

(c) Consider a cylindrical surface of 
length L and radius R. Because 
S
r

points inward, the energy flowing tLaRn

RtanRLRLSdAS

22
0

2

2
0

2

n 2
22

µπ

µππ

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==∫  
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into the solenoid per unit time is: 
 
Express the magnetic energy in the 
solenoid: 
 

( )

( ) ( )

2

2

2

222
0

2

2

0

2
0

2

0

2

m

tLaRn

LRnat

LRBVuU B

µπ

π
µ

µ

π
µ

=

=

==

 

 
Evaluate dUB/dt: 

∫=
=

⎥
⎦

⎤
⎢
⎣

⎡
=

dAS

tLaRn

tLaRn
dt
d

dt
dU B

n

22
0

2

222
0

2

2

µπ

µπ

 

 
*67 •••  
Picture the Problem We can use a condition for translational equilibrium to obtain an 
expression relating the forces due to gravity and radiation pressure that act on the 
particles. We can express the force due to radiation pressure in terms of the radiation 
pressure and the effective cross sectional area of the particles and the radiation pressure 
in terms of the intensity of the solar radiation. We can solve the resulting equation for r.   
 
Apply the condition for translational 
equilibrium to the particle: 
 

0gr =− FF  

or, since Fr = PrA and Fg = mg, 

02
s

r =−
R

mGMAP                                (1) 

 
The radiation pressure Pr depends on 
the intensity of the radiation I: c

IP =r  

 
The intensity of the solar radiation at 
a distance R is: 
 

24 R
PI
π

=  

Substitute to obtain: 
 cR

PP 2r 4π
=  

 
Substitute for Pr, A, and m in 
equation (1): 
 

( ) 0
4 2

s
3

3
4

2
2 =−

R
GMrr

cR
P ρπ

π
π
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Solve for R to obtain: 

s16
3

GMc
Pr

ρπ
=  

 
Substitute numerical values and evaluate r: 
 

( )
( )( )( )( )

m574.0

kg1099.1kg/mN1067.6m/s103g/cm116
W1083.33

30221183

26

µ

π

=

×⋅××
×

= −r
 

 
68 •••  
Picture the Problem 
 
(a) At a perfectly conducting surface 0=E

r
. Therefore, the sum of the electric fields of 

the incident and reflected wave must add to zero, and so ri EE
rr

−= . 

 
(b) Let the incident and reflected 
waves be described by: 
 

( )kxtEE y −= ωcos0i  

and 
( )kxtEE y +−= ωcos0r  

 
Use the trigonometric identity cos(α + β) = cosαcosβ − sinαsinβ to obtain: 
 

( ) ( ) ( ) ( )[ ]
( ) ( ) ( )[ ]

[ ]
 wave.standing a ofequation   the,sinsin2

sinsincoscossinsincoscos

sinsincoscossinsincoscos
coscoscoscos

0

0

0

000ri

kxtE

kxtkxtkxtkxtE

kxtkxtkxtkxtE
kxtkxtEkxtEkxtEEE

y

y

y

yyy

ω

ωωωω

ωωωω

ωωωω

=

+−+=

+−−−−=

+−−=+−−=+

 

 
(c) Because SBE

rrr
0µ=× and S

r
is in the direction of propagation of the wave, we see 

that for the incident wave ( )kxtBB z −= ωcosi . Since both S
r

and Ey are reversed for the 
reflected wave, ( )kxtBB zr += ωcos . So the magnetic field vectors are in the direction 

at the reflecting surface and add at that surface. Hence rBB
rr

2= . 

 
*69 •••  
Picture the Problem Let the point source be a distance a above the plane. Consider a 
ring of radius r and thickness dr in the plane and centered at the point directly below the 
light source. Express the force of force on this ring and integrate the resulting expression 
to obtain F. 
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The intensity anywhere along this 
infinitesimal ring is P/4π (r2 + a2) 
and the element of force dF on this 
ring of area 2π rdr is given by: 
 

( )

( ) 2322

2222

arc
Pardr

ar
a

arc
rdrPdF

+
=

++
=

 

where we have taken into account that only 
the normal component of the incident 
radiation contributes to the force on the 
plane, and that the plane is a perfectly 
reflecting plane. 
 

Integrate dF from r = 0 to r = ∞: 
 ( )∫

∞

+
=

0
2322 ar

rdr
c

PaF  

 
From integral tables: 

( ) aarar
rdr 11

0
22

0
2322

=⎥
⎦

⎤

+

−
=

+

∞∞

∫  

 
Substitute to obtain: 
 c

P
ac

PaF =⎟
⎠
⎞

⎜
⎝
⎛=

1
 

 
Substitute numerical values and 
evaluate F: 

mN33.3
m/s103

MW1
8 =

×
=F  
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