Chapter 30
Maxwell’s Equations and Electromagnetic Waves

Conceptual Problems

*1 °
(a) False. Maxwell’s equations apply to both time-independent and time-dependent
fields.

(b) True
(c) True
(d) True

(e) False. The magnitudes of the electric and magnetic field vectors are related according
to E =cB.

(f) True

2 L]
Determine the Concept Two changes would be required. Gauss’s law for magnetism
would become §S B,dA = 14,0, and Faraday’s law would

become§ E.d/= —ij B dA— I—m where |, is the current associated with the motion
¢ dts " €

of the magnetic poles.

3 .
Determine the Concept X rays have greater frequencies whereas light waves have
longer wavelengths (see Table 30-1).

*4 .
Determine the Concept The frequencies of ultraviolet radiation are greater than those of
infrared radiation (see Table 30-1).

5 °
Determine the Concept Consulting Table 30-1 we see that FM radio and televisions
waves have wavelengths of the order of a few meters.

6 .

Determine the Concept The dipole antenna detects the electric field, the loop antenna
detects the magnetic field of the wave.

815
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7 .
Determine the Concept The dipole antenna should be in the horizontal plane and normal
to the line from the transmitter to the receiver.

*8 °

Determine the Concept A red plastic filter absorbs all the light incident on it except for
the red light and a green plastic filter absorbs all the light incident on it except for the
green light. If the red beam is incident on a red filter it will pass through, whereas, if it is
incident on the green filter it will be absorbed. Because the green filter absorbs more
energy than does the red filter, the laser beam will exert a greater force on the green filter.

Estimation and Approximation

9 oo

Picture the Problem We’ll assume that the plastic bead has the same density as water.
Applying a condition for translational equilibrium to the bead will allow us to relate the
gravitational force acting on it to the force exerted by the laser beam. Because the force
exerted by the laser beam is related to the radiation pressure and the radiation pressure to
the intensity of the beam, we’ll be able to find the beam’s intensity. Knowing the beam’s
intensity, we find the total power needed to lift the bead.

Apply Z Fy = 0to the bead: I:bylaserbeam —-mg =0

1
Relate the force. e>'<erted by the laser Foy oo = PA=—7d ’p
beam to the radiation pressure 4

exerted by the beam:

. . 1
Substitute to obtain: Zﬂd ’P —mg =0
The radiation pressure P is the P — I
quotient of the intensity | and the " oc

speed of light c:

Substitute for P, to obtain: 1’ mg =0 O
4
Express the mass of the bead: m=pV = %ﬂpda

Substitute for m in equation (1) to 1
obtain: 4 6
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Solve for I:

Substitute numerical values and evaluate I:

| = %(3><1o8 m/s)(10° kg/m® (15 zm)(9.81m/s? )= [ 2.94x 107 W/m?

The power needed is the product of
the beam intensity and the cross-
sectional area of the bead:

Substitute numerical values and
evaluate P:

10 00

2
| =—cpd
3/09

P=1A, =%7Z'd2|

p- %ﬁ(15ﬂm)2(2.94x107 wim?)

=| 5.20mWwW

Picture the Problem The net force acting on the spacecraft is the difference between the
repulsive force due to radiation pressure and the attractive gravitational force. We can
apply Newton’s 2" law to the spacecraft and solve the resulting equation for the
acceleration of the spacecraft. Because the acceleration turns out to be a function of r,
we’ll need to integrate a to find v2. We’ll assume that the sail absorbs all of the radiation

incident on it.

Apply Newton’s 2" law to the
spacecraft (including sail) to obtain:

Solve for a:

Assuming that the sail absorbs all of
the incident solar radiation:

N

Anr

Because | =

2

F—F,=ma
a:E—g
m
FrzP,A:E
c

where A is the area of the sail.

- __PA
drrec
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Substitute for Frand Fq to obtain: PA  GMm

S S

Arric  r? PA GM
a= = 2 2
m Adr°mc r

P.A
_4rc
mr

-GMm

2

Neglecting the gravitational term: P.A
Az r’me

i i v dvdr v
(b) Because a is a function of r, the dv _dvdr _ vd—: vdv = adr

Aa=—=———=
velocity must be found by dt dr dt dr
integration. Note that:

Substitute for a and integrate v’ from vy to v and r’ from rq to r:

v 4PSA—GM5m Cgr :SA—GMsm 11
. m o T m r r
Solve for v to obtain:
EA SeMm Yy
Vi=vZi+2 e [———J
m r r

Ignore the gravitational term to obtain:

, |, (PSA j[l 1)
Vo=V, + ——=
2omc )\ ry r

This scheme is not likely to work effectively. For any reasonable mass, the

surface mass density of the sail would have to be extremely small and the
sail would have to be huge. Additionally, unless struts are built into the sail,
it would collapse during the acceleration of the spacecraft.

(©)




Maxwell’s Equations and Electromagnetic Waves 819

11 e
Picture the Problem We can use | = E;nsBms/ 10 and Byms = Erms/C t0 express Eyys in terms
of 1. We can then use B = Eips/C to find Bms. The average power output of the sun is
given by P, = 47R*l where R is the earth-sun distance. The intensity and the radiation

pressure at the surface of the sun can be found from the definitions of these physical
guantities.

(a) Express the intensity | of the | = EmsBrms _ El.
radiation as a function of its average Lo CLty
power and the distance r from the

station:

Solve for Eps: Erms = +/CL4 |

Substitute numerical values and evaluate E, s

E,ne = /(3x20° m/s)(47 x 107 N/A?)(1.37 kW/m? ) =[ 719 V/m

Use Byms = E/ms/C to evaluate Byms:
- 719Y/m _[2.40,T
3x10° m/s

(b) Express the average power P =47R2
output of the sun in terms of the ~

] where R is the earth-sun distance.
solar constant:

Substitute ngmerical values and P — 4;;(1.5><10“ m)z (1.37 kW/mZ)
evaluate P, av

=| 3.87x10* W
(c) Express the intensity at the P,
surface of the sun in terms of the | = —4” r2
sun’s average power output and
radius r:
Substitute numerical values and 3.87x10% W
evaluate | at the surface of the sun: I = s _\2

47 (6.96x10° m)

={ 6.36x10" W/m?
Express the radiation pressure in |
terms of the intensity: k= E
Substitute numerical values and 6.36 x107 W/m?
evaluate P;: y = 5 =10.212Pa
3x10° m/s
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*12 oo

Picture the Problem We can find the radiation pressure force from the definition of
pressure and the relationship between the radiation pressure and the intensity of the
radiation from the sun. We can use Newton’s law of gravitation to find the gravitational
force the sun exerts on the earth.

The radiation pressure exerted on F

the earth is given by: P = A = F =RA
where A is the cross-sectional area of the
earth.

Express the radiation pressure in |
terms of the intensity of the P ==

radiation | from the sun: ¢
Substituting for P, and A yields: . |7 R2
"¢
Substitute numerical values and 7,(1370 W/m?2 )(6370 km)z
evaluate F;: F = 5
3x10° m/s
=[5.82x10° N
The gravitational force exerted on Gm,, M.,
the earth by the sun is given by: F= 2

r
where r is the radius of the earth’s orbit.

Substitute numerical values and evaluate F:

6.67x10™ N-m? /kg?)(1.99x 10 kg)(5.98x 10* kg)

F- ( (1 e m)z =3.53x10% N
I X

OrE; e e —165x10™
radiation pressure F; to the F  353x10%2N

Express the ratio of the force due F 5.82x10°N

gravitational force F:

The gravitational force is greater by a factor of approximately 10,

*13 e
Picture the Problem We can find the radiation pressure force from the definition of
pressure and the relationship between the radiation pressure and the intensity of the
radiation from the sun. We can use Newton’s law of gravitation to find the gravitational
force the sun exerts on Mars.

The radiation pressure exerted on F
Mars is given by: P = A = F =RA

where A is the cross-sectional area of Mars.
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Express the radiation pressure on I

_ M
Mars in terms of the intensity of the P = Cars
radiation lyars from the sun:
- N )
Substituting for P, and A yields: o | ypars Ripore
' c
Express the ratio of the solar I r 2 r 2
constant at the earth e, to the solar —Mars _ (Lﬂh] = lyas = learn [Lﬁhj
constant lyars at Mars: leartn MMars Mars
Substitute for Iyas to obtain: 2 2
o F — Iearthﬂ- RMars Lrearth}
r
C rMars

Substitute numerical values and evaluate F;:

- _ 7370 wWim’ )(3395km) (1.50x10™ m ) _ =
. 3x10° m/s 229x10"m | =
The gravitational force exerted on Gm,, M., Gm, (0.11m_,,)
Mars by the sun is given by: F= r2 - r2

where r is the radius of Mars’ orbit.

Substitute numerical values and evaluate F:

(6.67x10™ N-m? /kg? )(1.99x10* kg)(0.11)(5.98 x10* kg)

F= k ~1.66x10% N
(2.29x10" m)
Express the ratio of the force due FE  7.09x10° N
radiation pressure F; to the L= = 427x107"

- 21
gravitational force F; F 1.66x10" N

Because the ratio of these forcesis1.65x10™* for the earth and

4.27 x10™ for Mars, Mars has the larger ratio. The reason that

the ratio is higher for Mars is that the dependence of the radiation
pressure on the distance from the Sun is the same for both forces
(r~?), whereas the dependence on the radii of the planetsis different.
Radiation pressure varies as R?, whereas the gravitational force
varies as R® (assuming that the two planets have the same density, an
assumption that is nearly true). Consequently, the ratio of the forces
goesas R?/R® = R™. Because Mars is smaller than earth, the ratio

is larger.
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*14 oo

Picture the Problem We can use Newton’s 2™ law to express the acceleration of an
atom in terms of the net force acting on the atom and the relationship between radiation
pressure and the intensity of the beam to find the net force. Once we know the
acceleration of an atom, we can use the definition of acceleration to find the stopping
time for a rubidium atom at room temperature.

(@) Apply > F =mato the atom to F=ma
obtain: where F is the force exerted by the laser
' beam.

The radiation pressure P, and

F oI
intensity of the beam | are related P = K =

according to: ¢
Solve for F to obtain: E_ IA 1A
C o
Substitute for F in the expression of 122
Newton’s 2™ law to obtain: o ma
Solve for a: 112
a=—
mc
Substitute numerical values and evaluate a:
10 W/m? )(780nm)?
a= o /1 )(I 80nm) =| 1.44%10° m/s*
mo
859 x e |(3x10°mis)
mol  6.02x10~ particles
(b) Using the definition of At = Vsinal = Vinitial
acceleration, express the stopping a
time At of the atom:
Because Vfina = 0: At ~— Vinitial
a
Using the rms speed as the initial y V. 3kT
speed of an atom, relate Vigita to the fnitial = Trms AL

temperature of the gas:

Substitute in the expression for the 1 [3KT
o . At=——_ |—
stopping time to obtain: a\l'm
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Substitute numerical values and evaluate At;

-23
- 1 31L.38x10 * JK)BOOK)  _roer
-1.44x10° m/s g5 9 1mol
mol  6.02x10% particles

Maxwell’s Displacement Current

15 -

823

Picture the Problem We can differentiate the expression for the electric field between
the plates of a parallel-plate capacitor to find the rate of change of the electric field and
the definitions of the conduction current and electric flux to compute Ig.

(a) Express the electric field E— Q
between the plates of the parallel- € A
plate capacitor:

respect to time to obtain an dt gt
expression for the rate of change of
the electric field:

Differentiate this expression with dE_d| Q | 1 dQ I
- €, A dt - & A

Substitute numerical values and evaluate dE/dt:

€o

A

dE 5A ~

3.40x10% VIm-s

dt (8.85x107C?/N-m?)z(0.023m)

(b) Express the displacement current | —e dg,
lg: ‘ 0 dt
Subsftitute for the electric flux to 1, =€, i[EA] =, Ad_E
obtain: dt dt

Substitute numerical values and evaluate 14:

I, =(8.85x10%* C?/N-m?)7(0.023m)*(3.40x 10" V/m -s)=[ 5.00 A
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16 -
Picture the Problem We can express the displacement current in terms of the electric
flux and differentiate the resulting expression to obtain I4 in terms dE/dt.

Express the displacement current I: | — dg,
Subs_tltute for the electric flux to I, =, i[EA] e, A JE
obtain: dt

Because E =(0.05N/C)sin 2000t : | e, A % [(0.05 N/C)sin 20001]

= (20005*) &, A(0.05N/C)cos 2000t

I3 will have its maximum value I
when cos 2000t = 1. Hence:

= (2000s) e, A(0.05N/C)

d,max

Substitute numerical values and evaluate g max:

1, =(2000s)(8.85x10™ C2 /N -m?)({tm?)(0.05 N/C) = 8.85x10™° A

17 e
Picture the Problem We can use Ampere’s law to a circular path of radius r between the
plates and parallel to their surfaces to obtain an expression relating B to the current
enclosed by the amperian loop. Assuming that the displacement current is uniformly
distributed between the plates, we can relate the displacement current enclosed by the
circular loop to the conduction current I.

Apply Ampere’s law to a circular §C|_5, A7 = 271B = 11, yoseg = Mo
path of radius r between the plates
and parallel to their surfaces to

obtain:
Assuming that the displacement | I, r
. . .. = = 1= - Id
current is uniformly distributed: 7r® rR? R
where R is the radius of the circular plates.
Substitute to obtain: Lol?

27rB =

R? g
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Solve for B:

Substitute numerical values and
evaluate B:

18 oo

:’U—Or|
27rR? ¢

-7 2
B(r)= (47 ><210 N/A 2(5A)
7(0.023m)
(L.89%x10° T/m)r

r

Picture the Problem We can use the definitions of the displacement current and electric
flux, together with the expression for the capacitance of an air-core-parallel-plate

capacitor to show that 14 = C dV/dt.

(a) Use its definition to express the
displacement current Ig:

Substitute for the electric flux to
obtain:

Because E = V/d:

The capacitance of an air-core-
parallel-plate capacitor whose plates
have area A and that are separated
by a distance d is given by:

Substitute to obtain:

(b) Substitute in the expression
derived in (a) to obtain:

*19 e

| . d¢
d 0 dt
d dE
l, =€, a[EA] =, AE
d {v} e, AdV
|, =, A—|—|= b
dt| d d dt
c %o A
d
l, = cdV
dt
l,=(5 nF)% [(3V)cos5007t]

~(5nF)(3V) (50075 )sin 5007 t
=| —(23.6 A )sin 5007 t

Picture the Problem We can use the conservation of charge to find 1, the definitions of
the displacement current and electric flux to find dE/dt, and Ampere’s law to evaluate

B -d/ around the given path.
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(a) From conservation of charge we l,=1=|10.0A
know that:
i d E
(b-) Express the displacement current 1, =<, [ =€, i[EA] =€, Ad—
lg: dt dt dt
Substitute for dE/dt: de _ 1,
dt &, A
Substitute numerical values and dE _ 10A
evaluate dE/dt: dt  (8.85x10%2C*/N-m?)(0.5m?)
_| 2.26x102
m-s
(c) Apply Ampere’s law to a §C§ dl = Hol ectosed
circular path of radius r between the
plates and parallel to their surfaces
to obtain:
Assuming that the displacement lenciosea _ 1d Ny wis I
current is uniformly distributed: e A enclosed = A 0

where R is the radius of the circular plates.

. . 2
Substitute for lenciosed t0 Obtain: §CL3’ g7 = HoT r I,

Substitute numerical values and evaluate §CI§ ds:

}5-di- (47x107 N/A%)z(0.1mY*(10A)

| 0Em? =|7.90x107 T-m

20 00
Picture the Problem If Q = Qoe‘t/’ is the charge on the capacitor plates, then the

dg,

conduction current | = dQ/dt. We canuse |, =€, Eto find the displacement current

dQ,

and |, = to find the current due to the rate of change of the bound charges. The

total current is the sum of I, 14, and 1.
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(a) The conduction current is given
by:

The charge on the capacitor varies
with time according to:

Substitute for Q to obtain:

827

=949
dt

Q=0Q,e ", where 7 =RC

I=%[Qoe—t/r]= %e—t/r

T

This current is in the direction of the electric field, which is from the positive plate to the
negative plate. By choosing the positive sign for this current we define this to be the

positive direction.

(b) The displacement current is
given by:

Relate the electric field E to the
potential difference V between the
plates and the separation of the

plates d:

Substitute to obtain:

V varies with time according to:

Substituting in the expression for Iy
yields:

(c) As the voltage across the
dielectric decreases the magnitude

of the bound charges also decreases.

The current I, due to the flow of
these bound charges though a

dg, d dE
ly =<, d—fzeo a[EA]:e0 At
=Y
d
|d =€, Ai|:!:|— So Ad_V
dt| d d dt
or, because C = K Edo A,
C dv
I, =~
x dt

V=Ve _ Qo
C

Iy

= c i[&e_t/f} — _&e—t/r

T kdt| C KT
=| —=1
K
I, = % where Qy, is the bound charge

on the surface of the dielectric next to the
plate with charge Q.
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stationary surface is given by:

It follows that Q and Qy, are opposite
in sign and are related by Equation
24-27:

Substitute in the expression for I,
and carry out the differentiation to
obtain:

(d) Add the currents found in (a),
(b), and (c) to obtain:

Lo =1+ 14+ 1,

b f)

o

total

Remarks: In more sophisticated treatments of electrodynamics it is conventional to
refer to the sum Iy + I, as the displacement current.

21 o00

Picture the Problem We can find the conduction current as a function of time using | =
V(t)/R and substituting for V(t). We can use |, =€, ¢, to obtain an expression for the

displacement current Iy as a function of time. Finally, equating the conduction and
displacement currents will yield an expression for the time at which they are equal.

(a) Express the conduction current
in terms of the potential difference
between the plates of the capacitor:

Substitute for V(t) to obtain:

(b) The displacement current is
given by:

(0.01V/s)A .
pd

d

I, =¢, —(EA) =¢, i(\di Aj

dt
s AdV
d dt

dt
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Substitute for V and simplify to
obtain:

(c) Set Iy =1 to obtain:

Solve for t:

22 oo

Picture the Problem We can use |, =<,

dg,

" and the relationship between the voltage

829

e, Ad
| =—2——|(0.01V/s)t
- A8 [0o1vig

(0.01Vis)e, A
d

(0.01V/s)e, A _ A0.01V/s) )
d pd

t=|&p

across the plates and the electric field between them to find the displacement current. The

conduction current between the plates is given by | = VE = % where A is the area of

the plates and d is their separation.

(a) The displacement current is
given by:

Relate the electric field E to the
potential difference V between the
plates and the separation of the

plates d:

Substitute to obtain:

V varies with time according to:

Substituting in the expression for Iy
yields:

Substitute numerical values and evaluate 14:

dg d dE
|, =, &£ =, —|EA[=¢, A—
d =%o at Eodt[ ]eo at
.V
d
|d: 0 Ai|:!:|zeo Ad_V
dt| d d dt
V =V, cos wt
e, Ad
.= %I a[\/ocoswt]
= EO”rvosina)t
wd
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(8.85x10%2C?/N-m?}r(20cm)’(40V)

sin(1207 rad/s)t

I, =

(1207 rad/s)(1mm)

=| - ({1.18x10™° Asin(1207 rad/s)t

(b) The conduction current between
the plates is given by:

Substitute numerical values and
simplify to obtain:

*23 (X1

VAV Ay,
R pd pd

cos wt

2
| = ”50'2 m) (493\/ ) cos(1207 rad/s)t
(L0*Q-m)0* m)

=| (0.503 A)cos(1207 rad/s)t

Picture the Problem We can follow the step-by-step instructions in the problem
statement to show that Equation 30-4 gives the same result for B as that given in Part (a).

(a) Express the magnetic field at P
using the expression for B due to a
straight wire segment:

Substitute for sin@; and sin& to
obtain:

(b) Express the electric flux through
the circular strip of radius r and
width dr in the yz plane:

The electric field due to the dipole
is:

B, = ﬂl(sin 6, +sin6,)
A
where

. . a
SiN6, =sin 6, = ———
R°+a

Ml 2a
4z R \JR? +a’

Hyla 1

27R \JR? + a2

d¢, =E,dA=E (27 rdr)

E :Zk—Qcosgl —&
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Substitute for E, to obtain: dg - E.dA= ZKQaS/2 (27 rdr)
(r2 + az)

2Qa
= 27 rdr
4Ar e, (r2 +a’ )3/2 ( )

Qa
=| = et
€ (I’ +a )
- M i a
(c) Multiply both sides of the expression g, dg, = Q—S/z rdr
for gy by < (rz +a2)

Integrate r from O to R to obtain:

= rdr ( -1 1] [ a j
b =Qa[ " -Qa —= +-|=|Q1-—2
’ !(r%az)‘y2 R?+a> a R? +a’

(d) The displacement current is dg, d a
defined to be: i =%~ =5l @ 1‘@

{LLJ(’_Q
VR*+a? ) dt
S| P

[ VR?+a’ j

The total current is the sum of | and a
I +1,=1-1]1-

JR?+a?
_a
JR? +a?

lg:

(e) Apply Equation 30-4 (the §>C B-d/=2sRB = ,uo(l + Id)
generalized form of Ampere’s law)

to obtain:

Solve for B: B= Ho (I +|d)

"~ 27zR



832 Chapter 30

Substitute for | + I4 from (d) to B Ho a
obtain: " 27R JR? +a2
Hyla 1

27 R \JR? +a°

Maxwell’s Equations and the Electromagnetic Spectrum

24 oo

Picture the Problem The figure shows the
end view of a pillbox surrounding a small B ove
area dA of the surface. The normal

components of the magnetic field, f

B . andB are shown with

different magnitudes. When performing the
surface integral the normal to the surface is *
outward, as shown in the figure.

b33

n, top n, bottom !

-
\Bbelow

>

Apply Gauss’s law for magnetism to the pillbox to obtain:

§s|§-ﬁdA= jé-ﬁdA+ jé-ﬁdA+ jé-ﬁdAzo

bottom surface lateral surface top surface

Because the horizontal component of B is Z€ro, I B-AdA=0 , and:

lateral surface

§Sé-ﬁdA= jé-ﬁdA+ jé-ﬁdA:O 1)
bottom surface top surface

Because B and fare oppositely I Boetow - AGA = =B, 110 A
directed at the bottom surface: bottom surface
Because B and fare parallel at the J.ébelow “NAA = B, e A
top surface: topsurface
Substitute in equation (1) to obtain: =B, beiowA+ B, o0 A=0
Solve for By op: B above = Bn betow | i-€., the normal

component of B is continuous across the
surface.
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*25 .
Picture the Problem We can use ¢ = fA to find the wavelengths corresponding to the
given frequencies.

Solve ¢ =fA for A /1=£
f
For f = 1000 kHz: i
@ For . P L R
1000x10°s
f— . 8
(b) For f = 100 MHz: ZZM: 3.00m
100x10°s
*26

Picture the Problem We can use ¢ = fA to find the frequency corresponding to the given
wavelength.

Solve ¢ = fA for f: - C

Substitute numerical values and evaluate f: f o 3x10®m/s

= W :1010 HZ = lOOGHZ
X m

27 o
Picture the Problem We can use ¢ = fA to find the frequency corresponding to the given
wavelength.

Solve ¢ = fA for f: f_C
Substitute numerical values and evaluate f: _ 3x10° T/S _[3.00x10® Hz
0.1x107 m

Electric Dipole Radiation

28 e
Picture the Problem We can use the intensity I, at a distance r = 10 m and at an angle &
= 90° to find the proportionality constant in the expression for the intensity of radiation
from an electric dipole and then use the resulting equation to find the intensity at the
given distances and angles.
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Express the intensity of radiation as I(H r)

_ =5%9n29 (1)
a function of r and 4: r

where C is a constant of proportionality.

Express 1(90°,10 m): 1(90°10m) =1, :Lsin290°

(1om)
_ C
100m?
Solve for C: C :(100 mz)ll
- - - - . 2
Substitute in equation (1) to obtain: I(&, r) _ !100;1 !Il sin2 o @
H — 2
(a) Evaluate equation (2) for r = 30 | (900130 m): (100 m )le sin290°
mand & = 90°: (30 m)
=11,
H _ 2
(b) Evaluate equation (2) forr = 10 | (450110 m) _ (lOO m )le sin? 45°
mand & = 45°: (10 m)
=z
(c) Evaluate equation (2) for o 3 (100 mz)l1 . 9
r=20mand 6 = 30°: 1(30°,20m) = (20m)? sin”30
ey
16 "1

29 e
Picture the Problem We can use the intensity I, at a distance r = 10 m and at an angle &
= 90° to find the proportionality constant in the expression for the intensity of radiation
from an electric dipole and then use the resulting equation to find the angle for a given
intensity and distance and the distance corresponding to a given intensity and angle.

Express the intensity of radiation as C .
) _ 1(0,r)=—sin’6 1)
a function of rand 4: r

where C is a constant of proportionality.
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Express 1(90°,10 m):

Solve for C:

Substitute in equation (1) to obtain:

(@ Forr=5mand I(&r) = I;:

Solve for @to obtain:

(b) For @ =45°and I(6r) = I;:

Solve for r to obtain:

30 oo

sin%90°

C
1(90°10m)=1, = fomy
C

T 100m?

C =(10om?)1,

1(6,r)= MSW 0 (2

2
|, = (1(22 m)2)|1 sin® @
m
or
sin6 =1

r=,/3{00m*)=|7.07m

Picture the Problem We can use the intensity I at a distance r = 4000 m and at an angle
6 =90° to find the proportionality constant in the expression for the intensity of radiation
from an electric dipole and then use the resulting equation to find the intensity at sea level

and 1.5 km from the transmitter.

Express the intensity of radiation as
a function of r and 4:

Use the given data to obtain:

I(e,r):%sinze (1)

where C is a constant of proportionality.

4x10™ W/m? = sin%90°

C
(4k

m)’
C

(4km)’
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Solve for C: C=(4 km)2(4><10‘12 W/mz)
=6.40x10° W
Substitute in equation (1) to obtain: I(H, r) 6. 4O><120 W 20 (2)
For a point at sea level and 1.5 km 0 =tan™ 2km —53.1°
from the transmitter: 5km
Evaluate 1(53.1°,1.5 km):
-5
1(53.1°1.5km) = 04010 "W ;253 10 18.2 pW/m?

31 00

(1.5km)’

Picture the Problem The intensity of radiation from an electric dipole is equal to
lo(sin?@)/r?, where @is the angle between the electric dipole moment and the position
vector r'. We can integrate the intensity to express the total power radiated by the antenna
and use this result to evaluate lo. Knowing I, we can find the intensity at a horizontal
distance of 120 km directly in front of the station.

Express the intensity of the signal as | (r 6?) —I sin? @
a function of rand 6: 02
Ata horizon'FaI distant_:e of 12_0 km | (120 km,90°) _ 1, sin’ 9002
from the station and directly in front (120 km)
of it | @)
_ 0
(120kmY’
From the definition of intensity we dP = IdA
have: and

Py = [ 1(r,0)dA

where, in polar coordinates,
dA=r’singdéd¢

Substitute for dA to obtain: 2z
Po=[[1(r.0)r’sinododg
00
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Substitute for I(r, 6):

From integral tables we find that:

Substitute and integrate with respect
to ¢ to obtain:

Solve for Ig:

Substitute for Py and evaluate |g:

Substitute for Iy in equation (1) and
evaluate 1(120 km,90°):

Express the number of photons
incident on an area A in time At:

Substitute numerical values and
evaluate I/hf;

*32 [X1)

2rm

Py = 1o [ [sin® 0d6dg
00

Isinsede = —1cosOlsin?0+2)| =%
0
4 2z 4 . 872'
Ptotzglo_([d¢:§|0[¢]g :?Io
3
I0 gptot
I =i(500kw)= 59.7 kW
8z
|(120km,90°) = 22T KW
(120km)
= | 4.15 W/m?
N N NI
AAt  (P/1)At  PAt
_NE_
E E/N hf
1 4.15 f\W/m?
hf  (6.63x10*J-5)(1.20 MHz)
~5.21x10% PNYONS
m--S
~| 5.22x 10" PROtoNS
cm" -S

Picture the Problem The intensity of radiation from an electric dipole is given by
lo(sin?8)/r?, where @is the angle between the electric dipole moment and the position
vector . We can integrate the intensity to express the total power radiated by the antenna
and use this result to evaluate l,. Knowing I, we can find the total power radiated by the

station.

From the definition of intensity we

dP = IdA
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have: and
P =[] 1(r,0)dA
where, in polar coordinates,
dA=r?sinddad¢

Substitute for dA to obtain: 2r7
Po = [ [1(r.0)r?singdadg
00

Express the intensity of the signal as sin’

P yorme s 1(r,0)=1,2"7 ®
a functionof rand 4: r2
Substitute for I(r, 6): 277

P = 1o [ [sin® 0dodg
00

From integral tables we find that: <. . . 4
] _[sm39d9=—%cose(sm26'+2)]0 =3
0

Substitute and integrate with respect 4 4

_ _ 2r 872-
to ¢ to obtain: P‘m_§|°£d¢_§|°[¢]° _?IO
From equation (1) we have: | 1(r,0)r?

° sin’o
Substitute to obtain: p 87 1(r,0)r?

© 3 sin?0
or, because = 90°,
8
Ptot:?l(r)rz

Substitute numerical values and Ptot _ 8_7T (2 %1073 W/mz)(30 km)z
evaluate Pyy: 3

= 1.51mW

33 eee

Picture the Problem The intensity of radiation from the airport’s vertical dipole antenna
is given by lo(sin?6)/r?, where @is the angle between the electric dipole moment and the
position vector F. We can integrate the intensity to express the total power radiated by the
antenna and use this result to evaluate lo. Knowing I, we can find the intensity of the
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signal at the plane’s elevation and distance from the airport.

Express the intensity of the signal as
a function of rand 4:

From the definition of intensity we
have:

Substitute for dA to obtain:

Substitute for I(r,0):

From integral tables we find that:

Substitute and integrate with respect
to ¢to obtain:

Solve for Ig:

Substitute for Iy in equation (1):

At the elevation of the plane:

Substitute numerical values and
evaluate 1(4717 m,32°):

sin @
1(r,0)=1, = 1)
dP = IdA
and

Py =[] 1(r,0)dA
where, in polar coordinates,
dA=r’singdéd¢

Po=[[1(r.0)r’sinododg
0

P =l [ [sin*0dodg
00

jsine’edé?:—%cos&(s.in2 49+2)];’ =%
0

4 4 e 87
Po =2 1o [ dp=Lo[g]" ==~
tot 3 0_!. 3 0 0 3 0
:87Z tot

3P, sin*@
8z r?

0 =tan| 2290M | _ 3500
4000m

1(r,0)=

and
r =/(2500mY’ +(4000mYy = 4717m

3(100W) sin?32°
8z  (4717mYy
0.151 zW/m?

1(4717 m,32°) =




840 Chapter 30

Energy and Momentum in an Electromagnetic Wave

K7/

Picture the Problem We can use Pr = I/c to find the radiation pressure. The intensity of
the electromagnetic wave is related to the rms values of its electric and magnetic fields
according to | = E;msBms/ 0, Where Bips = Ems/C.

(a) Express the radiation pressure in I

P=—
terms of the intensity of the wave: " c
Substitute numerical values and 100 W/m?

 =————=| 0.333Pa
evaluate P;: 3x108 m/s
(b) Relate the intensity of the | E s Brms
electromagnetic wave to E,s and My
Brms! or, because Bms = Eyms/C,
2
I — Erms EH’T‘IS/C — Erms
Hy HoC

Solve for Eqms: E s = +/ £4CI

Substitute numerical values and evaluate E,ys:

E,. = /(47 x107 N/AZ)(3x10° m/s)(100 W/m? ) =[ 194 V/m

(c) Express Bims in terms of Ejp: B - E s
rms
C
Substitute numerical values and - 194\8//m _[0.647 T
evaluate Byms: 3x10°m/s
35 o

Picture the Problem The rms values of the electric and magnetic fields are found from
their amplitudes by dividing by the square root of two. The rms values of the electric and
magnetic fields are related according to Bys = Erms/C. We can find the intensity of the
radiation using | = E;nsBims/ 16 and the radiation pressure using P, = I/c.

(a) Relate E;pys to Eg: E, 400V/m

Erms:__—_
J2o W2

283V/m
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(b) Find Byms from Eps:

(c) The intensity of an
electromagnetic wave is given by:

Substitute numerical values and
evaluate I:

(d) Express the radiation pressure in
terms of the intensity of the wave:

Substitute numerical values and
evaluate P;:

36 -

E 283V/m

rms

Brms - - 8
¢ 3x10°m/s

=[0.943 T

_E,.B

rms —rms

Ho

[ (283V/m)(0.9434T) _ ST

47 x107" N/A?

P =
C

_212W/m?
" 3x10®mi/s

0.707 uPa

Picture the Problem Given E;ns, we can find Byys using Bms = Erms/C. The average
energy density of the wave is given by Uy, = E;msBrms/ o€ and the intensity of the wave by

I =uycC.

(a) Express Byms in terms of Eyng:

Substitute numerical values and
evaluate By

(b) The average energy density U,y is
given by:

Substitute numerical values and
evaluate U,y:

(c) Express the intensity as the
product of the average energy
density and the speed of light in a
vacuum:

rms:—400\8”m —[1.33,T
3x10° m/s

_E,.B

rms —rms

HoC

u

av

~ (400V/m)(1.334T)
¥ (47 x107 N/A?)(3x10° mis)

=[1.413/m?

l=u,C

av
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Substitute numerical values and
evaluate I:

37 e

| = (1.41,0/m*)(3x10° mis)
=| 423W/m*

Picture the Problem We can simplify the units of cB to show that this product has the

same units as E.
Express the units of cB and simplify:

m m N m
—xT=—x
S s Am s

*38 -

3|<

o
C-m

Picture the Problem Given B;s, we can find E;ns using E;ms = CBims. The average energy
density of the wave is given by Uy, = ErmsBrms/ t0C and the intensity of the wave by

| = uyC.
(a) Express Egms in terms of Bys:

Substitute numerical values and
evaluate Ens:

(b) The average energy density U,y is
given by:

Substitute numerical values and
evaluate U,

(c) Express the intensity as the
product of the average energy
density and the speed of lightin a
vacuum:

Substitute numerical values and
evaluate I:

Erms = CBrms

E,.. = (3x10° m/s)(0.245 4T)
=[735V/m

_E,..B

'ms —rms

HoC

u

av

~ (73.5V/m)(0.245 4T)
¥ (47 %107 N/A?)(3x10° m/s)

=| 47.8nJ/m>

l=u.cC

av

| = (47.8nJ/im*)(3x10° mis)
=| 14.3W/m?
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39 e
Picture the Problem We can find the force exerted on the card using the definition of
pressure and the relationship between radiation pressure and the intensity of the
electromagnetic wave. Note that, when the card reflects all the radiation incident on it,
conservation of momentum requires that the force is doubled.

(a) Using the definition of pressure, F=PA
express the force exerted on the card
by the radiation:

Relate the radiation pressure to the P — I
intensity of the wave: " c
Substitute to obtain: F_1A
C

Substitute numerical values and = (200 W/mz)(0.2 m)(0.3m)
evaluate F: - 3x10° m/s

=| 40.0nN
(b) If the card reflects all of the F =|80.0nN

radiation incident on it, the force
exerted on the card is doubled:

40 e
Picture the Problem Only the normal component of the radiation pressure exerts a force
on the card.

(a) Using the definition of pressure, F =2P Acosé

express the force exerted on the card where the factor of 2 is a consequence of

by the radiation: the fact that the card reflects the radiation
incident on it.

Relate the radiation pressure to the P — 1

intensity of the wave: " oc

Substitute to obtain: E_ 21Acosé

c
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Substitute numerical values and = 2(200 W/mz)(O.Z m)(0.3m)cos 30°
evaluate F: - 3x10° m/s

=169.3nN
*41 e

Picture the Problem We can use | = P, /47r* and | = ErmsBrms/ 1o 10 express Eys in terms
of P,, and the distance r from the station.

Express the intensity | of the | = P,

radiation as a function of its average Arr®

power and the distance r from the

station:

The intensity is also given by: _ EpiBme  EZ Elu

rms __

I
Hy City  2Cu,

Equate these expressions to obtain: P, _ EZ.
4rr®  2cu,

Solve for Epax: E - CuoPy (1
e 2 \r

(a) Substitute numerical values and evaluate E.x for r =500 m:

2 500m

8 -7 2
£ (500m)= \/(3><1o m/s)(47 x107 N/A )(SOkW)( 1 jz 326V

Use Biax = Emax/C t0 evaluate By )
= 2AeVIm T
3x10°m/s

(b) Substitute numerical values and evaluate En. forr =5 km:

8 -7 2
£ (5km)= \/(3><10 m/s)(4z 107 N/A )(50kw)[ 1 j_ 326V

2 5km )

Use Biax = Emax/C t0 evaluate Bay: ~0.346 V/m 3

max = =5 ——=| 1.15nT
3x10°m/s

(c) Substitute numerical values and evaluate Ep for r =50 km:
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£ (500m)= \/(3><108 m/s)(4z 107 N/A?)(50 kW)( 1

Use Biax = Emax/C t0 evaluate By

42 e

27

845

0.0346 V/Im

50kmj:

©0.0346V/m _

max = —————=——=| 0.115nT
3x10° m/s

Picture the Problem We can use | = P4/A to express Ems in terms of I. We can then use
Brms = Erms/C to find Bms. The average power output of the sun is given by P,, = 47R%,

where R is the earth-sun distance. The intensity and the radiation pressure at the surface
of the sun can be found from the definitions of these physical quantities.

(a) From the definition of intensity
we have:

Substitute numerical values and
evaluate I:

(b) Express the intensity | of the
radiation as a function of its average
power and the distance r from the
station:

Solve for E .

Substitute numerical values and evaluate E,s:

=Py _ 4R
A rd®
| =M= 1.91KW/m?
(10 m)
I — ErmsBrms — Erzms
Hy Cily

Erms = \ICIUOI

E,ps = v/ (3x10° m/s)(47 x 107 N/A?)(1.91kW/m?) =

Use B;ms = E/ms/C to evaluate Byms:

(d) Express the radiation pressure in
terms of the intensity:

Substitute numerical values and
evaluate P;:

849V/m

,ms=—8492”m —[2.83,T
3x10°m/s

P =
C

3 2
P - 1.91><1O8 Wim _[6.37 uPa
3x10°m/s
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*43 e
Picture the Problem We can use | = E;nsBrms/ 10 and Byms = Erms/C t0 express Eyys in terms
of 1. We can then use By = E/ms/C to find Bypps.

Express the intensity | of the | < EmsBrms _ EZ
radiation as a function of its average Ly CLly
power and the distance r from the

station:

Solve for Eps: E s = +/CAt |
I \Y

Use the definition of intensity to | = P — trans.line
relate the intensity of the A A
electromagnetic wave to the power

in the beam:

Substitute for | to obtain: Ctol rans tineV
Erms = A

Substitute numerical values and evaluate E,s:

8 -7 2 3
£ - (3x10° m/s)(47 x10 NIA JA0*A)(750KV) _ =z
50m
Use Byms = Ermg/C t luate Bims: .
€ Brms ¢ to evaluate By o 75 2k8V/m _To0251mT
3x10° m/s

44 e

Picture the Problem The spatial length L of the pulse is the product of its speed ¢ and
duration At. We can find the energy density within the pulse using its definition
(u=U/V). The electric amplitude of the pulse is related to the energy density in the beam
according to U =¢, E? and we can find B from E using B = E/c.

(a) The spatial length L of the pulse L = cAt

is the product of its speed ¢ and

duration At:

Substitute numerical values and L= (3 x108 m/s)(lo ns) =13.00m

evaluate L:
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(b) The energy density within the
pulse is the energy of the beam per
unit volume:

Substitute numerical values and
evaluate u:

(c) E is related to u according to:

Solve for E, to obtain:

Substitute numerical values and
evaluate Eq:

Use By = Eg/c to find By:

*45 e

§] U
u:—:
V  zriL
201J
= =| 531kJ/m?
z(2mm)*(3.00m)

— 2 _1 2
u=e, Erms =3 %o EO

8.85x10™? C?/N-m?
=| 346 MV/m

E. - \/ 2(531 ki/im®)

346 MV/m _

o=—f——=|115T
3x10°m/s

Picture the Problem We can determine the direction of propagation of the wave, its
wavelength, and its frequency by examining the argument of the cosine function. We can

find E from ‘g‘ = Ez/,uoc and B from B = E/c. Finally, we can use the definition of the

Poynting vector and the given expression for Stofind EandB .

(@)

Because the argument of the cosine function is of the form kx — wt,
the wave propagates in the positive x direction.

(b) Examining the argument of the
cosine function, we note that the
wave number k of the wave is:

Solve for and evaluate A:

Examining the argument of the
cosine function, we note that the

angular frequency w of the wave is:

k=27 _10m"
2

2=—2" __[0628m
10m

=22 =3x10°s™
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Solve for and evaluate f to obtain: _3x10°s™

f=————=| 477TMHz
2r
(c) Express the magnitude of Sin ‘g‘ _ E_2
terms of E: HoC
Solve for E: E- ﬂoc‘g‘

Substitute numerical values and evaluate E:

E = /(3x10° m/s)(47 x10~ N/A?)(100 W/m? ) =194 V/m

Because S(x,t)= (100W/m2)c082[10x—(3x109)t] fand S= L ExB:
Hy

E(x,t)= (194 V/m)cos|10x — (3x10° ) t] j

Use B = E/c to evaluate B: B 194V/m

= VI _ 6 647 uT
3x10®m/s a

-1 - - o - -
Because S =— E x B, the direction of B must be such that the cross product of E
Hy

with B is in the positive x direction:

B(x,t)=(0.647 4T)cos|10x — (3x10° ) t| k

46 oo
Picture the Problem We can use the definition of the electric field between the plates of
the parallel-plate capacitor and the definition of the displacement current to show that the
displacement current in the capacitor is equal to the conduction current in the capacitor
leads. In (b) we can use the definition of the Poynting vector and the directions of the
electric and magnetic fields to determine the direction of the Poynting vector between the

capacitor plates. In (c), we’ll demonstrate that the flux of S into the region between the
plates is equal to the rate of change of the energy stored in the capacitor by evaluating
these quantities separately and showing that they are equal.

(a) The electric field between the E— V(t) _ !(1_ o t/RC )
plates of the capacitor is given by: d d
The displacement current is I (t) =<, dé, —¢, d (AE)=¢, Ad_E

proportional to the rate at which the dt & dt
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flux is changing between the plates:

Substitute for E and carry out the
details of the differentiation to
obtain:

Because the capacitance of an air-

filled-parallel-plate capacitor is

givenby C = o A:

(b) Apply Ampere’s law to a closed
circular path of radius r (the radius
of the capacitor plates) to obtain:

Substitute for Ip from (a):

Solve for B to obtain:

d
Ay ]
€o dAV %[_ ot/RC ]
_So AV o t/RC
drRC

d V —t/RC
I, (1) =<, Aa[—(l—e )}

_C_V —t/RC _
lb®=25e" =1

B(Zﬁr):ﬂolc =ty

aNo
B(27r)= 1, <, d(RC)e H/RC
rv
B: —-t/RC
#0 S %4(re)°

849

Because E is perpendicular to the plates of the capacitor and B is tangent to
circles that are concentric and whose center is through the middle of the

capacitor plates, S points radially inward toward the center of the capacitor.

(c) The magnitude of the Poynting
vector is:

Substitute for B and E and simplify
to obtain:

The total power is:

-1 -BE

‘:I Ho

| =| So Ver e—t/RC(l_e—t/RC)
2 d°RC

P:d—E:27zl’d|
dt
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Substitute for | to obtain:

Because the capacitance of an air-
filled-parallel-plate capacitor is
e, I’

givenby C =

The energy in the capacitor at any
time is:

Differentiate E with respect to time
to obtain:

Substitute for V(t) and complete the
differentiation to obtain:

d—E:e Viar?® e—t/RC(l_e—t/RC)
dt ° drRC

dE _ V_Ze—t/RC (1_ e—t/RC)

R (1)

E=1ch )]
2

d_E_gF

dt  dt| 2

dE _ V_Ze—t/RC (1_ e—t/RC)

iR 2)

The equivalence of equations (1) and (2) proves that the flux of S into this
region is equal to the rate of change of the energy stored in the capacitor.

47 oo

Picture the Problem The diagram shows
the displacement of the pendulum bob,
through an angle 6, as a consequence of the
complete absorption of the radiation
incident on it. We can use conservation of
energy (mechanical energy is conserved
after the collision) to relate the maximum
angle of deflection of the pendulum to the
initial momentum of the pendulum bob.
Because the displacement of the bob during
the absorption of the pulse is negligible, we
can use conservation of momentum
(conserved during the collision) to equate
the momentum of the electromagnetic
pulse to the initial momentum of the bob.

Apply conservation of energy to
obtain:

Lcos

Ki -K,+U; -U, =0
or,since Ui=Ks=0and K; = pi2/2m,
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Ut is given by: U, = mgh =mgL(1- cos 0)

Substitute for Uy — p_lz +mg |_(1 —Cos 9) =0

2m
Solve for @ to obtain: B p?
f=cos | 1-—5—
2m-gL
Use conservation of momentum to 0 _U_PAt_
relate the momentum of the Y S '
electromagnetic pulse to the initial where At is the duration of the pulse.
momentum p; of the pendulum bob:
Substitute for p;: 2 2
0= cos‘l(l— %]
2m°c gL
Substitute numerical values and evaluate 6:
2 2
0=cos™|1- - (1000 MW)Z(ZOO ns) =| 6.10x107° degrees
2(10mg)* (3x10° m/s ) (9.81m/s? )(0.04 m)

Remarks: The solution presented here is valid only if the displacement of the bob
during the absorption of the pulse is negligible. (Otherwise, the horizontal
component of the momentum of the pulse-bob system is not conserved during the
collision.) We can show that the displacement during the pulse-bob collision is small
by solving for the speed of the bob after absorbing the pulse. Applying conservation
of momentum (mv = P(At)/c) and solving for v gives v = 6.67x10~" m/s. This speed is
so slow compared to ¢, we can conclude that the duration of the collision is
extremely close to 200 ns (the time for the pulse to travel its own length). Traveling
at 6.67x10™" m/s for 200 ns, the bob would travel 1.33x10™** m—a distance 1000
times smaller that the diameter of a hydrogen atom. (Since 6.67x10™" m/s is the
maximum speed of the bob during the collision, the bob would actually travel less
than 1.33x10™ m during the collision.)

48 oo

Picture the Problem We can use the definitions of pressure and the relationship between
radiation pressure and the intensity of the radiation to find the force due to radiation
pressure on one of the mirrors.
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(a) Because only about 0.01 percent
of the energy inside the laser "leaks
out", the average power of the
radiation incident on one of the
mirrors is:

(b) Use the definition of radiation
pressure to obtain:

The radiation pressure is also related
to the intensity of the radiation:

Equate the two expression for the
radiation pressure and solve for F:

Substitute numerical values and
evaluate F:

49 e
Picture the Problem The card, pivoted at
point P, is shown in the diagram. Note that
the force exerted by the radiation acts
along the dashed line. Let the length of the
card be ¢, the width of the card be w, and
the force acting on an area dA = w dx be
dFragiation- VWe can find the total torque
exerted on the card due to radiation
pressure by integrating d zagiation OVEr the
length ¢ of the card and then relate the
intensity of the light to the angle @ by
applying the condition for rotational
equilibrium to the card.

Express the torque, due to F, acting
at a distance x from P:

- =[1.50x10° W
10
P =t
A

where F is the force due to radiation
pressure and A is the area of the mirror on
which the radiation is incident.

p 2l _2P

c Ac
where P is the power of the laser and the
factor of 2 is due to the fact that the mirror
is essentially totally reflecting.

F 2P 2P
= =

= _ 2150x10° W) _
3x10° m/s

1.00mN

dF

radiation

Incident
Light

Reflected
Light

Y

mg

dr = xdF

radiation radiation
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. i i 21
Rela_te d!:rad.at.on to the intensity of dF.,... =< cosOdA
the light: C

where the factor of 2 arises from the total
reflection of the radiation incident on the

mirror.
Substitute to obtain: dr . - 2l oo xdA
c
= ﬂcost9 xwdx
c
Integrate x from 0 to ¢: 21w f
J T radiation — ——Cos (9_[ xdx
c 0
21w 2
= —cose(f—J :IA—Ecose
c 2 c
= " IA .
Apply D T, =0to the card: Tgcosﬁ—(%ﬁsm f)mg =0
Solve for I to obtain: | =M€ no
2A

Substitute numerical values and evaluate I:

(29)(9.81m/s?)(3x10° mis)

tan1° =| 3.42 MW/m?
2(0.1m)(0.15m)

The Wave Equation for Electromagnetic Waves

50 -
Picture the Problem We can show that Equation 30-17a is satisfied by the wave
function E, by showing that the ratio of 8°E,/ox° to 8°E,/ot* is 1/c* where ¢ = alk.

Differentiate oE, 0 :

E, = E, sin(kx — ot )with respect ox &[EO sin(ke—at)]

to X = KE, cos(kx — wt)

Evaluate the second partial aZEy 0

derivative of E, with respect to x: ™ ox [KE, cos(ix - at)] 1)

= —k’E, sin(kx — at)
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Differentiate E, = E, sin(kx — ot)

with respect to t:

Evaluate the second partial
derivative of E, with respect to t:

Divide equation (1) by equation (2)
to obtain:

51 -

oE, ¢ )
—Y -~ [E, sin(kx — ot
ot 8t[ 0 ( 0))]

= —wE, cos(kx — wt)

’E, o

" a[— wE, cos(kx — at)] @
= -w"E, sin(kx — wt)

0’E,

ox? _ —KEgsin(kx—at)  Kk?
0°E, -—aw’Eysin(kx—at) o
at?
or
0°E, _k*°E, 1 0°E,
x> o o* ¢’ ot
provided ¢ = aw/k.

Picture the Problem Substitute numerical values and evaluate c:

1

Cc=

=|3.00x10® m/s

J(47x107 N/A?)(8.85x107% C2/N-m?)

*52 eoo

Picture the Problem We can use Figures 30-10 and 30-11and a derivation similar to that

in the text to obtain the given results.

In Figure 30-11, replace B, by E,.
For Ax small:

Evaluate the line integral of
E around the rectangular area AXAz:

Express the magnetic flux through
the same area:

Apply Faraday’s law to obtain:

OE,
OX

AX

Ez(xz): Ez(xl)+

°E, AXAZ 1)

§I§-d?z—6x

[.B,dA = B,AxAz
S

. ?
fE-di =~~~ [ B,dA= —E(ByAxAz)

8By
=——>AXAZ
ot
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Substitute in equation (1) to obtain:

In Figure 30-10, replace E, by B,
and evaluate the line integral of
B around the rectangular area AXAz:

Evaluate these integrals to obtain:

(b) Using the first result obtained in
(@), find the second partial
derivative of E, with respect to x:

Use the second result obtained in (a)
to obtain:

Using the second result obtained in
(@), find the second partial
derivative of B, with respect to x:

Use the second result obtained in (a)
to obtain:

— °E, AXAZ = —%AXAZ
OX ot
or
oE, aBy
x ot

ﬁé-d?z,uo € ISEndA

provided there are no conduction currents.

ox S 5y
(%) 2(%
OX \_ OX ox\ ot
or

0°E, _ 0 (9B,
ox®  ot\ ox

O°E,_of O |_ _ OF,
oot et )T ar

or, because &, = 1/c?,

0°E, 1 0%E,

x ¢ ot

o (B, o ( oK,
5wl %)
or
0°B, o (oE,
o2 Mo E( ox j
o’B, o (0B, o’B,
Wzﬂo €o E(EJZIUO EOW
or, because < = 1/c?,

0°B, 1 0°B,

x2 ¢’ ot
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53 (1 1]

Picture the Problem We can show that these functions satisfy the wave equations by
differentiating them twice (using the chain rule) with respect to x and t and equating the
expressions for the second partial of f with respect to u.

Letu=x —vt. Then: of ouof of

9x 0xaou ou
and
of _8_uﬂ_ of

ot ot ou  ou

Express the second derivatives of f 02f 0%f
with respect to x and t to obtain: o = W
and
o%f ¥ 0% f
ot? ou?
Thus, for any f(u): 52t 1 o%f
ox> V2 ot?

Letu=x+ vt. Then:

of ouaf _of

0 X
and

of ouaf _of

ox ou au

ot otou  au

Express the second derivatives of f 02f  o%f
with respect to x and t to obtain: o o0
and
o f ¥ o°f
ot? ou?
Thus, for any f(u): 2%f 1 0%f
oxt  VE ot?
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General Problems

54 .

Picture the Problem We can substitute the appropriate units and simplify to show that
the units of the Poynting vector are watts per square meter and that those of radiation
pressure are newtons per square meter.

(a) Express the units of S and J " N
simplify: Ve Cm o m
m_ _ s
N N
A A’
J
s s
C
(b) Express the units of P, and w J N-m
simply: m? _ s-m? _ m?2 _ l
m m m m’
s S
55 oo

Determine the Concept The current induced in a loop antenna is proportional to the
time-varying magnetic field. For maximum signal, the antenna’s plane should make an
angle @ = 0° with the line from the antenna to the transmitter. For any other angle, the
induced current is proportional to cos 6. The intensity of the signal is therefore
proportional to cos 6.

56 oo
Picture the Problem We can use ¢ = fA to find the wavelength. Examination of the
argument of the cosine function will reveal the direction of propagation of the wave. We
can find the magnitude, wave number, and angular frequency of the electric vector from
the given information and the result of (a) and use these results to obtain E (z, t). Finally,
we can use its definition to find the Poynting vector.

(a) Relate the wavelength of the 1= c

wave to its frequency and the speed

of light:

Substitute numerical values and B 3x10° m/s _

3.00m

evaluate A: ~ 100MHz
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From the sign of the argument of the cosine function and the spatial dependence
on z, we can conclude that the wave propagates in the z direction.

(b) Express the amplitude of E : E=cB= (3><1O8 m/s)(lO‘8 T)
=3.00V/m
Find the angular frequency and w=2rf= 27:(100 MHz) =6.28x10%s™
wave number of the wave:
and
k=27 __2%__509m*
A 3.00m

Because S is in the positive z direction, E must be in the negative y direction in order to
satisfy the Poynting vector expression:

~

E(z,t)=—(3.00V/m)cos|(2.09m™)z - (6.28x10° s )t

(c) Use its definition to express the Poynting vector:

. 1= = —(300V/im)o?* } (G s
5= 1 €8 00VIO Tl fooom ) fo2araors i)
or
S = (23.9mW/m? Jcos?|(2.09m™ )z - (6.28x10° s )t [k
The intensity of the wave is the | = §‘ - %(23,9 mW/mz)

average magnitude of the Poynting
vector. The average value of the
square of the cosine function is 1/2:

=112.0mW/m?

*57 oo

Picture the Problem The maximum rms voltage induced in the loop is given by

Ems = AwBO/\/E , Where A is the area of the loop, By is the amplitude of the magnetic
field, and w is the angular frequency of the wave. We can use the definition of density

and the expression for the intensity of an electromagnetic wave to derive an expression
for By.

The maximum induced rms emf £ = AwB, R 0B,
occurs when the plane of the loop is N N )

perpendicular to B : where R is the radius of loop of wire.

(1)
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From the definition of intensity we | = P
have: Arr?

where r is the distance from the transmitter.

The intensity is also given by: | — EoBy _ BZc
21y 24,
Substitute to obtain: Bic P
2u, A4rr?
Solve for By: 1 |uP
B, == /—
r\2zc
Substitute in equation (1) to obtain: T R2(27r f ) 1P
grms =
J2r 27wcC

_R*f [27°u,P
or\ooc

Substitute numerical values and evaluate &gms:

=| 7.25mV

o _ (0.3m)(100MHz) 2747 %1077 NIA? )(50kW)
ms V2 (105 m) 3x10% m/s

58 (L]

Picture the Problem The voltage induced in the piece of wire is the product of the
electric field and the length of the wire. The maximum rms voltage induced in the loop is
given by & = AwB,, where A is the area of the loop, By is the amplitude of the magnetic

field, and w is the angular frequency of the wave.

(a) Because E is independent of x: V =E/
where /£ is the length of the wire.

Substitute numerical values and V= [(10’4 N/C)COSlOGtJ(O.Sm)

evaluate V: _ (50.0/1V)COS].06'[

(b) The voltage induced in a loop is & =wB,A

given by: where A is the area of the loop and By is the

amplitude of the magnetic field.
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Eliminate B in favor of Eg and
substitute for A to obtain:

Substitute numerical values and
evaluate &

59 e

PG R?
C
o 10°s7)10* NIC) 7 (0.2m)°
3x10° m/s
=[41.9nv

Picture the Problem Some of the charge entering the capacitor passes through the
resistive wire while the rest of it accumulates on the upper plate. The total current is the
rate at which the charge passes through the resistive wire plus the rate at which it
accumulates on the upper plate. The magnetic field between the capacitor plates is due to
both the current in the resistive wire and the displacement current though a surface
bounded by a circle a distance r from the resistive wire. The phase difference between
the supplied current and the applied voltage may be calculated using a phasor diagram.

R
-Q +Q

(a) The current drawn by the
capacitor is the sum of the
conduction current through the
resistance wire and dQ/dt, where Q
is the charge on the upper plate of
the capacitor:

Express the conduction current I in
terms of the potential difference
between the plates and the
resistance of the wire:

Express the displacement current
between the capacitor plates. Let C
be the capacitance of the capacitor:

| = Ic+d—Q
dt
I :!:\ﬁsina)t
R R
Q=CV
so
dQ dv

—=C—=wCV, coswt
dt dt

@)
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Substitute in equation (1): | :V—Osin oL+ 0OV, cosat  (2)
R 0

Using Equation 24-10 for the c_SA_S ra’
capacitance of a parallel-plate d d
capacitor with plate area A and plate

separation d we have:

Substituting for C equation 2 gives: ral

| = V{%sin a)t+w€°T

CcOos a)tj

(b) Apply the generalized form of §CL5> dl = ,uo(lc + I'd)
Ampere’s law to a circular path of

radius r centered within the plates of

the capacitor, where ', is the

displacement current through the
flat surface S bounded by the path
and I, is the conduction current
through the same surface:

By symmetry the line integral is B B(2zr)=p(1, +1') (3)
times the circumference of the circle
of radius r:

In the region between the capacitor ' = e
plates there is a uniform electric 0 ° dt
field due to the surface charges +Q dE , dE
and —Q. The associated E
displacement current through S is: provided (r < a)

To evaluate the displacement E=0/e,,where o = Q/A= Q/(;z az)
current we first must evaluate E 0

everywhere on S. Near the surface Q

of a conductor E = o/, (Equation

22-25), where o is the surface
charge density:
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Substituting for E in the equation for
I'y gives:

Substituting for Ic and I, in

equation (3) and solving for B gives:

(c) Both the charge Q and the
conduction current I, are in phase
with V. However, dQ/dt, which is
equal to the displacement current Iy
through S for r > a, lags V by 90°.
(Mathematically, cos at lags behind
sin at by 90°.) The voltage V leads
the current I = I; + 14 by phase angle
6. The current relation is expressed
in terms of the current amplitudes:

The values of the conduction and
displacement current amplitudes are
obtained by comparison with the
answer to part (a):

A phasor diagram for adding the
currents I; and l4 is shown to the
right. The conduction current I is in
phase with the voltage V across the
resistor and I4 lags behind it by 90°:

dt\ g, 7a
r dQ i—(v sin ot)
d2 dt d?dt °
r2

= a)FV0 cos wt

ol +1'y)
B(r): - 2rr

V, ’
= o | Yogip a)t+a)r—2V0 oS et
2zrr R a

2
_| HaYo lsincot+a)r—2coswt
2zr\ R a

=1 +1,
or

| e SIN(@+3) =1 1, SIN 0

+ | max COS @0t

I L

emax = o
and

|y o €, ;razvo

\

c,max
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From the phasor diagram we have: Vv W e, ra’
| o 4
tan 5 = 4" = d
Ic,max VO/R
_Roe, ra’
d
SO
2
5= tan‘l( Rw e(; ra J

Remarks: The capacitor and the resistive wire are connected in parallel. The
potential difference across each of them is the applied voltage V, sin ax.

60 e
Picture the Problem The total force on the surface is the sum of the force due to the
reflected radiation and the force due to the absorbed radiation. From the conservation of
momentum, the force due to the 10 kW that are reflected is twice the force due to the 10
kW that are absorbed.

Express the total force on the Foo =F +F,
surface:
Substitute for F, and F, to obtain: o 2(:P) 2P _3P

o c c 2
Substitute numerical values and F - 3(20 FZW) _T0100mN
evaluate Fi: 2i3><10 m/Si
<G1 o

Picture the Problem We can use the definition of the Poynting vector and the
relationship between B and E to find the instantaneous Poynting vectors for each of the
resultant wave motions and the fact that the time average of the cross product term is zero
for an # a», and ¥ for the square of cosine function to find the time-averaged Poynting
vectors.

(a) Because Eland EZ propagate in ExB= H,Si = B =Bk
the x direction:

Express B in terms of E; and E: B E(E +E )
c 1 2

Substitute for E; and E, to obtain:
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5-1 [E,, cos(kx—@rt)+ E, ; cos(k,x —myt + 5)|K

(@]

Express the instantaneous Poynting vector for the resultant wave motion:

S = i(EL0 cos(klx — a)lt)+ E,, cos(kzx —,t + 5))}

Hy
x %(Ew cos(kx — ayt)+ E, , cos(k,x — st + 5))K

= ic (E, , cos(k,x - @rt)+ E,  cos(k, X — a,t +5)f (] x IZ)
Hy

— [E1 o €08’ (kx— ayt)+ 2E, . E, , cos(k,x — at)
=| HC

% c0s(K,X — wyt + 8)+ E2, cos?(k,x — a,t + 8)| |

(b) The time average of the cross _ 1 -

i Bl +EL]i
product term is zero for @, # a,, and Sav = 5 E +E o]l
the time average of the square of the HoC

cosine terms is Y:

(c) In this case I§2 = —BK because the wave with k = k, propagates in the — i direction.
The magnetic field is then:

B ==[E, , cos(k,x—ayt)— E, , cos(k, X + m,t + 5)|k

Express the instantaneous Poynting vector for the resultant wave motion:

S= i(El,0 cos(kx — ayt)+ E, , cos(k,x— a,t +5))j

Hy

x %(Ew cos(k,x— ayt)—E, , cos(k X+ oyt + 5))K

= —[Elocos (kx— ayt)— E2, cos? (k,x + ot + 5)| 1

HoC
(d) The time average of the square _ 1 ) , 1-
of the cosine terms is %2: Sw = —[El,o - Ez,o] '
244,C

*G2 oo
Picture the Problem We can use the definitions of power and intensity to express the
area of the surface as a function of P, I, and the efficiency &
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Use the definition of power to relate B
) P=—c¢=1A¢
the required surface area to the
intensity of the solar radiation: where ¢ is the efficiency of the system.
Solve for A to obtain: At
le
Substitute numerical values and A 25kW _=[111m?
evaluate A: 0.3(0.75 kW/m )
63 e

Picture the Problem We can use the relationship between the average value of the
Poynting vector (the intensity), Eo, and By to find Bo. The application of Faraday’s law
will allow us to find the emf induced in the antenna. The emf induced in a 2-m wire
oriented in the direction of the electric field can be found using & = E/ and the
relationship between E and B.

(a) The intensity of the signal is S - E.By CBO2
related the amplitude of the YU 2u, 24,
magnetic field in the wave:
Solve for By: 2141
By =.—
c

Substitute numerical values and evaluate By:

-7 2 -14 2
B, - 2(47 x10 NIA Jao™ wim?) _ oo
3x10° m/s
(b) Apply I_:araday’s' law to the ’ :E(BA): Ai(NKmBO sin ot)
antenna coil to obtain: dt dt
= NK, AB,w Ccos at

Substitute numerical values and evaluate |8| :

€] = 2000(200)7(0.01m*(9.15x 10 T )[27(140 kHz)]cos[2 (140 kHz |t
= (1.014V)cos(8.80x10°s7 )t

(c) The voltage induced in the wire E=FE/
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is the product of its length £ and the
amplitude of electric field Eq:

Relate E to B: E =cB =cB, sin wt
Substitute for E to obtain: & =CclB, sin wt

Substitute numerical values and evaluate |8| :

& =(3x10° m/s)(2m)(9.15x 107 T)sin[2(140 kHz )]t
= | (5.49 uV)sin(8.80x10°s7 )t

64 e

Picture the Problem We’ll choose the y
curve with sides Ax and Az in the xy plane

shown in the diagram and apply Equation

B oE
30-6d to show that % =—1U, € aty : ; .
X 1 2
B _(.1/ /,(x:) i
, Az
¢ L
Because Ax is very small, we can B, (x,)—B,(x )= AB ~ 9B, \y
approximate the difference in B, at e 2 OX
the points x; and x; by:
Then: - oE
j;CB dl =~y g, #AXAZ
The flux of the electric field through L E dA= EyAxAy
this curve is approximately:
Apply Faraday’s law to obtain: 0B, AxAZ = — 4t € ok, AxAz
o Ho So ot
or
0B, OE
_ = e, ——
o Ho S ot

*65 o000
Picture the Problem We can use Ohm’s law to relate the electric field E in the conductor
to I, p, and a and Ampere’s law to find the magnetic field B just outside the conductor.
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Knowing E and B we can find S and, using its normal component, show that the rate of
energy flow into the conductor equals I°R, where R is the resistance.

(a) Apply Ohm’s law to the TS 7o S Vo N
AP _ V=IR=F== _EL
cylindrical conductor to obtain: A ra
Solve for E: o
E= 5
ra
(b) Apply Ampere’s law to a jcé -d7 =B(278) = pt] opoeeq = Mo

circular path of radius a at the
surface of the cylindrical conductor:

Solve for B to obtain: B_ 7N
2ra

. - . 1 . N
(c) The electric fl-e|(-j at the_surfe_lce S_* ExB
of the conductor is in the direction Mo
of the current and the magnetic field 1( 1p . ARN
at the surface is tangent to the = 'u— ? parallel % Utangent
surface. Use the results of (a) and °
(b) and the right-hand rule to _ ‘p ;
evaluate S : 27%a’

where T is a unit vector directed radially
outward from the cylindrical conductor.

(d) The flux through the surface of §SndA =S(2zaL)
the conductor into the conductor is:
Substitute for Sy, the inward §S da_ ! p (27al)= 12 pL
component of S , and simplify to " 2% - ra’
obtain:
Since R:p_L:p_LZ: §SndA= |2R
A rma
66 00

Picture the Problem We can use Faraday’s law to express the induced electric field at a
distance r < R from the solenoid axis in terms of the rate of change of magnetic flux and
B = ny,at to express B in terms of the current in the windings of the solenoid. We can

use the results of (a) to find the magnitude and direction of the Poynting vector S atthe
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cylindrical surface r = R just inside the solenoid windings. In part (c) we’ll use the
definition of flux and the expression for the magnetic energy in a given region to show
that the flux of S into the solenoid equals the rate of increase of the magnetic energy

inside the solenoid.

(a) Apply Faraday’s law to a
circular path of radius r <R:

Solve for E to obtain:

Express the magnetic field inside a
long solenoid:

The magnetic flux through a circle
of radius r is:

Substitute in equation (1) to obtain:

(b) Express the magnitude of Satr
=R:

At the cylindrical surface just inside
the windings:

Substitute to obtain:

Because the field E is tangential
and directed so as to give an induced
current that opposes the increase in
B, E x B is a vector that points
toward the axis of the solenoid.
Hence:

(c) Consider a cylindrical surface of
length L and radius R. Because
S points inward, the energy flowing

§E-df:E(2m):—%
c dt

1 ddn

=- 1
2zr dt @
B =ng,l =nu,at
¢, =BA=ny,atrr?
1 d ) nu,ar
E=———|ngatrr’|=| -—2—
27rl‘d'[['u0 " ] 2
s EB
Ho
B = ny,at
n,aR
ny,at
S_( Jouet) e
Hy 2
2 2
S_ on yoza Rtf

where T is a unit vector that points radially
outward.

2 2
§s,0a=27RLS =27 RL(””OTMJ

=n°r u,R*La’
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into the solenoid per unit time is:

Express the magnetic energy in the _ B®
solenoid: 214,

241,
B N’z u,R*La’t?
2
Evaluate dUg/dt: dU, d|n’zruR’La’?
dt  dt 2
=| n’z u,R’La’t
=§s,dA

*G7  eoe
Picture the Problem We can use a condition for translational equilibrium to obtain an
expression relating the forces due to gravity and radiation pressure that act on the
particles. We can express the force due to radiation pressure in terms of the radiation
pressure and the effective cross sectional area of the particles and the radiation pressure
in terms of the intensity of the solar radiation. We can solve the resulting equation for r.

Apply the condition for translational F-F =0
equilibrium to the particle: or, since F, = P,A and Fy = mg,
M.m
pa-CMm_j, &
R
The radiation pressure P, depends on P — l
the intensity of the radiation I: " c
The intensity of the solar radiation at | = P
a distance R is: Az R?
Substitute to obtain: p_ P
" 4zR%
Substitute for P,, A, and m in P ( 2) 421’ pGM, o
equation (1): 47 R2C R2 B
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Solve for R to obtain: [ 3P
167 pcGM|

Substitute numerical values and evaluate r;

o 3(3.83x10% W)
~ 167{1g/cm®)(3%10° m/s)(6.67 x 10 N-m? / kg? )(1.99x10% kg)

=[0.574 um

68 00
Picture the Problem

(a) At a perfectly conducting surface E = 0. Therefore, the sum of the electric fields of

the incident and reflected wave must add to zero, and so Ei =-E,.
(b) Let the incident and reflected Ei = Ey Cos(a)t - kx)
waves be described by: and

E, = —E,, cos(at +kx)

Use the trigonometric identity cos(a + f) = cosacosf — sinasinSto obtain:

E, + E, = E,, cos(at —kx)— E,, cos(at + kx) = E,, [cos(at — kx) - cos(et + kx)]
= E,, [cos ot cos(— kx) —sin et sin(- kx) — cos et cos kx + sin et sin(kx)]
= Eoy[coswt coskx + sin wt sin kx — cos et cos kx + sin et sin kx|

=| 2E,, sin wtsinkx |, the equation of a standing wave.

(c) Because ExB = /Jo§ and S is in the direction of propagation of the wave, we see

that for the incident wave B, = B, cos(a)t - kx). Since both S and E, are reversed for the
reflected wave, B, = B, cos(cot + kx). So the magnetic field vectors are in the direction

at the reflecting surface and add at that surface. Hence B = 2I_5>r .

*69 (1 1]

Picture the Problem Let the point source be a distance a above the plane. Consider a
ring of radius r and thickness dr in the plane and centered at the point directly below the
light source. Express the force of force on this ring and integrate the resulting expression
to obtain F.
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The intensity anywhere along this
infinitesimal ring is P/47 (r* + a%)
and the element of force dF on this
ring of area 2 rdr is given by:

Integrate dF fromr=0tor=o0

From integral tables:

Substitute to obtain:

Substitute numerical values and
evaluate F:

dF — P rdr a
Cclrrva?) it a?
Pardr

c(r2 +a’ )3/ ’
where we have taken into account that only
the normal component of the incident
radiation contributes to the force on the
plane, and that the plane is a perfectly
reflecting plane.

IMW
3x10®m/s

3.33mN
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