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Chapter 31 
Properties of Light 
 
Conceptual Problems 
 
1 •  
Determine the Concept The population inversion between the state E2,Ne and the state 
1.96 eV below it (see Figure 31-9) is achieved by inelastic collisions between neon atoms 
and helium atoms excited to the state E2,He. 

 
2 ••  
Determine the Concept Although the excited atoms emit the light of the same frequency 
on returning to the ground state, the light is emitted in a random direction, not exclusively 
in the direction of the incident beam. Consequently, the beam intensity is greatly 
diminished. 

 
3 •  
Determine the Concept The layer of water greatly reduces the light reflected back from 
the car’s headlights, but increases the light reflected  by the road of light from the 
headlights of oncoming cars. 

 
4 •  
Determine the Concept When light passes from air into water its wavelength changes 
( waterairwater nλλ = ), its speed changes ( waterwater ncv = ), and the direction of its 

propagation changes in accordance with Snell’s law. correct. is )(c  

 
*5 ••  
Determine the Concept The change in atmospheric density results in refraction of the 
light from the sun, bending it toward the earth. Consequently, the sun can be seen even 
after it is just below the horizon. Also, the light from the lower portion of the sun is 
refracted more than that from the upper portion, so the lower part appears to be slightly 
higher in the sky. The effect is an apparent flattening of the disk into an ellipse. 

 
6 •  
Determine the Concept (a) Yes. (b) Her procedure is based on Fermat’s principle in 
that, since the ball presumably travels at constant speed, the path that requires the least 
time of travel corresponds to the shortest distance of travel. 

 
7 •  
Determine the Concept Because she can run faster than she can swim, she should 
choose the path that will maximize her running distance. Path LES is the path that 
satisfies this criterion. 
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8 •  
Picture the Problem The intensity of the light transmitted by the second polarizer is 
given by ,II θ2

0trans cos=  where .2
1

0 II = Therefore, θ2
2
1

trans cosII = and 

correct. is )(b  

 
9 •  
Picture the Problem Polarized light can be produced from unpolarized light by 
absorption, reflection, birefringence, and scattering. Therefore, correct. is )(d  

 
*10 ••  
Determine the Concept The diagram shows that the radiated intensity for a dipole is 
zero in the direction of the dipole moment. Because the dipole axis is in the same 
direction as the polarization, for light polarized parallel to plane of incidence, the dipole 
axis will point in the same direction as the reflected wave, i.e., in the direction described 
by Brewster’s law. As the diagram indicates, there is zero field in the direction of the 
refracted ray.  On the other hand, if the incoming wave is polarized perpendicular to the 
plane of incidence, the dipole axis will never point along the direction of propagation for 
the reflected or refracted wave. 

 
 
11 ••   
Determine the Concept The diagram shows unpolarized light from the sun incident on 
the smooth surface at the polarizing angle for that particular surface.  The reflected light 
is polarized perpendicular to the plane of incidence, i.e., in the horizontal direction.  The 
sunglasses are shown in the correct orientation to pass vertically polarized light and block 
the reflected sunlight. 
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12 •  
(a) True. 
 
(b) False. Most of the light incident normally on an air–glass interface is transmitted. 
 
(c) False. The relationship between the angles of incidence and refraction depends on the 
indices of refraction on both sides of the interface. 
 
(d) False. The index of refraction of water is a function of the wavelength of light. 
 
(e) True. 

 
13 ••  
Picture the Problem Because the speed of light in a given medium is inversely 
proportional to the index of refraction of the medium, we can decide which of the 
statements are true by referring to Figure 31-26. 

 
(a) The graphs of n vs. λ are not horizontal lines and so the speed of light is a 
function of its wavelength. 
 
(b) Because the index of refraction decreases with wavelength, violet light has the 
lowest speed and red light the highest speed. 
 
(c) Because the index of refraction decreases with wavelength, violet light has the 
lowest speed and red light the highest speed. correct. is )(c  

 
(d) Examination of Figure 31-26 tells us that this statement is false. 
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(e) Examination of Figure 31-26 tells us that this statement is false. 
 
*14 ••  
Picture the Problem The sound is reflected specularly from the surface of the water (we 
assume it is calm). It is then refracted back toward the water in the region above the water 
because the speed of sound depends on the temperature of the air and  is greater at the 
higher temperature. The pattern of the sound wave is shown schematically below. 
 

 
 
15 •  
Determine the Concept In resonance absorption, the molecules respond to the frequency 
of the light through the Einstein photon relation E = hf.  Thus, the color appears to be the 
same in spite of the fact that the wavelength has changed. 
 
Estimation and Approximation 
 
16 •  
Picture the Problem We can use the distance, rate, and time relationship to estimate the 
time required to travel 6 km (see Problem 31-14). 

 
Express the distance D to light 
traveled in terms of its speed c and 
the elapsed time ∆t: 
 

tcD ∆=  

Solve for ∆t: 
 c

Dt =∆  

 
Substitute numerical values and 
evaluate ∆t: 
 

s0.20
m/s10998.2

km6
8 µ=

×
=∆t  

 
17 •  
Picture the Problem We can use the period of Io’s motion and the position of the earth 
at B to find the number of eclipses of Io during the earth’s movement and then use this 
information to find the number of days before a night-time eclipse. During the 42.5 h 
between eclipses of Jupiter’s moon, the earth moves from A to B, increasing the distance 
from Jupiter by approximately the distance from the earth to the Sun, making the path for 
the light longer and introducing a delay in the onset of the eclipse. 
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(a) Find the time it takes the earth to 
travel from point A to point B: 

h2191
d

h24
4

d24.365
4

earth

=

×=

=→
Tt BA

 

 
Because there are 42.5 h between 
eclipses of Io, the number of 
eclipses N occurring in the time it 
takes for the earth to move from A 
to B is: 
  

55.51
h42.5
h2191

Io

=== →

T
tN BA  

Hence, in one-fourth of a year, there will be 51.55 eclipses. Because we want to find the 
next occurrence that happens in the evening hours, we’ll use 52 as the number of 
eclipses. We’ll also assume that Jupiter is visible so that the eclipse of Io can be observed 
at the time we determine. 
 
Relate the time t(N) at which the 
Nth eclipse occurs to N and the 
period TIo of Io: 
 

( ) IoNTNt =  

Evaluate t(52) to obtain: 
 ( ) ( )

d083.92
h24

d1h5.425252

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=t

 

 
Subtract the number of whole days 
to find the clock time t: 
 

( )

am2

h992.1
d

h24d0.083

d92d92.083d9252

≈

=×=

−=−= tt

 

 
Because June, July, and August 
have 30, 31, and 31 d, respectively, 
the date is: 
 

1September  

(b) Express the time delay ∆t in the 
arrival of light from Io due to the 
earth’s location at B: 
 

c
rt sun-earth=∆  
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Substitute numerical values and 
evaluate ∆t: 
 min33.8

s500
m/s10998.2
m105.1

8

11

=

=
×
×

=∆t
 

 
pm.08:2at occur actually   willeclipse  theHence,  

 
18 ••  
Picture the Problem We can express the relative error in using the small angle 
approximation and then either 1) use trial-and-error methods, 2) use a spreadsheet 
program, or 3) use the Solver capability of a scientific calculator to solve the 
transcendental equation the results from setting the error function equal to 0.01. 
 
Express the relative error δ in using 
the small angle approximation: 
 

( ) 1
sinsin

sin
−=

−
=

θ
θ

θ
θθθδ  

A spreadsheet program was used to plot the following graph of δ (θ ). 
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From the graph, we can see that δ (θ ) < 1% for θ ≤ 0.24 radians. In degree measure, 
°≤ 14θ  

 
Remarks: Using the Solver program on a TI-85 gave θ = 0.244 radians. 
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Sources of Light  
 
19 •  
Picture the Problem We can use the definition of power to find the total energy of the 
pulse. The ratio of the total energy to the energy per photon will yield the number of 
photons emitted in the pulse. 

 
(a) Use the definition of power to 
obtain: 
 

tPE ∆=  

Substitute numerical values and 
evaluate E: 
 

( )( ) mJ0.15ns5.1MW10 ==E  

(b) Relate the number of photons N 
to the total energy in the pulse and 
the energy of a single photon Ephoton:  
 

photonE
EN =  

The energy of a photon is given by: 
 λ

hcE =photon  

 
Substitute for Ephoton to obtain: 

hc
EN λ

=  

 
Substitute numerical values (the wavelength of light emitted by a ruby  laser is 694.3 nm) 
and evaluate N: 
 

( )( ) 16
19 1025.5

J1060.1
eV1

nmeV1240
mJ0.15nm3.694

×=
×⋅

= −N  

 
20 •  
Picture the Problem We can express the number of photons emitted per second as the 
ratio of the power output of the laser and energy of a single photon.  

 
Relate the number of photons per 
second n to the power output of the 
pulse and the energy of a single 
photon Ephoton:  
 

photonE
Pn =  

The energy of a photon is given by: 
 λ

hcE =photon  
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Substitute for Ephoton to obtain: 
hc
Pn λ

=  

 
Substitute numerical values and evaluate n: 
 

( )( ) photons/s1028.1
J1060.1

eV1
nmeV1240
mW4nm8.632 16

19 ×=
×⋅

= −n  

 
21 •  
Picture the Problem We can use the Einstein equation for photon energy to find the 
wavelength of the radiation for resonance absorption. We can use the same relationship, 
with ERaman = Einc − ∆E where ∆E is the energy for resonance absorption, to find the 
wavelength of the Raman scattered light. 

 
(a) Use the Einstein equation for 
photon energy to relate the 
wavelength of the radiation to 
energy of the first excited state: 
 

E
hc

=λ  

Substitute numerical values and 
evaluate λ: 
 

nm435
eV85.2

nmeV1240
=

⋅
=λ  

(b) The wavelength of the Raman 
scattered light is given by: 
 

Raman
Raman

nmeV1240
E

⋅
=λ  

Relate the energy of the Raman 
scattered light ERaman to the energy 
of the incident light Einc: 
 eV1.025

eV85.2
nm 320

nmeV1240
incRaman

=

−
⋅

=

∆−= EEE

 

 
Substitute numerical values and 
evaluate λRaman: 

nm1210
eV025.1

nmeV1240
Raman =

⋅
=λ  

 
22 ••  
Picture the Problem The incident radiation will excite atoms of the gas to higher energy 
states. The scattered light that is observed is a consequence of these atoms returning to 
their ground state. The energy difference between the ground state and the atomic state 

excited by the irradiation is given by
λ
hchfE ==∆ . 
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The energy difference between the 
ground state and the atomic state 
excited by the irradiation is given 
by: 
 

λλ
fmeV1240 ⋅

===∆
hchfE  

Substitute 368 nm for λ and 
evaluate ∆E: 

eV37.3
nm368

fmeV1240
=

⋅
=∆E  

 
23 ••  
Picture the Problem The ground state and 
the three excited energy levels are shown 
in the diagram to the right. Because the 
wavelength is related to the energy of a 
photon by λ = hc/∆E, longer wavelengths 
correspond to smaller energy differences. 

 
 

(a) The maximum wavelength of 
radiation that will result in 
resonance fluorescence corresponds 
to an excitation to the 3.2 eV level 
followed by decays to the 2.11 eV 
level and the ground state: 
 

nm5.387
eV3.2

fmeV1240
max =

⋅
=λ  

The fluorescence wavelengths are: nm1138
eV2.11eV3.2

fmeV1240
21 =

−
⋅

=λ  

and 

nm7.587
0eV2.11

fmeV1240
10 =

−
⋅

=λ  

 
(b) For excitation: nm1.285

eV35.4
fmeV1240

03 =
⋅

=λ  

 
The fluorescence wavelengths 
corresponding to the possible transitions 
are: 

nm1078
eV3.2eV35.4

fmeV1240
32 =

−
⋅

=λ  

nm1138
eV11.2eV2.3

fmeV1240
21 =

−
⋅

=λ  

nm7.587
0eV11.2

fmeV1240
10 =

−
⋅

=λ  

nm6.553
eV11.2eV35.4

fmeV1240
31 =

−
⋅

=λ  
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and 

nm5.387
0eV2.3
fmeV1240

20 =
−
⋅

=λ  

 
*24 ••  
Determine the Concept The energy difference between the ground state and the first 
excited state is 3E0 = 40.8 eV, corresponding to a wavelength of 30.4 nm. This is in the 
far ultraviolet, well outside the visible range of wavelengths. There will be no dark lines 
in the transmitted radiation. 
 
The Speed of Light 
 
25 •  
Picture the Problem We can use the distance, rate, and time relationship to find the 
distance to the spaceship. 

 
Relate the distance D to the 
spaceship to the speed of 
electromagnetic radiation in a 
vacuum and to the time for the 
message to reach the astronauts: 
 

tcD ∆=  

Noting that the time for the message 
to reach the astronauts is half the 
time for Mission Control to hear 
their response, substitute numerical 
values and evaluate D: 

( )( )
m1050.7

s5.2m/s10998.2
8

8

×=

×=D
 

and 
 correct. is )(a  

  
26 •  
Picture the Problem We can use the conversion factor, found in EP-3, to convert a 
distance in km into c⋅y: 

 
Convert D = 2×1019 km into light-
years: 

yc

ycD

⋅×=

×
⋅

××=

6

15
19

1011.2

m1046.9
1km102

 

 
27 •  
Picture the Problem We can use the distance, rate, and time relationship to find the time 
delay between sending the signal from the earth and receiving it on Mars. 

 
Relate the distance D to Mars to the tcD ∆=  
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speed of electromagnetic radiation 
in a vacuum and to the travel time 
for the signal: 
 
Solve for ∆t: 

c
Dt =∆  

 
Substitute numerical values and 
evaluate ∆t: 

s23min5

s324
m/s10998.2
m107.9

8

10

=

=
×
×

=∆t
 

 
28 •  
Picture the Problem We can use the given information that the uncertainty in the 
measured distance ∆x is related to the uncertainty in the time ∆t by  ∆x = c∆t to evaluate 
∆x. 

 
The uncertainty in the distance is: 
 

tcx ∆±=∆  
 

Substitute numerical values and 
evaluate ∆t: 

( )( )
cm0.30

ns0.1m/s10998.2 8

±=

×±=∆x
 

 
*29 ••  
Picture the Problem We can use the distance, rate, and time relationship to find the time 
difference Galileo would need to be able to measure the speed of light successfully. 

 
(a) Relate the distance separating 
Galileo and his assistant to the speed 
of light and the time required for it 
travel to the assistant and back to 
Galileo: 
 

tcD ∆=  

Solve for ∆t: 
c
Dt =∆  

 
Substitute numerical values and 
evaluate ∆t:  

( ) s0.20
m/s103

km32
8 µ=

×
=∆t  

 
(b) Express the ratio of the human 
reaction time to the transit time for 
the light: 

4reaction 10
s20
s2.0
==

∆
∆

µt
t

 

or 
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tt ∆=∆ 4
reaction 10  

 
Reflection and Refraction 
 
30 •  
Picture the Problem Let the subscript 1 refer to air and the subscript 2 to water and use 
the equation relating the intensity of reflected light at normal incidence to the intensity of 
the incident light and the indices of refraction of the media on either side of the interface. 

 
Express the intensity I of the light 
reflected from an air-water interface 
at normal incidence in terms of the 
indices of refraction and the 
intensity I0 of the incident light: 
 

0

2

21

21 I
nn
nnI ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
−

=  

Solve for the ratio I/I0: 
 

2

21

21

0
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=
nn
nn

I
I

 

 
Substitute numerical values and 
evaluate I/I0: %01.20201.0

33.11
33.11 2

0

==⎟
⎠
⎞

⎜
⎝
⎛
+
−

=
I
I

 

 
*31 ••  
Picture the Problem The diagram shows 
ray 1 incident on the vertical surface at an 
angle θ1, reflected as ray 2, and incident on 
the horizontal surface at an angle of 
incidence θ3. We’ll prove that rays 1 and 3 
are parallel by showing that θ1 = θ4, i.e., by 
showing that they make equal angles with 
the horizontal. Note that the law of 
reflection has been used in identifying 
equal angles of incidence and reflection.  
 
We know that the angles of the right 
triangle formed by ray 2 and the two 
mirror surfaces add up to 180°: 
 

°=−°+°+ 1809090 12 θθ  

or 
21 θθ =  

The sum of θ2 and θ3 is 90°: 
 

23 90 θθ −°=  

Because 21 θθ = : 13 90 θθ −°=  
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The sum of θ4 and θ3 is 90°: 
 

°=+ 9043 θθ  

Substitute for θ3 to obtain: °=+−° 9090 41 θθ ⇒ 41 θθ =  

 
32 ••  
Picture the Problem Diagrams showing the light rays for the two cases are shown 
below. In (a) the light travels from air into water and in (b) it travels from water into air. 

(a) 

 

(b) 
 

 
 
(a) Apply Snell’s law to the air-
water interface to obtain: 

2211 sinsin θθ nn =  

where the angles of incidence and 
refraction are θ1 and θ2, respectively. 
 

Solve for θ2: 
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −

1
2

11
2 sinsin θθ

n
n

 

 
A spreadsheet program to graph θ2 as a function of θ1 is shown below. The formulas used 
to calculate the quantities in the columns are as follows: 
 

Cell Content/Formula Algebraic Form 
B1 1 n1 
B2 1.33333 n2 
A6 0 θ1 (deg) 
A7 A6 + 5 θ1 + ∆θ 
B6 A6*PI()/180 

1801
πθ ×  

C6 ASIN(($B$1/$B$2)*SIN(B6)) 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
1

2

11 sinsin θ
n
n

 

D6 C6*180/PI() 

π
θ 180

2 ×  
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 A B C D 
1 n1= 1   
2 n2= 1.33333   
3     
4 theta1 theta1 theta2 theta2 
5 (deg) (rad) (rad) (deg) 
6 0 0.00 0.000 0.00 
7 1 0.02 0.013 0.75 
8 2 0.03 0.026 1.50 
9 3 0.05 0.039 2.25 
     

21 87 1.52 0.847 48.50 
22 88 1.54 0.847 48.55 
23 89 1.55 0.848 48.58 
24 90 1.57 0.848 48.59  

 
A graph of θ2 as a function of θ1 follows: 
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(b) Change the contents of cell B1 to 1.33333 and the contents of cell B2 to 1 to obtain the 
following graph: 
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Note that as the angle of incidence approaches the critical angle for a water-air interface 
(48.6°), the angle of refraction approaches 90°. No light will be refracted into the air if 
the angle of incidence is greater than 48.6°. 
 
33  •  
Picture the Problem We can use the definition of the index of refraction to find the 
speed of light in water and in glass. 

 
The definition of the index of 
refraction is: 
 

v
cn =  

Solve for v to obtain: 
 n

cv =  

 
Substitute numerical values and 
evaluate vwater:  

m/s1025.2
33.1

m/s103 8
8

water ×=
×

=v  

 
Substitute numerical values and evaluate 
vglass:  

m/s1000.2
5.1

m/s103 8
8

glass ×=
×

=v  

 
34 •  
Picture the Problem Let the subscript 1 refer to the air and the subscript 2 to the silicate 
glass and apply Snell’s law to the air-glass interface. 

 
Apply Snell’s law to the air-glass 
interface to obtain: 
 

2211 sinsin θθ nn =  

Solve for θ2: 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

1
2

11
2 sinsin θθ

n
n
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Substitute numerical values for the 
light of wavelength 400 nm and 
evaluate θ2, 400 nm: 
 

°=⎟
⎠
⎞

⎜
⎝
⎛ °= − 2.2545sin

66.1
1sin 1

nm 400 ,2θ

Substitute numerical values for the 
light of wavelength 700 nm and 
evaluate θ2, 700 nm: 
 

°=⎟
⎠
⎞

⎜
⎝
⎛ °= − 1.2645sin

61.1
1sin 1

nm700,2θ  

 
35 ••  
Picture the Problem Let the subscript 1 refer to the water and the subscript 2 to the glass 
and apply Snell’s law to the water-glass interface. 

 
Apply Snell’s law to the water-glass 
interface to obtain: 
 

2211 sinsin θθ nn =  

Solve for θ2: 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

1
2

11
2 sinsin θθ

n
n

 

 
(a) Evaluate θ2 for θ1 = 60°: 
 

°=⎟
⎠
⎞

⎜
⎝
⎛ °= − 2.5060sin

5.1
33.1sin 1

2θ  

 
(b) Evaluate θ2 for θ1 = 45°: 
 

°=⎟
⎠
⎞

⎜
⎝
⎛ °= − 8.3845sin

5.1
33.1sin 1

2θ  

 
(c) Evaluate θ2 for θ1 = 30°: 
 

°=⎟
⎠
⎞

⎜
⎝
⎛ °= − 3.2630sin

5.1
33.1sin 1

2θ  

 
36 ••  
Picture the Problem Let the subscript 1 refer to the glass and the subscript 2 to the water 
and apply Snell’s law to the glass-water interface. 

 
Apply Snell’s law to the water-glass 
interface to obtain: 
 

2211 sinsin θθ nn =  

Solve for θ2: 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

1
2

11
2 sinsin θθ

n
n
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(a) Evaluate θ2 for θ1 = 60°: 
 

°=⎟
⎠
⎞

⎜
⎝
⎛ °= − 6.7760sin

33.1
5.1sin 1

2θ  

 
(b) Evaluate θ2 for θ1 = 45°: 
 

°=⎟
⎠
⎞

⎜
⎝
⎛ °= − 9.5245sin

33.1
5.1sin 1

2θ  

 
(c) Evaluate θ2 for θ1 = 30°: 
 

°=⎟
⎠
⎞

⎜
⎝
⎛ °= − 3.3430sin

33.1
5.1sin 1

2θ  

 
*37 ••  
Picture the Problem Let the subscript 1 
refer to the medium to the left (air) of the 
first interface, the subscript 2 to glass, and 
the subscript 3 to the medium (air) to the 
right of the second interface. Apply the 
equation relating the intensity of reflected 
light at normal incidence to the intensity of 
the incident light and the indices of 
refraction of the media on either side of the 
interface to both interfaces. We’ll neglect 
multiple reflections at glass-air interfaces. 

 

 

 
Express the intensity of the 
transmitted light in the second 
medium: 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

−=−=

2

21

21
1

1

2

21

21
1r,112

1
nn
nnI

I
nn
nnIIII

 

 
Express the intensity of the 
transmitted light in the third 
medium: 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

−=−=

2

32

32
2

2

2

32

32
2r,223

1
nn
nn

I

I
nn
nn

IIII

 

 
Substitute for I2 to obtain: 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

−=
2

32

32
2

21

21
13 11

nn
nn

nn
nn

II  

 
Solve for the ratio I3/I1: 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

−=
2

32

32

2

21

21

1

3 11
nn
nn

nn
nn

I
I
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Substitute numerical values and 
evaluate I3/I1: 
 

%2.92922.0

15.1
15.11

5.11
5.111

22

1

3

==

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

+
−

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
+
−

−=
I
I

 

 
38 ••  
Picture the Problem As the line enters the muddy field, its speed is reduced by half and 
the direction of the forward motion of the line is changed. In this  case, the forward 
motion in the muddy field makes an angle of 14.5o with respect to the normal of the 
boundary line. Note that the separation between successive lines in the muddy field is 
half that in the dry field. 

 
Picture the Problem As the line enters 
the muddy field, its speed is reduced by 
half and the direction of the forward 
motion of the line is changed. In this case, 
the forward motion in the muddy field 
makes an angle of 14.5o with respect to the 
normal of the boundary line. Note that the 
separation between successive lines in the 
muddy field is half that in the dry field. 

 
 

 

 
39 ••  
Picture the Problem We can apply Snell’s law consecutively, first to the n1-n2 interface 
and then to the n2-n3 interface. 

 
Apply Snell’s law to the n1-n2 
interface: 
 

2211 sinsin θθ nn =  

Apply Snell’s law to the n2-n3 
interface: 
 

3322 sinsin θθ nn =  

Equate the two expressions for 
22 sinθn to obtain: 

3311 sinsin θθ nn =  
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*40  •••  
Picture the Problem Let x be the 
perpendicular separation between the two 
rays and let l be the separation between 
the points of emergence of the two rays on 
the glass surface. We can use the 
geometry of the refracted and reflected 
rays to express x as a function of l, d, θr,  
and θi. Setting the derivative of the 
resulting equation equal to zero will yield 
the value of θi that maximizes x.   

 
(a) Express l in terms of d and the 
angle of refraction θr: 

rtan2 θd=l  

 
 

Express x as a function of l, d,  
θr,  and θi: 
 

ir costan2 θθdx =  

  
  
Differentiate x with respect toθi: 
 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−==

i

r
ir

2
irir

ii

cossecsintan2costan2
θ
θ

θθθθθθ
θθ d

d
d

d
dd

d
dx

    (1) 

 
Apply Snell’s law to the air-glass 
interface: 
 

r2i1 sinsin θθ nn =                             (2) 

or, since n1 = 1 and n2 = n, 
ri sinsin θθ n=  

 
Differentiate implicitly with respect 
toθI to obtain: 
  

rrii coscos θθθθ dnd =  

or 

r

i

i

r

cos
cos1

θ
θ

θ
θ

nd
d

=  

 
Substitute in equation (1) to obtain: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−=

r

ir

r
3

i
2

r

i

r
2

i
i

r

r

i cos
sinsin

cos
cos12

cos
cos

cos
cos1sin

cos
sin

2
θ

θθ
θ
θ

θ
θ

θ
θ

θ
θ
θ

θ n
d

n
d

d
dx
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Substitute i
2sin1 θ−  for 

i
2cos θ and  isin1 θ

n
for rsinθ to 

obtain: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

r

i
2

r
3

i
2

i cos
sin

cos
sin1

2
θ
θ

θ
θ

θ nn
d

d
dx

 

Multiply the second term in parentheses by r
2

r
2 coscos θθ and simplify to obtain: 

 

( )r
2

i
2

i
2

r
3

r
3

r
2

i
2

r
3

i
2

i

cossinsin1
cos

2
cos

cossin
cos
sin12 θθθ

θθ
θθ

θ
θ

θ
−−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
=

n
d

nn
d

d
dx

 

 
Substitute r

2sin1 θ−  for r
2cos θ : 

 

( )[ ]r
2

i
2

i
2

r
3

i

sin1sinsin1
cos

2 θθθ
θθ

−−−=
n

d
d
dx

 

 

Substitute isin1 θ
n

for rsinθ to obtain: 

 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−−= i

2
2i

2
i

2

r
3

i

sin11sinsin1
cos

2 θθθ
θθ nn

d
d
dx

 

 
Factor out 1/n2, simplify, and set equal to zero to obtain: 
 

[ ] extremafor  0sin2sin
cos
2 2

i
22

i
4

r
33

i

=+−= nn
n

d
d
dx θθ

θθ
 

 
If dx/dθ1 = 0, then it must be true 
that: 
 

0sin2sin 2
i

22
i

4 =+− nn θθ  

 

Solve this quartic equation for θi to 
obtain: ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−= −

2
1

i
1

11sin
n

nθ  

 
(b) Evaluate θI for n = 1.60: 

( )

°=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−= −

5.48

6.1
1116.1sin 2

1
iθ

 

 
In (a) we showed that: 
 

ir costan2 θθdx =  
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Solve equation (2) for θr: 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

i
2

11
r sinsin θθ

n
n

 

 
Substitute numerical values and 
evaluate θr: 

°=⎟
⎠
⎞

⎜
⎝
⎛ °= − 9.275.48sin

6.1
1sin 1

rθ  

 
Substitute numerical values and 
evaluate x: 

( )
cm81.2

5.48cos9.27tancm42

=

°°=x
 

 
Total Internal Reflection 
 
41 •  
Picture the Problem Let the subscript 1 refer to the glass and the subscript 2 to the water 
and use Snell’s law under total internal reflection conditions. 

 
Use Snell’s law to obtain: 
 

2211 sinsin θθ nn =  

When there is total internal reflection: c1 θθ = and °= 902θ  

 
Substitute to obtain: 22c1 90sinsin nnn =°=θ  

 
Solve for θc: 

1

21
c sin

n
n−=θ  

 
Substitute numerical values and evaluate 
θc: 

°== − 5.62
5.1
33.1sin 1

cθ  

 
42 ••  
Picture the Problem Let the index of 
refraction of glass be represented by n1 and 
the index of refraction of water by n2 and 
apply Snell’s law to the glass-water 
interface under total internal reflection 
conditions. 

 
 

Apply Snell’s law to the glass-water 
interface: 
 

2211 sinsin θθ nn =  

At the critical angle, θ1 = θc and  °= 90sinsin 2c1 nn θ  
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θ2 = 90°: 
 
Solve for θc: 
 ⎥

⎦

⎤
⎢
⎣

⎡
°= − 90sinsin

1

21
c n

nθ  

 
Substitute numerical values and 
evaluate θc: 
 

°=⎥⎦
⎤

⎢⎣
⎡ °= − 5.6290sin

5.1
33.1sin 1

cθ  

 
43 ••  
Picture the Problem We can apply Snell’s law to the water-air interface to express the 
critical angle θc in terms of the indices of refraction of water (n1) and air (n2) and then 
relate the radius of the circle to the depth d of the point source and θc. 
 

 
 

Express the area of the circle whose 
radius is r: 
 

2rA π=  

Relate the radius of the circle to the 
depth d of the point source and the 
critical angle θc: 
 

ctanθdr =  

Apply Snell’s law to the water-air 
interface to obtain: 
 

22c1 90sinsin nnn =°=θ  

Solve for θc: 
 1

21
c sin

n
n−=θ  

 
Substitute for r and θc to obtain: 
 [ ]

2

1

212
c sintantan ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== −

n
nddA πθπ
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Substitute numerical values and 
evaluate A: ( )

2

2
1

m102

33.1
1sintanm5

=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛= −πA

 

 
44 •• 
Picture the Problem We can use the 
definition of the index of refraction to 
express the speed of light in the prism in 
terms of the index of refraction n1 of the 
prism. The application of Snell’s law at the 
glass-air interface will allow us to relate 
the index of refraction of the prism to the 
critical angle for total internal reflection. 
Finally, we can use the geometry of the 
isosceles-right-triangle prism to conclude 
that θc = 45°.  

 
Express the speed of light v in the 
prism in terms of its index of 
refraction n1: 
 

1n
cv =  

Apply Snell’s law to the glass-air 
interface to obtain: 
 

190sinsin 2c1 =°= nn θ  

Solve for n1: 
 c

1 sin
1
θ

=n  

 
Substitute to obtain: csinθcv =  

 
Substitute numerical values and 
evaluate v: 

( )
m/s1012.2

45sinm/s10998.2
8

8

×=

°×=v
 

 
45 ••  
Picture the Problem The observer above the surface of the fluid will not see any light 
until the angle of incidence of the light at the fluid-air interface is less than or equal to the 
critical angle for the two media. We can use Snell’s law to express the index of refraction 
of the fluid in terms of the critical angle and use the geometry of card and light source to 
express the critical angle. 
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Apply Snell’s law to the fluid-air 
interface to obtain: 
 

2211 sinsin θθ nn =  

Light is seen by the observer when  
θ1 = θc and θ2 = 90°: 
 

22c1 90sinsin nnn =°=θ  

Because the medium above the 
interface is air, n2 = 1. Solve for n1 
to obtain: 
  

c
1 sin

1
θ

=n  

From the geometry of the diagram: 
 d

r
=ctanθ  ⇒ 

d
r1

c tan−=θ  

 
Substitute to obtain: 

⎥⎦
⎤

⎢⎣
⎡

=
−

d
r

n
1

1

tansin

1
 

 
Substitute numerical values and 
evaluate n1: 

30.1

cm5
cm6tansin

1
1

1 =

⎥
⎦

⎤
⎢
⎣

⎡
=

−

n  

 
*46 ••  
Picture the Problem We can use the geometry of the figure, the law of refraction at the 
air-n1 interface, and the condition for total internal reflection at the n1-n2 interface to 

show that the numerical aperture is given by 2
3

2
2 nn − . 

 
Referring to the figure, note that: 
 c

a
n
n

==
2

3
csinθ  

and 
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c
b

=2sinθ  

 
Apply the Pythagorean theorem to 
the right triangle to obtain: 
  

222 cba =+  
or 

12

2

2

2

=+
c
b

c
a

 

 

Solve for :
c
b

 
2

2

1
c
a

c
b

−=  

 

Substitute for 
c
a

 and 
c
b

to obtain: 

 
2
2

2
3

2 1sin
n
n

−=θ  

Use the law of refraction to relate θ1 
and θ2: 
 

2211 sinsin θθ nn =  

Substitute for sinθ2 and let n1 = 1 
(air) to obtain: 

2
3

2
22

2

2
3

21 1sin nn
n
nn −=−=θ  

 
47 •  
Picture the Problem We can use the result of Problem 46 to find the maximum angle of 
incidence under the given conditions. 
 
From Problem 46: 2

2
2
10sin nn −=θ  

 
Solve for θ0: ( )2

2
2
1

1
0 sin nn −= −θ  

 
Substitute numerical values and 
evaluate θ0: 

( ) ( )

°=

⎟
⎠
⎞⎜

⎝
⎛ −= −

43.5

489.1492.1sin 221
0θ

 

 
48 ••  
Picture the Problem Examination of the figure reveals that, if the length of the tube is L, 
the distance traveled by the pulse that enters at an angle θ0 is the ratio of a to b multiplied 
by L.  Let the subscripts 1 and 2 denote the pulses entering the tube normally and at an 
angle θ0, respectively. 
 



Chapter 31 
 

898 

 
 

Express the difference in time ∆t 
needed for the two pulses to travel a 
distance L: 
 11

12

n
c
L

n
c
a
bL

ttt −=−=∆  

 
Substitute for t2 and t1 and simplify 
to obtain: 
 

⎟
⎠
⎞

⎜
⎝
⎛ −=−=∆ 11

11

a
b

c
Ln

n
c
L

n
c
a
bL

t          (1) 

 
Referring to the figure, note that: 

a
b

=csinθ   

 
From Snell’s law, the sine of the 
critical angle is also given by: 
 

1

2
csin

n
n

=θ ⇒ 
1

2

n
n

a
b
=  

Substitute for b/a in equation (1) 
and simplify to obtain: 
 

( )12
1

21 1 nn
c
L

n
n

c
Lnt −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=∆  

Substitute numerical values and 
evaluate ∆t: 

( )

ns150

489.1492.1
m/s103

km15
8

=

−
×

=∆t
 

 
49 •••  
Picture the Problem Let the index of 
refraction of glass be represented by n1, the 
index of refraction of water by n2, and the 
index of refraction of air by n3. We can 
apply Snell’s law to the glass-water 
interface under total internal reflection 
conditions to find the critical angle for total 
internal reflection. The application of 
Snell’s law to glass-air and glass-water 
interfaces will allow us to decide whether 
there are angles of incidence greater than θc 
for glass-to-air refraction for which light 
rays will leave the glass and the water and 
pass into the air. 

 
 

 

 
(a) Apply Snell’s law to the glass-
water interface: 

2211 sinsin θθ nn =  
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At the critical angle, θ1 = θc and  
θ2 = 90°: 
 

°= 90sinsin 2c1 nn θ  

Solve for θc: 
 ⎥

⎦

⎤
⎢
⎣

⎡
°= − 90sinsin

1

21
c n

nθ  

 
Substitute numerical values and 
evaluate θc: 
 

°=⎥⎦
⎤

⎢⎣
⎡ °= − 5.6290sin

5.1
33.1sin 1

cθ  

(b) Apply Snell’s law to a glass-air 
interface: 
 

°= 90sinsin 3c1 nn θ  

or 
190sinsin5.1 c =°=θ  

 
Solve for θc: 
 

°=⎟
⎠
⎞

⎜
⎝
⎛= − 8.41

5.1
1sin 1

cθ  

 
Apply Snell’s law to a ray incident 
at the critical angle for a glass-water 
interface: 
 

2211 sinsin θθ nn =  

or 
2sin33.18.41sin5.1 θ=°  

 
Solve for θ2: °=⎟

⎠
⎞

⎜
⎝
⎛ °

= − 7.48
33.1

8.41sin5.1sin 1
2θ  

 

.8.41for  water  theleavenot  will
ray  theTherefore, interface.air - waterafor  angle critical  theequals  that Note

1

2

°≥θ
θ

 

 
50 •••  
Picture the Problem The situation is 
shown in the adjacent figure. We can use 
the geometry of the diagram and 
trigonometric relationships to derive an 
expression for d in terms of the angles of 
incidence and refraction. Applying Snell’s 
law will yield θr.  

 
 

Express the distance x in terms of t 
and θr: 

rtan2 θtx =  
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The separation of the reflected rays 
is: 
 

icosθxd =  

 

Substitute to obtain: ir costan2 θθtd =                  (1) 

 
Apply Snell’s law at the air-glass 
interface to obtain: 
 

ri sinsin θθ n=  

Solve for θr: ⎟
⎠
⎞

⎜
⎝
⎛= −

n
i1

r
sinsin θθ  

 
Substitute in equation (1) to obtain: 
 i

i1 cossinsintan2 θθ
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛= −

n
td  

Substitute numerical values and 
evaluate d: 
 

( )

cm18.2

40cos
5.1
40sinsintancm32 1

=

°⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ °

= −d
 

 
Dispersion 
 
*51 ••  
Picture the Problem We can apply Snell’s law of refraction to express the angles of 
refraction for red and violet light in silicate flint glass. 

 
Express the difference between the 
angle of refraction for violet light 
and for red light: 
  

violetr,redr, θθθ −=∆                  (1) 

Apply Snell’s law of refraction to 
the interface to obtain: 
 

rsin45sin θn=°  

Solve for θr: ⎟
⎠
⎞

⎜
⎝
⎛= −

n2
1sin 1

rθ  

 
Substitute in equation (1): 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=∆ −−

violet

1

red

1

2
1sin

2
1sin

nn
θ  

 
Substitute numerical values and 
evaluate ∆θ : ( ) ( )

°=°−°=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=∆ −−

02.121.2523.26

66.12
1sin

60.12
1sin 11θ
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52 ••  
Picture the Problem The transit times will be different because the speed with which 
light of various wavelengths propagates in silicate crown glass is dependent on the index 
of refraction. We can use Table 31-26 to estimate the indices of refraction for pulses of 
wavelengths 500 and 700 nm. 
 
Express the difference in time 
needed for two short pulses of light 
to travel a distance L in the fiber: 
 

700500 v
L

v
Lt −=∆  

Substitute for L, v500, and v700 and 
simplify to obtain: 

( )700500
700500 nn

c
L

c
Ln

c
Lnt −=−=∆  

 
Use Table 31-26 to find the indices 
of refraction of silicate crown glass 
for the two wavelengths: 
 

55.1500 ≈n  

and 
50.1700 ≈n  

Substitute numerical values and 
evaluate ∆t: 

( )

s50.2

50.155.1
m/s10998.2

km15
8

µ=

−
×

=∆t
 

 
Polarization 
 
53 •  
Picture the Problem The polarizing angle is given by Brewster’s law: 

12ptan nn=θ where n1 and n2 are the indices of refraction on the near and far sides of 

the interface, respectively. 
 

Use Brewster’s law to obtain: 
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −

1

21
p tan

n
nθ  

 
(a) For n1 = 1 and n2 = 1.33: °=⎟

⎠
⎞

⎜
⎝
⎛= − 1.53

1
33.1tan 1

pθ  

 
(b) For n1 = 1 and n2 = 1.50: °=⎟

⎠
⎞

⎜
⎝
⎛= − 3.56

1
50.1tan 1

pθ  

 
54 •  
Picture the Problem The intensity of the transmitted light I is related to the intensity of 
the incident light I0 and the angle the transmission axis makes with the horizontal θ 
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according to .cos2
0 θII =  

 
Express the intensity of the 
transmitted light in terms of the 
intensity of the incident light and the 
angle the transmission axis makes 
with the horizontal: 
 

θ2
0 cosII =  

Solve for θ : 

0

1cos
I
I−=θ  

 
Substitute numerical values and 
evaluate θ : 

°== − 2.6715.0cos 1θ  

and correct. is )(d  

 
55 •  
Picture the Problem Let In be the intensity after the nth polarizing sheet and use 

θ2
0 cosII =  to find the intensity of the light transmitted through all three sheets for  

θ  = 45° and θ  = 30°. 
 

(a) Express the intensity of the light 
between the first and second sheets: 
 

02
1

1 II =  

Express the intensity of the light 
between the second and third sheets: 
 

04
12

02
1

2,1
2

12 45coscos IIII =°== θ  

Express the intensity of the light that 
has passed through the third sheet: 
 

08
12

04
1

3,2
2

23 45coscos IIII =°== θ  

(b) Express the intensity of the light 
between the first and second sheets: 
 

02
1

1 II =  

Express the intensity of the light 
between the second and third sheets: 
 

08
32

02
1

2,1
2

12 30coscos IIII =°== θ  

Express the intensity of the light that 
has passed through the third sheet: 

032
32

08
3

3,2
2

23 60coscos IIII =°== θ  

 
56 ••  
Picture the Problem Because the light is polarized in the vertical direction and the first 
polarizer is also vertically polarized, no loss of intensity results from the first 
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transmission. We can use Malus’s law to find the intensity of the light after it has passed 
through the second polarizer. 
 
The intensity of the beam is the ratio 
of its power to cross-sectional area: 
 

A
PI =  

Express the intensity of the light 
between the first and second 
polarizers: 
 

01 II =  and 01 PP =  

Express Malus’s law in terms of the 
power of the beam: 
 

θ20 cos
A
P

A
P
=  ⇒ θ2

0 cosPP =  

Express the power of the beam after 
the second transmission: 
 

12
2

02,1
2

12 coscos θθ PPP ==  

Substitute numerical values and 
evaluate I2: 

( ) mW97.327cosmW5 2
2 =°=P  

 
57 ••  
Picture the Problem Assume that light is incident in air (n1 = 1). We can use the 
relationship between the polarizing angle and the angle of refraction to determine the 
latter and Brewster’s law to find the index of refraction of the substance.  

 
(a) At the polarizing angle, the sum 
of the angles of polarization and 
refraction is 90°: 
 

°=+ 90rp θθ  

Solve for θr: 
 

pr 90 θθ −°=  

Substitute for θp to obtain: 
 

°=°−°= 0.306090rθ  

(b) From Brewster’s law we have: 
 1

2
ptan

n
n

=θ  

or, because n1 = 1, 
p2 tanθ=n  

 
Substitute for θp and evaluate n2: 73.160tan2 =°=n  
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58 ••  
Picture the Problem Let In be the intensity after the nth polarizing sheet and use 

θ2
0 cosII =  to find the intensity of the light transmitted through the three sheets. 

 
Express the intensity of the light 
between the first and second sheets: 
 

02
1

1 II =  

Express the intensity of the light 
between the second and third sheets: 
 

θθ 2
02

1
2,1

2
12 coscos III ==  

Express the intensity of the light that 
has passed through the third sheet 
and simplify to obtain: 
 

( )

( )
θ

θθ

θθ

θθ

θ

2sin

sincos2

sincos

90coscos

cos

2
08

1

2
08

1

22
02

1

22
02

1

3,2
2

23

I

I

I

I

II

=

=

=

−°=

=

 

 
Because the sine function is a 
maximum when its argument is 90°, 
the maximum value of I3 occurs 
when: 

°= 0.45θ  

 
59 ••  
Picture the Problem Let In be the intensity after the nth polarizing sheet,  use 

θ2
0 cosII =  to find the intensity of the light transmitted through each sheet, and replace 

θ with ωt. 
 

Express the intensity of the light 
between the first and second sheets: 
 

02
1

1 II =  

Express the intensity of the light 
between the second and third sheets: 
 

tIII ωθ 2
02

1
2,1

2
12 coscos ==  

Express the intensity of the light that 
has passed through the third sheet 
and simplify to obtain: 
 

( )

( )
tI

ttI

ttI

ttI

II

ω

ωω

ωω

ωω

θ

2sin

sincos2

sincos

90coscos

cos

2
08

1

2
08

1

22
02

1

22
02

1

3,2
2

23

=

=

=

−°=

=
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*60 ••  
Picture the Problem Let In be the intensity after the nth polarizing sheet and use 

θ2
0 cosII =  to find the ratio of In+1 to In. 

 
(a) Find the ratio of In+1 to In: 

NI
I

n

n

2
cos21 π

=+  

 
Because there are N such reductions 
of intensity: 
 

⎟
⎠
⎞

⎜
⎝
⎛== ++

NI
I

I
I NNN

2
cos2

0

1

1

1 π
 

and 

⎟
⎠
⎞

⎜
⎝
⎛=+ N

II N
N 2

cos2
01

π
               

 
(b) A spreadsheet program to graph IN+1/I0 as a function of N is shown below. The 
formulas used to calculate the quantities in the columns are as follows: 
 

Cell Content/Formula Algebraic Form 
A2 2 N 
A3 A2 + 1 N + 1 
B2 (cos(PI()/(2*A2))^(2*A2) 

⎟
⎠
⎞

⎜
⎝
⎛

N
N

2
cos2 π

 
 
 
 

 A B 
1 N I/I0 
2 2 0.250 
3 3 0.422 
4 4 0.531 
5 5 0.605 
   

95 95 0.974 
96 96 0.975 
97 97 0.975 
98 98 0.975 
99 99 0.975 

100 100 0.976  
 
A graph of I/I0 as a function of N follows. 
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70 80 90 100

N

I /I 0

 

(c) 
beam.incident   theofthat 

 lar toperpendicu is beam ed transmitt theofon polarizati  thecase,each In 
 

 
61 ••  
Picture the Problem Let In be the intensity after the nth polarizing sheet and use 

θ2
0 cosII =  to find the ratio of In+1 to In. Because each sheet introduces a 2% loss of 

intensity, the net transmission after N sheets (0.98)N.   
 

Find the ratio of In+1 to In: ( )
NI

I
n

n

2
cos98.0 21 π

=+  

 
Because there are N such reductions 
of intensity: 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛=+

NI
I NNN

2
cos98.0 2

0

1 π
 

  
(b) A spreadsheet program to graph IN+1/I0 for an ideal polarizer as a function of N, the 
percent transmission, and IN+1/I0 for a real polarizer as a function of N is shown below. 
The formulas used to calculate the quantities in the columns are as follows: 
 

Cell Content/Formula Algebraic Form 
A3 1 N 
B2 (cos(PI()/(2*A2))^(2*A2) 

⎟
⎠
⎞

⎜
⎝
⎛

N
N

2
cos2 π

 

C3 (0.98)^A3 ( )N98.0  
D4 B3*C3 ( ) ⎟

⎠
⎞

⎜
⎝
⎛

N
NN

2
cos98.0 2 π
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 A B C D 
1  Ideal Percent Real 
2 N Polarizer Transmission Polarizer 
3 1 0.000 0.980 0.000 
4 2 0.250 0.960 0.240 
5 3 0.422 0.941 0.397 
6 4 0.531 0.922 0.490 
7 5 0.605 0.904 0.547 
8 6 0.660 0.886 0.584 
9 7 0.701 0.868 0.608 

10 8 0.733 0.851 0.624 
11 9 0.759 0.834 0.633 
12 10 0.781 0.817 0.638 
13 11 0.798 0.801 0.639 
14 12 0.814 0.785 0.638 
15 13 0.827 0.769 0.636 
16 14 0.838 0.754 0.632 
17 15 0.848 0.739 0.626 
18 16 0.857 0.724 0.620 
19 17 0.865 0.709 0.613 
20 18 0.872 0.695 0.606 
21 19 0.878 0.681 0.598 
22 20 0.884 0.668 0.590  

 
A graph of I/I0 as a function of N for the quantities described above follows: 
 

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20

Number of sheets (N )

I /I 0

Ideal Polarizer
Percent Transmission
Real Polarizer

 
Inspection of the table, as well as of the graph, tells us that the optimum number of sheets 
is .13  

 
*62 ••  
Picture the Problem A circularly polarized wave is said to be right circularly polarized 
if the electric and magnetic fields rotate clockwise when viewed along the direction of 
propagation and left circularly polarized if the fields rotate counterclockwise. 
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For a circularly polarized wave, the 
x and y components of the electric 
field are given by: 
 

tEEx ωcos0=  

and 
tEEy ωsin0= or tEEy ωsin0−=  

for left and right circular polarization, 
respectively. 
 

For a wave polarized along the x 
axis: 
 i

iiEE

ˆcos2

ˆcosˆcos

0

00leftright

tE

tEtE

ω

ωω

=

+=+
rr

 

 
63 ••  
Picture the Problem Let In be the intensity after the nth polarizing sheet and use 

θ2
0 cosII =  to find the intensity of the light transmitted by the four sheets. 

 
(a) Express the intensity of the light 
between the first and second sheets: 
 

02
1

1 II =  

Express the intensity of the light 
between the second and third sheets: 
 

08
32

02
1

2,1
2

12 30coscos IIII =°== θ  

Express the intensity of the light 
between the third and fourth sheets: 
 

032
92

08
3

3,2
2

23 30coscos IIII =°== θ  

Express the intensity of the light to 
the right of the fourth sheet: 

0

0128
272

032
9

4,3
2

34

211.0

30coscos

I

IIII

=

=°== θ
 

 
Note that, for the single sheet between the two end sheets at θ = 45o, I = 0.125I0. Using 
two sheets at relative angles of 30o increases the  transmitted intensity. 
 
Remarks: We could also apply the result obtained in Problem 60(a) to solve this 
problem. 
 
*64 ••  
Picture the Problem We can use the components of E

r
 to show that E

r
is constant in 

time and rotates with angular frequency ω. 
 

Express the magnitude of E
r

in 
terms of its components: 
 

22
yx EEE +=  
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Substitute for Ex and Ey to obtain: 
 

 

( )[ ] ( )[ ] ( ) ( )[ ]
0

222
0

2
0

2
0 cossincossin

E
tkxtkxEtkxEtkxEE

=

−+−=−+−= ωωωω  

and the E
r

vector rotates in the yz plane with angular frequency ω. 
 
65 ••  
Picture the Problem We can apply the given definitions of right and left circular 
polarization to the electric field and magnetic fields of the wave. 

 
The electric field of the wave in Problem 64 is: 
 

( ) ( )kjE ˆcosˆsin 00 tkxEtkxE ωω −+−=
r

 

 
The corresponding magnetic field is: 
 

( ) ( ) jkB ˆcosˆsin 00 tkxBtkxB ωω −−−=
r

 

 
Because these fields rotate clockwise when viewed along the direction of propagation, 
the wave is polarized. circularlyright  

 
For a left circularly polarized wave traveling in the opposite direction: 
 

( ) ( )kjE ˆcosˆsin 00 tkxEtkxE ωω +−+=
r

 

 
General Problems 
 
66 •  
Picture the Problem We can use v = fλ and the definition of the index of refraction to 
relate the wavelength of light in a medium whose index of refraction is n to the 
wavelength of light in air. 

 
(a) The wavelength λn of light in a 
medium whose index of refraction is 
n is given by: 

nnf
c

f
v

n
0λλ ===  

 
 

Substitute numerical values and 
evaluate λwater: 
 

nm526
1.33

nm700nm700

water
water ===

n
λ  
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(b)
in water. andair in color  same  theobserves

swimmer a light,  theoffrequency  on the depends observedcolor   theBecause
 

 
67 ••  
Picture the Problem We can use Snell’s law, under critical angle and polarization 
conditions, to relate the polarizing angle of the substance to the critical angle for internal 
reflection. 

 
Apply Snell’s law, under critical 
angle conditions, to the interface: 
 

2c1 sin nn =θ                   (1) 

Apply Snell’s law, under 
polarization conditions, to the 
interface: 
 

( ) p2p2p1 cos90sinsin θθθ nnn =−°=  

or 

1

2
ptan

n
n

=θ  

 
Solve for θp: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

1

21
p tan

n
nθ              (2) 

 
Solve equation (1) for the ratio of n2 
to n1: 

c
1

2 sinθ=
n
n

 

 
Substitute for n2/n1 in equation (2) to 
obtain: 
 

( )c
1

p sintan θθ −=  

Substitute numerical values and 
evaluate θp: 

( ) °=°= − 3.3545sintan 1
pθ  

 
*68 ••  
Picture the Problem Angle ADE is the 
angle between the direction of the 
incoming ray and that reflected by the two 
mirror surfaces. Note that triangle ABC is 
isosceles and that angles CAB and ABC are 
equal and their sum equals θ. Also from the 
law of reflection, angles CAD and CBD 
equal angle ABC. Because angle BAD is 
twice BAC and angle DBA is twice CBA, 
angle ADE is twice the angle θ.   

 



Properties of Light 
 

 

911

69 ••  
Picture the Problem The sketch shows the 
ray from the coin passing through the water 
to the eye of the observer. We can use 
trigonometry to express the apparent depth 
d in terms of the depth h of the water, the 
20° angle, and the angle of incidence θi. 
The application of Snell’s law at the 
interface will yield an expression for θi.  

 
Express the apparent depth d in 
terms of the distance x: 
 

°= 20tanxd                    (1) 

Relate the distance x to the depth of 
the water and the angle θi: 
 

itanθhx =  

Substitute for x in equation (1) to 
obtain: 
 

°= 20tantan iθhd           (2) 

Apply Snell’s law to the water-air 
interface: 
 

r2i1 sinsin θθ nn =  

Solve for θi: 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

r
1

21
i sinsin θθ

n
n

 

 
Substitute for θI in equation (2) to 
obtain: 
 

°⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= − 20tansinsintan r

1

21 θ
n
nhd  

Substitute numerical values and 
evaluate d: 

( )

m45.1

20tan70sin
33.1
1sintanm4 1

=

°⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ °= −d

 
70 ••  
Picture the Problem Assume that the sound source is the voice of the fisherman and that 
the fisherman’s mouth is 2 m from the surface of the water as shown below. We can 
apply Snell’s law at the air-water interface to find θc and use trigonometry to find θ1. If 
we can show that θ1 > θc, then we can conclude that the noise on shore cannot possibly be 
sensed by fish 20 m from shore. 
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Apply Snell’s law at the air-water 
interface 20 m from the shore: 
 

2211 sinsin θθ nn =  

For θ1 = θc: 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −−

2

11

1

21
c sinsin

v
v

n
nθ  

 
Substitute numerical values and 
evaluate θc: 

°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= − 2.13

m/s1450
m/s330sin 1

cθ  

 
Relate θ1 to the distance from the 
shore and the distance from the 
surface of the water to the 
fisherman’s mouth: 
 

( )
m20
m290tan 1 =−° θ  

Solve for and evaluate θ1: 
 

( ) °=−°= − 3.841.0tan90 1
1θ  

interface.water -airat  reflected is sound  theall , Because c1 θθ >  

 
*71 ••  
Picture the Problem We can apply Snell’s law to the water-air interface to express the 
critical angle θc in terms of the indices of refraction of water (n1) and air (n2) and then 
relate the radius of the circle to the depth d of the swimmer and θc. 
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Relate the radius of the circle to the 
depth d of the point source and the 
critical angle θc: 
 

ctanθdr =  

Apply Snell’s law to the water-air 
interface to obtain: 
 

22c1 90sinsin nnn =°=θ  

Solve for θc: 
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −

1

21
c sin

n
nθ  

 
Substitute for θc to obtain: 
 ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

1

21sintan
n
ndr  

 
Substitute numerical values and 
evaluate r: 

( ) m42.3
33.1
1sintanm3 1 =⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛= −r  

 
72 ••  
Picture the Problem Let φ be the initial angle of incidence. Since the angle of reflection 
with the normal to the mirror is alsoφ, the angle between incident and reflected rays is 2φ. 
If the mirror is now rotated by a further angle θ, the angle of incidence is increased by θ  
to φ +θ, and so is the angle of reflection. Consequently, the reflected beam is rotated by 
2θ relative to the incident beam. 

 
 

73 ••  
Picture the Problem We can apply Snell’s law at the glass-air interface to express θc in 
terms of the index of refraction of the glass and use Figure 31-25 to find the index of 
refraction of the glass for the given wavelengths of light. 

 
Apply Snell’s law at the glass-air 
interface: 

2211 sinsin θθ nn =  
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If θ1 = θc and n2 = 1: 190sinsin c1 =°=θn  

and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

1

1
c

1sin
n

θ                          

 
(a) For violet light of wavelength 
400 nm, n2 = 1.67: 
 

°=⎟
⎠
⎞

⎜
⎝
⎛= − 8.36

67.1
1sin 1

cθ  

(b) For red light of wavelength 700 
nm, n2 = 1.60: 

 

°=⎟
⎠
⎞

⎜
⎝
⎛= − 7.38

60.1
1sin 1

cθ  

 
74 ••  
Picture the Problem We’ll neglect multiple reflections at the glass-air interfaces. We 
can use the expression (Equation 31-11) for the reflected intensity at an interface to 
express the intensity of the light in the glass slab as the difference between the intensity 
of the incident beam and the reflected beam. Repeating this analysis at the glass-air 
interface will lead to the desired result. 

 
Express the intensity of the light 
transmitted into the glass: 
 

R,10glass III −=  

where IR,1 is the intensity of the light 
reflected at the air-glass interface. 
 

The intensity of the light reflected at 
the air-glass interface is: 0

2

R,1 1
1 I

n
nI ⎟
⎠
⎞

⎜
⎝
⎛
+
−

=  

 
Substitute and simplify to obtain: 

( ) ⎥⎦
⎤

⎢
⎣

⎡

+
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
+
−

−=

⎟
⎠
⎞

⎜
⎝
⎛
+
−

−=

20

2

0

0

2

0glass

1
4

1
11

1
1

n
nI

n
nI

I
n
nII

 

 
Express the intensity of the light 
transmitted at the glass-air interface: 
 

R,2glassT III −=  

where IR,2 is the intensity of the light 
reflected at the glass-air interface. 
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The intensity of the light reflected at 
the glass-air interface is: 

( ) 02

2

glass

2

R,2

1
4

1
1

1
1

I
n
n

n
n

I
n
nI

⎥
⎦

⎤
⎢
⎣

⎡

+
⎟
⎠
⎞

⎜
⎝
⎛
+
−

=

⎟
⎠
⎞

⎜
⎝
⎛
+
−

=

 

 
Substitute and simplify to obtain: 

( ) ( )

( )

( ) ( )

( )

2

20

220

2

2

0

02

2

20T

1
4

1
4

1
4

1
4

1
11

1
4

1
1

1
4

⎥
⎦

⎤
⎢
⎣

⎡

+
=

⎥
⎦

⎤
⎢
⎣

⎡

+⎥
⎦

⎤
⎢
⎣

⎡

+
=

⎥
⎦

⎤
⎢
⎣

⎡

+⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
+
−

−=

⎥
⎦

⎤
⎢
⎣

⎡

+
⎟
⎠
⎞

⎜
⎝
⎛
+
−

−⎥
⎦

⎤
⎢
⎣

⎡

+
=

n
nI

n
n

n
nI

n
n

n
nI

I
n
n

n
n

n
nII

 

 
75 ••  
Picture the Problem We can write an 
expression for the total distance traveled by 
the light as a function of x and set the 
derivative of this expression equal to zero 
to find the value of x that minimizes the 
distance traveled by the light. The adjacent 
figure shows the two points and the 
reflecting surface. The x and y coordinates 
are in meters.  

 
(a) Express the total distance D 
traveled by the light: 
 

( ) ( ) 36242 22

21

+−+++=

+=

xx

ddD
 

Differentiate D with respect to x: 
 

( ) ( )

( )[ ] ( ) ( )[ ] ( )( ) extremafor  01223622242

36242

2
1

2
1

2
2
12

2
1

22

=−−+−++++=

⎥⎦
⎤

⎢⎣
⎡ +−+++=

−−
xxxx

xx
dx
d

dx
dD

 

 
Simplify this expression to obtain: 
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( ) ( )
0

362

2

42

2
22

=
+−

−
−

++

+

x

x

x

x
 

 
Solve for x to obtain: 
 

m00.1−=x  

(b) With x = −1 m: ( )

°=⎟
⎠
⎞

⎜
⎝
⎛=

⎥⎦
⎤

⎢⎣
⎡

−
−−−

=

−

−

6.26
2
1tan

20
12tan

1

1
iθ

 

and 
( )

°=⎟
⎠
⎞

⎜
⎝
⎛=

⎥⎦
⎤

⎢⎣
⎡

−
−−

=

−

−

6.26
6
3tan

60
21tan

1

1
rθ

 

 
*76 ••  
Picture the Problem Let the angle of refraction at the first interface by θ1 and the angle 
of refraction at the second interface be θ2. We can apply Snell’s law at each interface and 
eliminate θ1 and n2 to show that θ2 = θP2. 

 
Apply Snell’s Brewster’s law at the 
n1-n2 interface: 
 

1

2
P1tan

n
n

=θ  

Draw a reference triangle consistent 
with Brewster’s law: 
 

 
Apply Snell’s law at the n1-n2 
interface: 
 

12P11 sinsin θθ nn =  

Solve for θ1 to obtain: 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

P1
2

11
1 sinsin θθ

n
n

 

 
Referring to the reference triangle 
we note that: 
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
=

−

−

2
2

2
1

11

2
2

2
1

2

2

11
1

sin

sin

nn
n

nn
n

n
nθ
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i.e., θ1 is the complement of θp1. 
 

Apply Snell’s law at the n2-n1 
interface: 
 

2112 sinsin θθ nn =  

Solve for θ2 to obtain: 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

1
1

21
2 sinsin θθ

n
n

 

 
Refer to the reference triangle again 
to obtain: 

P22
2

2
1

21

2
2

2
1

1

1

21
2

sin

sin

θ

θ

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
=

−

−

nn
n

nn
n

n
n

 

Equate these expressions for 
12 sinθn  to obtain: 

21P1 sinsin θθ nn =  ⇒ P2 θθ =  

 
77 ••  
Picture the Problem We can use Brewster’s law in conjunction with index of refraction 
data from Figure 31-29 to calculate the polarization angles for the air-glass interface.  

 
From Brewster’s law we have: 
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −

1

21
p tan

n
nθ  

or, for n1 = 1, 

2
1

p tan n−=θ  

 
For silicate flint glass, n2 ≈ 1.62 and: 
 

( ) °== − 3.5862.1tan 1
pθ  

For borate flint glass, n2 ≈ 1.57 and: 
 

( ) °== − 5.5757.1tan 1
pθ  

For quartz glass, n2 ≈ 1.54 and: 
 

( ) °== − 0.5754.1tan 1
pθ  

For silicate crown glass,  
n2 ≈ 1.51 and: 

( ) °== − 5.5651.1tan 1
pθ  
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78 •••  
Picture the Problem The diagram to 
the right shows the angles of incidence, 
refraction, and deviation at the first 
interface. We can use the geometry of 
this symmetric passage of the light to 
express θr in terms of α and δ1 in terms 
of θr and α. We can then use a 
symmetry argument to express the 
deviation at the second interface and the 
total deviation δ. Finally, we can apply 
Snell’s law at the first interface to 
complete the derivation of the given 
expression. 

 
 

 

 
(a) With respect to the normal to 
the left face of the prism, let the 
angle of incidence be θi and the 
angle of refraction be θr. From the 
geometry of the figure, it is evident 
that: 
 

αθ 2
1

r =  

Express the angle of deviation at the 
refracting surface: 
 

αθθθδ 2
1

iri1 −=−=  

By symmetry, the angle of deviation 
at the second refracting surface is 
also of this magnitude. Thus: 
 

αθδδ −== i1 22  

Solve for θi: ( )δαθ += 2
1

i  

 
Apply Snell’s law, with n1 = 1 and 
n2 = n, to the first interface: 
 

αθ 2
1

i sinsin n=  

Substitute for θI to obtain: 
2

sin
2

sin αδα n=
+

                (1) 

 
(b) The angular separation is: redviolet δδδ −=∆  

 
Solve equation (1) for δ: ααδ −⎥⎦

⎤
⎢⎣
⎡= −

2
sinsin2 1 n  
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Substitute to obtain: 
 

⎥⎦
⎤

⎢⎣
⎡−⎥⎦

⎤
⎢⎣
⎡=

⎭
⎬
⎫

⎩
⎨
⎧

−⎥⎦
⎤

⎢⎣
⎡−−⎥⎦

⎤
⎢⎣
⎡=∆

−−

−−

2
sinsin2

2
sinsin2

2
sinsin2

2
sinsin2

red
1

violet
1

red
1

violet
1

αα

ααααδ

nn

nn
 

 
Substitute numerical values and evaluate ∆δ: 
 

°=⎥⎦
⎤

⎢⎣
⎡ °

−⎥⎦
⎤

⎢⎣
⎡ °

=∆ −− 47.3
2

60sin48.1sin2
2

60sin52.1sin2 11δ  

 
*79 ••  
Picture the Problem We can apply Snell’s law at the critical angle and the polarizing 
angle to show that tan θp = sin θc. 

 
(a) Apply Snell’s law at the 
medium-vacuum interface: 
 

r211 sinsin θθ nn =  

For θ1 = θc, n1 = n, and n2 = 1: 190sinsin c =°=θn  

 
For θ1 = θp, n1 = n, and n2 = 1: 
 nn

n 1tan
1

2
p ==θ  ⇒ 1tan p =θn  

 
Because both expressions equal one: 
 

cp sintan θθ =  

(b) For any value of θ : 
 

θθ sintan >  ⇒ cp θθ >  

 
80 ••  
Picture the Problem Let the numeral 1 refer to the side of the interface from which the 
light is incident and the numeral 2 to the refraction side of the interface. We can apply 
Snell’s law, under the conditions described in the problem statement, at the interface to 
derive an expression for n as a function of the angle of incidence (also the polarizing 
angle). 

 
(a) Apply Snell’s law at the air-
medium interface: 
 

21 sinsin θθ n=  

Because the reflected and refracted 
rays are mutually perpendicular: 

°=+ 9021 θθ ⇒ 12 90 θθ −°=  
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Substitute for θ2 to obtain: 
 

( ) 111 cos90sinsin θθθ nn =−°=  

or 
p1 tantan θθ ==n  

 
Substitute for θp  and evaluate n: 
 

60.158tan =°=n  

(b) Apply Snell’s law at the 
interface under conditions of total 
internal reflection: 
 

11c2 90sinsin nnn =°=θ  

Because n1 = 1: 
⎟
⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −−

nn
1sin1sin 1

2

1
cθ  

 
Substitute for n and evaluate θc: °=⎟

⎠
⎞

⎜
⎝
⎛= − 7.38

6.1
1sin 1

cθ  

 
81 ••  
Picture the Problem We can apply Snell’s law at the glass–liquid and liquid–air 
interfaces to find the refractive index of the unknown liquid, the angle of incidence 
(glass-air interface) for total internal reflection, and the angle of refraction of a ray into 
the liquid film. 

 
(a) Apply Snell’s law, under 
critical-angle conditions, at the 
glass–liquid interface: 
 

glass

liquid
csin

n
n

=θ  

Solve for nliquid: 
 

cglassliquid sinθnn =  

Substitute numerical values and 
evaluate nliquid: 
 

( ) 33.17.53sin655.1liquid =°=n  

(b) With the liquid removed: 
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= −

glass

1
c

1sin
n

θ  

 
Substitute numerical values and 
evaluate θc: 

°=⎟
⎠
⎞

⎜
⎝
⎛= − 2.37

655.1
1sin 1

cθ  

 
(c) Apply Snell’s law at the 
glass−liquid interface: 
 

2liquid1glass sinsin θθ nn =  
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Solve for θ2: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= −

1
liquid

glass1
2 sinsin θθ

n
n

 

 
Substitute numerical values and 
evaluate θ2: 

°=⎥⎦
⎤

⎢⎣
⎡ °= − 8.482.37sin

33.1
655.1sin 1

2θ  

 

emerge. light will
 no interface, at this reflection internal for total angle critical n thelarger tha isit 

because and interfaceair liquid at the incidence of angle  thealso is  Because 2 −θ
 

 
82 ••  
Picture the Problem We can use Equation 31-18 and the result of Problem 86 to find the 
angular separation of these colors in the primary rainbow. 

 
Express the angular separation ∆φ of 
the colors: 
 

redd,blued, φφφ −=∆                   (1) 

From Equation 31-18, with 
nair = 1 and nwater = n: 
 

⎟
⎠
⎞

⎜
⎝
⎛−+= −

n
11

1d
sinsin42 θθπφ  

 
From Problem 86: 

3
1cos

2

1m
−

=
nθ  

or 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
= −

3
1cos

2
1

1m
nθ  

 
Substitute to obtain: 
 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
+=

−

−−

n

n

n 3
1cossin

sin4
3

1cos2

2
1

1
2

1
d πφ  

 
Evaluate φd for blue light in water: 
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( )
( )

°=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
+=

−

−−

42.139

3435.1

3
13435.1cossin

sin4
3

13435.1cos2

2
1

1
2

1
blued, πφ

 

 
Evaluate φd for red light in water: 
 

( )
( )

°=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
+=

−

−−

75.137

3318.1

3
13318.1cossin

sin4
3

13318.1cos2

2
1

1
2

1
redd, πφ

 

 
Substitute in equation (1) and 
evaluate ∆φ: 

°=°−=∆ 67.175.13742.139φ  

 
83 ••  
Picture the Problem We can use the result, obtained in Problem 74, that each slab 

reduces the intensity of the transmitted light by 
( )

2

21
4

⎥
⎦

⎤
⎢
⎣

⎡

+n
n

, to find the ratio of the 

transmitted intensity to the incident intensity through N parallel slabs of glass for light of 
normal incidence. 

 
(a) From Problem 74, each slab 
reduces the intensity by the factor: ( )

2

21
4

⎥
⎦

⎤
⎢
⎣

⎡

+n
n

 

 
For N slabs: 

( )

N

n
nII

2

20t 1
4

⎥
⎦

⎤
⎢
⎣

⎡

+
=  

and 

( )

N

n
n

I
I

2

2
0

t

1
4

⎥
⎦

⎤
⎢
⎣

⎡

+
=             (1) 

 
(b) Evaluate equation (1) with  
N = 3 and n = 1.5: 

( )
( )

( )

783.0
15.1
5.14

32

2
0

t =⎥
⎦

⎤
⎢
⎣

⎡

+
=

I
I
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(c) Begin the solution of equation 
(1) for N by taking the logarithm 
(arbitrarily to base 10) of both sides 
of the equation: 
 

( )

( ) ⎥⎦
⎤

⎢
⎣

⎡

+
=

⎥
⎦

⎤
⎢
⎣

⎡

+
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

2

2

2
0

t

1
4log2

1
4loglog

n
nN

n
n

I
I

N

 

 
Solve for N: 
 

( ) ⎥⎦
⎤

⎢
⎣

⎡

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

2

0

t

1
4log2

log

n
n

I
I

N  

 
Substitute numerical values and 
evaluate N: 

( )
( )

( )

282.28

15.1
5.14log2

1.0log

2

≈=

⎥
⎦

⎤
⎢
⎣

⎡

+

=N  

 
84 ••  
Picture the Problem We can apply 
Snell’s law at the air-slab interface to 
express the index of refraction n in 
terms of θ1 and θ2 and then use the 
geometry of the figure to relate θ2 to t 
and d. 

 
  
Apply Snell’s law to the first 
interface: 
 

21 sinsin θθ n=  

Solve for n: 

2

1

sin
sin

θ
θ

=n  

 
From the diagram: 
 2tanθtd =  ⇒ ⎟

⎠
⎞

⎜
⎝
⎛= −

t
d1

2 tanθ  

 
Substitute to obtain: 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

=
−

t
d

n
1

1

tansin

sinθ
 

 
*85 ••  
Picture the Problem The angle that the rain appears to make with the vertical, according 
to the marathoner, is the angle whose tangent is the ratio of vrunner to vrain. The circular 
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motion of the star is analogous to the circular motion of the cloud with vrunner = vearth and 
vrain = c. 

 
(a) The angle that the rain appears 
to make with the vertical to the 
marathoner is given by: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

rain

runner1tan
v

vθ  

Substitute numerical values and 
evaluate θ : °=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= − 0.24

m/s9
m/s4tan 1θ  

 
(b) The cloud moves in a circle 
whose radius is given by: 
 

θtanHR =  

Substitute numerical values and 
evaluate R: 
 

( ) km45.424tankm10 =°=R  

(c) Here vrunner = vearth and  
vrain = c: ⎟

⎠
⎞

⎜
⎝
⎛= −

c
vearth1tanθ                    (1) 

where ( )diameterangular 2
1=θ  

 
(d) From equation (1): 

θ
π

θ tan
2

tan earth

sun-earthearth

T
Rvc ==  

 
Convert 20.6″ to degrees: 
 

°×=
°

××= −310722.5
60
1

60
16.206.20

'"
'""  

 
Substitute numerical values and 
evaluate c: 

( )
( )( ) ( )

m/s1099.2

"6.20tans/y10156.3y1
m105.12

8

7

11

×=

×
×

=
πc

 

 
Substitute numerical values and evaluate c: 
 

( )
( )( ) ( ) m/s1099.2

10722.5tans/y10156.3y1
m105.12 8

37

11

×=
°××

×
= −

πc  

 
86 •••  
Picture the Problem We can follow the directions given in the problem statement and 
use the hint to establish the given result. 
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(a) Equation 31-18 is: 
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+= −

water

1air1
1d

sinsin42
n

n θθπφ  

 
For nair = 1and nwater = n: 
 

⎟
⎠
⎞

⎜
⎝
⎛−+= −

n
11

1d
sinsin42 θθπφ  

 
Use the hint to differentiate φd with 
respect to θ1: 

1
22
1

11
1

11

d

sin
cos42

sinsin42

θ
θ

θθπ
θθ

φ

−
−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−+= −

n

nd
d

d
d

 

 
(b) Set dφd/dθ1 = 0: 
 

extremafor  0
sin

cos42
1

22
1 =

−
−

θ
θ

n
 

 
Simplify to obtain: ( )1

22
1

2 sin4cos16 θθ −= n  

 
Replace sin2θ1 with 1 − cos2θ1 and 
simplify: 
 

44cos12 2
1

2 −= nθ  

Solve for cosθ1 = cosθ1m: 

3
1cos

2

1m
−

=
nθ  

and 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
= −

3
1cos

2
1

1m
nθ  

 
Evaluate θ1m for n = 1.33: ( )

°=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
= − 6.59

3
133.1cos

2
1

1mθ  

 
87 •••  
Picture the Problem Let the thickness of 
the slab be t and the separation of the 
incident and emerging rays be ds. We can 
apply Snell’s law at both interfaces and 
use the geometry of the diagram and 
trigonometric relationships to show that 
the emerging ray and incident ray are 
parallel and to derive an expression for d.   



Chapter 31 
 

926 

 
 

Apply Snell’s law at the two 
interfaces to obtain: 
 

21 sinsin θθ n=                         (1) 

and 
43 sinsin θθ =n  

 
Because θ2 and θ3 are equal (they 
are alternate interior angles formed 
by parallel lines and a transversal): 
 

31 sinsin θθ n=  

and 
43 sinsin θθ =n  

 
Substitute for 3sinθn in the first of 

these equations to obtain: 
 

41 sinsin θθ =  ⇒ 41 θθ = and 

parallel. are
rayincident  andray  emerging the

 

 
Express the distance dBD in terms of 
t and θ1: 

 

1BD tanθtd =  

The distance dBC is: 
 

2BC tanθtd =  

Use the distances dBD and dBC to express 
the distance dCD: 
 

( )21BCBDCD tantan θθ −=−= tddd  

 

Because α and θ1 have their right 
and left sides mutually 
perpendicular, they are equal and: 
 

( )
( ) 121

21

costantan
costantan

θθθ
αθθ

−=
−=

t
ts

        (2) 

Substitute for tanθ1 and tanθ2 and 
simplify to obtain:Solve equation 
(1) for θ2: 

( )

( )
2

21

2

1221

2

12
1

1
2

2

1

1

cos
sin

cos
cossincossin

cos
cossinsin

cos
cos
sin

cos
sin

θ
θθ

θ
θθθθ

θ
θθθ

θ
θ
θ

θ
θ

−
=

−
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

t

t

t

ts

 

 
Remarks: One can also derive this expression using the law of sines. 
 
88 ••  
Picture the Problem We can use Snell’s law to determine θ2 and then apply the result of 
Problem 87 to find s. 
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From Problem 87 we have: ( )
2

21

cos
sin

θ
θθ −

=
ts  

 
Apply Snell’s law to the first 
interface to obtain: 
 

21 sinsin θθ n=  

Solve for θ2: ⎟
⎠
⎞

⎜
⎝
⎛= −

n
11

2
sinsin θθ  

 
Substitute numerical values and 
evaluate θ2: 
 

°=⎟
⎠
⎞

⎜
⎝
⎛ °

= − 47.19
5.1
30sinsin 1

2θ  

Substitute numerical values and 
evaluate s: 

( ) ( )
( )

mm91.2

47.19cos
47.1930sinmm15

=

°
°−°

=s
 

 
89 •••  
Picture the Problem The figure below shows the prism and the path of the ray through 
it. The dashed lines are the normals to the prism faces. The triangle formed by the interior 
ray and the prism faces has interior angles of α, 90° − θ2, and 90° − θ3. Consequently, 

.32 αθθ =+  We can apply Snell’s law at both interfaces to express the angle of 

deviation δ as a function of θ3 and then set the derivative of this function equal to zero to 
find the conditions on θ3 and θ2 that result in δ being a minimum. 

 
 

Express the angle of deviation: 
 

αθθδ −+= 21                        (1) 

Apply Snell’s law to relate θ1 to θ2 
and θ3 to θ4: 

21 sinsin θθ n=                        (2) 

and 
43 sinsin θθ =n                        (3) 

 
Solve equation (2) for θ1 and ( )2

1
1 sinsin θθ n−=  
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equation (3) for θ4: and 
( )3

1
4 sinsin θθ n−=  

 
Substitute in equation (1) to obtain: 
 

( ) ( ) ( )[ ] ( ) αθαθαθθδ −+−=−+= −−−−
3

1
3

1
3

1
2

1 sinsinsinsinsinsinsinsin nnnn  

 
Note that the only variable in this expression is θ3. To determine the condition that 
minimizesδ, take the derivative of δ with respect to θ3 and set it equal to zero. 
 

( )[ ] ( ){ }
( )
( )[ ] ( )

extremafor  0
sin1

cos

sin1

cos

sinsinsinsin

2
3

3
2

3

3

3
1

3
1

33

=
−

+
−−

−
−=

−+−= −−

θ

θ

θα

θα

αθαθ
θθ

δ

n

n

n

n

nn
d
d

d
d

 

 
This equation is satisfied provided: 
 

33 θθα =−  ⇒ αθ 2
1

3 =  

Because 32 θαθ −= : αααθ 2
1

2
1

2 =−=  

 

lly.symmetrica prism he through tpassesray 
 theif minimum a is angledeviation   that theconcludecan   we, Because 32 θθ =

 

 
Remarks: Setting dδ/dθ3 = 0 establishes the condition on θ3 that δ is either a 
maximum or a minimum. To establish that δ is indeed a minimum when 

α,θθ 2
1

23 == we can either show that ,2
3

2 dθδd evaluated at αθ 2
1

3 = , is positive 

or, alternatively, plot a graph of δ (θ3) to show that it is concave upward at 
αθ 2

1
3 = . 

 
   
 
 


