Chapter 31
Properties of Light

Conceptual Problems

1 .
Determine the Concept The population inversion between the state E; . and the state
1.96 eV below it (see Figure 31-9) is achieved by inelastic collisions between neon atoms
and helium atoms excited to the state E; 4.

2 oo
Determine the Concept Although the excited atoms emit the light of the same frequency
on returning to the ground state, the light is emitted in a random direction, not exclusively
in the direction of the incident beam. Consequently, the beam intensity is greatly
diminished.

3 °

Determine the Concept The layer of water greatly reduces the light reflected back from
the car’s headlights, but increases the light reflected by the road of light from the
headlights of oncoming cars.

4 .
Determine the Concept When light passes from air into water its wavelength changes
(Awater = Zair [ Nater ) 1tS speed changes (Ve = C/Nyaeer ), @nd the direction of its

propagation changes in accordance with Snell’s law. | (c) is correct.

water water water

*5  ee
Determine the Concept The change in atmospheric density results in refraction of the
light from the sun, bending it toward the earth. Consequently, the sun can be seen even
after it is just below the horizon. Also, the light from the lower portion of the sun is
refracted more than that from the upper portion, so the lower part appears to be slightly
higher in the sky. The effect is an apparent flattening of the disk into an ellipse.

6 .
Determine the Concept (a) Yes. (b) Her procedure is based on Fermat’s principle in
that, since the ball presumably travels at constant speed, the path that requires the least
time of travel corresponds to the shortest distance of travel.

7 °

Determine the Concept Because she can run faster than she can swim, she should
choose the path that will maximize her running distance. Path LES is the path that
satisfies this criterion.

873
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8 .
Picture the Problem The intensity of the light transmitted by the second polarizer is
givenby 1, = I,cos’ 8, where |, =11.Therefore, I, =11 cos*@and

(b) is correct.

9 .
Picture the Problem Polarized light can be produced from unpolarized light by

absorption, reflection, birefringence, and scattering. Therefore, | (d) is correct.

*10 oo
Determine the Concept The diagram shows that the radiated intensity for a dipole is
zero in the direction of the dipole moment. Because the dipole axis is in the same
direction as the polarization, for light polarized parallel to plane of incidence, the dipole
axis will point in the same direction as the reflected wave, i.e., in the direction described
by Brewster’s law. As the diagram indicates, there is zero field in the direction of the
refracted ray. On the other hand, if the incoming wave is polarized perpendicular to the
plane of incidence, the dipole axis will never point along the direction of propagation for
the reflected or refracted wave.

Unpolarized
incident
ray

Polarized
reflected
ray

Dipole
radiation
pattern

=

Slightly polarized
refracted ray

11 oo

Determine the Concept The diagram shows unpolarized light from the sun incident on
the smooth surface at the polarizing angle for that particular surface. The reflected light
is polarized perpendicular to the plane of incidence, i.e., in the horizontal direction. The
sunglasses are shown in the correct orientation to pass vertically polarized light and block
the reflected sunlight.
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Light from
the sun
Polaroid

sunglasses

Smooth surface

12 -
(a) True.

(b) False. Most of the light incident normally on an air—glass interface is transmitted.

(c) False. The relationship between the angles of incidence and refraction depends on the
indices of refraction on both sides of the interface.

(d) False. The index of refraction of water is a function of the wavelength of light.
(e) True.

13 oo

Picture the Problem Because the speed of light in a given medium is inversely
proportional to the index of refraction of the medium, we can decide which of the

statements are true by referring to Figure 31-26.

(a) The graphs of n vs. A are not horizontal lines and so the speed of light is a
function of its wavelength.

(b) Because the index of refraction decreases with wavelength, violet light has the
lowest speed and red light the highest speed.

(c) Because the index of refraction decreases with wavelength, violet light has the
lowest speed and red light the highest speed. | (C) is correct.

(d) Examination of Figure 31-26 tells us that this statement is false.



876  Chapter 31
(e) Examination of Figure 31-26 tells us that this statement is false.

*14 oo

Picture the Problem The sound is reflected specularly from the surface of the water (we
assume it is calm). It is then refracted back toward the water in the region above the water
because the speed of sound depends on the temperature of the air and is greater at the
higher temperature. The pattern of the sound wave is shown schematically below.

Source

—

15 -

Determine the Concept In resonance absorption, the molecules respond to the frequency
of the light through the Einstein photon relation E = hf. Thus, the color appears to be the
same in spite of the fact that the wavelength has changed.

Estimation and Approximation

16 -
Picture the Problem We can use the distance, rate, and time relationship to estimate the
time required to travel 6 km (see Problem 31-14).

Express the distance D to light D =cAt
traveled in terms of its speed ¢ and
the elapsed time At:

Solve for At: A=l
C
i i 6 km
Substitute numerical values and At = . ~[20.0,s
evaluate At: 2.998x10° m/s
17 -

Picture the Problem We can use the period of 10’s motion and the position of the earth
at B to find the number of eclipses of lo during the earth’s movement and then use this
information to find the number of days before a night-time eclipse. During the 42.5 h
between eclipses of Jupiter’s moon, the earth moves from A to B, increasing the distance
from Jupiter by approximately the distance from the earth to the Sun, making the path for
the light longer and introducing a delay in the onset of the eclipse.



(a) Find the time it takes the earth to
travel from point A to point B:

Because there are 42.5 h between
eclipses of lo, the number of
eclipses N occurring in the time it
takes for the earth to move from A
to B is:

Properties of Light

T

tase :%nh
_365.24d  24h
-4 d
=2191h

N = base = w =51.55
T, 42.5h

(o]
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Hence, in one-fourth of a year, there will be 51.55 eclipses. Because we want to find the
next occurrence that happens in the evening hours, we’ll use 52 as the number of
eclipses. We’ll also assume that Jupiter is visible so that the eclipse of lo can be observed

at the time we determine.

Relate the time t(N) at which the
Nth eclipse occurs to N and the
period T, of lo:

Evaluate t(52) to obtain:

Subtract the number of whole days
to find the clock time t:

Because June, July, and August
have 30, 31, and 31 d, respectively,
the date is:

(b) Express the time delay At in the
arrival of light from lo due to the
earth’s location at B:

t(N)=NT

lo

t(52):(52)[42.5h>< 1d )

24h
=92.083d

t =1(52)—92d = 92.083d - 92d
24h

=0.083d x =1.992h

2am

Q

September 1

At — rearth—sun

c



878  Chapter 31

Substitute numerical values and 1.5x10" m
At = =500s
evaluate At 2.998 x10% m/s
=8.33min

Hence, the eclipse will actually occur at 2 : 08 pm.

18 e

Picture the Problem We can express the relative error in using the small angle
approximation and then either 1) use trial-and-error methods, 2) use a spreadsheet
program, or 3) use the Solver capability of a scientific calculator to solve the
transcendental equation the results from setting the error function equal to 0.01.

Express the relative error §in using 5(0)= 6 —sin@ __ 0
the small angle approximation: sing sind

A spreadsheet program was used to plot the following graph of 5(&).

0.016

0.014 - /
0.012 /
0.010 /

0.008 - /

0.006 /

0.004 - / /
0.002 /r
0.000 —

0.00 0.05 0.10 0.15 0.20 0.25 0.30

delta(theta)

theta (radians)

From the graph, we can see that 6 (8) < 1% for < 0.24 radians. In degree measure,
0 <|14°

Remarks: Using the Solver program on a T1-85 gave 8= 0.244 radians.
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Sources of Light

19 -

Picture the Problem We can use the definition of power to find the total energy of the
pulse. The ratio of the total energy to the energy per photon will yield the number of
photons emitted in the pulse.

(a) Use the definition of power to E = PAt

obtain:

Substitute numerical values and E = (10MW)(1.5ns)=| 15.0mJ
evaluate E:

(b) Relate the number of photons N N = E

to the total energy in the pulse and E photon

the energy of a single photon Epnoton:

The energy of a photon is given by: E _ E
photon —
A
Substitute for Epnoton to Obtain: N = E
hc

Substitute numerical values (the wavelength of light emitted by a ruby laser is 694.3 nm)
and evaluate N:

(694.3nm)(15.0mJ)  1leV

=|5.25x10"
1240eV-nm  1.60x10™°J

20 -
Picture the Problem We can express the number of photons emitted per second as the
ratio of the power output of the laser and energy of a single photon.

Relate the number of photons per P
second n to the power output of the E photon
pulse and the energy of a single

photon Eghoton:

The energy of a photon is given by: E _ E
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Substitute for Epnton to obtain: AP

Substitute numerical values and evaluate n:

. (632.8nm)(4mw)  lev
1240eV-nm  1.60x107"J

1.28x10" photons/s

21

Picture the Problem We can use the Einstein equation for photon energy to find the
wavelength of the radiation for resonance absorption. We can use the same relationship,
with Eraman = Einc — AE Where AE is the energy for resonance absorption, to find the
wavelength of the Raman scattered light.

(a) Use the Einstein equation for P hc
photon energy to relate the E
wavelength of the radiation to

energy of the first excited state:

Substitute numerical values and _ 1240eV -nm _[235m
evaluate A: 2.85eV

(b) The wavelength of the Raman P _1240eV-nm
scattered light is given by: Ramen E rarman

Relate the energy of the Raman Eraman = Einc —AE
scattered light Eraman to the energy 1240eV -nm

. . . =———2.85eV
of the incident light Ep.: 320 nm

=1.025eV

i i 1240eV -nm
Substitute numerical values and = Oe ~[1210nm
evaluate Araman: 1.025eV
22 oo

Picture the Problem The incident radiation will excite atoms of the gas to higher energy
states. The scattered light that is observed is a consequence of these atoms returning to

their ground state. The energy difference between the ground state and the atomic state

excited by the irradiation is given by AE = hf = % :



The energy difference between the
ground state and the atomic state
excited by the irradiation is given

by:

Substitute 368 nm for A and
evaluate AE:

23 oo

Picture the Problem The ground state and

the three excited energy levels are shown
in the diagram to the right. Because the
wavelength is related to the energy of a
photon by A = hc/AE, longer wavelengths
correspond to smaller energy differences.

(a) The maximum wavelength of
radiation that will result in
resonance fluorescence corresponds
to an excitation to the 3.2 eV level
followed by decays to the 2.11 eV
level and the ground state:

The fluorescence wavelengths are:

(b) For excitation:

The fluorescence wavelengths
corresponding to the possible transitions
are:
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AE = h :E: 1240eV -fm
A A
E_ 1240eV -fm _[3378V
368nm
3 4.35eV
21— YL 376y
1 vy 2.11 eV
0t ',
Ao _1240ev-fm _ 387.5nm
3.2eV
= 1240eV -fm _M1138nm
3.2eV-2.11eV
and
Ay = 1240eV - fm 587 7nm
2.11eV -0
- 1240eV -fm _[285.1nm
4.35eV
A, = 1240eV -fm _1078nm
4.35eV -3.2eV
= 1240eV -fm _M1138nm
3.2eV-2.11eV
Ay = 1240eV -fm _5877nm
2.11eV -0
A, = 1240eV -fm _553.6nm
4.35eV —-2.11eV
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and

w =1387.5nm

0 32eV-0

*D/) oo
Determine the Concept The energy difference between the ground state and the first
excited state is 3E; = 40.8 eV, corresponding to a wavelength of 30.4 nm. This is in the
far ultraviolet, well outside the visible range of wavelengths. There will be no dark lines
in the transmitted radiation.

The Speed of Light

25
Picture the Problem We can use the distance, rate, and time relationship to find the
distance to the spaceship.

Relate the distance D to the D =cAt
spaceship to the speed of

electromagnetic radiation in a

vacuum and to the time for the

message to reach the astronauts:

Noting that the time for the message D= (2.998><108 m/sX2.5s)
to reach the astronauts is half the —750x108m

time for Mission Control to hear
their response, substitute numerical
values and evaluate D:

and
(a) is correct.

26
Picture the Problem We can use the conversion factor, found in EP-3, to convert a
distance in km into c-y:

Convert D = 2x10" km into light- D — 2%10" km x 1c-y
years: 9.46x10" m

=|2.11x10°c-y

27 o
Picture the Problem We can use the distance, rate, and time relationship to find the time
delay between sending the signal from the earth and receiving it on Mars.

Relate the distance D to Mars to the D = cAt



speed of electromagnetic radiation
in a vacuum and to the travel time
for the signal:

Solve for At:

Substitute numerical values and
evaluate At;

28 -
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at=2
c
10
At — 9.7><108m _ 3045
2.998x10° m/s
=| 5min23s

Picture the Problem We can use the given information that the uncertainty in the
measured distance Ax is related to the uncertainty in the time Atby  Ax = cAt to evaluate

AX.

The uncertainty in the distance is:

Substitute numerical values and
evaluate At:

*20 oo

AX = CAt

Ax = +(2.998x10° m/s)(L.Ons)
=1 £30.0cm

Picture the Problem We can use the distance, rate, and time relationship to find the time
difference Galileo would need to be able to measure the speed of light successfully.

(a) Relate the distance separating
Galileo and his assistant to the speed
of light and the time required for it
travel to the assistant and back to
Galileo:

Solve for At:

Substitute numerical values and
evaluate At;

(b) Express the ratio of the human
reaction time to the transit time for
the light:

D =cAt
At = 2
C
2(3km)
=——2 =120.0
3x10° m/s o
Atreaction — 0.2s — 104
At 20 us

or
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At =[10*At

reaction

Reflection and Refraction

30 -

Picture the Problem Let the subscript 1 refer to air and the subscript 2 to water and use
the equation relating the intensity of reflected light at normal incidence to the intensity of
the incident light and the indices of refraction of the media on either side of the interface.

Express the intensity | of the light n,—n, 2
reflected from an air-water interface I = n +n Lo
at normal incidence in terms of the e
indices of refraction and the
intensity I of the incident light:
Solve for the ratio I/1o; I (n,-n,Y
1, (n +n,
Substitute numerical values and | (1_1,33jz 0.0201 < [ Z01%
. —= =0. =\ 2. 0
evaluate I/l l, \1+1.33
*31 e

Picture the Problem The diagram shows
ray 1 incident on the vertical surface at an
angle &, reflected as ray 2, and incident on
the horizontal surface at an angle of
incidence 6. We’ll prove that rays 1 and 3
are parallel by showing that & = 6, i.e., by
showing that they make equal angles with
the horizontal. Note that the law of
reflection has been used in identifying
equal angles of incidence and reflection.

We know that the angles of the right

triangle formed by ray 2 and the two or
mirror surfaces add up to 180°: 0, =0,
The sum of & and & is 90°: 6, =90°-46,

Because 6, = 06,: 0, =90° -6,
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The sum of 6, and & is 90°: 6, +6, =90°
Substitute for & to obtain: 90°-6,+6,=90°= 6, =| 6,
32 e

Picture the Problem Diagrams showing the light rays for the two cases are shown
below. In (a) the light travels from air into water and in (b) it travels from water into air.

(@) (b)

Air mny Air
Water | 1, Water
|,
| |
| |
| |
(@) Apply Snell’s law to the air- n,siné, =n,sin o,
water interface to obtain: where the angles of incidence and
refraction are &, and &, respectively.
Solve for 6: . n, .
0, =sin™'| —*sin g,
n2

A spreadsheet program to graph 6 as a function of &, is shown below. The formulas used
to calculate the quantities in the columns are as follows:

Cell Content/Formula Algebraic Form
B1 1 ng
B2 1.33333 N,
A6 0 61 (deg)
A7 A6 +5 O+ A0
B6 A6*P1()/180 T
6, x ——
180
C6 | ASIN(($B$1/$B$2)*SIN(B6)) n
sin™| —Xsin g,
n2
D6 C6*180/P1() 180
6, x—

T
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A B C D
1 nl=| 1
2 n2=| 1.33333
3
4 thetal thetal theta2 theta2
5 (deg) (rad) (rad) (deg)
6 0 0.00 0.000 0.00
7 1 0.02 0.013 0.75
8 2 0.03 0.026 1.50
9 3 0.05 0.039 2.25
21 87 1.52 0.847 48.50
22 88 1.54 0.847 48.55
23 89 1.55 0.848 48.58
24 90 1.57 0.848 48.59

A graph of & as a function of &, follows:

50
45 - /_
40 -

35

30
25 l///////’
20

s pd
0 e

5,

Angle of refraction (deg)

0

0 10 20 30 40 50 60 70 80 90
Angle of incidence (deg)

(b) Change the contents of cell B1 to 1.33333 and the contents of cell B2 to 1 to obtain the
following graph:
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90

80 -
70 A
60 -

50 e

Angle of refraction (deg’

40 -
30
20
10 -
0 : :
0 10 20 30 40 50

Angle of incidence (deg)

Note that as the angle of incidence approaches the critical angle for a water-air interface
(48.6°), the angle of refraction approaches 90°. No light will be refracted into the air if
the angle of incidence is greater than 48.6°.

33 o
Picture the Problem We can use the definition of the index of refraction to find the

speed of light in water and in glass.

The definition of the index of

n=—
refraction is: v
Solve for v to obtain: v=C
n
Substitute numerical values and 3x10® m/s
water = ————— = 2.25x 108 m/s
evaluate Vyaer: 1.33
Substitute numerical values and evaluate 3x108 m/s
Vgass =————— =| 2.00x10° m/s
Vglass: 1.5

34 .
Picture the Problem Let the subscript 1 refer to the air and the subscript 2 to the silicate
glass and apply Snell’s law to the air-glass interface.

Apply Snell’s law to the air-glass n,sing, =n,siné,
interface to obtain:

Solve for 6: 0 _Sin—l(ﬁsinej
2 = 1

n,
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Substitute numerical values for the
light of wavelength 400 nm and

evaluate &, 400 nm:

Substitute numerical values for the
light of wavelength 700 nm and

evaluate &, 700 nm:

35 oo

] 1 .
2] =sin| ——sin45° |=| 25.2°
2,400 nm (166 j

] 1 .
2] =sin| ——sin45° | =| 26.1°
2,700nm (161 ]

Picture the Problem Let the subscript 1 refer to the water and the subscript 2 to the glass
and apply Snell’s law to the water-glass interface.

Apply Snell’s law to the water-glass

interface to obtain:

Solve for &:

(a) Evaluate & for 6, = 60°:

(b) Evaluate & for 6, = 45°:

(c) Evaluate & for 6, = 30°:

36 oo

n,sing, =n,siné,

50.2°

38.8°

26.3°

Picture the Problem Let the subscript 1 refer to the glass and the subscript 2 to the water
and apply Snell’s law to the glass-water interface.

Apply Snell’s law to the water-glass

interface to obtain:

Solve for &:

n,sing, =n,siné,

0, = sinl(ﬁsin 91]
n
2



(a) Evaluate & for 6, = 60°:

(b) Evaluate & for 6, = 45°:

(c) Evaluate & for 6, = 30°:

*37 oo
Picture the Problem Let the subscript 1
refer to the medium to the left (air) of the
first interface, the subscript 2 to glass, and
the subscript 3 to the medium (air) to the
right of the second interface. Apply the
equation relating the intensity of reflected
light at normal incidence to the intensity of
the incident light and the indices of
refraction of the media on either side of the
interface to both interfaces. We’ll neglect
multiple reflections at glass-air interfaces.

Express the intensity of the

transmitted light in the second
medium:

Express the intensity of the
transmitted light in the third
medium:

Substitute for I, to obtain:

Solve for the ratio I5/1:

Properties of Light 889
, =Sin l(ﬁsin 60°j= 77.6°
1.33
, =sin™ 1S Ginase|=[529°
1.33
, = sm‘l(ﬁsin 30°j =|34.3°
1.33
n=1 n,=15 ny=1
lil‘,] Ir,z
— -
I - L i L
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Substitute numerical values and 2 2
evaluate 13/1;: |_3: 1— 1-15 1— 15-1
| 15+1

=0.922 =| 92.2%

38 oo

Picture the Problem As the line enters the muddy field, its speed is reduced by half and
the direction of the forward motion of the line is changed. In this case, the forward
motion in the muddy field makes an angle of 14.5° with respect to the normal of the
boundary line. Note that the separation between successive lines in the muddy field is
half that in the dry field.

Picture the Problem As the line enters
the muddy field, its speed is reduced by
half and the direction of the forward

~
motion of the line is changed. In this case, SN
the forward motion in the muddy field N
makes an angle of 14.5° with respect to the
normal of the boundary line. Note that the

separation between successive lines in the
muddy field is half that in the dry field.

39 e
Picture the Problem We can apply Snell’s law consecutively, first to the n;-n, interface
and then to the n,-n; interface.

Apply Snell’s law to the n;-n, n,sing, =n,siné,
interface:

Apply Snell’s law to the n,-n; n,sin@, =n,sino,
interface:

Equate the two expressions for n,sin@, = n,sin o,

n, sin @,to obtain:
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Picture the Problem Let x be the
perpendicular separation between the two
rays and let ¢ be the separation between
the points of emergence of the two rays on
the glass surface. We can use the
geometry of the refracted and reflected
rays to express x as a function of 7, d, 4,
and 4. Setting the derivative of the
resulting equation equal to zero will yield
the value of @ that maximizes x.

(a) Express ¢ in terms of d and the
angle of refraction &

Express x as a function of 7, d,
6, and @:

Differentiate x with respect to&:

dx
de. dé.

Apply Snell’s law to the air-glass
interface:

Differentiate implicitly with respect
to g to obtain:

Substitute in equation (1) to obtain:

—_—= sin@. +
dé.

dx Zd[— siné.

Properties of Light

¢ =2dtand.

X =2dtané, cosé,

—=2d i(tan 6, cosd,)=2d [— tan @, sin 6, +sec® 6, cos 6,

n,sing, =n,siné,

or,sincen;=1andn,=n,

sing, =nsiné,

cos@,db, =ncosd.do.

1 cosé, cosé,
cosé, ' ncos’ @, cos6,

or
do, _ 1 cosé,
dg, ncosé,

o

1 cos® 6,

Air

_sing, siné,

R
n cos® 6,

891

(1)
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Substitute 1—sin® &, for Xy 1-sin®g, sin®g
dé, ncos’d, ncosé,

1. .
cos” @, and —sin @ for sin ), to
n

obtain:

Multiply the second term in parentheses by cos® 0. / cos? 6. and simplify to obtain:

(L—sin? 6, —sin? 6, cos? ar)

E—Zd 1-sin’6, sin®gicos®s, |  2d
déo. ncos® 4. ncos® 6. ncos® 4,

Substitute 1—sin’ &, for cos® @, :

ox
dd  ncos® 0.

[1 sin® 6, —sin 0(1 sin 0)]

o1 , :
Substitute —sin @, for sin &, to obtain:
n

dx _ 2d3 l—sinzé?i—sinze{l—izsinzei]
dé, ncos®6, n

Factor out 1/n?, simplify, and set equal to zero to obtain:

dx ___2d [sm 0, —2n*sin* 6, +n ] 0 for extrema
dg, n’cos®
If dx/dé, = 0, then it must be true sin* @, —2nsin® @, +n* =0

that:

Solve this quartic equation for & to 1
obtain: 6, =|sin"!nfl- [1-—
n2
(b) Evaluate 4 for n = 1.60: 1
0, =sin!1.6 1- 1-——
(1.6)

=| 48.5°

In (a) we showed that: X =2d tané, cosé,



Solve equation (2) for 4:

Substitute numerical values and
evaluate 4:

Substitute numerical values and
evaluate x:

Total Internal Reflection

41 -
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0, = sin‘{lsin eiJ
n2

0, = sin‘l(isin 48.5°j =27.9°
1.6

x = 2(4cm)tan 27.9°cos 48.5°
=| 2.81cm

Picture the Problem Let the subscript 1 refer to the glass and the subscript 2 to the water
and use Snell’s law under total internal reflection conditions.

Use Snell’s law to obtain:

When there is total internal reflection:

Substitute to obtain:

Solve for 4.

Substitute numerical values and evaluate
o

42 ee
Picture the Problem Let the index of
refraction of glass be represented by n; and
the index of refraction of water by n, and
apply Snell’s law to the glass-water
interface under total internal reflection
conditions.

Apply Snell’s law to the glass-water
interface:

At the critical angle, 6, = 6, and

n,sing, =n,siné,
0, =06.and 0, =90°

n,sinég, =n,sin90°=n,

.. 4N
0, =sin" =
nl
. 11.33
0, =sin" === =| 62.5°
1.5
1y =133 |
L
g,
Water | -~ _
Glass | o
|

n,sing, =n,siné,

n,sinég, =n,sin90°
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6 =90°:

. aln, .
0. =sin™| —2sin90°

Solve for @ [
nl

Substitute numerical values and
evaluate 4.

g, =sin™ @sin 900} =| 62.5°
15

43 oo

Picture the Problem We can apply Snell’s law to the water-air interface to express the
critical angle &, in terms of the indices of refraction of water (n;) and air (n,) and then
relate the radius of the circle to the depth d of the point source and &..

Air,n, =1 | r
I |900
B}

Water, n, = 1.334

Express the area of the circle whose A=rr
radius is r:
Relate the radius of the circle to the r=dtandg,

depth d of the point source and the
critical angle &,

Apply Snell’s law to the water-air n,sing, = n,sin90° =n,
interface to obtain:
Solve for 4. 4Ny

nl

6. =sin

Substitute for r and &, to obtain:

2
A=r[dtang,]’ = 7Z|:d tan(sin‘l &H

n



Substitute numerical values and
evaluate A:

44 e

Picture the Problem We can use the
definition of the index of refraction to
express the speed of light in the prism in
terms of the index of refraction n; of the
prism. The application of Snell’s law at the
glass-air interface will allow us to relate
the index of refraction of the prism to the
critical angle for total internal reflection.
Finally, we can use the geometry of the
isosceles-right-triangle prism to conclude
that . = 45°.

Express the speed of light v in the
prism in terms of its index of

refraction ny:

Apply Snell’s law to the glass-air
interface to obtain:

Solve for ny:

Substitute to obtain:

Substitute numerical values and
evaluate v:

45 e
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A= 7{(5 m)ta”(sm_l%ﬂz

=1102m?

n,;sinég, =n,sin90° =1

1
n =—
sin g,
v =_csing,

v = (2.998x10° m/s)sin 45°
=] 2.12x10* m/s

Picture the Problem The observer above the surface of the fluid will not see any light
until the angle of incidence of the light at the fluid-air interface is less than or equal to the
critical angle for the two media. We can use Snell’s law to express the index of refraction
of the fluid in terms of the critical angle and use the geometry of card and light source to

express the critical angle.
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A

Apply Snell’s law to the fluid-air n,sing, =n,siné,
interface to obtain:

Light is seen by the observer when n,sing, =n,sin90° =n,
6 = @.and & =90°:

Because the medium above the N = 1

interface is air, n, = 1. Solve for n; ' sin 0.

to obtain:

From the geometry of the diagram: tang. =L — g = tan’lL
C d C d

Substitute to obtain: 1

Substitute numerical values and n =—— ~[1.30
evaluate n;: 2 6cm
sinf tan™ ——
i 5cm
*46 oo

Picture the Problem We can use the geometry of the figure, the law of refraction at the
air-n; interface, and the condition for total internal reflection at the n;-n, interface to

show that the numerical aperture is given by y/n> —nJ .

i i : . n, a
Referring to the figure, note that: sing, =-2 =2
n, ¢

and



Properties of Light 897

. b
sing, =—
c
Apply the Pythagorean theorem to a’+b*=c?
the right triangle to obtain: or
2 2
a~ b
+—=1
¢ ¢
b 2
Solve for —: b = 1_a_
C c CZ
Substitute for & and b to obtain: : n;
c c : sing, = [1-—
nZ
Use the law of refraction to relate & n,sin@, =n,sin 6,
and &:
Substitute for sin@ and letn; =1 . n32 - -
(air) to obtain: sing, =n, 1_n_22 =N~
47 o

Picture the Problem We can use the result of Problem 46 to find the maximum angle of
incidence under the given conditions.

From Problem 46: sing, = /n? —n?
Solve for & 0, :sin’l(qlnl2 —n22)
Substitute numerical values and 0. — sin‘l[\/(1.492)2 _ (1.489)2)
evaluate &: °
=|5.43°
48 e

Picture the Problem Examination of the figure reveals that, if the length of the tube is L,
the distance traveled by the pulse that enters at an angle & is the ratio of a to b multiplied
by L. Let the subscripts 1 and 2 denote the pulses entering the tube normally and at an
angle &, respectively.
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Express the difference in time At
needed for the two pulses to travel a
distance L:

Substitute for t; and t; and simplify
to obtain:

Referring to the figure, note that:

From Snell’s law, the sine of the
critical angle is also given by:

Substitute for b/a in equation (1)
and simplify to obtain:

Substitute numerical values and
evaluate At;

49 X

Picture the Problem Let the index of
refraction of glass be represented by n, the
index of refraction of water by n,, and the
index of refraction of air by ns. We can
apply Snell’s law to the glass-water
interface under total internal reflection
conditions to find the critical angle for total
internal reflection. The application of
Snell’s law to glass-air and glass-water
interfaces will allow us to decide whether
there are angles of incidence greater than 6,
for glass-to-air refraction for which light
rays will leave the glass and the water and
pass into the air.

(a) Apply Snell’s law to the glass-
water interface:

sing, =—

_1OKM 4 492 1.480)
3x10° m/s
=|150ns
|
|
Air {,il_‘
n, =1
% '
Water |
n, = 1.33
Glass o, |
n, =15 |

n,sing, =n,siné,



At the critical angle, 8, = . and
6 = 90°:

Solve for 4.

Substitute numerical values and
evaluate 4.:

(b) Apply Snell’s law to a glass-air
interface:

Solve for 4.

Apply Snell’s law to a ray incident
at the critical angle for a glass-water
interface:

Solve for 6:

Properties of Light

n,sing, =n,sin90°

0, =sin”| 2sin 90°}

n

0, =sin™ 133 i 90°} =|62.5°
| 15
n,sing, = n,sin90°

or
1.5sin g, =sin90° =1

0, = sin—l(i] =41.8°
1.5

n,sing, =n,siné,

or
1.5sin41.8° =1.33sin 6,

g — sinl(l'ssm 41.8°
= 2o5N%2.6

= 48.7°
1.33 j

899

Note that 8, equals the critical angle for a water - air interface. Therefore, the ray
will not leave the water for 6, > 41.8°.

50 00

Picture the Problem The situation is
shown in the adjacent figure. We can use

the geometry of the diagram and

trigonometric relationships to derive an
expression for d in terms of the angles of
incidence and refraction. Applying Snell’s

law will yield 4.

Express the distance x in terms of t
and 6

Air

Class

X=2ttan 6.
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The separation of the reflected rays d = xcosé,
is:
Substitute to obtain: d = 2ttan g, cos o, (1)
Apply Snell’s law at the air-glass sing, =nsiné.
interface to obtain:
Solve for 6 g - Sinl(sm 0 ]
Substitute i ti 1) to obtain:
ubstitute in equation (1) to obtain d- 2ttan{sm ( HCOSH
Substitut ical val d °
ubstitute numerical values an d- 2(3cm)tan sin40 £0s40°
evaluate d: 15
=| 2.18cm
Dispersion
*5] oo

Picture the Problem We can apply Snell’s law of refraction to express the angles of
refraction for red and violet light in silicate flint glass.

Express the difference between the AO =0 =0 ot (1)
angle of refraction for violet light
and for red light:

Apply Snell’s law of refraction to sin45° =nsin 6.
the interface to obtain:

Solve for 4

0 = sinl(ﬁj

Substitute in equation (1):
| M AQ =sin™

R S R
\/Enred \/Enviolet

Substitute numerical values and I 1
A@ =sin

s ()

=26.23°-25.21°=| 1.02°
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Picture the Problem The transit times will be different because the speed with which
light of various wavelengths propagates in silicate crown glass is dependent on the index
of refraction. We can use Table 31-26 to estimate the indices of refraction for pulses of

wavelengths 500 and 700 nm.

Express the difference in time
needed for two short pulses of light
to travel a distance L in the fiber:

Substitute for L, vsog, and vzoo and
simplify to obtain:

Use Table 31-26 to find the indices
of refraction of silicate crown glass
for the two wavelengths:

Substitute numerical values and
evaluate At:

Polarization

53 -

A== b

VSOO V700

At = Mool Nagol _ L

C C

Nego ~1.55

and
N, =1.50

15km

" 2.998x10° m/s
=| 2.50 18

E (nsoo — Ny )

(1.55-1.50)

Picture the Problem The polarizing angle is given by Brewster’s law:
tan Hp = nz/n1 where n; and n, are the indices of refraction on the near and far sides of

the interface, respectively.

Use Brewster’s law to obtain:

(@) Forn;=1and n,=1.33:

(b) For n; =1 and n, = 1.50:

54 .

53.1°

6, = tan‘l(@j =
1

56.3°

Picture the Problem The intensity of the transmitted light | is related to the intensity of
the incident light 1o and the angle the transmission axis makes with the horizontal &
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according to | = 1, cos” 6.

Express the intensity of the I =1, cos’ 6
transmitted light in terms of the

intensity of the incident light and the

angle the transmission axis makes

with the horizontal:

Solve for 9: 4 |1
f#=cos |—
0
Substitute numerical values and 6 =cost4/0.15 = 67.2°
evaluate ¢ and | (d) is correct.
55 .

Picture the Problem Let I, be the intensity after the nth polarizing sheet and use
I =1, cos® @ to find the intensity of the light transmitted through all three sheets for

¢ =45°and 6 = 30°.

Il
N

(a) Express the intensity of the light I,
between the first and second sheets:

Express the intensity of the light l,=1,c08°6,, =4%1,c0s’45° =11,
between the second and third sheets:

ool

Express the intensity of the light that I, =1, cos’ 6, . =11, cos? 45° =

has passed through the third sheet:

Il
N

(b) Express the intensity of the light I
between the first and second sheets:

. . . 2 2
Express the intensity of the light l,=1,c08°0,,=%1,c08"30° =31,
between the second and third sheets:

Express the intensity of the light that =1, cos? 0,, =21, cos?60°=| 2|

has passed through the third sheet:

56  ee
Picture the Problem Because the light is polarized in the vertical direction and the first
polarizer is also vertically polarized, no loss of intensity results from the first
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transmission. We can use Malus’s law to find the intensity of the light after it has passed
through the second polarizer.

The intensity of the beam is the ratio | = P
of its power to cross-sectional area: A
Express the intensity of the light I, =1, and P, =P,
between the first and second
polarizers:
’ i P P
Express Malus’s law in terms of the T -T0c0s?9 = P=P,cos20
power of the beam: A A
Express the power of the beam after P, =P, cos’d,, =P, cos’ 6,
the second transmission:
Substitute numerical values and P, = (5 mW)c052 27°=|3.97mW
evaluate I,:
57 e

Picture the Problem Assume that light is incident in air (n, = 1). We can use the
relationship between the polarizing angle and the angle of refraction to determine the
latter and Brewster’s law to find the index of refraction of the substance.

(a) At the polarizing angle, the sum 0,+6, =90°
of the angles of polarization and
refraction is 90°:

Solve for 4 0, =90°-6,
Substitute for ¢, to obtain: 6, =90°-60°=| 30.0°
(b) From Brewster’s law we have: tan g, = n,

r]l

or, because n; = 1,
n, =tand,

Substitute for &, and evaluate n,: n, =tan60° =| 1.73
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58 oo

Picture the Problem Let I, be the intensity after the nth polarizing sheet and use
I =1, cos® @ to find the intensity of the light transmitted through the three sheets.

Express the intensity of the light
between the first and second sheets:

Express the intensity of the light
between the second and third sheets:

Express the intensity of the light that
has passed through the third sheet
and simplify to obtain:

Because the sine function is a
maximum when its argument is 90°,
the maximum value of I5 occurs
when:

59 (1)

=41
Il_ZIO

I, =1,c08"6,, =41,c0s* 0

l,=1,c05°6,,
=11, cos? #cos?(90°-0)
=11,cos’ gsin® @
=11,(2cos@sin )

—|1 in2
=| +1,sin" 260

0 =45.0°

Picture the Problem Let I, be the intensity after the nth polarizing sheet, use

I =1, cos® @ to find the intensity of the light transmitted through each sheet, and replace

@ with «t.

Express the intensity of the light
between the first and second sheets:

Express the intensity of the light
between the second and third sheets:

Express the intensity of the light that
has passed through the third sheet
and simplify to obtain:

Il
N

I, =1,c08%6,, =41,cos’ wt

2
|, =1,c0s26,.,

11, cos® wt cos?(90° — ot )

11, cos® mtsin® wt

11,(2coswtsin at )’

in2
=| 3 1,sin" 20t
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*60 e
Picture the Problem Let I, be the intensity after the nth polarizing sheet and use
| =1,c0s” @ to find the ratio of I, to I,

(a) Find the ratio of 1, to I,;: s _ oos? 7
I, 2N
Because there are N such reductions NP IR cos? T
of intensity: I I 2N
and

I =| 1 cos?™| -
N-+1 0 (ZN)

(b) A spreadsheet program to graph In.1/lo as a function of N is shown below. The
formulas used to calculate the guantities in the columns are as follows:

Cell Content/Formula Algebraic Form
A2 2 N
A3 A2+1 N+1
B2 (cos(PI()/(2*A2))N2*A2) ZN( T )
Cos™" | —
2N
A B
1 N /1o
2 2 0.250
3 3 0.422
4 4 0.531
5 5 0.605
95 95 0.974
96 96 0.975
97 97 0.975
98 98 0.975
99 99 0.975
100 100 0.976

A graph of I/l as a function of N follows.

905
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1.0

0.8 1

0.7

In 06
0.5 -

0.4

0.3

0.2 T T T T T T T
0 10 20 30 40 50 60 70 80 90 100

In each case, the polarization of the transmitted beam is perpendicular to
that of the incident beam.

(©)

61 oo
Picture the Problem Let I, be the intensity after the nth polarizing sheet and use
I =1, cos’® @ to find the ratio of I, to I,. Because each sheet introduces a 2% loss of

intensity, the net transmission after N sheets (0.98)".

Find the ratio of I to Iy: Tha © 98)Coszi

n
Because there are N such reductions NV (O 98)N cos2M T
of intensity: I '

(b) A spreadsheet program to graph Iy.1/lo for an ideal polarizer as a function of N, the
percent transmission, and Iy.1/lo for a real polarizer as a function of N is shown below.
The formulas used to calculate the quantities in the columns are as follows:

Cell Content/Formula Algebraic Form
A3 1 N
B2 (cos(PI()/(2*A2))N2*A2) ZN( P j
cos™ | —
2N
C3 (0.98)"A3 (O.98)N
D4 B3*C3
(0.98)" cos™" (i)
2N
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A B C D
1 Ideal Percent Real
2 N Polarizer | Transmission | Polarizer
3 1 0.000 0.980 0.000
4 2 0.250 0.960 0.240
5 3 0.422 0.941 0.397
6 4 0.531 0.922 0.490
7 5 0.605 0.904 0.547
8 6 0.660 0.886 0.584
9 7 0.701 0.868 0.608
10 8 0.733 0.851 0.624
11 9 0.759 0.834 0.633
12 10 0.781 0.817 0.638
13 11 0.798 0.801 0.639
14 12 0.814 0.785 0.638
15 13 0.827 0.769 0.636
16 14 0.838 0.754 0.632
17 15 0.848 0.739 0.626
18 16 0.857 0.724 0.620
19 17 0.865 0.709 0.613
20 18 0.872 0.695 0.606
21 19 0.878 0.681 0.598
22 20 0.884 0.668 0.590

A graph of I/l as a function of N for the quantities described above follows:

1,

1.0

0.8

0.6 1

0.4

0.2 1

0.0

— -
—
—— — |
—
—— — —
—
- - - - m W m om gy - o g o d
4
(4
Ideal Polarizer
= = Percent Transmission
= = = Real Polarizer
5 10 15 20
Number of sheets (N)

Inspection of the table, as well as of the graph, tells us that the optimum number of sheets

is

*62

13.

Picture the Problem A circularly polarized wave is said to be right circularly polarized
if the electric and magnetic fields rotate clockwise when viewed along the direction of
propagation and left circularly polarized if the fields rotate counterclockwise.
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For a circularly polarized wave, the E, = E;cosat
x and y components of the electric and
field are given by: E, =Eysinator E, =-E;sinat

for left and right circular polarization,
respectively.

For a wave polarized along the x E gy + Epq = EycOS @i + E cOS @t i
axis: =

=| 2E,cosati
63 oo

Picture the Problem Let I, be the intensity after the nth polarizing sheet and use
| =1,co0s’ @ to find the intensity of the light transmitted by the four sheets.

(a) Express the intensity of the light =31,
between the first and second sheets:

Express the intensity of the light I, =1,c086,, =%1,c05°30° =21,
between the second and third sheets:

Express the intensity of the light I, =1, cos’ 0,;=%1, cos?30° = 21,
between the third and fourth sheets:

Express the intensity of the light to l, =15c08° 6, , =4 1,c08*30° = Z I,
the right of the fourth sheet: = 0.211l,

Note that, for the single sheet between the two end sheets at &= 45°, | = 0.125l,. Using
two sheets at relative angles of 30° increases the transmitted intensity.

Remarks: We could also apply the result obtained in Problem 60(a) to solve this
problem.

*64 oo
Picture the Problem We can use the components of E to show that E is constant in
time and rotates with angular frequency w.

Express the magnitude of Ein E = /Ef + Ey2
terms of its components:
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Substitute for E, and E, to obtain:

E = /[E, sin(kx— at)]? +[E, cos(kx — at)]? = [E2[sin?(kx — et + cos? (kx — ot
= E,

and the E vector rotates in the yz plane with angular frequency .
65 oo
Picture the Problem We can apply the given definitions of right and left circular
polarization to the electric field and magnetic fields of the wave.
The electric field of the wave in Problem 64 is:
E = E, sin(kx — at)j + E, cos(kx — et )k
The corresponding magnetic field is:

B =B, sin(kx — at )k — B, cos(kx — at)j

Because these fields rotate clockwise when viewed along the direction of propagation,
the wave is | right circularly polarized.

For a left circularly polarized wave traveling in the opposite direction:

E =| E,sin(kx+ at)j — E, cos(kx + at )k

General Problems

66 o

Picture the Problem We can use v = f1 and the definition of the index of refraction to
relate the wavelength of light in a medium whose index of refraction is n to the
wavelength of light in air.

(a) The wavelength A, of light in a LoV _C_ A
medium whose index of refraction is " f nf n
n is given by:
i i 700nm  700nm
Substitute numerical values and A = 00 _ 00 _526nm
evaluate Awater: n 1.33

water
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(b)

Because the color observed depends on the frequency of the light, a swimmer
observes the same color in air and in water.

67 oo

Picture the Problem We can use Snell’s law, under critical angle and polarization

conditions, to relate the polarizing angle of the substance to the critical angle for internal

reflection.

Apply Snell’s law, under critical
angle conditions, to the interface:

Apply Snell’s law, under
polarization conditions, to the
interface:

Solve for 6,:

Solve equation (1) for the ratio of n,
to ny:

Substitute for n,/ny in equation (2) to
obtain:

Substitute numerical values and
evaluate 6,:

*G8 oo
Picture the Problem Angle ADE is the
angle between the direction of the
incoming ray and that reflected by the two
mirror surfaces. Note that triangle ABC is
isosceles and that angles CAB and ABC are
equal and their sum equals 6. Also from the
law of reflection, angles CAD and CBD
equal angle ABC. Because angle BAD is
twice BAC and angle DBA is twice CBA,
angle ADE is twice the angle 6.

nsing, =n, (1)

nsing, = nzsin(90°—¢9p): n,cos g,

or
tang, = Dy
r]1
n
g, = tanl(—Z] )
nl
M _sing,
nl

g, =tan™*(sing,)

6, = tan™*(sin 45°) ={ 35.3°
B
r
r
|
A
\ — C/0 —~+—-
T |
S |
~o |
S
~D
£l
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Picture the Problem The sketch shows the
ray from the coin passing through the water
to the eye of the observer. We can use
trigonometry to express the apparent depth
d in terms of the depth h of the water, the
20° angle, and the angle of incidence 4.
The application of Snell’s law at the
interface will yield an expression for 4.

Express the apparent depth d in
terms of the distance x:

Relate the distance x to the depth of
the water and the angle &:

Substitute for x in equation (1) to
obtain:

Apply Snell’s law to the water-air
interface:

Solve for &:

Substitute for 4 in equation (2) to
obtain:

Substitute numerical values and
evaluate d:

70 oo
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|
- x — 0
S
T

A T
| | h=4m
| |
| | i

d = xtan 20° €))

X =htang,
d =htan @, tan 20° (2

n,sin@ =n,sin 6.

0 = sin‘l(n—zsin 9,]
nl

d=h tan{sin{%sin Hrﬂ tan 20°
1

d =(4m)tan sinl(isin 70°) tan 20°
7 133

1.45m

Picture the Problem Assume that the sound source is the voice of the fisherman and that
the fisherman’s mouth is 2 m from the surface of the water as shown below. We can
apply Snell’s law at the air-water interface to find &, and use trigonometry to find 6. If
we can show that & > &, then we can conclude that the noise on shore cannot possibly be

sensed by fish 20 m from shore.
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Apply Snell’s law at the air-water n,sin@, =n,sind,
interface 20 m from the shore:
For 6, = 4. ] .
T 6, =sin™ M2 | _gin o
rll VZ
Substitute numerical values and .
, 6. =sin? 330m/s. =13.2°
evaluate é.: ¢ 1450 m/s
i 2m
Relate 4, to the_dlstance from the tan (900 _ 01) _
shore and the distance from the 20m
surface of the water to the
fisherman’s mouth:
Solve for and evaluate 6;: 6, =90° —tan(0.1) = 84.3°

Because g, > 4, all the sound is reflected at air - water interface.

*71 oo
Picture the Problem We can apply Snell’s law to the water-air interface to express the
critical angle & in terms of the indices of refraction of water (n;) and air (n,) and then
relate the radius of the circle to the depth d of the swimmer and &..

Air, 1,= 1 -~ 1 —

Water, n,=1.33
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Relate the radius of the circle to the r=dtané,
depth d of the point source and the
critical angle &.:

Apply Snell’s law to the water-air n,sing, =n,sin90° =n,
interface to obtain:
Solve for 4. . n
’ 0, = sm‘l(—zj
nl
Substitute for &, to obtain: . 4(n
r =d tan|sin™| =
nl
Substitute numerical values and . 1
r=(3 m)tan{sml(—ﬂ =|3.42m
evaluate r: 1.33
12 oo

Picture the Problem Let ¢ be the initial angle of incidence. Since the angle of reflection
with the normal to the mirror is alsog, the angle between incident and reflected rays is 24.
If the mirror is now rotated by a further angle 6, the angle of incidence is increased by 6
to ¢ +6, and so is the angle of reflection. Consequently, the reflected beam is rotated by
20 relative to the incident beam.

;"l!!a’!i’f;’!i?( rrrrrrirrri

73 e
Picture the Problem We can apply Snell’s law at the glass-air interface to express & in
terms of the index of refraction of the glass and use Figure 31-25 to find the index of
refraction of the glass for the given wavelengths of light.

Apply Snell’s law at the glass-air n,sin@, =n,sind,
interface:



914  Chapter 31

If & =6 andn,=1:

(a) For violet light of wavelength
400 nm, n, = 1.67:

(b) For red light of wavelength 700
nm, n, = 1.60:

74 e

n,sing, =sin90° =1

and

0. =sin™ i]
nl

0. =sin™ ij: 36.8°
1.67

g, =sin™ ij: 38.7°
1.60

Picture the Problem We’ll neglect multiple reflections at the glass-air interfaces. We
can use the expression (Equation 31-11) for the reflected intensity at an interface to
express the intensity of the light in the glass slab as the difference between the intensity
of the incident beam and the reflected beam. Repeating this analysis at the glass-air

interface will lead to the desired result.

Express the intensity of the light
transmitted into the glass:

The intensity of the light reflected at
the air-glass interface is:

Substitute and simplify to obtain:

Express the intensity of the light
transmitted at the glass-air interface:

Iglass = I0 - IR,l
where Ig; is the intensity of the light
reflected at the air-glass interface.

1-nY
IR,1: m Io

IT = Iglass - IR,2
where Ir; is the intensity of the light
reflected at the glass-air interface.
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The intensity of the light reflected at 1-n) |
the glass-air interface is: R2 7\ 14n ) 9o
B (1— n jz 4n |,
1+n) | @+n) |°
Substitute and simplify to obtain: | | ( ] I
T 1+n 1+n) | @+nYy °
=
‘ 1+ n }{(ﬂ ny
4an
= |0
1+ n 1+ n
75 e
Picture the Problem We can write an 6 -
expression for the total distance traveled by
the light as a function of x and set the 4
derivative of this expression equal to zero 1
to find the value of x that minimizes the d
distance traveled by the light. The adjacent d, 21
figure shows the two points and the \\
reflecting surface. The x and y coordinates
are in meters. -2 o = 2
(a) Express the total distance D D=d, +d,
traveled by the light: _ \/(x+ 2)2 ! +\/(2_ X)Z 436

Differentiate D with respect to x:

d _ d
o dx[\/(x+2 F+a+2-x +36J

=1 [(x +2) + 4]_% 2(x+2)+1 [(2 —x) + 36]_% 2(2 - x)(~1)=0for extrema

Simplify this expression to obtain:
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X+2 2—X
- =0
Jx+2F +4  J(2-x) +36
Solve for x to obtain: Xx=|—-1.00m
(b) With x = -1 m: g = tanl__z_(_l)}
0-2
=tan™’ 1) =| 26.6°
2
and )
0 =tan™ —_1_(2)}
| 0-6
=tan™ §j =| 26.6°
6
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Picture the Problem Let the angle of refraction at the first interface by 6 and the angle
of refraction at the second interface be &. We can apply Snell’s law at each interface and
eliminate &, and n, to show that & = 6.

7 ’ n
Apply Snell’s Brewster’s law at the tan g,, = 2

n;-n, interface: n,

Draw a reference triangle consistent
with Brewster’s law:

Apply Snell’s law at the n;-n, n,sing,, =n,sin g,
interface:

Solve for 6, to obtain: oo n .
6, =sin"| —=siné,,

Referring to the reference triangle

te that 2] —Sin’l &L
we note that. 1
n, q/nf+n§
. n
=sin 1
N +n2




Apply Snell’s law at the n,-n;
interface:

Solve for & to obtain:

Refer to the reference triangle again
to obtain:

Equate these expressions for
n, sin g, to obtain:

77 oo
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i.e., 6 is the complement of 6.

n,sin g, =n,sin 6,

(N, .
0, =sin™ —23|n<91j

>

N n
2 2
n, w/nl +n,

. n
=sin| ——2—|=| 6,

ynf +n2

n,sing, =n,sind, = 6, =| 6,

0, =sin™"

Picture the Problem We can use Brewster’s law in conjunction with index of refraction
data from Figure 31-29 to calculate the polarization angles for the air-glass interface.

From Brewster’s law we have:

For silicate flint glass, n, =~ 1.62 and:

For borate flint glass, n, ~ 1.57 and:
For quartz glass, n, ~ 1.54 and:

For silicate crown glass,
n, ~ 1.51 and:

g, = tan 1(&j
nl

or, forn, =1,
-1
6, =tan"n,

6, =tan"*(1.62)=| 58.3°

6, =tan*(1.57)=| 57.5°

6, =tan"*(1.54)=| 57.0°

g, =tan*(1.51)=| 56.5°
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78 eoe
Picture the Problem The diagram to
the right shows the angles of incidence,
refraction, and deviation at the first
interface. We can use the geometry of
this symmetric passage of the light to
express & in terms of e and &; in terms
of g and . We can then use a
symmetry argument to express the
deviation at the second interface and the
total deviation &. Finally, we can apply
Snell’s law at the first interface to
complete the derivation of the given
expression.

(a) With respect to the normal to
the left face of the prism, let the
angle of incidence be 4 and the
angle of refraction be &. From the
geometry of the figure, it is evident
that:

Express the angle of deviation at the
refracting surface:

By symmetry, the angle of deviation
at the second refracting surface is

also of this magnitude. Thus:

Solve for &:

Apply Snell’s law, with n; =1 and
n, = n, to the first interface:

Substitute for 4 to obtain:

(b) The angular separation is:

Solve equation (1) for &

-

5,=6,-0,=6 -4

5=20,=20-a

0

~3{a+o)

sing, =nsinia

. a+o
SIn

. a
=nsin— 1
> 1)

AS =9,

violet

0,

red

o= Zsin‘{nsin%} —a
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Substitute to obtain:

AS = ZSinl[nviom sin %} —a-— {ZSinl[nred sin %} - a}

= Zsin‘l[nViolet sin %} - Zsin‘{n sin %}

red

Substitute numerical values and evaluate AS:

o

62 }—Zsinl[lABSin 62 }: 3.47°

AS = 25in1{1.523in

*79 oo
Picture the Problem We can apply Snell’s law at the critical angle and the polarizing
angle to show that tan 6, = sin 4.

(@) Apply Snell’s law at the n,sin g, =n,sin 6,
medium-vacuum interface:

For 8, = @, n, =n, and n, = 1: nsin @, =sin90° =1

For =6, n;=n,andn, = 1: taan:&:l:ntaanzl
n n

Because both expressions equal one: tan Hp =siné,

(b) For any value of &: tan@ >sinfd = Hp > 6.

80 e
Picture the Problem Let the numeral 1 refer to the side of the interface from which the
light is incident and the numeral 2 to the refraction side of the interface. We can apply
Snell’s law, under the conditions described in the problem statement, at the interface to
derive an expression for n as a function of the angle of incidence (also the polarizing
angle).

(@) Apply Snell’s law at the air- sing, =nsin g,
medium interface:

Because the reflected and refracted 6,+6,=90°= 6, =90°-6,
rays are mutually perpendicular:
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Substitute for & to obtain:

Substitute for ¢, and evaluate n:
(b) Apply Snell’s law at the
interface under conditions of total

internal reflection:

Because n; = 1:

Substitute for n and evaluate 4.

81 oo

sin§, =nsin(90° - ,) = ncos 6,
or
n=tand, =tang,

n=tan58°=|1.60

n,sing, =n,sin90°=n,

0, = sinl(ij = sinl(il
n, n

0, = sin‘l(ij =|38.7°
1.6

Picture the Problem We can apply Snell’s law at the glass—liquid and liquid—air
interfaces to find the refractive index of the unknown liquid, the angle of incidence
(glass-air interface) for total internal reflection, and the angle of refraction of a ray into

the liquid film.

(a) Apply Snell’s law, under
critical-angle conditions, at the
glass—liquid interface:

Solve for njigyig:

Substitute numerical values and
evaluate Njiqig:

(b) With the liquid removed:

Substitute numerical values and
evaluate @

(c) Apply Snell’s law at the
glass—liquid interface:

IF]quuid

sing, =
n

glass

nliquid = nglass sin ec

Niquig = (1.655)sin53.7° = 1.33

0. =sin™ i]

glass

g, =sin™ i): 37.2°
1.655

Nyjass SIN 6 = Ny i SIN G,

glass
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Solve for 6: n
6, =sin™| = gin g,
| Miquia
Substitute numerical values and 0, =sin" 1.655 sin37.2¢ | ~[48.8°
evaluate &: 3

Because &, is also the angle of incidence at the liquid — air interface and because
itis larger than the critical angle for total internal reflection at this interface, no
light will emerge.

82 e
Picture the Problem We can use Equation 31-18 and the result of Problem 86 to find the
angular separation of these colors in the primary rainbow.

Express the angular separation A¢ of AP = Bypie — Darea 1)
the colors:
i - i . in

From Equation 31-18, with b, = 7+20, - Asin sin g,
nair = 1 and nwater =n. n
From Problem 86: n? -1

cosd,, =

3
or

Substitute to obtain:

2 J—
sin{cosl{ n 2 1}}
2 —
2 =7r+2cos‘{ n 3 1}—4sin‘1

n

Evaluate ¢ for blue light in water:
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| ] [(13435) -1
sin<cos™ (7
(1.3435)" -1 _ { [ 3 ]}
¢d,b|ue =7+ 2C0871 T _ 4S|n—l

1.3435

=139.42°

Evaluate ¢, for red light in water:

sin{cosll (1.3318)21]}
(L3318 —1} s 3

3 1.3318

Bireg =T +2 cosll

=137.75°

Substitute in equation (1) and A¢=139.42 -137.75° =| 1.67°
evaluate Ag:

83 e
Picture the Problem We can use the result, obtained in Problem 74, that each slab

reduces the intensity of the transmitted light by {(4—1)2} , to find the ratio of the
n+

transmitted intensity to the incident intensity through N parallel slabs of glass for light of
normal incidence.

(@) From Problem 74, each slab an 2

reduces the intensity by the factor: (n + 1)2

For N slabs: an 1"
"=y
and

L[ oan 1
vl | @

(b) Evaluate equation (1) with I, [ 4(5) o
N=3andn=15: . _(1_5+1)2

=1 0.783




(c) Begin the solution of equation
(1) for N by taking the logarithm
(arbitrarily to base 10) of both sides
of the equation:

Solve for N:

Substitute numerical values and
evaluate N:
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Picture the Problem We can apply
Snell’s law at the air-slab interface to
express the index of refraction n in
terms of &, and & and then use the
geometry of the figure to relate & to t
and d.

Apply Snell’s law to the first
interface:

Solve for n:

From the diagram:

Substitute to obtain:

*85 o0

Properties of Light 923

ool

sing, =nsiné,

sin g,
n=—
sin @,

d=ttand, = 6, = tanl[%j

siné,

Picture the Problem The angle that the rain appears to make with the vertical, according
to the marathoner, is the angle whose tangent is the ratio of Viyner t0 Viain. The circular
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motion of the star is analogous to the circular motion of the cloud with Viynner = Veartn and
Vrain = C.

(a) The angle that the rain appears 0 = tan | Vruoner
to make with the vertical to the - Vi
marathoner is given by:

Substitute numerical values and
_ 0=t -1(4”1/5]: 24.0°
evaluate 6: oml/s
(b) The cloud moves in a circle R=Htané
whose radius is given by:
Substitute numerical values and R= (10 km)tan 24° =| 4.45km
evaluate R:
¢) Here Viynner = Vearth and
( ) N el earth 0=\ tan —1(Vearth j (1)
Vrain = C: C
where @ =1 (angular diameter)
(d) From equation (1): o= Ve _ 2Rearnsun
tangd T, tané
Convert 20.6" to degrees: 206" = 20.6" Xl_'x 1 _5722x10°%
Substitute numerical values and B 272(1.5 x 10" m)
evaluate c: (1y)(3.156 %107 sly tan(20.6")
=|2.99%x10% m/s
Substitute numerical values and evaluate c:
11
_ 2(L5x10" m) ~[2.09%10° m/s

(1y)(3.156 x107 s/y Jtan(5.722 x 107}

86 00
Picture the Problem We can follow the directions given in the problem statement and
use the hint to establish the given result.
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a) Equation 31-18 is: - si
(@) Eq &, :72+201—4sin‘1(—na”smglJ
nwater
For Ny = 1and Nyger = N: b= 7420, 4Sin_1(5|n elj
n
Use the hint to differentiate ¢y with dg, _d 7+ 26, — Asin? sin 6,
respect to é: dg, do, n
_|p__ 4cos§
\Jn? —sin® g,
(b) Set d/d 6 = 0: 2 4C0S0__ _torextrema
\Jn%—sin® 4,
Simplify to obtain: 16cos” 6, = 4(n2 —sin? 01)
Replace sin?6; with 1 — cos?6; and 12cos’ 6, = 4n° — 4
simplify:
Solve for cos@, = coSOm: n? -1
cosd,, =
3
and
2 —
0,, =cos™ n 1}
3
Evaluate &, for n = 1.33: I 2
6, = cos” m] [508
3
87 o000

Picture the Problem Let the thickness of
the slab be t and the separation of the
incident and emerging rays be ds. We can
apply Snell’s law at both interfaces and
use the geometry of the diagram and
trigonometric relationships to show that
the emerging ray and incident ray are
parallel and to derive an expression for d.
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Apply Snell’s law at the two
interfaces to obtain:

Because & and & are equal (they
are alternate interior angles formed
by parallel lines and a transversal):

Substitute for nsin @, in the first of

these equations to obtain:

Express the distance dgp in terms of
tand &;:

The distance dgc is:

Use the distances dgp and dgc to express
the distance dcp:

Because a and &, have their right
and left sides mutually
perpendicular, they are equal and:

Substitute for tané, and tané& and
simplify to obtain:Solve equation
(1) for &:

sing, =nsiné, 1)
and
nsin @, =sin g,

sing, =nsin o,
and

nsing, =sin g,

sing, =sing, = 6, =6,and

the emerging ray and incident ray
are parallel.

dgp =ttanég,

dge =ttané,
dep = dgp — dge =t(tan @, —tan 6, )

s =t(tan 4, —tan @, )cos

2
=t(tan 6, — tan 6, )cos 6, @

s SN 6, sinb, c0s 0,
cosd, cosd,

_ t(sin o sin 6, cos HlJ
cosé,
_ t(sin g, cos @, —sin 6, cos b,
- cos 6,
tsin(,-6,)
cos o,

Remarks: One can also derive this expression using the law of sines.
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Picture the Problem We can use Snell’s law to determine & and then apply the result of

Problem 87 to find s.



From Problem 87 we have:

Apply Snell’s law to the first
interface to obtain:

Solve for &:

Substitute numerical values and
evaluate &:

Substitute numerical values and
evaluate s:
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o tsin(6, - 6,)
cosd,

sing, =nsiné,
0, = sin‘l(—Sln 91)
n

sin 30°

0, :sin‘l( j:19.47°

.o (15mm)sin(30° —19.47°)
€0s(19.47°)

=| 2.91mm

Picture the Problem The figure below shows the prism and the path of the ray through
it. The dashed lines are the normals to the prism faces. The triangle formed by the interior
ray and the prism faces has interior angles of «, 90° — 6, and 90° — ;. Consequently,

0, + 6, = a. We can apply Snell’s law at both interfaces to express the angle of

deviation &as a function of & and then set the derivative of this function equal to zero to
find the conditions on & and & that result in 5being a minimum.

Express the angle of deviation:

Apply Snell’s law to relate 6, to &
and & to 6,:

Solve equation (2) for 6, and

0=6,+6,-«a (1)
sing, =nsiné, (2
and

nsing, =sinég, (3)

6, =sin*(nsing,)



928  Chapter 31

equation (3) for &;: and
6, =sin™*(nsin6,)

Substitute in equation (1) to obtain:
5 =sin(nsin 8,)+sin™(nsin 8,)— a =sin *[nsin(6, — a)]+sin*(nsin 6,) -

Note that the only variable in this expression is &. To determine the condition that
minimizess, take the derivative of 5with respect to & and set it equal to zero.

S_gs ) di@s{sin‘l[nsin(ﬁa —a)]+sin™(nsin 6,)-

ncos(a —6,) ,__ncosd,

- Ji-[nsin(@-6,)F  1-(nsing,)

=0 for extrema

This equation is satisfied provided: a-0,=60,=> 0,=1a

Because 6, =a —6;: 0,=a-ta=1a

Because 8, = 6,, we can conclude that the deviation angle is a minimumiif the
ray passes through the prism symmetrically.

Remarks: Setting d&/d6; = 0 establishes the condition on & that §is either a
maximum or a minimum. To establish that &is indeed a minimum when

0, = 0, = 1 a,we can either show that d°6/d@? ,evaluated at 0, = L a , is positive
or, alternatively, plot a graph of §(6) to show that it is concave upward at
0,=3a.



